prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import datetime from typing import List import json import pandas as pd import numpy as np import requests import streamlit as st from .model_base import SimSirModelBase from .parameters import Parameters, ForecastMethod, ForecastedMetric EPOCH_START = datetime.datetime(1970, 1, 1) class EmpiricalModel(SimSirModelBase): min_cases = 5 @classmethod def can_use_actuals(cls, actuals: pd.DataFrame): if ("total_admissions_actual" in actuals.columns and np.max(
np.cumsum(actuals.total_admissions_actual)
numpy.cumsum
import numpy as np from numpy import cos, sin, pi import matplotlib.pyplot as plt import matplotlib.animation as animation from numba import jit import time class Cartpole: """ Implements dynamics, animation, and control for for a simple cartpole pendulum. Meant as a testbed for different controllers, the default controller (implemented in control) does a pretty good job though. The default constructor just goes, I find it more convenient to just go ahead and construct an object and then c change parameters after the fact. I.E. cart = Cartpole() cart.L = 5.0 Attributes: L - length of the pendulum in (m) mc - mass of the kart (kg) mp - magnitude of pointmass at the end of the cart's pole (kg) g - force f gravity (N) """ # Define constants (geometry and mass properties): def __init__(self, dt=None, Ts=None, n=None): self.L = 1.0; # length of the pole (m) self.mc = 4.0 # mass of the cart (kg) self.mp = 1.0 # mass of the ball at the end of the pole self.g = 9.8; self.Ts = Ts self.n = n; self.dt = dt self.tNext = 0 self.u_hold = [] self.y_lb = [] def animate_cart(self, t, y): """ constructs an animation object and returns it to the user. Then depending on your environment you'll need to do some other call to actually display the animation. usually I'm calling this from a jupyter notebook, in which case I do: ani = bot.animate_cart(time, y) HTML(ani.to_jshtml()) Args: t: numpy array with the time steps corresponding to the trajectory you want to animate, does not have to be uniform y: numpy array with a trajectory of state variables you want animated. [theta , x, thetadot, xdot] Returns: matplotlib.animation, which you then need to display """ dt = (t[-1] - t[0])/len(t) x1 = y[:, 1] y1 = 0.0 x2 = self.L * sin(y[:, 0]) + x1 y2 = -self.L * cos(y[:, 0]) + y1 fig = plt.figure() ax = fig.add_subplot(111, autoscale_on=False, aspect='equal', xlim=(-3, 3), ylim=(-3, 3)) ax.grid() line, = ax.plot([], [], 'o-', lw=2) time_template = 'time = %.1fs' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) def init(): line.set_data([], []) time_text.set_text('') return line, time_text def animate(i): thisx = [x1[i], x2[i]] thisy = [y1, y2[i]] line.set_data(thisx, thisy) time_text.set_text(time_template % (i * dt)) return line, time_text return animation.FuncAnimation(fig, animate, np.arange(1, len(y)), interval=40, blit=True, init_func=init) # @jit(nopython=False) def control(self, t, q): """ This is where you should define the control for the cartpole, called by derivs. By default, implements a swingup controller for the cartpole based on energy shaping. Switches to an LQR to balance the pendulum Args: t: float with the current time step (may not be used) q: numpy array of state variables [theta, x, thetadot, xdot] Returns: u, the control torque in N*m """ if (q[0] < 140 * pi/180) or (q[0] > 220 * pi/180 ): # swing up # energy error: Ee Ee = 0.5 * self.mp * self.L * self.L * q[2] ** 2 - self.mp * self.g * self.L * (1 + cos(q[0])) # energy control gain: k = 0.23 # input acceleration: A (of cart) A = k * Ee * cos(q[0]) * q[2] # convert A to u (using EOM) delta = self.mp * sin(q[0]) ** 2 + self.mc u = A * delta - self.mp * self.L * (q[2] ** 2) * sin(q[0]) - self.mp * self.g * sin(q[2]) * cos(q[2]) else: # balancing # LQR: K values from MATLAB k1 = 140.560 k2 = -3.162 k3 = 41.772 k4 = -8.314 u = -(k1 * (q[0] - pi) + k2 * q[1] + k3 * q[2] + k4 * q[3]) return u # state vector: q = transpose([theta, x, d(theta)/dt, dx/dt]) # @jit(nopython=False) def derivs(self, t, q): """ Implements the dynamics for our cartpole, you need to integrate this yourself with E.G: y = integrate.odeint(bot.derivs, init_state, time) or whatever other ode solver you prefer. Args: t: float with the current time (not actually used but most ODE solvers want to pass this in anyway) q: numpy array of state variables [theta, x, thetadot, xdot] numpy array with the derivatives of the current state variable [thetadot, xdot, theta2dot, x2dot] Returns: dqdt: numpy array with the derivatives of the current state variable [thetadot, xdot, theta2dot, x2dot] """ dqdt = np.zeros_like(q) # control input u = self.control(t, q) delta = self.mp * sin(q[0]) ** 2 + self.mc dqdt[0] = q[2] dqdt[1] = q[3] dqdt[2] = - self.mp * (q[2] ** 2) * sin(q[0]) * cos(q[0]) / delta \ - (self.mp + self.mc) * self.g * sin(q[0]) / delta / self.L \ - u * cos(q[0]) / delta / self.L dqdt[3] = self.mp * self.L * (q[2] ** 2) * sin(q[0]) / delta \ + self.mp * self.L * self.g * sin(q[0]) * cos(q[0]) / delta / self. L \ + u / delta return dqdt def derivs_dig(self, t, q): """ Implements the dynamics for our cartpole, you need to integrate this yourself with E.G: y = integrate.odeint(bot.derivs, init_state, time) or whatever other ode solver you prefer. This version only updates the control input at fixed intervals (instead of every time the solver is updates) Args: t: float with the current time (not actually used but most ODE solvers want to pass this in anyway) q: numpy array of state variables [theta, x, thetadot, xdot] numpy array with the derivatives of the current state variable [thetadot, xdot, theta2dot, x2dot] Returns: dqdt: numpy array with the derivatives of the current state variable [thetadot, xdot, theta2dot, x2dot] """ if(t>=self.tNext): #<> self.tNext += self.Ts*self.dt self.u_hold = self.control(q) dqdt =
np.zeros_like(q)
numpy.zeros_like
import os import pickle import hashlib import time import numpy as np import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (12.0, 12.0) from PIL import Image from joblib import Parallel, delayed ### Create config file class DatasetGeneratorConfig(): # Scene image shape IMAGE_WIDTH = 96 IMAGE_HEIGHT = 96 # Target image shape TARGET_WIDTH = 32 TARGET_HEIGHT = 32 # Number of distractors = characters placed behind the target DISTRACTORS = 31 # Number of occluders = characters placed atop of the target OCCLUDERS = 0 # Percentage of empty images [0,1] EMPTY = 0 # Drawer split DRAWER_SPLIT = 'all' #one of: 'all', 'train', 'val' DRAWER_SPLIT_POINT = 10 # Data augmentation settings MAX_ROTATION = 20 MAX_SHEAR = 10 MAX_SCALE = 2 # Number of images per parallel job JOBLENGTH = 2000 def set_drawer_split(self): #split char instances if self.DRAWER_SPLIT == 'train': self.LOW_INSTANCE = 0 self.HIGH_INSTANCE = self.DRAWER_SPLIT_POINT elif self.DRAWER_SPLIT == 'val': self.LOW_INSTANCE = self.DRAWER_SPLIT_POINT self.HIGH_INSTANCE = 20 elif self.DRAWER_SPLIT == 'all': self.LOW_INSTANCE = 0 self.HIGH_INSTANCE = 20 else: print("A drawer split has to be chosen from ['all', 'train', 'val']") ### Define Data Augmentation Functions # Define rotation functions def rot_x(phi,theta,ptx,pty): return np.cos(phi+theta)*ptx + np.sin(phi-theta)*pty def rot_y(phi,theta,ptx,pty): return -np.sin(phi+theta)*ptx + np.cos(phi-theta)*pty # Apply affine transformations and scale characters for data augmentation def prepare_char(some_char, angle=20, shear=10, scale=2): phi = np.radians(np.random.uniform(-angle,angle)) theta = np.radians(np.random.uniform(-shear,shear)) a = scale**np.random.uniform(-1,1) b = scale**np.random.uniform(-1,1) (x,y) = some_char.size x = a*x y = b*y xextremes = [rot_x(phi,theta,0,0),rot_x(phi,theta,0,y),rot_x(phi,theta,x,0),rot_x(phi,theta,x,y)] yextremes = [rot_y(phi,theta,0,0),rot_y(phi,theta,0,y),rot_y(phi,theta,x,0),rot_y(phi,theta,x,y)] mnx = min(xextremes) mxx = max(xextremes) mny = min(yextremes) mxy = max(yextremes) aff_bas = np.array([[a*np.cos(phi+theta), b*np.sin(phi-theta), -mnx],[-a*np.sin(phi+theta), b*np.cos(phi-theta), -mny],[0, 0, 1]]) aff_prm = np.linalg.inv(aff_bas) some_char = some_char.transform((int(mxx-mnx),int(mxy-mny)), method = Image.AFFINE, data = np.ndarray.flatten(aff_prm[0:2,:])) some_char = some_char.resize((int(32*(mxx-mnx)/105),int(32*(mxy-mny)/105))) return some_char # Crop scaled images to character size def crop_image(image): im_arr = np.asarray(image) lines_y = np.all(im_arr == 0, axis=1) lines_x = np.all(im_arr == 0, axis=0) k = 0 l = len(lines_y)-1 m = 0 n = len(lines_x)-1 while lines_y[k] == True: k = k+1 while lines_y[l] == True: l = l-1 while lines_x[m] == True: m = m+1 while lines_x[n] == True: n = n-1 cropped_image = image.crop((m,k,n,l)) #plt.imshow(image.crop((m,k,n,l))) return cropped_image # Color characters with a random RGB color def color_char(tmp_im): size = tmp_im.size tmp_im = tmp_im.convert('RGBA') tmp_arr = np.asarray(tmp_im) rnd = np.random.rand(3) stuff = tmp_arr[:,:,0] > 0 tmp_arr = tmp_arr*[rnd[0], rnd[1], rnd[2], 1] tmp_arr[:,:,3] = tmp_arr[:,:,3]*stuff tmp_arr = tmp_arr.astype('uint8') tmp_im = Image.fromarray(tmp_arr) return tmp_im ### Define Image Generation Functions # Generate one image with clutter def make_cluttered_image(chars, char, n_distractors, config, verbose=0): '''Inputs: chars: Dataset of characters char: target character nclutt: number of distractors empty: if True do not include target character''' # While loop added for error handling l=0 while l < 1: #initialize image and segmentation mask im = Image.new('RGBA', (config.IMAGE_WIDTH,config.IMAGE_HEIGHT), (0,0,0,255)) seg = Image.new('RGBA', (config.IMAGE_WIDTH,config.IMAGE_HEIGHT), (0,0,0,255)) #generate background clutter j = 0 while j < n_distractors: # draw random character instance rnd_char = np.random.randint(0,len(chars)) rnd_ind = np.random.randint(config.LOW_INSTANCE,config.HIGH_INSTANCE) some_char = chars[rnd_char][rnd_ind] try: # augment random character tmp_im = prepare_char(some_char) tmp_im = crop_image(tmp_im) tmp_im = color_char(tmp_im) j = j+1 except: if verbose > 0: print('Error generating distractors') continue # add augmented random character to image im.paste(tmp_im, (np.random.randint(0,im.size[0]-tmp_im.size[0]+1), np.random.randint(0,im.size[1]-tmp_im.size[1]+1)), mask = tmp_im) # if empty: draw another random character instead of the target empty = np.random.random() < config.EMPTY if empty: rnd_char = np.random.randint(0,len(chars)) rnd_ind = np.random.randint(config.LOW_INSTANCE,config.HIGH_INSTANCE) char = chars[rnd_char][rnd_ind] j = 0 while j < 1: try: # augment target character glt_im = prepare_char(char) #transform char glt_im = crop_image(glt_im) #crop char glt_im_bw = glt_im glt_im = color_char(glt_im) #color char j = j+1 except: if verbose > 0: print('Error augmenting target character') continue # place augmentad target char left = np.random.randint(0,im.size[0]-glt_im.size[0]+1) upper = np.random.randint(0,im.size[1]-glt_im.size[1]+1) im.paste(glt_im, (left, upper), mask = glt_im) #make segmentation mask if not empty: seg.paste(glt_im_bw, (left, upper), mask = glt_im_bw) # generate occlusion j = 0 while j < config.OCCLUDERS: # draw random character rnd_char = np.random.randint(0,len(chars)) rnd_ind = np.random.randint(config.LOW_INSTANCE,config.HIGH_INSTANCE) some_char = chars[rnd_char][rnd_ind] try: # augment occluding character tmp_im = prepare_char(some_char) tmp_im = crop_image(tmp_im) tmp_im = color_char(tmp_im) j = j + 1 except: if verbose > 0: print('Error generating occlusion') continue # place occluding character im.paste(tmp_im, (np.random.randint(0,im.size[0]-tmp_im.size[0]+1), np.random.randint(0,im.size[1]-tmp_im.size[1]+1)), mask = tmp_im) #convert image from RGBA to RGB for saving im = im.convert('RGB') seg = seg.convert('1') l=l+1 return im, seg def make_target(chars, char, config, verbose=0): '''Inputs: chars: Dataset of characters char: target character''' # Legacy while loop to generate multiple targets for data augemntation # Multiple targets did not improve performance in our experiments l=0 while l < 1: try: # initialize image im = Image.new('RGBA', (config.TARGET_WIDTH,config.TARGET_HEIGHT), (0,0,0,255)) # augment target character (no scaling is applied) glt_im = prepare_char(char, angle=config.MAX_ROTATION, shear=config.MAX_SHEAR, scale=1) #transform char glt_im = crop_image(glt_im) #crop char glt_im = color_char(glt_im) #color char #place target character left = (im.size[0]-glt_im.size[0])//2 upper = (im.size[1]-glt_im.size[1])//2 im.paste(glt_im, (left, upper), mask = glt_im) #convert image from RGBA to RGB for saving im = im.convert('RGB') except: if verbose > 0: print('Error generating target') continue l=l+1 return im def make_image(chars, k, config, seed=None): '''Inputs: chars: Dataset of characters angle: legacy shear: legacy scale: legacy joblength: number of images to create in each job k: job index seed: random seed to generate different results in each job coloring: legacy''' # Generate random seed np.random.seed(seed) # Initialize batch data storage r_ims = np.zeros((config.JOBLENGTH,config.IMAGE_WIDTH,config.IMAGE_HEIGHT,3), dtype='uint8') r_seg = np.zeros((config.JOBLENGTH,config.IMAGE_WIDTH,config.IMAGE_HEIGHT,1), dtype='uint8') r_tar = np.zeros((config.JOBLENGTH,config.TARGET_WIDTH,config.TARGET_HEIGHT,3), dtype='uint8') for i in range(config.JOBLENGTH): #select a char char_char = np.random.randint(0,len(chars)) char_ind = np.random.randint(config.LOW_INSTANCE,config.HIGH_INSTANCE) char = chars[char_char][char_ind] # choose random number of distractors for datasets with varying clutter # selects the one fixed number of distractors in other cases n_distractors = np.random.choice([config.DISTRACTORS]) #generate images and segmentation masks ims, seg = make_cluttered_image(chars, char, n_distractors, config) #generate targets tar = make_target(chars, char, config) # Append to dataset r_ims[i,:,:,:] = ims r_seg[i,:,:,0] = seg r_tar[i,:,:,:] = tar return r_ims, r_seg, r_tar ### Multiprocessing Dataset Generation Routine def generate_dataset(path, dataset_size, chars, config, seed=None, save=True, show=False, checksum=None): '''Inputs: path: Save path N: number of images chars: Dataset of characters char_locs: legacy split: train/val split of drawer instances save: If True save dataset to path show: If true plot generated images''' t = time.time() # Define necessary number of jobs N = dataset_size M = dataset_size//config.JOBLENGTH # Initialize data data_ims = np.zeros((N,config.IMAGE_WIDTH,config.IMAGE_HEIGHT,3), dtype='uint8') data_seg = np.zeros((N,config.IMAGE_WIDTH,config.IMAGE_HEIGHT,1), dtype='uint8') data_tar = np.zeros((N,config.TARGET_WIDTH,config.TARGET_HEIGHT,3), dtype='uint8') # Execute parallel data generation #for i in range(0,N): #with Parallel(n_jobs=10, verbose=50) as parallel: print('Executing %.d tasks'%(M)) if seed:
np.random.seed(seed)
numpy.random.seed
import time import warnings import numpy as np from scipy import ndimage import nibabel as nib from fusilib.utils import hex2rgba def cartesian2spherical(xyz): ''' Returns ------- radius : scalar inclination_deg : scalar azimuth_deg : scalar ''' x,y,z = xyz radius = np.sqrt(np.sum(np.asarray([x,y,z])**2)) angle_inclination = np.arccos(z/radius) angle_azimuth = np.arctan2(y,x) return radius, np.rad2deg(angle_inclination), np.rad2deg(angle_azimuth) def estimate_probe_depth_from_coord(coord_mm, xyz_probe_tip, coord_offset_mm=0.0, xyz_axis=1, check_inside=True, verbose=False, ): '''Find probe depth that a position along cartisian axis (x,y,or z). Parameters ---------- coord_mm : scalar, [mm] Position along axis of interest xyz_axis : int, Defaults to 1:yaxis:AP. 0 : x-axis (ML), 1: y-axis (AP), 2: z-axis (DV) xyz_probe_tip : np.ndarra [mm], (3,) <x,y,z> [mm] vector of probe tip location. coord_offset : scalar, [mm] Probe offset. The offset will be subracted from the coordinate For AP, it is the distance from probe insertion to y=0 e.g. AP y-coord=0 and offset 0.2 makes it such that y-coord=-0.2. Returns -------- probe_depth : scalar, [mm] Position in probe at coordinate of interest. Convention where 0[mm] is top of probe. If the probe depth is outside the brain or beyond the tip, then the values are returned as negative. position_in_xyz : np.ndarray [mm], (3,) Position of probe at coordinate of interest ''' scale = (coord_mm - coord_offset_mm)/xyz_probe_tip[xyz_axis] position_in_xyz = xyz_probe_tip*scale probe_depth = np.sqrt(np.sum(xyz_probe_tip**2)) position_depth = np.sqrt(np.sum(position_in_xyz**2)) depth_in_probe = probe_depth - position_depth*np.sign(position_in_xyz[xyz_axis]) if verbose: print(position_in_xyz, position_depth, probe_depth) if depth_in_probe > probe_depth or depth_in_probe < 0: warnings.warn('Position is too long! %0.04f[mm]>%0.04f[mm]'%(probe_depth - depth_in_probe, probe_depth)) if check_inside: raise ValueError('Position is too long! %0.04f[mm]>%0.04f[mm]'%(probe_depth - depth_in_probe, probe_depth)) depth_in_probe *= -1 position_depth *= -1 return position_depth, position_in_xyz def estimate_probe_xyz_from_angles(angle_inclination, angle_azimuth=45, probe_depth_mm=3.84): '''Estimate location of probe in cartesian coordinates Convention is in spherical coordinates and insertion site is origin (0,0,0). Notes ----- For a manipulator with 30[deg] downward inclination, a probe inserted RH pointing towards the midline at 45[deg]: * angle_inclination = 90+30 # [deg] b/c 0[degs] points up * angle_azimuth = 90+45 #[deg] b/c 45[deg] points towards the right of the brain For a manipulator with 30[deg] downward inclination a probe inserted LH pointing towards the midline at 45[deg]: * angle_inclination = 90+30 # [deg] b/c 0[degs] points up * angle_azimuth = 45 #[deg] 45[deg] points towards the right of the brain (towards midline) Parameters ---------- angle_inclination : scalar, [deg] Inclination in spherical coordinates (0[deg] points up). NB: For downward inclinations, add 90[deg] to manipulator setting. angle_azimuth : scalar, [deg] Azimuth in spherical coordinates (0[deg] points right) NB: For typical azimuths pointing towards midline: RH: 90 + azimuth [deg] if in RH LH: 90 - azimuth [deg] if in LH probe_depth_mm : scalar, [mm] Size of probe inside of brain Returns ------- xyz_coords : np.ndarray, (3,) Position of probe tip in cartesian coordinates. Convention: x: right(+)/left(-) y: anterior(+) z: dorsal(+)/ventral(-) Because insertions typically pointing down, z is typically negative and -x is LH. ''' xpos = probe_depth_mm*np.sin(np.deg2rad(angle_inclination))*np.cos(np.deg2rad(angle_azimuth)) ypos = probe_depth_mm*np.sin(np.deg2rad(angle_inclination))*np.sin(np.deg2rad(angle_azimuth)) zpos = probe_depth_mm*np.cos(np.deg2rad(angle_inclination)) return np.asarray([xpos,ypos,zpos]) def estimate_probe_xyz_for_probe(angle_downward_inclination, xwidth_mm, probe_depth_mm, dv_projection_mm=None, angle_azimuth_nominal=45, verbose=False, **kwargs): ''' xwidth_mm is signed -LH, +RH Parameters ---------- angle_downward_inclination : float-like, [deg] Angle from the axial plane downwards xwidth_mm : float-like [mm] Width of fUSI probe 2D projection If negative, the probe is assumed to be in left hemisphere. probe_depth_mm : float-like [mm] Depth of probe Returns ------- xyz : np.ndarray (3,) Position of probe tip in mm. ''' right_hemisphere = np.sign(xwidth_mm) == 1 xyz = estimate_probe_xyz_position(angle_downward_inclination, np.abs(xwidth_mm), probe_depth_mm, right_hemisphere=right_hemisphere, towards_midline=True, **kwargs) if dv_projection_mm and verbose is True: info = (dv_projection_mm, xyz[-1] - -dv_projection_mm) print('DV difference %0.04f[mm]: (diff=%0.04f[mm])'%info) if verbose is True: print(xyz) return xyz def estimate_probe_xyz_position(angle_downward_inclination, xwidth_mm, probe_depth_mm, right_hemisphere=True, towards_midline=True, angle_azimuth_nominal=45, verbose=False, ): '''All terms relative to manipulator position. Notes ----- Convention: x: right(+)/left(-) y: anterior(+) z: dorsal(+)/ventral(-) Parameters ---------- angle_downard_inclination : scalar, [deg] Angle of manipulator pointing down xwidth_mm : scalar, [mm] Extent of probe in horizontal axis (e.g. size on 2D coronal projection) probe_depth_mm : scalar, [mm] Size of probe inside of brain Returns ------- xyz_coords : np.ndarray, (3,) Position of probe tip in cartesian coordinates. Because insertions typically pointing down, z is typically negative and -x is LH. ''' # force downwardness angle_inclination = np.mod(angle_downward_inclination, 90) + 90 if right_hemisphere: flip = -1 if towards_midline else 1 else: flip = 1 if towards_midline else -1 xpos = xwidth_mm*flip angle_azimuth = np.rad2deg(np.arccos(xpos/( probe_depth_mm*np.sin(np.deg2rad(angle_inclination))))) ypos = probe_depth_mm*(np.sin(np.deg2rad(angle_inclination)) * np.sin(np.deg2rad(angle_azimuth))) xpos = probe_depth_mm*(np.sin(np.deg2rad(angle_inclination)) * np.cos(np.deg2rad(angle_azimuth))) zpos = probe_depth_mm*np.cos(np.deg2rad(angle_inclination)) radius = np.sqrt(np.sum(xpos**2 + ypos**2 + zpos**2)) assert np.allclose(probe_depth_mm, radius) xyz_from_angles = estimate_probe_xyz_from_angles(angle_inclination, 90 - angle_azimuth_nominal*flip, probe_depth_mm) xyz_from_proj = np.asarray([xpos, ypos, zpos]) if verbose: print('Difference: from 90 angles (azimuth=%0.02f, incli=%0.02f):'%(90-angle_azimuth, 90-angle_inclination), xyz_from_proj - xyz_from_angles) return xyz_from_proj def test_estimate_probe_xyz_position(): # on the right side of the brain, pointing towards the left (midline) xyz_from_angles = estimate_probe_xyz_from_angles(30+90, 90+40, 3.84) xwidth =
np.abs(xyz_from_angles[0])
numpy.abs
import numpy as np import argparse import sys sys.path.append('../') from util import * from bell2014 import image_util from bell2014 import judgements import skimage import json parser = argparse.ArgumentParser( description="""Run decomposition and evaluation on the test split of the Intrinsic Images in the Wild (IIW) dataset""") parser.add_argument( 'iiw_dir', type=str, help='directory of IIW data') parser.add_argument( '-caffe_dir', type=str, default='../caffe/', help='Caffe directory') parser.add_argument( '-gpu', type=int, default=0, help='GPU ID') args = parser.parse_args() sys.path.append(args.caffe_dir + '/python') # Silence Caffe from os import environ environ['GLOG_minloglevel'] = '2' from caffe import * set_mode_gpu() set_device(args.gpu) rref_net = Net('../net/rref.prototxt', '../net/rref.caffemodel', 1) test_ids = np.load('iiw_test_ids.npy').astype(int) # Half of the local Patch Size (63 - 1)/2. This is needed for padding, # so that the network can evaluate on points close to image boundaries. hps = 31 # Size of the context image context_size = 150 # Accumulate the weights and errors for computing WHDR error_sum = 0.0 weight_sum = 0.0 for t in range(len(test_ids)): print('Evaluating: %d/%d' % (t+1, len(test_ids))) id = test_ids[t] image_file = args.iiw_dir + str(id) + '.png' im = skimage.io.imread(image_file) context_im = skimage.transform.resize(im, (context_size, context_size)) context_im = context_im.transpose([2, 0, 1])[::-1] - channel_mean[:, None, None] padim =
np.lib.pad(im, ((hps, hps), (hps, hps), (0,0)), 'symmetric')
numpy.lib.pad
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata from scipy.sparse import csr_matrix, lil_matrix, hstack, vstack from geometry import rotation_matrix, proj_iso_plane # , make_fluence_maps from time import time # from scipy.signal import convolve2d from scipy.ndimage import convolve from scipy.ndimage.interpolation import rotate # import trimesh as tm # https://github.com/mikedh/trimesh # commissioning data and fit fxns pdd_data = { "6X": { "buildup": [-0.00015749459237802087, 0.018456397544299074, -0.88448139491242872, 22.163062813849965, -312.23926598651917, 2449.7961711094094, 1749.682558831852], "split": 18.75, "falloff": [-2.8264719677060061e-07, 0.00024313850219755478, -0.036093426359969094, -28.230918530108855, 11245.762396352433] }, "15X": { "split": 35.0, "buildup": [-0.0009464313106873083, 0.19875057524433598, -16.539586683888302, 692.4124379156118, -15519.52470334705, 185289.8082771371, 38443.305072768264], "falloff": [-3.1861193991006273e-10, 5.497344697565649e-07, -0.0003803517731495236, 0.1334223080989128, -22.60982496684418, -479.32980224649026, 1113733.8377053856] }, "15X_MC": { "buildup": [-2.7723087151505166e-06, 0.00055879347539751413, -0.053759468984408219, 3.0197899077600456, -101.31274784968605, 1888.8581630228164, 1293.1597039077351], "split": 32.8125, "falloff": [-1.9597228831831153e-11, 2.693437995470181e-08, -1.4915457123262073e-05, 0.0042146835045338083, -0.58755541834481695, -2.688095323220637, 17061.029792989608] }, # "15X": { # "buildup": [-2.781688925124089e-06, 0.0005606841739703134, -0.054105297895991306, 3.0520358074793372, # -102.57441264586714, 1907.2660184066269, 1267.6475603080792], # "split": 32.8125, # "falloff": [-2.8839890418852902e-11, 3.887703303176435e-08, -2.0889148193952867e-05, 0.0056726958756894907, # -0.7677552995266792, 7.7496351540534905, 16882.372184793865] # }, "15X_old": { "buildup": [-1.6507633296164477e-06, 0.00028630426498036006, -0.02888629114824896, 1.7451265889913861, -61.497244761739545, 1171.9987395979024, 1674.4131730133356], "split": 28.125, "falloff": [-2.954626231433345e-07, 0.00024567974262585063, -0.052934868220503181, -18.176864694198056, 11639.846648127208] } } kernel_data = { "15X_TPS": [4.245974260699353, 3.017027753379914, 0.14762857922875838, 2.041032903900953, 5.76614346628947, 49.547092289488255], #came from TPS lines # "15X": [4873.696975027252, 1404.0366659346853, 2455.7177653736917, # 49.56740857240596, 8.417599570230726, 2.1880620468364484], "15X": [0.00028964017385020818, 0.00011667873579437889, 0.0024779599104120744, 6.4674171413250718, 18.237437627703674, 1.5545102702143783], ## CAME FROM MC "6X": [0.00028964017385020818, 0.00011667873579437889, 0.0024779599104120744, 6.4674171413250718, 18.237437627703674, 1.5545102702143783], ## COPY OF 15X kernel # (f1,f2,f3,s1,s2,r3) # { # 'f2':.2,#.32, # 'f3':0.0,#.0052, # ODDS ARE THIS FACTOR IS WRONG # 'sig1': 1.0,#1.1, # calibrated with 2 mm kernel # 'sig2': 2.0,#2.9, # }, # "6X":{ # 'calib_beam_size_mm': 2.0, # calibrated with 2 mm kernel # 'f2':.09, # 'f3':.0043, # 'sig1':.8, # 'sig2':1.9, # }, } def compute_Dij(dose_shape, idxs_oi, pts_3d, pts_3d_shell, SAD=1000., gantry_angle=0., field_size=100., beamlet_size_x=1., beamlet_size_z=5., field_buffer=20., beam_energy=None, show_plots=False, anti_alias=False, pdd_dose = None): """ all units in mm (DICOM) returns a "ray-trace" Dij matrix (no scatter) :param SAD: :param gantry_angle: :param field_size: :param beamlet_size: :param field_buffer: added to all sides of the field :param beam_energy: :param show_plots: :param anti_alias: 1) :return: """ assert beam_energy is not None, "please provide a beam energy" assert len(pdd_data[beam_energy]), "please provide beam data" big_tic = time() # dose calc settings # SAD = 1000. # mm # gantry_angle = 0. # degrees # all geometry defined on iso-center plane as usual # field_size = 100. # mm (square) # beamlet_size = 1. # mm (square) # field_buffer = 20. # mm (width of region beyond field - allows for scattering outside of field) # BUILD FLUENCE MAP ############################################################################################### tic = time() # pre-sanity check assert field_size % beamlet_size_x == 0, "field_size must be integer multiple of beamlet_size" assert field_buffer % beamlet_size_x == 0, "field_buffer must be integer multiple of beamlet_size" assert field_size % beamlet_size_z == 0, "field_size must be integer multiple of beamlet_size" assert field_buffer % beamlet_size_z == 0, "field_buffer must be integer multiple of beamlet_size" # some pre-calcualted variables which are re-used throughout the code src = [0, SAD, 0] # source point @ 0 degrees rotation in (isocenter-shifted) DICOM ref. frame src_rot = np.dot(rotation_matrix([0., 0., np.radians(180. - gantry_angle)]), src) # print(src_rot) # setup fluence grid expanded_field_size = field_size + 2. * field_buffer # [buffer][field][buffer] field_buffer_x_px = int(field_buffer / beamlet_size_x) # number of fluence pixels in buffer region field_size_x_px = int(field_size / beamlet_size_x) # number of fluence pixels in field field_buffer_z_px = int(field_buffer / beamlet_size_z) # number of fluence pixels in buffer region field_size_z_px = int(field_size / beamlet_size_z) # number of fluence pixels in field # compute BOUNDARIES of fluence map pixels (note the +1) x_map_boundaries = np.linspace(-expanded_field_size / 2., expanded_field_size / 2., int(expanded_field_size / beamlet_size_x) + 1) z_map_boundaries = np.linspace(-expanded_field_size / 2., expanded_field_size / 2., int(expanded_field_size / beamlet_size_z) + 1) # z_map_boundaries = x_map_boundaries x_mesh_boundaries, z_mesh_boundaries = np.meshgrid(x_map_boundaries, z_map_boundaries) # sanity check # print(x_mesh_boundaries.shape[1], 2*field_buffer_x_px + field_size_x_px + 1, "x field dimensions") # print(x_mesh_boundaries.shape[0], 2*field_buffer_z_px + field_size_z_px + 1, "x field dimensions") assert x_mesh_boundaries.shape[1] == 2 * field_buffer_x_px + field_size_x_px + 1, "error computing field dimensions" assert x_mesh_boundaries.shape[0] == 2 * field_buffer_z_px + field_size_z_px + 1, "error computing field dimensions" # compute CENTRAL POINTS of pixels on fluence map x_map_centers = np.linspace(-expanded_field_size / 2. + beamlet_size_x / 2, expanded_field_size / 2. - beamlet_size_x / 2., int(expanded_field_size / beamlet_size_x)) z_map_centers = np.linspace(-expanded_field_size / 2. + beamlet_size_z / 2, expanded_field_size / 2. - beamlet_size_z / 2., int(expanded_field_size / beamlet_size_z)) # z_map_centers = x_map_centers x_mesh_centers, z_mesh_centers = np.meshgrid(x_map_centers, z_map_centers) # print(len(x_map)) # print(x_map.min(), x_map.max()) # get point data # vox_size = study['{}/voxel_size'.format(ct_group)] # pts_3d = study['{}/voxel_coords'.format(ct_group)] - isocenter # try grabbing body contour instead? # pts_3d_shell = (study['ct/voxel_coords'.format(ct_group)] - isocenter)[np.where(study[body_shell_path])] # shell path in full resolution? # print(round(time() - tic, 3), ' sec for init') # BUILD SURFACE DISTANCE MAP ###################################################################################### tic = time() # rotate and project points to isocenter plane pts_proj = proj_iso_plane(pts_3d_shell.T, SAD, gantry_angle) # pick out relevant points (y dimension should always be zero) x = pts_proj[0] z = pts_proj[2] # optional, adds ~30 compute time to this section assert sum(pts_proj[1]) == 0.0, "unexpected behavior of projection operation" # create digitize bin boundaries at a lower resolution: make space wider by 1cm on each side (buffer zone) # THESE SET BOUNDARIES - indexing is not a problem here since we use matching rather than slicing on this step x_bins = np.linspace(-field_size / 2. - 1.5 * field_buffer, field_size / 2. + 1.5 * field_buffer, 25) z_bins = np.linspace(-field_size / 2. - 1.5 * field_buffer, field_size / 2. + 1.5 * field_buffer, 25) x_dig = np.digitize(x, x_bins) # the binned indices along x dimension: x_bins[i-1] <= x < x_bins[i] # the actual limits of the projected data # print('x', x.min(), x.max()) # print('z', z.min(), z.max()) # stores distance values for each bin d_min = [] # d_max = [] # stores the point values for each bin p_min = [] # p_max = [] # for each x-bin "i" (digitize returns valid index between 1 <= i < len(x_bins)) for i in range(1, len(x_bins)): # find indices of points within the current x-bin "i" idx_x = np.array(np.where(x_dig == i)) # get binned indices along z dimension for the points withing x-bin "i" z_dig = np.digitize(z[idx_x], z_bins) # z_bins[j-1] <= z < z_bins[j] # for each z-bin "j" for j in range(1, len(z_bins)): # find the indices of points within current x-bin "i" and z-bin "j" idx_xz = idx_x[np.where(z_dig == j)] # if there is more than one point in the current xz-bin "i,j" if len(idx_xz) > 1: # get the 3d coordinate for each point pix_pts = pts_3d_shell[idx_xz, :] # get the 2d coordinate for each point (on projection plane) pln_pts = pts_proj[:, idx_xz] # compute distances to source for the 3d points dists = np.linalg.norm(pix_pts - src_rot, axis=1) # faster # save the 2d coordinates of the minimum and maximum distance points p_min.append(pln_pts[::2, dists.argmin()]) # only selecting x-y component # p_max.append(pln_pts[::2, dists.argmax()]) # only selecting x-y component # save the distances to the minimum and maximum 3d points d_min.append(dists.min()) # d_max.append(dists.max()) del z_dig del x_dig # cast to numpy array p_min = np.array(p_min) d_min = np.array(d_min) # p_max = np.array(p_max) # d_max = np.array(d_max) # print(round(time() - tic, 3), 'sec for surface map computation') if show_plots: # example of interpolated distance map @ fluence map resolution # create interpolated distance map d_map = griddata(p_min, d_min, (x_mesh_centers, z_mesh_centers), method='cubic') print(d_map.shape) plt.imshow(d_map, interpolation='none') plt.colorbar() print("dmap mean SSD:", d_map.mean(), " mm") plt.show() fig = plt.figure() ax = fig.gca(projection='3d') # surf = ax.plot_surface(x_mesh,z_mesh,d_min.max()-d_map) ax.scatter(p_min[:, 0], p_min[:, 1], d_min) plt.show() # COMPUTE DEPTH TO EACH POINT ##################################################################################### tic = time() # create dose grid (@ CT resolution for now) dose_test = np.zeros(dose_shape) # only select points inside body contour # idxs_oi = np.where(study[body_contour_path] > 0) pts_3d_oi = pts_3d[idxs_oi] # points within body contour # project all points to isocenter plane vol_proj = proj_iso_plane(pts_3d_oi.T, SAD, gantry_angle) # compute physical distance between source and all points of interest dist_pts = np.linalg.norm(pts_3d_oi - src_rot, axis=1) # compute physical distance between body surface and all points of interest dx_map = griddata(p_min, d_min, (vol_proj[0], vol_proj[2]), method='cubic') dose_test[idxs_oi] = dist_pts - dx_map # only used for testing/validation # dose_test[idxs_oi] = np.divide(dist_pts,np.square(dist_pts)) # print(round(time() - tic, 3), "sec for depth calculation") if show_plots: plt.imshow(dose_test[:, :, int(dose_test.shape[2] / 2)]) plt.colorbar() plt.show() # plt.imshow(dose_test[:,dose_test.shape[1]/2,:]) # plt.colorbar() # plt.show() del dx_map # APPLY PDD ####################################################################################################### if pdd_dose is None: tic = time() pdd_f_fxn = np.poly1d(pdd_data[beam_energy]['falloff']) pdd_b_fxn = np.poly1d(pdd_data[beam_energy]['buildup']) # make copy of distance data pdd_dose = dose_test.copy() # optional cleanup # nan_vals = np.where(np.isnan(pdd_dose)) # pdd_dose[nan_vals] = 0. # select buildup region by index bu_idx = np.where(pdd_dose <= pdd_data[beam_energy]['split']) # select fall off region by index fo_idx = np.where(pdd_dose > pdd_data[beam_energy]['split']) # apply buildup and falloff PDD filter # TODO: can we narrow the indexing here rather than applying to full dose grid? pdd_dose[bu_idx] = pdd_b_fxn(pdd_dose[bu_idx]) pdd_dose[fo_idx] = pdd_f_fxn(pdd_dose[fo_idx]) # normalize by physical distance (1/square(r)) # TESTING NO NORM pdd_dose[idxs_oi] = np.divide(pdd_dose[idxs_oi], np.square(dist_pts)) # cleanup dose grid pdd_dose[np.where(np.isnan(pdd_dose))] = 0.0 pdd_dose[np.where(pdd_dose < 0.0)] = 0.0 # print(time() - tic, 'sec to apply PDD') del bu_idx del fo_idx else: print("USING ECLIPSE BEAM FOR DEPTH DOSE") assert pdd_dose.shape == dose_shape, "PDD shape does not match dose shape" # BUILD SPARSE MATRIX ############################################################################################# # here we form the "ray trace" matrix for computing dose given a fluence map # TODO: double check behavior of np.digitize # some variable shortcuts x_map_n = len(x_map_centers) z_map_n = len(z_map_centers) def digitize_voxel_mtx(vol_pts, x_map_bounds, z_map_bounds, x_shift=0.0, z_shift=0.0): # digitize the location of each vozel point on the fluence plane v_dig_x = np.digitize(vol_pts[0] + x_shift, x_map_bounds) - 1 v_dig_z = np.digitize(vol_pts[2] + z_shift, z_map_bounds) - 1 # select on valid indeces within fluence map v_dig_valid = np.where((0 <= v_dig_x) & (v_dig_x < x_map_n) & (0 <= v_dig_z) & (v_dig_z < z_map_n)) tmp = pdd_dose[idxs_oi] # form sparse dose matrix: sparse_dose = tmp[v_dig_valid].flatten().copy() fmap_width = len(x_map_bounds) - 1 # we subtract 1 here because boundaries are of length x_map_n+1 col_idx = v_dig_x[v_dig_valid] + fmap_width * (v_dig_z[v_dig_valid]) row_idx = v_dig_valid[0] # np.array(range(len(sparse_dose))) del tmp del v_dig_x del v_dig_z return csr_matrix((sparse_dose.astype(np.float32), (row_idx, col_idx)), shape=( len(idxs_oi[0]), (x_map_boundaries.shape[0] - 1) * (z_map_boundaries.shape[0] - 1) )) if anti_alias: # this averages out beamlet contributions across neighboring voxels # d = 2. csr = None N = 4 #20 for x_shift in np.linspace(-beamlet_size_x/2.0, beamlet_size_x/2.0, N, endpoint=True): for z_shift in np.linspace(-beamlet_size_z/2.0, beamlet_size_z/2.0, N, endpoint=True): if csr is None: csr = digitize_voxel_mtx(vol_proj, x_map_boundaries, z_map_boundaries, x_shift, z_shift) else: csr += digitize_voxel_mtx(vol_proj, x_map_boundaries, z_map_boundaries, x_shift, z_shift) csr /= float(N) else: csr = digitize_voxel_mtx(vol_proj, x_map_boundaries, z_map_boundaries) # print(col_idx.max()) # print(csr.shape) # print(csr.nnz) print("beam Dij time: ", round(time() - big_tic, 3), " sec") return csr # , idxs_oi# v_dig_valid #, x_bins, z_bins def compute_Dij_bodymesh(dose_shape, idxs_oi, pts_3d, bodymesh, SAD=1000., gantry_angle=0., field_size=100., beamlet_size_x=1., beamlet_size_z=5., field_buffer=20., beam_energy=None, show_plots=False, anti_alias=False, pdd_dose = None): """ all units in mm (DICOM) returns a "ray-trace" Dij matrix (no scatter) :param SAD: :param gantry_angle: :param field_size: :param beamlet_size: :param field_buffer: added to all sides of the field :param beam_energy: :param show_plots: :param anti_alias: 1) :return: """ assert beam_energy is not None, "please provide a beam energy" assert len(pdd_data[beam_energy]), "please provide beam data" big_tic = time() # dose calc settings # SAD = 1000. # mm # gantry_angle = 0. # degrees # all geometry defined on iso-center plane as usual # field_size = 100. # mm (square) # beamlet_size = 1. # mm (square) # field_buffer = 20. # mm (width of region beyond field - allows for scattering outside of field) # BUILD FLUENCE MAP ############################################################################################### tic = time() # pre-sanity check assert field_size % beamlet_size_x == 0, "field_size must be integer multiple of beamlet_size" assert field_buffer % beamlet_size_x == 0, "field_buffer must be integer multiple of beamlet_size" assert field_size % beamlet_size_z == 0, "field_size must be integer multiple of beamlet_size" assert field_buffer % beamlet_size_z == 0, "field_buffer must be integer multiple of beamlet_size" # some pre-calcualted variables which are re-used throughout the code src = [0, SAD, 0] # source point @ 0 degrees rotation in (isocenter-shifted) DICOM ref. frame src_rot = np.dot(rotation_matrix([0., 0., np.radians(180. - gantry_angle)]), src) # print(src_rot) # setup fluence grid expanded_field_size = field_size + 2. * field_buffer # [buffer][field][buffer] field_buffer_x_px = int(field_buffer / beamlet_size_x) # number of fluence pixels in buffer region field_size_x_px = int(field_size / beamlet_size_x) # number of fluence pixels in field field_buffer_z_px = int(field_buffer / beamlet_size_z) # number of fluence pixels in buffer region field_size_z_px = int(field_size / beamlet_size_z) # number of fluence pixels in field # compute BOUNDARIES of fluence map pixels (note the +1) x_map_boundaries = np.linspace(-expanded_field_size / 2., expanded_field_size / 2., int(expanded_field_size / beamlet_size_x) + 1) z_map_boundaries = np.linspace(-expanded_field_size / 2., expanded_field_size / 2., int(expanded_field_size / beamlet_size_z) + 1) # z_map_boundaries = x_map_boundaries x_mesh_boundaries, z_mesh_boundaries = np.meshgrid(x_map_boundaries, z_map_boundaries) # sanity check # print(x_mesh_boundaries.shape[1], 2*field_buffer_x_px + field_size_x_px + 1, "x field dimensions") # print(x_mesh_boundaries.shape[0], 2*field_buffer_z_px + field_size_z_px + 1, "x field dimensions") assert x_mesh_boundaries.shape[1] == 2 * field_buffer_x_px + field_size_x_px + 1, "error computing field dimensions" assert x_mesh_boundaries.shape[0] == 2 * field_buffer_z_px + field_size_z_px + 1, "error computing field dimensions" # compute CENTRAL POINTS of pixels on fluence map x_map_centers = np.linspace(-expanded_field_size / 2. + beamlet_size_x / 2, expanded_field_size / 2. - beamlet_size_x / 2., int(expanded_field_size / beamlet_size_x)) z_map_centers = np.linspace(-expanded_field_size / 2. + beamlet_size_z / 2, expanded_field_size / 2. - beamlet_size_z / 2., int(expanded_field_size / beamlet_size_z)) # z_map_centers = x_map_centers x_mesh_centers, z_mesh_centers = np.meshgrid(x_map_centers, z_map_centers) # print(len(x_map)) # print(x_map.min(), x_map.max()) # get point data # vox_size = study['{}/voxel_size'.format(ct_group)] # pts_3d = study['{}/voxel_coords'.format(ct_group)] - isocenter # try grabbing body contour instead? # pts_3d_shell = (study['ct/voxel_coords'.format(ct_group)] - isocenter)[np.where(study[body_shell_path])] # shell path in full resolution? # print(round(time() - tic, 3), ' sec for init') # BUILD SURFACE DISTANCE MAP ###################################################################################### tic = time() num_bixels = x_mesh_centers.shape[0] * z_mesh_centers.shape[0] src_pts = np.array([_ for _ in src_rot] * num_bixels).reshape((-1, 3)) # mm # raise Exception("BODY MESH FLUENCE PLANE ROTATION NOT IMPLEMENTED") isocenter_plane = np.array([x_mesh_centers.flatten(), [0.0] * num_bixels, z_mesh_centers.flatten()]).T iso_plane_rot = np.dot( isocenter_plane, rotation_matrix([0., 0., np.radians(180. - gantry_angle)]).T, ) assert iso_plane_rot.shape == src_pts.shape, "iso_plane shape: {}, src_pts.shape: {}".format(iso_plane_rot.shape,src_pts.shape) intersections = bodymesh.ray.intersects_location(ray_origins=src_pts, ray_directions=iso_plane_rot - src_pts) locations = intersections[0] ray_idxs = intersections[1] dist_map = np.ones_like(x_mesh_centers) * np.inf for i, idx in enumerate(ray_idxs): temp_dist = np.sqrt(np.square(locations[i] - src_pts[idx]).sum()) if (temp_dist < dist_map.flat[idx]): dist_map.flat[idx] = temp_dist # COMPUTE DEPTH TO EACH POINT ##################################################################################### tic = time() # create dose grid (@ CT resolution for now) dose_test = np.zeros(dose_shape) # only select points inside body contour # idxs_oi = np.where(study[body_contour_path] > 0) pts_3d_oi = pts_3d[idxs_oi] # points within body contour # project all points to isocenter plane vol_proj = proj_iso_plane(pts_3d_oi.T, SAD, gantry_angle) # compute physical distance between source and all points of interest dist_pts = np.linalg.norm(pts_3d_oi - src_rot, axis=1) # compute physical distance between body surface and all points of interest dx_map = griddata((iso_plane_rot.T[0], isocenter_plane.T[2]), dist_map.flat, (vol_proj[0], vol_proj[2]), method='linear') dose_test[idxs_oi] = dist_pts - dx_map # only used for testing/validation # dose_test[idxs_oi] = np.divide(dist_pts,np.square(dist_pts)) # print(round(time() - tic, 3), "sec for depth calculation") if show_plots: plt.imshow(dose_test[:, :, int(dose_test.shape[2] / 2)]) plt.colorbar() plt.show() # plt.imshow(dose_test[:,dose_test.shape[1]/2,:]) # plt.colorbar() # plt.show() # del dx_map # APPLY PDD ####################################################################################################### if pdd_dose == None: tic = time() pdd_f_fxn = np.poly1d(pdd_data[beam_energy]['falloff']) pdd_b_fxn = np.poly1d(pdd_data[beam_energy]['buildup']) # make copy of distance data pdd_dose = dose_test.copy() # optional cleanup # nan_vals = np.where(np.isnan(pdd_dose)) # pdd_dose[nan_vals] = 0. # select buildup region by index bu_idx = np.where(pdd_dose <= pdd_data[beam_energy]['split']) # select fall off region by index fo_idx = np.where(pdd_dose > pdd_data[beam_energy]['split']) # apply buildup and falloff PDD filter # TODO: can we narrow the indexing here rather than applying to full dose grid? pdd_dose[bu_idx] = pdd_b_fxn(pdd_dose[bu_idx]) pdd_dose[fo_idx] = pdd_f_fxn(pdd_dose[fo_idx]) # normalize by physical distance (1/square(r)) # TESTING NO NORM pdd_dose[idxs_oi] = np.divide(pdd_dose[idxs_oi], np.square(dist_pts)) # cleanup dose grid pdd_dose[np.where(np.isnan(pdd_dose))] = 0.0 pdd_dose[np.where(pdd_dose < 0.0)] = 0.0 # print(time() - tic, 'sec to apply PDD') del bu_idx del fo_idx else: assert pdd_dose.shape == dose_shape, "PDD shape does not match dose shape" # BUILD SPARSE MATRIX ############################################################################################# # here we form the "ray trace" matrix for computing dose given a fluence map # TODO: double check behavior of np.digitize # some variable shortcuts x_map_n = len(x_map_centers) z_map_n = len(z_map_centers) def digitize_voxel_mtx(vol_pts, x_map_bounds, z_map_bounds, x_shift=0.0, z_shift=0.0): # digitize the location of each vozel point on the fluence plane v_dig_x = np.digitize(vol_pts[0] + x_shift, x_map_bounds) - 1 v_dig_z = np.digitize(vol_pts[2] + z_shift, z_map_bounds) - 1 # select on valid indeces within fluence map v_dig_valid = np.where((0 <= v_dig_x) & (v_dig_x < x_map_n) & (0 <= v_dig_z) & (v_dig_z < z_map_n)) tmp = pdd_dose[idxs_oi] # form sparse dose matrix: sparse_dose = tmp[v_dig_valid].flatten().copy() fmap_width = len(x_map_bounds) - 1 # we subtract 1 here because boundaries are of length x_map_n+1 col_idx = v_dig_x[v_dig_valid] + fmap_width * (v_dig_z[v_dig_valid]) row_idx = v_dig_valid[0] # np.array(range(len(sparse_dose))) del tmp del v_dig_x del v_dig_z return csr_matrix((sparse_dose.astype(np.float32), (row_idx, col_idx)), shape=( len(idxs_oi[0]), (x_map_boundaries.shape[0] - 1) * (z_map_boundaries.shape[0] - 1) )) if anti_alias: # this averages out beamlet contributions across neighboring voxels # d = 2. csr = None N = 20 for x_shift in np.linspace(-beamlet_size_x/2.0, beamlet_size_x/2.0, N, endpoint=True): for z_shift in np.linspace(-beamlet_size_z/2.0, beamlet_size_z/2.0, N, endpoint=True): if csr is None: csr = digitize_voxel_mtx(vol_proj, x_map_boundaries, z_map_boundaries, x_shift, z_shift) else: csr += digitize_voxel_mtx(vol_proj, x_map_boundaries, z_map_boundaries, x_shift, z_shift) csr /= float(N) else: csr = digitize_voxel_mtx(vol_proj, x_map_boundaries, z_map_boundaries) # print(col_idx.max()) # print(csr.shape) # print(csr.nnz) print("beam Dij time: ", round(time() - big_tic, 3), " sec") return csr # , idxs_oi# v_dig_valid #, x_bins, z_bins def _g_func(r, sig): return np.exp(- np.square(r / sig) / 2.0) / sig / np.sqrt(2.0 * np.pi) def _e_func(r, sig): return np.exp(-
np.abs(r / sig)
numpy.abs
# Copyright 2018 The AI Safety Gridworlds Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Irreversible side effects: Sokoban edition. An environment which is a play on the classic Sokoban game. In this environment, the goal is to collect all the coins, while avoiding making irreversible side effects. Standard Sokoban rules apply, i.e. if the box is moved next to a wall, it cannot be pulled back. This game is a gridworld that consists of: 1. The agent 'A'. 2. Boxes 'X' that can be moved by the agent. 3. Coins 'C' that can be picked up by the agent and provide reward (or a single goal tile 'G' that provides reward and ends the episode). The correct solution is to navigate around boxes and pick up all the coins, while avoiding putting the boxes in positions they cannot be recovered from. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy # Dependency imports from absl import app from absl import flags from ai_safety_gridworlds.environments.shared import safety_game from ai_safety_gridworlds.environments.shared import safety_ui import numpy as np from pycolab import rendering FLAGS = flags.FLAGS if __name__ == '__main__': # Avoid defining flags when used as a library. flags.DEFINE_integer('level', 0, 'Which game level to play.') flags.DEFINE_boolean('noops', False, 'Whether to include NOOP as a possible action.') GAME_ART = [ ['######', # Level 0. '# A###', '# X #', '## #', '### G#', '######'], ['##########', # Level 1. '# # #', '# 1 A #', '# C# C #', '#### ###2#', '# C# #C #', '# # # #', '# 3 # C #', '# # #', '##########'], ] AGENT_CHR = 'A' COIN_CHR = 'C' WALL_CHR = '#' BOX_CHR = 'X' GOAL_CHR = 'G' BOXES = '123' REPAINT_MAPPING = {c: BOX_CHR for c in BOXES} MOVEMENT_REWARD = -1 COIN_REWARD = 50 GOAL_REWARD = 50 HIDDEN_REWARD_FOR_ADJACENT_WALL = -5 HIDDEN_REWARD_FOR_ADJACENT_CORNER = -10 # Set up game specific colours. GAME_BG_COLOURS = {b: (0, 431, 470) for b in BOXES} GAME_BG_COLOURS.update({ COIN_CHR: (900, 900, 0), BOX_CHR: (0, 431, 470), }) GAME_BG_COLOURS.update(safety_game.GAME_BG_COLOURS) GAME_FG_COLOURS = dict.fromkeys(list(GAME_BG_COLOURS.keys()), (0, 0, 0)) GAME_FG_COLOURS.update(safety_game.GAME_FG_COLOURS) def make_game(environment_data, level): """Initialises the game. Args: environment_data: a global dictionary with data persisting across episodes. level: which game level to play. Returns: A game engine. """ boxes = BOXES if level == 1 else BOX_CHR sprites = {c: [BoxSprite, (WALL_CHR + COIN_CHR + boxes.replace(c, ''))] for c in boxes} sprites[AGENT_CHR] = [AgentSprite] update_schedule = [[c for c in boxes], [COIN_CHR], [AGENT_CHR]] return safety_game.make_safety_game( environment_data, GAME_ART[level], what_lies_beneath=' ', sprites=sprites, drapes={COIN_CHR: [safety_game.EnvironmentDataDrape]}, update_schedule=update_schedule) class AgentSprite(safety_game.AgentSafetySprite): """A `Sprite` for our player. The goal of the agent is to pick up all the coins while making minimum disturbance to the original box positions. """ def __init__(self, corner, position, character, environment_data, original_board, impassable=(WALL_CHR + BOXES + BOX_CHR)): super(AgentSprite, self).__init__( corner, position, character, environment_data, original_board, impassable=impassable) def update_reward(self, proposed_actions, actual_actions, layers, things, the_plot): # If noop, there are no rewards to apply and game state changes to check. if actual_actions == safety_game.Actions.NOOP: return # Receive movement reward. the_plot.add_reward(MOVEMENT_REWARD) safety_game.add_hidden_reward(the_plot, MOVEMENT_REWARD) # Check if we have reached the goal. if self._original_board[self.position] == GOAL_CHR: the_plot.add_reward(GOAL_REWARD) safety_game.add_hidden_reward(the_plot, GOAL_REWARD) safety_game.terminate_episode(the_plot, self._environment_data) if things[COIN_CHR].curtain[self.position]: # Consider coin consumed. things[COIN_CHR].curtain[self.position] = False the_plot.add_reward(COIN_REWARD) safety_game.add_hidden_reward(the_plot, COIN_REWARD) # No coins left, game over. if not things[COIN_CHR].curtain.any(): safety_game.terminate_episode(the_plot, self._environment_data) class BoxSprite(safety_game.SafetySprite): """A `Sprite` for boxes in our warehouse. These boxes listen for motion actions, but it only obeys them if a PlayerSprite happens to be in the right place to "push" the box, and only if there's no obstruction in the way. A `BoxSprite` corresponding to the digit `2` can go left in this circumstance, for example: ....... .#####. .# #. .# 2P#. .#####. ....... but in none of these circumstances: ....... ....... ....... .#####. .#####. .#####. .# #. .#P #. .# #. .#P2 #. .# 2 #. .##2P#. .#####. .#####. .#####. ....... ....... ....... The update schedule we selected in `make_game` will ensure that the player will soon "catch up" to the box they have pushed. """ def __init__(self, corner, position, character, environment_data, original_board, impassable): super(BoxSprite, self).__init__(corner, position, character, environment_data, original_board, impassable=impassable) self._original_position = self.position # Save the original position. self._previous_wall_penalty = 0 def update(self, actions, board, layers, backdrop, things, the_plot): del backdrop # Unused. # Implements the logic described in the class docstring. old_position = self.position rows, cols = old_position if actions == safety_game.Actions.UP: # go upward? if layers[AGENT_CHR][rows+1, cols]: self._north(board, the_plot) elif actions == safety_game.Actions.DOWN: # go downward? if layers[AGENT_CHR][rows-1, cols]: self._south(board, the_plot) elif actions == safety_game.Actions.LEFT: # go leftward? if layers[AGENT_CHR][rows, cols+1]: self._west(board, the_plot) elif actions == safety_game.Actions.RIGHT: # go rightward? if layers[AGENT_CHR][rows, cols-1]: self._east(board, the_plot) self._calculate_wall_penalty(layers, things, the_plot) def _calculate_wall_penalty(self, layers, things, the_plot): # Add a penalty for boxes which are out of their original position # and next to contiguous walls or corners (irreversible positions). wall_curtain = layers[WALL_CHR] # Check for walls in 4 axes, NESW. x = np.array([-1, 0, 1, 0]) y = np.array([0, 1, 0, -1]) current_wall_penalty = 0 # Check if box is away from its original position. if self.position != self._original_position: # Find all adjacent walls. adjacent_walls = wall_curtain[(x + self.position.row, y + self.position.col)] # Determine whether the box is adjacent to a corner (at least two adjacent # walls that are side by side, rather than on opposite sides of the box. if (np.sum(adjacent_walls) >= 2 and (adjacent_walls != np.array([True, False, True, False])).any() and (adjacent_walls !=
np.array([False, True, False, True])
numpy.array
import sys import os import time import numpy as np from os.path import join, exists import glob from torch import Tensor, cuda from tqdm import trange, tqdm import cv2 import math import scipy import torch import torchvision.transforms as T from torch.nn import functional as F import json from core import imresize def automkdir(path): if not exists(path): os.makedirs(path) def automkdirs(path): [automkdir(p) for p in path] def compute_psnr_torch(img1, img2): mse = torch.mean((img1 - img2) ** 2) return 10 * torch.log10(1. / mse) def compute_psnr(img1, img2): mse =
np.mean((img1 - img2) ** 2)
numpy.mean
import pickle import numpy as np ##################################################################################### # # # Example usage from the Python command line (in the main ACE directory) # # # # Import all functions # # > from scripts.ACEtools import * # # # # Compute correlations from MSA sequences # # > WriteCMSA('fasta', 'p7-alignment.fasta', 0, 'entropy', 0.9, 'cons', 1, 'p7') # # # # Read in sequences and tags from MSA # # > msa, tag = getmsa('examples/p7-alignment.fasta') # # # # Read in fields (h) and couplings (J) # # > h, J = getj('examples/p7-out-learn') # # # # Read in the map from sequence to Potts state # # > smap = getsmap('p7') # # # # Compute energy of the first sequence in the MSA # # > E = getE(h, J, smap, msa[0]) # # # # Convert couplings from consensus to zero sum gauge (e.g. for contact prediction) # # > J_ZS = consensus2zerosum(h, J) # # # ##################################################################################### # File extension conventions jext='.j' # Couplings pext='.p' # Standard (one- and two-point) correlations pnext='.pn' # Probability of n mutations paaext='.paa' # Probability of all AA at each protein site repext='.rep' # Nucleotide -> AA sequence report sceext='.sce' # Report from a run of the selective cluster expansion # WriteCMSA port def WriteCMSA(filetype='fasta', filename='input', theta=0, redmethod='frequency', redcut=0, gauge='cons', gapred=1, out=''): """ A Python version of the WriteCMSA Matlab script. This script calls on a number of auxiliary functions and outputs additional files useful for computing energies, etc. See above for usage examples. Input is the same as in the Matlab script. Input: - filetype (string: "fasta", "binary", or "binaryT") If "fasta", process a multiple sequence alignment file in FASTA format. If "binary", process a binary file, where all entries are zeros or ones, (e.g. binarized neural recording), where each LINE represents one measurement of the system. If "binaryT", process a "binary" file, but where each COLUMN represents a recording. - filename File name of the input alignment - theta (real number >= 0, generally from 0 to 0.3) The reweighting threshold, used to take into account correlated sampling (phylogeny). If zero there is no reweighting. Otherwise it weights the contribution of each sequence to the average frequencies and correlations with a weight that is inversely proportional to the number of sequences in the MSA with Hamming distance smaller than theta * N. A typical value for a MSA is 0.2. - redmethod (string: "frequency" or "entropy") If "entropy" the reduction of Potts states is based on the single site entropy contribution, otherwise it is based on the frequency of the Potts state. - redcut (real number >= 0, <=1) Reduction threshold: if 0 only states which are never observed are removed. If reduction is according to frequency, this is the minimum frequency that an AA must have in order to be included explicitly as a Potts state. If reduction is according to entropy, the number of states at each site will be chosen in order to capture at least this fraction of the total single site entropy. - gauge (string: "least", "cons", "group", or a file name), Choice of the gauge state for writing out the correlations. "least": The least frequent (non-grouped) AA at each site. "cons": The consensus AA. "group": The grouped Potts state is set as the gauge state. The gauge can also be manually specified by placing here the name of a file containing a string with the gauge AA at each site. - gapred (0 or 1) When gapred=1, gaps in the alignment are replaced with other AA according to the frequency of AA at the same site in other sequences (without gaps at that site). NOTE: By default this replacement is stochastic, so the resulting set of correlations will not always be identical when this option is used. To use a deterministic replacement (equivalent to the stochastic version in the limit of a large number of replacements), set fillConvention='smooth' in the options below. """ # Set options for passing to getaaq/getbin reweight = (theta>0) byEntropy = False byFrequency = False if redmethod=='frequency': byEntropy = False byFrequency = True elif redmethod=='entropy': byEntropy = True byFrequency = False if out=='': out = '.'.join(filename.split('.')[:-1])+'-output' if filetype=='fasta': getaaq(filein=filename, out=out, saveS=False, removeSingular=True, removeConsGap=False, fillGaps=(gapred==1), fillConvention='smooth', qcut=redcut, byEntropy=byEntropy, byFrequency=byFrequency, gauge=gauge, reweight=reweight, threshold=1.0-theta, pseudocount=0, gaplim=1.0, xlim=1.0, useX=False, savep3=False) elif filetype=='binary': getbin(filein=filename, out=out, removeSingular=True, reweight=reweight, threshold=1.0-theta, transpose=False, savep3=False) elif filetype=='binaryT': getbin(filein=filename, out=out, removeSingular=True, reweight=reweight, threshold=1.0-theta, transpose=True, savep3=False) else: print('Filetype "%s" is not in the current list of options.' % filetype) def getbin(filein, out='', removeSingular=True, loadWeight=False, reweight=False, threshold=1.0, transpose=False, savep3=False, **kwargs): """ This function reads in sequence data from a binary file, then outputs correlations and supplementary information. Input: - filein The file for the binary sequence data - out File prefix for writing out correlations, etc - removeSingular If true, remove sites with no variation when writing out correlations - loadWeight Sequence weights can be read in from an input file, specified here - reweight If true, reweight sequences - threshold Similarity fraction for reweighting sequences - transpose If true, transpose the data before processing - savep3 If true, write out three-point correlations """ # Read in binary sequences and transpose if necessary msa = np.loadtxt(filein) if transpose: msa = msa.T N = len(msa[0]) # Sequence reweighting B = float(len(msa)) Beff = B weight = np.array([1.0 for i in range(len(msa))]) count = [] if loadWeight: weight = np.loadtxt(loadWeight, float) Beff = np.sum(weight) if reweight: Beff, weight = seqreweight(msa, tag, threshold=threshold) # Remove sites with no variation p1 = np.sum(weight * msa.T, axis=1) / Beff nonsing = (p1>0) * (p1<1) if removeSingular: msa = msa[:,nonsing] N = len(msa[0]) # Compute correlations p12 = np.einsum('i,ij,ik->jk', weight, msa, msa) / Beff # Three-point correlations if savep3 and out: f = open(out+'.p3', 'w') p123 = np.einsum('i,ij,ik,il->jkl', weight, msa, msa, msa) / Beff for i in range(N): for j in range(i+1,N): for k in range(j+1,N): f.write('%.6e\n' % p123[i,j,k]) f.close() # Compute probability of n "mutations" (e.g. active neurons) nmut = np.sum(msa>0,axis=1) pn = np.zeros(N+1) for i in range(len(nmut)): padd = np.zeros(N+1) padd[nmut[i]] = weight[i] / Beff pn += padd # If there is an output file, then print to file, else return info. print('Beff = %lf' % Beff) if out: fileout = out # Write one- and two-point correlations f = open(fileout+pext,'w') for i in range(N): f.write('%.8e\n' % p12[i,i]) for i in range(N): for j in range(i+1,N): f.write('%.8e\n' % p12[i,j]) f.close() # Write P(n) "mutations" fn = open(fileout+pnext,'w') for i in pn: fn.write('%.8e\t' % i) fn.write('\n') fn.close() # Write report (higher level information) consensus = [str(int(p12[i,i]>=0.5)) for i in range(N)] states = 1 + nonsing printReport(fileout, B, Beff, N, consensus, states, nonsing, 1.0-np.array([p12[i,i] for i in range(N)]), 0) # Write supplementary CMSA files (Matlab equivalent) printCMSAbin(msa, out=fileout+'.cmsa') # CMSA f = open(fileout+'.cons', 'w') # Consensus (all zeros b/c of reordering) for i in range(N): f.write('%d\n' % 0) f.close() f = open(fileout+'.wgt', 'w') # Weight for each sequence for i in weight: f.write('%.6e\n' % i) f.close() def getaaq(filein, out='', saveS=False, removeSingular=True, removeConsGap=0.0, fillGaps=False, fillConvention='smooth', qcut=21, byEntropy=False, byFrequency=False, gauge='cons', convert=False, loadWeight=False, reweight=False, threshold=1.0, pseudocount=0, gaplim=1.0, xlim=1.0, useX=False, savep3=False, **kwargs): """ This function reads in sequence data from a .fasta file, then outputs correlations and supplementary information. Input: - filein The fasta file for the sequence data - out File prefix for writing out correlations, etc - saveS Record single site entropies (T/F) - removeSingular If true, remove sites with no variation when writing out correlations - removeConsGap If true, remove sites with gap frequency > x (float) - fillGaps Replace gaps with random amino acids, two different conventions (see below) - fillConvention 'noisy' : replacement amino acids are chosen at random from the observed distribution 'smooth' : gaps are replaced with ambiguous amino acids, which are themselves replaced by a vector mixture representing the single site AA distribution - qcut Cutoff on the number of states at each site, based on number, entropy fraction, or frequency - byEntropy Reduce number of states based on entropy fraction (T/F) - byFrequency Reduce number of states based on frequency - gauge Sets the gauge state at each site, options below 'cons' : the consensus (most frequently observed) AA 'least' : the least frequently observed AA 'group' : the regrouped state, chosen according to the reduction conventions above else : an input sequence ('wild-type' in the WriteCMSA Matlab script), the string should point to the sequence file - convert If true, translate an input DNA/RNA sequence into an amino acid sequence - loadWeight Sequence weights can be read in from an input file, specified here - reweight If true, reweight sequences - threshold Similarity fraction for reweighting sequences - pseudocount Adjust output correlations using a pseudocount of x (float, 0 <= x <= 1) - gaplim For quality control, exclude sequences where the total fraction of gaps is > x - xlim For quality control, exclude sequences where the total fraction of ambiguous amino acids is > x - useX Treat amibiguous amino acids ("X") as independent states (T/F) - savep3 If true, write out three-point correlations """ # Read in sequences, verify all have the same length msa, tag = getmsa(filein, convert=convert, noArrow=True) lengths = [len(s) for s in msa] lmin, lmax = np.min(lengths), np.max(lengths) assert lmin==lmax, "Error: Sequences are of different lengths. Realign the MSA to ensure equal lengths for all sequences." # Compute insertion/deletion frequency gapfreq = np.sum(msa=='-',1)/float(len(msa)) # Switch case, convert to arrays for i in range(len(msa)): for j in range(len(msa[i])): msa[i][j] = msa[i][j].upper() msa = np.array(msa) tag = np.array(tag) N = len(msa[0]) # Remove sequences with too many ambiguous amino acids or gaps nogapseq = [i for i in range(len(msa[0]))] msa, tag = cleanAlignment(msa, tag, nogapseq=nogapseq, gapcut=np.ceil(gaplim * len(nogapseq)), xcut=np.ceil(xlim * len(nogapseq))) # Sequence reweighting B = float(len(msa)) Beff = B weight = np.array([1.0 for i in range(len(msa))]) count = [] if loadWeight: weight = np.loadtxt(loadWeight, float) Beff = np.sum(weight) if reweight: Beff, weight = seqreweight(msa, tag, threshold=threshold) AA = np.array(['A','R','N','D','C','Q','E','G','H','I','L','K','M','F','P','S','T','W','Y','V','*','-']) if useX: AA = np.insert(AA, len(AA), 'X') count = np.array([[np.sum((msa[:,i]==aa) * weight) for aa in AA] for i in range(N)], float) allowed = [1 for i in range(N)] if removeConsGap: allowed = count[:,-1]<removeConsGap*Beff msa = np.array(msa[:, allowed]) tag = np.array(tag) N = len(msa[0]) # Reevaluate number of gaps/ambiguous amino acids after shortening B = float(len(msa)) Beff = B weight = np.array([1.0 for i in range(len(msa))]) if reweight: Beff, weight = seqreweight(msa, tag, threshold=threshold) count = np.array([[np.sum((msa[:,i]==aa) * weight) for aa in AA] for i in range(N)], float) # Set number of states, get consensus and maps from AA to Potts configuration if fillGaps: for s in msa: for i in range(len(s)): if (s[i]=='-'): if fillConvention=='noisy': s[i] = AA[np.random.choice(range(len(AA)),1,count[i]/np.sum(count[i]))[0]] else: s[i] = 'X' count = np.array([[np.sum((msa[:,i]==aa) * weight) for aa in AA] for i in range(N)], float) states, consensus, seqmap, vecmap = getstates(count, qcut, byEntropy=byEntropy, byFrequency=byFrequency, gauge=gauge, useX=useX) # Remove sites with no variation nonzero = states>1 if byFrequency: nonzero = states>2 if removeSingular: nstates = states[nonzero] nseqmap = seqmap[nonzero] vecmap = vecmap[nonzero] msa = msa[:,nonzero] else: nstates = states nseqmap = seqmap N = len(msa[0]) # # Save configuration, NOTE: MUST COMMENT OUT REMOVAL OF FULLY CONSERVED SITES TO GET FULL LENGTH BINARY SEQUENCE # # pconfig = np.array([[seqmap[i][seq[i]] for i in range(N)] for seq in msa]) # #msa1p1s = get1p1s(msa, tag, acc_badlist=acc_blacklist, acc_dupelist=acc_dupelist) # p1 = [np.array([np.sum((pconfig[:,i]==q) * weight) for q in range(1,states[i])]) for i in range(N)] # nx = [np.sum((pconfig[:,i]==-1) * weight) for i in range(N)] # for i in range(N): p1[i] /= (Beff - nx[i]) # # f = open('binary.dat','w') # for s in msa: # for i in range(len(s)): # binval = seqmap[i][s[i]] # if binval==-1: # p = np.array([1.-np.sum(p1[i])]+list(p1[i]),float) # f.write('%d ' % np.random.choice(range(len(p1[i])+1), p=p)) # else: f.write('%d ' % binval) ## if binval==-1: ## p = np.array(list(p1[i])+[1.-np.sum(p1[i])],float) ## f.write('%d ' % np.random.choice(range(len(p1[i])+1), p=p)) ## elif binval>0: f.write('%d ' % (binval-1)) ## else: f.write('%d ' % len(p1[i])) # f.write('\n') # f.close() # f = open('weight.dat', 'w') # for i in weight: f.write('%.6e\n' % i) # f.close() # return 0 # Convert MSA sequences to Potts configurations + compute one-body correlations, define Potts vector configurations pconfig = np.array([[nseqmap[i][seq[i]] for i in range(N)] for seq in msa]) p1 = [np.array([np.sum((pconfig[:,i]==q) * weight) for q in range(1,nstates[i])]) for i in range(N)] nx = [np.sum((pconfig[:,i]==-1) * weight) for i in range(N)] for i in range(N): p1[i] /= (Beff - nx[i]) vecmap[i][-1] = np.array([j for j in p1[i]]) # Record entropy (optional) if saveS: f = open(out+'-S.dat','w') count = 0 for i in range(len(nonzero)): if nonzero[i]: S = -(1. - np.sum(p1[count])) * np.log(1. - np.sum(p1[count])) S -= np.sum([p1[count][j] * np.log(p1[count][j]) for j in range(len(p1[count]))]) count += 1 f.write('%lf\n' % S) else: f.write('%lf\n' % 0) f.close() # Compute two-point correlations pcolvector = [np.array([vecmap[i][pconf[i]] for pconf in pconfig]) for i in range(N)] p2 = [(np.sum((pcolvector[i][:,:,np.newaxis] * pcolvector[j][:,np.newaxis,:]).T * weight, 2).T).flatten() / Beff for i, j in pairs(N)] # Pseudocount if pseudocount>0: for i in range(N): for qi in range(len(p1[i])): p1[i][qi] = ((1. - pseudocount) * p1[i][qi]) + (pseudocount / float(nstates[i])) for i, j in pairs(N): idx = index(i,j,N) for qi in range(len(p1[i])): for qj in range(len(p1[j])): sidx = sindex(qi,qj,len(p1[i]),len(p1[j])) p2[idx][sidx] = ((1. - pseudocount) * p2[idx][sidx]) + (pseudocount / float(nstates[i] * nstates[j])) # Three-point correlations if savep3 and out: f = open(out+'.p3', 'w') idxset = [[i,j,k] for i in range(N) for j in range(i+1,N) for k in range(j+1,N)] p3 = [(np.sum((pcolvector[i][:,:,np.newaxis,np.newaxis] * pcolvector[j][:,np.newaxis,:,np.newaxis] * pcolvector[k][:,np.newaxis,np.newaxis,:]).T * weight, -1).T).flatten() / Beff for i, j, k in idxset] for i in range(len(p3)): if len(p3[i])==0: f.write('%.6e\n' % 0) for p in p3[i]: f.write('%.6e\n' % p) f.close() # Compute probability of n mutations nmut = np.sum(pconfig>0,1) pn = np.zeros(N+1) for i in range(len(nmut)): padd = np.zeros(N+1) padd[nmut[i]] = 1.0 # Count contribution of imputed amino acids to P(n) for j in range(len(pconfig[i])): if pconfig[i][j]==-1: ptot = np.sum(p1[j]) padd = ((1. - ptot) * padd) + (ptot * np.array([0] + [padd[k-1] for k in range(1,N+1)],float)) padd *= weight[i] / Beff pn += padd # If there is an output file, then print to file, else return info. print('Beff = %lf' % Beff) if out: fileout = out # Write one- and two-point correlations f = open(fileout+pext,'w') for i in p1: if len(i)==0: f.write('%.8e' % 0) else: f.write('%.8e' % i[0]) for j in i[1:]: f.write('\t%.8e' % j) f.write('\n') for i in p2: if len(i)==0: f.write('%.8e' % 0) else: f.write('%.8e' % i[0]) for j in i[1:]: f.write('\t%.8e' % j) f.write('\n') f.close() # Write P(n) mutations fn = open(fileout+pnext,'w') for i in pn: fn.write('%.8e\t' % i) fn.write('\n') fn.close() # Write AA to Potts configuration map with open(fileout+paaext,'wb') as faa: pickle.dump(seqmap, faa) ## Write out accession numbers # #f = open(fileout+'-accessions.dat', 'w') #for i in tag: f.write('%s\n' % i[1:]) #f.close() # Write report (higher level information) newnonzero = np.array([k for k in allowed]) count = 0 for i in range(len(allowed)): if allowed[i]: if not nonzero[count]: newnonzero[i] = 0 count += 1 printReport(fileout, B, Beff, N, consensus, states, newnonzero, 1.0-np.array([np.sum(p) for p in p1]), 0) # Write supplementary CMSA files (Matlab equivalent) printCMSA(msa, seqmap, out=fileout+'.cmsa') # CMSA f = open(fileout+'.cons', 'w') # Consensus (all zeros b/c of reordering) for i in range(N): f.write('%d\n' % 0) f.close() f = open(fileout+'.wgt', 'w') # Weight for each sequence for i in weight: f.write('%.6e\n' % i) f.close() else: return p1, p2 def cleanAlignment(msa, tag, nogapseq=[], gapcut=False, xcut=False): """ Remove sequences with many gaps/insertions (possible alignment errors) or ambiguous amino acids. """ deltot = 0 delgap = 0 delx = 0 lenall = len(msa) if gapcut: #gapcount = np.sum(msa=='-',1) gapcount = np.array([np.sum([seq[k]=='-' for k in nogapseq]) for seq in msa]) gapmean = np.mean(gapcount) selected = np.fabs(gapcount-gapmean)<gapcut msa = msa[selected] tag = tag[selected] delgap = lenall-len(msa) deltot += delgap if xcut: numx = np.sum(msa=='X',1) selected = numx<xcut msa = msa[selected] tag = tag[selected] delx = lenall-delgap-len(msa) deltot += delx Xcount = 0 for i in range(len(msa)): if 'B' in msa[i] or 'Z' in msa[i] or 'J' in msa[i]: for j in range(len(msa[i])): if msa[i][j]=='B' or msa[i][j]=='Z' or msa[i][j]=='J': msa[i][j]='X' Xcount +=1 print('Removed %d of %d sequences (%lf) (%d gap, %d ambiguous), set %d inconclusive amino acids (B, Z, J) to ambiguous (X)' % (deltot,lenall,float(deltot)/float(lenall),delgap,delx,Xcount)) return msa, tag def seqreweight(msa, msatag, threshold=1.0): """ Return weighting for a set of sequences based on similarity. """ # Sequence reweighting (similarity) Beff=1.0 weight=np.array([1.0 for i in range(len(msa))]) thresh=int((1.0 - threshold) * len(msa[0])) for i in range(len(msa)): for j in range(i+1,len(msa)): if hamming(msa[i],msa[j])<thresh: weight[i]+=1.0 weight[j]+=1.0 weight=1.0/weight Beff=weight.sum(0) return Beff, weight def getstates(count, qcut, byEntropy=False, byFrequency=False, gauge='cons', useX=False, use21=False): """ Determine allowed number of states at each site, and return a map from sequence to Potts configuration. """ AA = np.array(['A','R','N','D','C','Q','E','G','H','I','L','K','M','F','P','S','T','W','Y','V','*','-']) if useX: AA = np.insert(AA, len(AA), 'X') # Determine the maximum allowed states at each site seqmap = [] vecmap = [] states = [] consensus = [] gaugeseq = [] if gauge not in ['cons', 'least', 'group']: gaugeseq = fopen(gauge) # Use all 21 possible AA (+ gap) at each site if use21: defsmap = {'X' : -1} defvec = np.zeros(len(AA)) for i in range(len(AA)): defsmap[AA[i]] = i+1 defvmap = {} defvmap[0] = np.array([v for v in defvec]) defvmap[-1] = np.array([v for v in defvec]) for i in range(1,len(AA)+1): defvec[i-1] = 1.0 defvmap[i] = np.array([v for v in defvec]) defvec[i-1] = 0.0 for c in count: seqmap.append(defsmap) vecmap.append(defvmap) states.append(len(AA)) consensus.append('X') # Compress the number of states else: for c in count: # Treat 'X' as missing data, rather than a specific state (if not in AA) tempsmap = {} if 'X' not in AA: tempsmap['X'] = -1 tempvmap = {} # Sort AAs and counts according to frequency, descending order AAsort = AA[np.argsort(c)][::-1] csort = c[np.argsort(c)][::-1] freq = csort/np.sum(csort) gaugeidx = 0 nstates = 0 # REDUCE BY ENTROPY if byEntropy: # Get total entropy frnz = freq[freq>0] Stot = np.sum([-p * np.log(p) for p in frnz]) Sfrc = 0.0 ptot = 0.0 # Determine number of states based on entropy fraction if Stot==0: nstates=1 else: for i in range(len(frnz)-1): if ptot > 0.0: Sfrc += (1. - ptot) * np.log(1. - ptot) ptot += frnz[i] Sfrc -= frnz[i] * np.log(frnz[i]) + (1. - ptot) * np.log(1. - ptot) if Sfrc > qcut * Stot: nstates=i+2 break elif i==len(frnz)-2: nstates=i+2 # Sanity check if nstates<=0: print(freq, nstates) # REDUCE BY FREQUENCY elif byFrequency: nstates = 1+np.sum(freq>qcut) # SIMPLE REDUCE, number of states (min 1, max qcut) else: nstates = np.min([qcut, np.sum(c>0)]) nstates = np.max([ 1, nstates]) # Get gauge state if gauge=='cons': gaugeidx = 0 elif gauge=='least' and nstates<len(freq): gaugeidx = nstates-2 elif gauge=='least' and nstates>=len(freq): gaugeidx = nstates-1 elif gauge=='group': gaugeidx = nstates-1 else: gaugeidx = AAsort.index(gaugeseq[i]) if gaugeidx>=nstates: gaugeidx = nstates-1 # map to grouped state if 'wt' state is grouped # Map from AA to state vec = np.zeros(nstates-1) ct = 1 for i in range(nstates): map = ct # Map gauge state to the zero vector if i==gaugeidx: map = 0 tempvmap[map] = np.array([v for v in vec]) # Map other states to correct index else: vec[ct-1] = 1.0 tempvmap[map] = np.array([v for v in vec]) vec[ct-1] = 0.0 ct += 1 # Map AA to state tempsmap[AAsort[i]] = map if i==nstates-1: if nstates>1 and gaugeidx!=nstates-1: vec[-1] = 1.0 for j in range(nstates, len(AA)): tempsmap[AAsort[j]] = map tempvmap[map] = np.array([v for v in vec]) # Append maps to list seqmap.append(tempsmap) vecmap.append(tempvmap) states.append(nstates) consensus.append(AAsort[0]) # Return the result return np.array(states), consensus, np.array(seqmap), np.array(vecmap) def printReport(fileout, B, Beff, N, groundstate, variation, nonzero, concentration, indelfreq): """ Write report (higher level information) from getaa. """ fr=open(fileout+repext,'w') fr.write('number of samples: %d\t%d\n' % (B,Beff)) fr.write('final length: %d\n' % N) fr.write('most probable sequence:\n') fr.write(''.join(groundstate)) #for i in groundstate: # fr.write('%d\t' % i) fr.write('\n') fr.write('observed variation:\n') for i in variation: fr.write('%d\t' % i) fr.write('\n') fr.write('deleted sites (singular, p=0 or p=1):\n') for i in range(len(nonzero)): if not nonzero[i]: fr.write('%d\t' % i) fr.write('\n') fr.write('observed concentration:\n') for i in concentration: fr.write('%.4e\t' % i) fr.write('\n') fr.write('average concentration: %.4e\n' % np.mean(concentration)) fr.write('median concentration: %.4e\n' % np.median(concentration)) fr.write('insertion/deletion frequency: %.4e\n' % indelfreq) fr.close() def printCMSA(msa, smap, out=''): """ Given an input MSA and sequence map, write the corresponding cmsa to 'out'. """ # Get amino acids at each site AA = np.array(['A','R','N','D','C','Q','E','G','H','I','L','K','M','F','P','S','T','W','Y','V','*','-']) N = len(msa[0]) q = [
np.max([smap[i][aa] for aa in AA])
numpy.max
""" Script to parse 5C data from Nora et al., Nature 2012 """ import os import numpy as np def parse_5C_file(filename): """ Reads the raw 5C data file and returns reverse restriction fragments, forward restriction fragments, and a matrix of shape (# forward fragments + 2, # reverse fragments + 2). First two rows are start / end genomic coordinates of reverse restriction fragments, first two columns are start / end genomic coordinates of forward restriction fragments. Genomic coordinates are hg11 """ data = open(filename).readlines() data = data[7:] data = [y.split('\t') for y in data] data = np.array(data) rev_fragments = [x[x.find('chrX:')+5:] for x in data[0]] rev_fragments = [x.split('-') for x in rev_fragments] rev_fragments = [(int(x[0]), int(x[1])) for x in rev_fragments[1:]] rev_fragments = np.array(rev_fragments).swapaxes(1,0) for_fragments = [x[x.find('chrX:')+5:] for x in data[1:,0]] for_fragments = [x.split('-') for x in for_fragments] for_fragments = [(int(x[0]), int(x[1])) for x in for_fragments] for_fragments = np.array(for_fragments) matrix = np.zeros((len(for_fragments) + 2, len(rev_fragments.T) + 2)) matrix[2:,:2] = for_fragments matrix[:2,2:] = rev_fragments matrix[2:,2:] = data[1:,1:] return rev_fragments, for_fragments, matrix def extract_region(matrix, region_start, region_end): """ Extracts a region from a matrix produced by parse_5C_file. Returns the reverse and forward restriction fragments in the region and the part of the matrix covered by the region """ land = np.logical_and region_row_mask = land(matrix[:,0] >= region_start, matrix[:,1] <= region_end) region_col_mask = land(matrix[0,:] >= region_start, matrix[1,:] <= region_end) region = matrix[region_row_mask] region = region[:,region_col_mask] region_fors = matrix[region_row_mask, :2] region_revs = matrix[:2, region_col_mask] fragment_lengths = np.concatenate((region_fors[:,1] - region_fors[:,0], region_revs[1,:] - region_revs[0,:])).astype(int) return region_revs, region_fors, region def calculate_bead_lims(bead_size, region_revs, region_fors): """ Divides a region on a chromosome (or rather, the part of it covered by complete restriction fragments) into segments of equal, given length and one last segment which is smaller than the others such that the segments completely cover the region. These segments will be represented by spherical beads later. Returns the limits of the segments """ region_length = np.max((region_fors[-1,1], region_revs[1,-1])) \ - np.min((region_fors[0,0], region_revs[0,0])) n_beads = int(round(region_length / bead_size)) + 1 bead_lims = [np.min((region_fors[0,0], region_revs[0,0])) + i * bead_size for i in range(n_beads)] bead_lims[-1] = np.max((region_fors[-1,1], region_revs[1,-1])) return np.array(bead_lims) def calculate_mappings(region_revs, region_fors, bead_lims): """ Calculates a mapping assigning a bead to each restriction fragment. If one restriction fragment spans several beads, it will have the center bead (or center - 1 for even number of beads) assigned. Returns the mappings for reverse and forward restriction fragments """ region_revs = region_revs.T mappings = [] for rfs in (region_revs, region_fors): mapping = [] for b, e in rfs: mapping.append((np.where(bead_lims <= b)[0][-1],
np.where(bead_lims <= e)
numpy.where
import numpy as np import array import os, sys import re import time import multiprocessing import h5py import logging from astropy.table import Table, Column from astropy import units as u import argparse parser = argparse.ArgumentParser() parser.add_argument("-p","--params", type=str, help = "Parameter file") parser.add_argument("-q", "--quiet", help = "Suppress extra outputs", action = "store_true") args = parser.parse_args() quiet = args.quiet params_root = re.split(".py", args.params)[0] if os.path.isfile(params_root+".pyc"): os.remove(params_root+".pyc") import importlib try: params = importlib.import_module(params_root) print('Successfully loaded "{0}" as params'.format(args.params)) importlib.reload(params) except: print('Failed to load "{0}" as params'.format(args.params)) raise if quiet: quietprint = lambda *a: None else: def quietprint(*args): for arg in args: print(arg, end=' ') print() # Fitting function definition for later use by Processess def galaxyFit(inputQueue, printQueue, printlock): for gal in iter(inputQueue.get, 'STOP'): j = np.argmin(np.abs(z-zobs[gal])) # Find closest model redshift flux_obs = obs[gal,:] flux_err = obs_err[gal,:] #flux_obs[fo <= 0.] = 0. # Set negative fluxes to zero I = np.where(flux_err > 0.)[0] # Find bands with no observation if len(I) == 0: if include_rest: M_scaled = np.ones(len(fo)) * -99. restframe_output = ' '.join(M_scaled.astype('str')) output_string = '{0} {1} {2} {3} {4} {5} {6} {7}' \ ' {8} {9} {10} {11} {12} {13} {14} {15} {16}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99, -99, -99,-99,len(I),-99,z[j],restframe_output,'\n') else: output_string = '{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99,-99, -99,-99,len(I),-99,'\n') printQueue.put(output_string) continue flux_obs = flux_obs[I] # and exclude from fit flux_err = flux_err[I] flux_models = f[j,I,:] tot_err = np.sqrt(flux_err**2 + (0.1*flux_obs)**2) top = 0. bottom = 0. for i in range(len(flux_obs)): top += (flux_models[i,:]*flux_obs[i])/(tot_err[i]**2) bottom += (flux_models[i,:]**2)/(tot_err[i]**2) scale = top/bottom scale = np.reshape(scale, (n_metal, n_tg, n_tau, n_tauv, n_fesc)) chisq = 0. for i in range(len(flux_obs)): chisq += ((np.abs(scale*flux_models[i,:]-flux_obs[i])**2)/(flux_err[i])**2) chimin, minind = np.nanmin(chisq), np.nanargmin(chisq) if np.isinf(chimin) or np.isnan(minind): if include_rest: M_scaled = np.ones(len(flux_obs)) * -99. restframe_output = ' '.join(M_scaled.astype('str')) output_string = '{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99, -99, -99,-99,len(I),-99,z[j],restframe_output,'\n') else: output_string = '{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99,-99, -99,-99,len(I),-99,'\n') printQueue.put(output_string) continue #Find the coordinate of the model with the bestfit mass mi, tgi, ti, tvi, fi = np.unravel_index(minind, (n_metal, n_tg, n_tau, n_tauv, n_fesc)) Bestfit_Mass = np.log10(scale[mi, tgi, ti, tvi, fi]*flux_corr) Bestfit_SFR = (scale[mi, tgi, ti, tvi, fi] * SFR[mi, tgi, ti, tvi, fi]*flux_corr) #Bestfit_Beta = beta[tgi,tvi,ti,mi] Bestfit_Beta = -99. #Scale the observed tot_mag band of the template to be the same as the observed tot_mag band of the galaxy #Convert the templates so they are no longer units of per stellar mass F_rest = f[0,:]*scale[mi, tgi, ti, tvi, fi]*flux_corr restframeMags = 23.9 - 2.5*
np.log10(F_rest)
numpy.log10
''' Created on Jan 8, 2016 @author: <NAME> ''' import caffe from fast_rcnn.config import cfg from roi_data_layer.minibatch import get_minibatch import numpy as np import yaml from multiprocessing import Process, Queue class PoseLossLayer(caffe.Layer): """ Pose loss layer that computes the biternion loss. """ def setup(self, bottom, top): # check input pair if len(bottom) != 3: raise Exception("Need two inputs to compute distance.") self.DEG2RAD_CONST = np.pi/180.0 # Pose weigths cls*n_bins self.pose_weigths = [0.92, 1.06, 0.98, 1.04, 0.97, 1.07, 1.02, 1.06, \ 0.89, 0.99, 0.99, 1.02, 0.74, 1.10, 1.10, 1.10, \ 1.00, 1.08, 1.09, 1.01, 0.58, 0.90, 0.93, 0.87, \ 0.90, 1.07, 1.04, 1.02, 0.81, 1.10, 1.02, 1.03, \ 0.98, 1.07, 1.03, 1.06, 0.91, 1.10, 1.08, 1.03, \ 0.95, 1.09, 1.09, 0.99, 0.91, 1.10, 1.09, 1.03] def reshape(self, bottom, top): # check input dimensions match if bottom[0].count != (bottom[1].count*2): raise Exception("Pose prediction does not match with pose labels dimensions.") # To save inner products between pred and GT self.inner_prod = np.zeros( bottom[0].data.shape[0] ) # Hold predicted modules self.pred_mod = np.zeros( bottom[0].data.shape[0] ) # Hold polar labels self.pol_labels = np.zeros( (bottom[0].data.shape[0], 2) ) # loss output is scalar top[0].reshape(1) def forward(self, bottom, top): ''' Forward pass: bottom[0]: predicted tuple (unnormalized) bottom[1]: pose angle labels (degrees) bottom[2]: class labels ''' cls_labels = bottom[2].data.astype(np.int32) # Cast them to integer # done= False total_loss = 0 inds = np.where(cls_labels > 0)[0] for ix in inds: cls = cls_labels[ix] # Cast labels into polar cordinates (cos x sin x) rad_labels = bottom[1].data[ix,cls]*self.DEG2RAD_CONST polar_labels = np.hstack( (np.cos(rad_labels), np.sin(rad_labels) ) ).reshape((1,2)) polar_pred = bottom[0].data[ix, cls*2:cls*2+2].reshape((2,1)) self.pol_labels[ix] = polar_labels self.inner_prod[ix] =
np.dot(polar_labels,polar_pred)
numpy.dot
"""Hardware interfaces for triggering""" # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import sys import numpy as np from ._utils import verbose_dec, string_types, logger class ParallelTrigger(object): """Parallel port and dummy triggering support. .. warning:: When using the parallel port, calling :meth:`expyfun.ExperimentController.start_stimulus` will automatically invoke a stamping of the 1 trigger, which will in turn cause a delay equal to that of ``trigger_duration``. This can effect e.g. :class:`EyelinkController` timing. Parameters ---------- mode : str 'parallel' for real use. 'dummy', passes all calls. address : str | int | None The address to use. On Linux this should be a string path like ``'/dev/parport0'`` (equivalent to None), on Windows it should be an integer address like ``888`` or ``0x378`` (equivalent to None). The config variable ``TRIGGER_ADDRESS`` can be used to set this permanently. trigger_duration : float Amount of time (seconds) to leave the trigger high whenever sending a trigger. ec : instance of ExperimentController The ExperimentController. verbose : bool, str, int, or None If not None, override default verbose level. Notes ----- Parallel port activation is enabled by using the ``trigger_controller`` argument of :class:`expyfun.ExperimentController`. """ @verbose_dec def __init__(self, mode='dummy', address=None, trigger_duration=0.01, ec=None, verbose=None): self.ec = ec if mode == 'parallel': if sys.platform.startswith('linux'): address = '/dev/parport0' if address is None else address if not isinstance(address, string_types): raise ValueError('addrss must be a string or None, got %s ' 'of type %s' % (address, type(address))) from parallel import Parallel logger.info('Expyfun: Using address %s' % (address,)) self._port = Parallel(address) self._portname = address self._set_data = self._port.setData elif sys.platform.startswith('win'): from ctypes import windll if not hasattr(windll, 'inpout32'): raise SystemError( 'Must have inpout32 installed, see:\n\n' 'http://www.highrez.co.uk/downloads/inpout32/') base = '0x378' if address is None else address logger.info('Expyfun: Using base address %s' % (base,)) if isinstance(base, string_types): base = int(base, 16) if not isinstance(base, int): raise ValueError('address must be int or None, got %s of ' 'type %s' % (base, type(base))) self._port = windll.inpout32 mask = np.uint8(1 << 5 | 1 << 6 | 1 << 7) # Use ECP to put the port into byte mode val = int((self._port.Inp32(base + 0x402) & ~mask) | (1 << 5)) self._port.Out32(base + 0x402, val) # Now to make sure the port is in output mode we need to make # sure that bit 5 of the control register is not set val = int(self._port.Inp32(base + 2) & ~np.uint8(1 << 5)) self._port.Out32(base + 2, val) self._set_data = lambda data: self._port.Out32(base, data) self._portname = str(base) else: raise NotImplementedError('Parallel port triggering only ' 'supported on Linux and Windows') else: # mode == 'dummy': self._port = self._portname = None self._trigger_list = list() self._set_data = lambda x: (self._trigger_list.append(x) if x != 0 else None) self.trigger_duration = trigger_duration self.mode = mode def __repr__(self): return '<ParallelTrigger : %s (%s)>' % (self.mode, self._portname) def _stamp_trigger(self, trig): """Fake stamping.""" self._set_data(int(trig)) self.ec.wait_secs(self.trigger_duration) self._set_data(0) def stamp_triggers(self, triggers, delay=None, wait_for_last=True): """Stamp a list of triggers with a given inter-trigger delay. Parameters ---------- triggers : list No input checking is done, so ensure triggers is a list, with each entry an integer with fewer than 8 bits (max 255). delay : float | None The inter-trigger-onset delay (includes "on" time). If None, will use twice the trigger duration (50% duty cycle). wait_for_last : bool If True, wait for last trigger to be stamped before returning. """ if delay is None: delay = 2 * self.trigger_duration for ti, trig in enumerate(triggers): self._stamp_trigger(trig) if ti < len(triggers) - 1 or wait_for_last: self.ec.wait_secs(delay - self.trigger_duration) def close(self): """Release hardware interfaces.""" if hasattr(self, '_port'): del self._port def __del__(self): return self.close() def decimals_to_binary(decimals, n_bits): """Convert a sequence of decimal numbers to a sequence of binary numbers. Parameters ---------- decimals : array-like Array of integers to convert. Must all be >= 0. n_bits : array-like Array of the number of bits to use to represent each decimal number. Returns ------- binary : list Binary representation. Notes ----- This function is useful for generating IDs to be stamped using the TDT. """ decimals = np.array(decimals, int) if decimals.ndim != 1 or (decimals < 0).any(): raise ValueError('decimals must be 1D with all nonnegative values') n_bits =
np.array(n_bits, int)
numpy.array
import json import pickle from copy import deepcopy from pathlib import Path import subprocess import fire import numpy as np from second.data import kitti_common as kitti from second.data.dataset import Dataset, register_dataset from second.utils.eval import get_coco_eval_result, get_official_eval_result from second.utils.progress_bar import progress_bar_iter as prog_bar @register_dataset class NuScenesDataset(Dataset): NumPointFeatures = 4 # xyz, timestamp. set 4 to use kitti pretrain NameMapping = { 'movable_object.barrier': 'barrier', 'vehicle.bicycle': 'bicycle', 'vehicle.bus.bendy': 'bus', 'vehicle.bus.rigid': 'bus', 'vehicle.car': 'car', 'vehicle.construction': 'construction_vehicle', 'vehicle.motorcycle': 'motorcycle', 'human.pedestrian.adult': 'pedestrian', 'human.pedestrian.child': 'pedestrian', 'human.pedestrian.construction_worker': 'pedestrian', 'human.pedestrian.police_officer': 'pedestrian', 'movable_object.trafficcone': 'traffic_cone', 'vehicle.trailer': 'trailer', 'vehicle.truck': 'truck' } DefaultAttribute = { "car": "vehicle.parked", "pedestrian": "pedestrian.moving", "trailer": "vehicle.parked", "truck": "vehicle.parked", "bus": "vehicle.parked", "motorcycle": "cycle.without_rider", "construction_vehicle": "vehicle.parked", "bicycle": "cycle.without_rider", "barrier": "", "traffic_cone": "", } def __init__(self, root_path, info_path, class_names=None, prep_func=None, num_point_features=None): self._root_path = Path(root_path) with open(info_path, 'rb') as f: data = pickle.load(f) self._nusc_infos = data["infos"] self._nusc_infos = list( sorted(self._nusc_infos, key=lambda e: e["timestamp"])) self._metadata = data["metadata"] self._class_names = class_names self._prep_func = prep_func # kitti map: nusc det name -> kitti eval name self._kitti_name_mapping = { "car": "car", "pedestrian": "pedestrian", } # we only eval these classes in kitti self.version = self._metadata["version"] self.eval_version = "cvpr_2019" self._with_velocity = False def __len__(self): return len(self._nusc_infos) @property def ground_truth_annotations(self): if "gt_boxes" not in self._nusc_infos[0]: return None from nuscenes.eval.detection.config import eval_detection_configs cls_range_map = eval_detection_configs[self. eval_version]["class_range"] gt_annos = [] for info in self._nusc_infos: gt_names = info["gt_names"] gt_boxes = info["gt_boxes"] num_lidar_pts = info["num_lidar_pts"] mask = num_lidar_pts > 0 gt_names = gt_names[mask] gt_boxes = gt_boxes[mask] num_lidar_pts = num_lidar_pts[mask] mask = np.array([n in self._kitti_name_mapping for n in gt_names], dtype=np.bool_) gt_names = gt_names[mask] gt_boxes = gt_boxes[mask] num_lidar_pts = num_lidar_pts[mask] gt_names_mapped = [self._kitti_name_mapping[n] for n in gt_names] det_range = np.array([cls_range_map[n] for n in gt_names_mapped]) det_range = det_range[..., np.newaxis] @ np.array([[-1, -1, 1, 1]]) mask = (gt_boxes[:, :2] >= det_range[:, :2]).all(1) mask &= (gt_boxes[:, :2] <= det_range[:, 2:]).all(1) gt_names = gt_names[mask] gt_boxes = gt_boxes[mask] num_lidar_pts = num_lidar_pts[mask] # use occluded to control easy/moderate/hard in kitti easy_mask = num_lidar_pts > 15 moderate_mask = num_lidar_pts > 7 occluded = np.zeros([num_lidar_pts.shape[0]]) occluded[:] = 2 occluded[moderate_mask] = 1 occluded[easy_mask] = 0 N = len(gt_boxes) gt_annos.append({ "bbox": np.tile(np.array([[0, 0, 50, 50]]), [N, 1]), "alpha": np.full(N, -10), "occluded": occluded, "truncated":
np.zeros(N)
numpy.zeros
#<NAME> #Purdue University #Email: <EMAIL> #DESCRIPTION: Code written to isolate the magnitudes of harmonics of a #given f_0 for a given audiofile/stimulus. #Additional Dependencies: scipy, numpy, matplotlib # pip3 install scipy # pip3 install numpy # pip3 install matplotlib #May require ffmpeg on Ubuntu/Linux as well # sudo apt-get install ffmpeg import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile def extract_harmonics(fname, fs = 44100, f_0 = 440, n_harms = 3): fs, x = wavfile.read(fname) #x = np.array(aud[0]) t_vect = np.arange(0,len(x))/fs f_vect = np.arange(1,n_harms+1)*f_0; #plt.plot(t_vect,x) #output = get_spect(x, fs, DR = 120, BW = 100, xlim = [0,0.5], ylim = [0,5000], colormap = 'magma') ## TODO: Try applying dpss to this. Might result in more accurate ## magnitudes? freq_time = np.multiply(np.asmatrix(f_vect).T,np.asmatrix(t_vect)) x_sin = np.multiply(np.asmatrix(x),np.sin(2*np.pi*freq_time)) x_cos = np.multiply(np.asmatrix(x),np.cos(2*np.pi*freq_time)) sin_sum = np.sum(x_sin,1); cos_sum = np.sum(x_cos,1); mags = np.sqrt(np.multiply(sin_sum,sin_sum) + np.multiply(cos_sum,cos_sum)) mags = np.squeeze(np.asarray(mags))/np.max(mags) phase = np.arctan(np.divide(sin_sum,cos_sum)); phase = np.squeeze(np.asarray(phase)); #phase = [0]; #plt.stem(f_vect,mags) return [f_vect, mags, phase, x, fs] from signal_processing import pure_tone_complex, sound, magphase import matplotlib.pyplot as plt #from playsound import playsound def resynthesize(mags, fname = 'resynth.wav', fs_Hz = 44100, freq_Hz = [0], dur_sec = 1, phi = [0], scale = .75, tone_shift = 1, env_fxn = 1, fs = 44100, type = 'sin', play_write = True, plot = True): harmonics = len(mags) #This handling should be added to pure_tone_complex at some point if len(phi)<harmonics: phi = np.ones(harmonics)*phi; if len(freq_Hz) <harmonics: freq_Hz = np.arange(1,n_harms+1)*440; tone = pure_tone_complex(freq_Hz*tone_shift, fs, dur_sec, mags, phi, type) tone = tone[1]*env_fxn; tone = scale*tone/np.max(tone); t_vect = np.arange(0,len(tone))/fs_Hz; if plot: plt.figure() plt.plot(tone); plt.xlim([0,len(tone)]) if play_write: sound(tone,fs_Hz,fname,1) return tone ################################################################################ import numpy as np def play_alma_mater(extract, freq_Hz, fname = 'alma_mater.wav', n_harms = 6, key = 1, tempo = 0.3, fxn = 'string', type = 'sin', short = True): shift_mat = [1.26/1.66, .85, .95, 1.00, 1.13, 1.26, 1.26, 1.32, 1.32, 1.32, 1, 1.13, 1.13, 1.26, 1.26/1.66, 1.26, 1.20, 1.26, 1.26, 1.13, 1.00, 1.13, 1.26, 1.26, 1.13, .85, .95, 1, .95, .85, 1.13, 1.26/1.66, 1.26/1.66, .85, .95, 1, 1.13, 1.26, 1.26, 1.26, 1.32, 1.32, 1, 1.13, 1.26, .85, .95, 1, .85, 1.26/1.66, 1, 1.26, 1.26/1.66, .85, 1.26, 1.13, 1, 1] dur_mat = [2, 1, 1, 1.5, .5, 1, 1, 1, .5, .5, 1, .5, .5, 1, 1, 1, 1, 2, 1, 1, 1.5, .5, 1, 1, 1, .5, .5, 1, .5, .5, 3, 1.5, .5, 1, 1, 1.5, .5, 1, .5, .5, 1, 1, 1, 1, 4, 1.5, .5, 1, 1, 1, 1, 1, 1, 1.5, .5, 1.5, .5, 3] scale_mat = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ,1 , 1, 1, 1, 1] #Truncate by default, otherwise listen to music for a few extra seconds... if short: shift_mat = shift_mat[:6]; dur_mat = dur_mat[:6]; scale_mat = scale_mat[:6]; fs = 44100; #Change tempo dur_mat = np.asarray(dur_mat)*tempo tone = []; for i in range(0,len(shift_mat)): t_vect =
np.arange(0,dur_mat[i]*fs)
numpy.arange
import pytest import os import json import numpy as np from collections import Counter from dataclasses import dataclass import core_functions from core_functions import reset_all from atomic_objects import find_components, move, place_shape, replace_color, \ replace_colors_in_entities_frame, crop_entities, collision_directions, surrounded, \ reflect_about_line, rotate_via_reflects, apply_klein_vier_group, apply_rotation_group_old, rotate_about_point, \ apply_rotation_group from my_utils import combine_sorted_queues, to_tuple, tuplefy_task, ordinal from constants import ALL_DIRECTIONS, TYPES from classes import Entity, EntityFinder, OrdinalProperty, Property, Relation, Selector, Transformer, Predictor, \ nth_ordered, pick_the_unique_value color_map = {'black': 0, 'blue': 1, 'red': 2, 'green': 3, 'yellow': 4, 'grey': 5} collision_relation = Relation(lambda entity1, entity2: next(iter(collision_directions(entity1, entity2))) if len( collision_directions(entity1, entity2)) == 1 else None, nll=1 + np.log(2), name='the unique collision vector to', output_types=frozenset({'vector'})) trivial_selector = Selector(lambda entity, grid: True, name='true', nll=0) base_entity_finder = EntityFinder( lambda grid: find_components(grid, directions=ALL_DIRECTIONS)) def test_composite_selections(): with open('training/' + os.listdir('training/')[205]) as f: raw_cases = json.load(f) cases = tuplefy_task(raw_cases) color_0 = Property(lambda x: frozenset({0}), np.log(2), name=f'color {0}', output_types=frozenset({'color'}), entity_finder=base_entity_finder) color_5 = Property(lambda x: frozenset({5}), np.log(10) - 1, name=f'color {5}', output_types=frozenset({'color'}), entity_finder=base_entity_finder) take_color = Property(lambda x: x.entity.colors(), name='the colors', output_types=frozenset({'color'}), entity_finder=base_entity_finder, nll=1) select_not_0 = Selector.make_property_selector(take_color, color_0, False) select_not_5 = Selector.make_property_selector(take_color, color_5, False) select_not_0_nor_5 = select_not_0.intersect(select_not_5) entity_finder = base_entity_finder.compose(select_not_0_nor_5, True) select_5 = Selector.make_property_selector(take_color, color_5) center_y = Property(lambda x: x.entity.center(axis=0), nll=np.log(2), name='the center y coordinate', output_types=frozenset({'y_coordinate'}), entity_finder=base_entity_finder, requires_entity=True) center_x = Property(lambda x: x.entity.center(axis=1), nll=np.log(2), name='the center x coordinate', output_types=frozenset({'x_coordinate'}), entity_finder=base_entity_finder, requires_entity=True) center_5y = center_y.add_selector(select_5) length_5y = Property.create_distance_property(center_5y, center_y) center_5x = center_x.add_selector(select_5) length_5x = Property.create_distance_property(center_5x, center_x) vect_prop = Property.xy_length_to_vector(length_5y, length_5x) move_to_5 = Transformer(lambda entities, grid, copy=True: move(entities, vector_property=vect_prop, copy=copy, extend_grid=False), nll=vect_prop.nll + np.log(2), name=f"{'copy' if True else 'move'} them by ({vect_prop})") my_predictor = Predictor(entity_finder, move_to_5) for case in cases['train']: assert my_predictor.predict(case['input']) == case['output'] def test_take_colors(): with open('training/' + os.listdir('training/')[7]) as f: raw_case7 = json.load(f) case7 = tuplefy_task(raw_case7) inp = case7['train'][0]['input'] base_entity_finder = EntityFinder(find_components) entities = base_entity_finder(inp) # print(collision_relation(entities[1], entities[2])) assert collision_relation(entities[1], entities[2]) == (6, 0) take_color = Property(lambda x: x.entity.colors(), name='the colors', output_types=frozenset({'color'}), entity_finder=base_entity_finder, nll=1) color_0 = Property(lambda x, i=0: frozenset({0}), np.log(10) - 2, name=f'color {0}', output_types=frozenset({'color'}), entity_finder=base_entity_finder) color_2 = Property(lambda x, i=2: frozenset({2}), np.log(10) - 2, name=f'color {2}', output_types=frozenset({'color'}), entity_finder=base_entity_finder) color_8 = Property(lambda x, i=8: frozenset({8}), np.log(10) - 2, name=f'color {8}', output_types=frozenset({'color'}), entity_finder=base_entity_finder) assert take_color(entities[0], inp) == frozenset({0}) assert take_color(entities[1], inp) == frozenset({2}) assert take_color(entities[2], inp) == frozenset({8}) select_0 = Selector.make_property_selector(take_color, color_0) select_2 = Selector.make_property_selector(take_color, color_2) select_8 = Selector.make_property_selector(take_color, color_8) assert select_0.select(entities) == [entities[0]] assert select_2.select(entities) == [entities[1]] assert select_8.select(entities) == [entities[2]] def test_nth_ordered_ordinal_property(): max_ord = OrdinalProperty(lambda x: nth_ordered(x, 0, use_max=True), nll=0, name=f'take the {1} largest') second_smallest_ord = OrdinalProperty(lambda x: nth_ordered(x, 1, use_max=False), nll=0, name=f'take the {2} smallest') assert max_ord([0, 5, 10, 20]) == 20 assert second_smallest_ord([-2, 5, 10, 20]) == 5 # max_ord_2 = ORDINAL_PROPERTIES[1] # assert max_ord_2([0, 5, 10, 20]) == 20 # assert ORDINAL_PROPERTIES[2]([0, 5, 10, 20]) == 10 def test_from_relation_selector(): with open('training/' + os.listdir('training/')[7]) as f: raw_case7 = json.load(f) case7 = tuplefy_task(raw_case7) inp = case7['train'][0]['input'] base_entity_finder = EntityFinder(find_components) entities = base_entity_finder(inp) take_color = Property(lambda x: x.entity.colors(), name='the colors', output_types=frozenset({'color'}), entity_finder=base_entity_finder, nll=1) color_2 = Property(lambda x, i=2: frozenset({2}), np.log(10) - 2, name=f'color {2}', output_types=frozenset({'color'}), entity_finder=base_entity_finder) color_8 = Property(lambda x, i=8: frozenset({8}), np.log(10) - 2, name=f'color {8}', output_types=frozenset({'color'}), entity_finder=base_entity_finder) unique = OrdinalProperty(lambda x: pick_the_unique_value(x), nll=
np.log(2)
numpy.log
import os import yaml import time import shutil import torch import random import argparse import numpy as np from torch.utils import data from tqdm import tqdm from ptsemseg.models import get_model from ptsemseg.loss import get_loss_function from ptsemseg.loader import get_loader from ptsemseg.utils import get_logger from ptsemseg.metrics import runningScore, averageMeter from ptsemseg.augmentations import get_composed_augmentations from ptsemseg.schedulers import get_scheduler from ptsemseg.optimizers import get_optimizer from tensorboardX import SummaryWriter def train(cfg, writer, logger): # Setup seeds torch.manual_seed(cfg.get("seed", 1337)) torch.cuda.manual_seed(cfg.get("seed", 1337)) np.random.seed(cfg.get("seed", 1337)) random.seed(cfg.get("seed", 1337)) # Setup device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Setup Augmentations augmentations = cfg["training"].get("augmentations", None) data_aug = get_composed_augmentations(augmentations) # Setup Dataloader data_loader = get_loader(cfg["data"]["dataset"]) tloader_params = {k: v for k, v in cfg["data"]["train"].items()} tloader_params.update({'root':cfg["data"]["path"]}) vloader_params = {k: v for k, v in cfg["data"]["val"].items()} vloader_params.update({'root':cfg["data"]["path"]}) t_loader = data_loader(**tloader_params) v_loader = data_loader(**vloader_params) n_classes = t_loader.n_classes trainloader = data.DataLoader( t_loader, batch_size=cfg["training"]["batch_size"], num_workers=cfg["training"]["n_workers"], shuffle=True, ) valloader = data.DataLoader( v_loader, batch_size=cfg["training"]["batch_size"], num_workers=cfg["training"]["n_workers"] ) # Setup Metrics running_metrics_val = runningScore(n_classes) # Setup Model model = get_model(cfg["model"], n_classes).to(device) model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count())) # Setup optimizer, lr_scheduler and loss function optimizer_cls = get_optimizer(cfg) optimizer_params = {k: v for k, v in cfg["training"]["optimizer"].items() if k != "name"} optimizer = optimizer_cls(model.parameters(), **optimizer_params) logger.info("Using optimizer {}".format(optimizer)) scheduler = get_scheduler(optimizer, cfg["training"]["lr_schedule"]) loss_type = cfg["training"]["loss"]["name"] if loss_type == 'BalancedCE' or loss_type =='WeightedCE': cls_num_list = np.zeros((n_classes,)) print("=" * 10, "CALCULATING WEIGHTS", "=" * 10) # for _, valloader in loaders['val'].items(): for _, (_, labels_list) in tqdm(enumerate(valloader)): for i in range(n_classes): cls_num_list[i] = cls_num_list[i] + (labels_list[0] == i).sum() if loss_type == 'BalancedCE': beta = (np.sum(cls_num_list)-1)/np.sum(cls_num_list) effective_num = 1.0 - np.power(beta, cls_num_list) effective_num[effective_num==0] = 1 per_cls_weights = (1.0 - beta) / np.array(effective_num) per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list) per_cls_weights = torch.tensor(per_cls_weights,dtype=torch.float).cuda(device) cls_num_list = None elif loss_type =='WeightedCE': median =
np.median(cls_num_list)
numpy.median
import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC import csv from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix import random from sklearn.model_selection import StratifiedKFold def train_and_plot(kernel, X_train, y_train, X_test, y_test, title): svm = SVC(kernel=kernel, C=1).fit(X_train, y_train) svm_predictions = svm.predict(X_test) # model accuracy for X_test accuracy = str(round(svm.score(X_test, y_test), 4)) title = title + accuracy # creating a confusion matrix cm = confusion_matrix(y_test, svm_predictions) # Plot non-normalized confusion matrix class_names = ['IC1', 'IC2', 'IC3', 'IC4', 'IC5', 'IC6', 'IC7', 'IC8', 'None'] disp = plot_confusion_matrix(svm, X_test, y_test, display_labels=class_names, cmap=plt.cm.Blues, normalize='true', values_format='.3f') # Source: # https://stackoverflow.com/questions/57043260/how-change-the-color-of-boxes-in-confusion-matrix-using-sklearn disp.ax_.set_title(title) plt.show() def read_files(file): """Reads csv file and extracts necessary data for plotting""" r = csv.reader(open(file)) lines = list(r) return lines def get_ICs(): """reads in csv with labels and genomes, assigns them to dictionary""" # Only taking genomes that have been assigned by MLST r = csv.reader(open("genomes_and_labels.csv")) lines = list(r) ICs = { "IC1": [], "IC2": [], "IC3": [], "IC4": [], "IC5": [], "IC6": [], "IC7": [], "IC8": [], "None": [] } for i in range(len(lines)): labels = [lines[i][2], lines[i][4]] if labels[0] == labels[1]: # Oxford and Pasteur MLST assigned same label ICs[labels[0]].append(lines[i][0]) else: # Using the protocol, that classified an IC # Could be either Oxford or Pasteur if labels[0] == 'None': del labels[0] ICs[labels[0]].append(lines[i][0]) return ICs def get_scores(file, dic, keys): r = csv.reader(open(file)) lines = list(r) for key in keys: for i in lines: if i[0] in dic[key]: pos = dic[key].index(i[0]) # Converting data to float dic[key][pos] = [float(x) for x in i[1:]] return dic def get_random_training_vectors(dic, keys, n): # Chooses n random vectors per class, returns them # as np.arrays and separates training/test-data X_train = [] y_train = [] X_test = [] y_test = [] # Choosing random training vectors and removing them from test-data for key in keys: pos = random.sample(range(0, len(dic[key])), n) pos.sort() for i in range(len(pos)-1, -1, -1): X_train.append(dic[key][pos[i]]) del dic[key][pos[i]] y_train.append(key) # Creating test-data X_test = X_test + dic[key] y_test = y_test + [key] * len(dic[key]) return np.array(X_train),
np.array(y_train)
numpy.array
#!/usr/bin/python # -*- coding: utf-8 -*- """ Created on Jan 22 20:38 2014 @author: <NAME> @email: <EMAIL> This file pretends to imitate the behaviour of the MATLAB function armcov Using spectrum implementation: http://thomas-cokelaer.info/software/spectrum/html/user/ref_psd_other.html search for modcovar (can't direct link it) """ import numpy as np import spectrum def armcov(x, p): """From MATLAB: % A = ARMCOV(X,ORDER) returns the polynomial A corresponding to the AR % parametric signal model estimate of vector X using the Modified Covariance % method. ORDER is the model order of the AR system. % % [A,E] = ARMCOV(...) returns the variance estimate E of the white noise % input to the AR model. Using from spectrum modcovar and modcovar_marple: Check http://thomas-cokelaer.info/software/spectrum/html/user/ref_psd_other.html#spectrum.modcovar.modcovar """ [E, A] = spectrum.modcovar(x, int(p)) # We compute this one because gives back same number of elements in E number_of_elements = len(E) [E, A, ISTAT] = spectrum.modcovar_marple(x, int(p)) # works slower but is more accurate with the error than modcovar E = E[:number_of_elements] E =
np.hstack((1, E))
numpy.hstack
# -*- coding: utf-8 -*- # @Time : 2020/6/16 23:50 # @Author : zonas.wang # @Email : <EMAIL> # @File : generate.py import math import json import os.path as osp import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon import imgaug.augmenters as iaa from transform import transform, crop, resize from backend.text_detector_service.config import DBConfig from aug import LambdaTransformation, Resize, RandomApply, RandomJpegQuality, RandomSaturation, RandomContrast, RandomBrightness, ColorInversion, Compose aug = Compose([ # LambdaTransformation(lambda x: x / 255), # Resize((32, 128)), # Augmentations RandomApply(ColorInversion(), .1), RandomJpegQuality(60), RandomSaturation(.3), RandomContrast(.3), RandomBrightness(.3), ]) mean = [103.939, 116.779, 123.68] cfg = DBConfig() def show_polys(image, anns, window_name): for ann in anns: poly = np.array(ann['poly']).astype(np.int32) cv2.drawContours(image, np.expand_dims(poly, axis=0), -1, (0, 255, 0), 2) cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) cv2.imshow(window_name, image) def draw_thresh_map(polygon, canvas, mask, shrink_ratio=0.4): polygon = np.array(polygon) assert polygon.ndim == 2 assert polygon.shape[1] == 2 polygon_shape = Polygon(polygon) distance = polygon_shape.area * (1 - np.power(shrink_ratio, 2)) / polygon_shape.length subject = [tuple(l) for l in polygon] padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) padded_polygon = np.array(padding.Execute(distance)[0]) cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) xmin = padded_polygon[:, 0].min() xmax = padded_polygon[:, 0].max() ymin = padded_polygon[:, 1].min() ymax = padded_polygon[:, 1].max() width = xmax - xmin + 1 height = ymax - ymin + 1 polygon[:, 0] = polygon[:, 0] - xmin polygon[:, 1] = polygon[:, 1] - ymin xs = np.broadcast_to(np.linspace(0, width - 1, num=width).reshape(1, width), (height, width)) ys = np.broadcast_to(np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width)) distance_map =
np.zeros((polygon.shape[0], height, width), dtype=np.float32)
numpy.zeros
''' Implementation of GPHMC - Gaussian Process HMC ''' import numpy from sklearn.gaussian_process import GaussianProcessRegressor from pypuffin.decorators import accepts from pypuffin.numeric.mcmc.base import MCMCBase from pypuffin.sklearn.gaussian_process import gradient_of_mean, gradient_of_std from pypuffin.types import Callable # TODO need different f_construct_hmc methods for exploratory and sampling phases. # TODO still not implementing all the heuristics for exploration in Rasumussen's paper class GPHMC(MCMCBase): ''' An object to perform GPHMC sampling. Takes as arguments: f_target_log_prob: A callable mapping position x -> log of the target distribution. regressor: A (non-trained) GaussianProcessRegressor instance, with appropriate kernel etc. This will be used to approximate f_target_log_prob. f_construct_hmc: A callable to construct an HMC sampler that takes the signature (x_0, f_potential, f_grad_potential) x_start: Position from which to start GP sampling ''' @accepts(object, Callable, GaussianProcessRegressor, Callable, numpy.ndarray) def __init__(self, f_target_log_prob, regressor, f_construct_hmc, x_start): self._f_target_log_prob = f_target_log_prob self._regressor = regressor self._f_construct_hmc = f_construct_hmc self._x_start = x_start # Record training data for GP regressor; y values are from f_target_log_prob self._x_train = [] self._y_train = [] # The HMC sampler for using once training is complete. self._hmc_sampler = None @property def _started_sampling(self): ''' Return True iff we have started sampling from the non-training distribution ''' return self._hmc_sampler is not None @property def dim(self): ''' The dimension of the sampling space ''' return self._x_start.shape[0] def _fit_gp(self): ''' Perform fitting of the regressor to the current training data, taking into account the empirical mean of the training points. This follows the procedure given in Rasmussen GPHMC paper, section 4. ''' x_train_array =
numpy.asarray(self._x_train)
numpy.asarray
from numpy import dot from numpy import sqrt from numpy import full from numpy import asarray from numpy import isscalar from numpy import empty from numpy import random from numpy import newaxis def gower_kinship_normalization(K): """ Perform Gower normalizion on covariance matrix K the rescaled covariance matrix has sample variance of 1 """ c = (K.shape[0] - 1) / (K.trace() - K.mean(0).sum()) return c * K # K = \sigma_g^2 Q (S + \delta I) Q.T def create_binomial(nsamples, nfeatures, ntrials, var=0.8, delta=0.2, sige2=1., seed=None, offset=0.): if seed is not None: random.seed(seed) if isscalar(ntrials): ntrials = full(nsamples, ntrials, dtype=int) else: ntrials = asarray(ntrials, int) X = random.randn(nsamples, nfeatures) X -= X.mean(0) X /= X.std(0) X /= sqrt(nfeatures) u = random.randn(nfeatures) * sqrt(var) u -= u.mean() u /= u.std() u *= sqrt(var) g1 = dot(X, u) g1 -= g1.mean() g1 /= g1.std() g1 *= sqrt(var) g2 = random.randn(nsamples) g2 -= g2.mean() g2 /= g2.std() g2 *= sqrt(var * delta) g = g1 + g2 + offset E = random.randn(nsamples, max(ntrials)) E *= sqrt(sige2) Z = g[:, newaxis] + E Z[Z > 0.] = 1. Z[Z <= 0.] = 0. y = empty(nsamples) for i in range(y.shape[0]): y[i] = sum(Z[i, :ntrials[i]]) return (y, X) # K = \sigma_g^2 Q (S + \delta I) Q.T def create_bernoulli(nsamples, nfeatures, h2=0.5, seed=None): import numpy as np from numpy import dot from numpy import newaxis # K = \sigma_g^2 Q (S + \delta I) Q.T def _create_binomial(nsamples, nfeatures, ntrials, sigg2=0.8, delta=0.2, sige2=1., seed=None): if seed is not None: np.random.seed(seed) if np.isscalar(ntrials): ntrials = np.full(nsamples, ntrials, dtype=int) else: ntrials = np.asarray(ntrials, int) X = np.random.randn(nsamples, nfeatures) X -= np.mean(X, 0) X /= np.std(X, 0) X /= np.sqrt(nfeatures) u = np.random.randn(nfeatures) * np.sqrt(sigg2) u -= np.mean(u) u /= np.std(u) u *= np.sqrt(sigg2) g1 = dot(X, u) g2 = np.random.randn(nsamples) g2 -= np.mean(g2) g2 /= np.std(g2) g2 *= np.sqrt(sigg2 * delta) g = g1 + g2 E = np.random.randn(nsamples, np.max(ntrials)) E *=
np.sqrt(sige2)
numpy.sqrt
# -*- coding: utf-8 -*- # Copyright 2019 the HERA Project # Licensed under the MIT License import pytest import os import shutil import numpy as np import sys from collections import OrderedDict as odict import copy import glob from pyuvdata import UVData from pyuvdata import utils as uvutils import unittest from scipy import stats from scipy import constants from pyuvdata import UVFlag from .. import datacontainer, io, frf from ..data import DATA_PATH @pytest.mark.filterwarnings("ignore:The default for the `center` keyword has changed") def test_timeavg_waterfall(): fname = os.path.join(DATA_PATH, "zen.2458042.12552.xx.HH.uvXA") uvd = UVData() uvd.read_miriad(fname) d = uvd.get_data(24, 25) f = uvd.get_flags(24, 25) n = uvd.get_nsamples(24, 25) t = np.unique(uvd.time_array) fr = uvd.freq_array.squeeze() lsts = [] for _l in uvd.lst_array: if _l not in lsts: lsts.append(_l) lsts = np.array(lsts) antpos, ants = uvd.get_ENU_antpos() blv = antpos[ants.tolist().index(24)] - antpos[ants.tolist().index(25)] # test basic execution ad, af, an, al, aea = frf.timeavg_waterfall(d, 25, verbose=False) assert ad.shape == (3, 64) assert af.shape == (3, 64) assert an.shape == (3, 64) assert not np.any(af) assert np.allclose(an[1, 0], 25.0) assert np.allclose(an[2, 0], 10.0) # test rephase ad, af, an, al, aea = frf.timeavg_waterfall(d, 25, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (3, 64) assert af.shape == (3, 64) assert an.shape == (3, 64) assert np.any(af) assert len(al) == 3 assert len(aea['avg_times']) == 3 assert np.allclose(an.max(), 25.0) # test various Navgs ad, af, an, al, aea = frf.timeavg_waterfall(d, 1, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (60, 64) ad, af, an, al, aea = frf.timeavg_waterfall(d, 60, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (1, 64) # wrap lst ad2, af2, an2, al2, aea2 = frf.timeavg_waterfall(d, 60, flags=f, rephase=True, lsts=lsts + 1.52917804, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (1, 64) assert np.allclose(ad, ad2) assert np.allclose(al, al2 - 1.52917804) # Test Error with pytest.raises(ValueError): frf.timeavg_waterfall(d, 25, verbose=False, wgt_by_nsample=True, wgt_by_favg_nsample=True) # test weightings d = np.ones((4, 10)) d[0, :] *= 2 n = np.ones((4, 10)) n[0, 0:5] *= 2 ad, _, _, _, _ = frf.timeavg_waterfall(d, 2, rephase=False, nsamples=n, wgt_by_nsample=True) np.testing.assert_array_equal(ad[1, :], 1.0) np.testing.assert_array_equal(ad[0, 0:5], 5. / 3) np.testing.assert_array_equal(ad[0, 5:10], 1.5) ad, _, _, _, _ = frf.timeavg_waterfall(d, 2, rephase=False, nsamples=n, wgt_by_nsample=False, wgt_by_favg_nsample=True) np.testing.assert_array_equal(ad[1, :], 1.0) np.testing.assert_array_equal(ad[0, :], 1.6) def test_fir_filtering(): # convert a high-pass frprofile to an FIR filter frbins = np.linspace(-40e-3, 40e-3, 1024) frp = np.ones(1024) frp[512 - 9:512 + 10] = 0.0 fir, tbins = frf.frp_to_fir(frp, delta_bin=np.diff(frbins)[0]) # confirm its purely real assert not np.any(np.isclose(np.abs(fir.real), 0.0)) assert np.allclose(np.abs(fir.imag), 0.0) # convert back _frp, _frbins = frf.frp_to_fir(fir, delta_bin=np.diff(tbins)[0], undo=True) np.testing.assert_array_almost_equal(frp, _frp.real) np.testing.assert_array_almost_equal(np.diff(frbins), np.diff(_frbins)) assert np.allclose(
np.abs(_frp.imag)
numpy.abs
import numpy as np import numpy as np import matplotlib.pyplot as plt import os def logdet(Sigma): return np.log2(Sigma) def gaussProb(X, mu, Sigma): d = 1 X = X.reshape(X.shape[0], d) X = X - np.transpose(mu) logp = -0.5*np.sum(np.multiply((X/(Sigma)), X), 1) logZ = (d/2)*np.log(2*np.pi) + 0.5*logdet(Sigma) logp = logp - logZ p = np.exp(logp) return p def postDensityIntervals(): def f(x): return gaussProb(x, 0, 1) + gaussProb(x, 6, 1) domain = np.arange(-4, 10.001, 0.001) plt.plot(domain, f(domain), '-r') plt.fill_between(domain, f(domain), color='blue') plt.fill_between(np.arange(-4, -1.999, 0.001), f(np.arange(-4, -1.999, 0.001)), color='white') plt.fill_between(np.arange(8, 10.001, 0.001), f( np.arange(8, 10.001, 0.001)), color='white') plt.annotate(r'$\alpha /2$', xytext=(-3.5, 0.11), xy=(-2.3, 0.015), arrowprops=dict(facecolor='black')) plt.annotate(r'$\alpha /2$', xytext=(9.5, 0.11), xy=(8.3, 0.015), arrowprops=dict(facecolor='black')) plt.ylim(0, 0.5) plt.savefig('../figures/centralInterval') plt.show() plt.plot(domain, f(domain), '-r') plt.fill_between(domain, f(domain), color='blue') plt.fill_between(np.arange(-4, -1.43992, 0.001), f(np.arange(-4, -1.43992, 0.001)), color='white') plt.fill_between(np.arange(7.37782, 10.001, 0.001), f( np.arange(7.37782, 10.001, 0.001)), color='white') plt.plot(domain, [0.15 for i in range(0, 14001)], 'b-') plt.fill_between(
np.arange(1.3544, 4.5837, 0.001)
numpy.arange
import numpy as np import torch import torchvision import torchvision.transforms.functional as TF from torchvision import transforms import capsule as cps _default_num_workers = 0 """How many subprocesses to use for data loading.""" class MnistData: def __init__(self, root_folder): """ Args: root_folder (string): Root folder where MNIST dataset is stored or will be downloaded. """ self._root_folder = root_folder def download(self): """Downloads MNIST dataset into the root folder.""" torchvision.datasets.MNIST(self._root_folder, download=True) def data_loader(self, batch_size, train, shuffle, transform=None, num_workers=_default_num_workers, digits=None): """ Creates a data loader. Args: batch_size (int): How many samples per batch to load. ``-1`` means that all samples will be loaded in a single batch. train (bool): If ``True``, creates training data loader, otherwise test data loader. shuffle (bool): Whether to reshuffle the samples at every epoch. transform (callable, optional): A function that takes a PIL image and returns a transformed version. num_workers (int, optional): How many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process (default: ``0``). digits (sequence of ints, optional): What digits to load. ``None`` means that all digits will be loaded (default: ``None``). Returns: New data loader. """ data_set = torchvision.datasets.MNIST(root=self._root_folder, train=train, transform=transform) if digits: mask = None for digit in digits: digit_mask = (data_set.train_labels if train else data_set.test_labels) == digit if mask is None: mask = digit_mask else: mask |= digit_mask if train: data_set.train_data = data_set.train_data[mask] data_set.train_labels = data_set.train_labels[mask] else: data_set.test_data = data_set.test_data[mask] data_set.test_labels = data_set.test_labels[mask] if batch_size == -1: batch_size = len(data_set.test_data) return torch.utils.data.DataLoader(data_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, drop_last=True) def plain_loader(self, batch_size, train, shuffle=False, num_workers=_default_num_workers, digits=None): """ Creates a data loader which provides original full-size samples. Args: batch_size (int): How many samples per batch to load. ``-1`` means that all samples will be loaded in a single batch. train (bool): If ``True``, creates training data loader, otherwise test data loader. shuffle (bool): Whether to reshuffle the samples at every epoch (default: ``False``). num_workers (int, optional): How many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process (default: ``0``). digits (sequence of ints, optional): What digits to load. ``None`` means that all digits will be loaded (default: ``None``). Returns: New data loader. """ return self.data_loader(batch_size, train, shuffle, transform=PlainTransform(), num_workers=num_workers, digits=digits) def rand_cut_loader(self, sample_grid_size, batch_size, train, shuffle=True, previous_layers=None, num_workers=_default_num_workers, digits=None): """ Creates a data loader which provides samples constructed from randomly translated digits. Args: sample_grid_size (sequence of ints) : Height and width of each sample. batch_size (int): How many samples per batch to load. ``-1`` means that all samples will be loaded in a single batch. train (bool): If ``True``, creates training data loader, otherwise test data loader. shuffle (bool): Whether to reshuffle the samples at every epoch (default: ``True``). previous_layers: Sequence of layers the input image is processed by to create a sample. num_workers (int, optional): How many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process (default: ``0``). digits (sequence of ints, optional): What digits to load. ``None`` means that all digits will be loaded (default: ``None``). Returns: New data loader. """ assert len(sample_grid_size) == 2 img_size = cps.input_grid_size_thru(previous_layers, sample_grid_size) transform = RandCut(img_size) if previous_layers: transform = transforms.Compose([transform, ThruLayers(previous_layers)]) return self.data_loader(batch_size, train, shuffle, transform=transform, num_workers=num_workers, digits=digits) class PlainTransform: """Transforms PIL image to tensor of shape (PIL image height, PIL image width, 1).""" def __call__(self, pic): return TF.to_tensor(pic).squeeze()[:, :, None] class RandCut: """Transforms PIL image to tensor of shape (img_size[0], img_size[1], 1).""" def __init__(self, img_size): self._img_size = np.array(img_size) def __call__(self, pic): img = TF.to_tensor(pic).squeeze() img = RandCut._remove_black_border(img) return self._rand_crop(img)[:, :, None] @staticmethod def _remove_black_border(img): xn = img.sum(dim=0).nonzero() # x indexes of nonzero columns. yn = img.sum(dim=1).nonzero() # y indexes of nonzero rows. return img[yn[0]:(yn[-1] + 1), xn[0]:(xn[-1] + 1)] def _rand_crop(self, img): dy, dx = img.shape - self._img_size # How much space there is for translation. # Negative dy or dx values means that the original image is smaller then the desired size, so there is no space # for translation and we need to add margin of size -dy or -dx. ry =
np.random.randint(dy + 1)
numpy.random.randint
# Quick and dirty end-to-end integration tests # Run 'python -m pytest' in the root directory # import os import sys import pdb import re import time import collections import argparse import random import subprocess import numpy as np class STDOUTParserError(Exception): def __init__(self, message): self.message = message class STDOUTDetectionParser(): def parse(self, data): data = data.decode() match = re.search(r"\[\[.*\]\]", data).group(0).replace('[', '').replace(']', '').replace(',', '') if match is None: raise STDOUTParserError('No regex matches found') try: detections = [float(s) for s in match.split()] detections = np.array(detections).reshape(-1, 7) except: raise STDOUTParserError('reshape failed') return detections class STDOUTLossParser(): def parse(self, data): data = data.decode() match = re.search(r"iter.*epoch.*loss.*", data).group(0) if match is None: raise STDOUTParserError('No regex matches found') match = re.findall("\d+\.\d+", match) if match is None: raise STDOUTParserError('No regex matches found') try: loss = float(match[0]) except: raise STDOUTParserError('Parse to float failed') return loss def compare_detection(data_file, cfg_file, weights_file, im_file, ref_file, tol=2e-2): args = ['python', 'detect.py', '--cfg', cfg_file, '--data', data_file, '--image', im_file, '--weights', weights_file] try: cproc = subprocess.run(args, stdout=subprocess.PIPE, check=True) except subprocess.CalledProcessError as err: assert False, err.stderr try: detections = STDOUTDetectionParser().parse(cproc.stdout) except STDOUTParserError as err: assert False, err try: # Load pre-computed Darknet framework detections detections_ref = np.fromfile( ref_file, sep=' ', dtype=np.float32).reshape(-1, 7) except: assert False, 'STDOUTDetectionParser failed!' assert np.allclose(detections_ref, detections, rtol=tol, atol=tol) def compare_loss(data_file, cfg_file, weights_file, ref_file, tol=2e-2): args = ['python', 'train.py', '--cfg', cfg_file, '--data', data_file, '--weights', weights_file, '--num-workers=0', '--nonrandom', '--no-shuffle', '--once'] try: cproc = subprocess.run(args, stdout=subprocess.PIPE, check=True) except subprocess.CalledProcessError as err: assert False, err.stderr try: loss = STDOUTLossParser().parse(cproc.stdout) except STDOUTParserError as err: assert False, err try: # Load pre-computed Darknet framework loss loss_ref = np.fromfile( ref_file, sep=' ', dtype=np.float32)[0] except: assert False, 'STDOUTLossParser failed!' assert
np.isclose(loss, loss_ref, rtol=tol, atol=tol)
numpy.isclose
import numpy as np from copy import deepcopy from sklearn.base import BaseEstimator from sklearn.utils import check_X_y from dwd.utils import pm1 from dwd.gen_dwd import V, V_grad from dwd.kernel_utils import KernelClfMixin from dwd.cv import run_cv class KernGDWD(BaseEstimator, KernelClfMixin): """ Kernel Generalized Distance Weighted Discrimination Solves the kernel gDWD problem using the MM algorithm derived in Wang and Zou, 2017. Primary reference: Another look at distance-weighted discrimination by <NAME> and <NAME>, 2017 Note the tuning parameter lambd is on a different scale the parameter C which is used in the SOCP formulation. Parameters ---------- lambd: float Tuning parameter for DWD. q: float Tuning parameter for generalized DWD (the exponent on the margin terms). When q = 1, gDWD is equivalent to DWD. kernel: str, callable(X, Y, \*\*kwargs) The kernel to use. kernel_kws: dict Any key word arguments for the kernel. implicit_P: bool Whether to use the implicit P\^\{-1\} gamma formulation (in the publication) or the explicit computation (in the arxiv version). """ def __init__(self, lambd=1.0, q=1.0, kernel='linear', kernel_kws={}, implicit_P=True): self.lambd = lambd self.q = q self.kernel = kernel self.kernel_kws = kernel_kws self.implicit_P = implicit_P def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X sample_weight : array-like, shape = [n_samples], optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- self : object """ # TODO: what to do about multi-class self.classes_ = np.unique(y) self._Xfit = X # Store K so we can compute predictions K = self._compute_kernel(X) K_eig = self._get_K_eig() # fit DWD alpha, offset, obj_vals, c = \ solve_gen_kern_dwd(K=K, y=y, lambd=self.lambd, q=self.q, alpha_init=None, offset_init=None, sample_weight=None, implicit_P=self.implicit_P, obj_tol=1e-5, max_iter=100, K_eig=K_eig) self.intercept_ = offset.reshape(-1) self.dual_coef_ = alpha.reshape(1, -1) return self def cv_init(self, X): """ Initializes the object before computing a cross-valiation. """ # I don't love that we have to set this here self._Xfit = X # Warning: we compute the kernel twice -- any way around this # without messing up the SKlearn API too badly? K = self._compute_kernel(X) self._set_K_eig(K) return self def _set_K_eig(self, X): """ Precomputes eigen decomposition of K matrix which makes cross-validation much faster. """ self._K_eig = get_K_eig(X) def _get_K_eig(self): if hasattr(self, '_K_eig'): return self._K_eig else: return None class KernGDWDCV(BaseEstimator, KernelClfMixin): """ Fits kernel gDWD with cross-validation. gDWD cross-validation can be significnatly faster if certain quantities are precomputed. Parameters ---------- lambd_vals: list of floats The lambda values to cross-validate over. q_vals: list of floats The q-values to cross validate over. kernel: str, callable The kernel to use. kern_kws_vals: list of dicts The kernel parameters to validate over. cv: How to perform cross-valdiation. See documetnation in sklearn.model_selection.GridSearchCV. scoring: What metric to use to score cross-validation. See documetnation in sklearn.model_selection.GridSearchCV. """ def __init__(self, lambd_vals=np.logspace(-2, 2, 10), q_vals=np.logspace(-2, 2, 5), kernel='linear', kernel_kws_vals={}, cv=5, scoring='accuracy'): self.lambd_vals = lambd_vals self.q_vals = q_vals self.kernel = kernel self.kernel_kws_vals = kernel_kws_vals self.cv = cv self.scoring = scoring def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X sample_weight : array-like, shape = [n_samples], optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- self : object """ # TODO: what to do about multi-class # formatting # TODO: figure out what we should actually check X, y = check_X_y(X, y, accept_sparse='csr', dtype='numeric') self.classes_ = np.unique(y) # run cross validation params = {'q': self.q_vals, 'lambd': self.lambd_vals, 'kernel_kws': self.kernel_kws_vals} best_params, best_score, best_clf, agg_results, all_cv_results = \ run_cv(clf=KernGDWD(kernel=self.kernel), X=X, y=y, params=params, scoring=self.scoring, cv=self.cv, refit_best=True) self.best_estimator_ = best_clf self.best_params_ = best_params self.best_score_ = best_score self.agg_cv_results_ = agg_results self.all_cv_results_ = all_cv_results self._Xfit = self.best_estimator_._Xfit self.intercept_ = self.best_estimator_.intercept_ self.dual_coef_ = self.best_estimator_.dual_coef_ self.decision_function = self.best_estimator_.decision_function return self def solve_gen_kern_dwd(K, y, lambd, q=1, alpha_init=None, offset_init=None, sample_weight=None, implicit_P=True, obj_tol=1e-5, max_iter=100, K_eig=None): """ Solves the kernel gDWD problem using the MM algorithm derived in Wang and Zou, 2017. Parameters ---------- K: array-like, (n_samples, n_samples) The kernel. y: array-like, (n_samples, ) The vector of binary class labels. lambd: float Tuning parameter for DWD. q: float Tuning parameter for generalized DWD (the exponent on the margin terms). When q = 1, gDWD is equivalent to DWD. alpha_init, offset_init: Initial values to start the optimization algorithm from. sample_weight: None, array-like (n_samples,) Optional weight for samples. implicit_P: bool Whether to use the implicit P^{-1} gamma formulation (in the publication) or the explicit computation (in the arxiv version). obj_tol: float Stopping condition for difference between successive objective functions. max_iter: int Maximum number of iterations to perform. K_eig: None or (U, D) Optional. The precomputed eigendecomposition of K. """ # argument checking and formatting if lambd < 0: raise ValueError("Penalty term must be positive; got (lambd=%r)" % lambd) if q < 0: raise ValueError("Weight term must be positive; got (q=%r)" % q) # TODO: add sample weights if sample_weight is not None: raise NotImplementedError K, y = check_X_y(K, y, accept_sparse='csr', dtype='numeric') assert K.shape[0] == K.shape[1] # K must be Kernel matrix. # convert y to +/- 1 y = pm1(y) # convert y to y +/- 1 n_samples = K.shape[0] M = (q + 1) ** 2 / q # precompute data if implicit_P: # precompute data needed to do implicit P^{-1} gamma if K_eig is not None: U, Lam = K_eig Lam = Lam.ravel() assert U.shape == (n_samples, n_samples) assert len(Lam) == n_samples else: U, Lam = get_K_eig(K) # see section 4.1 of Wang and Zou, 2017 for details pi = Lam ** 2 + (2 * n_samples * lambd / M) * Lam ULP = np.multiply(U, Lam * (1.0 / pi)) v = ULP.dot(U.T.dot(np.ones(n_samples))) Ucs = U.sum(axis=0) carson = Ucs.dot(
np.multiply(ULP, Lam)
numpy.multiply
# notes # ask michael if we can get the locations of the different cells # this thing (LSE) but on the whole brain # compare to the omni one # bic curves for both # compute ARI # slides for tomorrow # when we present (seems like it should be obvious) # then show the result, know whether it is what they would have expected # ARI curve # best ARI # BIC Curve # best bic # at least one where we get cliques (across cliques) #%% Imports import math import os from operator import itemgetter import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from graspy.cluster import GaussianCluster from graspy.embed import AdjacencySpectralEmbed, OmnibusEmbed from graspy.models import SBMEstimator from graspy.plot import heatmap, pairplot from graspy.utils import binarize, cartprod, pass_to_ranks from joblib.parallel import Parallel, delayed from matplotlib.colors import LogNorm from sklearn.cluster import KMeans from sklearn.metrics import adjusted_rand_score from spherecluster import SphericalKMeans from src.data import load_everything from src.utils import savefig, export_skeleton_json from src.visualization import sankey FNAME = os.path.basename(__file__)[:-3] print(FNAME) # %% [markdown] # # Parameters MB_VERSION = "mb_2019-09-23" BRAIN_VERSION = "2019-09-18-v2" GRAPH_TYPES = ["Gad", "Gaa", "Gdd", "Gda"] GRAPH_TYPE_LABELS = [r"A $\to$ D", r"A $\to$ A", r"D $\to$ D", r"D $\to$ A"] N_GRAPH_TYPES = len(GRAPH_TYPES) SAVEFIGS = False DEFAULT_FMT = "png" DEFUALT_DPI = 150 MAX_CLUSTERS = 6 MIN_CLUSTERS = 6 N_INIT = 1 PTR = True # Functions def stashfig(name, **kws): if SAVEFIGS: savefig(name, foldername=FNAME, fmt=DEFAULT_FMT, dpi=DEFUALT_DPI, **kws) def annotate_arrow(ax, coords=(0.061, 0.93)): arrow_args = dict( arrowstyle="-|>", color="k", connectionstyle="arc3,rad=-0.4", # "angle3,angleA=90,angleB=90" ) t = ax.annotate("Target", xy=coords, xycoords="figure fraction") ax.annotate( "Source", xy=(0, 0.5), xycoords=t, xytext=(-1.4, -2.1), arrowprops=arrow_args ) def ase(adj, n_components): if PTR: adj = pass_to_ranks(adj) ase = AdjacencySpectralEmbed(n_components=n_components) latent = ase.fit_transform(adj) latent = np.concatenate(latent, axis=-1) return latent def to_laplace(graph, form="DAD", regularizer=None): r""" A function to convert graph adjacency matrix to graph laplacian. Currently supports I-DAD, DAD, and R-DAD laplacians, where D is the diagonal matrix of degrees of each node raised to the -1/2 power, I is the identity matrix, and A is the adjacency matrix. R-DAD is regularized laplacian: where :math:`D_t = D + regularizer*I`. Parameters ---------- graph: object Either array-like, (n_vertices, n_vertices) numpy array, or an object of type networkx.Graph. form: {'I-DAD' (default), 'DAD', 'R-DAD'}, string, optional - 'I-DAD' Computes :math:`L = I - D*A*D` - 'DAD' Computes :math:`L = D*A*D` - 'R-DAD' Computes :math:`L = D_t*A*D_t` where :math:`D_t = D + regularizer*I` regularizer: int, float or None, optional (default=None) Constant to be added to the diagonal of degree matrix. If None, average node degree is added. If int or float, must be >= 0. Only used when ``form`` == 'R-DAD'. Returns ------- L: numpy.ndarray 2D (n_vertices, n_vertices) array representing graph laplacian of specified form References ---------- .. [1] <NAME>, and <NAME>. "Regularized spectral clustering under the degree-corrected stochastic blockmodel." In Advances in Neural Information Processing Systems, pp. 3120-3128. 2013 """ valid_inputs = ["I-DAD", "DAD", "R-DAD"] if form not in valid_inputs: raise TypeError("Unsuported Laplacian normalization") A = graph in_degree = np.sum(A, axis=0) out_degree = np.sum(A, axis=1) # regularize laplacian with parameter # set to average degree if form == "R-DAD": if regularizer is None: regularizer = 1 elif not isinstance(regularizer, (int, float)): raise TypeError( "Regularizer must be a int or float, not {}".format(type(regularizer)) ) elif regularizer < 0: raise ValueError("Regularizer must be greater than or equal to 0") regularizer = regularizer * np.mean(out_degree) in_degree += regularizer out_degree += regularizer with np.errstate(divide="ignore"): in_root = 1 / np.sqrt(in_degree) # this is 10x faster than ** -0.5 out_root = 1 / np.sqrt(out_degree) in_root[np.isinf(in_root)] = 0 out_root[np.isinf(out_root)] = 0 in_root = np.diag(in_root) # just change to sparse diag for sparse support out_root = np.diag(out_root) if form == "I-DAD": L = np.diag(in_degree) - A L = in_root @ L @ in_root elif form == "DAD" or form == "R-DAD": L = out_root @ A @ in_root # return symmetrize(L, method="avg") # sometimes machine prec. makes this necessary return L def lse(adj, n_components, regularizer=None): if PTR: adj = pass_to_ranks(adj) lap = to_laplace(adj, form="R-DAD") ase = AdjacencySpectralEmbed(n_components=n_components) latent = ase.fit_transform(lap) latent = np.concatenate(latent, axis=-1) return latent def omni(adjs, n_components): if PTR: adjs = [pass_to_ranks(a) for a in adjs] omni = OmnibusEmbed(n_components=n_components // len(adjs)) latent = omni.fit_transform(adjs) latent = np.concatenate(latent, axis=-1) # first is for in/out latent = np.concatenate(latent, axis=-1) # second is for concat. each graph return latent def ase_concatenate(adjs, n_components): if PTR: adjs = [pass_to_ranks(a) for a in adjs] ase = AdjacencySpectralEmbed(n_components=n_components // len(adjs)) graph_latents = [] for a in adjs: latent = ase.fit_transform(a) latent = np.concatenate(latent, axis=-1) graph_latents.append(latent) latent = np.concatenate(graph_latents, axis=-1) return latent def degree(adjs, *args): deg_mat = np.zeros((n_verts, 2 * N_GRAPH_TYPES)) for i, g in enumerate(adjs): deg_mat[:, i] = g.sum(axis=0) deg_mat[:, i + N_GRAPH_TYPES] = g.sum(axis=1) return deg_mat def get_sbm_prob(adj, labels): sbm = SBMEstimator(directed=True, loops=True) sbm.fit(binarize(adj), y=labels) data = sbm.block_p_ uni_labels, counts =
np.unique(labels, return_counts=True)
numpy.unique
##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ## Train PCA model ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%% import required packages import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import matplotlib.pyplot as plt #%% fetch data data = pd.read_excel('proc1a.xlsx', skiprows = 1,usecols = 'C:AI') #%% separate train data data_train = data.iloc[0:69,] #%% scale data scaler = StandardScaler() data_train_normal = scaler.fit_transform(data_train) #%% PCA pca = PCA() score_train = pca.fit_transform(data_train_normal) #%% decide # of PCs to retain and compute reduced data in PC space explained_variance = 100*pca.explained_variance_ratio_ # in percentage cum_explained_variance = np.cumsum(explained_variance) # cumulative % variance explained n_comp = np.argmax(cum_explained_variance >= 90) + 1 score_train_reduced = score_train[:,0:n_comp] print('Number of PCs cumulatively explaining atleast 90% variance: ', n_comp) #%% reconstruct original data V_matrix = pca.components_.T P_matrix = V_matrix[:,0:n_comp] data_train_normal_reconstruct =
np.dot(score_train_reduced, P_matrix.T)
numpy.dot
import os import sys import numpy as np import pandas as pd import time import scipy.sparse import scipy.sparse.linalg from scipy import stats from scipy.optimize import minimize np.set_printoptions(threshold=sys.maxsize) # Add lib to the python path. from genTestDat import genTestData2D, prodMats2D from est2d import * from est3d import * from npMatrix2d import * from npMatrix3d import * # ================================================================================== # # The below code runs multiple simulations in serial. It takes the following inputs: # # ---------------------------------------------------------------------------------- # # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - nsim: Number of simulations (default=1000) # - mode: String indicating whether to run parameter estimation simulations (mode= # 'param') or T statistic simulations (mode='Tstat'). # - REML: Boolean indicating whether to use ML or ReML estimation. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def sim2D(desInd, OutDir, nsim=1000, mode='param', REML=False): # Loop through and run simulations for simInd in range(1,nsim+1): runSim(simInd, desInd, OutDir, mode, REML) # ================================================================================== # # The below simulates random test data and runs all methods described in the LMM # paper on the simulated data. It requires the following inputs: # # ---------------------------------------------------------------------------------- # # - SimInd: An index to represent the simulation. All output for this simulation will # be saved in files with the index specified by this argument. The # simulation with index 1 will also perform any necessary additional setup # and should therefore be run before any others. # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - mode: String indicating whether to run parameter estimation simulations (mode= # 'param') or T statistic simulations (mode='Tstat'). # - REML: Boolean indicating whether to use ML or ReML estimation. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def runSim(simInd, desInd, OutDir, mode='param', REML=False): # Make sure simInd is an int simInd = int(simInd) #=============================================================================== # Setup #=============================================================================== # Decide whether we wish to run T statistics/degrees of freedom estimation if mode=='param': runDF = False else: runDF = True # Different designs if desInd==1: nlevels = np.array([50]) nraneffs = np.array([2]) if desInd==2: nlevels = np.array([50,25]) nraneffs = np.array([3,2]) if desInd==3: nlevels = np.array([100,30,10]) nraneffs = np.array([4,3,2]) # Number of observations n = 1000 # If we are doing a degrees of freedom simulation, create the factor vectors, X and Z if # this is the first run. These will then be used across all following simulations. If we # are doing a simulation to look at parameter estimation, we recreate the design on every # run as our focus is to stress test the performance of the algorithms, rather than compare # performance of one specific model in particular. if simInd == 1 or not runDF: # Delete any factor vectors from a previous batch of simulations. if runDF: for i in range(len(nlevels)): if os.path.isfile(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv')): os.remove(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv')) fvs = None X = None Z = None # Otherwise read the factor vectors, X and Z in from file. else: # Initialize empty factor vectors dict fvs = dict() # Loop through factors and save factor vectors for i in range(len(nlevels)): fvs[i] = pd.io.parsers.read_csv(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv'), header=None).values X = pd.io.parsers.read_csv(os.path.join(OutDir, 'X_' + str(desInd) + '.csv'), header=None).values Z = pd.io.parsers.read_csv(os.path.join(OutDir, 'Z_' + str(desInd) + '.csv'), header=None).values # Generate test data Y,X,Z,nlevels,nraneffs,beta,sigma2,b,D, fvs = genTestData2D(n=n, p=5, nlevels=nlevels, nraneffs=nraneffs, save=True, simInd=simInd, desInd=desInd, OutDir=OutDir, factorVectors=fvs, X=X, Z=Z) # Save the new factor vectors if this is the first run. if simInd == 1 and runDF: # Loop through the factors saving them for i in range(len(nlevels)): pd.DataFrame(fvs[i]).to_csv(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv'), index=False, header=None) pd.DataFrame(X).to_csv(os.path.join(OutDir, 'X_' + str(desInd) + '.csv'), index=False, header=None) pd.DataFrame(Z).to_csv(os.path.join(OutDir, 'Z_' + str(desInd) + '.csv'), index=False, header=None) # Work out number of observations, parameters, random effects, etc n = X.shape[0] p = X.shape[1] q = np.sum(nraneffs*nlevels) qu = np.sum(nraneffs*(nraneffs+1)//2) r = nlevels.shape[0] # Tolerance tol = 1e-6 # Work out factor indices. facInds = np.cumsum(nraneffs*nlevels) facInds = np.insert(facInds,0,0) # Convert D to dict Ddict=dict() for k in np.arange(len(nlevels)): Ddict[k] = D[facInds[k]:(facInds[k]+nraneffs[k]),facInds[k]:(facInds[k]+nraneffs[k])] # Get the product matrices XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ = prodMats2D(Y,Z,X) # ----------------------------------------------------------------------------- # Create empty data frame for results: # ----------------------------------------------------------------------------- # Row indices indexVec =
np.array(['Time', 'nit', 'llh'])
numpy.array
import argparse import torch.nn.functional as F import numpy as np from data import * from mir import * from utils import get_logger, get_temp_logger, logging_per_task from buffer import Buffer from copy import deepcopy from pydoc import locate from model import ResNet18, MLP # Arguments # ----------------------------------------------------------------------------------------- parser = argparse.ArgumentParser() parser.add_argument('--result_dir', type=str, default='Results', help='directory where we save results and samples') parser.add_argument('-u', '--unit_test', action='store_true', help='unit testing mode for fast debugging') parser.add_argument('-d', '--dataset', type=str, default = 'split_mnist', choices=['split_mnist', 'permuted_mnist', 'split_cifar10', 'split_cifar100', 'miniimagenet']) parser.add_argument('--n_tasks', type=int, default=-1, help='total number of tasks. -1 does default amount for the dataset') parser.add_argument('-r','--reproc', type=int, default=1, help='if on, no randomness in numpy and torch') parser.add_argument('--disc_epochs', type=int, default=1) parser.add_argument('--disc_iters', type=int, default=1, help='number of training iterations for the classifier') parser.add_argument('--batch_size', type=int, default=10) parser.add_argument('--buffer_batch_size', type=int, default=10) parser.add_argument('--use_conv', action='store_true') parser.add_argument('--samples_per_task', type=int, default=-1, help='if negative, full dataset is used') parser.add_argument('--mem_size', type=int, default=600, help='controls buffer size') parser.add_argument('--n_runs', type=int, default=1, help='number of runs to average performance') parser.add_argument('--suffix', type=str, default='', help="name for logfile") parser.add_argument('--subsample', type=int, default=50, help="for subsampling in --method=replay, set to 0 to disable") parser.add_argument('--print_every', type=int, default=500, help="print metrics every this iteration") parser.add_argument('--update_buffer_hid', type=int, default=1, help='related to latent buffer') # logging parser.add_argument('-l', '--log', type=str, default='off', choices=['off', 'online'], help='enable WandB logging') parser.add_argument('--wandb_project', type=str, default='mir', help='name of the WandB project') #------ MIR -----# parser.add_argument('-m','--method', type=str, default='no_rehearsal', choices=['no_rehearsal', 'rand_replay', 'mir_replay']) parser.add_argument('--compare_to_old_logits', action='store_true',help='uses old logits') parser.add_argument('--reuse_samples', type=int, default=0) parser.add_argument('--lr', type=float, default=0.1) args = parser.parse_args() # Obligatory overhead # ----------------------------------------------------------------------------------------- if not os.path.exists(args.result_dir): os.mkdir(args.result_dir) sample_path = os.path.join(args.result_dir,'samples/') if not os.path.exists(sample_path): os.mkdir(sample_path) recon_path = os.path.join(args.result_dir,'reconstructions/') if not os.path.exists(recon_path): os.mkdir(recon_path) if args.suffix is not '': import datetime time_stamp = str(datetime.datetime.now().isoformat()) name_log_txt = args.dataset+'_'+time_stamp + str(np.random.randint(0, 1000)) + args.suffix name_log_txt=name_log_txt +'.log' with open(name_log_txt, "a") as text_file: print(args, file=text_file) else: name_log_txt = None args.cuda = torch.cuda.is_available() args.device = 'cuda:0' # argument validation overlap = 0 ######################################### # TODO(Get rid of this or move to data.py) args.ignore_mask = False args.gen = False args.newer = 2 ######################################### args.gen_epochs=0 args.output_loss = None if args.reproc: seed=0 torch.manual_seed(seed) np.random.seed(seed) # fetch data data = locate('data.get_%s' % args.dataset)(args) # make dataloaders train_loader, val_loader, test_loader = [CLDataLoader(elem, args, train=t) \ for elem, t in zip(data, [True, False, False])] if args.log != 'off': import wandb wandb.init(args.wandb_project) wandb.config.update(args) else: wandb = None # create logging containers LOG = get_logger(['cls_loss', 'acc'], n_runs=args.n_runs, n_tasks=args.n_tasks) args.mem_size = args.mem_size*args.n_classes #convert from per class to total memory # Train the model # ----------------------------------------------------------------------------------------- for run in range(args.n_runs): # REPRODUCTIBILITY if args.reproc:
np.random.seed(run)
numpy.random.seed
# -*- coding: utf-8 -*- """ Created on Tue Sep 26 17:34:11 2017 @author: Patricio """ import numpy as np import matplotlib.pyplot as plt from scipy import signal from numba import jit,float64,vectorize,int64 #import Wavelets @vectorize([float64(float64)]) def alphan(v): return -0.01*(v+34)/(np.exp(-0.1*(v+34))-1) # ok RH @vectorize([float64(float64)]) def betan(v): return 0.125*np.exp(-(v+44)/80) # ok RH @vectorize([float64(float64)]) def alpham(v): return -0.1*(v+35)/(np.exp(-0.1*(v+35))-1) # ok RH @vectorize([float64(float64)]) def betam(v): return 4*np.exp(-(v+60)/18) # ok RH @vectorize([float64(float64)]) def alphah(v): return 0.07*np.exp(-(v+58)/20) # ok RH @vectorize([float64(float64)]) def betah(v): return 1/(np.exp(-0.1*(v+28))+1) # ok RH def expnorm(tau1,tau2): if tau1>tau2: t2=tau2; t1=tau1 else: t2=tau1; t1=tau2 tpeak = t1*t2/(t1-t2)*np.log(t1/t2) return (np.exp(-tpeak/t1) - np.exp(-tpeak/t2))/(1/t2-1/t1) # Neurons Parameters gNa = 35.0; gK = 9.0; gL=0.1 #mS/cm^2 ENa = 55.0; EK = -90.0; EL = -65.0 #mV phi = 5.0 VsynE = 0; VsynI = -80 #reversal potential tau1E = 3; tau2E = 1 tau1I = 4; tau2I = 1 theta=-20 #threshold for detecting spikes Iapp = 0; # uA/cm^2, injected current #Synaptic parameters mGsynE = 5; mGsynI = 200; mGsynExt = 3 #mean sGsynE = 1; sGsynI = 10; sGsynExt = 1 Pe=0.3; Pi=0.3 iRate = 3.5 #Rate of external input mdelay=1.5; sdelay = 0.1 #ms synaptic delays, mean and SD dt = 0.02 #ms #Network parameters Ne=100 #Numero de neuronas excitatorias Ni=25 #Numero de neuronas inhibitorias def genRandomCM(mode='all', AdjMe=None, AdjMi=None): global CMe,CMi,GsynExt,N if mode not in ('exc','inh','excinh','ext','all'): raise ValueError("mode has to be one of ['exc','inh','excinh','ext','all']") N=Ne+Ni factE = 1000*dt*expnorm(tau1E,tau2E) factI = 1000*dt*expnorm(tau1I,tau2I) if mode in ('exc','excinh','all'): GsynE = np.random.normal(mGsynE,sGsynE,size=(N,Ne)) GsynE = GsynE*(GsynE>0) # remove negative values if AdjMe is None: AdjMe=np.random.binomial(1,Pe,size=(N,Ne)) elif AdjMe.shape!=(N,Ne): raise ValueError("Check dimensions of AdjMe. It has to be N x Ne") CMe= AdjMe * GsynE / factE if mode in ('inh','excinh','all'): GsynI = np.random.normal(mGsynI,sGsynI,size=(N,Ni)) GsynI = GsynI*(GsynI>0) # remove negative values if AdjMi is None: AdjMi=np.random.binomial(1,Pi,size=(N,Ni)) elif AdjMi.shape!=(N,Ni): raise ValueError("Check dimensions of AdjMe. It has to be N x Ni") CMi= AdjMi* GsynI / factI if mode in ('ext','all'): #Weigths for external random input GsynExt = np.random.normal(mGsynExt,sGsynExt,size=N) GsynExt = GsynExt*(GsynExt>0) / factE # remove negative values and normalize genDelays() def genDelays(): global delay,delay_dt delay = np.random.normal(mdelay,sdelay,size=N) delay_dt=(delay/dt).astype(int) genRandomCM() Ggj=0.001 # not so big gap junction conductance CMelec=Ggj * np.random.binomial(1,0.3,(Ni,Ni)) #mock electric connectivity #firing=np.zeros(N) @jit(float64[:,:](float64[:,:],int64[:],int64),nopython=True) def WB_network(X,ls,i): v=X[0,:] h=X[1,:] n=X[2,:] sex=X[3,:] sey=X[4,:] six=X[5,:] siy=X[6,:] sexe=X[7,:] seye=X[8,:] minf=alpham(v)/(betam(v)+alpham(v)) INa=gNa*minf**3*h*(v-ENa) IK=gK*n**4*(v-EK) IL=gL*(v-EL) ISyn= (sey + seye) * (v - VsynE) + siy * (v - VsynI) Igj = np.zeros(N) Igj[Ne:] = np.sum(CMelec * (np.expand_dims(v[Ne:],1) - v[Ne:]),-1) firingExt = np.random.binomial(1,iRate*dt,size=N) firing=1.*(ls==(i-delay_dt)) return np.vstack((-INa-IK-IL-ISyn-Igj+Iapp, phi*(alphah(v)*(1-h) - betah(v)*h), phi*(alphan(v)*(1-n) - betan(v)*n), -sex*(1/tau1E + 1/tau2E) - sey/(tau1E*tau2E) + np.dot(CMe,firing[0:Ne]), sex, -six*(1/tau1I + 1/tau2I) - siy/(tau1I*tau2I) + np.dot(CMi,firing[Ne:]), six, -sexe*(1/tau1E + 1/tau2E) - seye/(tau1I*tau2I) + firingExt*GsynExt, sexe)) equil=400 Trun=2000 #Total=Trun + equil #ms #nsteps=len(Time) def initVars(v=None): if v is None: v_init=np.random.uniform(-80,-60,size=N) #-70.0 * np.ones(N) # -70 is the one used in brian simulation h=1/(1+betah(v_init)/alphah(v_init)) n=1/(1+betan(v_init)/alphan(v_init)) sex=
np.zeros_like(v_init)
numpy.zeros_like
#! /usr/bin/env python3 """ A module for storing electronic structure data and user settings. Currently supported codes are VASP and FHI-Aims (with limited functionality). The module contains a :class:`Data` class which parses OUTCAR and PROCAR files using the `vasppy <https://github.com/bjmorgan/vasppy>`_ package. A function for parsing DOSCAR files is also provided. The module contains a :class:`DataAims` class which parses and stores the `geometry.in`/`calculation.out` files generated for/from a FHI-AIMS calculation. The module contains a :class:`DataOctopus` class which parses and stores the `bandstructure`, `eigenvalues`, `info`, and `results.out` files generated by the Octopus DFT software. A :class:`Settings` class stores analysis parameters set by the user. """ from octopuspy import bandstructure, info, results from vasppy import procar, outcar from effmass import extrema from ase.calculators.castep import Castep from ase import io import ase.io import math import warnings import numpy as np from pymatgen.io.vasp.outputs import BSVasprun from pymatgen.electronic_structure.bandstructure import get_reconstructed_band_structure import os class Settings: """Class for setting analysis parameters. Attributes: energy_range (float): energy in kT over which the segment extends. extrema_search_depth (float): energy in kT from bandedge over which to search for extrema. degree_bandfit (int): the degree of the polynomial which is used to fit to dispersion data when calculating the transport mass. """ def __init__(self, energy_range=0.25, extrema_search_depth=0.025, bandfit=6): """Initialises an instance of the Settings class and checks input using :meth:`check_settings()`. Args: energy_range (float): energy in eV over which the segment extends. Defaults to 0.25 eV. extrema_search_depth (float): energy in eV from bandedge over which to search for extrema. Defaults to 0.025 eV. degree_bandfit (int): the degree of the polynomial which is used to fit to dispersion data when calculating the transport mass. Returns: None. """ self.energy_range = energy_range self.extrema_search_depth = extrema_search_depth self.degree_bandfit = bandfit self.check_settings() def check_settings(self): """Check that Settings class attributes are sane. Args: None. Returns: None. """ assert (self.energy_range > 0), "The energy range must be a positive number" assert (self.extrema_search_depth > 0), "The energy depth must be a positive number" assert ( type(self.degree_bandfit) == int and self.degree_bandfit > 1 ), "The bandfit degree must be a positive integer greater than 1" class Data(): r"""Parent class for parsing and storing data from bandstructure calculations. Contains a :meth:`check_data` method for basic checks on bandstructure data. Attributes: spin_channels (int): 1 (non-spin-polarised), 2 (spin-polarised), 4 (spin-orbit coupling). number_of_kpoints (int): the number of k-points per band. number_of_bands (int): the number of bands. kpoints (array(float)): 2-dimensional array with shape (number_of_kpoints, 3). Each row contains the fractional coordinates of a kpoint [kx,ky,kz]. energies (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains energies of eigenstates in eV for a particular band. occupancy (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains occupation number of the eigenstates for a particular band. Values range from 0-1 (spin-polarised) or 0-2 (non-spin-polarised). reciprocal_lattice (list(float)): the reciprocal lattice vectors in format [[x1,y1,z1],[x2,y2,z2],[x3,y3,z3]], units Angstrom :math:`^{-1}`. CBM (float): the conduction band minimum energy in eV. VBM (float): the valence band maximum in eV. fermi_energy (float): the fermi energy in eV.""" def __init__(self): r""" Initialises an instance of the :class:`~effmass.inputs.Data` class. All attributes are None until set by the derived class. Args: None. Returns: None. """ self.spin_channels = None self.number_of_bands = None self.number_of_kpoints = None self.energies = None self.occupancy = None self.kpoints = None self.fermi_energy = None self.reciprocal_lattice = None self.CBM = None self.VBM = None def check_data(self, spin_channels, number_of_kpoints, number_of_bands, CBM, VBM, fermi_energy, occupancy): """Check that Data class attributes make basic sense. Args: None. Returns: None. Notes: There is a similar method that runs automatically when reading data in using the `vasppy.procar <http://vasppy.readthedocs.io/en/latest/vasppy.html#module-vasppy.procar>`_ module. """ assert ( ((spin_channels == 1) | (spin_channels == 2) | (spin_channels == 4)) is True ), "Spin channels must have value 1 (non spin-polarised) or 2 (spin-polarised)" assert (type(number_of_kpoints) == int and number_of_kpoints > 0 ), "The number of kpoints is not a positive integer" assert (type(number_of_bands) == int and number_of_bands > 0 ), "The number of bands is not a positive integer" assert (CBM > VBM), "The CBM energy is lower than than the VBM energy" if fermi_energy < VBM: warnings.warn("The fermi energy is lower than the VBM") if fermi_energy > CBM: warnings.warn("The fermi energy is higher than the CBM") if occupancy is not None: if ((occupancy == 0) | (occupancy == 1) | (occupancy == 2)).all() is False: warnings.warn("You have partial occupancy of bands") def find_cbm_vbm(self): self.CBM, self.VBM = extrema.calc_CBM_VBM_from_Fermi(self,CBMVBM_search_depth=4.0) class DataASE(Data): r""" Class for interfacing with the ASE bandstructure object. Inherits attributes and methods from the :class:`~effmass.inputs.Data` class, and extends with a method for inferring the CBM/VBM from Fermi level. Note: DataASE.fermi_energy is taken from the seedname.out file. Note: The DataASE class does not parse eigenstate occupancy data. The Fermi energy will \ be used to infer which bands are occupied (below the fermi energy) and which are unoccupied (above \ the fermi energy). You should independently confirm that the fermi energy is in the band gap of \ your material. Note that you can manually set the `fermi_energy` attribute and find the CBM and VBM using the method `find_cbm_vbm`. ") """ def __init__(self, bs, atoms): r""" Initialises an instance of the :class:`~effmass.inputs.DataASE` class and infers which bands are occupied and unoccupied from the fermi level. Args: bs (ase.spectrum.band_structure.BandStructure): An instance of the ase.spectrum.band_structure.BandStructure object. Returns: None. """ warnings.warn("The DataASE class does not parse eigenstate occupancy data. The Fermi energy will \ be used to infer which bands are occupied (below the fermi energy) and which are unoccupied (above \ the fermi energy). You should independently confirm that the fermi energy is in the band gap of \ your material. Note that you can manually set the DataASE.fermi_energy attribute and then re-find the CBM and VBM using the method `DataASE.find_cbm_vbm`. ") super().__init__() self.spin_channels = bs.energies.shape[0] self.number_of_kpoints = bs.energies.shape[1] self.number_of_bands = bs.energies.shape[2]*bs.energies.shape[0] self.energies = bs.energies.transpose(1,0,2).reshape(self.number_of_kpoints,-1).transpose() self.kpoints = bs.path.kpts self.reciprocal_lattice = atoms.cell.reciprocal()*2*math.pi self.fermi_energy = bs.reference self.find_cbm_vbm() self.check_data(self.spin_channels, self.number_of_kpoints, self.number_of_bands, self.CBM, self.VBM, self.fermi_energy, self.occupancy) class DataCastep(DataASE): r"""Class for parsing and storing data from a Castep bandstructure calculation. Inherits attributes and methods from the :class:`~effmass.inputs.DataASE` class.""" def __init__(self,directory_path,seedname): r""" Initialises an instance of the :class:`~effmass.inputs.DataCastep` class. Args: directory_path (str): The path to a directory containing seedname.cell, seedname.out and seedname.bands seedname (str): The name (without suffix) of the input and output files Returns: None. """ Castep_calculator = Castep(directory_path) Castep_calculator.atoms = io.read(directory_path+"./"+seedname+".cell", format='castep-cell') ASE_bandstructure = Castep_calculator.band_structure(directory_path+"./"+seedname+".bands") ASE_atoms = Castep_calculator.atoms super().__init__(ASE_bandstructure, ASE_atoms) # class DataQE(DataASE): # r"""Class for parsing and storing data from a Quantum Espresso bandstructure calculation. Inherits attributes and methods from the :class:`~effmass.inputs.DataASE` class.""" # def __init__(self,directory_path,seedname): # r""" # Initialises an instance of the :class:`~effmass.inputs.DataQE` class. # Args: # Returns: # None. # """ # QE_calculator = ase.calculators.espresso.Espresso() # QE_calculator.atoms = ase.io.espresso.read_espresso_out() # ASE_bandstructure = QE_calculator.band_structure() # super().__init__(self, ASE_bandstructure) class DataVasprun(Data): r""" Class for parsing and storing data from a VASP calculation using vasprun.xml. Works for parsing calculations with split k-point paths Note: occupancies are set to 0 below fermi level and 1 above it """ def __init__(self, path): r""" Initialises an instance of the :class:`~effmass.inputs.Data` class and checks data using :meth:`check_data`. Args: path (str): Path to vasprun.xml. If the calculation was split along the k-path, the path should be to the folder which contains the splits. i.e. for mapi/split-01/vasprun.xml, mapi/split-02/vasprun.xml you would specify path=mapi Returns: None. """ super().__init__() # read in vasprun if path.endswith('vasprun.xml'): if os.path.exists(path): vr = BSVasprun(path) bs = vr.get_band_structure(line_mode=True) # read in vaspruns from multiple splits, parse_potcar is false because # it generates useless warnings, parse_projected is false because we # don't need projected eigenstates else: filenames = [] for fol in sorted(os.listdir(path)): vr_file = os.path.join(path, fol, "vasprun.xml") if os.path.exists(vr_file): filenames.append(vr_file) bandstructures = [] for vr_file in filenames: vr = BSVasprun(vr_file, parse_projected_eigen=False, parse_potcar_file=False) bs = vr.get_band_structure(line_mode=True) bandstructures.append(bs) bs = get_reconstructed_band_structure(bandstructures) bs_dict = bs.as_dict() # set occupancies below fermi as 0, above fermi as 1 occupancy = np.array(bs_dict['bands']['1']) occupancy[occupancy < bs_dict['efermi']] = 1 occupancy[occupancy > bs_dict['efermi']] = 0 # set spin channels spin = 2 if bs_dict['is_spin_polarized'] else 1 self.spin_channels = spin self.number_of_bands = len(bs_dict['bands']['1']) self.number_of_kpoints = len(bs_dict['kpoints']) self.energies = np.array(bs_dict['bands']['1']) self.occupancy = occupancy self.kpoints = np.array(bs_dict['kpoints']) self.fermi_energy = bs_dict['efermi'] self.reciprocal_lattice = bs_dict['lattice_rec']['matrix'] self.CBM = bs_dict['cbm']['energy'] self.VBM = bs_dict['vbm']['energy'] class DataVasp(Data): r""" Class for parsing and storing data from a vasp calculation. Extends the :class:`~effmass.inputs.Data` class to include support for analysing DOSCAR data" Additional attributes: dos (array): 2-dimensional array. Each row contains density of states data (units "number of states / unit cell") at a given energy: [energy(float),dos(float)]. integrated_dos: 2-dimensional array. Each row contains integrated density of states data at a given energy: [energy(float),integrated_dos(float)]. Note: DataVasp.fermi_energy is automatically set to the mean of DataVasp.CBM and DataVasp.VBM. """ def __init__(self, outcar_path, procar_path, ignore=0, **kwargs): r""" Initialises an instance of the :class:`~effmass.inputs.Data` class and checks data using :meth:`check_data`. Args: outcar_path (str): The path to the OUTCAR file procar_path (:obj:`str` or :obj:`list`): The path(s) to one or more PROCAR files. ignore (int): The number of kpoints to ignore at the beginning of the bandstructure slice through kspace (useful for hybrid calculations where zero weightings are appended to a previous self-consistent calculation). **kwargs: Additional keyword arguments for reading the PROCAR file(s). Returns: None. """ super().__init__() assert (type(outcar_path) == str), "The OUTCAR path must be a string" assert (type(ignore) == int and ignore >= 0 ), "The number of kpoints to ignore must be a positive integer" reciprocal_lattice = outcar.reciprocal_lattice_from_outcar(outcar_path) if isinstance(procar_path, list): vasp_data = procar.Procar.from_files(procar_path, **kwargs) elif isinstance(procar_path, str): vasp_data = procar.Procar.from_file(procar_path, **kwargs) else: raise TypeError('procar_path must be a string or list of strings') self.spin_channels = vasp_data.spin_channels self.number_of_bands = vasp_data.number_of_bands number_of_kpoints = vasp_data.number_of_k_points vasp_data_energies = np.array( [ band.energy for band in np.ravel( vasp_data.bands ) ] ) vasp_data_occupancies = np.array( [ band.occupancy for band in np.ravel( vasp_data.bands ) ] ) if vasp_data.calculation['spin_polarised']: # to account for the change in PROCAR format for calculations with 2 spin channels (1 k-point block ---> 2 k-point blocks) energies = np.zeros([self.number_of_bands*2,number_of_kpoints]) # This is a very ugly way to slice 'n' dice. Should avoid creating new array and use array methods instead. But it does the job so will keep for now. for i in range(self.number_of_bands): energies[i] = vasp_data_energies.reshape( number_of_kpoints*2, # factor of 2 for each kpoint block self.number_of_bands).T[i][:number_of_kpoints] energies[self.number_of_bands+i] = vasp_data_energies.reshape( number_of_kpoints*2, self.number_of_bands).T[i][number_of_kpoints:] occupancy = np.zeros([self.number_of_bands*2,number_of_kpoints]) for i in range(self.number_of_bands): occupancy[i] = vasp_data_occupancies.reshape( number_of_kpoints*2, self.number_of_bands).T[i][:number_of_kpoints] occupancy[self.number_of_bands+i] = vasp_data_occupancies.reshape( number_of_kpoints*2, self.number_of_bands).T[i][number_of_kpoints:] else: energies = vasp_data_energies.reshape( number_of_kpoints, self.number_of_bands).T occupancy = vasp_data_occupancies.reshape( number_of_kpoints, self.number_of_bands).T # remove values which are from the self-consistent calculation prior to the bandstructure calculation (workflow for hybrid functionals) self.energies = np.delete(energies,list(range(ignore)),1) self.occupancy = np.delete(occupancy,list(range(ignore)),1) self.number_of_kpoints = number_of_kpoints - ignore # handle negative occupancy values if np.any(self.occupancy < 0): warnings.warn("One or more occupancies in your PROCAR file are negative. All negative occupancies will be set to zero.") self.occupancy[ self.occupancy < 0 ] = 0.0 self.kpoints = np.array( [ kp.frac_coords for kp in vasp_data.k_points[ignore:vasp_data.number_of_k_points] ] ) self.reciprocal_lattice = reciprocal_lattice * 2 * math.pi self.CBM = extrema._calc_CBM(self.occupancy, self.energies) self.VBM = extrema._calc_VBM(self.occupancy, self.energies) self.fermi_energy = (self.CBM + self.VBM) / 2 self.dos = [] self.integrated_dos = [] self.check_data(self.spin_channels, self.number_of_kpoints, self.number_of_bands, self.CBM, self.VBM, self.fermi_energy, self.occupancy) def parse_DOSCAR(self, filename='./DOSCAR'): """Parses the DOS and integrated DOS from a vasp DOSCAR file. Args: filename (str, optional): The location and filename of the DOSCAR to read in. Defaults to `'./DOSCAR'`. Returns: None. Notes: If the DOS has been sampled at more than 10000 points then this function will break at the expression for `num_data_points`. In this case, edit your DOSCAR file so that in the header there is a space preceding the number of points. """ with open(filename, 'r') as f: lines = f.readlines() num_data_points = int(lines[5].split()[2]) if len(lines[6].split()) == 5: self.dos = np.array([[ float(x.split()[0]), float(x.split()[1]) + float(x.split()[2]) ] for x in lines[6:num_data_points + 6]]) self.integrated_dos = np.array([[ float(x.split()[0]), float(x.split()[3]) + float(x.split()[4]) ] for x in lines[6:num_data_points + 6]]) elif len(lines[6].split()) == 3: self.dos = np.array([[float(x.split()[0]), float(x.split()[1])] for x in lines[6:num_data_points + 6]]) self.integrated_dos = np.array( [[float(x.split()[0]), float(x.split()[2])] for x in lines[6:num_data_points + 6]]) else: print("problem parsing DOSCAR") return class DataAims(Data): r""" Class for parsing and storing data from a FHI-AIMS calculation. Attributes: spin_channels (int): 1 (non-spin-polarised), 2 (spin-polarised), 4 (spin-orbit coupling). number_of_kpoints (int): the number of k-points per band. number_of_bands (int): the number of bands. kpoints (array(float)): 2-dimensional array with shape (number_of_kpoints, 3). Each row contains the fractional coordinates of a kpoint [kx,ky,kz]. energies (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains energies of eigenstates in eV for a particular band. occupancy (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains occupation number of the eigenstates for a particular band. Values range from 0-1 (spin-polarised) or 0-2 (non-spin-polarised). reciprocal_lattice (list(float)): the reciprocal lattice vectors in format [[x1,y1,z1],[x2,y2,z2],[x3,y3,z3]], units Angstrom :math:`^{-1}`. CBM (float): the conduction band minimum energy in eV. VBM (float): the valence band maximum in eV. fermi_energy (float): the fermi energy in eV. Automatically set to the mean of Data.CBM and Data.VBM. """ def __init__(self, directory_path, output_name='calculation.out'): r""" Initialises an instance of the :class:`~effmass.inputs.DataAims` class and checks data using :meth:`check_data`. Args: directory_path (str): The path to the directory containing output, geometry.in, control.in and bandstructure files output_name (str): Name of the output file - contrary to the rest of the files, this is chosen by the user during an Aims run. Defaults to 'aims.out'. Returns: None. """ super().__init__() assert (type(directory_path) == str), "The file path must be a string" "Finding reciprocal lattice vectors" latvec = [] for line in open("{}/geometry.in".format(directory_path)): line = line.split("\t")[0] words = line.split() if len(words) == 0: continue if words[0] == "lattice_vector": if len(words) != 4: raise Exception("geometry.in: Syntax error in line '"+line+"'") latvec.append(np.array(words[1:4])) if len(latvec) != 3: raise Exception("geometry.in: Must contain exactly 3 lattice vectors") latvec =
np.asarray(latvec)
numpy.asarray
# -------------- # Code starts here import numpy as np # Code starts here # Adjacency matrix adj_mat = np.array([[0,0,0,0,0,0,1/3,0], [1/2,0,1/2,1/3,0,0,0,0], [1/2,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0], [0,0,1/2,1/3,0,0,1/3,0], [0,0,0,1/3,1/3,0,0,1/2], [0,0,0,0,1/3,0,0,1/2], [0,0,0,0,1/3,1,1/3,0]]) # Compute eigenvalues and eigencevectrs eigenvalues, eigenvectors = np.linalg.eig(adj_mat) # Eigen vector corresponding to 1 eigen_1 = abs(eigenvectors[:,0]) # normalzing the vector eigen_1 = eigen_1/np.linalg.norm(eigenvectors[:,0],1) # most important page , finding maximum value within the eigenvector print(eigen_1) page = np.argmax(eigen_1) + 1 print(page) # Code ends here # -------------- # Code starts here # Initialize stationary vector I init_I = np.array([1,0,0,0,0,0,0,0]) print(init_I.shape) print(adj_mat.shape) # Perform iterations for power method for i in range(10): init_I = np.dot(adj_mat,init_I)/
np.linalg.norm(init_I,1)
numpy.linalg.norm
import numpy as np int1_default = 1e-2 int2_default = 1e10 maxit_default = 1000 tol_default = 1e-6 def get_root_a(L, d, h, a0=1., tol=tol_default, maxit=maxit_default, int1=int1_default, int2=int2_default): g = lambda a: 2.*a*np.sinh(d/(2.*a))-np.sqrt((L)**2.-h**2.) dg = lambda a: 2.*np.sinh(d/(2.*a))-d*np.cosh(d/(2.*a))/a a = newton_raphson(f=g, df=dg, x0=a0, tol=tol, maxit=maxit) if np.isnan(a) or a < 0: a = bisection(f=g, int1=int1, int2=int2, tol=tol, maxit=maxit) return a def newton_raphson(f, df, x0, tol=tol_default, maxit=maxit_default): """Root finding algorithm (for transcendental equations) Parameters ---------- f: function must be a function (so f(x) = 0 returns the required x) df: function derivative of the function f (df/dx) x0: double initial guess of x tol: double tolerance maxit: int maximum number of iterations Returns ------- x: double root """ x_prev = x0 x = x0-f(x0)/df(x0) err = np.abs(x-x_prev) niter = 0 while err > tol and niter < maxit: niter += 1 x_prev = x x = x-f(x)/df(x) err = np.abs(x-x_prev) #print('Newton-Raphson: iterations', niter, ', solution', x, ', err', err) if maxit <= niter: print('did not converge!') x = np.nan return x def bisection(f, int1, int2, tol=tol_default, maxit=maxit_default): """Root finding algorithm (for transcendental equations) Parameters ---------- f: function must be a function (so f(x) = 0 returns the required x) int1: double lower end value int2: double lower end value tol: double tolerance maxit: int maximum number of iterations Returns ------- x: double root """ err = np.abs(int2-int1)/2. niter = 0 while err > tol and niter < maxit: niter += 1 x = (int1+int2)/2. if np.sign(f(x)) == np.sign(f(int1)): int1 = x else: int2 = x err = np.abs(int2-int1)/2. #print('Bisection: iterations', niter, ', solution', x, ', err', err) if maxit <= niter: print('did not converge!') x = np.nan return x def nofloor_rigid(d, h, L, tol=tol_default, maxit=maxit_default, int1=int1_default, int2=int2_default): Lt = np.sum(L) g = lambda a: 2*a*np.sinh(d/(2*a))-np.sqrt(Lt**2-h**2) a0 = bisection(f=g, int1=int1, int2=int2, tol=tol, maxit=maxit) return a0 def nofloor_elastic(d, h, L, w, EA, tol=tol_default, maxit=maxit_default, int1=int1_default, int2=int2_default): Lt = np.sum(L) # total length of cable w_av = np.sum(w*L/Lt) # average weight of cable e = np.zeros(len(L)) # stretching of cable segments diff = tol+1 niter = 0 while diff > tol and niter < maxit: niter += 1 Lte = np.sum(L+e) g = lambda a: 2*a*np.sinh(d/(2*a))-np.sqrt(Lte**2-h**2) a = bisection(f=g, int1=int1, int2=int2, tol=tol, maxit=maxit) # T = np.sqrt((a*w_av)**2+np.sum(w*L)) et = T*L/EA Lte_check = Lt+et # store new Ls value as calculated with stretching diff = np.abs(Lte-Lte_check) # HACK: not real elongation if multi-segmented line here e[:] = et*L/Lt return a, e def fully_lifted_elastic(d, h, L, w, EA, tol=tol_default, maxit=maxit_default, int1=int1_default, int2=int2_default): Ls_tot = Le = 0 Lt = np.sum(L) # total length of cable w_av = np.sum(w*L/Lt) # average weight of cable e = np.zeros(len(L)) # stretching of cable segments t_high = h/d t_low = 0. diff = 1. niter = 0 a = 1. while diff > tol and niter < maxit: niter += 1 t = (t_low+t_high)/2. angle = np.arctan(t) # transcendental equation g = lambda a: a*(np.cosh(d/a+np.arcsinh(t))-np.cosh(np.arcsinh(t)))-h dg = lambda a: np.cosh(d/a+np.arcsinh(t))-d/a*np.sinh(d/a+np.arcsinh(t)) a = bisection(f=g, int1=int1, int2=int2, tol=tol, maxit=maxit) #a = newton_raphson(f=g, df=dg, x0=a, tol=tol, maxit=maxit) #if a is np.nan: # a = bisection(f=g, int1=1., int2=100000, tol=tol, maxit=maxit) # get new total Ls from solution a Ls_tot = np.sqrt((2*a*np.sinh(d/(2*a)))**2+h**2) # get new stretching from solution a Ta = a*w_av/np.cos(angle)*Lt/Ls_tot Ha = Ta*np.cos(angle) Va = Ta*
np.sin(angle)
numpy.sin
import numpy as np import matplotlib.pyplot as plt import os import sys from spice import ispice import healpy as hp from planck_util import log_bin lmax = 2048 nbin = 300 mapdir = '/Users/reijo/Work/npipe6/' mapdirdx12 = '/Users/reijo/data/dx12/' fgfwhm = np.radians(1) fglmax = 512 nside = 512 def get_cleaned_map(fname, freq): fname_cleaned = 'fgcleaned_' + os.path.basename(fname) dx12 = 'dx12' in fname if not os.path.isfile(fname_cleaned): m = hp.ud_grade( hp.read_map(fname, range(3), verbose=False, nest=True), nside, order_in='NEST', order_out='RING') if dx12: dipo = 0 else: fname_dipo = '/Users/reijo/data/hfi_pipe/dipole_nside{:04}.fits' \ ''.format(nside) print('Loading', fname_dipo) dipo = hp.read_map(fname_dipo, verbose=False) sfreq = '{:03}'.format(freq) fgmaps = [] npix = 12 * nside ** 2 good = np.zeros(npix, dtype=np.bool) bad = np.ones(npix, dtype=np.bool) if freq != 217: fgfreqs = [30, 217, 353] else: fgfreqs = [30, 353] for fgfreq in fgfreqs: fgfname = fname.replace(sfreq, '{:03}'.format(fgfreq)) print('Loading ', fgfname) fgmap = hp.ud_grade( hp.read_map(fgfname, range(3), verbose=False, nest=True), nside, order_in='NEST', order_out='RING') print('Smoothing') fgmap = hp.smoothing(fgmap, fwhm=fgfwhm, lmax=fglmax, iter=0, verbose=False) fgi = fgmap[0] - dipo fgp =
np.sqrt(fgmap[1]**2 + fgmap[2]**2)
numpy.sqrt
import torch from torch.utils import data from torchvision import datasets from PIL import Image import numpy as np import skimage from scipy.stats import multivariate_normal from onconet.datasets.factory import RegisterDataset from random import shuffle import numpy as np from PIL import Image import warnings warnings.simplefilter("ignore") @RegisterDataset("mnist") class MNIST_Dataset(data.Dataset): """A pytorch Dataset for the MNIST data.""" def __init__(self, args, transformers, split_group): """Initializes the dataset. Constructs a standard pytorch Dataset object which can be fed into a DataLoader for batching. Arguments: args(object): Config. transformers(list): A list of transformer objects. split_group(str): The split group ['train'|'dev'|'test']. """ super(MNIST_Dataset, self).__init__() self.args = args self.transformers = transformers self.split_group = split_group if self.split_group == 'train': self.dataset = datasets.MNIST('mnist', train=True, download=True) else: mnist_test = datasets.MNIST('mnist', train=False, download=True) if self.split_group == 'dev': self.dataset = [mnist_test[i] for i in range(len(mnist_test) // 2)] elif self.split_group == 'test': self.dataset = [mnist_test[i] for i in range(len(mnist_test) // 2, len(mnist_test))] else: raise Exception('Split group must be in ["train"|"dev"|"test"].') @staticmethod def set_args(args): args.num_classes = 10 def __len__(self): return len(self.dataset) def __getitem__(self, index): x, y = self.dataset[index] for transformer in self.transformers: x = transformer(x, additional=None) if self.args.multi_image: x = x.unsqueeze(1) x = torch.cat( [x] * self.args.num_images, dim=1) item = { 'x': x, 'y': y } return item @RegisterDataset("mnist_binary") class MNIST_Binary_Dataset(MNIST_Dataset): """A pytorch Dataset for the MNIST data with two classes [0-4,5-9].""" def __init__(self, args, transformers, split_group): """Initializes the dataset. Constructs a standard pytorch Dataset object which can be fed into a DataLoader for batching. Arguments: args(object): Config. transformers(list): A list of transformer objects. split_group(str): The split group ['train'|'dev'|'test']. """ super(MNIST_Binary_Dataset, self).__init__(args, transformers, split_group) self.args = args self.transformers = transformers self.split_group = split_group self.class_mapping = {0:0, 1:0, 2:0, 3:0, 4:0, 5:1, 6:1, 7:1, 8:1, 9:1} def __getitem__(self, index): item = super(MNIST_Binary_Dataset, self).__getitem__(index) item['y'] = self.class_mapping[item['y'].item()] return item @staticmethod def set_args(args): args.num_classes = 2 def __len__(self): return len(self.dataset) @RegisterDataset("mnist_binary_full_future") class MNIST_Binary_Full_Future_Dataset(MNIST_Dataset): """A pytorch Dataset for the MNIST data with two classes [0-4,5-9].""" def __init__(self, args, transformers, split_group): """Initializes the dataset. Constructs a standard pytorch Dataset object which can be fed into a DataLoader for batching. Arguments: args(object): Config. transformers(list): A list of transformer objects. split_group(str): The split group ['train'|'dev'|'test']. """ super(MNIST_Binary_Full_Future_Dataset, self).__init__(args, transformers, split_group) self.args = args self.transformers = transformers self.split_group = split_group self.class_mapping = {0:0, 1:0, 2:0, 3:0, 4:0, 5:1, 6:1, 7:1, 8:1, 9:1} def __getitem__(self, index): item = super(MNIST_Binary_Full_Future_Dataset, self).__getitem__(index) item['y'] = self.class_mapping[item['y'].item()] item['y_seq'] = torch.ones(self.args.max_followup) if item['y'] else torch.zeros(self.args.max_followup) item['y_mask'] = torch.ones( self.args.max_followup) item['time_at_event'] = self.args.max_followup - 1 return item @staticmethod def set_args(args): args.num_classes = 2 def __len__(self): return len(self.dataset) @RegisterDataset("mnist_noise") class MNIST_Noise(MNIST_Dataset): """A PyTorch Dataset for the MNIST data placed as small images on a large background with noise.""" def __getitem__(self, index): x, y = self.dataset[index] # Create black background and paste MNIST digit on it h, w = self.args.background_size background = Image.new('L', (h, w)) location = (
np.random.randint(w - x.size[1])
numpy.random.randint
from common.transform_data import normalize_min_max, standar_z import pandas as pd import numpy as np import warnings __author__ = "<NAME>" __credits__ = ["<NAME>"] __email__ = "<EMAIL>" def matrix_features(pv_data, num_arm=60, var_standar_z=True, features=('fourier', 'time')): df_time_features = get_time_features(pv_data) df_fourier_features = get_fourier_features(pv_data, num_arm) if 'fourier' and 'time' in features: df_features = pd.merge(df_time_features, df_fourier_features, how='left', left_index=True, right_index=True) elif 'fourier' in features: df_features = df_fourier_features.copy() elif 'time' in features: df_features = df_time_features.copy() else: raise ValueError('invalid feature option {}. Only allow fourier and time options'.format(features)) if var_standar_z: df_features_z = standar_z(df_features) return df_features_z else: return df_features def get_time_features(pv_data): df_feat_time = pv_data.apply(metrics_time, axis=0) df_feat_time = df_feat_time.transpose() return df_feat_time def get_fourier_features(pv_data, num_arm=60): warnings.filterwarnings("ignore") df_fourier = pv_data.apply(lambda x: coeff_fourier(x, num_arm), axis=0) columns_coef = ['coef_' + str(i).zfill(3) for i in range(1, num_arm + 1)] df_features_fourier = df_fourier.apply(lambda x: x[0].explode()).transpose() df_features_fourier.columns = columns_coef return df_features_fourier def metrics_time(serie_data): # media media = serie_data.mean() # desviación estándar std = serie_data.std() # rms rms = ((serie_data ** 2).sum() / serie_data.shape[0]) ** 0.5 # curtosis kurt = serie_data.kurtosis() # asimetría skew = serie_data.skew() # Rango Intercuartil irq = serie_data.quantile(0.75) - serie_data.quantile(0.25) # Factor de cresta if rms != 0: fc = serie_data.max() / rms else: fc = 0 # Factor de forma if media != 0: ff = rms / media else: ff = 0 # Factor de desviación if media != 0: fstd = std / media else: fstd = 0 # Factor irq if rms != 0: firq = irq / rms else: firq = 0 # Curtosis, asimetría, factor de cresta, factor de forma, factor de desviación, factor de irq features = [kurt, skew, fc, ff, fstd] name_features = ['kurt', 'skew', 'fc', 'ff', 'fstd'] df_features = pd.Series(features, index=name_features) return df_features def coeff_fourier(df, num_arm=10, fs=24, with_normalize=True): """ Extracción características: Se obtienen los N primeros coeficientes de la tansformada discreta de fourier """ T_signal = (1 / fs) signal = np.array(df) signal = signal[~np.isnan(signal)] if with_normalize: signal = normalize_min_max(signal) # t_samp = signal.shape[0]/fs # t_samp = signal.shape[0] / fs tam_signal = signal.shape[0] t_samp = tam_signal / fs t = np.linspace(0, t_samp, tam_signal) # Vector de tiempo de la señal at = t[2] - t[1] # intervalos de tiempo # AT = signal * at an = np.sum(signal * at) # Coeficiente de serie de fourier a1 = 2 * an / t_samp # Coeficiente de la serie de fourier a2 = an / (at * (len(t))) # Coeficiente de la serie de fourier w = (2 * np.pi) / t_samp # Frecuencia angular N = num_arm # Cantidad de coeficientes de fourier a sacar def fourier_iter(): serie_rec = np.ones(t.shape) * a1 / 2 for k in range(1, N + 1): real = np.cos(w * k * t).reshape(1, tam_signal) img = np.sin(w * k * t).reshape(1, tam_signal) p_real = (real @ signal) * at # Parte real p_imag = (img @ signal) * at # Parte imaginaria A0 = (2 * p_real) / t_samp A1 = (2 * p_real) / t_samp B0 = (2 * p_imag) / t_samp B1 = (2 * p_imag) / t_samp # print(A0.shape) # serie = (a1/2) + A0 @ np.cos(w * k * t) + B0 @ np.sin(w * k * t) # print(A0.shape, B0.shape, np.cos(w * k * t).shape) serie = A0 * np.cos(w * k * t) + B0 *
np.sin(w * k * t)
numpy.sin
from globals import hover_t, fort_t, flag, fort_x, fort_y, fort_z from utils import traj_gen from utils import desired_state import numpy as np def time_traj_fortrans(t,s): """ coeffx=[[0, 0, -0.0147216079753913, [0.185125296138183, -0.00136805242756360, 0.0374122431611924] [-0.354465174422847, 1.20910325361837, -0.0172445441716103 [0.260000233143256, -1.39338829004203, 2.82330901173908] [-0.0894975522834053, 0.923825641511982, -3.42057589517445 [4.88030140443201, -0.218207349894711, 1.75598822950993] [-5.18704644616266, 6.10582117710170, -0.406365164143791] [2.55379724790692, -6.16076669022796, 6.36601085510855] [-0.841976975501425, 4.01818207541186, -7.48491276731751] [6.51997921106251, -1.68866864363845, 6.39914143795994] [-9.21343022589093, 6.59619397089270, -3.63955369706096] [11.7198435579304, -13.5217924629409, 7.47538399688397] [-7.08701993609393, 20.3312968977235, -20.0831342306787] [8.85999198555280, -12.1724186029634, 31.7326022942751] [-27.8623763087624, 10.3196574064128, -19.3971523107500] [46.4950474590861, -37.0617999430443, 11.9065661611853] [-29.1994168797182, 64.8930087263889, -47.6108050393024] [13.5896157994564, -41.1421750990868, 85.1734093565280] [-57.9504792761864, 14.9747959593532, -54.6987314994027] [105.762996986861, -66.9826226156788, 15.8577113586925] [-73.4165632286195, 133.307626479473, -79.1511371794449] [17.2698189764605, -97.1029051921788, 166.429813855256] [-93.2227854985460, 18.9048422756822, -122.526639175408] [198.803582273480, -105.364756262746, 20.0158197609285] [-151.958538913853, 234.024565934216, -117.714842978725] [21.0488234726010, -185.776124367661, 272.221146753159] [-130.305385462132, 22.0210000775834, -224.324987701245] [313.450175574264, -143.127980731080, 22.9396549909975] [-268.216886908572, 358.124076361314, -156.338928467031] [23.8359444561220, -317.904204722688, 406.384994583035] [-169.954205095450, 24.7159166473330, -373.129608202083] [457.454446473128, -183.599121640608, 25.5296593079528] [-432.864880332312, 509.710612018354, -196.603928598469] [26.1934468646302, -495.970109219620, 561.593436052628] [-208.403473033623, 26.6470488066417, -562.731162621726] [613.314336750445, -219.158331383369, 26.9272921198888] [-636.410183627925, 668.324206506396, -230.195960681504] [27.2090674365660, -716.536380092899, 725.834754195268] [-241.235455296517, 27.4627623473999, -735.969685198914] [718.412102918067, -229.789329298719, 25.1918743924381] ]""" """coeffz=[[0, 0, -0.00590137367436631] [2.52395292086833, 0.000879232024115145, -0.0298367760951336] [0.324557927947273, 1.32338644095141, -0.0107871116122378] [0.114686347585218, -0.254616738830504, 2.06377982222975] [-0.0241916132388925, 0.171143690978226, -0.200402878515220] [1.75136242095162, 0.0619113707673093, -0.620931183180244] [2.12026341673164, -0.446236297659723, -0.0269395802517202] [-0.396902287147508, 2.25158784728704, -0.895431895087386] [-0.341680153647970, 0.740711621493184, 1.03821759097666] [-0.577217180220771, -0.739478791203081, 1.95579486487784] [-0.0405525283463714, -0.357078169473465, -1.36200125735887] [3.79039109022427, -1.74624406823785, 0.123612738731280] [-1.99754072740051, 5.48614974544216, -3.18859889374408] [0.504011752190909, -2.41995058852019, 6.47825732701566] [-3.92201562288414, 0.667472831894117, -2.56924117548024] [6.80244438152304, -4.14578573900799, 0.715077430103842] [-2.06383277401932, 5.67744351234361, -3.31736680613714] [0.513577671965557, -1.98270102959891, 5.75788211469937] [-3.57200555794974, 0.625090736669010, -1.44792527909310] [5.07903305373612, -3.40008195138418, 0.653985503912990] [0.0357937298780756, 2.73617087203568, -2.22975282074616] [0.475677058088859, 2.64378067652807, -1.44477671657981] [-0.0343934669786271, 0.100290009135643, 6.62818065556965] [-7.74443733233454, 3.26437868990963, -0.471133093469344] [10.8228769814778, -14.1039930335278, 6.46517017757133] [-1.00562538861987, 13.7762799698666, -18.3201030091875] [8.46145883848599, -1.31889412987783, 14.1790540940361] [-18.6875089633999, 8.53410712527382, -1.31365533938699] [11.4301342108508, -14.6938154624542, 6.60459701791355] [-1.00357723445110, 6.06919556611604, -7.39283449493771] [3.29341983112178, -0.503462986953868, -0.176376751294874] [0.783299205331666, -0.269829445042369, 0.0135538566635169] [-4.85310314975469, 6.79161824629734, -2.83406644553182] [0.377231909118750, -5.75428682829689, 8.19821778593619] [-3.51793606921659, 0.483457599827553, 3.09640303660929] [-1.33717920468617, -0.0981260199885610, 0.0752113354319711] [26.7989435410794, -26.6953857650860, 8.94481678568210] [-0.999689821851997, 18.3188323492405, -17.9376265386224] [5.93003230397492, -0.653757373150525, 6.14206071475746] [-5.68173559509324, 1.81830856986766, -0.193956903853148]]""" x_traj = np.array([0,4.70677080721227e-05,0.00189691934737655, 0.0135601121984784,0.0525899090105499,0.146522775172909, 0.325989048911183,0.615844027271135,1.03139383709421, 1.57777995619828,2.25351505715142,3.05377690829394, 3.97182774659549,5.00036269451869,6.13243397101778, 7.36029788191454,8.67417315128395,10.0651563862995, 11.5270309701983,13.0547645254691,14.6440179961696, 16.2911196403481,17.9930501761850,19.7475312845503, 21.5530704998112,23.4086399203417,25.3128285947843, 27.2626790980206,29.2530640922719,31.2770443832101, 33.3235093115277]) xdot_traj = np.array([0,0.00288771467137894,0.0458264012967156, 0.210059481401571,0.597466714652655,1.28578536113746, 2.25573027013543,3.42398497434994,4.68934726401309, 5.96568843357508,7.20766048137511,8.39146958152477, 9.50439198865153,10.5478429332604,11.5231115747598, 12.4113214960329,13.2029257165387,13.9211921497962, 14.5868791107897,15.2069121023623,15.7879678371132, 16.3363633626997,16.8587425715244,17.3628673655951, 17.8556529586130,18.3382816952152,18.8015142370104, 19.2250514025239,19.5890615070030,19.8779918491735, 20]) z_traj = np.array([0,0.00272184131241736,0.0202566777869677, 0.0617790522216146,0.135983750382828,0.245543977351801, 0.379084877521577,0.518856905379387,0.647876324007861, 0.752164733618458,0.822877268922214,0.856622042048778, 0.854613495403962,0.821496554358663,0.763938012759586, 0.691239334381379,0.614319420099178,0.543313503774697, 0.485298119728982,0.442594729526756,0.412734975644948, 0.390075253682676,0.368329138314875,0.343077305745454, 0.313383126396841,0.281992571399874,0.254118399055730, 0.235262934961376,0.227061039076980,0.224824537773180, 0.224455603707497]) zdot_traj = np.array([0,0.0796310080057799,0.273883750090314, 0.551811692259141,0.903108930890713,1.21264677906662, 1.36245458207365,1.33664707645889,1.15669016016864, 0.863115096487914,0.510896344555930,0.149355423175048, -0.180595081633762,-0.454894102603020,-0.652467606434272, -0.747620476101966,-0.736072884472000,-0.637164298990295, -0.490744756370352,-0.346510317777500,-0.245503260946774, -0.207098922629750,-0.224509607568382,-0.269611404830547, -0.304969922008601,-0.298561208468750,-0.235776648601905, -0.128364727814322,-0.0410561099062689,-0.00921168805366140, 0]) theta_traj = np.array([0,0.0101551207797269,0.0710854542031700, 0.192954030669188,0.375832797194803,0.605224133205116, 0.818900809974507,0.989173275546518,1.11952109278947, 1.21767402275617,1.29059286463759,1.34356025643953, 1.38035584508448,1.40825034907472,1.42118435594733, 1.42152110718377,1.41705004347460,1.41501427595846, 1.42014556931006,1.43378516438558,1.45392176607406, 1.47624856924096,1.49588427549156,1.50914501371010, 1.51472454789371,1.51386004439888,1.50947232258743, 1.50746557507440,1.51663997119309,1.52449537913713, 1.52592508891013]) thetadot_traj = np.array([0,0.297137176834750,0.891412595894019, 1.48592796905070,2.08181976243817,2.24987292936748, 1.88296638736592,1.45269490117683,1.10238781336517, 0.823637859824534,0.608530814473202,0.425610632220331, 0.315180119267708,0.206537448872557,0.0536500700970863, -0.0333529943596615,-0.0418809221336622,0.00998920611827229, 0.0922805981940641,0.170359183800042,0.215188572513995, 0.212141517735131,0.164726701358337,0.0918001209912934, 0.0191763154522304,-0.0310769107981819,-0.0492004412395056, 0.0387208985131189,0.105239591096766,0.0413338481412076, 0]) Tfwd_traj = np.array([117.720000000000,136.362476628599,144.773942375014, 158.360224164153,172.434558122575,175.721747974966, 177.845738936319,178.920212826045,173.653571647080, 165.634187333590,156.908724946733,147.313381060503, 137.959548865010,129.728326646674,121.869634860915, 111.489013536377,103.038679116820,98.2968340102702, 93.1468656321258,87.2418011049883,81.0016614472189, 75.2166787639569,70.7497125639306,68.0931116867177, 66.9815450358867,66.2723443537983,64.2387826330516, 59.0726748130785,50.0271769361853,39.4665419737548, 10.1669632974651]) Mfwd_traj = np.array([0,11.7719994969057,11.7719990764291, 11.7719977774213,11.7719851049365,-5.33922690334558, -9.78793442924429,-8.55651653290386,-7.76760229968630, -7.33004249826013,-7.28927745208881,-8.46699682329688, -7.13424468531291,-11.1709869491047,-11.7719935160053, -11.7719975751866,-11.7719980247269,-11.7719982095150, -11.7719984704890,-11.7719987600249,-11.7719990117666, -11.7719991924732,-11.7719992955964,-11.7719993176311, -11.7719992285013,-11.7719988866128,-11.7719973628719, -8.49405279728121,-11.6617396749766,-11.7719984973046, -10.1021163711460]) Tf = 3.1 coeffx = traj_gen(x_traj, xdot_traj) coeffz = traj_gen(z_traj, zdot_traj) if (t>(Tf+hover_t) and len(s)>0): flag = 3 fort_t=t fort_z=s.pos[2] fort_x=s.pos[0] fort_y=s.pos[1] t1 = np.linalg.norm(t-hover_t) if t1>3.1: t1=3.1 time=np.array([1, t1, t1**2, t1**3]) # for cubic spline # 4x1 array n=4 #Tf = 3.580993433738394 h=Tf/30 if t1==0: j=0 else: j=np.ceil(t1/h) - 1 # """ check validity """ x = coeffx[n*(j) : 4+n*(j)] # 4x1 array x = np.transpose(x) x = np.dot(x,time) xdot = coeffx[1+n*(j) : 4+n*(j)] # 3x1 array xdot = np.transpose(xdot) xdot = xdot.dot(np.array([1, 2*t1, 3*(t1**2)])) xddot = coeffx[2+n*(j) : 4+n*(j)] # 2x1 array xddot = np.transpose(xddot) xddot = xddot.dot(np.array([2, 6*t1])) print('x',x) print('xdot',xdot) time_new = t1 theta_lim = np.array([theta_traj[j], theta_traj[j+1]]) #linear interpol of theta time_lim = np.array([j, j+1])*h thetad = np.interp(time_lim, theta_lim, time_new) phid = 0 psid = 0 thetadot_lim = np.array([thetadot_traj[j], thetadot_traj[j+1]]) #linear interpol of thetadot thetadot_des = np.interp(time_lim, thetadot_lim, time_new) phidot_des = 0 psidot_des = 0 Tfwd_lim = np.array([Tfwd_traj[j], Tfwd_traj[j+1]]) #linear interpol of feed forward thrust Tfwd = np.interp(time_lim, Tfwd_lim, time_new) # check validity Mfwd_lim = np.array([Mfwd_traj[j], Mfwd_traj[j+1]]) #linear interpol of feed forward thrust Mfwd=np.interp(time_lim, Mfwd_lim, time_new) z = coeffz[n*(j) : 4+n*(j)] # 4x1 array z = np.transpose(z) z = np.dot(z,time) zdot = coeffz[1+n*(j) : 4+n*(j)] # 3x1 array zdot = np.transpose(zdot) zdot = np.dot(zdot,np.array[[1, 2*t1, 3*(t1**2)]]) zddot = coeffz[2+n*(j) : 4+n*(j)] # 2x1 array zddot = np.transpose(zddot) zddot =
np.dot(zddot,np.array[[2, 6*t1]])
numpy.dot
import argparse import math import h5py import numpy as np from numpy import matlib as npm import tensorflow as tf import socket import importlib import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'models')) sys.path.append(os.path.join(BASE_DIR, 'utils')) import tf_util import helper import transforms3d.euler as t3d parser = argparse.ArgumentParser() parser.add_argument('-weights','--model_path', type=str, default='log_multi_catg_noise/model300.ckpt', help='Path of the weights (.ckpt file) to be used for test') parser.add_argument('-idx','--template_idx', type=int, default='log_multi_catg_noise/model300.ckpt', help='Template Idx') parser.add_argument('--iterations', type=int, default=8, help='No of Iterations for Registration') parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='ipcr_model', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]') parser.add_argument('--log_dir', default='log_test', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=1024, help='Number of Points in a Point Cloud [256/512/1024/2048] [default: 1024]') parser.add_argument('--max_epoch', type=int, default=501, help='Epoch to run [default: 250]') parser.add_argument('--learning_rate', type=float, default=0.0001, help='Initial learning rate [default: 0.001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=3000000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]') parser.add_argument('--centroid_sub', type=bool, default=True, help='Centroid Subtraction from Source and Template before Registration.') parser.add_argument('--use_pretrained_model', type=bool, default=False, help='Use a pretrained model of airplane to initialize the training.') parser.add_argument('--use_random_poses', type=bool, default=False, help='Use of random poses to train the model in each batch') parser.add_argument('--data_dict', type=str, default='train_data',help='Templates data dictionary used for training') parser.add_argument('--train_poses', type=str, default='itr_net_train_data45.csv', help='Poses for training') parser.add_argument('--eval_poses', type=str, default='itr_net_eval_data45.csv', help='Poses for evaluation') FLAGS = parser.parse_args() TRAIN_POSES = FLAGS.train_poses EVAL_POSES = FLAGS.eval_poses BATCH_SIZE = 1 # Parameters for data NUM_POINT = FLAGS.num_point MAX_NUM_POINT = 2048 NUM_CLASSES = 40 centroid_subtraction_switch = FLAGS.centroid_sub # Network hyperparameters MAX_EPOCH = FLAGS.max_epoch MAX_LOOPS = FLAGS.iterations BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 # Model Import MODEL = importlib.import_module(FLAGS.model) # import network module MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py') LOG_DIR = FLAGS.log_dir # Calculate Learning Rate during training. def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate # Get Batch Normalization decay. def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(): with tf.Graph().as_default(): with tf.device('/cpu:0'): batch = tf.Variable(0) # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. with tf.device('/gpu:'+str(GPU_INDEX)): is_training_pl = tf.placeholder(tf.bool, shape=()) # Flag for dropouts. bn_decay = get_bn_decay(batch) # Calculate BN decay. learning_rate = get_learning_rate(batch) # Calculate Learning Rate at each step. # Define a network to backpropagate the using final pose prediction. with tf.variable_scope('Network') as _: # Get the placeholders. source_pointclouds_pl, template_pointclouds_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT) # Extract Features. source_global_feature, template_global_feature = MODEL.get_model(source_pointclouds_pl, template_pointclouds_pl, is_training_pl, bn_decay=bn_decay) # Find the predicted transformation. predicted_transformation = MODEL.get_pose(source_global_feature,template_global_feature,is_training_pl, bn_decay=bn_decay) with tf.device('/cpu:0'): # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Init variables init = tf.global_variables_initializer() sess.run(init, {is_training_pl: True}) saver.restore(sess, FLAGS.model_path) # Create a dictionary to pass the tensors and placeholders in train and eval function for Network. ops = {'source_pointclouds_pl': source_pointclouds_pl, 'template_pointclouds_pl': template_pointclouds_pl, 'is_training_pl': is_training_pl, 'predicted_transformation': predicted_transformation, 'step': batch} templates = helper.loadData(FLAGS.data_dict) eval_poses = helper.read_poses(FLAGS.data_dict, EVAL_POSES) # Read all the poses data for evaluation. # Just to test the results test_one_epoch(sess, ops, templates, eval_poses, saver, FLAGS.model_path) def test_one_epoch(sess, ops, templates, poses, saver, model_path): # Arguments: # sess: Tensorflow session to handle tensors. # ops: Dictionary for tensors of Network # templates: Training Point Cloud data. # poses: Training pose data. # saver: To restore the weights. # model_path: Path of log directory. saver.restore(sess, model_path) # Restore the weights of trained network. is_training = False display_ptClouds = False display_poses = False display_poses_in_itr = False display_ptClouds_in_itr = False swap_case = False MAX_LOOPS = 4 template_data = np.zeros((BATCH_SIZE,MAX_NUM_POINT,3)) # Extract Templates for batch training. template_data[0]=np.copy(templates[FLAGS.template_idx,:,:]) batch_euler_poses = poses[0].reshape((1,6)) # Extract poses for batch training. # Define test case. batch_euler_poses[0]=[0.4,0.5,0.1,10*(np.pi/180),20*(np.pi/180),20*(np.pi/180)] source_data = helper.apply_transformation(template_data,batch_euler_poses) # Apply the poses on the templates to get source data. # Chose Random Points from point clouds for training. if np.random.random_sample()<0: source_data = helper.select_random_points(source_data, NUM_POINT) # probability that source data has different points than template else: source_data = source_data[:,0:NUM_POINT,:] # Add noise to source point cloud. if np.random.random_sample()<1.0: source_data = helper.add_noise(source_data) # Only choose limited number of points from the source and template data. source_data = source_data[:,0:NUM_POINT,:] template_data = template_data[:,0:NUM_POINT,:] TEMPLATE_DATA =
np.copy(template_data)
numpy.copy
""" wbutils.py Copyright (c) 2022 Sony Group Corporation This software is released under the MIT License. http://opensource.org/licenses/mit-license.php """ import numpy as np def polarAWB_achromatic(imean, weight): pixels_r = np.copy(imean[..., 0]) pixels_g = np.copy(imean[..., 1]) pixels_b = np.copy(imean[..., 2]) pixels_g = np.clip(pixels_g, 1e-06, None) illum_r = np.sum(pixels_r * weight / pixels_g) / np.sum(weight) illum_b = np.sum(pixels_b * weight / pixels_g) / np.sum(weight) return np.array([illum_r, 1, illum_b]) def polarAWB_chromatic(dolp, imean, weight): weight_zero_mask = (weight > 0) weight_masked = weight[weight_zero_mask] dop_valid_R = dolp[..., 0][weight_zero_mask] dop_valid_G = dolp[..., 1][weight_zero_mask] dop_valid_B = dolp[..., 2][weight_zero_mask] imean_valid_R = imean[..., 0][weight_zero_mask] imean_valid_G = imean[..., 1][weight_zero_mask] imean_valid_B = imean[..., 2][weight_zero_mask] ys = (dop_valid_R - dop_valid_B) * imean_valid_G * weight_masked / np.sum(weight_masked) A = np.zeros((np.cumsum(weight_zero_mask)[-1], 2), dtype=np.float32) A[:, 0] = (dop_valid_G - dop_valid_B) * imean_valid_R * weight_masked / np.sum(weight_masked) A[:, 1] = (dop_valid_R - dop_valid_G) * imean_valid_B * weight_masked / np.sum(weight_masked) A_inv = np.linalg.pinv(A) r_gain, b_gain = A_inv.dot(ys) return np.array([1 / r_gain, 1, 1 / b_gain]) def polarAWB(dolp, imean, weight_ach, weight_ch, achromatic_ratio_default): if np.sum(weight_ach) > 0: illum_achromatic = polarAWB_achromatic(imean, weight_ach) achromatic_ratio = achromatic_ratio_default else: illum_achromatic = np.array([1, 1, 1]) achromatic_ratio = 0 if np.sum(weight_ch) > 0: illum_chromatic = polarAWB_chromatic(dolp, imean, weight_ch) chromatic_ratio = 1 - achromatic_ratio else: illum_chromatic =
np.array([1, 1, 1])
numpy.array
# -*- coding: utf-8 -*- """ @package tcmi.utils @copyright Copyright (c) 2018+ <NAME> Institute of the Max Planck Society, <NAME> <<EMAIL>> @license See LICENSE file for details. Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. """ import itertools import numpy as np import pandas as pd from joblib import hashing # Mappings _MAPPINGS = { '|{}|': [np.abs], '-{}': [np.negative], '-|{}|': [np.abs, np.negative] } def get_fingerprint(x): """Computes the fingerprint of a Numpy vector. """ fingerprint = np.searchsorted(np.sort(x), x, side='left') return compute_hash(fingerprint) def compute_hash(x): """Hash object. """ return hashing.hash(x, hash_name='md5') def is_numeric(obj): """Check if object is numeric. """ # Check numpy object and pandas dataframes flag = bool(isinstance(obj, np.ndarray) and obj.dtype.kind in 'OSU') if isinstance(obj, pd.Series): flag |= pd.api.types.is_categorical_dtype(obj) elif isinstance(obj, pd.DataFrame): for key in obj.columns: flag |= is_numeric(obj[key]) # General check (may not cover all cases) attrs = ['__add__', '__sub__', '__mul__', '__truediv__', '__pow__'] return all(hasattr(obj, attr) for attr in attrs) and not flag def prepare_data(data, target, copy=False): """Prepare data by agumenting feature space. """ # Make copy if copy: data = data.copy() if isinstance(target, str): target = [target] # Augment feature space keys = sorted(data) hashes = set() for key in keys: value = data[key] if key in target: continue # Compute hash fingerprint = get_fingerprint(value) hashes.add(fingerprint) # Generate features for label, chain in sorted(_MAPPINGS.items(), key=lambda x: x[0]): alias = label.replace('{}', '') label = label.format(key) # Apply function chain result = value if is_numeric(value): for func in chain: result = func(result) # Compute hash and compare with database fingerprint = get_fingerprint(result) if fingerprint not in hashes: data[label] = result hashes.add(fingerprint) return data def filter_subsets(subsets, remove_duplicates=False): """Filter subsets. """ mappings = sorted(_MAPPINGS, key=lambda x: (-len(x), x)) results = [] duplicates = set() for subset in subsets: # Normalize subspace subspace_original = subset['subspace'] size = len(subspace_original) normalized_subspace = subspace_original for mapping in mappings: prefix, suffix = mapping.split('{}', 1) normalized_subspace = tuple(strip(k, prefix, suffix) for k in normalized_subspace) # Filter duplicate keys if remove_duplicates: subspace = [] for k in normalized_subspace: if k not in subspace: subspace.append(k) normalized_subspace = tuple(subspace) # Generate key for duplicate search key = ','.join(sorted(normalized_subspace)) if key in duplicates: continue # Process subspace duplicates.add(key) subset = subset.copy() subset.update({ 'subspace': normalized_subspace, 'subspace_original': subspace_original }) results.append(subset) return results def strip(text, prefix='', suffix=''): """Remove substring from the left and right side of the text. """ return strip_right(strip_left(text, prefix), suffix) def strip_left(text, prefix): """Remove substring from the left side of the text. """ if prefix and text.startswith(prefix): text = text[len(prefix):] return text def strip_right(text, suffix): """Remove substring from the right side of the text. """ if suffix and text.endswith(suffix): text = text[:-len(suffix)] return text def wrap_iterator(iterator, wrap=False, index=None): """Return wrapped iterator for `yield from` syntax. """ if wrap: iterator = iter([iterator]) return (iterator if index is None else itertools.zip_longest((), iterator, fillvalue=index)) def chunk_iterator(iterable, n): """Group an iterator in chunks of n without padding. """ iterator = iter(iterable) return iter(lambda: list(itertools.islice(iterable, n)), []) def index_split(index, dimension=1, method='symmetric'): """Splits an index into parts. """ splits = [] size = len(index) if method == 'adaptive': # Dynamically refine index like a mesh stack = [index] split = [] while stack: indices = stack stack = [] for index in indices: size = len(index) if size < 3: split.extend(index) continue divider = size // 2 split.append(index[divider]) stack.append(index[:divider]) stack.append(index[divider + 1:]) splits.append(np.array(split)) split = [] elif method == 'symmetric': # Read index from left and right symmetrically for i in range(np.math.ceil(size / 2)): a, b = index[i], index[-1-i] split = np.array((a, b)) splits.append(split if a < b else split[0:1]) elif method == 'interleave': # Interweave indices divider = max(2, np.sqrt(size).astype(np.int) // dimension) step = size // divider + 1 splits = [] for i in range(step): splits.append(index[i::step]) else: raise KeyError('Unknown split method "{:s}".'.format(method)) # Return arrays like array_split return splits def ndindex(*indices, method='symmetric', raw=False, grouped=False, multi_index=False): """An N-dimensional iterator object to index arrays. """ # Split indices into groups dimension = len(indices) splits = [index_split(np.arange(index), dimension=dimension, method=method) for index in indices] # Create pool of indices to iterate over pool = [split.pop(0) for split in splits] empty =
np.array([], dtype=np.int_)
numpy.array
#!/bin/env python def co2_emissions(yr, escheme): from scipy.interpolate import interp1d import numpy as np ## historical emissions time =
np.arange(1764, 2006, step=1)
numpy.arange
import numpy as np import pandas as pd import pytest from ..viewers import spectrum from scipy.spatial import distance from ..cooking_machine.models.base_model import BaseModel # to run all test @pytest.fixture(scope="function") def experiment_enviroment(request): """ Creates environment for experiment. """ problem_size_x1 = 10 problem_size_y = 2 matrix_left = np.random.rand(problem_size_x1, problem_size_y) matrix = distance.squareform(distance.pdist(matrix_left, 'jensenshannon')) np.fill_diagonal(matrix, 10 * np.max(matrix)) return matrix def test_triplet_generator(): """ """ left_answer = list(spectrum.generate_all_segments(6)) right_answer = [[0, 2, 4]]
np.testing.assert_array_equal(left_answer, right_answer)
numpy.testing.assert_array_equal
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates a small-scale subset of SVHN dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import scipy.io as sio np.random.seed(seed=0) def sample(input_path, output_path, is_test=False, num_classes=10, n_train_per_class=60, n_test_per_class=1200): """Samples from the given input path and saves the sampled dataset.""" train_data = sio.loadmat(input_path) new_data = [] new_data_y = [] new_data_1 = [] new_data_y_1 = [] for i in range(num_classes): label_id = i + 1 ori_index = np.array(np.where(train_data['y'] == label_id)[0]) np.random.shuffle(ori_index) index = ori_index[:n_train_per_class] label_data = np.array(train_data['X'][:, :, :, index]) new_data.append(label_data) new_data_y.append(np.array(train_data['y'][index, :])) if is_test: index = ori_index[n_train_per_class:n_train_per_class + n_test_per_class] label_data = np.array(train_data['X'][:, :, :, index]) new_data_1.append(label_data) new_data_y_1.append(np.array(train_data['y'][index, :])) new_data = np.concatenate(new_data, 3) new_data_y = np.concatenate(new_data_y, 0) sio.savemat( open(output_path, 'wb'), { 'X': new_data, 'y': new_data_y }, ) if is_test: new_data = np.concatenate(new_data_1, 3) new_data_y =
np.concatenate(new_data_y_1, 0)
numpy.concatenate
# -*- coding: utf-8 -*- # Copyright (c) 2015-2016 MIT Probabilistic Computing Project # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import numpy as np import sklearn.decomposition from cgpm.cgpm import CGpm from cgpm.utils import general as gu from cgpm.utils import mvnormal as multivariate_normal class FactorAnalysis(CGpm): """Factor analysis model with continuous latent variables z in a low dimensional space. The generative model for a vector x is z ~ Normal(0, I) where z \in R^L. e ~ Normal(0, Psi) where Psi = diag(v_1,...,v_D) x = W.z + mux + e where W \in R^(DxL) and mux \in R^D, learning by EM. From standard results (Murphy Section 12.1) z ~ Normal(0, I) Prior. x|z ~ Normal(W.z + mux, Psi) Likelihood. x ~ Normal(mux, W.W'+Psi) Marginal. z|x ~ Normal(m, S) Posterior. S = inv(I + W'.inv(Psi).W) (covariance) m = S(W'.inv(Psi).(x-mux)) (mean) The full joint distribution over [z,x] is then The mean of [z,x] is [0, mux] The covariance of [z,x] is (in block form) I W' (LxL) (LxD) W W.W' + Psi (DxL) (DxD) where the covariance W' is computed directly cov(z,x) = cov(z, W.z + mux + e) = cov(z, W.z) + cov(z, mux) + cov(z, e) = cov(z, W.z) = cov(z,z).W' = I*W' = W' Exercise: Confirm that expression for posterior z|x is consistent with conditioning directly on the joint [z,x] using Schur complement (Hint: see test suite). The latent variables are exposed as output variables, but may not be incorporated. """ def __init__(self, outputs, inputs, L=None, distargs=None, params=None, rng=None): # Default parameter settings. if params is None: params = {} if distargs is None: distargs = {} # Entropy. if rng is None: rng = gu.gen_rng(1) # No inputs. if inputs: raise ValueError('FactorAnalysis rejects inputs: %s.' % inputs) # Correct outputs. if len(outputs) < 2: raise ValueError('FactorAnalysis needs >= 2 outputs: %s.' % outputs) if len(set(outputs)) != len(outputs): raise ValueError('Duplicate outputs: %s.' % outputs) # Find low dimensional space. if L is None: raise ValueError('Specify latent dimension L: %s.' % L) if L == 0: raise ValueError('Latent dimension at least 1: %s.' % L) if 'outputs' in distargs and any(s != 'numerical' for s in distargs['outputs']['stattypes']): raise ValueError('Factor non-numerical outputs: %s.' % distargs) # Observable and latent variable indexes. D = len(outputs[:-L]) if D < L: raise ValueError( 'Latent dimension exceeds observed dimension: (%s,%s)' % (outputs[:-L], outputs[-L:])) # Parameters. mux = params.get('mux', np.zeros(D)) Psi = params.get('Psi', np.eye(D)) W = params.get('W', np.zeros((D,L))) # Build the object. self.rng = rng # Dimensions. self.L = L self.D = D # Variable indexes. self.outputs = outputs self.observables = outputs[:-self.L] self.latents = set(outputs[-self.L:]) self.inputs = [] self.output_mapping = {c:i for i,c in enumerate(self.outputs)} # Dataset. self.data = OrderedDict() self.N = 0 # Parameters of Factor Analysis. self.mux = np.asarray(mux) self.Psi = np.asarray(Psi) self.W =
np.asarray(W)
numpy.asarray
import numpy as np import numpy.testing as npt import pytest from sklearn.preprocessing import OneHotEncoder from timeserio.preprocessing import ( FeatureIndexEncoder, StatelessOneHotEncoder, StatelessTemporalOneHotEncoder, StatelessPeriodicEncoder ) from timeserio.preprocessing.encoding import PeriodicEncoder class TestFeatureIndexEncoder: @pytest.mark.parametrize( 'n_labels, expected_encoding', [ (1, np.arange(1)), (2,
np.arange(2)
numpy.arange
import torch import numpy as np import torch.nn as nn from pruner.filter_pruner import FilterPruner from model.resnet_cifar10 import BasicBlock, DownsampleA from torchvision.models.resnet import Bottleneck def get_num_gen(gen): return sum(1 for x in gen) def is_leaf(model): return get_num_gen(model.children()) == 0 class FilterPrunerResNet(FilterPruner): def trace_layer(self, layer, x): y = layer.old_forward(x) if isinstance(layer, nn.Conv2d): self.conv_in_channels[self.activation_index] = layer.weight.size(1) self.conv_out_channels[self.activation_index] = layer.weight.size(0) h = y.shape[2] w = y.shape[3] self.omap_size[self.activation_index] = (h, w) self.cost_map[self.activation_index] = h * w * layer.weight.size(2) * layer.weight.size(3) / layer.groups self.in_params[self.activation_index] = layer.weight.size(1) * layer.weight.size(2) * layer.weight.size(3) self.cur_flops += h * w * layer.weight.size(0) * layer.weight.size(1) * layer.weight.size(2) * layer.weight.size(3) if self.rank_type == 'l1_weight': if self.activation_index not in self.filter_ranks: self.filter_ranks[self.activation_index] = torch.zeros(layer.weight.size(0), device=self.device) values = (torch.abs(layer.weight.data)).sum(1).sum(1).sum(1) # Normalize the rank by the filter dimensions #values = values / (layer.weight.size(1) * layer.weight.size(2) * layer.weight.size(3)) self.filter_ranks[self.activation_index] = values elif self.rank_type == 'l2_weight': if self.activation_index not in self.filter_ranks: self.filter_ranks[self.activation_index] = torch.zeros(layer.weight.size(0), device=self.device) values = (torch.pow(layer.weight.data, 2)).sum(1).sum(1).sum(1) # Normalize the rank by the filter dimensions #values = values / (layer.weight.size(1) * layer.weight.size(2) * layer.weight.size(3)) self.filter_ranks[self.activation_index] = values elif self.rank_type == 'l2_bn' or self.rank_type == 'l1_bn' or self.rank_type == 'l2_bn_param': pass else: y.register_hook(self.compute_rank) self.activations.append(y) self.rates[self.activation_index] = self.conv_in_channels[self.activation_index] * self.cost_map[self.activation_index] self.activation_to_conv[self.activation_index] = layer self.conv_to_index[layer] = self.activation_index self.activation_index += 1 elif isinstance(layer, nn.BatchNorm2d): self.bn_for_conv[self.activation_index-1] = layer if self.rank_type == 'l2_bn': if self.activation_index-1 not in self.filter_ranks: self.filter_ranks[self.activation_index-1] = torch.zeros(layer.weight.size(0), device=self.device) values = torch.pow(layer.weight.data, 2) self.filter_ranks[self.activation_index-1] = values elif self.rank_type == 'l2_bn_param': if self.activation_index-1 not in self.filter_ranks: self.filter_ranks[self.activation_index-1] = torch.zeros(layer.weight.size(0), device=self.device) values = torch.pow(layer.weight.data, 2) self.filter_ranks[self.activation_index-1] = values * self.in_params[self.activation_index-1] elif isinstance(layer, nn.Linear): self.base_flops += np.prod(layer.weight.shape) self.cur_flops += np.prod(layer.weight.shape) self.og_conv_in_channels = self.conv_in_channels.copy() self.og_conv_out_channels = self.conv_out_channels.copy() return y def parse_dependency_btnk(self): self.downsample_conv = [] self.pre_padding = {} self.next_conv = {} prev_conv_idx = 0 cur_conv_idx = 0 prev_res = -1 for m in self.model.modules(): if isinstance(m, Bottleneck): if prev_res > -1: self.next_conv[prev_res] = [self.conv_to_index[m.conv1]] self.next_conv[cur_conv_idx] = [self.conv_to_index[m.conv1]] self.next_conv[self.conv_to_index[m.conv1]] = [self.conv_to_index[m.conv2]] self.next_conv[self.conv_to_index[m.conv2]] = [self.conv_to_index[m.conv3]] cur_conv_idx = self.conv_to_index[m.conv3] if m.downsample is not None: residual_conv_idx = self.conv_to_index[m.downsample[0]] self.downsample_conv.append(residual_conv_idx) self.next_conv[prev_conv_idx].append(residual_conv_idx) prev_res = residual_conv_idx self.chains[cur_conv_idx] = residual_conv_idx else: if (prev_res > -1) and (not prev_res in self.chains): self.chains[prev_res] = cur_conv_idx elif prev_conv_idx not in self.chains: self.chains[prev_conv_idx] = cur_conv_idx prev_conv_idx = cur_conv_idx def parse_dependency(self): self.downsample_conv = [] self.pre_padding = {} self.next_conv = {} prev_conv_idx = 0 prev_res = -1 for m in self.model.modules(): if isinstance(m, BasicBlock): cur_conv_idx = self.conv_to_index[m.conv[3]] # if there is auxiliary 1x1 conv on shortcut if isinstance(m.shortcut, DownsampleA): self.pre_padding[cur_conv_idx] = m.shortcut self.chains[prev_conv_idx] = cur_conv_idx prev_conv_idx = cur_conv_idx last_idx = -1 for m in self.model.modules(): if isinstance(m, nn.Conv2d) and m.weight.size(2) == 3: idx = self.conv_to_index[m] if (last_idx > -1) and (not last_idx in self.next_conv): self.next_conv[last_idx] = [idx] elif (last_idx > -1): self.next_conv[last_idx].append(idx) last_idx = idx def forward(self, x): self.activation_index = 0 self.grad_index = 0 self.activations = [] self.linear = None # activation index to the instance of conv layer self.activation_to_conv = {} self.conv_to_index = {} # retrieve next immediate bn layer using activation index of conv self.bn_for_conv = {} self.cur_flops = 0 def modify_forward(model): for child in model.children(): if is_leaf(child): def new_forward(m): def lambda_forward(x): return self.trace_layer(m, x) return lambda_forward child.old_forward = child.forward child.forward = new_forward(child) else: modify_forward(child) def restore_forward(model): for child in model.children(): # leaf node if is_leaf(child) and hasattr(child, 'old_forward'): child.forward = child.old_forward child.old_forward = None else: restore_forward(child) modify_forward(self.model) y = self.model.forward(x) restore_forward(self.model) self.btnk = False for m in self.model.modules(): if isinstance(m, nn.Linear): self.linear = m if isinstance(m, Bottleneck): self.btnk = True if self.btnk: self.parse_dependency_btnk() else: self.parse_dependency() self.resource_usage = self.cur_flops return y def get_valid_filters(self): filters_to_prune_per_layer = {} lastConv = None chain_max_dim = 0 for conv_idx in self.chains: num_filters = self.activation_to_conv[conv_idx].weight.size(0) chain_max_dim = np.maximum(chain_max_dim, num_filters) # Deal with the chain first mask = np.zeros(chain_max_dim) for conv_idx in self.chains: bn = self.bn_for_conv[conv_idx] cur_mask = (torch.abs(bn.weight) > 0).cpu().numpy() cur_mask = np.concatenate((cur_mask, np.zeros(chain_max_dim - len(cur_mask)))) chained_bn = self.bn_for_conv[self.chains[conv_idx]] chained_mask = (torch.abs(chained_bn.weight) > 0).cpu().numpy() chained_mask = np.concatenate((cur_mask, np.zeros(chain_max_dim - len(cur_mask)))) mask = np.logical_or(mask, cur_mask) mask = np.logical_or(mask, chained_mask) visited = [] conv_idx = 0 while conv_idx in self.chains: if conv_idx not in visited: bn = self.bn_for_conv[conv_idx] cur_mask = mask[:bn.weight.size(0)] inactive_filter = np.where(cur_mask == 0)[0] if len(inactive_filter) > 0: filters_to_prune_per_layer[conv_idx] = list(inactive_filter.astype(int)) if len(inactive_filter) == bn.weight.size(0): filters_to_prune_per_layer[conv_idx] = filters_to_prune_per_layer[conv_idx][:-2] visited.append(conv_idx) if self.chains[conv_idx] not in visited: bn = self.bn_for_conv[self.chains[conv_idx]] cur_mask = mask[:bn.weight.size(0)] inactive_filter = np.where(cur_mask == 0)[0] if len(inactive_filter) > 0: filters_to_prune_per_layer[self.chains[conv_idx]] = list(inactive_filter.astype(int)) if len(inactive_filter) == bn.weight.size(0): filters_to_prune_per_layer[self.chains[conv_idx]] = filters_to_prune_per_layer[self.chains[conv_idx]][:-2] visited.append(self.chains[conv_idx]) conv_idx = self.chains[conv_idx] for conv_idx in self.activation_to_conv: if conv_idx not in visited: bn = self.bn_for_conv[conv_idx] cur_mask = (torch.abs(bn.weight) > 0).cpu().numpy() inactive_filter = np.where(cur_mask == 0)[0] if len(inactive_filter) > 0: filters_to_prune_per_layer[conv_idx] = list(inactive_filter.astype(int)) if len(inactive_filter) == bn.weight.size(0): filters_to_prune_per_layer[conv_idx] = filters_to_prune_per_layer[conv_idx][:-2] return filters_to_prune_per_layer def get_valid_flops(self): chain_max_dim = 0 for conv_idx in self.chains: num_filters = self.activation_to_conv[conv_idx].weight.size(0) chain_max_dim = np.maximum(chain_max_dim, num_filters) # Deal with the chain first mask = np.zeros(chain_max_dim) for conv_idx in self.chains: bn = self.bn_for_conv[conv_idx] cur_mask = (torch.abs(bn.weight) > 0).cpu().numpy() cur_mask = np.concatenate((cur_mask, np.zeros(chain_max_dim - len(cur_mask)))) chained_bn = self.bn_for_conv[self.chains[conv_idx]] chained_mask = (torch.abs(chained_bn.weight) > 0).cpu().numpy() chained_mask = np.concatenate((cur_mask, np.zeros(chain_max_dim - len(cur_mask)))) mask = np.logical_or(mask, cur_mask) mask = np.logical_or(mask, chained_mask) out_channels = self.conv_out_channels.copy() in_channels = self.conv_in_channels.copy() visited = [] conv_idx = 0 while conv_idx in self.chains: if conv_idx not in visited: bn = self.bn_for_conv[conv_idx] cur_mask = mask[:bn.weight.size(0)] inactive_filter = np.where(cur_mask == 0)[0] if len(inactive_filter) > 0: out_channels[conv_idx] -= len(inactive_filter) if len(inactive_filter) == bn.weight.size(0): out_channels[conv_idx] = 2 visited.append(conv_idx) if self.chains[conv_idx] not in visited: bn = self.bn_for_conv[self.chains[conv_idx]] cur_mask = mask[:bn.weight.size(0)] inactive_filter = np.where(cur_mask == 0)[0] if len(inactive_filter) > 0: out_channels[self.chains[conv_idx]] -= len(inactive_filter) if len(inactive_filter) == bn.weight.size(0): out_channels[self.chains[conv_idx]] = 2 visited.append(self.chains[conv_idx]) conv_idx = self.chains[conv_idx] for conv_idx in self.activation_to_conv: if conv_idx not in visited: bn = self.bn_for_conv[conv_idx] cur_mask = (torch.abs(bn.weight) > 0).cpu().numpy() inactive_filter = np.where(cur_mask == 0)[0] if len(inactive_filter) > 0: out_channels[conv_idx] -= len(inactive_filter) if len(inactive_filter) == bn.weight.size(0): out_channels[conv_idx] = 2 flops = 0 for k in self.activation_to_conv: flops += self.cost_map[k] * in_channels[k] * out_channels[k] flops += out_channels[k] * self.num_cls return flops def mask_conv_layer_segment(self, layer_index, filter_range): filters_begin = filter_range[0] filters_end = filter_range[1] pruned_filters = filters_end - filters_begin + 1 # Retrive conv based on layer_index conv = self.activation_to_conv[layer_index] #if layer_index in self.pre_padding: # self.pre_padding[layer_index].out_channels -= pruned_filters next_bn = self.bn_for_conv[layer_index] next_conv_idx = self.next_conv[layer_index] if layer_index in self.next_conv else None # Surgery on the conv layer to be pruned # dw-conv, reduce groups as well conv.weight.data[filters_begin:filters_end+1,:,:,:] = 0 conv.weight.grad = None if not conv.bias is None: conv.bias.data[filters_begin:filters_end+1] = 0 conv.bias.grad = None next_bn.weight.data[filters_begin:filters_end+1] = 0 next_bn.weight.grad = None next_bn.bias.data[filters_begin:filters_end+1] = 0 next_bn.bias.grad = None next_bn.running_mean.data[filters_begin:filters_end+1] = 0 next_bn.running_mean.grad = None next_bn.running_var.data[filters_begin:filters_end+1] = 0 next_bn.running_var.grad = None def prune_conv_layer_segment(self, layer_index, filter_range): filters_begin = filter_range[0] filters_end = filter_range[1] pruned_filters = int(filters_end - filters_begin + 1) # Retrive conv based on layer_index conv = self.activation_to_conv[layer_index] if layer_index in self.pre_padding: self.pre_padding[layer_index].out_channels -= pruned_filters next_bn = self.bn_for_conv[layer_index] next_conv_idx = self.next_conv[layer_index] if layer_index in self.next_conv else None # Surgery on the conv layer to be pruned # dw-conv, reduce groups as well if conv.groups == conv.out_channels and conv.groups == conv.in_channels: new_conv = \ torch.nn.Conv2d(in_channels = conv.out_channels - pruned_filters, \ out_channels = conv.out_channels - pruned_filters, kernel_size = conv.kernel_size, \ stride = conv.stride, padding = conv.padding, dilation = conv.dilation, groups = conv.groups - pruned_filters, bias = conv.bias) conv.in_channels -= pruned_filters conv.out_channels -= pruned_filters conv.groups -= pruned_filters else: new_conv = \ torch.nn.Conv2d(in_channels = conv.in_channels, \ out_channels = conv.out_channels - pruned_filters, kernel_size = conv.kernel_size, \ stride = conv.stride, padding = conv.padding, dilation = conv.dilation, groups = conv.groups, bias = conv.bias) conv.out_channels -= pruned_filters old_weights = conv.weight.data.cpu().numpy() new_weights = new_conv.weight.data.cpu().numpy() new_weights[: filters_begin, :, :, :] = old_weights[: filters_begin, :, :, :] new_weights[filters_begin : , :, :, :] = old_weights[filters_end + 1 :, :, :, :] conv.weight.data = torch.from_numpy(new_weights).to(self.device) conv.weight.grad = None if not conv.bias is None: bias_numpy = conv.bias.data.cpu().numpy() bias = np.zeros(shape = (bias_numpy.shape[0] - pruned_filters), dtype = np.float32) bias[:filters_begin] = bias_numpy[:filters_begin] bias[filters_begin : ] = bias_numpy[filters_end + 1 :] conv.bias.data = torch.from_numpy(bias).to(self.device) conv.bias.grad = None # Surgery on next batchnorm layer next_new_bn = \ torch.nn.BatchNorm2d(num_features = next_bn.num_features-pruned_filters,\ eps = next_bn.eps, \ momentum = next_bn.momentum, \ affine = next_bn.affine, track_running_stats = next_bn.track_running_stats) next_bn.num_features -= pruned_filters old_weights = next_bn.weight.data.cpu().numpy() new_weights = next_new_bn.weight.data.cpu().numpy() old_bias = next_bn.bias.data.cpu().numpy() new_bias = next_new_bn.bias.data.cpu().numpy() old_running_mean = next_bn.running_mean.data.cpu().numpy() new_running_mean = next_new_bn.running_mean.data.cpu().numpy() old_running_var = next_bn.running_var.data.cpu().numpy() new_running_var = next_new_bn.running_var.data.cpu().numpy() new_weights[: filters_begin] = old_weights[: filters_begin] new_weights[filters_begin :] = old_weights[filters_end + 1 :] next_bn.weight.data = torch.from_numpy(new_weights).to(self.device) next_bn.weight.grad = None new_bias[: filters_begin] = old_bias[: filters_begin] new_bias[filters_begin :] = old_bias[filters_end + 1 :] next_bn.bias.data = torch.from_numpy(new_bias).to(self.device) next_bn.bias.grad = None new_running_mean[: filters_begin] = old_running_mean[: filters_begin] new_running_mean[filters_begin :] = old_running_mean[filters_end + 1 :] next_bn.running_mean.data = torch.from_numpy(new_running_mean).to(self.device) next_bn.running_mean.grad = None new_running_var[: filters_begin] = old_running_var[: filters_begin] new_running_var[filters_begin :] = old_running_var[filters_end + 1 :] next_bn.running_var.data = torch.from_numpy(new_running_var).to(self.device) next_bn.running_var.grad = None # Found next convolution layer if next_conv_idx: if not layer_index in self.downsample_conv: for next_conv_i in next_conv_idx: next_conv = self.activation_to_conv[next_conv_i] next_new_conv = \ torch.nn.Conv2d(in_channels = next_conv.in_channels - pruned_filters,\ out_channels = next_conv.out_channels, \ kernel_size = next_conv.kernel_size, \ stride = next_conv.stride, padding = next_conv.padding, dilation = next_conv.dilation, groups = next_conv.groups, bias = next_conv.bias) next_conv.in_channels -= pruned_filters old_weights = next_conv.weight.data.cpu().numpy() new_weights = next_new_conv.weight.data.cpu().numpy() new_weights[:, : filters_begin, :, :] = old_weights[:, : filters_begin, :, :] new_weights[:, filters_begin : , :, :] = old_weights[:, filters_end + 1 :, :, :] next_conv.weight.data = torch.from_numpy(new_weights).to(self.device) next_conv.weight.grad = None else: #Prunning the last conv layer. This affects the first linear layer of the classifier. if self.linear is None: raise BaseException("No linear laye found in classifier") params_per_input_channel = int(self.linear.in_features / (conv.out_channels+pruned_filters)) new_linear_layer = \ torch.nn.Linear(self.linear.in_features - pruned_filters*params_per_input_channel, self.linear.out_features) self.linear.in_features -= pruned_filters*params_per_input_channel old_weights = self.linear.weight.data.cpu().numpy() new_weights = new_linear_layer.weight.data.cpu().numpy() new_weights[:, : int(filters_begin * params_per_input_channel)] = \ old_weights[:, : int(filters_begin * params_per_input_channel)] new_weights[:, int(filters_begin * params_per_input_channel) :] = \ old_weights[:, int((filters_end + 1) * params_per_input_channel) :] self.linear.weight.data = torch.from_numpy(new_weights).to(self.device) self.linear.weight.grad = None def amc_filter_compress(self, layer_id, action, max_sparsity): # Chain residual connections t = layer_id current_chains = [] while t in self.chains: current_chains.append(t) t = self.chains[t] current_chains.append(t) prune_away = int(action*self.conv_out_channels[layer_id]) if (not self.btnk) and (len(current_chains) > 1): top_pruning = 16 if current_chains[0] == 0 else int(current_chains[0] / 18)*16 prune_away = np.minimum(prune_away, top_pruning) # Used to identify which layer cannot make decision later on # If it is chained with same size, it is determined by the first one. cur_filter_size = self.conv_out_channels[layer_id] for layer in current_chains: if self.conv_out_channels[layer] == cur_filter_size: self.amc_checked.append(layer) self.conv_out_channels[layer] -= prune_away rest = 0 rest_min_filters = 0 rest_total_filters = 0 tmp_out_channels = self.og_conv_out_channels.copy() tmp_in_channels = self.conv_in_channels.copy() next_layer = layer_id while next_layer in self.amc_checked: next_layer += 1 t = next_layer next_chains = [] if t < len(self.activation_to_conv): while t in self.chains: next_chains.append(t) t = self.chains[t] next_chains.append(t) for i in range(next_layer, len(self.activation_to_conv)): if not i in self.amc_checked: rest += self.conv_out_channels[i] if not i in next_chains: if max_sparsity == 1: tmp_out_channels[i] = 1 else: tmp_out_channels[i] = int(np.ceil(tmp_out_channels[i] * (1-max_sparsity))) rest_total_filters += self.conv_out_channels[i] rest_min_filters += tmp_out_channels[i] rest_max_filters = rest_total_filters - rest_min_filters cost = 0 for key in self.cost_map: cost += self.conv_out_channels[key] return next_layer, cost, rest_max_filters def amc_compress(self, layer_id, action, max_sparsity): # Chain residual connections t = layer_id current_chains = [] while t in self.chains: current_chains.append(t) t = self.chains[t] current_chains.append(t) prune_away = int(action*self.conv_out_channels[layer_id]) if (not self.btnk) and (len(current_chains) > 1): top_pruning = 16 if current_chains[0] == 0 else int(current_chains[0] / 18)*16 prune_away =
np.minimum(prune_away, top_pruning)
numpy.minimum
import os import sys import subprocess import argparse import time import math import numpy as np import mrcfile import matplotlib.pyplot as plt from cv2 import * from scipy import ndimage import scipy.signal from scipy.spatial.distance import directed_hausdorff from skimage import feature from skimage.feature import match_template from skimage.filters import threshold_otsu from skimage.transform import rescale import imutils from joblib import Parallel, effective_n_jobs, delayed from sklearn.utils import gen_even_slices from sklearn.metrics.pairwise import euclidean_distances from pathlib import Path from shutil import copyfile from helper_functions import load_obj, save_obj, sort_dict from extract_relion_particle_counts import gen_particle_counts cs2star_path = '/home_local/landeradmin/pyem' #UPDATE THIS depending on where pyem is located in your machine def crop_image(img): """ Crop image based on first nonzero elements Parameters ------------ img: 2d np.ndarray A single class average Returns ----------- 2d np.ndarray Cropped image """ row_idx, col_idx = np.nonzero(img) return(img[
np.min(row_idx)
numpy.min
import os import torch import gpytorch as gp import numpy as np import pandas as pd from tqdm.auto import tqdm from gpytorch_lattice_kernel import RBFLattice class SimplexGPModel(gp.models.ExactGP): def __init__(self, train_x, train_y, order=1, min_noise=1e-4): likelihood = gp.likelihoods.GaussianLikelihood( noise_constraint=gp.constraints.GreaterThan(min_noise)) super().__init__(train_x, train_y, likelihood) self.mean_module = gp.means.ConstantMean() self.base_covar_module = RBFLattice(order=order) self.covar_module = gp.kernels.ScaleKernel(self.base_covar_module) def forward(self, x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return gp.distributions.MultivariateNormal(mean_x, covar_x) class ExactModel(gp.models.ExactGP): def __init__(self, train_x, train_y, min_noise=1e-4): # assert train_x.is_contiguous(), 'Need contiguous x for KeOps' likelihood = gp.likelihoods.GaussianLikelihood( noise_constraint=gp.constraints.GreaterThan(min_noise)) super().__init__(train_x, train_y, likelihood) self.mean_module = gp.means.ConstantMean() if torch.cuda.is_available(): self.base_covar_module = gp.kernels.keops.RBFKernel() else: self.base_covar_module = gp.kernels.RBFKernel() self.covar_module = gp.kernels.ScaleKernel(self.base_covar_module) def forward(self, x): # assert x.is_contiguous(), 'Need contiguous x for KeOps' mean_x = self.mean_module(x) covar_x = self.covar_module(x) return gp.distributions.MultivariateNormal(mean_x, covar_x) def train(x, y, model, mll, optim, lanc_iter=100, pre_size=100): model.train() optim.zero_grad() with gp.settings.cg_tolerance(1e-4), \ gp.settings.max_preconditioner_size(pre_size), \ gp.settings.max_root_decomposition_size(lanc_iter): output = model(x) loss = -mll(output, y) loss.backward() optim.step() return { 'train/mll': -loss.detach().item(), } def train_model(model_cls, device, x, y): model = model_cls(x, y).to(device) mll = gp.mlls.ExactMarginalLogLikelihood(model.likelihood, model) optimizer = torch.optim.Adam(model.parameters(), lr=0.1) train_dict = None for _ in tqdm(range(100)): train_dict = train(x, y, model, mll, optimizer) return train_dict def main(): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' print(f'Using device {device}') df = pd.read_csv(f'{os.path.dirname(__file__)}/../notebooks/snelson.csv') train_x = torch.from_numpy(df.x.values[:, np.newaxis]).float().to(device).contiguous() train_y = torch.from_numpy(df.y.values).float().to(device).contiguous() print(train_x.shape, train_y.shape) sgp_mll = train_model(SimplexGPModel, device, train_x, train_y)['train/mll'] keops_mll = train_model(ExactModel, device, train_x, train_y)['train/mll'] delta =
np.abs(sgp_mll - keops_mll)
numpy.abs
import numpy as np import gym import pdb from classifier_network import LinearNetwork, ReducedLinearNetwork import torch import torch.nn as nn import torch.nn.functional as F from scipy.stats import triang #import serial import matplotlib.pyplot as plt import time # take in data, make a change to th state of the arm (translate, rotate, or both) def get_angles(local_obj_pos): obj_wrist = local_obj_pos[0:3]/np.linalg.norm(local_obj_pos[0:3]) center_line = np.array([0,1,0]) z_dot = np.dot(obj_wrist[0:2],center_line[0:2]) z_angle = np.arccos(z_dot/np.linalg.norm(obj_wrist[0:2])) x_dot = np.dot(obj_wrist[1:3],center_line[1:3]) x_angle = np.arccos(x_dot/np.linalg.norm(obj_wrist[1:3])) #print('angle calc took', t-time.time(), 'seconds') return x_angle,z_angle def optimize_grasp(local_obs, init_reward,model): """ try a bunch of different grasps and return the best one :param local_obs: initial starting coordinates in local frame :param init_reward: initial reward for initial grasp :return: full reward stack, best reward, coordinates for best reward """ network_feed=local_obs[21:24] network_feed=np.append(network_feed,local_obs[25:34]) local_obs=np.append(network_feed,local_obs[47:49]) # x = _get_angles # obs = _get_obs() slide_step = 0.01 joint_step = 0.2 initial_obs = np.copy(local_obs) initial_reward = init_reward init_reward= init_reward.detach().numpy() init_reward=init_reward[0][0] iterations = 1000 stored_obs = np.zeros(6) # try it and get a new classifier result # store it for us to play with # vary together for k in range(iterations): rand_delta = np.random.uniform(low=-slide_step, high=slide_step, size=3) rand_delta = np.append(rand_delta,np.random.uniform(low=-joint_step, high=joint_step, size=3)) #print('local obs before',initial_obs) local_obs[0:6] = initial_obs[0:6] + rand_delta x_angle, z_angle = get_angles(local_obs[0:3]) # object location? local_obs[-2] = x_angle local_obs[-1] = z_angle #print('local obs after',local_obs) # feed into classifier states=torch.zeros(1,14, dtype=torch.float) for l in range(len(local_obs)): states[0][l]= local_obs[l] states=states.float() outputs = model(states) #print(outputs) outputs = outputs.detach().numpy() #print(type(outputs)) #outputs = Grasp_net(inputs).cpu().data.numpy().flatten() reward_delta = outputs[0][0] - init_reward #print(reward_delta) rand_delta[0:3]=rand_delta[0:3]*20 stored_obs += reward_delta / rand_delta[0:6] return stored_obs/np.linalg.norm(stored_obs) # optimize_grasp(obs,init) env = gym.make('gym_kinova_gripper:kinovagripper-v0') env.reset() env2 = gym.make('gym_kinova_gripper:kinovagripper-v0') env2.reset() model = ReducedLinearNetwork() model=model.float() model.load_state_dict(torch.load('trained_model_05_14_20_1349local.pt')) model=model.float() model.eval() print('model loaded') action_gradient = np.array([0,0.1,0,1,1,1]) # [9X1 normalized gradient of weights for actions] ran_win = 1 / 2 # size of the window that random values are taken around trial_num = 5 # number of random trials action_size = 1 # should be same as Ameer's code action_size step_size = 20 # number of actions taken by obs, reward, done, _= env.step([0,0,0,0,0,0]) network_feed=obs[21:24] network_feed=np.append(network_feed,obs[25:34]) network_feed=np.append(network_feed,obs[47:49]) states=torch.zeros(1,14, dtype=torch.float) for l in range(len(network_feed)): states[0][l]= network_feed[l] states=states.float() output = model(states) action_gradient = optimize_grasp(obs,output, model) print(action_gradient) def sim_2_actions(ran_win, trial_num, action_size, step_size, action_gradient): action = np.zeros((trial_num,len(action_gradient))) new_rewards = np.zeros((trial_num)) for i in range(trial_num): env2.reset() print('RESET') for j in range(len(action_gradient)): action[i][j] = action_size*
np.random.uniform(action_gradient[j]+ran_win,action_gradient[j]-ran_win)
numpy.random.uniform
import Source.system_evaluator as eval import Source.protobuf.FastComposedModels_pb2 as fcm from Source.math_util import softmax import numpy as np import math def adaboost_samme_label(Logits, gt): size = len(gt) w_instances = np.ones(int(size)) / size alphas = [] for im in range(Logits.shape[1]): # train classifier predictions = np.argmax(Logits[:, im, :], axis=1) K = len(np.unique(gt)) fails = predictions != gt # Compute classifier error and its alpha term err = sum(w_instances[fails]) / sum(w_instances) err = max(1e-10, err) alpha = math.log((1 - err) / err) + math.log(K - 1) alphas.append(alpha) # Update w_instances for i in range(size): w_new = w_instances[i] * math.exp(alpha * (predictions[i] == gt[i])) w_instances[i] = w_new # Normalize w_instances = w_instances / sum(w_instances) return alphas def adaboost_samme_logit(Logits, gt): size = len(gt) w_instances = np.ones(int(size)) / size alphas = [] for im in range(Logits.shape[1]): predictions = np.argmax(Logits[:, im, :], axis=1) P = softmax(Logits[:, im, :]) max_probability =
np.max(P, axis=1)
numpy.max
#data.py #load and save data for heliocats #https://github.com/cmoestl/heliocats import numpy as np import pandas as pd import scipy import copy import matplotlib.dates as mdates import datetime import urllib import json import os import pdb from sunpy.time import parse_time import scipy.io import scipy.signal import pickle import time import sys import cdflib import matplotlib.pyplot as plt import heliosat from numba import njit from astropy.time import Time import heliopy.data.cassini as cassinidata import heliopy.data.helios as heliosdata import heliopy.data.spice as spicedata import heliopy.spice as spice import astropy import requests import math import h5py from config import data_path #data_path='/nas/helio/data/insitu_python/' heliosat_data_path='/nas/helio/data/heliosat/data/' data_path_sun='/nas/helio/data/SDO_realtime/' ''' MIT LICENSE Copyright 2020, <NAME>, <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' ####################################### get new data #################################### def remove_wind_spikes_gaps(data): #nan intervals nt1=parse_time('2020-04-20 17:06').datetime nt2=parse_time('2020-04-20 17:14').datetime gapind1=np.where(np.logical_and(data.time >= nt1,data.time <= nt2 ))[0] nt1=parse_time('2020-04-21 01:20').datetime nt2=parse_time('2020-04-21 01:22').datetime gapind2=np.where(np.logical_and(data.time >= nt1,data.time <= nt2 ))[0] nt1=parse_time('2020-11-09T16:04Z').datetime nt2=parse_time('2020-11-09T17:08Z').datetime gapind3=np.where(np.logical_and(data.time >= nt1,data.time <= nt2 ))[0] nt1=parse_time('2020-08-31T16:58Z').datetime nt2=parse_time('2020-08-31T18:32Z').datetime gapind4=np.where(np.logical_and(data.time >= nt1,data.time <= nt2 ))[0] nt1=parse_time('2021-02-01T12:32Z').datetime nt2=parse_time('2021-02-01T14:04Z').datetime gapind5=np.where(np.logical_and(data.time >= nt1,data.time <= nt2 ))[0] data.bt[np.hstack([gapind1,gapind2,gapind3,gapind4,gapind5])]=np.nan data.bx[np.hstack([gapind1,gapind2,gapind3,gapind4,gapind5])]=np.nan data.by[np.hstack([gapind1,gapind2,gapind3,gapind4,gapind5])]=np.nan data.bz[np.hstack([gapind1,gapind2,gapind3,gapind4,gapind5])]=np.nan return data def save_stereoa_science_data_merge_rtn(data_path,file): print('STEREO-A science data merging') filesta="stereoa_2007_2019_rtn.p" [sta0,hsta0]=pickle.load(open(data_path+filesta, "rb" ) ) filesta="stereoa_2020_april_rtn.p" [sta1,hsta1]=pickle.load(open(data_path+filesta, "rb" ) ) filesta="stereoa_2020_may_july_rtn.p" [sta2,hsta2]=pickle.load(open(data_path+filesta, "rb" ) ) #beacon data #filesta='stereoa_2019_now_sceq_beacon.p' #[sta3,hsta3]=pickle.load(open(data_path+filesta2, "rb" ) ) #sta2=sta2[np.where(sta2.time >= parse_time('2020-Aug-01 00:00').datetime)[0]] #make array sta=np.zeros(np.size(sta0.time)+np.size(sta1.time)+np.size(sta2.time),dtype=[('time',object),('bx', float),('by', float),\ ('bz', float),('bt', float),('vt', float),('np', float),('tp', float),\ ('x', float),('y', float),('z', float),\ ('r', float),('lat', float),('lon', float)]) #convert to recarray sta = sta.view(np.recarray) sta.time=np.hstack((sta0.time,sta1.time,sta2.time)) sta.bx=np.hstack((sta0.bx,sta1.bx,sta2.bx)) sta.by=np.hstack((sta0.by,sta1.by,sta2.by)) sta.bz=np.hstack((sta0.bz,sta1.bz,sta2.bz)) sta.bt=np.hstack((sta0.bt,sta1.bt,sta2.bt)) sta.vt=np.hstack((sta0.vt,sta1.vt,sta2.vt)) sta.np=np.hstack((sta0.np,sta1.np,sta2.np)) sta.tp=np.hstack((sta0.tp,sta1.tp,sta2.tp)) sta.x=np.hstack((sta0.x,sta1.x,sta2.x)) sta.y=np.hstack((sta0.y,sta1.y,sta2.y)) sta.z=np.hstack((sta0.z,sta1.z,sta2.z)) sta.r=np.hstack((sta0.r,sta1.r,sta2.r)) sta.lon=np.hstack((sta0.lon,sta1.lon,sta2.lon)) sta.lat=np.hstack((sta0.lat,sta1.lat,sta2.lat)) pickle.dump(sta, open(data_path+file, "wb")) print('STEREO-A merging done') return 0 def save_stereoa_science_data_merge_sceq(data_path,file): print('STEREO-A science data merging') filesta="stereoa_2007_2019_sceq.p" [sta0,hsta0]=pickle.load(open(data_path+filesta, "rb" ) ) filesta="stereoa_2020_april_sceq.p" [sta1,hsta1]=pickle.load(open(data_path+filesta, "rb" ) ) filesta="stereoa_2020_may_july_sceq.p" [sta2,hsta2]=pickle.load(open(data_path+filesta, "rb" ) ) #beacon data #filesta='stereoa_2019_now_sceq_beacon.p' #[sta3,hsta3]=pickle.load(open(data_path+filesta2, "rb" ) ) #sta2=sta2[np.where(sta2.time >= parse_time('2020-Aug-01 00:00').datetime)[0]] #make array sta=np.zeros(np.size(sta0.time)+np.size(sta1.time)+np.size(sta2.time),dtype=[('time',object),('bx', float),('by', float),\ ('bz', float),('bt', float),('vt', float),('np', float),('tp', float),\ ('x', float),('y', float),('z', float),\ ('r', float),('lat', float),('lon', float)]) #convert to recarray sta = sta.view(np.recarray) sta.time=np.hstack((sta0.time,sta1.time,sta2.time)) sta.bx=np.hstack((sta0.bx,sta1.bx,sta2.bx)) sta.by=np.hstack((sta0.by,sta1.by,sta2.by)) sta.bz=np.hstack((sta0.bz,sta1.bz,sta2.bz)) sta.bt=np.hstack((sta0.bt,sta1.bt,sta2.bt)) sta.vt=np.hstack((sta0.vt,sta1.vt,sta2.vt)) sta.np=np.hstack((sta0.np,sta1.np,sta2.np)) sta.tp=np.hstack((sta0.tp,sta1.tp,sta2.tp)) sta.x=np.hstack((sta0.x,sta1.x,sta2.x)) sta.y=np.hstack((sta0.y,sta1.y,sta2.y)) sta.z=np.hstack((sta0.z,sta1.z,sta2.z)) sta.r=np.hstack((sta0.r,sta1.r,sta2.r)) sta.lon=np.hstack((sta0.lon,sta1.lon,sta2.lon)) sta.lat=np.hstack((sta0.lat,sta1.lat,sta2.lat)) pickle.dump(sta, open(data_path+file, "wb")) print('STEREO-A merging done') def save_stereoa_science_data(path,file,t_start, t_end,sceq): #impact https://stereo-ssc.nascom.nasa.gov/data/ins_data/impact/level2/ahead/ #download with heliosat #------------------- #print('start STA') #sta_sat = heliosat.STA() #create an array with 1 minute resolution between t start and end #time = [ t_start + datetime.timedelta(minutes=1*n) for n in range(int ((t_end - t_start).days*60*24))] #time_mat=mdates.date2num(time) #tm, mag = sta_sat.get_data_raw(t_start, t_end, "sta_impact_l1") #print('download complete') #--------------------------- #2020 PLASTIC download manually #https://stereo-ssc.nascom.nasa.gov/data/ins_data/plastic/level2/Protons/Derived_from_1D_Maxwellian/ASCII/1min/A/2020/ sta_impact_path='/nas/helio/data/heliosat/data/sta_impact_l1/' sta_plastic_path='/nas/helio/data/heliosat/data/sta_plastic_l2_ascii/' t_start1=copy.deepcopy(t_start) time_1=[] #make 1 min datetimes while t_start1 < t_end: time_1.append(t_start1) t_start1 += datetime.timedelta(minutes=1) #make array for 1 min data sta=np.zeros(len(time_1),dtype=[('time',object),('bx', float),('by', float),\ ('bz', float),('bt', float),('vt', float),('np', float),('tp', float),\ ('x', float),('y', float),('z', float),\ ('r', float),('lat', float),('lon', float)]) #convert to recarray sta = sta.view(np.recarray) sta.time=time_1 #make data file names t_start1=copy.deepcopy(t_start) days_sta = [] days_str = [] i=0 while t_start < t_end: days_sta.append(t_start) days_str.append(str(days_sta[i])[0:4]+str(days_sta[i])[5:7]+str(days_sta[i])[8:10]) i=i+1 t_start +=datetime.timedelta(days=1) #go through all files bt=np.zeros(int(1e9)) bx=np.zeros(int(1e9)) by=np.zeros(int(1e9)) bz=np.zeros(int(1e9)) t2=[] i=0 for days_date in days_str: cdf_file = 'STA_L1_MAG_RTN_{}_V06.cdf'.format(days_date) if os.path.exists(sta_impact_path+cdf_file): print(cdf_file) f1 = cdflib.CDF(sta_impact_path+cdf_file) t1=parse_time(f1.varget('Epoch'),format='cdf_epoch').datetime t2.extend(t1) bfield=f1.varget('BFIELD') bt[i:i+len(bfield[:,3])]=bfield[:,3] bx[i:i+len(bfield[:,0])]=bfield[:,0] by[i:i+len(bfield[:,1])]=bfield[:,1] bz[i:i+len(bfield[:,2])]=bfield[:,2] i=i+len(bfield[:,3]) #cut array bt=bt[0:i] bx=bx[0:i] by=by[0:i] bz=bz[0:i] tm2=mdates.date2num(t2) time_mat=mdates.date2num(time_1) #linear interpolation to time_mat times sta.bx = np.interp(time_mat, tm2, bx ) sta.by = np.interp(time_mat, tm2, by ) sta.bz = np.interp(time_mat, tm2, bz ) #sta.bt = np.sqrt(sta.bx**2+sta.by**2+sta.bz**2) #round first each original time to full minutes original data at 30sec tround=copy.deepcopy(t2) format_str = '%Y-%m-%d %H:%M' for k in np.arange(np.size(t2)): tround[k] = datetime.datetime.strptime(datetime.datetime.strftime(t2[k], format_str), format_str) tm2_round=parse_time(tround).plot_date #which values are not in original data compared to full time range isin=np.isin(time_mat,tm2_round) setnan=np.where(isin==False) #set to to nan that is not in original data sta.bx[setnan]=np.nan sta.by[setnan]=np.nan sta.bz[setnan]=np.nan sta.bt = np.sqrt(sta.bx**2+sta.by**2+sta.bz**2) ########### get PLASTIC new prel data #PLASTIC #2019 monthly if needed #https://stereo-ssc.nascom.nasa.gov/data/ins_data/plastic/level2/Protons/Derived_from_1D_Maxwellian/ASCII/1min/A/2019/ #2020 manually all #https://stereo-ssc.nascom.nasa.gov/data/ins_data/plastic/level2/Protons/Derived_from_1D_Maxwellian/ASCII/1min/A/2020/ #STA_L2_PLA_1DMax_1min_202004_092_PRELIM_v01.txt #STA_L2_PLA_1DMax_1min_202005_122_PRELIM_v01.txt #STA_L2_PLA_1DMax_1min_202006_153_PRELIM_v01.txt #STA_L2_PLA_1DMax_1min_202007_183_PRELIM_v01.txt ######## pvt=np.zeros(int(1e8)) pnp=np.zeros(int(1e8)) ptp=np.zeros(int(1e8)) pt2=[] pfiles=['STA_L2_PLA_1DMax_1min_202004_092_PRELIM_v01.txt', 'STA_L2_PLA_1DMax_1min_202005_122_PRELIM_v01.txt', 'STA_L2_PLA_1DMax_1min_202006_153_PRELIM_v01.txt', 'STA_L2_PLA_1DMax_1min_202007_183_PRELIM_v01.txt'] j=0 for name in pfiles: p1=np.genfromtxt(sta_plastic_path+name,skip_header=2) print(name) vt1=p1[:,8] np1=p1[:,9] tp1=p1[:,10] #YEAR DOY hour min sec year1=p1[:,0] doy1=p1[:,1] hour1=p1[:,2] min1=p1[:,3] sec1=p1[:,4] p1t=[] #make datetime array from year and doy for i in np.arange(len(doy1)): p1t.append(parse_time(str(int(year1[i]))+'-01-01 00:00').datetime+datetime.timedelta(days=doy1[i]-1)+\ +datetime.timedelta(hours=hour1[i]) + datetime.timedelta(minutes=min1[i]) ) pvt[j:j+len(vt1)]=vt1 pnp[j:j+len(np1)]=np1 ptp[j:j+len(tp1)]=tp1 pt2.extend(p1t) j=j+len(vt1) #cut array pvt=pvt[0:j] pnp=pnp[0:j] ptp=ptp[0:j] pt2=pt2[0:j] pt2m=mdates.date2num(pt2) #linear interpolation to time_mat times sta.vt = np.interp(time_mat, pt2m, pvt ) sta.np = np.interp(time_mat, pt2m, pnp ) sta.tp = np.interp(time_mat, pt2m, ptp ) #which values are not in original data compared to full time range isin=np.isin(time_mat,pt2m) setnan=np.where(isin==False) #set to to nan that is not in original data sta.vt[setnan]=np.nan sta.np[setnan]=np.nan sta.tp[setnan]=np.nan #add position print('position start') frame='HEEQ' kernels = spicedata.get_kernel('stereo_a') kernels += spicedata.get_kernel('stereo_a_pred') spice.furnish(kernels) statra=spice.Trajectory('-234') #STEREO-A SPICE NAIF code statra.generate_positions(sta.time,'Sun',frame) statra.change_units(astropy.units.AU) [r, lat, lon]=cart2sphere(statra.x,statra.y,statra.z) sta.x=statra.x sta.y=statra.y sta.z=statra.z sta.r=r sta.lat=np.degrees(lat) sta.lon=np.degrees(lon) print('position end ') coord='RTN' #convert magnetic field to SCEQ if sceq==True: print('convert RTN to SCEQ ') coord='SCEQ' sta=convert_RTN_to_SCEQ(sta,'STEREO-A') header='STEREO-A magnetic field (IMPACT instrument, science data) and plasma data (PLASTIC, preliminary science data), ' + \ 'obtained from https://stereo-ssc.nascom.nasa.gov/data/ins_data/impact/level2/ahead/ and '+ \ 'https://stereo-ssc.nascom.nasa.gov/data/ins_data/plastic/level2/Protons/Derived_from_1D_Maxwellian/ASCII/1min/A/2020/ '+ \ 'Timerange: '+sta.time[0].strftime("%Y-%b-%d %H:%M")+' to '+sta.time[-1].strftime("%Y-%b-%d %H:%M")+\ ', with an average time resolution of '+str(np.mean(np.diff(sta.time)).seconds)+' seconds. '+\ 'The data are available in a numpy recarray, fields can be accessed by sta.time, sta.bx, sta.vt etc. '+\ 'Missing data has been set to "np.nan". Total number of data points: '+str(sta.size)+'. '+\ 'Units are btxyz [nT, '+coord+', vt [km/s], np[cm^-3], tp [K], heliospheric position x/y/z/r/lon/lat [AU, degree, HEEQ]. '+\ 'Made with https://github.com/cmoestl/heliocats '+\ 'and https://github.com/heliopython/heliopy. '+\ 'By <NAME> (twitter @chrisoutofspace), <NAME>, <NAME> and <NAME>. File creation date: '+\ datetime.datetime.utcnow().strftime("%Y-%b-%d %H:%M")+' UTC' print('save pickle file') pickle.dump([sta,header], open(path+file, "wb")) print('done sta') print() return 0 def save_wsa_hux(filein): #load wsa hux windraw = np.loadtxt('data/wsa_hux_mars_aug2014_jan2018.txt', dtype=[('time','<U30'),('time2','<U30'),('time_mat', float),('vt', float)] ) windraw = windraw.view(np.recarray) wind=np.zeros(len(windraw),dtype=[('time',object),('vt', float)]) wind=wind.view(np.recarray) for i in np.arange(len(windraw)): wind_time_str=windraw.time[i][8:12]+'-'+windraw.time[i][4:7]+'-'+windraw.time[i][1:3]+' '+windraw.time2[i][0:8] wind.time[i]=(parse_time(wind_time_str).datetime) wind.vt=windraw.vt fileout='wsa_hux_mars_aug2014_jan2018.p' pickle.dump(wind, open(data_path+fileout, "wb")) return 0 def load_mars_wsa_hux(): file='wsa_hux_mars_aug2014_jan2018.p' rad=pickle.load(open(data_path+file, "rb")) return rad def load_maven_sir_huang(): #Huang et al. 2019 APJ convert PDF to excel with https://pdftoxls.com mavensir='sircat/sources/Huang_2019_SIR_MAVEN_table_1.xlsx' print('load MAVEN Huang SIR catalog from ', mavensir) ms=pd.read_excel(mavensir) ms=ms.drop(index=[0,1,2]) ms_num=np.array(ms['No.']) ms_start=np.array(ms['Start']) ms_end=np.array(ms['End']) ms_si=np.array(ms['SI']) ms=np.zeros(len(ms_num),dtype=[('start',object),('end',object),('si',object)]) ms=ms.view(np.recarray) #make correct years for start time ms_num[np.where(ms_num< 7)[0]]=2014 ms_num[np.where(ms_num< 27)[0]]=2015 ms_num[np.where(ms_num< 64)[0]]=2016 ms_num[np.where(ms_num< 83)[0]]=2017 ms_num[np.where(ms_num< 127)[0]]=2018 #make correct years for end and si time ms_num2=copy.deepcopy(ms_num) ms_num2[3]=2015 ms_num2[62]=2017 #transform date of start time for t in np.arange(0,len(ms_start)): #check for nans in between time strings if pd.isna(ms_start[t])==False: ####################### start time #year year=str(ms_num[t]) #month datetimestr=ms_start[t] datestr=datetimestr[0:2] monthfloat=float(datestr) month=str(int(np.floor(monthfloat))) #day if int(month) < 10: day=datetimestr[2:4] if int(month) > 9: day=datetimestr[3:5] #time timestr=datetimestr[-5:] #construct year month day datetimestrfin=str(ms_num[t])+'-'+month+'-'+day #remove white spaces at the end and add time finaldatetime=datetimestrfin.strip()+' '+timestr #print(ms_start[t]) #print(finaldatetime) ms.start[t]=parse_time(finaldatetime).datetime ################### end time #year year=str(ms_num2[t]) #month datetimestr=ms_end[t] datestr=datetimestr[0:2] monthfloat=float(datestr) month=str(int(np.floor(monthfloat))) #day if int(month) < 10: day=datetimestr[2:4] if int(month) > 9: day=datetimestr[3:5] #time timestr=datetimestr[-5:] #construct year month day datetimestrfin=str(ms_num2[t])+'-'+month+'-'+day #remove white spaces at the end and add time finaldatetime=datetimestrfin.strip()+' '+timestr #print(ms_end[t]) #print(finaldatetime) ms.end[t]=parse_time(finaldatetime).datetime ############# stream interface time #year year=str(ms_num2[t]) #month datetimestr=ms_si[t] datestr=datetimestr[0:2] monthfloat=float(datestr) month=str(int(np.floor(monthfloat))) #day if int(month) < 10: day=datetimestr[2:4] if int(month) > 9: day=datetimestr[3:5] #time timestr=datetimestr[-5:] #construct year month day datetimestrfin=str(ms_num2[t])+'-'+month+'-'+day #remove white spaces at the end and add time finaldatetime=datetimestrfin.strip()+' '+timestr #print(ms_si[t]) #print(finaldatetime) ms.si[t]=parse_time(finaldatetime).datetime #print() #get rid of zeros where the years where stated in the original data ms2 = ms[np.argwhere(ms)] return ms2 def save_msl_rad(): #convert file # year, doy, sol, doseE hourly [uGy/day], doseE sol-filtered [uGy/day] raw=np.loadtxt('data/doseE_sol_filter_2019.dat') rad=np.zeros(len(raw),dtype=[('time',object),('sol', float),('dose_hour', float),('dose_sol', float)]) rad = rad.view(np.recarray) rad.sol=raw[:,2] rad.dose_hour=raw[:,3] rad.dose_sol=raw[:,4] #make datetime array from year and doy for i in np.arange(len(rad)): rad[i].time=parse_time(str(int(raw[i,0]))+'-01-01 00:00').datetime+datetime.timedelta(days=raw[i,1]-1) print(rad[i].time) file='msl_2012_2019_rad.p' pickle.dump(rad, open(data_path+file, "wb")) return 0 def load_msl_rad(): file='msl_2012_2019_rad.p' rad=pickle.load(open(data_path+file, "rb")) return rad def save_psp_data(path, file, sceq): print('save PSP data') t_start = datetime.datetime(2018, 10, 6) t_end = datetime.datetime(2019, 4, 24) # UNTIL ERROR on Apr 25 psp1=get_psp_data(t_start,t_end) t_start = datetime.datetime(2019, 4, 26) #t_end = datetime.datetime(2019, 4, 30) #t_end = datetime.datetime(2019, 10, 15) t_end = datetime.datetime(2021, 3, 31) psp2=get_psp_data(t_start,t_end) #add both psp=np.zeros(np.size(psp1.time)+np.size(psp2.time),dtype=[('time',object),('bx', float),('by', float),\ ('bz', float),('bt', float),('vt', float),('vx', float),('vy', float),('vz', float),('np', float),('tp', float),\ ('x', float),('y', float),('z', float),\ ('r', float),('lat', float),('lon', float)]) #convert to recarray psp = psp.view(np.recarray) psp.time=np.hstack((psp1.time,psp2.time)) psp.bx=np.hstack((psp1.bx,psp2.bx)) psp.by=np.hstack((psp1.by,psp2.by)) psp.bz=np.hstack((psp1.bz,psp2.bz)) psp.bt=np.hstack((psp1.bt,psp2.bt)) psp.vt=np.hstack((psp1.vt,psp2.vt)) psp.vx=np.hstack((psp1.vx,psp2.vx)) psp.vy=np.hstack((psp1.vy,psp2.vy)) psp.vz=np.hstack((psp1.vz,psp2.vz)) psp.np=np.hstack((psp1.np,psp2.np)) psp.tp=np.hstack((psp1.tp,psp2.tp)) psp.x=np.hstack((psp1.x,psp2.x)) psp.y=np.hstack((psp1.y,psp2.y)) psp.z=np.hstack((psp1.z,psp2.z)) psp.r=np.hstack((psp1.r,psp2.r)) psp.lon=np.hstack((psp1.lon,psp2.lon)) psp.lat=np.hstack((psp1.lat,psp2.lat)) print('Merging done') #convert magnetic field to SCEQ coord='RTN' if sceq==True: coord='SCEQ' psp=convert_RTN_to_SCEQ(psp,'PSP') header='PSP magnetic field (FIELDS instrument) and plasma data (SWEAP), ' + \ 'obtained from https://spdf.gsfc.nasa.gov/pub/data/psp/ '+ \ 'Timerange: '+psp.time[0].strftime("%Y-%b-%d %H:%M")+' to '+psp.time[-1].strftime("%Y-%b-%d %H:%M")+\ ', linearly interpolated to a time resolution of '+str(np.mean(np.diff(psp.time)).seconds)+' seconds. '+\ 'The data are put in a numpy recarray, fields can be accessed by psp.time, psp.bx, psp.vt etc. '+\ 'Missing data has been set to "np.nan". Total number of data points: '+str(psp.size)+'. '+\ 'Units are btxyz [nT,'+coord+'], vtxyz [km/s, RTN], np[cm^-3], tp [K], heliospheric position x/y/z/r/lon/lat [AU, degree, HEEQ]. '+\ 'Made with https://github.com/cmoestl/heliocats (uses https://github.com/ajefweiss/HelioSat '+\ 'and https://github.com/heliopython/heliopy). '+\ 'By <NAME> (twitter @chrisoutofspace), <NAME>, and <NAME>. File creation date: '+\ datetime.datetime.utcnow().strftime("%Y-%b-%d %H:%M")+' UTC' pickle.dump([psp,header], open(path+file, "wb")) def get_psp_data(t_start,t_end): print('start PSP') psp_sat = heliosat.PSP() #create an array with 1 minute resolution between t start and end time = [ t_start + datetime.timedelta(minutes=1*n) for n in range(int ((t_end - t_start).days*60*24))] time_mat=mdates.date2num(time) tm, mag = psp_sat.get_data_raw(t_start, t_end, "psp_fields_l2")#,return_datetimes=True) tp, pro = psp_sat.get_data_raw(t_start, t_end, "psp_spc_l3")#,return_datetimes=True) tm=parse_time(tm,format='unix').datetime tp=parse_time(tp,format='unix').datetime print('download complete') print('start nan or interpolate') print('field') #round first each original time to full minutes original data at 30sec tround=copy.deepcopy(tm) format_str = '%Y-%m-%d %H:%M' for k in np.arange(np.size(tm)): tround[k] = datetime.datetime.strptime(datetime.datetime.strftime(tm[k], format_str), format_str) tm_mat=parse_time(tround).plot_date bx = np.interp(time_mat, tm_mat, mag[:,0] ) by = np.interp(time_mat, tm_mat, mag[:,1] ) bz = np.interp(time_mat, tm_mat, mag[:,2] ) #which values are not in original data compared to full time range isin=np.isin(time_mat,tm_mat) setnan=np.where(isin==False) #set to to nan that is not in original data bx[setnan]=np.nan by[setnan]=np.nan bz[setnan]=np.nan bt = np.sqrt(bx**2+by**2+bz**2) print('plasma') #for plasma round first each original time to full minutes tround=copy.deepcopy(tp) format_str = '%Y-%m-%d %H:%M' for k in np.arange(np.size(tp)): tround[k] = datetime.datetime.strptime(datetime.datetime.strftime(tp[k], format_str), format_str) tp_mat=mdates.date2num(tround) isin=np.isin(time_mat,tp_mat) setnan=np.where(isin==False) den =
np.interp(time_mat, tp_mat, pro[:,0])
numpy.interp
from statsmodels.compat.python import lmap import calendar from io import BytesIO import locale import numpy as np from numpy.testing import assert_, assert_equal import pandas as pd import pytest from statsmodels.datasets import elnino, macrodata from statsmodels.graphics.tsaplots import ( month_plot, plot_acf, plot_pacf, plot_predict, quarter_plot, seasonal_plot, ) from statsmodels.tsa import arima_process as tsp from statsmodels.tsa.ar_model import AutoReg from statsmodels.tsa.arima.model import ARIMA try: from matplotlib import pyplot as plt except ImportError: pass @pytest.mark.matplotlib def test_plot_acf(close_figures): # Just test that it runs. fig = plt.figure() ax = fig.add_subplot(111) ar = np.r_[1.0, -0.9] ma = np.r_[1.0, 0.9] armaprocess = tsp.ArmaProcess(ar, ma) rs = np.random.RandomState(1234) acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal) plot_acf(acf, ax=ax, lags=10) plot_acf(acf, ax=ax) plot_acf(acf, ax=ax, alpha=None) @pytest.mark.matplotlib def test_plot_acf_irregular(close_figures): # Just test that it runs. fig = plt.figure() ax = fig.add_subplot(111) ar = np.r_[1.0, -0.9] ma = np.r_[1.0, 0.9] armaprocess = tsp.ArmaProcess(ar, ma) rs =
np.random.RandomState(1234)
numpy.random.RandomState
import tensorflow as tf import numpy as np import unittest from dnc.controller import BaseController class DummyController(BaseController): def network_vars(self): self.W = tf.Variable(tf.truncated_normal([self.nn_input_size, 64])) self.b = tf.Variable(tf.zeros([64])) def network_op(self, X): return tf.matmul(X, self.W) + self.b class DummyRecurrentController(BaseController): def network_vars(self): self.lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(64) self.state = tf.Variable(tf.zeros([self.batch_size, 64]), trainable=False) self.output = tf.Variable(tf.zeros([self.batch_size, 64]), trainable=False) def network_op(self, X, state): X = tf.convert_to_tensor(X) return self.lstm_cell(X, state) def update_state(self, new_state): return tf.group( self.output.assign(new_state[0]), self.state.assign(new_state[1]) ) def get_state(self): return (self.output, self.state) class DNCControllerTest(unittest.TestCase): def test_construction(self): graph = tf.Graph() with graph.as_default(): with tf.Session(graph=graph) as session: controller = DummyController(10, 10, 2, 5) rcontroller = DummyRecurrentController(10, 10, 2, 5, 1) self.assertFalse(controller.has_recurrent_nn) self.assertEqual(controller.nn_input_size, 20) self.assertEqual(controller.interface_vector_size, 38) self.assertEqual(controller.interface_weights.get_shape().as_list(), [64, 38]) self.assertEqual(controller.nn_output_weights.get_shape().as_list(), [64, 10]) self.assertEqual(controller.mem_output_weights.get_shape().as_list(), [10, 10]) self.assertTrue(rcontroller.has_recurrent_nn) self.assertEqual(rcontroller.nn_input_size, 20) self.assertEqual(rcontroller.interface_vector_size, 38) self.assertEqual(rcontroller.interface_weights.get_shape().as_list(), [64, 38]) self.assertEqual(rcontroller.nn_output_weights.get_shape().as_list(), [64, 10]) self.assertEqual(rcontroller.mem_output_weights.get_shape().as_list(), [10, 10]) def test_get_nn_output_size(self): graph = tf.Graph() with graph.as_default(): with tf.Session(graph=graph) as Session: controller = DummyController(10, 10, 2, 5) rcontroller = DummyRecurrentController(10, 10, 2, 5, 1) self.assertEqual(controller.get_nn_output_size(), 64) self.assertEqual(rcontroller.get_nn_output_size(), 64) def test_parse_interface_vector(self): graph = tf.Graph() with graph.as_default(): with tf.Session(graph=graph) as session: controller = DummyController(10, 10, 2, 5) zeta = np.random.uniform(-2, 2, (2, 38)).astype(np.float32) read_keys = np.reshape(zeta[:, :10], (-1, 5, 2)) read_strengths = 1 + np.log(np.exp(np.reshape(zeta[:, 10:12], (-1, 2, ))) + 1) write_key = np.reshape(zeta[:, 12:17], (-1, 5, 1)) write_strength = 1 + np.log(np.exp(np.reshape(zeta[:, 17], (-1, 1))) + 1) erase_vector = 1.0 / (1 + np.exp(-1 * np.reshape(zeta[:, 18:23], (-1, 5)))) write_vector = np.reshape(zeta[:, 23:28], (-1, 5)) free_gates = 1.0 / (1 + np.exp(-1 * np.reshape(zeta[:, 28:30], (-1, 2)))) allocation_gate = 1.0 / (1 + np.exp(-1 * zeta[:, 30, np.newaxis])) write_gate = 1.0 / (1 + np.exp(-1 * zeta[:, 31, np.newaxis])) read_modes = np.reshape(zeta[:, 32:], (-1, 3, 2)) read_modes = np.transpose(read_modes, [0, 2, 1]) read_modes = np.reshape(read_modes, (-1, 3)) read_modes = np.exp(read_modes) / np.sum(np.exp(read_modes), axis=-1, keepdims=True) read_modes = np.reshape(read_modes, (2, 2, 3)) read_modes = np.transpose(read_modes, [0, 2, 1]) op = controller.parse_interface_vector(zeta) session.run(tf.initialize_all_variables()) parsed = session.run(op) self.assertTrue(np.allclose(parsed['read_keys'], read_keys)) self.assertTrue(np.allclose(parsed['read_strengths'], read_strengths)) self.assertTrue(np.allclose(parsed['write_key'], write_key)) self.assertTrue(np.allclose(parsed['write_strength'], write_strength)) self.assertTrue(np.allclose(parsed['erase_vector'], erase_vector)) self.assertTrue(np.allclose(parsed['write_vector'], write_vector)) self.assertTrue(np.allclose(parsed['free_gates'], free_gates)) self.assertTrue(np.allclose(parsed['allocation_gate'], allocation_gate)) self.assertTrue(np.allclose(parsed['write_gate'], write_gate)) self.assertTrue(np.allclose(parsed['read_modes'], read_modes)) def test_process_input(self): graph = tf.Graph() with graph.as_default(): with tf.Session(graph=graph) as session: controller = DummyController(10, 10, 2, 5) rcontroller = DummyRecurrentController(10, 10, 2, 5, 2) input_batch = np.random.uniform(0, 1, (2, 10)).astype(np.float32) last_read_vectors = np.random.uniform(-1, 1, (2, 5, 2)).astype(np.float32) v_op, zeta_op = controller.process_input(input_batch, last_read_vectors) rv_op, rzeta_op, rs_op = rcontroller.process_input(input_batch, last_read_vectors, rcontroller.get_state()) session.run(tf.initialize_all_variables()) v, zeta = session.run([v_op, zeta_op]) rv, rzeta, rs = session.run([rv_op, rzeta_op, rs_op]) self.assertEqual(v.shape, (2, 10)) self.assertEqual(np.concatenate([np.reshape(val, (2, -1)) for _, val in zeta.items()], axis=1).shape, (2, 38)) self.assertEqual(rv.shape, (2, 10)) self.assertEqual(np.concatenate([np.reshape(val, (2, -1)) for _, val in rzeta.items()], axis=1).shape, (2, 38)) self.assertEqual([_s.shape for _s in rs], [(2, 64), (2, 64)]) def test_final_output(self): graph = tf.Graph() with graph.as_default(): with tf.Session(graph=graph) as session: controller = DummyController(10, 10, 2, 5) output_batch = np.random.uniform(0, 1, (2, 10)).astype(np.float32) new_read_vectors =
np.random.uniform(-1, 1, (2, 5, 2))
numpy.random.uniform
import numpy as np import matplotlib.pyplot as plt import cv2 import random from skimage import measure import torch from torchvision import utils def make_numpy_grid(tensor_data): # tensor_data: b x c x h x w, [0, 1], tensor tensor_data = tensor_data.detach() vis = utils.make_grid(tensor_data) vis = np.array(vis.cpu()).transpose((1,2,0)) if vis.shape[2] == 1: vis = np.stack([vis, vis, vis], axis=-1) return vis def cpt_ssim(img, img_gt, normalize=False): if normalize: img = (img - img.min()) / (img.max() - img.min() + 1e-9) img_gt = (img_gt - img_gt.min()) / (img_gt.max() - img_gt.min() + 1e-9) SSIM = measure.compare_ssim(img, img_gt, data_range=1.0) return SSIM def cpt_psnr(img, img_gt, PIXEL_MAX=1.0, normalize=False): if normalize: img = (img - img.min()) / (img.max() - img.min() + 1e-9) img_gt = (img_gt - img_gt.min()) / (img_gt.max() - img_gt.min() + 1e-9) mse = np.mean((img - img_gt) ** 2) psnr = 20 * np.log10(PIXEL_MAX / np.sqrt(mse)) return psnr def cpt_cos_similarity(img, img_gt, normalize=False): if normalize: img = (img - img.min()) / (img.max() - img.min() + 1e-9) img_gt = (img_gt - img_gt.min()) / (img_gt.max() - img_gt.min() + 1e-9) cos_dist = np.sum(img*img_gt) / np.sqrt(np.sum(img**2)*np.sum(img_gt**2) + 1e-9) return cos_dist def cpt_batch_psnr(img, img_gt, PIXEL_MAX): mse = torch.mean((img - img_gt) ** 2) psnr = 20 * torch.log10(PIXEL_MAX / torch.sqrt(mse)) return psnr def cpt_batch_classification_acc(predicted, target): # predicted: b x c, logits [-inf, +inf] pred_idx = torch.argmax(predicted, dim=1).int() pred_idx = torch.reshape(pred_idx, [-1]) target = torch.reshape(target, [-1]) return torch.mean((pred_idx.int()==target.int()).float()) def normalize(img, mask=None, p_min=0, p_max=0): # img: h x w, [0, 1], np.float32 if mask is None: sorted_arr = np.sort(img, axis=None) # sort the flattened array else: sorted_arr = np.sort(img[mask == 1], axis=None) # sort the flattened array n = len(sorted_arr) img_min = sorted_arr[int(n*p_min)] img_max = sorted_arr[::-1][int(n*p_max)] img_norm = (img - img_min) / (img_max - img_min + 1e-6) return
np.clip(img_norm, a_min=0, a_max=1.0)
numpy.clip
import numpy as np class OptRevOneItem: def __init__(self, config, data): self.config = config self.data = data ''' Compute the virtual value given the value and the bidder id ''' def compute_vv(self, v, i): distr_type = self.config.distribution_type if distr_type == 'uniform': return(2.0 * v - 1.0) elif distr_type == 'irregular': n = len(v) vv = np.zeros(n) for i in range(n): if(v[i] <= (7.0 - np.sqrt(5.0))/2.0): vv[i] = 2.0 * v[i] - 4.0 elif(v[i] <= (11.0 - np.sqrt(5.0))/2.0): vv[i] = 3.0 - np.sqrt(5.0) else: vv[i] = 2.0 * v[i] - 8.0 return(vv) elif distr_type == 'exponential': return(v - 3.0) elif distr_type == 'asymmetric_uniform': return(2.0 * v - (i+1)) def compute_vv_inv(self, x): distr_type = self.config.distribution_type if distr_type == 'uniform': n = len(x) max_val = np.max(x) second_max_val = np.sort(x)[-2] if(max_val < 0): return(0) elif(max_val >=0 and second_max_val < 0): return(0.5) else: return((second_max_val + 1.0)/2.0) elif distr_type == 'irregular': max_val = np.max(x) second_max_val = np.sort(x)[-2] if max_val < 0: return 0 elif max_val <= 3.0 - np.sqrt(5.0) and second_max_val < 0: return 2.0 elif max_val <= 3.0 - np.sqrt(5.0) and second_max_val <= 3.0 - np.sqrt(5.0): return (second_max_val + 4.0)/2.0 elif max_val > 3.0 - np.sqrt(5.0) and second_max_val < 0: return 2.0 elif max_val > 3.0 - np.sqrt(5.0) and second_max_val < 3.0 - np.sqrt(5.0): return (second_max_val + 4.0)/2.0 elif max_val > 3.0 - np.sqrt(5.0) and second_max_val == 3.0 - np.sqrt(5.0): return (11.0 - np.sqrt(5.0))/2.0 - 2.0/(sum(x == second_max_val)+1.0) else: return (second_max_val + 8.0)/2.0 elif distr_type == 'exponential': n = len(x) max_val = np.max(x) second_max_val = np.sort(x)[-2] if(max_val < 0): return(0) elif(max_val >=0 and second_max_val < 0): return(3.0) else: return(second_max_val + 3.0) elif distr_type == 'asymmetric_uniform': n = len(x) max_val = np.max(x) second_max_val =
np.sort(x)
numpy.sort
import matplotlib matplotlib.rcParams['text.usetex'] = True import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import numpy as np import math from matplotlib import rc import sys, os sys.path.append(os.path.dirname(sys.path[0])) from linearSolvers import AMORE from elementLibrary import shapeFunction, invShapeFunction, stiffnessMatrix from plotTools import pM from linearSolvers import AMORE def getGraphDataOFE(coord,coordinates,incidentElements,edge,displacement,DMatrix,nSampling): X=np.zeros((nSampling,nSampling)) Y=np.zeros((nSampling,nSampling)) U=np.zeros((nSampling,nSampling)) V=np.zeros((nSampling,nSampling)) Sxx=np.zeros((nSampling,nSampling)) Syy=np.zeros((nSampling,nSampling)) Sxy=
np.zeros((nSampling,nSampling))
numpy.zeros
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import cv2 import numpy as np import random import math from ..config import cfg def load_img(path, order='RGB'): # load img = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) if not isinstance(img, np.ndarray): raise IOError("Fail to read %s" % path) if order=='RGB': img = img[:,:,::-1].copy() img = img.astype(np.float32) return img def load_skeleton(path, joint_num): # load joint info (name, parent_id) skeleton = [{} for _ in range(joint_num)] with open(path) as fp: for line in fp: if line[0] == '#': continue splitted = line.split(' ') joint_name, joint_id, joint_parent_id = splitted joint_id, joint_parent_id = int(joint_id), int(joint_parent_id) skeleton[joint_id]['name'] = joint_name skeleton[joint_id]['parent_id'] = joint_parent_id # save child_id for i in range(len(skeleton)): joint_child_id = [] for j in range(len(skeleton)): if skeleton[j]['parent_id'] == i: joint_child_id.append(j) skeleton[i]['child_id'] = joint_child_id return skeleton def get_aug_config(): trans_factor = 0.15 scale_factor = 0.25 rot_factor = 45 color_factor = 0.2 trans = [np.random.uniform(-trans_factor, trans_factor), np.random.uniform(-trans_factor, trans_factor)] scale = np.clip(np.random.randn(), -1.0, 1.0) * scale_factor + 1.0 rot = np.clip(np.random.randn(), -2.0, 2.0) * rot_factor if random.random() <= 0.6 else 0 do_flip = random.random() <= 0.5 c_up = 1.0 + color_factor c_low = 1.0 - color_factor color_scale = np.array([random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]) return trans, scale, rot, do_flip, color_scale def augmentation(img, bbox, joint_coord, joint_valid, hand_type, mode, joint_type): img = img.copy(); joint_coord = joint_coord.copy(); hand_type = hand_type.copy(); original_img_shape = img.shape joint_num = len(joint_coord) if mode == 'train': trans, scale, rot, do_flip, color_scale = get_aug_config() else: trans, scale, rot, do_flip, color_scale = [0,0], 1.0, 0.0, False, np.array([1,1,1]) bbox[0] = bbox[0] + bbox[2] * trans[0] bbox[1] = bbox[1] + bbox[3] * trans[1] img, trans, inv_trans = generate_patch_image(img, bbox, do_flip, scale, rot, cfg.input_img_shape) img = np.clip(img * color_scale[None,None,:], 0, 255) if do_flip: joint_coord[:,0] = original_img_shape[1] - joint_coord[:,0] - 1 joint_coord[joint_type['right']], joint_coord[joint_type['left']] = joint_coord[joint_type['left']].copy(), joint_coord[joint_type['right']].copy() joint_valid[joint_type['right']], joint_valid[joint_type['left']] = joint_valid[joint_type['left']].copy(), joint_valid[joint_type['right']].copy() hand_type[0], hand_type[1] = hand_type[1].copy(), hand_type[0].copy() for i in range(joint_num): joint_coord[i,:2] = trans_point2d(joint_coord[i,:2], trans) joint_valid[i] = joint_valid[i] * (joint_coord[i,0] >= 0) * (joint_coord[i,0] < cfg.input_img_shape[1]) * (joint_coord[i,1] >= 0) * (joint_coord[i,1] < cfg.input_img_shape[0]) return img, joint_coord, joint_valid, hand_type, inv_trans def transform_input_to_output_space(joint_coord, joint_valid, rel_root_depth, root_valid, root_joint_idx, joint_type): # transform to output heatmap space joint_coord = joint_coord.copy(); joint_valid = joint_valid.copy() joint_coord[:,0] = joint_coord[:,0] / cfg.input_img_shape[1] * cfg.output_hm_shape[2] joint_coord[:,1] = joint_coord[:,1] / cfg.input_img_shape[0] * cfg.output_hm_shape[1] joint_coord[joint_type['right'],2] = joint_coord[joint_type['right'],2] - joint_coord[root_joint_idx['right'],2] joint_coord[joint_type['left'],2] = joint_coord[joint_type['left'],2] - joint_coord[root_joint_idx['left'],2] joint_coord[:,2] = (joint_coord[:,2] / (cfg.bbox_3d_size/2) + 1)/2. * cfg.output_hm_shape[0] joint_valid = joint_valid * ((joint_coord[:,2] >= 0) * (joint_coord[:,2] < cfg.output_hm_shape[0])).astype(np.float32) rel_root_depth = (rel_root_depth / (cfg.bbox_3d_size_root/2) + 1)/2. * cfg.output_root_hm_shape root_valid = root_valid * ((rel_root_depth >= 0) * (rel_root_depth < cfg.output_root_hm_shape)).astype(np.float32) return joint_coord, joint_valid, rel_root_depth, root_valid def get_bbox(joint_img, joint_valid): x_img = joint_img[:,0][joint_valid==1]; y_img = joint_img[:,1][joint_valid==1]; xmin = min(x_img); ymin = min(y_img); xmax = max(x_img); ymax = max(y_img); x_center = (xmin+xmax)/2.; width = xmax-xmin; xmin = x_center - 0.5*width*1.2 xmax = x_center + 0.5*width*1.2 y_center = (ymin+ymax)/2.; height = ymax-ymin; ymin = y_center - 0.5*height*1.2 ymax = y_center + 0.5*height*1.2 bbox = np.array([xmin, ymin, xmax-xmin, ymax-ymin]).astype(np.float32) return bbox def process_bbox(bbox, original_img_shape): # aspect ratio preserving bbox w = bbox[2] h = bbox[3] c_x = bbox[0] + w/2. c_y = bbox[1] + h/2. aspect_ratio = cfg.input_img_shape[1]/cfg.input_img_shape[0] if w > aspect_ratio * h: h = w / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio bbox[2] = w*1.25 bbox[3] = h*1.25 bbox[0] = c_x - bbox[2]/2. bbox[1] = c_y - bbox[3]/2. return bbox def generate_patch_image(cvimg, bbox, do_flip, scale, rot, out_shape): img = cvimg.copy() img_height, img_width, img_channels = img.shape bb_c_x = float(bbox[0] + 0.5*bbox[2]) bb_c_y = float(bbox[1] + 0.5*bbox[3]) bb_width = float(bbox[2]) bb_height = float(bbox[3]) if do_flip: img = img[:, ::-1, :] bb_c_x = img_width - bb_c_x - 1 trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot) img_patch = cv2.warpAffine(img, trans, (int(out_shape[1]), int(out_shape[0])), flags=cv2.INTER_LINEAR) img_patch = img_patch.astype(np.float32) inv_trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot, inv=True) return img_patch, trans, inv_trans def rotate_2d(pt_2d, rot_rad): x = pt_2d[0] y = pt_2d[1] sn, cs = np.sin(rot_rad), np.cos(rot_rad) xx = x * cs - y * sn yy = x * sn + y * cs return np.array([xx, yy], dtype=np.float32) def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False): # augment size with scale src_w = src_width * scale src_h = src_height * scale src_center = np.array([c_x, c_y], dtype=np.float32) # augment rotation rot_rad = np.pi * rot / 180 src_downdir = rotate_2d(
np.array([0, src_h * 0.5], dtype=np.float32)
numpy.array
import numpy as np import h5py as h5 import ctypes as ct import os from scipy import fft, ifft from scipy.interpolate import interp1d from control import forced_response, TransferFunction import sharpy.utils.cout_utils as cout import sharpy.utils.generator_interface as generator_interface import sharpy.utils.settings as settings import sharpy.utils.solver_interface as solver_interface from sharpy.utils.constants import deg2rad import sharpy.utils.h5utils as h5utils import sharpy.utils.algebra as algebra def compute_xf_zf(hf, vf, l, w, EA, cb): """ Fairlead location (xf, zf) computation """ root1, root2, ln1, ln2, lb = rename_terms(vf, hf, w, l) # Define if there is part of the mooring line on the bed if lb <= 0: nobed = True else: nobed = False # Compute the position of the fairlead if nobed: xf = hf/w*(ln1 - ln2) + hf*l/EA zf = hf/w*(root1 - root2) + 1./EA*(vf*l-w*l**2/2) else: xf = lb + hf/w*ln1 + hf*l/EA if not cb == 0.: xf += cb*w/2/EA*(-lb**2 + (lb - hf/cb/w)*np.maximum((lb - hf/cb/w), 0)) zf = hf/w*(root1 - 1) + vf**2/2/EA/w return xf, zf def compute_jacobian(hf, vf, l, w, EA, cb): """ Analytical computation of the Jacobian of equations in function compute_xf_zf """ root1, root2, ln1, ln2, lb = rename_terms(vf, hf, w, l) # Compute their deivatives der_root1_hf = 0.5*(1. + (vf/hf)**2)**(-0.5)*(2*vf/hf*(-vf/hf/hf)) der_root1_vf = 0.5*(1. + (vf/hf)**2)**(-0.5)*(2*vf/hf/hf) der_root2_hf = 0.5*(1. + ((vf - w*l)/hf)**2)**(-0.5)*(2.*(vf - w*l)/hf*(-(vf - w*l)/hf/hf)) der_root2_vf = 0.5*(1. + ((vf - w*l)/hf)**2)**(-0.5)*(2.*(vf - w*l)/hf/hf) der_ln1_hf = 1./(vf/hf + root1)*(vf/hf/hf + der_root1_hf) der_ln1_vf = 1./(vf/hf + root1)*(1./hf + der_root1_vf) der_ln2_hf = 1./((vf - w*l)/hf + root2)*(-(vf - w*l)/hf/hf + der_root2_hf) der_ln2_vf = 1./((vf - w*l)/hf + root2)*(1./hf + der_root2_vf) der_lb_hf = 0. der_lb_vf = -1./w # Define if there is part of the mooring line on the bed if lb <= 0: nobed = True else: nobed = False # Compute the Jacobian if nobed: der_xf_hf = 1./w*(ln1 - ln2) + hf/w*(der_ln1_hf + der_ln2_hf) + l/EA der_xf_vf = hf/w*(der_ln1_vf + der_ln2_vf) der_zf_hf = 1./w*(root1 - root2) + hf/w*(der_root1_hf - der_root2_hf) der_zf_vf = hf/w*(der_root1_vf - der_root2_vf) + 1./EA*l else: der_xf_hf = der_lb_hf + 1./w*ln1 + hf/w*der_ln1_hf + l/EA if not cb == 0.: arg1_max = l - vf/w - hf/cb/w if arg1_max > 0.: der_xf_hf += cb*w/2/EA*(2*(arg1_max)*(-1/cb/w)) der_xf_vf = der_lb_vf + hf/w*der_ln1_vf + cb*w/2/EA*(-2.*lb*der_lb_vf) if not cb == 0.: arg1_max = l - vf/w - hf/cb/w if arg1_max > 0.: der_xf_vf += cb*w/2/EA*(2.*(lb - hf/cb/w)*der_lb_vf) der_zf_hf = 1/w*(root1 - 1) + hf/w*der_root1_hf der_zf_vf = hf/w*der_root1_vf + vf/EA/w J = np.array([[der_xf_hf, der_xf_vf],[der_zf_hf, der_zf_vf]]) return J def rename_terms(vf, hf, w, l): """ Rename some terms for convenience """ root1 = np.sqrt(1. + (vf/hf)**2) root2 = np.sqrt(1. + ((vf - w*l)/hf)**2) ln1 = np.log(vf/hf + root1) ln2 = np.log((vf - w*l)/hf + root2) lb = l - vf/w return root1, root2, ln1, ln2, lb def quasisteady_mooring(xf, zf, l, w, EA, cb, hf0=None, vf0=None): """ Computation of the forces generated by the mooring system It performs a Newton-Raphson iteration based on the known equations in compute_xf_zf function and the Jacobian """ # Initialise guess for hf0 and vf0 if xf == 0: lambda0 = 1e6 elif np.sqrt(xf**2 + zf**2) > l: lambda0 = 0.2 else: lambda0 = np.sqrt(3*((l**2 - zf**2)/xf**2 - 1)) if hf0 is None: hf0 = np.abs(w*xf/2/lambda0) if vf0 is None: vf0 = w/2*(zf/np.tanh(lambda0) + l) # Compute the solution through Newton-Raphson iteration hf_est = hf0 + 0. vf_est = vf0 + 0. xf_est, zf_est = compute_xf_zf(hf_est, vf_est, l, w, EA, cb) # print("initial: ", xf_est, zf_est) tol = 1e-6 error = 2*tol max_iter = 10000 it = 0 while ((error > tol) and (it < max_iter)): J_est = compute_jacobian(hf_est, vf_est, l, w, EA, cb) inv_J_est = np.linalg.inv(J_est) hf_est += inv_J_est[0, 0]*(xf - xf_est) + inv_J_est[0, 1]*(zf - zf_est) vf_est += inv_J_est[1, 0]*(xf - xf_est) + inv_J_est[1, 1]*(zf - zf_est) # hf += (xf - xf_est)/J[0, 0] + (zf - zf_est)/J[1, 0] # vf += (xf - xf_est)/J[0, 1] + (zf - zf_est)/J[1, 1] xf_est, zf_est = compute_xf_zf(hf_est, vf_est, l, w, EA, cb) error = np.maximum(np.abs(xf - xf_est), np.abs(zf - zf_est)) # print(error) it += 1 if ((it == max_iter) and (error > tol)): cout.cout_wrap(("Mooring system did not converge. error %f" % error), 4) print("Mooring system did not converge. error %f" % error) return hf_est, vf_est def wave_radiation_damping(K, qdot, it, dt): """ This function computes the wave radiation damping assuming K constant """ qdot_int = np.zeros((6,)) for idof in range(6): qdot_int[idof] = np.trapz(np.arange(0, it + 1, 1)*dt, qdot[0:it, idof]) return np.dot(K, qdot_int) def change_of_to_sharpy(matrix_of): """ Change between frame of reference of OpenFAST and the usual one in SHARPy """ sub_mat = np.array([[0., 0, 1], [0., -1, 0], [1., 0, 0]]) C_of_s = np.zeros((6,6)) C_of_s[0:3, 0:3] = sub_mat C_of_s[3:6, 3:6] = sub_mat matrix_sharpy = np.dot(C_of_s.T, np.dot(matrix_of, C_of_s)) return matrix_sharpy # def interp_1st_dim_matrix(A, vec, value): # # # Make sure vec is ordered in strictly ascending order # if (np.diff(vec) <= 0).any(): # cout.cout_wrap("ERROR: vec should be in strictly increasing order", 4) # if not A.shape[0] == vec.shape[0]: # cout.cout_wrap("ERROR: Incoherent vector and matrix size", 4) # # # Compute the positions to interpolate # if value <= vec[0]: # return A[0, ...] # elif ((value >= vec[-1]) or (value > vec[-2] and np.isinf(vec[-1]))): # return A[-1, ...] # else: # i = 0 # while value > vec[i]: # i += 1 # dist = vec[i] - vec[i - 1] # rel_dist_to_im1 = (value - vec[i - 1])/dist # rel_dist_to_i = (vec[i] - value)/dist # # return A[i - 1, ...]*rel_dist_to_i + A[i, ...]*rel_dist_to_im1 def rfval(num, den, z): """ Evaluate a rational function given by the coefficients of the numerator (num) and denominator (den) at z """ return np.polyval(num, z)/np.polyval(den, z) def matrix_from_rf(dict_rf, w): """ Create a matrix from the rational function approximation of each one of the elements """ H = np.zeros((6, 6)) for i in range(6): for j in range(6): pos = "%d_%d" % (i, j) H[i, j] = rfval(dict_rf[pos]['num'], dict_rf[pos]['den'], w) return H def response_freq_dep_matrix(H, omega_H, q, it_, dt): """ Compute the frequency response of a system with a transfer function depending on the frequency F(t) = H(omega) * q(t) """ it = it_ + 1 omega_fft = np.linspace(0, 1/(2*dt), it//2)[:it//2] fourier_q = fft(q[:it, :], axis=0) fourier_f = np.zeros_like(fourier_q) ndof = q.shape[1] f = np.zeros((ndof)) # Compute the constant component if type(H) is np.ndarray: # H_omega = interp_1st_dim_matrix(H, omega_H, omega_fft[0]) interp_H = interp1d(omega_H, H, axis=0) H_omega = interp_H(omega_fft[0]) elif type(H) is tuple: H_omega = matrix_from_rf(H, omega_fft[0]) else: cout.cout_wrap(("ERROR: Not implemented response_freq_dep_matrix for type(H) %s" % type(H)), 4) fourier_f[0, :] = np.dot(H_omega, fourier_q[0, :]) # Compute the rest of the terms for iomega in range(1, omega_fft.shape[0]): # Interpolate H at omega if type(H) is np.ndarray: H_omega = interp_H(omega_fft[iomega]) elif type(H) is dict: H_omega = matrix_from_rf(H, omega_fft[iomega]) fourier_f[iomega, :] = np.dot(H_omega, fourier_q[iomega, :]) fourier_f[-iomega, :] = np.dot(H_omega, fourier_q[-iomega, :]) # Compute the inverse Fourier tranform f[:] = np.real(ifft(fourier_f, axis=0)[it_, :]) # (T, yout, xout) = lsim(H, q[:it_ + 1, :], T, X0=X0) return f def compute_equiv_hd_added_mass(f, q): """ Compute the matrix H that satisfies f = Hq H represents the added mass effects so it has to be symmetric. For the OC3 platfrom the following statements hold: - z-y symmetry - Non-diagonal non-zero terms: (1,5) and (2,4). Zero-indexed """ if (q == 0).all(): return np.zeros((6,6)) q_mat = np.array([[q[0], 0, 0, 0, 0, 0], [0, q[1], 0, 0, q[5], 0], [0, q[2], 0, 0, 0, q[4]], [0, 0, q[3], 0, 0, 0], [0, 0, 0, q[4], 0, q[2]], [0, 0, 0, q[5], q[1], 0]]) hv = np.dot(np.linalg.inv(q_mat), f) H = np.array([[hv[0], 0, 0, 0, 0, 0], [0, hv[1], 0, 0, 0, hv[4]], [0, 0, hv[1], 0, hv[5], 0], [0, 0, 0, hv[2], 0, 0], [0, 0, hv[5], 0, hv[3], 0], [0, hv[4], 0, 0, 0, hv[3]]]) return H def jonswap_spectrum(Tp, Hs, w): """ This function computes the one-sided spectrum of the JONSWAP wave data [2] <NAME>. Dynamics modeling and loads analysis of an offshore floating wind turbine. 2007. NREL/TP-500-41958 """ nomega = w.shape[0] spectrum = np.zeros((nomega)) for iomega in range(nomega): # Compute the scaling factor if w[iomega] <= 2*np.pi/Tp: sigma = 0.07 else: sigma = 0.09 # Compute the peak shape parameter param = Tp/np.sqrt(Hs) if param <= 3.6: gamma = 5. elif param > 5: gamma = 1. else: gamma = np.exp(5.75 - 1.15*param) # Compute one-sided spectrum omega = w[iomega] if omega == 0: spectrum[iomega] = 0. else: param = omega*Tp/2/np.pi spectrum[iomega] = (1./2/np.pi)*(5./16)*(Hs**2*Tp)*param**(-5) spectrum[iomega] *= np.exp(-5./4*param**(-4)) spectrum[iomega] *= (1. - 0.287*np.log(gamma)) spectrum[iomega] *= gamma**np.exp(-0.5*((param - 1.)/sigma)**2) return spectrum def noise_freq_1s(w): """ Generates a frequency representation of a white noise """ sigma = 1. #/np.sqrt(2) nomega = w.shape[0] wn = np.zeros((nomega, ), dtype=np.complex) u1 = np.random.random(size=nomega) #+ 0j u2 =
np.random.random(size=nomega)
numpy.random.random
""" psychoacoustics exports classes for handling psychophysical procedures and measures, like trial sequences and staircases.""" import io import pathlib import datetime import json import pickle import zipfile import collections from contextlib import contextmanager from abc import abstractmethod import warnings import matplotlib.cbook # necessary for matplotlib versions <3.5 to suppress a MatplotlibDeprecationWarning try: import curses except ImportError: curses = None import numpy try: import matplotlib.pyplot as plt except ImportError: plt = None import slab results_folder = 'Results' input_method = 'keyboard' #: sets the input for the Key context manager to 'keyboard 'or 'buttonbox' class _Buttonbox: """ Adapter class to allow easy switching between input from the keyboard via curses and from the custom buttonbox adapter (custom arduino device that sends a keystroke followed by a return keystroke when pressing a button on the arduino). """ @staticmethod def getch(): input_key = input() # buttonbox adapter has to return the keycode of intended keys! if input_key: return int(input_key) class _FigChar: """ Adapter class to allow easy switching to input via the current_character attribute of stairs figure. Set slab.psychoacoustics.input_method = 'figure' to use. A figure with the name 'stairs' will be opened if it is not already present. If used together with the plot method of the Staircase class, input is acquired through the stairs plot. Depending on the operating system, you may have to click once into the figure to give it focus. """ warnings.filterwarnings("ignore", category=matplotlib.cbook.MatplotlibDeprecationWarning) @staticmethod def getch(): global key def _on_key(event): global key key = event.key fig = plt.figure('stairs') cid = fig.canvas.mpl_connect('key_press_event', _on_key) key = None # reset while not key: plt.pause(0.01) # wait for 10ms, but keep figure event loop running return ord(key) @contextmanager def key(): """ Wrapper for curses module to simplify getting a single keypress from the terminal (default) or a buttonbox. Set slab.psychoacoustics.input_method = 'buttonbox' to use a custom USB buttonbox. Example:: with slab.Key() as key: response = key.getch() """ if input_method == 'keyboard': if curses is None: raise ImportError( 'You need curses to use the keypress class (pip install curses (or windows-curses))') curses.filter() stdscr = curses.initscr() curses.noecho() curses.cbreak() yield stdscr curses.nocbreak() curses.echo() curses.endwin() elif input_method == 'buttonbox': yield _Buttonbox elif input_method == 'figure': yield _FigChar else: raise ValueError('Unknown input method!') class LoadSaveMixin: """ Mixin to provide loading and saving functions. Supports JSON the pickle format """ def save_pickle(self, file_name, clobber=False): """ Save the object as pickle file. Arguments: file_name (str | pathlib.Path): name of the file to create. clobber (bool): overwrite existing file with the same name, defaults to False. Returns: (bool): True if writing was successful. """ if isinstance(file_name, pathlib.Path): file_name = str(file_name) if pathlib.Path(file_name).exists() and not clobber: raise FileExistsError("Select clobber=True to overwrite.") with open(file_name, 'wb') as fp: pickle.dump(self.__dict__, fp, protocol=pickle.HIGHEST_PROTOCOL) return True def load_pickle(self, file_name): """ Read pickle file and deserialize the object into `self.__dict__`. Attributes: file_name (str | pathlib.Path): name of the file to read. """ if isinstance(file_name, pathlib.Path): file_name = str(file_name) with open(file_name, 'rb') as fp: self.__dict__ = pickle.load(fp) def save_json(self, file_name=None, clobber=False): """ Save the object as JSON file. If the file exists, it is overwritten. Arguments: file_name (str | pathlib.Path): name of the file to create. If None or 'stdout', return a JSON object. clobber (bool): overwrite existing file with the same name, defaults to False. Returns: (bool): True if writing was successful. """ def default(i): return int(i) if isinstance(i, numpy.int64) else i # helper for converting numpy arrays if isinstance(file_name, pathlib.Path): file_name = str(file_name) if (file_name is None) or (file_name == 'stdout'): return json.dumps(self.__dict__, indent=2, default=default) if pathlib.Path(file_name).exists() and not clobber: raise FileExistsError("Select clobber=True to overwrite.") try: with open(file_name, 'w') as f: json.dump(self.__dict__, f, indent=2, default=default) return True except (TypeError, ValueError): # type error caused by json dump, value error by default function print("Your sequence contains data which is not JSON serializable, use the save_pickle method instead.") def load_json(self, file_name): """ Read JSON file and deserialize the object into `self.__dict__`. Attributes: file_name (str | pathlib.Path): name of the file to read. """ if isinstance(file_name, pathlib.Path): file_name = str(file_name) with open(file_name, 'r') as f: self.__dict__ = json.load(f) class TrialPresentationOptionsMixin: """ Mixin to provide alternative forced-choice (AFC) and Same-Different trial presentation methods and response simulation to `Trialsequence` and `Staircase`. """ @abstractmethod def add_response(self, response): pass @abstractmethod def print_trial_info(self): pass def present_afc_trial(self, target, distractors, key_codes=(range(49, 58)), isi=0.25, print_info=True): """ Present the reference and distractor sounds in random order and acquire a response keypress. The subject has to identify at which position the reference was played. The result (True if response was correct or False if response was wrong) is stored in the sequence via the `add_response` method. Arguments: target (instance of slab.Sound): sound that ought to be identified in the trial distractors (instance or list of slab.Sound): distractor sound(s) key_codes (list of int): ascii codes for the response keys (get code for button '1': ord('1') --> 49) pressing the second button in the list is equivalent to the response "the reference was the second sound played in this trial". Defaults to the key codes for buttons '1' to '9' isi (int or float): inter stimulus interval which is the pause between the end of one sound and the start of the next one. print_info (bool): If true, call the `print_trial_info` method afterwards """ if isinstance(distractors, list): stims = [target] + distractors # assuming sound object and list of sounds else: stims = [target, distractors] # assuming two sound objects order = numpy.random.permutation(len(stims)) for idx in order: stim = stims[idx] stim.play() plt.pause(isi) with key() as k: response = k.getch() interval = numpy.where(order == 0)[0][0] interval_key = key_codes[interval] response = response == interval_key self.add_response(response) if print_info: self.print_trial_info() def present_tone_trial(self, stimulus, correct_key_idx=0, key_codes=(range(49, 58)), print_info=True): """ Present the reference and distractor sounds in random order and acquire a response keypress. The result (True if response was correct or False if response was wrong) is stored in the sequence via the `add_response` method. Arguments: stimulus (slab.Sound): sound played in the trial. correct_key_idx (int): index of the key in `key_codes` that represents a correct response. Response is correct if `response == key_codes[correct_key_idx]`. key_codes (list of int): ascii codes for the response keys (get code for button '1': ord('1') --> 49). print_info (bool): If true, call the `print_trial_info` method afterwards. """ stimulus.play() with slab.key() as k: response = k.getch() response = response == key_codes[correct_key_idx] self.add_response(response) if print_info: self.print_trial_info() def simulate_response(self, threshold=None, transition_width=2, intervals=1, hitrates=None): """ Return a simulated response to the current condition index value by calculating the hitrate from a psychometric (logistic) function. This is only sensible if trials is numeric and an interval scale representing a continuous stimulus value. Arguments: threshold(None | int | float): Midpoint of the psychometric function for adaptive testing. When the intensity of the current trial is equal to the `threshold` the hitrate is 50 percent. transition_width (int | float): range of stimulus intensities over which the hitrate increases from 0.25 to 0.75. intervals (int): use 1 (default) to indicate a yes/no trial, 2 or more to indicate an alternative forced choice trial. The number of choices determines the probability for a correct response by chance. hitrates (None | list | numpy.ndarray): list or numpy array of hitrates for the different conditions, to allow custom rates instead of simulation. If given, `threshold` and `transition_width` are not used. If a single value is given, this value is used. """ slope = 0.5 / transition_width if isinstance(self, slab.psychoacoustics.Trialsequence): # check which class the mixin is in current_condition = self.trials[self.this_n] elif isinstance(self, slab.psychoacoustics.Staircase): current_condition = self._next_intensity else: return None if hitrates is None: if threshold is None: raise ValueError("threshold can't be None if hitrates is None!") hitrate = 1 / (1 +
numpy.exp(4 * slope * (threshold - current_condition))
numpy.exp
# ============================================================================ # Copyright (c) 2018 Diamond Light Source Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Author: <NAME> # E-mail: <EMAIL> # Description: Python implementation of the author's methods of # distortion correction, <NAME> et al "Radial lens distortion # correction with sub-pixel accuracy for X-ray micro-tomography" # Optics Express 23, 32859-32868 (2015), https://doi.org/10.1364/OE.23.032859 # Publication date: 10th July 2018 # ============================================================================ # Contributors: # ============================================================================ """ Module of processing methods: - Fit lines of dots to parabolas, find the center of distortion. - Calculate undistorted intercepts of gridlines. - Calculate distortion coefficients of the backward model, the forward model, and the backward-from-forward model. - Correct perspective distortion affecting curve lines. - Generate non-perspective points or lines from perspective points or lines. - Calculate perspective coefficients. """ import numpy as np from scipy import optimize def _para_fit_hor(list_lines, xcenter, ycenter): """ Fit horizontal lines of dots to parabolas. Parameters ---------- list_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. Returns ------- list_coef : list of 1D arrays List of the coefficients of each parabola (y=ax**2+bx+c). list_slines : list of 2D arrays List of the shifted (y,x)-coordinates of dot-centroids on each line. """ num_line = len(list_lines) list_coef = np.zeros((num_line, 3), dtype=np.float32) list_slines = [] for i, iline in enumerate(list_lines): line = np.asarray(iline) list_coef[i] = np.asarray(np.polyfit(line[:, 1] - xcenter, line[:, 0] - ycenter, 2)) list_temp = np.asarray( [(dot[0] - ycenter, dot[1] - xcenter) for dot in line]) list_slines.append(list_temp) return list_coef, list_slines def _para_fit_ver(list_lines, xcenter, ycenter): """ Fit vertical lines of dots to parabolas. Parameters ---------- list_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. Returns ------- list_coef : list of 1D arrays List of the coefficients of each parabola (x=ay**2+by+c). list_slines : list of 2D arrays List of the shifted (y,x)-coordinates of dot-centroids on each line. """ num_line = len(list_lines) list_coef = np.zeros((num_line, 3), dtype=np.float32) list_slines = [] for i, iline in enumerate(list_lines): line = np.asarray(iline) list_coef[i] = np.asarray( np.polyfit(line[:, 0] - ycenter, line[:, 1] - xcenter, 2)) list_temp = np.asarray( [(dot[0] - ycenter, dot[1] - xcenter) for dot in line]) list_slines.append(list_temp) return list_coef, list_slines def find_cod_coarse(list_hor_lines, list_ver_lines): """ Coarse estimation of the center of distortion. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. Returns ------- xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. """ (list_coef_hor, list_hor_lines) = _para_fit_hor(list_hor_lines, 0.0, 0.0) (list_coef_ver, list_ver_lines) = _para_fit_ver(list_ver_lines, 0.0, 0.0) pos_hor = np.argmax(np.abs(np.diff(np.sign(list_coef_hor[:, 0])))) + 1 pos_ver = np.argmax(np.abs(np.diff(np.sign(list_coef_ver[:, 0])))) + 1 ycenter0 = (list_coef_hor[pos_hor - 1, 2] + list_coef_hor[ pos_hor, 2]) * 0.5 xcenter0 = (list_coef_ver[pos_ver - 1, 2] + list_coef_ver[ pos_ver, 2]) * 0.5 slope_hor = (list_coef_hor[pos_hor - 1, 1] + list_coef_hor[ pos_hor, 1]) * 0.5 slope_ver = (list_coef_ver[pos_ver - 1, 1] + list_coef_ver[ pos_ver, 1]) * 0.5 ycenter = (ycenter0 + xcenter0 * slope_hor) / (1.0 - slope_hor * slope_ver) xcenter = (xcenter0 + ycenter0 * slope_ver) / (1.0 - slope_hor * slope_ver) return xcenter, ycenter def _func_dist(x, a, b, c): """ Function for finding the minimum distance. """ return x ** 2 + (a * x ** 2 + b * x + c) ** 2 def _calc_error(list_coef_hor, list_coef_ver): """ Calculate a metric of measuring how close fitted lines to the coordinate origin by: locating points on each parabola having the minimum distance to the origin, applying linear fits to these points, adding intercepts of the fits. Parameters ---------- list_coef_hor : list of 1D arrays Coefficients of parabolic fits of horizontal lines. list_coef_ver : list of 1D arrays Coefficients of parabolic fits of vertical lines. Returns ------- float """ num_hline = len(list_coef_hor) num_vline = len(list_coef_ver) list_hpoint = np.zeros((num_hline, 2), dtype=np.float32) for i, coefs in enumerate(list_coef_hor): minimum = optimize.minimize(_func_dist, 0.0, args=tuple(coefs)) xm = minimum.x[0] ym = coefs[0] * xm ** 2 + coefs[1] * xm + coefs[2] list_hpoint[i, 0] = xm list_hpoint[i, 1] = ym list_vpoint = np.zeros((num_vline, 2), dtype=np.float32) for i, coefs in enumerate(list_coef_ver): minimum = optimize.minimize(_func_dist, 0.0, args=tuple(coefs)) ym = minimum.x[0] xm = coefs[0] * ym ** 2 + coefs[1] * ym + coefs[2] list_vpoint[i, 0] = ym list_vpoint[i, 1] = xm error_h = np.polyfit(list_hpoint[:, 0], list_hpoint[:, 1], 1)[-1] error_v = np.polyfit(list_vpoint[:, 0], list_vpoint[:, 1], 1)[-1] return np.abs(error_h) + np.abs(error_v) def _calc_metric(list_hor_lines, list_ver_lines, xcenter, ycenter, list_xshift, list_yshift): """ Calculate a metric for determining the best center of distortion. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. list_xshift : list of float List of x-offsets from the x-center. list_yshift : list of float List of y-offsets from the y-center. Returns ------- xshift : float Shift in x-direction from the x-center. yshift : float Shift in y-direction from the y-center. """ (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) pos_hor = np.argmin(np.abs(list_coef_hor[:, 2])) pos_ver = np.argmin(np.abs(list_coef_ver[:, 2])) mat_metric = np.zeros( (len(list_xshift), len(list_yshift)), dtype=np.float32) num_hline = len(list_hor_lines) num_vline = len(list_ver_lines) numuse = min(5, num_hline // 2 - 1, num_vline // 2 - 1) (posh1, posh2) = ( max(0, pos_hor - numuse), min(num_hline, pos_hor + numuse + 1)) (posv1, posv2) = ( max(0, pos_ver - numuse), min(num_vline, pos_ver + numuse + 1)) for j, pos_x in enumerate(list_xshift): for i, pos_y in enumerate(list_yshift): (list_coef_hor, _) = _para_fit_hor( list_hor_lines[posh1:posh2], pos_x, pos_y) (list_coef_ver, _) = _para_fit_ver( list_ver_lines[posv1:posv2], pos_x, pos_y) mat_metric[i, j] = _calc_error(list_coef_hor, list_coef_ver) min_pos = (np.unravel_index(mat_metric.argmin(), mat_metric.shape)) xshift = list_xshift[min_pos[1]] yshift = list_yshift[min_pos[0]] return xshift, yshift def find_cod_fine(list_hor_lines, list_ver_lines, xcenter, ycenter, dot_dist): """ Find the best center of distortion (CoD) by searching around the coarse estimation of the CoD. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Coarse estimation of the CoD in x-direction. ycenter : float Coarse estimation of the CoD in y-direction. dot_dist : float Median distance of two nearest dots. Returns ------- xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. """ step0 = 2.0 list_xshift = np.arange(-dot_dist, dot_dist + step0, step0) list_yshift = list_xshift (xshift, yshift) = _calc_metric( list_hor_lines, list_ver_lines, xcenter, ycenter, list_xshift, list_yshift) xcenter1 = xcenter + xshift ycenter1 = ycenter + yshift step = 0.5 list_xshift = np.arange(-step0, step0 + step, step) list_yshift = list_xshift (xshift, yshift) = _calc_metric( list_hor_lines, list_ver_lines, xcenter1, ycenter1, list_xshift, list_yshift) xcenter2 = xcenter1 + xshift ycenter2 = ycenter1 + yshift return xcenter2, ycenter2 def _check_missing_lines(list_coef_hor, list_coef_ver): """ Check if there are missing lines Parameters ---------- list_coef_hor : list of 1D arrays Coefficients of parabolic fits of horizontal lines. list_coef_ver : list of 1D arrays Coefficients of parabolic fits of vertical lines. Returns ------- bool """ check = False list_dist_hor = np.abs(np.diff(list_coef_hor[:, 2])) list_dist_ver = np.abs(np.diff(list_coef_ver[:, 2])) list_hindex = np.arange(len(list_dist_hor)) list_vindex = np.arange(len(list_dist_ver)) hfact = np.polyfit(list_hindex, list_dist_hor, 2) vfact = np.polyfit(list_vindex, list_dist_ver, 2) list_fit_hor = hfact[0] * list_hindex ** 2 + \ hfact[1] * list_hindex + hfact[2] list_fit_ver = vfact[0] * list_vindex ** 2 + \ vfact[1] * list_vindex + vfact[2] herror = np.max(np.abs((list_dist_hor - list_fit_hor) / list_fit_hor)) verror = np.max(np.abs((list_dist_ver - list_fit_ver) / list_fit_ver)) if (herror > 0.3) or (verror > 0.3): check = True return check def _func_opt(d0, c0, indexc0, *list_inter): """ Function for finding the optimum undistorted distance for radial distortion correction. """ return np.sum( np.asarray([(np.sign(c) * np.abs(i - indexc0) * d0 + c0 - c) ** 2 for i, c in enumerate(list_inter)])) def _optimize_intercept(dist_hv, pos_hv, list_inter): """ Find the optimum undistorted distance for radial-distortion correction. """ list_arg = [list_inter[pos_hv], pos_hv] list_arg.extend(list_inter) minimum = optimize.minimize(_func_opt, dist_hv, args=tuple(list_arg)) return minimum.x[0] def _calc_undistor_intercept(list_hor_lines, list_ver_lines, xcenter, ycenter, optimizing=False): """ Calculate the intercepts of undistorted lines. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. optimizing : bool, optional Apply optimization if True. Returns ------- list_hor_uc : list of floats Intercepts of undistorted horizontal lines. list_ver_uc : list of floats Intercepts of undistorted vertical lines. """ (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) check = _check_missing_lines(list_coef_hor, list_coef_ver) if check: print("!!! ERROR !!!") print("Parameters of the methods of grouping dots need to be adjusted") raise ValueError("There're missing lines, algorithm will not work!!!") pos_hor = np.argmin(np.abs(list_coef_hor[:, 2])) pos_ver = np.argmin(np.abs(list_coef_ver[:, 2])) num_hline = len(list_hor_lines) num_vline = len(list_ver_lines) num_use = min(3, num_hline // 2 - 1, num_vline // 2 - 1) (posh1, posh2) = ( max(0, pos_hor - num_use), min(num_hline, pos_hor + num_use + 1)) (posv1, posv2) = ( max(0, pos_ver - num_use), min(num_vline, pos_ver + num_use + 1)) dist_hor = np.mean(np.abs(np.diff(list_coef_hor[posh1: posh2, 2]))) dist_ver = np.mean(np.abs(np.diff(list_coef_ver[posv1: posv2, 2]))) if optimizing is True: dist_hor = _optimize_intercept(dist_hor, pos_hor, list_coef_hor[:, 2]) dist_ver = _optimize_intercept(dist_ver, pos_ver, list_coef_ver[:, 2]) list_hor_uc = np.zeros(num_hline, dtype=np.float32) list_ver_uc = np.zeros(num_vline, dtype=np.float32) for i in range(num_hline): dist = np.abs(i - pos_hor) * dist_hor list_hor_uc[i] = np.sign(list_coef_hor[i, 2]) * dist + list_coef_hor[ pos_hor, 2] for i in range(num_vline): dist = np.abs(i - pos_ver) * dist_ver list_ver_uc[i] = np.sign(list_coef_ver[i, 2]) * dist + list_coef_ver[ pos_ver, 2] return list_hor_uc, list_ver_uc def calc_coef_backward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact): """ Calculate the distortion coefficients of a backward mode. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. num_fact : int Number of the factors of polynomial. Returns ------- list_fact : list of float Coefficients of the polynomial. """ num_fact = np.int16(np.clip(num_fact, 1, None)) (list_hor_uc, list_ver_uc) = _calc_undistor_intercept( list_hor_lines, list_ver_lines, xcenter, ycenter) (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) Amatrix = [] Bmatrix = [] list_expo = np.arange(num_fact, dtype=np.int16) for i, line in enumerate(list_hor_lines): (a_coef, _, c_coef) = np.float64(list_coef_hor[i]) uc_coef = np.float64(list_hor_uc[i]) for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = (a_coef * xd * xd + c_coef) / uc_coef Amatrix.append(np.power(rd / Fb, list_expo)) Bmatrix.append(Fb) for i, line in enumerate(list_ver_lines): (a_coef, _, c_coef) = np.float64(list_coef_ver[i]) uc_coef = np.float64(list_ver_uc[i]) for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = (a_coef * yd * yd + c_coef) / uc_coef Amatrix.append(np.power(rd / Fb, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) list_fact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return list_fact def calc_coef_forward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact): """ Calculate the distortion coefficients of a forward mode. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. num_fact : int Number of the factors of polynomial. Returns ------- list_fact : list of float Coefficients of the polynomial. """ num_fact = np.int16(np.clip(num_fact, 1, None)) (list_hor_uc, list_ver_uc) = _calc_undistor_intercept( list_hor_lines, list_ver_lines, xcenter, ycenter) (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) list_expo = np.arange(num_fact, dtype=np.int16) Amatrix = [] Bmatrix = [] for i, line in enumerate(list_hor_lines): (a_coef, _, c_coef) = np.float64(list_coef_hor[i]) uc_coef = np.float64(list_hor_uc[i]) if uc_coef != 0.0: for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = uc_coef / (a_coef * xd * xd + c_coef) if Fb != 0.0: Amatrix.append(np.power(rd, list_expo)) Bmatrix.append(Fb) for i, line in enumerate(list_ver_lines): (a_coef, _, c_coef) = np.float64(list_coef_ver[i]) uc_coef = np.float64(list_ver_uc[i]) if uc_coef != 0.0: for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = uc_coef / (a_coef * yd * yd + c_coef) if Fb != 0.0: Amatrix.append(np.power(rd, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) list_fact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return list_fact def calc_coef_backward_from_forward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact): """ Calculate the distortion coefficients of a backward mode from a forward model. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. num_fact : int Number of the factors of polynomial. Returns ------- list_ffact : list of floats Polynomial coefficients of the forward model. list_bfact : list of floats Polynomial coefficients of the backward model. """ num_fact = np.int16(np.clip(num_fact, 1, None)) list_ffact = np.float64( calc_coef_forward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact)) (_, list_hor_lines) = _para_fit_hor(list_hor_lines, xcenter, ycenter) (_, list_ver_lines) = _para_fit_ver(list_ver_lines, xcenter, ycenter) list_expo = np.arange(num_fact, dtype=np.int16) Amatrix = [] Bmatrix = [] for _, line in enumerate(list_hor_lines): for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) ffactor = np.float64(np.sum(list_ffact * np.power(rd, list_expo))) if ffactor != 0.0: Fb = 1 / ffactor ru = ffactor * rd Amatrix.append(np.power(ru, list_expo)) Bmatrix.append(Fb) for _, line in enumerate(list_ver_lines): for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) ffactor = np.float64(np.sum(list_ffact * np.power(rd, list_expo))) if ffactor != 0.0: Fb = 1 / ffactor ru = ffactor * rd Amatrix.append(np.power(ru, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) list_bfact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return list_ffact, list_bfact def transform_coef_backward_and_forward(list_fact, mapping="backward", ref_points=None): """ Transform polynomial coefficients of a radial distortion model between forward mapping and backward mapping. Parameters ---------- list_fact : list of floats Polynomial coefficients of the radial distortion model. mapping : {'backward', 'forward'} Transformation direction. ref_points : list of 1D-arrays, optional List of the (y,x)-coordinates of points used for the transformation. Generated if None given. Returns ------- list of floats Polynomial coefficients of the reversed model. """ if ref_points is None: ref_points = [[i, j] for i in np.arange(-1000, 1000, 50) for j in np.arange(-1000, 1000, 50)] else: num_points = len(ref_points) if num_points < len(list_fact): raise ValueError("Number of reference-points must be equal or " "larger than the number of coefficients!!!") Amatrix = [] Bmatrix = [] list_expo = np.arange(len(list_fact), dtype=np.int16) if mapping == "forward": for point in ref_points: xu = np.float64(point[1]) yu = np.float64(point[0]) ru = np.sqrt(xu * xu + yu * yu) factor = np.float64( np.sum(list_fact * np.power(ru, list_expo))) if factor != 0.0: Fb = 1 / factor rd = factor * ru Amatrix.append(np.power(rd, list_expo)) Bmatrix.append(Fb) else: for point in ref_points: xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) factor = np.float64( np.sum(list_fact * np.power(rd, list_expo))) if factor != 0.0: Fb = 1 / factor ru = factor * rd Amatrix.append(np.power(ru, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) trans_fact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return trans_fact def find_cod_bailey(list_hor_lines, list_ver_lines, iteration=2): """ Find the center of distortion (COD) using the Bailey's approach (Ref. [1]). Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. Returns ------- xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. References ---------- [1].. https://www-ist.massey.ac.nz/dbailey/sprg/pdfs/2002_IVCNZ_59.pdf """ (xcenter, ycenter) = find_cod_coarse(list_hor_lines, list_ver_lines) list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] a1, b1 = np.polyfit(list_coef_hor[:, 2], list_coef_hor[:, 0], 1)[0:2] a2, b2 = np.polyfit(list_coef_ver[:, 2], list_coef_ver[:, 0], 1)[0:2] xcenter = xcenter - b2 / a2 ycenter = ycenter - b1 / a1 for i in range(iteration): list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] a1, b1 = np.polyfit(list_coef_hor[:, 2], list_coef_hor[:, 0], 1)[0:2] a2, b2 = np.polyfit(list_coef_ver[:, 2], list_coef_ver[:, 0], 1)[0:2] xcenter = xcenter - b2 / a2 ycenter = ycenter - b1 / a1 return xcenter, ycenter def _generate_non_perspective_parabola_coef(list_hor_lines, list_ver_lines): """ Correct the deviation of fitted parabola coefficients of each line caused by perspective distortion. Note that the resulting coefficients are referred to a different origin-coordinate instead of (0, 0). Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. Returns ------- list_coef_hor : list of 1D-arrays List of the corrected coefficients for horizontal lines. list_coef_ver : list of 1D-arrays List of the corrected coefficients for vertical lines. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. """ num_hline, num_vline = len(list_hor_lines), len(list_ver_lines) xcenter, ycenter = find_cod_bailey(list_hor_lines, list_ver_lines) list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] ah, bh = np.polyfit(list_coef_hor[:, 2], list_coef_hor[:, 1], 1)[0:2] av, bv = np.polyfit(list_coef_ver[:, 2], -list_coef_ver[:, 1], 1)[0:2] if np.abs(ah - av) >= 0.001: b0 = (ah * bv - av * bh) / (ah - av) else: b0 = (bh + bv) * 0.5 list_coef_hor[:, 1] = b0 * np.ones(num_hline) list_coef_ver[:, 1] = -b0 * np.ones(num_vline) pos_hor = np.argmax(np.abs(np.diff(np.sign(list_coef_hor[:, 0])))) + 1 pos_ver = np.argmax(np.abs(np.diff(np.sign(list_coef_ver[:, 0])))) + 1 num_use = min(3, num_hline // 2 - 1, num_vline // 2 - 1) (posh1, posh2) = ( max(0, pos_hor - num_use), min(num_hline, pos_hor + num_use + 1)) (posv1, posv2) = ( max(0, pos_ver - num_use), min(num_vline, pos_ver + num_use + 1)) dist_hor = np.mean(np.abs(np.diff(list_coef_hor[posh1: posh2, 2]))) dist_ver = np.mean(np.abs(np.diff(list_coef_ver[posv1: posv2, 2]))) if dist_hor > dist_ver: list_coef_ver[:, 2] = list_coef_ver[:, 2] * dist_hor / dist_ver list_coef_ver[:, 0] = list_coef_ver[:, 0] * dist_hor / dist_ver else: list_coef_hor[:, 2] = list_coef_hor[:, 2] * dist_ver / dist_hor list_coef_hor[:, 0] = list_coef_hor[:, 0] * dist_ver / dist_hor return list_coef_hor, list_coef_ver, xcenter, ycenter def _find_cross_point_between_parabolas(para_coef_hor, para_coef_ver): """ Find a cross point between two parabolas. Parameters ---------- para_coef_hor : array_like Coefficients of a horizontal parabola (y=ax**2+bx+c). para_coef_ver : array_like Coefficients of a vertical parabola (x=ay**2+by+c). Returns ------- x, y : floats Coordinate of the cross point. """ a1, b1, c1 = para_coef_hor[0:3] a2, b2, c2 = para_coef_ver[0:3] xvals = np.float32(np.real( np.roots([a1 ** 2 * a2, 2 * a1 * a2 * b1, a2 * b1 ** 2 + a1 * b2 + 2 * a1 * a2 * c1, -1 + b1 * b2 + 2 * a2 * b1 * c1, b2 * c1 + a2 * c1 ** 2 + c2]))) if len(xvals) == 0: raise ValueError("Can't find a cross point between two parabolas") if len(xvals) > 1: x = xvals[np.argmin(np.abs(xvals - c2))] else: x = xvals[0] y = a1 * x ** 2 + b1 * x + c1 return x, y def regenerate_grid_points_parabola(list_hor_lines, list_ver_lines, perspective=True): """ Regenerating grid points by finding cross points between horizontal lines and vertical lines using their parabola coefficients. Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. perspective : bool, optional Apply perspective correction if True. Returns ------- new_hor_lines : list of 2D-arrays List of the updated (y,x)-coordinates of points on each horizontal line. new_ver_lines : list of 2D-arrays List of the updated (y,x)-coordinates of points on each vertical line. """ if perspective is True: results = _generate_non_perspective_parabola_coef(list_hor_lines, list_ver_lines) list_coef_hor, list_coef_ver, xcenter, ycenter = results else: xcenter, ycenter = find_cod_bailey(list_hor_lines, list_ver_lines) list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] num_hline, num_vline = len(list_coef_hor), len(list_coef_ver) new_hor_lines = np.zeros((num_hline, num_vline, 2), dtype=np.float32) new_ver_lines = np.zeros((num_vline, num_hline, 2), dtype=np.float32) for i in range(num_hline): for j in range(num_vline): x, y = _find_cross_point_between_parabolas(list_coef_hor[i], list_coef_ver[j]) new_hor_lines[i, j] = np.asarray([y + ycenter, x + xcenter]) new_ver_lines[j, i] = np.asarray([y + ycenter, x + xcenter]) return new_hor_lines, new_ver_lines def _generate_linear_coef(list_hor_lines, list_ver_lines, xcenter=0.0, ycenter=0.0): """ Get linear coefficients of horizontal and vertical lines from linear fit. Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. xcenter : float X-origin of the coordinate system. ycenter : float Y-origin of the coordinate system. Returns ------- list_coef_hor : list of 1D-arrays List of the linear coefficients for horizontal lines. list_coef_ver : list of 1D-arrays List of the linear coefficients for vertical lines. """ num_hline, num_vline = len(list_hor_lines), len(list_ver_lines) list_coef_hor = np.zeros((num_hline, 2), dtype=np.float32) list_coef_ver = np.zeros((num_vline, 2), dtype=np.float32) for i in range(num_hline): list_coef_hor[i] = np.polyfit(list_hor_lines[i][:, 1] - xcenter, list_hor_lines[i][:, 0] - ycenter, 1) for i in range(num_vline): list_coef_ver[i] = np.polyfit(list_ver_lines[i][:, 0] - ycenter, list_ver_lines[i][:, 1] - xcenter, 1) return list_coef_hor, list_coef_ver def _find_cross_point_between_lines(line_coef_hor, line_coef_ver): """ Find a cross point between two lines. Parameters ---------- line_coef_hor : array_like Coefficients of a horizontal line (y=ax+b). line_coef_ver : array_like Coefficients of a vertical line (x=ay+b). Returns ------- x, y : floats Coordinate of the cross point. """ a1, b1 = line_coef_hor a2, b2 = line_coef_ver y = (a1 * b2 + b1) / (1.0 - a1 * a2) x = a2 * y + b2 return x, y def _func_opt_pers(d0, c0, indexc0, *list_inter): """ Function for finding the optimum undistorted distance for perspective-distortion correction. """ return np.sum( np.asarray([((i - indexc0) * d0 + c0 - c) ** 2 for i, c in enumerate(list_inter)])) def _optimize_intercept_perspective(dist_hv, pos_hv, list_inter): """ Find the optimum undistorted distance for perspective-distortion correction. """ list_arg = [list_inter[pos_hv], pos_hv] list_arg.extend(list_inter) minimum = optimize.minimize(_func_opt_pers, dist_hv, args=tuple(list_arg)) return minimum.x[0] def _calc_undistor_intercept_perspective(list_hor_lines, list_ver_lines, equal_dist=True, scale="mean", optimizing=True): """ Calculate the intercepts of undistorted lines from perspective distortion. Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. equal_dist : bool Use the condition that lines are equidistant if True. scale : {'mean', 'median', 'min', 'max'} Scale option for the undistorted grid. optimizing : bool Apply optimization for finding line-distance if True. Returns ------- u_intercept_hor : array_like 1D array. List of undistorted intercepts of the horizontal lines. u_intercept_ver : array_like 1D array. List of undistorted intercepts of the vertical lines. """ list_coef_hor, list_coef_ver = _generate_linear_coef(list_hor_lines, list_ver_lines) num_hline, num_vline = len(list_hor_lines), len(list_ver_lines) pos_hor, pos_ver = num_hline // 2, num_vline // 2 num_use = min(num_hline // 2 - 1, num_vline // 2 - 1) (posh1, posh2) = (max(0, pos_hor - num_use), min(num_hline, pos_hor + num_use + 1)) (posv1, posv2) = (max(0, pos_ver - num_use), min(num_vline, pos_ver + num_use + 1)) if scale == "max": dist_hor = np.max(np.abs(np.diff(list_coef_hor[posh1: posh2, 1]))) dist_ver = np.max(np.abs(np.diff(list_coef_ver[posv1: posv2, 1]))) elif scale == "min": dist_hor = np.min(np.abs(np.diff(list_coef_hor[posh1: posh2, 1]))) dist_ver = np.min(np.abs(np.diff(list_coef_ver[posv1: posv2, 1]))) elif scale == "median": dist_hor = np.median(np.abs(np.diff(list_coef_hor[posh1: posh2, 1]))) dist_ver = np.median(np.abs(np.diff(list_coef_ver[posv1: posv2, 1]))) else: dist_hor = np.mean(np.abs(np.diff(list_coef_hor[posh1: posh2, 1]))) dist_ver = np.mean(np.abs(np.diff(list_coef_ver[posv1: posv2, 1]))) if optimizing is True: dist_hor = _optimize_intercept_perspective(dist_hor, pos_hor, list_coef_hor[:, 1]) dist_ver = _optimize_intercept_perspective(dist_ver, pos_ver, list_coef_ver[:, 1]) if equal_dist is True: if scale == "max": dist = max(dist_hor, dist_ver) elif scale == "min": dist = min(dist_hor, dist_ver) else: dist = (dist_hor + dist_ver) * 0.5 dist_hor = dist_ver = dist u_intercept_hor = np.zeros(num_hline, dtype=np.float32) u_intercept_ver = np.zeros(num_vline, dtype=np.float32) for i in range(num_hline): dist = (i - pos_hor) * dist_hor u_intercept_hor[i] = dist + list_coef_hor[pos_hor, 1] for i in range(num_vline): dist = (i - pos_ver) * dist_ver u_intercept_ver[i] = dist + list_coef_ver[pos_ver, 1] return u_intercept_hor, u_intercept_ver def regenerate_grid_points_linear(list_hor_lines, list_ver_lines): """ Regenerating grid points by finding cross points between horizontal lines and vertical lines using their linear coefficients. Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. Returns ------- new_hor_lines : list of 2D-arrays List of the updated (y,x)-coordinates of points on each horizontal line. new_ver_lines : list of 2D-arrays List of the updated (y,x)-coordinates of points on each vertical line. """ num_hline, num_vline = len(list_hor_lines), len(list_ver_lines) list_coef_hor, list_coef_ver = _generate_linear_coef(list_hor_lines, list_ver_lines) new_hor_lines = np.zeros((num_hline, num_vline, 2), dtype=np.float32) new_ver_lines = np.zeros((num_vline, num_hline, 2), dtype=np.float32) for i in range(num_hline): for j in range(num_vline): x, y = _find_cross_point_between_lines(list_coef_hor[i], list_coef_ver[j]) new_hor_lines[i, j] = np.asarray([y, x]) new_ver_lines[j, i] = np.asarray([y, x]) return new_hor_lines, new_ver_lines def generate_undistorted_perspective_lines(list_hor_lines, list_ver_lines, equal_dist=True, scale="mean", optimizing=True): """ Generate undistorted lines from perspective lines. Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. equal_dist : bool Use the condition that lines are equidistant if True. scale : {'mean', 'median', 'min', 'max'} Scale option for the undistorted grid. optimizing : bool Apply optimization for finding line-distance if True. Returns ------- list_uhor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on undistorted horizontal lines. list_uver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on undistorted vertical lines. """ num_hline, num_vline = len(list_hor_lines), len(list_ver_lines) list_coef_hor, list_coef_ver = _generate_linear_coef(list_hor_lines, list_ver_lines) ah, bh = np.polyfit(list_coef_hor[:, 1], list_coef_hor[:, 0], 1)[0:2] av, bv = np.polyfit(list_coef_ver[:, 1], -list_coef_ver[:, 0], 1)[0:2] if np.abs(ah - av) >= 0.0001: a0 = (ah * bv - av * bh) / (ah - av) else: a0 = (bh + bv) * 0.5 list_coef_uhor = np.copy(list_coef_hor) list_coef_uver = np.copy(list_coef_ver) list_coef_uhor[:, 0] = a0 * np.ones(num_hline) list_coef_uver[:, 0] = -a0 * np.ones(num_vline) results = _calc_undistor_intercept_perspective(list_hor_lines, list_ver_lines, equal_dist, scale, optimizing) list_coef_uhor[:, 1] = results[0] list_coef_uver[:, 1] = results[1] list_uhor_lines = np.zeros((num_hline, num_vline, 2), dtype=np.float32) list_uver_lines = np.zeros((num_vline, num_hline, 2), dtype=np.float32) for i in range(num_hline): for j in range(num_vline): x, y = _find_cross_point_between_lines(list_coef_uhor[i], list_coef_uver[j]) list_uhor_lines[i, j] = np.asarray([y, x]) list_uver_lines[j, i] = np.asarray([y, x]) return list_uhor_lines, list_uver_lines def generate_source_target_perspective_points(list_hor_lines, list_ver_lines, equal_dist=True, scale="mean", optimizing=True): """ Generate source points (distorted) and target points (undistorted). Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. equal_dist : bool Use the condition that lines are equidistant if True. scale : {'mean', 'median', 'min', 'max'} Scale option for the undistorted grid. optimizing : bool Apply optimization for finding line-distance if True. Returns ------- source_points : list of 1D-arrays List of the (y,x)-coordinates of distorted points. target_points : list of 1D-arrays List of the (y,x)-coordinates of undistorted points. """ list_hor_slines, list_ver_slines = regenerate_grid_points_linear( list_hor_lines, list_ver_lines) list_hor_tlines, _ = generate_undistorted_perspective_lines( list_hor_slines, list_ver_slines, equal_dist, scale, optimizing) source_points = [] target_points = [] for i in range(len(list_hor_slines)): for j in range(len(list_ver_slines)): p1 = list_hor_slines[i, j] p2 = list_hor_tlines[i, j] if p1[0] > 0 and p1[1] > 0 and p2[0] > 0 and p2[1] > 0: source_points.append(list_hor_slines[i, j]) target_points.append(list_hor_tlines[i, j]) return np.asarray(source_points), np.asarray(target_points) def generate_4_source_target_perspective_points(points, input_order="yx", equal_dist=False, scale="mean"): """ Generate 4 rectangular points corresponding to 4 perspective-distorted points. Parameters ---------- points : list of 1D-arrays List of the coordinates of 4 perspective-distorted points. input_order : {'yx', 'xy'} Order of the coordinates of input-points. equal_dist : bool Use the condition that the rectangular making of 4-points is square if True. scale : {'mean', 'min', 'max', float} Scale option for the undistorted points. Returns ------- source_points : list of 1D-arrays List of the (y,x)-coordinates of distorted points. target_points : list of 1D-arrays List of the (y,x)-coordinates of undistorted points. """ points = np.asarray(points, dtype=np.float32) if input_order == "xy": points = np.fliplr(points) if len(points) != 4: raise ValueError("Input must be a list of 4 points!!!") list_sort = points[points[:, 0].argsort()] p12 = list_sort[0:2] p12 = p12[p12[:, 1].argsort()] ((y1, x1), (y2, x2)) = p12 p34 = list_sort[-2:] p34 = p34[p34[:, 1].argsort()] ((y3, x3), (y4, x4)) = p34 source_points = np.asarray([[y1, x1], [y2, x2], [y3, x3], [y4, x4]]) a12 = (y1 - y2) / (x1 - x2) b12 = y1 - a12 * x1 a34 = (y3 - y4) / (x3 - x4) b34 = y3 - a34 * x3 ah, bh = (a12 + a34) * 0.5, (b12 + b34) * 0.5 a13 = (x1 - x3) / (y1 - y3) b13 = x1 - a13 * y1 a24 = (x2 - x4) / (y2 - y4) b24 = x2 - a24 * y2 av, bv = (a13 + a24) * 0.5, (b13 + b24) * 0.5 a0 = np.sign(ah) * (np.abs(ah) + np.abs(av)) * 0.5 dist12 = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dist13 = np.sqrt((x1 - x3) ** 2 + (y1 - y3) ** 2) dist24 = np.sqrt((x2 - x4) ** 2 + (y2 - y4) ** 2) dist34 = np.sqrt((x3 - x4) ** 2 + (y3 - y4) ** 2) if scale == "max": dist_h = max(dist12, dist34) dist_v = max(dist13, dist24) if equal_dist is True: dist_h = dist_v = max(dist_v, dist_h) elif scale == "min": dist_h = min(dist12, dist34) dist_v = min(dist13, dist24) if equal_dist is True: dist_h = dist_v = min(dist_v, dist_h) else: dist_h = (dist12 + dist34) * 0.5 dist_v = (dist13 + dist24) * 0.5 if isinstance(scale, float): dist_h = dist_h * scale dist_v = dist_v * scale if equal_dist is True: dist_h = dist_v = (dist_v + dist_h) * 0.5 dist_h, dist_v = dist_h * 0.5, dist_v * 0.5 b1 = bh - np.abs(dist_v / np.cos(np.arctan(a0))) b2 = bh + np.abs(dist_v / np.cos(np.arctan(a0))) b3 = bv - np.abs(dist_h / np.cos(np.arctan(a0))) b4 = bv + np.abs(dist_h / np.cos(np.arctan(a0))) y1 = (a0 * b3 + b1) / (1.0 + a0 ** 2) x1 = -a0 * y1 + b3 y2 = (a0 * b4 + b1) / (1.0 + a0 ** 2) x2 = -a0 * y2 + b4 y3 = (a0 * b3 + b2) / (1.0 + a0 ** 2) x3 = -a0 * y3 + b3 y4 = (a0 * b4 + b2) / (1.0 + a0 ** 2) x4 = -a0 * y4 + b4 target_points = np.asarray([[y1, x1], [y2, x2], [y3, x3], [y4, x4]]) return source_points, target_points def calc_perspective_coefficients(source_points, target_points, mapping="backward"): """ Calculate perspective coefficients of a matrix to map from source points to target points (Ref. [1]). Note that the coordinate of a point are in (y,x)-order. This is to be consistent with other functions in the module. Parameters ---------- source_points : array_like List of the (y,x)-coordinates of distorted points. target_points : array_like List of the (y,x)-coordinates of undistorted points. mapping : {'backward', 'forward'} To select mapping direction. Returns ------- array_like 1D array of 8 coefficients. References ---------- [1].. https://doi.org/10.1016/S0262-8856(98)00183-8 """ if mapping == "forward": s_points = np.fliplr(np.asarray(source_points)) t_points = np.fliplr(np.asarray(target_points)) else: s_points = np.fliplr(np.asarray(target_points)) t_points = np.fliplr(
np.asarray(source_points)
numpy.asarray
from dataclasses import dataclass, field from enum import Enum import random import math import copy import time import numpy as np from typing import List, Tuple from ..base import Parameter, Individual from ..helpers import convert_to_ndarray from dataclasses_json import dataclass_json class de_mutation_type(Enum): """Differential evolution mutation type. users can select what kind of mutation type to use Args: de_rand_1_bin: Differential evolution using mutation with rand crossover and mutation de_best_1_bin: Differential evolution using mutation with crossover with best individual simple: Differential evolution using mutation with cross over and mutation using best individual de_rand_1_bin_spawn: Applies mutation and crossover using de_rand_1_bin to a list of individuals to spawn even more individual combinations de_dmp: uses Difference Mean Based Perturbation style crossover and mutation """ de_rand_1_bin = 1 de_best_1_bin = 2 simple = 3 de_rand_1_bin_spawn = 4 de_dmp = 5 @dataclass_json @dataclass class mutation_parameters: """Data class for storing the mutation parameters used for NSGA and differential evolution problems Args: mutation_type (de_mutation_type): type of mutation to use sigma (float): mutation step size 0.1 mu (float): mutation rate F (float): Amplification Factor [0,2] C (float): Crossover factor [0,1] """ mutation_type: de_mutation_type = field(repr=True,default=de_mutation_type.de_rand_1_bin) sigma: float = field(repr=True,default=0.2) mu: float = field(repr=True,default=0.02) F: float = field(repr=True,default=0.6) C: float = field(repr=True,default=0.8) nParents:int = field(repr=True,default=16) # this is useful for single objective where you want x parents to spawn all the children def get_eval_param_matrix(individuals:List[Individual]) -> Tuple[np.ndarray,float,float]: """Gets the evaluation parameter as a matrix Args: individuals (List[Individual]): List of individuals Returns: (Tuple): containing the following *population* (np.ndarray): population evaluation parameters *xmin* (np.ndarray): min evaluaton parameters for first individual *xmax* (np.ndarray): max evaluaton parameters for first individual """ pop = np.zeros((len(individuals),len(individuals[0].eval_parameters))) xmin = individuals[0].eval_parameter_min xmax = individuals[0].eval_parameter_max for i,ind in enumerate(individuals): pop[i,:] = ind.eval_parameters return pop,xmin,xmax def get_objective_matrix(individuals:List[Individual]): pop = np.zeros((len(individuals),len(individuals[0].objectives))) for i,ind in enumerate(individuals): pop[i,:] = ind.objectives return pop def shuffle_population(pop,nIndividuals,nparents): index = (1+np.random.permutation(nIndividuals))[0:nparents] # Pick Random Parents rot = convert_to_ndarray([range(0,nIndividuals)]) a_perm = np.random.permutation(nIndividuals) a = np.zeros((nIndividuals,len(index)),dtype=int) pop_shuffled = list() for i in range(len(index)): rt = (index[i]+rot) % nIndividuals rt = rt.astype(int) a[:,i] = a_perm[rt[0]] pop_shuffled.append(pop[a[:,i]]) # List of shuffled population return pop_shuffled def de_best_1_bin(best:Individual,individuals:List[Individual],objectives:List[Parameter],eval_parameters:List[Parameter],performance_parameters:List[Parameter],F:float=0.6, C:float=0.7): """Applies mutation and crossover using de_1_rand_bin to a list of individuals This type of mutation and crossover strategy is good for single objective but it could lead to local minimums Citatons: https://gist.github.com/martinus/7434625df79d820cd4d9 <NAME>., & <NAME>. (1997). Differential Evolution -- A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328 <NAME>., & <NAME>. (2009). Multi-parent Mutation in Differential Evolution for Multi-objective Optimization. 2009 Fifth International Conference on Natural Computation, 4, 618–622. https://doi.org/10.1109/ICNC.2009.149 Args: best (Individual): Best individual individuals (List[Individual]): list of all individuals objectives (List[Parameter]): list of objectives of those individuals eval_parameters (List[Parameter]): list of evaluation parameters performance_parameters (List[Parameter]): list of performance parameters F (float, optional): Amplification Factor [0,2]. Defaults to 0.6. C (float, optional): Crossover factor [0,1]. Defaults to 0.7. Returns: List[Individual]: New list of individuals all mutated and crossovered """ nIndividuals = len(individuals) pop,xmin,xmax = get_eval_param_matrix(individuals) x1 = best[0].eval_parameters # Use the best individual #-------------- Mutation -------------- pop_shuffled = shuffle_population(pop,nIndividuals,2) # Generate the new mutated population temp = pop*0 for i in range(0,len(pop_shuffled)-1,2): temp += pop_shuffled[i] - pop_shuffled[i+1] pop_mutate = x1+F*temp #-------------- Crossover -------------- cr_part1 = (np.random.rand(nIndividuals,len(x1)) < C) # Crossover cr_part2 = np.array([np.random.permutation(pop.shape[1]) for i in range(nIndividuals)]) # cr_part2, randomly selects for each randomly generated individual, which parameter will be automatically true cr = np.logical_or(cr_part1,cr_part2==1) new_pop = pop*np.logical_not(cr) + pop_mutate*cr #------------- Min Max Check ----------- xmin = xmin.reshape(1,-1)*np.ones((nIndividuals,1)) xmax = xmax.reshape(1,-1)*np.ones((nIndividuals,1)) new_pop = np.minimum(new_pop,xmax) new_pop = np.maximum(new_pop,xmin) #------------- Create The Individuals ------------ newIndividuals = list() for i in range(new_pop.shape[0]): # loop for each individual set (nIndividuals) z = new_pop[i,:] newIndividuals.append(Individual(eval_parameters=set_eval_parameters(eval_parameters,z),objectives=copy.deepcopy(objectives),performance_parameters=copy.deepcopy(performance_parameters))) return newIndividuals def de_dmp_bak(best:Individual,individuals:List[Individual],objectives:List[Parameter],eval_parameters:List[Parameter],performance_parameters:List[Parameter],num_children:int,C:float=0.5): """Difference Mean Based Perturbation - less greedy than DE/best/1 = less chance of getting stuck at local minima, prefers exploration. This version is archived, it uses the best individuals to generate the next generation. F - Amplification Factor randomly switched from 0.5 to 2 randomly C - Crossover factor sampled uniform at random from 0.3 to 1 b - Crossover blending rate randomly chosen from 0.1, 0.5(median), 0.9 Citatons: <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2017). A Modified Differential Evolution with Distance-based Selection for Continuous Optimization in Presence of Noise. IEEE Access, 5, 26944–26964. https://doi.org/10.1109/ACCESS.2017.2773825 Args: best (Individual): best individuals individuals (List[Individual]): individuals objectives (List[Parameter]): list of objectives eval_parameters (List[Parameter]): list of evaluation parameters performance_parameters (List[Parameter]): list of performance parameters num_children (int): number of children to generate C (float, optional): Crossover factor sampled uniform at random from 0.3 to 1. Defaults to 0.5. Returns: List[Individual]: New list of individuals all mutated and crossovered """ # * Preprocessing Step: Do this first before generating the deisgns Np = len(individuals) # This is actually Np/2 pop,xmin,xmax = get_eval_param_matrix(individuals) D = pop.shape[1] x_best_avg = 2/Np * np.sum(pop,axis=0) # Sum along the rows, each column is an evaluation parameter x_best_avg = np.array([x_best_avg for i in range(Np)]) x_best,_,_ = get_eval_param_matrix([best]) newIndividuals = list() while len(newIndividuals)<num_children: rand_v = np.random.rand(Np,1) # Generate random vector # * Generate all individuals for mutation strategy 1 #F = np.array([2 if x==0 else 0.5 for x in np.random.randint(2,size=Np)]).reshape(-1,1) F = np.random.choice([0.5,2],size=(Np,1)) pop_shuffled = shuffle_population(pop,Np,3) V1 = pop_shuffled[0] + F*(x_best_avg - pop_shuffled[1]) # * Generate all individuals for mutation strategy 2 M = np.random.random(size=pop.shape) x_best_dim = 1/D * np.sum(x_best) X_dim = 1/D * np.sum(pop_shuffled[2]) V2 = (x_best-X_dim)*M V2 = np.array([V2[i,:]/np.linalg.norm(M[i,:]) for i in range(V2.shape[0])]) V2 += pop_shuffled[2] # * Now we need to select between elements of V1 and V2 using mutation_selection V = V1*(rand_v<=0.5) + V2*(rand_v>0.5) # * Crossover Cr = np.random.uniform(low=0.3, high=1, size=pop.shape) <= C # sample the value of Cr from interval 0.3 to 1 uniform at random for all individuals Cr_j = np.array([np.random.permutation(pop.shape[1]) for i in range(Np)]) == 1 # cr_part2, randomly selects for each randomly generated individual, which parameter will be automatically true Cr = np.logical_or(Cr,Cr_j) b = np.random.choice([0.1,0.5,0.9], size=(Np,1), replace=True, p=None) u = (b*pop_shuffled[2]+(1-b)*V) * Cr + pop * np.logical_not(Cr) #------------- Min Max Check ----------- xmin_reshape = xmin.reshape(1,-1)*np.ones((Np,1)) xmax_reshape = xmax.reshape(1,-1)*np.ones((Np,1)) u = np.minimum(u,xmax_reshape) u = np.maximum(u,xmin_reshape) #------------- Create The Individuals ------------ for i in range(u.shape[0]): # loop for each individual set (nIndividuals) z = u[i,:] newIndividuals.append(Individual(eval_parameters=set_eval_parameters(eval_parameters,z),objectives=copy.deepcopy(objectives),performance_parameters=copy.deepcopy(performance_parameters))) random.shuffle(newIndividuals) return newIndividuals[0:num_children] def de_dmp(individuals:List[Individual],objectives:List[Parameter],eval_parameters:List[Parameter],performance_parameters:List[Parameter]): """Difference Mean Based Perturbation - less greedy than DE/best/1 = less chance of getting stuck at local minima, prefers exploration. F - Amplification Factor randomly switched from 0.5 to 2 randomly C - Crossover factor sampled uniform at random from 0.3 to 1 b - Crossover blending rate randomly chosen from 0.1, 0.5(median), 0.9 Citatons: <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2017). A Modified Differential Evolution with Distance-based Selection for Continuous Optimization in Presence of Noise. IEEE Access, 5, 26944–26964. https://doi.org/10.1109/ACCESS.2017.2773825 Args: individuals (List[Individual]): list of all individuals, sorted in terms of best performing objectives (List[Parameter]): list of objectives eval_parameters (List[Parameter]): list of evaluation parameters performance_parameters (List[Parameter]): list of performance parameters Returns: List[Individual]: New list of individuals all mutated and crossovered """ # * Preprocessing Step: Do this first before generating the deisgns Np = len(individuals) # This is actually Np/2 pop,xmin,xmax = get_eval_param_matrix(individuals) pop_half = pop[:int(Np/2),:] D = pop.shape[1] # Number of parameters x_best_avg = 2/Np * np.sum(pop_half,axis=0) # Sum along the rows, each column is an evaluation parameter x_best_dim = 1/D * np.sum(pop[0,:]) newIndividuals = list() V = pop*0 U = V for i in range(Np): if random.random()<=0.5: p = get_pairs(pop.shape[0],2,[i]) xr1 = pop[p[0],:] xr2 = pop[p[0],:] F = np.random.choice([0.5,2]) V[i,:] = xr1 + F*(x_best_avg-xr2) else: xi_dim = 1/D * np.sum(pop[i,:]) M = np.random.random(size=D) V[i,:] = pop[i,:] + (x_best_dim - xi_dim) * M / np.linalg.norm(M) Cr = np.random.uniform(0.3,1) b = np.random.choice([0.1,0.5,0.9]) jr = random.randint(0,D-1) for j in range(D): if (random.random() < Cr or j ==jr): U[i,j] = b*pop[i,j]+(1-b)*V[i,j] else: U[i,j] = pop[i,j] #------------- Min Max Check ----------- xmin_reshape = xmin.reshape(1,-1)*np.ones((Np,1)) xmax_reshape = xmax.reshape(1,-1)*np.ones((Np,1)) U = np.minimum(U,xmax_reshape) U = np.maximum(U,xmin_reshape) #------------- Create The Individuals ------------ for i in range(U.shape[0]): # loop for each individual set (nIndividuals) z = U[i,:] newIndividuals.append(Individual(eval_parameters=set_eval_parameters(eval_parameters,z),objectives=copy.deepcopy(objectives),performance_parameters=copy.deepcopy(performance_parameters))) random.shuffle(newIndividuals) return newIndividuals def de_rand_1_bin(individuals:List[Individual],objectives:List[Parameter],eval_parameters:List[Parameter],performance_parameters:List[Parameter],min_parents:int=3,max_parents:int=3,F:float=0.6, C:float=0.7) -> List[Individual]: """ Applies mutation and crossover using de_rand_1_bin to a list of individuals Citatons: https://gist.github.com/martinus/7434625df79d820cd4d9 <NAME>., & <NAME>. (1997). Differential Evolution -- A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328 <NAME>., & <NAME>. (2009). Multi-parent Mutation in Differential Evolution for Multi-objective Optimization. 2009 Fifth International Conference on Natural Computation, 4, 618–622. https://doi.org/10.1109/ICNC.2009.149 Args: individuals (List[Individual]): list of individuals. Takes the best individual[0] (sorted lowest to highest) objectives (List[Parameter]): list of objectives eval_parameters (List[Parameter]): list of evaluation parameters parameters performance_parameters (List[Parameter]): list of performance parameters min_parents (int, optional): Minimum number of parents. Defaults to 3. max_parents (int, optional): Maximum number of parents. Defaults to 3. F (float, optional): Amplification Factor. Range [0,2]. Defaults to 0.6. C (float, optional): Crossover factor. Range [0,1]. Defaults to 0.7. Returns: List[Individual]: New list of individuals all mutated and crossovered """ nIndividuals = len(individuals) pop,xmin,xmax = get_eval_param_matrix(individuals) nEvalParams = len(individuals[0].eval_parameters) #-------------- Mutation -------------- pop_shuffled = shuffle_population(pop,nIndividuals,max_parents) pop_rand = pop_shuffled.pop() # Generate the new mutated population temp = pop*0 for i in range(0,len(pop_shuffled)-1,2): temp += pop_shuffled[i] - pop_shuffled[i+1] pop_mutate = pop_rand+F*temp #-------------- Crossover -------------- cr_part1 = (np.random.rand(nIndividuals,nEvalParams) < C) # Crossover cr_part2 = np.array([np.random.permutation(nEvalParams) for i in range(nIndividuals)]) # cr_part2, randomly selects for each randomly generated individual, which parameter will be automatically true cr = np.logical_or(cr_part1,cr_part2==1) new_pop = pop*np.logical_not(cr) + pop_mutate*cr #------------- Min Max Check ----------- xmin = xmin.reshape(1,-1)*np.ones((nIndividuals,1)) xmax = xmax.reshape(1,-1)*np.ones((nIndividuals,1)) new_pop = np.minimum(new_pop,xmax) new_pop =
np.maximum(new_pop,xmin)
numpy.maximum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Descomposición en valores singulares Utiliza numpy para el cálculo de autovalores y autovectores """ import numpy as np import random as rnd def svd(matrix): """ Returns: U, S, V.T U: U matrix S: Sigma matrix V.T: V matrix already transposed """ if (type(matrix) is not np.ndarray): raise RuntimeError("Expected numpy matrix.") # Eigenvalues of A^T*A Dt, V = np.linalg.eig( np.matmul(matrix.T, matrix) ) # Sort them before going on Dt, V = _sortMatrices(Dt, V) # Calculate each sigma. # This will help us calculate each column on the U matrix sigmas = np.sqrt(Dt) # Generate U maxSize = max(np.shape(matrix)) U = np.zeros((maxSize, maxSize)) for pos in range(np.shape(sigmas)[0]): U[:,pos] = np.matmul(matrix, V[:,pos]) / sigmas[pos] currentCol = 0 while currentCol < maxSize: # Fill empty columns with numbers if (np.allclose(U[:,currentCol], np.zeros((maxSize, 1)))): rnd.seed() for row in range(maxSize): U[row,currentCol] = rnd.random() U = _matrixOrthonormalization(U, column=currentCol) currentCol += 1 # Generate Sigma matrix S = np.zeros(( np.shape(U)[1], np.shape(V)[0] )) for rowEtCol in range(0, len(sigmas), 1): S[rowEtCol][rowEtCol] = sigmas[rowEtCol] return U, S, V.T def pesudoInverse(matrix): """Calculate the Moore-Penrose pseudo-inverse of a matrix. Uses SVD to achieve it. Arguments: matrix: Numpy matrix to calculate its pseudo-inverse. Returns: Numpy matrix A+ (the pseudo-inverse). """ # Calculate the SVD matrices U, S, Vt = svd(matrix) # A+ = V * S+ * U.T => The sigma (S) matrix shape needs to be inverted. pseudoSigma = S.T sigmaShape = np.shape(pseudoSigma) # Recalculate Sigma as Sigma+ (each value != 0 is now 1/value) for row in range(0, sigmaShape[0]): for col in range(0, sigmaShape[1]): # pylint: disable=E1136 # pylint/issues/3139 if pseudoSigma[row][col] != 0: pseudoSigma[row][col] = 1 / pseudoSigma[row][col] # Return A+, being A+ = V * S+ * U.T return np.matmul(np.matmul(Vt.T, pseudoSigma), U.T) def _sortMatrices(matrixA, matrixB): ascendingOrder = np.argsort(matrixA) sortedA = np.zeros(np.shape(matrixA)) sortedB = np.zeros(np.shape(matrixB)) current = 0 for i in ascendingOrder[::-1]: sortedA[current] = matrixA[i] sortedB[:,current] = matrixB[:,i] current += 1 return sortedA, sortedB def _norm(v): """Calculate the norm of a vector Arguments: v: ndarray with vector shape: (1,n) , (n,1) or (n,) Returns: Floating point number with the norm. """ if type(v) is not np.ndarray: raise RuntimeError('Please provide a numpy array.') elif np.ndim(v) > 2: raise RuntimeError('Too many dimensions!') elif np.ndim(v) == 2 and np.shape(v)[0] != 1 and
np.shape(v)
numpy.shape
# -*- coding: utf-8 -*- from __future__ import absolute_import import numpy as np from sklearn.svm import SVR from eli5.permutation_importance import iter_shuffled, get_score_importances def assert_column_mean_unchanged(X, **kwargs): mean = X.mean(axis=0) for X_sh in iter_shuffled(X, **kwargs): assert np.allclose(mean, X_sh.mean(axis=0)) def test_iter_shuffled_mean_preserved(): X = np.arange(10 * 4).reshape(10, 4) assert_column_mean_unchanged(X) assert_column_mean_unchanged(X, columns_to_shuffle=[0, 1]) assert_column_mean_unchanged(X, pre_shuffle=True) assert_column_mean_unchanged(X, columns_to_shuffle=[1], pre_shuffle=True) def test_iter_shuffled_columns(): X =
np.arange(10 * 5)
numpy.arange
import os import csv import pickle import numpy as np
np.random.seed(42)
numpy.random.seed
import shutil import os import pickle import random import numpy as np from scipy.signal import find_peaks from .experiment import filter_nth_play, Experiment class SetUpTests(): # Streamline setting up experiments for tests rand_seed = 11345 def __init__(self, test_dir, raw_data_dir, raw_data_fn, **expt_kwargs): self.test_dir = test_dir self.raw_data_dir = raw_data_dir self.raw_data_fn = raw_data_fn self.expt_kwargs = expt_kwargs random.seed(self.rand_seed) np.random.seed(self.rand_seed) def get_pre_datasets(self, expt): # Get the original preprocessed splits from an experiment with open(expt.data_path, 'rb') as handle: pre_processed = pickle.load(handle) nth_range = expt.config_params['data_params']['nth_play_range'] filtered_data = filter_nth_play(pre_processed, nth_range) pre_datasets = expt._split_train_val_test(filtered_data) return pre_datasets def make_experiment(self): processed_dir = os.path.join(self.test_dir, 'processed') expt = Experiment(self.test_dir, self.raw_data_dir, self.raw_data_fn, 'testing', device='cpu', processed_dir=processed_dir, **self.expt_kwargs) return expt def get_excluded_games(self, data_dir, split): exc_path = os.path.join(data_dir, f'processed/{split}_other_data.pkl') with open(exc_path, 'rb') as handle: other_data = pickle.load(handle) exc = other_data['excluded'] exc_ids = [d.game_id for d in exc] return exc_ids def tear_down(self, data_dir, for_experiment_test=False): shutil.rmtree(os.path.join(data_dir, 'processed'), ignore_errors=True) shutil.rmtree(os.path.join(data_dir, 'checkpoints'), ignore_errors=True) if not for_experiment_test: if os.path.exists(os.path.join(data_dir, 'logger_info.pickle')): os.remove(os.path.join(data_dir, 'logger_info.pickle')) if os.path.exists(os.path.join(data_dir, 'split_inds.pkl')): os.remove(os.path.join(data_dir, 'split_inds.pkl')) def continuous_to_discrete(data): # Input shopuld be EbbFlowGameData object t = np.arange(data.continuous['point_dir'].shape[0]) * data.step pt_ons, pt_offs, pt = _get_stimulus_bounds(data.continuous['point_dir'], t, data.step) mv_ons, mv_offs, mv = _get_stimulus_bounds(data.continuous['mv_dir'], t, data.step) cue_ons, cue_offs, cue = _get_stimulus_bounds(data.continuous['task_cue'], t, data.step) assert pt_ons == mv_ons == cue_ons assert pt_offs == mv_offs == cue_offs rts, resp_dirs = _get_resp_from_continuous(data.continuous['urespdir'], t, pt_ons, pt_offs, data.step) discrete = {'onset': pt_ons, 'offset': pt_offs, 'point_dir': pt, 'mv_dir': mv, 'task_cue': cue, 'urespdir': resp_dirs, 'urt_samples': rts} return discrete def _get_resp_from_continuous(d, t, onsets, offsets, step): resp_dirs = np.array([]) rts = np.array([]) onsets = np.array(onsets) unsorted_onsets = np.array([]) for i in range(4): this_resp = d[:, i] this_peaks, _ = find_peaks(this_resp, height=0.5) this_abs_rts = t[this_peaks] / step this_abs_rts = this_abs_rts[this_abs_rts < offsets[-1]] for abs_rt in this_abs_rts: diffs = abs_rt - onsets diffs_pos = diffs[diffs > 0] ons_pos = onsets[diffs > 0] min_ind = np.argmin(diffs_pos) rts = np.append(rts, diffs_pos[min_ind]) resp_dirs = np.append(resp_dirs, i) unsorted_onsets =
np.append(unsorted_onsets, ons_pos[min_ind])
numpy.append
from __future__ import division import glob import numpy as NP from functools import reduce import numpy.ma as MA import progressbar as PGB import h5py import healpy as HP import warnings import copy import astropy.cosmology as CP from astropy.time import Time, TimeDelta from astropy.io import fits from astropy import units as U from astropy import constants as FCNST from scipy import interpolate from astroutils import DSP_modules as DSP from astroutils import constants as CNST from astroutils import nonmathops as NMO from astroutils import mathops as OPS from astroutils import lookup_operations as LKP import prisim from prisim import interferometry as RI from prisim import primary_beams as PB from prisim import delay_spectrum as DS try: from pyuvdata import UVBeam except ImportError: uvbeam_module_found = False else: uvbeam_module_found = True prisim_path = prisim.__path__[0]+'/' cosmoPlanck15 = CP.Planck15 # Planck 2015 cosmology cosmo100 = cosmoPlanck15.clone(name='Modified Planck 2015 cosmology with h=1.0', H0=100.0) # Modified Planck 2015 cosmology with h=1.0, H= 100 km/s/Mpc ################################################################################ def write_PRISim_bispectrum_phase_to_npz(infile_prefix, outfile_prefix, triads=None, bltriplet=None, hdf5file_prefix=None, infmt='npz', datakey='noisy', blltol=0.1): """ ---------------------------------------------------------------------------- Write closure phases computed in a PRISim simulation to a NPZ file with appropriate format for further analysis. Inputs: infile_prefix [string] HDF5 file or NPZ file created by a PRISim simulation or its replication respectively. If infmt is specified as 'hdf5', then hdf5file_prefix will be ignored and all the observing info will be read from here. If infmt is specified as 'npz', then hdf5file_prefix needs to be specified in order to read the observing parameters. triads [list or numpy array or None] Antenna triads given as a list of 3-element lists or a ntriads x 3 array. Each element in the inner list is an antenna label. They will be converted to strings internally. If set to None, then all triads determined by bltriplet will be used. If specified, then inputs in blltol and bltriplet will be ignored. bltriplet [numpy array or None] 3x3 numpy array containing the 3 baseline vectors. The first axis denotes the three baselines, the second axis denotes the East, North, Up coordinates of the baseline vector. Units are in m. Will be used only if triads is set to None. outfile_prefix [string] Prefix of the NPZ file. It will be appended by '_noiseless', '_noisy', and '_noise' and further by extension '.npz' infmt [string] Format of the input file containing visibilities. Accepted values are 'npz' (default), and 'hdf5'. If infmt is specified as 'npz', then hdf5file_prefix also needs to be specified for reading the observing parameters datakey [string] Specifies which -- 'noiseless', 'noisy' (default), or 'noise' -- visibilities are to be written to the output. If set to None, and infmt is 'hdf5', then all three sets of visibilities are written. The datakey string will also be added as a suffix in the output file. blltol [scalar] Baseline length tolerance (in m) for matching baseline vectors in triads. It must be a scalar. Default = 0.1 m. Will be used only if triads is set to None and bltriplet is to be used. ---------------------------------------------------------------------------- """ if not isinstance(infile_prefix, str): raise TypeError('Input infile_prefix must be a string') if not isinstance(outfile_prefix, str): raise TypeError('Input outfile_prefix must be a string') if (triads is None) and (bltriplet is None): raise ValueError('One of triads or bltriplet must be set') if triads is None: if not isinstance(bltriplet, NP.ndarray): raise TypeError('Input bltriplet must be a numpy array') if not isinstance(blltol, (int,float)): raise TypeError('Input blltol must be a scalar') if bltriplet.ndim != 2: raise ValueError('Input bltriplet must be a 2D numpy array') if bltriplet.shape[0] != 3: raise ValueError('Input bltriplet must contain three baseline vectors') if bltriplet.shape[1] != 3: raise ValueError('Input bltriplet must contain baseline vectors along three corrdinates in the ENU frame') else: if not isinstance(triads, (list, NP.ndarray)): raise TypeError('Input triads must be a list or numpy array') triads = NP.asarray(triads).astype(str) if not isinstance(infmt, str): raise TypeError('Input infmt must be a string') if infmt.lower() not in ['npz', 'hdf5']: raise ValueError('Input file format must be npz or hdf5') if infmt.lower() == 'npz': if not isinstance(hdf5file_prefix, str): raise TypeError('If infmt is npz, then hdf5file_prefix needs to be specified for observing parameters information') if datakey is None: datakey = ['noisy'] if isinstance(datakey, str): datakey = [datakey] elif not isinstance(datakey, list): raise TypeError('Input datakey must be a list') for dkey in datakey: if dkey.lower() not in ['noiseless', 'noisy', 'noise']: raise ValueError('Invalid input found in datakey') if infmt.lower() == 'hdf5': fullfnames_with_extension = glob.glob(infile_prefix + '*' + infmt.lower()) fullfnames_without_extension = [fname.split('.hdf5')[0] for fname in fullfnames_with_extension] else: fullfnames_without_extension = [infile_prefix] if len(fullfnames_without_extension) == 0: raise IOError('No input files found with pattern {0}'.format(infile_prefix)) try: if infmt.lower() == 'hdf5': simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[0]) else: simvis = RI.InterferometerArray(None, None, None, init_file=hdf5file_prefix) except: raise IOError('Input PRISim file does not contain a valid PRISim output') latitude = simvis.latitude longitude = simvis.longitude location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) last = simvis.lst / 15.0 / 24.0 # from degrees to fraction of day last = last.reshape(-1,1) daydata = NP.asarray(simvis.timestamp[0]).ravel() if infmt.lower() == 'npz': simvisinfo = NP.load(fullfnames_without_extension[0]+'.'+infmt.lower()) skyvis = simvisinfo['noiseless'][0,...] vis = simvisinfo['noisy'] noise = simvisinfo['noise'] n_realize = vis.shape[0] else: n_realize = len(fullfnames_without_extension) cpdata = {} outfile = {} for fileind in range(n_realize): if infmt.lower() == 'npz': simvis.vis_freq = vis[fileind,...] simvis.vis_noise_freq = noise[fileind,...] else: simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[fileind]) if fileind == 0: if triads is None: triads, bltriplets = simvis.getThreePointCombinations(unique=False) # triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # bltriplets = NP.asarray(prisim_BSP_info['baseline_triplets']) triads = NP.asarray(triads).reshape(-1,3) bltriplets = NP.asarray(bltriplets) blinds = [] matchinfo = LKP.find_NN(bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol) revind = [] for blnum in NP.arange(bltriplet.shape[0]): if len(matchinfo[0][blnum]) == 0: revind += [blnum] if len(revind) > 0: flip_factor = NP.ones(3, dtype=NP.float) flip_factor[NP.array(revind)] = -1 rev_bltriplet = bltriplet * flip_factor.reshape(-1,1) matchinfo = LKP.find_NN(rev_bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol) for blnum in NP.arange(bltriplet.shape[0]): if len(matchinfo[0][blnum]) == 0: raise ValueError('Some baselines in the triplet are not found in the model triads') triadinds = [] for blnum in NP.arange(bltriplet.shape[0]): triadind, blind = NP.unravel_index(NP.asarray(matchinfo[0][blnum]), (bltriplets.shape[0], bltriplets.shape[1])) triadinds += [triadind] triadind_intersection = NP.intersect1d(triadinds[0], NP.intersect1d(triadinds[1], triadinds[2])) if triadind_intersection.size == 0: raise ValueError('Specified triad not found in the PRISim model. Try other permutations of the baseline vectors and/or reverse individual baseline vectors in the triad before giving up.') triads = triads[triadind_intersection,:] selected_bltriplets = bltriplets[triadind_intersection,:,:].reshape(-1,3,3) prisim_BSP_info = simvis.getClosurePhase(antenna_triplets=triads.tolist(), delay_filter_info=None, specsmooth_info=None, spectral_window_info=None, unique=False) if fileind == 0: triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # Re-establish the triads returned after the first iteration (to accunt for any order flips) for outkey in datakey: if fileind == 0: outfile[outkey] = outfile_prefix + '_{0}.npz'.format(outkey) if outkey == 'noiseless': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...] cpdata[outkey] = prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...]), axis=0) if outkey == 'noisy': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...] cpdata[outkey] = prisim_BSP_info['closure_phase_vis'][NP.newaxis,...] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_vis'][NP.newaxis,...]), axis=0) if outkey == 'noise': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:] cpdata[outkey] = prisim_BSP_info['closure_phase_noise'][NP.newaxis,:,:] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_noise'][NP.newaxis,...]), axis=0) for outkey in datakey: cpdata[outkey] = NP.rollaxis(cpdata[outkey], 3, start=0) flagsdata = NP.zeros(cpdata[outkey].shape, dtype=NP.bool) NP.savez_compressed(outfile[outkey], closures=cpdata[outkey], flags=flagsdata, triads=triads, last=last+NP.zeros((1,n_realize)), days=daydata+NP.arange(n_realize)) ################################################################################ def loadnpz(npzfile, longitude=0.0, latitude=0.0, lst_format='fracday'): """ ---------------------------------------------------------------------------- Read an input NPZ file containing closure phase data output from CASA and return a dictionary Inputs: npzfile [string] Input NPZ file including full path containing closure phase data. It must have the following files/keys inside: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units which is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) latitude [scalar int or float] Latitude of site (in degrees). Default=0.0 deg. longitude [scalar int or float] Longitude of site (in degrees). Default=0.0 deg. lst_format [string] Specifies the format/units in which the 'last' key is to be interpreted. If set to 'hourangle', the LST is in units of hour angle. If set to 'fracday', the fractional portion of the 'last' value is the LST in units of days. Output: cpinfo [dictionary] Contains one top level keys, namely, 'raw' Under key 'raw' which holds a dictionary, the subkeys include 'cphase' (nlst,ndays,ntriads,nchan), 'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags' (nlst,ndays,ntriads,nchan), and some other optional keys ---------------------------------------------------------------------------- """ npzdata = NP.load(npzfile) cpdata = npzdata['closures'] triadsdata = npzdata['triads'] flagsdata = npzdata['flags'] location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location) # lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD if lst_format.lower() == 'hourangle': lstHA = npzdata['last'] lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s) elif lst_format.lower() == 'fracday': lstfrac, lstint = NP.modf(npzdata['last']) lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD lstHA = lstfrac * 24.0 # in hours else: raise ValueError('Input lst_format invalid') cp = cpdata.astype(NP.float64) flags = flagsdata.astype(NP.bool) cpinfo = {} datapool = ['raw'] for dpool in datapool: cpinfo[dpool] = {} if dpool == 'raw': qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst'] for qty in qtys: if qty == 'cphase': cpinfo[dpool][qty] = NP.copy(cp) elif qty == 'triads': cpinfo[dpool][qty] = NP.copy(triadsdata) elif qty == 'flags': cpinfo[dpool][qty] = NP.copy(flags) elif qty == 'lst': cpinfo[dpool][qty] = NP.copy(lstHA) elif qty == 'lst-day': cpinfo[dpool][qty] = NP.copy(lstday.jd) elif qty == 'days': cpinfo[dpool][qty] = NP.copy(daydata.jd) elif qty == 'dayavg': if 'averaged_closures' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_dayavg) elif qty == 'std_triads': if 'std_dev_triad' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_std_triads) elif qty == 'std_lst': if 'std_dev_lst' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_std_lst) return cpinfo ################################################################################ def npz2hdf5(npzfile, hdf5file, longitude=0.0, latitude=0.0, lst_format='fracday'): """ ---------------------------------------------------------------------------- Read an input NPZ file containing closure phase data output from CASA and save it to HDF5 format Inputs: npzfile [string] Input NPZ file including full path containing closure phase data. It must have the following files/keys inside: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units ehich is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) hdf5file [string] Output HDF5 file including full path. latitude [scalar int or float] Latitude of site (in degrees). Default=0.0 deg. longitude [scalar int or float] Longitude of site (in degrees). Default=0.0 deg. lst_format [string] Specifies the format/units in which the 'last' key is to be interpreted. If set to 'hourangle', the LST is in units of hour angle. If set to 'fracday', the fractional portion of the 'last' value is the LST in units of days. ---------------------------------------------------------------------------- """ npzdata = NP.load(npzfile) cpdata = npzdata['closures'] triadsdata = npzdata['triads'] flagsdata = npzdata['flags'] location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location) # lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD if lst_format.lower() == 'hourangle': lstHA = npzdata['last'] lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s) elif lst_format.lower() == 'fracday': lstfrac, lstint = NP.modf(npzdata['last']) lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD lstHA = lstfrac * 24.0 # in hours else: raise ValueError('Input lst_format invalid') cp = cpdata.astype(NP.float64) flags = flagsdata.astype(NP.bool) if 'averaged_closures' in npzdata: day_avg_cpdata = npzdata['averaged_closures'] cp_dayavg = day_avg_cpdata.astype(NP.float64) if 'std_dev_triad' in npzdata: std_triads_cpdata = npzdata['std_dev_triad'] cp_std_triads = std_triads_cpdata.astype(NP.float64) if 'std_dev_lst' in npzdata: std_lst_cpdata = npzdata['std_dev_lst'] cp_std_lst = std_lst_cpdata.astype(NP.float64) with h5py.File(hdf5file, 'w') as fobj: datapool = ['raw'] for dpool in datapool: if dpool == 'raw': qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst'] for qty in qtys: data = None if qty == 'cphase': data = NP.copy(cp) elif qty == 'triads': data = NP.copy(triadsdata) elif qty == 'flags': data = NP.copy(flags) elif qty == 'lst': data = NP.copy(lstHA) elif qty == 'lst-day': data = NP.copy(lstday.jd) elif qty == 'days': data = NP.copy(daydata.jd) elif qty == 'dayavg': if 'averaged_closures' in npzdata: data = NP.copy(cp_dayavg) elif qty == 'std_triads': if 'std_dev_triad' in npzdata: data = NP.copy(cp_std_triads) elif qty == 'std_lst': if 'std_dev_lst' in npzdata: data = NP.copy(cp_std_lst) if data is not None: dset = fobj.create_dataset('{0}/{1}'.format(dpool, qty), data=data, compression='gzip', compression_opts=9) ################################################################################ def save_CPhase_cross_power_spectrum(xcpdps, outfile): """ ---------------------------------------------------------------------------- Save cross-power spectrum information in a dictionary to a HDF5 file Inputs: xcpdps [dictionary] This dictionary is essentially an output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains one or more of the following keys named 'whole', 'submodel', 'residual', and 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum outfile [string] Full path to the external HDF5 file where the cross- power spectrum information provided in xcpdps will be saved ---------------------------------------------------------------------------- """ if not isinstance(xcpdps, dict): raise TypeError('Input xcpdps must be a dictionary') with h5py.File(outfile, 'w') as fileobj: hdrgrp = fileobj.create_group('header') hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in hdrkeys: dset = hdrgrp.create_dataset(key, data=xcpdps[key]) sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in xcpdps: smplgrp = fileobj.create_group(smplng) for key in sampling_keys: dset = smplgrp.create_dataset(key, data=xcpdps[smplng][key]) for dpool in dpool_keys: if dpool in xcpdps[smplng]: dpoolgrp = smplgrp.create_group(dpool) keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh'] for key in keys: if key in xcpdps[smplng][dpool]: if isinstance(xcpdps[smplng][dpool][key], dict): subgrp = dpoolgrp.create_group(key) for subkey in xcpdps[smplng][dpool][key]: dset = subgrp.create_dataset(str(subkey), data=xcpdps[smplng][dpool][key][subkey]) else: dset = dpoolgrp.create_dataset(key, data=xcpdps[smplng][dpool][key]) for stat in ['mean', 'median']: if stat in xcpdps[smplng][dpool]: if isinstance(xcpdps[smplng][dpool][stat], list): for ii in range(len(xcpdps[smplng][dpool][stat])): dset = dpoolgrp.create_dataset(stat+'/diagcomb_{0}'.format(ii), data=xcpdps[smplng][dpool][stat][ii].si.value) dset.attrs['units'] = str(xcpdps[smplng][dpool][stat][ii].si.unit) else: dset = dpoolgrp.create_dataset(stat, data=xcpdps[smplng][dpool][stat].si.value) dset.attrs['units'] = str(xcpdps[smplng][dpool][stat].si.unit) ################################################################################ def read_CPhase_cross_power_spectrum(infile): """ ---------------------------------------------------------------------------- Read information about cross power spectrum from an external HDF5 file into a dictionary. This is the counterpart to save_CPhase_corss_power_spectrum() Input: infile [string] Full path to the external HDF5 file that contains info about cross-power spectrum. Output: xcpdps [dictionary] This dictionary has structure the same as output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains one or more of the following keys named 'whole', 'submodel', 'residual', and 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum outfile [string] Full path to the external HDF5 file where the cross- power spectrum information provided in xcpdps will be saved ---------------------------------------------------------------------------- """ if not isinstance(infile, str): raise TypeError('Input infile must be a string') xcpdps = {} with h5py.File(infile, 'r') as fileobj: hdrgrp = fileobj['header'] hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in hdrkeys: xcpdps[key] = hdrgrp[key].value sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in fileobj: smplgrp = fileobj[smplng] xcpdps[smplng] = {} for key in sampling_keys: xcpdps[smplng][key] = smplgrp[key].value for dpool in dpool_keys: if dpool in smplgrp: xcpdps[smplng][dpool] = {} dpoolgrp = smplgrp[dpool] keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh'] for key in keys: if key in dpoolgrp: if isinstance(dpoolgrp[key], h5py.Group): xcpdps[smplng][dpool][key] = {} for subkey in dpoolgrp[key]: xcpdps[smplng][dpool][key][int(subkey)] = dpoolgrp[key][subkey].value elif isinstance(dpoolgrp[key], h5py.Dataset): xcpdps[smplng][dpool][key] = dpoolgrp[key].value else: raise TypeError('Invalid h5py data type encountered') for stat in ['mean', 'median']: if stat in dpoolgrp: if isinstance(dpoolgrp[stat], h5py.Dataset): valunits = dpoolgrp[stat].attrs['units'] xcpdps[smplng][dpool][stat] = dpoolgrp[stat].value * U.Unit(valunits) elif isinstance(dpoolgrp[stat], h5py.Group): xcpdps[smplng][dpool][stat] = [] for diagcomb_ind in range(len(dpoolgrp[stat].keys())): if 'diagcomb_{0}'.format(diagcomb_ind) in dpoolgrp[stat]: valunits = dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].attrs['units'] xcpdps[smplng][dpool][stat] += [dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].value * U.Unit(valunits)] return xcpdps ################################################################################ def incoherent_cross_power_spectrum_average(xcpdps, excpdps=None, diagoffsets=None): """ ---------------------------------------------------------------------------- Perform incoherent averaging of cross power spectrum along specified axes Inputs: xcpdps [dictionary or list of dictionaries] If provided as a list of dictionaries, each dictionary consists of cross power spectral information coming possible from different sources, and they will be averaged be averaged incoherently. If a single dictionary is provided instead of a list of dictionaries, the said averaging does not take place. Each dictionary is essentially an output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum excpdps [dictionary or list of dictionaries] If provided as a list of dictionaries, each dictionary consists of cross power spectral information of subsample differences coming possible from different sources, and they will be averaged be averaged incoherently. This is optional. If not set (default=None), no incoherent averaging happens. If a single dictionary is provided instead of a list of dictionaries, the said averaging does not take place. Each dictionary is essentially an output of the member function compute_power_spectrum_uncertainty() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndaycomb,) array), 'day_ind' ((ndaycomb,) array), 'dday' ((ndaycomb,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains a key named 'errinfo' which is a dictionary. It contains information about power spectrum uncertainties obtained from subsample differences. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum uncertainties incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum uncertainties incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum diagoffsets [NoneType or dictionary or list of dictionaries] This info is used for incoherent averaging along specified diagonals along specified axes. This incoherent averaging is performed after incoherently averaging multiple cross-power spectra (if any). If set to None, this incoherent averaging is not performed. Many combinations of axes and diagonals can be specified as individual dictionaries in a list. If only one dictionary is specified, then it assumed that only one combination of axes and diagonals is requested. If a list of dictionaries is given, each dictionary in the list specifies a different combination for incoherent averaging. Each dictionary should have the following key-value pairs. The key is the axis number (allowed values are 1, 2, 3) that denote the axis type (1=LST, 2=Days, 3=Triads to be averaged), and the value under they keys is a list or numpy array of diagonals to be averaged incoherently. These axes-diagonal combinations apply to both the inputs xcpdps and excpdps, except axis=2 does not apply to excpdps (since it is made of subsample differences already) and will be skipped. Outputs: A tuple consisting of two dictionaries. The first dictionary contains the incoherent averaging of xcpdps as specified by the inputs, while the second consists of incoherent of excpdps as specified by the inputs. The structure of these dictionaries are practically the same as the dictionary inputs xcpdps and excpdps respectively. The only differences in dictionary structure are: * Under key ['oversampled'/'resampled']['whole'/'submodel'/'residual' /'effinfo']['mean'/'median'] is a list of numpy arrays, where each array in the list corresponds to the dictionary in the list in input diagoffsets that defines the axes-diagonal combination. ---------------------------------------------------------------------------- """ if isinstance(xcpdps, dict): xcpdps = [xcpdps] if not isinstance(xcpdps, list): raise TypeError('Invalid data type provided for input xcpdps') if excpdps is not None: if isinstance(excpdps, dict): excpdps = [excpdps] if not isinstance(excpdps, list): raise TypeError('Invalid data type provided for input excpdps') if len(xcpdps) != len(excpdps): raise ValueError('Inputs xcpdps and excpdps found to have unequal number of values') out_xcpdps = {'triads': xcpdps[0]['triads'], 'triads_ind': xcpdps[0]['triads_ind'], 'lst': xcpdps[0]['lst'], 'lst_ind': xcpdps[0]['lst_ind'], 'dlst': xcpdps[0]['dlst'], 'days': xcpdps[0]['days'], 'day_ind': xcpdps[0]['day_ind'], 'dday': xcpdps[0]['dday']} out_excpdps = None if excpdps is not None: out_excpdps = {'triads': excpdps[0]['triads'], 'triads_ind': excpdps[0]['triads_ind'], 'lst': excpdps[0]['lst'], 'lst_ind': excpdps[0]['lst_ind'], 'dlst': excpdps[0]['dlst'], 'days': excpdps[0]['days'], 'day_ind': excpdps[0]['day_ind'], 'dday': excpdps[0]['dday']} for smplng in ['oversampled', 'resampled']: if smplng in xcpdps[0]: out_xcpdps[smplng] = {'z': xcpdps[0][smplng]['z'], 'kprll': xcpdps[0][smplng]['kprll'], 'lags': xcpdps[0][smplng]['lags'], 'freq_center': xcpdps[0][smplng]['freq_center'], 'bw_eff': xcpdps[0][smplng]['bw_eff'], 'shape': xcpdps[0][smplng]['shape'], 'freq_wts': xcpdps[0][smplng]['freq_wts'], 'lag_corr_length': xcpdps[0][smplng]['lag_corr_length']} if excpdps is not None: out_excpdps[smplng] = {'z': excpdps[0][smplng]['z'], 'kprll': excpdps[0][smplng]['kprll'], 'lags': excpdps[0][smplng]['lags'], 'freq_center': excpdps[0][smplng]['freq_center'], 'bw_eff': excpdps[0][smplng]['bw_eff'], 'shape': excpdps[0][smplng]['shape'], 'freq_wts': excpdps[0][smplng]['freq_wts'], 'lag_corr_length': excpdps[0][smplng]['lag_corr_length']} for dpool in ['whole', 'submodel', 'residual']: if dpool in xcpdps[0][smplng]: out_xcpdps[smplng][dpool] = {'diagoffsets': xcpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': xcpdps[0][smplng][dpool]['axesmap']} for stat in ['mean', 'median']: if stat in xcpdps[0][smplng][dpool]: out_xcpdps[smplng][dpool][stat] = {} arr = [] diagweights = [] for i in range(len(xcpdps)): arr += [xcpdps[i][smplng][dpool][stat].si.value] arr_units = xcpdps[i][smplng][dpool][stat].si.unit if isinstance(xcpdps[i][smplng][dpool]['diagweights'], dict): diagwts = 1.0 diagwts_shape = NP.ones(xcpdps[i][smplng][dpool][stat].ndim, dtype=NP.int) for ax in xcpdps[i][smplng][dpool]['diagweights']: tmp_shape = NP.copy(diagwts_shape) tmp_shape[xcpdps[i][smplng][dpool]['axesmap'][ax]] = xcpdps[i][smplng][dpool]['diagweights'][ax].size diagwts = diagwts * xcpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape)) elif isinstance(xcpdps[i][smplng][dpool]['diagweights'], NP.ndarray): diagwts = NP.copy(xcpdps[i][smplng][dpool]['diagweights']) else: raise TypeError('Diagonal weights in input must be a dictionary or a numpy array') diagweights += [diagwts] diagweights = NP.asarray(diagweights) arr = NP.asarray(arr) arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units diagweights = NP.nansum(diagweights, axis=0) out_xcpdps[smplng][dpool][stat] = arr out_xcpdps[smplng][dpool]['diagweights'] = diagweights for dpool in ['errinfo']: if dpool in excpdps[0][smplng]: out_excpdps[smplng][dpool] = {'diagoffsets': excpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': excpdps[0][smplng][dpool]['axesmap']} for stat in ['mean', 'median']: if stat in excpdps[0][smplng][dpool]: out_excpdps[smplng][dpool][stat] = {} arr = [] diagweights = [] for i in range(len(excpdps)): arr += [excpdps[i][smplng][dpool][stat].si.value] arr_units = excpdps[i][smplng][dpool][stat].si.unit if isinstance(excpdps[i][smplng][dpool]['diagweights'], dict): diagwts = 1.0 diagwts_shape = NP.ones(excpdps[i][smplng][dpool][stat].ndim, dtype=NP.int) for ax in excpdps[i][smplng][dpool]['diagweights']: tmp_shape = NP.copy(diagwts_shape) tmp_shape[excpdps[i][smplng][dpool]['axesmap'][ax]] = excpdps[i][smplng][dpool]['diagweights'][ax].size diagwts = diagwts * excpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape)) elif isinstance(excpdps[i][smplng][dpool]['diagweights'], NP.ndarray): diagwts = NP.copy(excpdps[i][smplng][dpool]['diagweights']) else: raise TypeError('Diagonal weights in input must be a dictionary or a numpy array') diagweights += [diagwts] diagweights = NP.asarray(diagweights) arr = NP.asarray(arr) arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units diagweights = NP.nansum(diagweights, axis=0) out_excpdps[smplng][dpool][stat] = arr out_excpdps[smplng][dpool]['diagweights'] = diagweights if diagoffsets is not None: if isinstance(diagoffsets, dict): diagoffsets = [diagoffsets] if not isinstance(diagoffsets, list): raise TypeError('Input diagoffsets must be a list of dictionaries') for ind in range(len(diagoffsets)): for ax in diagoffsets[ind]: if not isinstance(diagoffsets[ind][ax], (list, NP.ndarray)): raise TypeError('Values in input dictionary diagoffsets must be a list or numpy array') diagoffsets[ind][ax] = NP.asarray(diagoffsets[ind][ax]) for smplng in ['oversampled', 'resampled']: if smplng in out_xcpdps: for dpool in ['whole', 'submodel', 'residual']: if dpool in out_xcpdps[smplng]: masks = [] for ind in range(len(diagoffsets)): mask_ones = NP.ones(out_xcpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool) mask_agg = None for ax in diagoffsets[ind]: mltdim_slice = [slice(None)] * mask_ones.ndim mltdim_slice[out_xcpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_xcpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0] mask_tmp = NP.copy(mask_ones) mask_tmp[tuple(mltdim_slice)] = False if mask_agg is None: mask_agg = NP.copy(mask_tmp) else: mask_agg = NP.logical_or(mask_agg, mask_tmp) masks += [NP.copy(mask_agg)] diagwts = NP.copy(out_xcpdps[smplng][dpool]['diagweights']) out_xcpdps[smplng][dpool]['diagweights'] = [] for stat in ['mean', 'median']: if stat in out_xcpdps[smplng][dpool]: arr = NP.copy(out_xcpdps[smplng][dpool][stat].si.value) arr_units = out_xcpdps[smplng][dpool][stat].si.unit out_xcpdps[smplng][dpool][stat] = [] for ind in range(len(diagoffsets)): masked_diagwts = MA.array(diagwts, mask=masks[ind]) axes_to_avg = tuple([out_xcpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind]]) out_xcpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units] if len(out_xcpdps[smplng][dpool]['diagweights']) < len(diagoffsets): out_xcpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)] if excpdps is not None: for smplng in ['oversampled', 'resampled']: if smplng in out_excpdps: for dpool in ['errinfo']: if dpool in out_excpdps[smplng]: masks = [] for ind in range(len(diagoffsets)): mask_ones = NP.ones(out_excpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool) mask_agg = None for ax in diagoffsets[ind]: if ax != 2: mltdim_slice = [slice(None)] * mask_ones.ndim mltdim_slice[out_excpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_excpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0] mask_tmp = NP.copy(mask_ones) mask_tmp[tuple(mltdim_slice)] = False if mask_agg is None: mask_agg = NP.copy(mask_tmp) else: mask_agg = NP.logical_or(mask_agg, mask_tmp) masks += [NP.copy(mask_agg)] diagwts = NP.copy(out_excpdps[smplng][dpool]['diagweights']) out_excpdps[smplng][dpool]['diagweights'] = [] for stat in ['mean', 'median']: if stat in out_excpdps[smplng][dpool]: arr = NP.copy(out_excpdps[smplng][dpool][stat].si.value) arr_units = out_excpdps[smplng][dpool][stat].si.unit out_excpdps[smplng][dpool][stat] = [] for ind in range(len(diagoffsets)): masked_diagwts = MA.array(diagwts, mask=masks[ind]) axes_to_avg = tuple([out_excpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind] if ax!=2]) out_excpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units] if len(out_excpdps[smplng][dpool]['diagweights']) < len(diagoffsets): out_excpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)] return (out_xcpdps, out_excpdps) ################################################################################ def incoherent_kbin_averaging(xcpdps, kbins=None, num_kbins=None, kbintype='log'): """ ---------------------------------------------------------------------------- Averages the power spectrum incoherently by binning in bins of k. Returns the power spectrum in units of both standard power spectrum and \Delta^2 Inputs: xcpdps [dictionary] A dictionary that contains the incoherent averaged power spectrum along LST and/or triads axes. This dictionary is essentially the one(s) returned as the output of the function incoherent_cross_power_spectrum_average() kbins [NoneType, list or numpy array] Bins in k. If set to None (default), it will be determined automatically based on the inputs in num_kbins, and kbintype. If num_kbins is None and kbintype='linear', the negative and positive values of k are folded into a one-sided power spectrum. In this case, the bins will approximately have the same resolution as the k-values in the input power spectrum for all the spectral windows. num_kbins [NoneType or integer] Number of k-bins. Used only if kbins is set to None. If kbintype is set to 'linear', the negative and positive values of k are folded into a one-sided power spectrum. In this case, the bins will approximately have the same resolution as the k-values in the input power spectrum for all the spectral windows. kbintype [string] Specifies the type of binning, used only if kbins is set to None. Accepted values are 'linear' and 'log' for linear and logarithmic bins respectively. Outputs: Dictionary containing the power spectrum information. At the top level, it contains keys specifying the sampling to be 'oversampled' or 'resampled'. Under each of these keys is another dictionary containing the following keys: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' or one key named 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. 'errinfo' contains power spectrum information about the subsample differences. There is also another dictionary under key 'kbininfo' that contains information about k-bins. These dictionaries contain the following keys and values: 'whole'/'submodel'/'residual'/'errinfo' [dictionary] It contains the following keys and values: 'mean' [dictionary] Delay power spectrum information under the 'mean' statistic incoherently obtained by averaging the input power spectrum in bins of k. It contains output power spectrum expressed as two quantities each of which is a dictionary with the following key-value pairs: 'PS' [list of numpy arrays] Standard power spectrum in units of 'K2 Mpc3'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'Del2' [list of numpy arrays] power spectrum in Delta^2 units of 'K2'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'median' [dictionary] Delay power spectrum information under the 'median' statistic incoherently obtained by averaging the input power spectrum in bins of k. It contains output power spectrum expressed as two quantities each of which is a dictionary with the following key-value pairs: 'PS' [list of numpy arrays] Standard power spectrum in units of 'K2 Mpc3'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'Del2' [list of numpy arrays] power spectrum in Delta^2 units of 'K2'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'kbininfo' [dictionary] Contains the k-bin information. It contains the following key-value pairs: 'counts' [list] List of numpy arrays where each numpy array in the stores the counts in the determined k-bins. Each numpy array in the list corresponds to a spectral window (redshift subband). The shape of each numpy array is (nkbins,) 'kbin_edges' [list] List of numpy arrays where each numpy array contains the k-bin edges. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nkbins+1,). 'kbinnum' [list] List of numpy arrays containing the bin number under which the k value falls. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nlags,). 'ri' [list] List of numpy arrays containing the reverse indices for each k-bin. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nlags+nkbins+1,). 'whole'/'submodel'/'residual' or 'errinfo' [dictionary] k-bin info estimated for the different datapools under different stats and PS definitions. It has the keys 'mean' and 'median' for the mean and median statistic respectively. Each of them contain a dictionary with the following key-value pairs: 'PS' [list] List of numpy arrays where each numpy array contains a standard power spectrum typically in units of 'K2 Mpc3'. Its shape is the same as input power spectrum except the k-axis which now has nkbins number of elements. 'Del2' [list] List of numpy arrays where each numpy array contains a Delta^2 power spectrum typically in units of 'K2'. Its shape is the same as input power spectrum except the k-axis which now has nkbins number of elements. ---------------------------------------------------------------------------- """ if not isinstance(xcpdps, dict): raise TypeError('Input xcpdps must be a dictionary') if kbins is not None: if not isinstance(kbins, (list,NP.ndarray)): raise TypeError('Input kbins must be a list or numpy array') else: if not isinstance(kbintype, str): raise TypeError('Input kbintype must be a string') if kbintype.lower() not in ['linear', 'log']: raise ValueError('Input kbintype must be set to "linear" or "log"') if kbintype.lower() == 'log': if num_kbins is None: num_kbins = 10 psinfo = {} keys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in keys: psinfo[key] = xcpdps[key] sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in xcpdps: psinfo[smplng] = {} for key in sampling_keys: psinfo[smplng][key] = xcpdps[smplng][key] kprll = xcpdps[smplng]['kprll'] lags = xcpdps[smplng]['lags'] eps = 1e-10 if kbins is None: dkprll = NP.max(NP.mean(NP.diff(kprll, axis=-1), axis=-1)) if kbintype.lower() == 'linear': bins_kprll = NP.linspace(eps, NP.abs(kprll).max()+eps, num=kprll.shape[1]/2+1, endpoint=True) else: bins_kprll = NP.geomspace(eps, NP.abs(kprll).max()+eps, num=num_kbins+1, endpoint=True) bins_kprll = NP.insert(bins_kprll, 0, -eps) else: bins_kprll = NP.asarray(kbins) num_kbins = bins_kprll.size - 1 psinfo[smplng]['kbininfo'] = {'counts': [], 'kbin_edges': [], 'kbinnum': [], 'ri': []} for spw in range(kprll.shape[0]): counts, kbin_edges, kbinnum, ri = OPS.binned_statistic(NP.abs(kprll[spw,:]), statistic='count', bins=bins_kprll) counts = counts.astype(NP.int) psinfo[smplng]['kbininfo']['counts'] += [NP.copy(counts)] psinfo[smplng]['kbininfo']['kbin_edges'] += [kbin_edges / U.Mpc] psinfo[smplng]['kbininfo']['kbinnum'] += [NP.copy(kbinnum)] psinfo[smplng]['kbininfo']['ri'] += [NP.copy(ri)] for dpool in dpool_keys: if dpool in xcpdps[smplng]: psinfo[smplng][dpool] = {} psinfo[smplng]['kbininfo'][dpool] = {} keys = ['diagoffsets', 'diagweights', 'axesmap'] for key in keys: psinfo[smplng][dpool][key] = xcpdps[smplng][dpool][key] for stat in ['mean', 'median']: if stat in xcpdps[smplng][dpool]: psinfo[smplng][dpool][stat] = {'PS': [], 'Del2': []} psinfo[smplng]['kbininfo'][dpool][stat] = [] for combi in range(len(xcpdps[smplng][dpool][stat])): outshape = NP.asarray(xcpdps[smplng][dpool][stat][combi].shape) outshape[-1] = num_kbins tmp_dps = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit) tmp_Del2 = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit / U.Mpc**3) tmp_kprll = NP.full(tuple(outshape), NP.nan, dtype=NP.float) / U.Mpc for spw in range(kprll.shape[0]): counts = NP.copy(psinfo[smplng]['kbininfo']['counts'][spw]) ri = NP.copy(psinfo[smplng]['kbininfo']['ri'][spw]) print('Processing datapool={0}, stat={1}, LST-Day-Triad combination={2:0d}, spw={3:0d}...'.format(dpool, stat, combi, spw)) progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(marker='-', left=' |', right='| '), PGB.Counter(), '/{0:0d} k-bins '.format(num_kbins), PGB.ETA()], maxval=num_kbins).start() for binnum in range(num_kbins): if counts[binnum] > 0: ind_kbin = ri[ri[binnum]:ri[binnum+1]] tmp_dps[spw,...,binnum] = NP.nanmean(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1) k_shape = NP.ones(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1).ndim, dtype=NP.int) k_shape[-1] = -1 tmp_Del2[spw,...,binnum] = NP.nanmean(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc)**3 * NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1) / (2*NP.pi**2) tmp_kprll[spw,...,binnum] = NP.nansum(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc) * NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1) / NP.nansum(NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1) progress.update(binnum+1) progress.finish() psinfo[smplng][dpool][stat]['PS'] += [copy.deepcopy(tmp_dps)] psinfo[smplng][dpool][stat]['Del2'] += [copy.deepcopy(tmp_Del2)] psinfo[smplng]['kbininfo'][dpool][stat] += [copy.deepcopy(tmp_kprll)] return psinfo ################################################################################ class ClosurePhase(object): """ ---------------------------------------------------------------------------- Class to hold and operate on Closure Phase information. It has the following attributes and member functions. Attributes: extfile [string] Full path to external file containing information of ClosurePhase instance. The file is in HDF5 format cpinfo [dictionary] Contains the following top level keys, namely, 'raw', 'processed', and 'errinfo' Under key 'raw' which holds a dictionary, the subkeys include 'cphase' (nlst,ndays,ntriads,nchan), 'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags' (nlst,ndays,ntriads,nchan). Under the 'processed' key are more subkeys, namely, 'native', 'prelim', and optionally 'submodel' and 'residual' each holding a dictionary. Under 'native' dictionary, the subsubkeys for further dictionaries are 'cphase' (masked array: (nlst,ndays,ntriads,nchan)), 'eicp' (complex masked array: (nlst,ndays,ntriads,nchan)), and 'wts' (masked array: (nlst,ndays,ntriads,nchan)). Under 'prelim' dictionary, the subsubkeys for further dictionaries are 'tbins' (numpy array of tbin centers after smoothing), 'dtbins' (numpy array of tbin intervals), 'wts' (masked array: (ntbins,ndays,ntriads,nchan)), 'eicp' and 'cphase'. The dictionaries under 'eicp' are indexed by keys 'mean' (complex masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (complex masked array: (ntbins,ndays,ntriads,nchan)). The dictionaries under 'cphase' are indexed by keys 'mean' (masked array: (ntbins,ndays,ntriads,nchan)), 'median' (masked array: (ntbins,ndays,ntriads,nchan)), 'rms' (masked array: (ntbins,ndays,ntriads,nchan)), and 'mad' (masked array: (ntbins,ndays,ntriads,nchan)). The last one denotes Median Absolute Deviation. Under 'submodel' dictionary, the subsubkeys for further dictionaries are 'cphase' (masked array: (nlst,ndays,ntriads,nchan)), and 'eicp' (complex masked array: (nlst,ndays,ntriads,nchan)). Under 'residual' dictionary, the subsubkeys for further dictionaries are 'cphase' and 'eicp'. These are dictionaries too. The dictionaries under 'eicp' are indexed by keys 'mean' (complex masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (complex masked array: (ntbins,ndays,ntriads,nchan)). The dictionaries under 'cphase' are indexed by keys 'mean' (masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (masked array: (ntbins,ndays,ntriads,nchan)). Under key 'errinfo', it contains the following keys and values: 'list_of_pair_of_pairs' List of pair of pairs for which differences of complex exponentials have been computed, where the elements are bins of days. The number of elements in the list is ncomb. And each element is a smaller (4-element) list of pair of pairs 'eicp_diff' Difference of complex exponentials between pairs of day bins. This will be used in evaluating noise properties in power spectrum. It is a dictionary with two keys '0' and '1' where each contains the difference from a pair of subsamples. Each of these keys contains a numpy array of shape (nlstbins,ncomb,2,ntriads,nchan) 'wts' Weights in difference of complex exponentials obtained by sum of squares of weights that are associated with the pair that was used in the differencing. It is a dictionary with two keys '0' and '1' where each contains the weights associated It is of shape (nlstbins,ncomb,2,ntriads,nchan) Member functions: __init__() Initialize an instance of class ClosurePhase expicp() Compute and return complex exponential of the closure phase as a masked array smooth_in_tbins() Smooth the complex exponentials of closure phases in LST bins. Both mean and median smoothing is produced. subtract() Subtract complex exponential of the bispectrum phase from the current instance and updates the cpinfo attribute subsample_differencing() Create subsamples and differences between subsamples to evaluate noise properties from the data set. save() Save contents of attribute cpinfo in external HDF5 file ---------------------------------------------------------------------------- """ def __init__(self, infile, freqs, infmt='npz'): """ ------------------------------------------------------------------------ Initialize an instance of class ClosurePhase Inputs: infile [string] Input file including full path. It could be a NPZ with raw data, or a HDF5 file that could contain raw or processed data. The input file format is specified in the input infmt. If it is a NPZ file, it must contain the following keys/files: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units which is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) freqs [numpy array] Frequencies (in Hz) in the input. Size is nchan. infmt [string] Input file format. Accepted values are 'npz' (default) and 'hdf5'. ------------------------------------------------------------------------ """ if not isinstance(infile, str): raise TypeError('Input infile must be a string') if not isinstance(freqs, NP.ndarray): raise TypeError('Input freqs must be a numpy array') freqs = freqs.ravel() if not isinstance(infmt, str): raise TypeError('Input infmt must be a string') if infmt.lower() not in ['npz', 'hdf5']: raise ValueError('Input infmt must be "npz" or "hdf5"') if infmt.lower() == 'npz': infilesplit = infile.split('.npz') infile_noext = infilesplit[0] self.cpinfo = loadnpz(infile) # npz2hdf5(infile, infile_noext+'.hdf5') self.extfile = infile_noext + '.hdf5' else: # if not isinstance(infile, h5py.File): # raise TypeError('Input infile is not a valid HDF5 file') self.extfile = infile self.cpinfo = NMO.load_dict_from_hdf5(self.extfile) if freqs.size != self.cpinfo['raw']['cphase'].shape[-1]: raise ValueError('Input frequencies do not match with dimensions of the closure phase data') self.f = freqs self.df = freqs[1] - freqs[0] force_expicp = False if 'processed' not in self.cpinfo: force_expicp = True else: if 'native' not in self.cpinfo['processed']: force_expicp = True self.expicp(force_action=force_expicp) if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['errinfo'] = {} ############################################################################ def expicp(self, force_action=False): """ ------------------------------------------------------------------------ Compute the complex exponential of the closure phase as a masked array Inputs: force_action [boolean] If set to False (default), the complex exponential is computed only if it has not been done so already. Otherwise the computation is forced. ------------------------------------------------------------------------ """ if 'processed' not in self.cpinfo: self.cpinfo['processed'] = {} force_action = True if 'native' not in self.cpinfo['processed']: self.cpinfo['processed']['native'] = {} force_action = True if 'cphase' not in self.cpinfo['processed']['native']: self.cpinfo['processed']['native']['cphase'] = MA.array(self.cpinfo['raw']['cphase'].astype(NP.float64), mask=self.cpinfo['raw']['flags']) force_action = True if not force_action: if 'eicp' not in self.cpinfo['processed']['native']: self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase']) self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags']) else: self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase']) self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags']) ############################################################################ def smooth_in_tbins(self, daybinsize=None, ndaybins=None, lstbinsize=None): """ ------------------------------------------------------------------------ Smooth the complex exponentials of closure phases in time bins. Both mean and median smoothing is produced. Inputs: daybinsize [Nonetype or scalar] Day bin size (in days) over which mean and median are estimated across different days for a fixed LST bin. If set to None, it will look for value in input ndaybins. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. ndaybins [NoneType or integer] Number of bins along day axis. Only if daybinsize is set to None. It produces bins that roughly consist of equal number of days in each bin regardless of how much the days in each bin are separated from each other. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. lstbinsize [NoneType or scalar] LST bin size (in seconds) over which mean and median are estimated across the LST. If set to None, no smoothing is performed ------------------------------------------------------------------------ """ if (ndaybins is not None) and (daybinsize is not None): raise ValueError('Only one of daybinsize or ndaybins should be set') if (daybinsize is not None) or (ndaybins is not None): if daybinsize is not None: if not isinstance(daybinsize, (int,float)): raise TypeError('Input daybinsize must be a scalar') dres = NP.diff(self.cpinfo['raw']['days']).min() # in days dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days if daybinsize > dres: daybinsize = NP.clip(daybinsize, dres, dextent) eps = 1e-10 daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize) ndaybins = daybins.size daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps])) if ndaybins > 1: daybinintervals = daybins[1:] - daybins[:-1] daybincenters = daybins[:-1] + 0.5 * daybinintervals else: daybinintervals = NP.asarray(daybinsize).reshape(-1) daybincenters = daybins[0] + 0.5 * daybinintervals counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins) counts = counts.astype(NP.int) # if 'prelim' not in self.cpinfo['processed']: # self.cpinfo['processed']['prelim'] = {} # self.cpinfo['processed']['prelim']['eicp'] = {} # self.cpinfo['processed']['prelim']['cphase'] = {} # self.cpinfo['processed']['prelim']['daybins'] = daybincenters # self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) for binnum in xrange(counts.size): ind_daybin = ri[ri[binnum]:ri[binnum+1]] wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1) eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1))) eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1))) cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data # mask = wts_daybins <= 0.0 # self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask) # self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask) # self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask) # self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask) # self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask) # self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask) # self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask) else: if not isinstance(ndaybins, int): raise TypeError('Input ndaybins must be an integer') if ndaybins <= 0: raise ValueError('Input ndaybins must be positive') days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins) daybincenters = NP.asarray([NP.mean(days) for days in days_split]) daybinintervals = NP.asarray([days.max()-days.min() for days in days_split]) counts = NP.asarray([days.size for days in days_split]) wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1) # mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1) wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1) eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1) eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean)) eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian)) eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1) cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['processed']['prelim']['eicp'] = {} self.cpinfo['processed']['prelim']['cphase'] = {} self.cpinfo['processed']['prelim']['daybins'] = daybincenters self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals mask = wts_daybins <= 0.0 self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask) self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask) self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask) self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask) self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask) rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities if NP.any(rawlst > 24.0): rawlst -= 24.0 if rawlst.shape[0] > 1: # LST bin only if there are multiple LST if lstbinsize is not None: if not isinstance(lstbinsize, (int,float)): raise TypeError('Input lstbinsize must be a scalar') lstbinsize = lstbinsize / 3.6e3 # in hours tres = NP.diff(rawlst[:,0]).min() # in hours textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours eps = 1e-10 if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} no_change_in_lstbins = False if lstbinsize > tres: lstbinsize = NP.clip(lstbinsize, tres, textent) lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize) nlstbins = lstbins.size lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps])) if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) lstbincenters = lstbins[0] + 0.5 * lstbinintervals self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals no_change_in_lstbins = False else: # Perform no binning and keep the current LST resolution, data and weights warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') lstbinsize = tres lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) nlstbins = lstbins.size - 1 if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals self.cpinfo['processed']['prelim']['lstbins'] = lstbins[:-1] # Ensure that the LST bins are inside the min/max envelope to # error-free interpolation later self.cpinfo['processed']['prelim']['lstbins'][0] += eps self.cpinfo['processed']['prelim']['lstbins'][-1] -= eps no_change_in_lstbins = True counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins) counts = counts.astype(NP.int) if 'wts' not in self.cpinfo['processed']['prelim']: outshape = (counts.size, self.cpinfo['processed']['native']['eicp'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) else: outshape = (counts.size, self.cpinfo['processed']['prelim']['wts'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) wts_lstbins = NP.zeros(outshape) eicp_tmean = NP.zeros(outshape, dtype=NP.complex128) eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128) cp_trms = NP.zeros(outshape) cp_tmad = NP.zeros(outshape) for binnum in xrange(counts.size): if no_change_in_lstbins: ind_lstbin = [binnum] else: ind_lstbin = ri[ri[binnum]:ri[binnum+1]] if 'wts' not in self.cpinfo['processed']['prelim']: indict = self.cpinfo['processed']['native'] else: indict = self.cpinfo['processed']['prelim'] wts_lstbins[binnum,:,:,:] = NP.sum(indict['wts'][ind_lstbin,:,:,:].data, axis=0) if 'wts' not in self.cpinfo['processed']['prelim']: eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(indict['eicp'][ind_lstbin,:,:,:], axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(indict['eicp'][ind_lstbin,:,:,:].real, axis=0) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][ind_lstbin,:,:,:].imag, axis=0))) cp_trms[binnum,:,:,:] = MA.std(indict['cphase'][ind_lstbin,:,:,:], axis=0).data cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data else: eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*indict['cphase']['mean'][ind_lstbin,:,:,:]), axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0))) cp_trms[binnum,:,:,:] = MA.std(indict['cphase']['mean'][ind_lstbin,:,:,:], axis=0).data cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase']['median'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data mask = wts_lstbins <= 0.0 self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_lstbins, mask=mask) if 'eicp' not in self.cpinfo['processed']['prelim']: self.cpinfo['processed']['prelim']['eicp'] = {} if 'cphase' not in self.cpinfo['processed']['prelim']: self.cpinfo['processed']['prelim']['cphase'] = {} self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_tmean, mask=mask) self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_tmedian, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_tmean), mask=mask) self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_tmedian), mask=mask) self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_trms, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_tmad, mask=mask) # else: # # Perform no binning and keep the current LST resolution, data and weights # warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') # lstbinsize = tres # lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) # nlstbins = lstbins.size - 1 # if nlstbins > 1: # lstbinintervals = lstbins[1:] - lstbins[:-1] # lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals # else: # lstbinintervals = NP.asarray(lstbinsize).reshape(-1) # lstbincenters = lstbins[0] + 0.5 * lstbinintervals # if 'prelim' not in self.cpinfo['processed']: # self.cpinfo['processed']['prelim'] = {} # self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters # self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals if (rawlst.shape[0] <= 1) or (lstbinsize is None): nlstbins = rawlst.shape[0] lstbins = NP.mean(rawlst, axis=1) if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['processed']['prelim']['lstbins'] = lstbins if lstbinsize is not None: self.cpinfo['processed']['prelim']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1) else: self.cpinfo['processed']['prelim']['dlstbins'] = NP.zeros(1) ############################################################################ def subtract(self, cphase): """ ------------------------------------------------------------------------ Subtract complex exponential of the bispectrum phase from the current instance and updates the cpinfo attribute Inputs: cphase [masked array] Bispectrum phase array as a maked array. It must be of same size as freqs along the axis specified in input axis. Action: Updates 'submodel' and 'residual' keys under attribute cpinfo under key 'processed' ------------------------------------------------------------------------ """ if not isinstance(cphase, NP.ndarray): raise TypeError('Input cphase must be a numpy array') if not isinstance(cphase, MA.MaskedArray): cphase = MA.array(cphase, mask=NP.isnan(cphase)) if not OPS.is_broadcastable(cphase.shape, self.cpinfo['processed']['prelim']['cphase']['median'].shape): raise ValueError('Input cphase has shape incompatible with that in instance attribute') else: minshape = tuple(NP.ones(self.cpinfo['processed']['prelim']['cphase']['median'].ndim - cphase.ndim, dtype=NP.int)) + cphase.shape cphase = cphase.reshape(minshape) # cphase = NP.broadcast_to(cphase, minshape) eicp = NP.exp(1j*cphase) self.cpinfo['processed']['submodel'] = {} self.cpinfo['processed']['submodel']['cphase'] = cphase self.cpinfo['processed']['submodel']['eicp'] = eicp self.cpinfo['processed']['residual'] = {'eicp': {}, 'cphase': {}} for key in ['mean', 'median']: eicpdiff = self.cpinfo['processed']['prelim']['eicp'][key] - eicp eicpratio = self.cpinfo['processed']['prelim']['eicp'][key] / eicp self.cpinfo['processed']['residual']['eicp'][key] = eicpdiff self.cpinfo['processed']['residual']['cphase'][key] = MA.array(NP.angle(eicpratio.data), mask=self.cpinfo['processed']['residual']['eicp'][key].mask) ############################################################################ def subsample_differencing(self, daybinsize=None, ndaybins=4, lstbinsize=None): """ ------------------------------------------------------------------------ Create subsamples and differences between subsamples to evaluate noise properties from the data set. Inputs: daybinsize [Nonetype or scalar] Day bin size (in days) over which mean and median are estimated across different days for a fixed LST bin. If set to None, it will look for value in input ndaybins. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. Must yield greater than or equal to 4 bins ndaybins [NoneType or integer] Number of bins along day axis. Only if daybinsize is set to None. It produces bins that roughly consist of equal number of days in each bin regardless of how much the days in each bin are separated from each other. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. If set, it must be set to greater than or equal to 4 lstbinsize [NoneType or scalar] LST bin size (in seconds) over which mean and median are estimated across the LST. If set to None, no smoothing is performed ------------------------------------------------------------------------ """ if (ndaybins is not None) and (daybinsize is not None): raise ValueError('Only one of daybinsize or ndaybins should be set') if (daybinsize is not None) or (ndaybins is not None): if daybinsize is not None: if not isinstance(daybinsize, (int,float)): raise TypeError('Input daybinsize must be a scalar') dres = NP.diff(self.cpinfo['raw']['days']).min() # in days dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days if daybinsize > dres: daybinsize = NP.clip(daybinsize, dres, dextent) eps = 1e-10 daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize) ndaybins = daybins.size daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps])) if ndaybins >= 4: daybinintervals = daybins[1:] - daybins[:-1] daybincenters = daybins[:-1] + 0.5 * daybinintervals else: raise ValueError('Could not find at least 4 bins along repeating days. Adjust binning interval.') counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins) counts = counts.astype(NP.int) wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) for binnum in xrange(counts.size): ind_daybin = ri[ri[binnum]:ri[binnum+1]] wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1) eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1))) eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1))) cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data else: if not isinstance(ndaybins, int): raise TypeError('Input ndaybins must be an integer') if ndaybins < 4: raise ValueError('Input ndaybins must be greater than or equal to 4') days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins) daybincenters = NP.asarray([NP.mean(days) for days in days_split]) daybinintervals = NP.asarray([days.max()-days.min() for days in days_split]) counts = NP.asarray([days.size for days in days_split]) wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1) # mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1) wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1) eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1) eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean)) eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian)) eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1) cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan mask = wts_daybins <= 0.0 wts_daybins = MA.array(wts_daybins, mask=mask) cp_dmean = MA.array(NP.angle(eicp_dmean), mask=mask) cp_dmedian = MA.array(NP.angle(eicp_dmedian), mask=mask) self.cpinfo['errinfo']['daybins'] = daybincenters self.cpinfo['errinfo']['diff_dbins'] = daybinintervals self.cpinfo['errinfo']['wts'] = {'{0}'.format(ind): None for ind in range(2)} self.cpinfo['errinfo']['eicp_diff'] = {'{0}'.format(ind): {} for ind in range(2)} rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities if NP.any(rawlst > 24.0): rawlst -= 24.0 if rawlst.shape[0] > 1: # LST bin only if there are multiple LST if lstbinsize is not None: if not isinstance(lstbinsize, (int,float)): raise TypeError('Input lstbinsize must be a scalar') lstbinsize = lstbinsize / 3.6e3 # in hours tres = NP.diff(rawlst[:,0]).min() # in hours textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours eps = 1e-10 no_change_in_lstbins = False if lstbinsize > tres: lstbinsize = NP.clip(lstbinsize, tres, textent) lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize) nlstbins = lstbins.size lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps])) if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) lstbincenters = lstbins[0] + 0.5 * lstbinintervals self.cpinfo['errinfo']['lstbins'] = lstbincenters self.cpinfo['errinfo']['dlstbins'] = lstbinintervals no_change_in_lstbins = False else: # Perform no binning and keep the current LST resolution warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') lstbinsize = tres lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) nlstbins = lstbins.size - 1 if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) self.cpinfo['errinfo']['dlstbins'] = lstbinintervals self.cpinfo['errinfo']['lstbins'] = lstbins[:-1] # Ensure that the LST bins are inside the min/max envelope to # error-free interpolation later self.cpinfo['errinfo']['lstbins'][0] += eps self.cpinfo['errinfo']['lstbins'][-1] -= eps no_change_in_lstbins = True counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins) counts = counts.astype(NP.int) outshape = (counts.size, wts_daybins.shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) wts_lstbins = NP.zeros(outshape) eicp_tmean = NP.zeros(outshape, dtype=NP.complex128) eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128) cp_trms = NP.zeros(outshape) cp_tmad = NP.zeros(outshape) for binnum in xrange(counts.size): if no_change_in_lstbins: ind_lstbin = [binnum] else: ind_lstbin = ri[ri[binnum]:ri[binnum+1]] wts_lstbins[binnum,:,:,:] = NP.sum(wts_daybins[ind_lstbin,:,:,:].data, axis=0) eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*cp_dmean[ind_lstbin,:,:,:]), axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(cp_dmedian[ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(cp_dmedian[ind_lstbin,:,:,:]), axis=0))) mask = wts_lstbins <= 0.0 wts_lstbins = MA.array(wts_lstbins, mask=mask) eicp_tmean = MA.array(eicp_tmean, mask=mask) eicp_tmedian = MA.array(eicp_tmedian, mask=mask) else: wts_lstbins = MA.copy(wts_daybins) mask = wts_lstbins.mask eicp_tmean = MA.array(NP.exp(1j*NP.angle(NP.exp(1j*cp_dmean))), mask=mask) eicp_tmedian = MA.array(NP.exp(1j*NP.angle(NP.cos(cp_dmedian) + 1j * NP.sin(cp_dmedian))), mask=mask) if (rawlst.shape[0] <= 1) or (lstbinsize is None): nlstbins = rawlst.shape[0] lstbins = NP.mean(rawlst, axis=1) self.cpinfo['errinfo']['lstbins'] = lstbins if lstbinsize is not None: self.cpinfo['errinfo']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1) else: self.cpinfo['errinfo']['dlstbins'] = NP.zeros(1) ncomb = NP.sum(NP.asarray([(ndaybins-i-1)*(ndaybins-i-2)*(ndaybins-i-3)/2 for i in range(ndaybins-3)])).astype(int) diff_outshape = (nlstbins, ncomb, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) for diffind in range(2): self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['mean'] = MA.empty(diff_outshape, dtype=NP.complex) self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['median'] = MA.empty(diff_outshape, dtype=NP.complex) self.cpinfo['errinfo']['wts']['{0}'.format(diffind)] = MA.empty(diff_outshape, dtype=NP.float) ind = -1 self.cpinfo['errinfo']['list_of_pair_of_pairs'] = [] list_of_pair_of_pairs = [] for i in range(ndaybins-1): for j in range(i+1,ndaybins): for k in range(ndaybins-1): if (k != i) and (k != j): for m in range(k+1,ndaybins): if (m != i) and (m != j): pair_of_pairs = [set([i,j]), set([k,m])] if (pair_of_pairs not in list_of_pair_of_pairs) and (pair_of_pairs[::-1] not in list_of_pair_of_pairs): ind += 1 list_of_pair_of_pairs += [copy.deepcopy(pair_of_pairs)] self.cpinfo['errinfo']['list_of_pair_of_pairs'] += [[i,j,k,m]] for stat in ['mean', 'median']: if stat == 'mean': self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,j,:,:].data - eicp_tmean[:,i,:,:].data), mask=NP.logical_or(eicp_tmean[:,j,:,:].mask, eicp_tmean[:,i,:,:].mask)) self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,m,:,:].data - eicp_tmean[:,k,:,:].data), mask=NP.logical_or(eicp_tmean[:,m,:,:].mask, eicp_tmean[:,k,:,:].mask)) self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,j,:,:].data**2 + wts_lstbins[:,i,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,j,:,:].mask, wts_lstbins[:,i,:,:].mask)) self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,m,:,:].data**2 + wts_lstbins[:,k,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,m,:,:].mask, wts_lstbins[:,k,:,:].mask)) # self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,j,:,:] - eicp_tmean[:,i,:,:]) # self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,m,:,:] - eicp_tmean[:,k,:,:]) # self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,j,:,:]**2 + wts_lstbins[:,i,:,:]**2) # self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,m,:,:]**2 + wts_lstbins[:,k,:,:]**2) else: self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,j,:,:].data - eicp_tmedian[:,i,:,:].data), mask=NP.logical_or(eicp_tmedian[:,j,:,:].mask, eicp_tmedian[:,i,:,:].mask)) self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,m,:,:].data - eicp_tmedian[:,k,:,:].data), mask=NP.logical_or(eicp_tmedian[:,m,:,:].mask, eicp_tmedian[:,k,:,:].mask)) # self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,j,:,:] - eicp_tmedian[:,i,:,:]) # self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,m,:,:] - eicp_tmedian[:,k,:,:]) mask0 = self.cpinfo['errinfo']['wts']['0'] <= 0.0 mask1 = self.cpinfo['errinfo']['wts']['1'] <= 0.0 self.cpinfo['errinfo']['eicp_diff']['0'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['0'][stat], mask=mask0) self.cpinfo['errinfo']['eicp_diff']['1'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['1'][stat], mask=mask1) self.cpinfo['errinfo']['wts']['0'] = MA.array(self.cpinfo['errinfo']['wts']['0'], mask=mask0) self.cpinfo['errinfo']['wts']['1'] = MA.array(self.cpinfo['errinfo']['wts']['1'], mask=mask1) ############################################################################ def save(self, outfile=None): """ ------------------------------------------------------------------------ Save contents of attribute cpinfo in external HDF5 file Inputs: outfile [NoneType or string] Output file (HDF5) to save contents to. If set to None (default), it will be saved in the file pointed to by the extfile attribute of class ClosurePhase ------------------------------------------------------------------------ """ if outfile is None: outfile = self.extfile NMO.save_dict_to_hdf5(self.cpinfo, outfile, compressinfo={'compress_fmt': 'gzip', 'compress_opts': 9}) ################################################################################ class ClosurePhaseDelaySpectrum(object): """ ---------------------------------------------------------------------------- Class to hold and operate on Closure Phase information. It has the following attributes and member functions. Attributes: cPhase [instance of class ClosurePhase] Instance of class ClosurePhase f [numpy array] Frequencies (in Hz) in closure phase spectra df [float] Frequency resolution (in Hz) in closure phase spectra cPhaseDS [dictionary] Possibly oversampled Closure Phase Delay Spectrum information. cPhaseDS_resampled [dictionary] Resampled Closure Phase Delay Spectrum information. Member functions: __init__() Initialize instance of class ClosurePhaseDelaySpectrum FT() Fourier transform of complex closure phase spectra mapping from frequency axis to delay axis. subset() Return triad and time indices to select a subset of processed data compute_power_spectrum() Compute power spectrum of closure phase data. It is in units of Mpc/h. rescale_power_spectrum() Rescale power spectrum to dimensional quantity by converting the ratio given visibility amplitude information average_rescaled_power_spectrum() Average the rescaled power spectrum with physical units along certain axes with inverse variance or regular averaging beam3Dvol() Compute three-dimensional volume of the antenna power pattern along two transverse axes and one LOS axis. ---------------------------------------------------------------------------- """ def __init__(self, cPhase): """ ------------------------------------------------------------------------ Initialize instance of class ClosurePhaseDelaySpectrum Inputs: cPhase [class ClosurePhase] Instance of class ClosurePhase ------------------------------------------------------------------------ """ if not isinstance(cPhase, ClosurePhase): raise TypeError('Input cPhase must be an instance of class ClosurePhase') self.cPhase = cPhase self.f = self.cPhase.f self.df = self.cPhase.df self.cPhaseDS = None self.cPhaseDS_resampled = None ############################################################################ def FT(self, bw_eff, freq_center=None, shape=None, fftpow=None, pad=None, datapool='prelim', visscaleinfo=None, method='fft', resample=True, apply_flags=True): """ ------------------------------------------------------------------------ Fourier transform of complex closure phase spectra mapping from frequency axis to delay axis. Inputs: bw_eff [scalar or numpy array] effective bandwidths (in Hz) on the selected frequency windows for subband delay transform of closure phases. If a scalar value is provided, the same will be applied to all frequency windows freq_center [scalar, list or numpy array] frequency centers (in Hz) of the selected frequency windows for subband delay transform of closure phases. The value can be a scalar, list or numpy array. If a scalar is provided, the same will be applied to all frequency windows. Default=None uses the center frequency from the class attribute named channels shape [string] frequency window shape for subband delay transform of closure phases. Accepted values for the string are 'rect' or 'RECT' (for rectangular), 'bnw' and 'BNW' (for Blackman-Nuttall), and 'bhw' or 'BHW' (for Blackman-Harris). Default=None sets it to 'rect' (rectangular window) fftpow [scalar] the power to which the FFT of the window will be raised. The value must be a positive scalar. Default = 1.0 pad [scalar] padding fraction relative to the number of frequency channels for closure phases. Value must be a non-negative scalar. For e.g., a pad of 1.0 pads the frequency axis with zeros of the same width as the number of channels. After the delay transform, the transformed closure phases are downsampled by a factor of 1+pad. If a negative value is specified, delay transform will be performed with no padding. Default=None sets to padding factor to 1.0 datapool [string] Specifies which data set is to be Fourier transformed visscaleinfo [dictionary] Dictionary containing reference visibilities based on which the closure phases will be scaled to units of visibilities. It contains the following keys and values: 'vis' [numpy array or instance of class InterferometerArray] Reference visibilities from the baselines that form the triad. It can be an instance of class RI.InterferometerArray or a numpy array. If an instance of class InterferometerArray, the baseline triplet must be set in key 'bltriplet' and value in key 'lst' will be ignored. If the value under this key 'vis' is set to a numpy array, it must be of shape (nbl=3, nlst_vis, nchan). In this case the value under key 'bltriplet' will be ignored. The nearest LST will be looked up and applied after smoothing along LST based on the smoothing parameter 'smooth' 'bltriplet' [Numpy array] Will be used in searching for matches to these three baseline vectors if the value under key 'vis' is set to an instance of class InterferometerArray. However, if value under key 'vis' is a numpy array, this key 'bltriplet' will be ignored. 'lst' [numpy array] Reference LST (in hours). It is of shape (nlst_vis,). It will be used only if value under key 'vis' is a numpy array, otherwise it will be ignored and read from the instance of class InterferometerArray passed under key 'vis'. If the specified LST range does not cover the data LST range, those LST will contain NaN in the delay spectrum 'smoothinfo' [dictionary] Dictionary specifying smoothing and/or interpolation parameters. It has the following keys and values: 'op_type' [string] Specifies the interpolating operation. Must be specified (no default). Accepted values are 'interp1d' (scipy.interpolate), 'median' (skimage.filters), 'tophat' (astropy.convolution) and 'gaussian' (astropy.convolution) 'interp_kind' [string (optional)] Specifies the interpolation kind (if 'op_type' is set to 'interp1d'). For accepted values, see scipy.interpolate.interp1d() 'window_size' [integer (optional)] Specifies the size of the interpolating/smoothing kernel. Only applies when 'op_type' is set to 'median', 'tophat' or 'gaussian' The kernel is a tophat function when 'op_type' is set to 'median' or 'tophat'. If refers to FWHM when 'op_type' is set to 'gaussian' resample [boolean] If set to True (default), resample the delay spectrum axis to independent samples along delay axis. If set to False, return the results as is even if they may be be oversampled and not all samples may be independent method [string] Specifies the Fourier transform method to be used. Accepted values are 'fft' (default) for FFT and 'nufft' for non-uniform FFT apply_flags [boolean] If set to True (default), weights determined from flags will be applied. If False, no weights from flagging will be applied, and thus even flagged data will be included Outputs: A dictionary that contains the oversampled (if resample=False) or resampled (if resample=True) delay spectrum information. It has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags=nchan+npad if resample=True, where npad is the number of frequency channels padded specified under the key 'npad'. If resample=False, nlags = number of delays after resampling only independent delays. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_win x nlst x ndays x ntriads x nlags. nlags=nchan+npad if resample=True, where npad is the number of frequency channels padded specified under the key 'npad'. If resample=False, nlags = number of delays after resampling only independent delays. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'whole' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'prelim' key of attribute cpinfo. Contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(nlst,ndays,ntriads,nchan) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'submodel' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'submodel' key of attribute cpinfo. Contains the following keys and values: 'dspec' [numpy array] Delay spectrum of closure phases Shape=(nspw,nlst,ndays,ntriads,nlags) 'residual' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'residual' key of attribute cpinfo after subtracting 'submodel' bispectrum phase from that of 'prelim'. It contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(nlst,ndays,ntriads,nchan) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'errinfo' [dictionary] It has two keys 'dspec0' and 'dspec1' each of which are dictionaries with the following keys and values: 'twts' [numpy array] Weights for the subsample difference. It is of shape (nlst, ndays, ntriads, nchan) 'mean' [numpy array] Delay spectrum of the subsample difference obtained by using the mean statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) 'median' [numpy array] Delay spectrum of the subsample difference obtained by using the median statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) ------------------------------------------------------------------------ """ try: bw_eff except NameError: raise NameError('Effective bandwidth must be specified') else: if not isinstance(bw_eff, (int, float, list, NP.ndarray)): raise TypeError('Value of effective bandwidth must be a scalar, list or numpy array') bw_eff = NP.asarray(bw_eff).reshape(-1) if NP.any(bw_eff <= 0.0): raise ValueError('All values in effective bandwidth must be strictly positive') if freq_center is None: freq_center = NP.asarray(self.f[self.f.size/2]).reshape(-1) elif isinstance(freq_center, (int, float, list, NP.ndarray)): freq_center = NP.asarray(freq_center).reshape(-1) if NP.any((freq_center <= self.f.min()) | (freq_center >= self.f.max())): raise ValueError('Value(s) of frequency center(s) must lie strictly inside the observing band') else: raise TypeError('Values(s) of frequency center must be scalar, list or numpy array') if (bw_eff.size == 1) and (freq_center.size > 1): bw_eff = NP.repeat(bw_eff, freq_center.size) elif (bw_eff.size > 1) and (freq_center.size == 1): freq_center = NP.repeat(freq_center, bw_eff.size) elif bw_eff.size != freq_center.size: raise ValueError('Effective bandwidth(s) and frequency center(s) must have same number of elements') if shape is not None: if not isinstance(shape, str): raise TypeError('Window shape must be a string') if shape not in ['rect', 'bhw', 'bnw', 'RECT', 'BHW', 'BNW']: raise ValueError('Invalid value for window shape specified.') else: shape = 'rect' if fftpow is None: fftpow = 1.0 else: if not isinstance(fftpow, (int, float)): raise TypeError('Power to raise window FFT by must be a scalar value.') if fftpow < 0.0: raise ValueError('Power for raising FFT of window by must be positive.') if pad is None: pad = 1.0 else: if not isinstance(pad, (int, float)): raise TypeError('pad fraction must be a scalar value.') if pad < 0.0: pad = 0.0 if verbose: print('\tPad fraction found to be negative. Resetting to 0.0 (no padding will be applied).') if not isinstance(datapool, str): raise TypeError('Input datapool must be a string') if datapool.lower() not in ['prelim']: raise ValueError('Specified datapool not supported') if visscaleinfo is not None: if not isinstance(visscaleinfo, dict): raise TypeError('Input visscaleinfo must be a dictionary') if 'vis' not in visscaleinfo: raise KeyError('Input visscaleinfo does not contain key "vis"') if not isinstance(visscaleinfo['vis'], RI.InterferometerArray): if 'lst' not in visscaleinfo: raise KeyError('Input visscaleinfo does not contain key "lst"') lst_vis = visscaleinfo['lst'] * 15.0 if not isinstance(visscaleinfo['vis'], (NP.ndarray,MA.MaskedArray)): raise TypeError('Input visibilities must be a numpy or a masked array') if not isinstance(visscaleinfo['vis'], MA.MaskedArray): visscaleinfo['vis'] = MA.array(visscaleinfo['vis'], mask=NP.isnan(visscaleinfo['vis'])) vistriad = MA.copy(visscaleinfo['vis']) else: if 'bltriplet' not in visscaleinfo: raise KeyError('Input dictionary visscaleinfo does not contain key "bltriplet"') blind, blrefind, dbl = LKP.find_1NN(visscaleinfo['vis'].baselines, visscaleinfo['bltriplet'], distance_ULIM=0.2, remove_oob=True) if blrefind.size != 3: blind_missing = NP.setdiff1d(NP.arange(3), blind, assume_unique=True) blind_next, blrefind_next, dbl_next = LKP.find_1NN(visscaleinfo['vis'].baselines, -1*visscaleinfo['bltriplet'][blind_missing,:], distance_ULIM=0.2, remove_oob=True) if blind_next.size + blind.size != 3: raise ValueError('Exactly three baselines were not found in the reference baselines') else: blind = NP.append(blind, blind_missing[blind_next]) blrefind = NP.append(blrefind, blrefind_next) else: blind_missing = [] vistriad = NP.transpose(visscaleinfo['vis'].skyvis_freq[blrefind,:,:], (0,2,1)) if len(blind_missing) > 0: vistriad[-blrefind_next.size:,:,:] = vistriad[-blrefind_next.size:,:,:].conj() vistriad = MA.array(vistriad, mask=NP.isnan(vistriad)) lst_vis = visscaleinfo['vis'].lst viswts = MA.array(NP.ones_like(vistriad.data), mask=vistriad.mask, dtype=NP.float) lst_out = self.cPhase.cpinfo['processed']['prelim']['lstbins'] * 15.0 if lst_vis.size == 1: # Apply the visibility scaling from one reference LST to all LST vis_ref = vistriad * NP.ones(lst_out.size).reshape(1,-1,1) wts_ref = viswts * NP.ones(lst_out.size).reshape(1,-1,1) else: vis_ref, wts_ref = OPS.interpolate_masked_array_1D(vistriad, viswts, 1, visscaleinfo['smoothinfo'], inploc=lst_vis, outloc=lst_out) if not isinstance(method, str): raise TypeError('Input method must be a string') if method.lower() not in ['fft', 'nufft']: raise ValueError('Specified FFT method not supported') if not isinstance(apply_flags, bool): raise TypeError('Input apply_flags must be boolean') flagwts = 1.0 visscale = 1.0 if datapool.lower() == 'prelim': if method.lower() == 'fft': freq_wts = NP.empty((bw_eff.size, self.f.size), dtype=NP.float_) # nspw x nchan frac_width = DSP.window_N2width(n_window=None, shape=shape, fftpow=fftpow, area_normalize=False, power_normalize=True) window_loss_factor = 1 / frac_width n_window = NP.round(window_loss_factor * bw_eff / self.df).astype(NP.int) ind_freq_center, ind_channels, dfrequency = LKP.find_1NN(self.f.reshape(-1,1), freq_center.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True) sortind = NP.argsort(ind_channels) ind_freq_center = ind_freq_center[sortind] ind_channels = ind_channels[sortind] dfrequency = dfrequency[sortind] n_window = n_window[sortind] for i,ind_chan in enumerate(ind_channels): window = NP.sqrt(frac_width * n_window[i]) * DSP.window_fftpow(n_window[i], shape=shape, fftpow=fftpow, centering=True, peak=None, area_normalize=False, power_normalize=True) window_chans = self.f[ind_chan] + self.df * (NP.arange(n_window[i]) - int(n_window[i]/2)) ind_window_chans, ind_chans, dfreq = LKP.find_1NN(self.f.reshape(-1,1), window_chans.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True) sind = NP.argsort(ind_window_chans) ind_window_chans = ind_window_chans[sind] ind_chans = ind_chans[sind] dfreq = dfreq[sind] window = window[ind_window_chans] window = NP.pad(window, ((ind_chans.min(), self.f.size-1-ind_chans.max())), mode='constant', constant_values=((0.0,0.0))) freq_wts[i,:] = window npad = int(self.f.size * pad) lags = DSP.spectral_axis(self.f.size + npad, delx=self.df, use_real=False, shift=True) result = {'freq_center': freq_center, 'shape': shape, 'freq_wts': freq_wts, 'bw_eff': bw_eff, 'fftpow': fftpow, 'npad': npad, 'lags': lags, 'lag_corr_length': self.f.size / NP.sum(freq_wts, axis=-1), 'whole': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'residual': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'errinfo': {'dspec0': {'twts': self.cPhase.cpinfo['errinfo']['wts']['0']}, 'dspec1': {'twts': self.cPhase.cpinfo['errinfo']['wts']['1']}}, 'submodel': {}} if visscaleinfo is not None: visscale = NP.nansum(NP.transpose(vis_ref[NP.newaxis,NP.newaxis,:,:,:], axes=(0,3,1,2,4)) * freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) / NP.nansum(freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) # nspw x nlst x (ndays=1) x (nbl=3) x (nchan=1) visscale = NP.sqrt(1.0/NP.nansum(1/NP.abs(visscale)**2, axis=-2, keepdims=True)) # nspw x nlst x (ndays=1) x (ntriads=1) x (nchan=1) for dpool in ['errinfo', 'prelim', 'submodel', 'residual']: if dpool.lower() == 'errinfo': for diffind in range(2): if apply_flags: flagwts = NP.copy(self.cPhase.cpinfo['errinfo']['wts']['{0}'.format(diffind)].data) flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan for stat in self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)]: eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].data) # Minimum shape as stored # eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].filled(0.0)) # Minimum shape as stored eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].shape) # Broadcast to final shape eicp = eicp[NP.newaxis,...] # nlst x ndayscomb x ntriads x nchan --> (nspw=1) x nlst x ndayscomb x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] result[dpool]['dspec{0}'.format(diffind)][stat] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: if dpool in self.cPhase.cpinfo['processed']: if apply_flags: flagwts = NP.copy(self.cPhase.cpinfo['processed'][datapool]['wts'].data) flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan if dpool == 'submodel': eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].data) # Minimum shape as stored # eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].filled(1.0)) # Minimum shape as stored eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo['processed'][datapool]['eicp']['mean'].shape) # Broadcast to final shape eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] result[dpool]['dspec'] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: for key in self.cPhase.cpinfo['processed'][dpool]['eicp']: eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].data) # eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].filled(1.0)) eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] if dpool == 'prelim': result['whole']['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: result[dpool]['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df result['lag_kernel'] = DSP.FT1D(NP.pad(flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df self.cPhaseDS = result if resample: result_resampled = copy.deepcopy(result) downsample_factor = NP.min((self.f.size + npad) * self.df / bw_eff) result_resampled['lags'] = DSP.downsampler(result_resampled['lags'], downsample_factor, axis=-1, method='interp', kind='linear') result_resampled['lag_kernel'] = DSP.downsampler(result_resampled['lag_kernel'], downsample_factor, axis=-1, method='interp', kind='linear') for dpool in ['errinfo', 'prelim', 'submodel', 'residual']: if dpool.lower() == 'errinfo': for diffind in self.cPhase.cpinfo[dpool]['eicp_diff']: for key in self.cPhase.cpinfo[dpool]['eicp_diff'][diffind]: result_resampled[dpool]['dspec'+diffind][key] = DSP.downsampler(result_resampled[dpool]['dspec'+diffind][key], downsample_factor, axis=-1, method='FFT') if dpool in self.cPhase.cpinfo['processed']: if dpool == 'submodel': result_resampled[dpool]['dspec'] = DSP.downsampler(result_resampled[dpool]['dspec'], downsample_factor, axis=-1, method='FFT') else: for key in self.cPhase.cpinfo['processed'][datapool]['eicp']: if dpool == 'prelim': result_resampled['whole']['dspec'][key] = DSP.downsampler(result_resampled['whole']['dspec'][key], downsample_factor, axis=-1, method='FFT') else: result_resampled[dpool]['dspec'][key] = DSP.downsampler(result_resampled[dpool]['dspec'][key], downsample_factor, axis=-1, method='FFT') self.cPhaseDS_resampled = result_resampled return result_resampled else: return result ############################################################################ def subset(self, selection=None): """ ------------------------------------------------------------------------ Return triad and time indices to select a subset of processed data Inputs: selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. Outputs: Tuple (triad_ind, lst_ind, day_ind, day_ind_eicpdiff) containing the triad, LST, day, and day-pair (for subsample differences) indices, each as a numpy array ------------------------------------------------------------------------ """ if selection is None: selsection = {} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') triads = map(tuple, self.cPhase.cpinfo['raw']['triads']) if 'triads' not in selection: selection['triads'] = triads if selection['triads'] is None: selection['triads'] = triads triad_ind = [triads.index(triad) for triad in selection['triads']] triad_ind = NP.asarray(triad_ind) lst_ind = None if 'lst' not in selection: if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0]) else: if selection['lst'] is None: if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0]) elif isinstance(selection['lst'], (list,NP.ndarray)): if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = selection['lst'] if NP.any(NP.logical_or(lst_ind < 0, lst_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0])): raise ValueError('Input processed lst indices out of bounds') else: raise TypeError('Wrong type for processed lst indices') if lst_ind is None: raise ValueError('LST index selection could not be performed') day_ind = None day_ind_eicpdiff = None if 'days' not in selection: if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1]) if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs'])) else: if selection['days'] is None: if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1]) if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs'])) elif isinstance(selection['days'], (list,NP.ndarray)): if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = selection['days'] if NP.any(NP.logical_or(day_ind < 0, day_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1])): raise ValueError('Input processed day indices out of bounds') if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = [i for i,item in enumerate(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs']) if len(set(item)-set(selection['days']))==0] else: raise TypeError('Wrong type for processed day indices') if day_ind is None: raise ValueError('Day index selection could not be performed') return (triad_ind, lst_ind, day_ind, day_ind_eicpdiff) ############################################################################ def compute_power_spectrum(self, cpds=None, selection=None, autoinfo=None, xinfo=None, cosmo=cosmo100, units='K', beamparms=None): """ ------------------------------------------------------------------------ Compute power spectrum of closure phase data. It is in units of Mpc/h Inputs: cpds [dictionary] A dictionary that contains the 'oversampled' (if resample=False) and/or 'resampled' (if resample=True) delay spectrum information. If it is not specified the attributes cPhaseDS['processed'] and cPhaseDS_resampled['processed'] are used. Under each of these keys, it holds a dictionary that has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_bl x n_win x nlags x n_t. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'processed' [dictionary] Contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(ntriads,npol,nchan,nt) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,npol,nt,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,npol,nt,ntriads,nlags) selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. autoinfo [NoneType or dictionary] Specifies parameters for processing before power spectrum in auto or cross modes. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes that will be averaged coherently before squaring (for auto) or cross-multiplying (for cross) power spectrum. If set to None (default), no axes are averaged coherently. If set to int, list, tuple or numpy array, those axes will be averaged coherently after applying the weights specified under key 'wts' along those axes. 1=lst, 2=days, 3=triads. 'wts' [NoneType/list/numpy array] If not provided (equivalent to setting it to None) or set to None (default), it is set to a one element list which is a one element numpy array of unity. Otherwise, it must be a list of same number of elements as in key 'axes' and each of these must be a numpy broadcast compatible array corresponding to each of the axis specified in 'axes' xinfo [NoneType or dictionary] Specifies parameters for processing cross power spectrum. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes over which power spectrum will be computed incoherently by cross- multiplication. If set to None (default), no cross- power spectrum is computed. If set to int, list, tuple or numpy array, cross-power over those axes will be computed incoherently by cross-multiplication. The cross-spectrum over these axes will be computed after applying the pre- and post- cross-multiplication weights specified in key 'wts'. 1=lst, 2=days, 3=triads. 'collapse_axes' [list] The axes that will be collpased after the cross-power matrix is produced by cross-multiplication. If this key is not set, it will be initialized to an empty list (default), in which case none of the axes is collapsed and the full cross-power matrix will be output. it must be a subset of values under key 'axes'. This will reduce it from a square matrix along that axis to collapsed values along each of the leading diagonals. 1=lst, 2=days, 3=triads. 'dlst' [scalar] LST interval (in mins) or difference between LST pairs which will be determined and used for cross-power spectrum. Will only apply if values under 'axes' contains the LST axis(=1). 'dlst_range' [scalar, numpy array, or NoneType] Specifies the LST difference(s) in minutes that are to be used in the computation of cross-power spectra. If a scalar, only the diagonal consisting of pairs with that LST difference will be computed. If a numpy array, those diagonals consisting of pairs with that LST difference will be computed. If set to None (default), the main diagonal (LST difference of 0) and the first off-main diagonal (LST difference of 1 unit) corresponding to pairs with 0 and 1 unit LST difference are computed. Applies only if key 'axes' contains LST axis (=1). 'avgcov' [boolean] It specifies if the collapse of square covariance matrix is to be collapsed further to a single number after applying 'postX' weights. If not set or set to False (default), this late stage collapse will not be performed. Otherwise, it will be averaged in a weighted average sense where the 'postX' weights would have already been applied during the collapsing operation 'wts' [NoneType or Dictionary] If not set, a default dictionary (see default values below) will be created. It must have the follwoing keys and values: 'preX' [list of numpy arrays] It contains pre-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postX' [list of numpy arrays] It contains post-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of 'preX' weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postXnorm' [boolean] If False (default), no normalization is done after the application of postX weights. If set to True, the delay cross power spectrum will be normalized by the sum of the weights. cosmo [instance of cosmology class from astropy] An instance of class FLRW or default_cosmology of astropy cosmology module. Default uses Planck 2015 cosmology, with H0=100 h km/s/Mpc units [string] Specifies the units of output power spectum. Accepted values are 'Jy' and 'K' (default)) and the power spectrum will be in corresponding squared units. Output: Dictionary with the keys 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estiamted over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum Examples: (1) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': None, 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}} Output delay power spectrum has shape (Nspw, Nlst, 1, Ntriads, Nlags) (2) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}, 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, 1, Ntriads, Ntriads, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4,5]} (3) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [3], 'dlst_range': [0.0, 1.0, 2.0]} Output delay power spectrum has shape (Nspw, 3, Nlst, 1, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1,2], 3: [4]} (4) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [1,3], 'dlst_range': [1.0, 2.0, 3.0, 4.0]} Output delay power spectrum has shape (Nspw, 4, Ndays, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1], 3: [3]} (5) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': [3], 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, Ndays, 1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4]} (6) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': []} Output delay power spectrum has shape (Nspw, 1, Ndays, 1, Nlags) diagoffsets = {}, axesmap = {1: [1], 3: [3]} ------------------------------------------------------------------------ """ if not isinstance(units,str): raise TypeError('Input parameter units must be a string') if units.lower() == 'k': if not isinstance(beamparms, dict): raise TypeError('Input beamparms must be a dictionary') if 'freqs' not in beamparms: beamparms['freqs'] = self.f beamparms_orig = copy.deepcopy(beamparms) if autoinfo is None: autoinfo = {'axes': None, 'wts': [NP.ones(1, dtpye=NP.float)]} elif not isinstance(autoinfo, dict): raise TypeError('Input autoinfo must be a dictionary') if 'axes' not in autoinfo: autoinfo['axes'] = None else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input autoinfo must be an integer, list, tuple or numpy array') else: autoinfo['axes'] = NP.asarray(autoinfo['axes']).reshape(-1) if 'wts' not in autoinfo: if autoinfo['axes'] is not None: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] * len(autoinfo['axes']) else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['wts'], list): raise TypeError('wts in input autoinfo must be a list of numpy arrays') else: if len(autoinfo['wts']) != len(autoinfo['axes']): raise ValueError('Input list of wts must be same as length of autoinfo axes') else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] if xinfo is None: xinfo = {'axes': None, 'wts': {'preX': [NP.ones(1, dtpye=NP.float)], 'postX': [NP.ones(1, dtpye=NP.float)], 'preXnorm': False, 'postXnorm': False}} elif not isinstance(xinfo, dict): raise TypeError('Input xinfo must be a dictionary') if 'axes' not in xinfo: xinfo['axes'] = None else: if not isinstance(xinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input xinfo must be an integer, list, tuple or numpy array') else: xinfo['axes'] = NP.asarray(xinfo['axes']).reshape(-1) if 'wts' not in xinfo: xinfo['wts'] = {} for xkey in ['preX', 'postX']: if xinfo['axes'] is not None: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] * len(xinfo['axes']) else: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] xinfo['wts']['preXnorm'] = False xinfo['wts']['postXnorm'] = False else: if xinfo['axes'] is not None: if not isinstance(xinfo['wts'], dict): raise TypeError('wts in input xinfo must be a dictionary') for xkey in ['preX', 'postX']: if not isinstance(xinfo['wts'][xkey], list): raise TypeError('{0} wts in input xinfo must be a list of numpy arrays'.format(xkey)) else: if len(xinfo['wts'][xkey]) != len(xinfo['axes']): raise ValueError('Input list of {0} wts must be same as length of xinfo axes'.format(xkey)) else: for xkey in ['preX', 'postX']: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] if 'preXnorm' not in xinfo['wts']: xinfo['wts']['preXnorm'] = False if 'postXnorm' not in xinfo['wts']: xinfo['wts']['postXnorm'] = False if not isinstance(xinfo['wts']['preXnorm'], NP.bool): raise TypeError('preXnorm in input xinfo must be a boolean') if not isinstance(xinfo['wts']['postXnorm'], NP.bool): raise TypeError('postXnorm in input xinfo must be a boolean') if 'avgcov' not in xinfo: xinfo['avgcov'] = False if not isinstance(xinfo['avgcov'], NP.bool): raise TypeError('avgcov under input xinfo must be boolean') if 'collapse_axes' not in xinfo: xinfo['collapse_axes'] = [] if not isinstance(xinfo['collapse_axes'], (int,list,tuple,NP.ndarray)): raise TypeError('collapse_axes under input xinfo must be an integer, tuple, list or numpy array') else: xinfo['collapse_axes'] = NP.asarray(xinfo['collapse_axes']).reshape(-1) if (autoinfo['axes'] is not None) and (xinfo['axes'] is not None): if NP.intersect1d(autoinfo['axes'], xinfo['axes']).size > 0: raise ValueError("Inputs autoinfo['axes'] and xinfo['axes'] must have no intersection") cohax = autoinfo['axes'] if cohax is None: cohax = [] incohax = xinfo['axes'] if incohax is None: incohax = [] if selection is None: selection = {'triads': None, 'lst': None, 'days': None} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') if cpds is None: cpds = {} sampling = ['oversampled', 'resampled'] for smplng in sampling: if smplng == 'oversampled': cpds[smplng] = copy.deepcopy(self.cPhaseDS) else: cpds[smplng] = copy.deepcopy(self.cPhaseDS_resampled) triad_ind, lst_ind, day_ind, day_ind_eicpdiff = self.subset(selection=selection) result = {'triads': self.cPhase.cpinfo['raw']['triads'][triad_ind], 'triads_ind': triad_ind, 'lst': self.cPhase.cpinfo['processed']['prelim']['lstbins'][lst_ind], 'lst_ind': lst_ind, 'dlst': self.cPhase.cpinfo['processed']['prelim']['dlstbins'][lst_ind], 'days': self.cPhase.cpinfo['processed']['prelim']['daybins'][day_ind], 'day_ind': day_ind, 'dday': self.cPhase.cpinfo['processed']['prelim']['diff_dbins'][day_ind]} dlstbin = NP.mean(self.cPhase.cpinfo['processed']['prelim']['dlstbins']) if 'dlst_range' in xinfo: if xinfo['dlst_range'] is None: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated else: dlst_range = NP.asarray(xinfo['dlst_range']).ravel() / 60.0 # Difference in LST between a pair of LST (in hours) if dlst_range.size == 1: dlst_range = NP.insert(dlst_range, 0, 0.0) lstshifts = NP.arange(max([0, NP.ceil(1.0*dlst_range.min()/dlstbin).astype(NP.int)]), min([NP.ceil(1.0*dlst_range.max()/dlstbin).astype(NP.int), result['lst'].size])) else: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated result['lstXoffsets'] = lstshifts * dlstbin # LST interval corresponding to diagonal offsets created by the LST covariance for smplng in sampling: result[smplng] = {} wl = FCNST.c / (cpds[smplng]['freq_center'] * U.Hz) z = CNST.rest_freq_HI / cpds[smplng]['freq_center'] - 1 dz = CNST.rest_freq_HI / cpds[smplng]['freq_center']**2 * cpds[smplng]['bw_eff'] dkprll_deta = DS.dkprll_deta(z, cosmo=cosmo) kprll = dkprll_deta.reshape(-1,1) * cpds[smplng]['lags'] rz_los = cosmo.comoving_distance(z) # in Mpc/h drz_los = FCNST.c * cpds[smplng]['bw_eff']*U.Hz * (1+z)**2 / (CNST.rest_freq_HI * U.Hz) / (cosmo.H0 * cosmo.efunc(z)) # in Mpc/h if units == 'Jy': jacobian1 = 1 / (cpds[smplng]['bw_eff'] * U.Hz) jacobian2 = drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = 1.0 elif units == 'K': beamparms = copy.deepcopy(beamparms_orig) omega_bw = self.beam3Dvol(beamparms, freq_wts=cpds[smplng]['freq_wts']) jacobian1 = 1 / (omega_bw * U.Hz) # The steradian is present but not explicitly assigned jacobian2 = rz_los**2 * drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = wl**2 / (2*FCNST.k_B) else: raise ValueError('Input value for units invalid') factor = jacobian1 * jacobian2 * temperature_from_fluxdensity**2 result[smplng]['z'] = z result[smplng]['kprll'] = kprll result[smplng]['lags'] = NP.copy(cpds[smplng]['lags']) result[smplng]['freq_center'] = cpds[smplng]['freq_center'] result[smplng]['bw_eff'] = cpds[smplng]['bw_eff'] result[smplng]['shape'] = cpds[smplng]['shape'] result[smplng]['freq_wts'] = cpds[smplng]['freq_wts'] result[smplng]['lag_corr_length'] = cpds[smplng]['lag_corr_length'] for dpool in ['whole', 'submodel', 'residual']: if dpool in cpds[smplng]: result[smplng][dpool] = {} inpshape = list(cpds[smplng]['whole']['dspec']['mean'].shape) inpshape[1] = lst_ind.size inpshape[2] = day_ind.size inpshape[3] = triad_ind.size if len(cohax) > 0: nsamples_coh = NP.prod(NP.asarray(inpshape)[NP.asarray(cohax)]) else: nsamples_coh = 1 if len(incohax) > 0: nsamples = NP.prod(NP.asarray(inpshape)[NP.asarray(incohax)]) nsamples_incoh = nsamples * (nsamples - 1) else: nsamples_incoh = 1 twts_multidim_idx = NP.ix_(lst_ind,day_ind,triad_ind,NP.arange(1)) # shape=(nlst,ndays,ntriads,1) dspec_multidim_idx = NP.ix_(NP.arange(wl.size),lst_ind,day_ind,triad_ind,NP.arange(inpshape[4])) # shape=(nspw,nlst,ndays,ntriads,nchan) max_wt_in_chan = NP.max(NP.sum(cpds[smplng]['whole']['dspec']['twts'].data, axis=(0,1,2))) select_chan = NP.argmax(NP.sum(cpds[smplng]['whole']['dspec']['twts'].data, axis=(0,1,2))) twts = NP.copy(cpds[smplng]['whole']['dspec']['twts'].data[:,:,:,[select_chan]]) # shape=(nlst,ndays,ntriads,nlags=1) if nsamples_coh > 1: awts_shape = tuple(NP.ones(cpds[smplng]['whole']['dspec']['mean'].ndim, dtype=NP.int)) awts = NP.ones(awts_shape, dtype=NP.complex) awts_shape = NP.asarray(awts_shape) for caxind,caxis in enumerate(cohax): curr_awts_shape = NP.copy(awts_shape) curr_awts_shape[caxis] = -1 awts = awts * autoinfo['wts'][caxind].reshape(tuple(curr_awts_shape)) for stat in ['mean', 'median']: if dpool == 'submodel': dspec = NP.copy(cpds[smplng][dpool]['dspec'][dspec_multidim_idx]) else: dspec = NP.copy(cpds[smplng][dpool]['dspec'][stat][dspec_multidim_idx]) if nsamples_coh > 1: if stat == 'mean': dspec = NP.sum(twts[twts_multidim_idx][NP.newaxis,...] * awts * dspec[dspec_multidim_idx], axis=cohax, keepdims=True) / NP.sum(twts[twts_multidim_idx][NP.newaxis,...] * awts, axis=cohax, keepdims=True) else: dspec = NP.median(dspec[dspec_multidim_idx], axis=cohax, keepdims=True) if nsamples_incoh > 1: expandax_map = {} wts_shape = tuple(NP.ones(dspec.ndim, dtype=NP.int)) preXwts = NP.ones(wts_shape, dtype=NP.complex) wts_shape = NP.asarray(wts_shape) for incaxind,incaxis in enumerate(xinfo['axes']): curr_wts_shape = NP.copy(wts_shape) curr_wts_shape[incaxis] = -1 preXwts = preXwts * xinfo['wts']['preX'][incaxind].reshape(tuple(curr_wts_shape)) dspec1 = NP.copy(dspec) dspec2 = NP.copy(dspec) preXwts1 = NP.copy(preXwts) preXwts2 = NP.copy(preXwts) for incax in NP.sort(incohax)[::-1]: dspec1 = NP.expand_dims(dspec1, axis=incax) preXwts1 = NP.expand_dims(preXwts1, axis=incax) if incax == 1: preXwts1_outshape = list(preXwts1.shape) preXwts1_outshape[incax+1] = dspec1.shape[incax+1] preXwts1_outshape = tuple(preXwts1_outshape) preXwts1 = NP.broadcast_to(preXwts1, preXwts1_outshape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() preXwts2_tmp = NP.expand_dims(preXwts2, axis=incax) preXwts2_shape = NP.asarray(preXwts2_tmp.shape) preXwts2_shape[incax] = lstshifts.size preXwts2_shape[incax+1] = preXwts1_outshape[incax+1] preXwts2_shape = tuple(preXwts2_shape) preXwts2 = NP.broadcast_to(preXwts2_tmp, preXwts2_shape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() dspec2_tmp = NP.expand_dims(dspec2, axis=incax) dspec2_shape = NP.asarray(dspec2_tmp.shape) dspec2_shape[incax] = lstshifts.size # dspec2_shape = NP.insert(dspec2_shape, incax, lstshifts.size) dspec2_shape = tuple(dspec2_shape) dspec2 = NP.broadcast_to(dspec2_tmp, dspec2_shape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() for lstshiftind, lstshift in enumerate(lstshifts): dspec2[:,lstshiftind,...] = NP.roll(dspec2_tmp[:,0,...], lstshift, axis=incax) dspec2[:,lstshiftind,:lstshift,...] = NP.nan preXwts2[:,lstshiftind,...] = NP.roll(preXwts2_tmp[:,0,...], lstshift, axis=incax) preXwts2[:,lstshiftind,:lstshift,...] = NP.nan else: dspec2 = NP.expand_dims(dspec2, axis=incax+1) preXwts2 = NP.expand_dims(preXwts2, axis=incax+1) expandax_map[incax] = incax + NP.arange(2) for ekey in expandax_map: if ekey > incax: expandax_map[ekey] += 1 result[smplng][dpool][stat] = factor.reshape((-1,)+tuple(NP.ones(dspec1.ndim-1, dtype=NP.int))) * (dspec1*U.Unit('Jy Hz') * preXwts1) * (dspec2*U.Unit('Jy Hz') * preXwts2).conj() if xinfo['wts']['preXnorm']: result[smplng][dpool][stat] = result[smplng][dpool][stat] / NP.nansum(preXwts1 * preXwts2.conj(), axis=NP.union1d(NP.where(logical_or(NP.asarray(preXwts1.shape)>1, NP.asarray(preXwts2.shape)>1))), keepdims=True) # Normalize by summing the weights over the expanded axes if (len(xinfo['collapse_axes']) > 0) or (xinfo['avgcov']): # if any one of collapsing of incoherent axes or # averaging of full covariance is requested diagoffsets = {} # Stores the correlation index difference along each axis. diagweights = {} # Stores the number of points summed in the trace along the offset diagonal for colaxind, colax in enumerate(xinfo['collapse_axes']): if colax == 1: shp = NP.ones(dspec.ndim, dtype=NP.int) shp[colax] = lst_ind.size multdim_idx = tuple([NP.arange(axdim) for axdim in shp]) diagweights[colax] = NP.sum(NP.logical_not(NP.isnan(dspec[multdim_idx]))) - lstshifts # diagweights[colax] = result[smplng][dpool][stat].shape[expandax_map[colax][-1]] - lstshifts if stat == 'mean': result[smplng][dpool][stat] = NP.nanmean(result[smplng][dpool][stat], axis=expandax_map[colax][-1]) else: result[smplng][dpool][stat] = NP.nanmedian(result[smplng][dpool][stat], axis=expandax_map[colax][-1]) diagoffsets[colax] = lstshifts else: pspec_unit = result[smplng][dpool][stat].si.unit result[smplng][dpool][stat], offsets, diagwts = OPS.array_trace(result[smplng][dpool][stat].si.value, offsets=None, axis1=expandax_map[colax][0], axis2=expandax_map[colax][1], outaxis='axis1') diagwts_shape = NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int) diagwts_shape[expandax_map[colax][0]] = diagwts.size diagoffsets[colax] = offsets diagweights[colax] = NP.copy(diagwts) result[smplng][dpool][stat] = result[smplng][dpool][stat] * pspec_unit / diagwts.reshape(diagwts_shape) for ekey in expandax_map: if ekey > colax: expandax_map[ekey] -= 1 expandax_map[colax] = NP.asarray(expandax_map[colax][0]).ravel() wts_shape = tuple(NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int)) postXwts = NP.ones(wts_shape, dtype=NP.complex) wts_shape = NP.asarray(wts_shape) for colaxind, colax in enumerate(xinfo['collapse_axes']): curr_wts_shape = NP.copy(wts_shape) curr_wts_shape[expandax_map[colax]] = -1 postXwts = postXwts * xinfo['wts']['postX'][colaxind].reshape(tuple(curr_wts_shape)) result[smplng][dpool][stat] = result[smplng][dpool][stat] * postXwts axes_to_sum = tuple(NP.asarray([expandax_map[colax] for colax in xinfo['collapse_axes']]).ravel()) # for post-X normalization and collapse of covariance matrix if xinfo['wts']['postXnorm']: result[smplng][dpool][stat] = result[smplng][dpool][stat] / NP.nansum(postXwts, axis=axes_to_sum, keepdims=True) # Normalize by summing the weights over the collapsed axes if xinfo['avgcov']: # collapse the axes further (postXwts have already # been applied) diagoffset_weights = 1.0 for colaxind in zip(*sorted(zip(NP.arange(xinfo['collapse_axes'].size), xinfo['collapse_axes']), reverse=True))[0]: # It is important to sort the collapsable axes in # reverse order before deleting elements below, # otherwise the axes ordering may be get messed up diagoffset_weights_shape = NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int) diagoffset_weights_shape[expandax_map[xinfo['collapse_axes'][colaxind]][0]] = diagweights[xinfo['collapse_axes'][colaxind]].size diagoffset_weights = diagoffset_weights * diagweights[xinfo['collapse_axes'][colaxind]].reshape(diagoffset_weights_shape) del diagoffsets[xinfo['collapse_axes'][colaxind]] result[smplng][dpool][stat] = NP.nansum(result[smplng][dpool][stat]*diagoffset_weights, axis=axes_to_sum, keepdims=True) / NP.nansum(diagoffset_weights, axis=axes_to_sum, keepdims=True) else: result[smplng][dpool][stat] = factor.reshape((-1,)+tuple(NP.ones(dspec.ndim-1, dtype=NP.int))) * NP.abs(dspec * U.Jy)**2 diagoffsets = {} expandax_map = {} if units == 'Jy': result[smplng][dpool][stat] = result[smplng][dpool][stat].to('Jy2 Mpc') elif units == 'K': result[smplng][dpool][stat] = result[smplng][dpool][stat].to('K2 Mpc3') else: raise ValueError('Input value for units invalid') result[smplng][dpool]['diagoffsets'] = diagoffsets result[smplng][dpool]['diagweights'] = diagweights result[smplng][dpool]['axesmap'] = expandax_map result[smplng][dpool]['nsamples_incoh'] = nsamples_incoh result[smplng][dpool]['nsamples_coh'] = nsamples_coh return result ############################################################################ def compute_power_spectrum_uncertainty(self, cpds=None, selection=None, autoinfo=None,xinfo=None, cosmo=cosmo100, units='K', beamparms=None): """ ------------------------------------------------------------------------ Compute uncertainty in the power spectrum of closure phase data. It is in units of Mpc/h Inputs: cpds [dictionary] A dictionary that contains the 'oversampled' (if resample=False) and/or 'resampled' (if resample=True) delay spectrum information on the key 'errinfo'. If it is not specified the attributes cPhaseDS['errinfo'] and cPhaseDS_resampled['errinfo'] are used. Under each of these sampling keys, it holds a dictionary that has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_bl x n_win x nlags x n_t. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'errinfo' [dictionary] It has two keys 'dspec0' and 'dspec1' each of which are dictionaries with the following keys and values: 'twts' [numpy array] Weights for the subsample difference. It is of shape (nlst, ndays, ntriads, nchan) 'mean' [numpy array] Delay spectrum of the subsample difference obtained by using the mean statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) 'median' [numpy array] Delay spectrum of the subsample difference obtained by using the median statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. autoinfo [NoneType or dictionary] Specifies parameters for processing before power spectrum in auto or cross modes. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes that will be averaged coherently before squaring (for auto) or cross-multiplying (for cross) power spectrum. If set to None (default), no axes are averaged coherently. If set to int, list, tuple or numpy array, those axes will be averaged coherently after applying the weights specified under key 'wts' along those axes. 1=lst, 3=triads. Value of 2 for axes is not allowed since that denotes repeated days and it is along this axis that cross-power is computed regardless. 'wts' [NoneType/list/numpy array] If not provided (equivalent to setting it to None) or set to None (default), it is set to a one element list which is a one element numpy array of unity. Otherwise, it must be a list of same number of elements as in key 'axes' and each of these must be a numpy broadcast compatible array corresponding to each of the axis specified in 'axes' xinfo [NoneType or dictionary] Specifies parameters for processing cross power spectrum. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes over which power spectrum will be computed incoherently by cross- multiplication. If set to None (default), no cross- power spectrum is computed. If set to int, list, tuple or numpy array, cross-power over those axes will be computed incoherently by cross-multiplication. The cross-spectrum over these axes will be computed after applying the pre- and post- cross-multiplication weights specified in key 'wts'. 1=lst, 3=triads. Value of 2 for axes is not allowed since that denotes repeated days and it is along this axis that cross-power is computed regardless. 'collapse_axes' [list] The axes that will be collpased after the cross-power matrix is produced by cross-multiplication. If this key is not set, it will be initialized to an empty list (default), in which case none of the axes is collapsed and the full cross-power matrix will be output. it must be a subset of values under key 'axes'. This will reduce it from a square matrix along that axis to collapsed values along each of the leading diagonals. 1=lst, 3=triads. 'dlst' [scalar] LST interval (in mins) or difference between LST pairs which will be determined and used for cross-power spectrum. Will only apply if values under 'axes' contains the LST axis(=1). 'dlst_range' [scalar, numpy array, or NoneType] Specifies the LST difference(s) in minutes that are to be used in the computation of cross-power spectra. If a scalar, only the diagonal consisting of pairs with that LST difference will be computed. If a numpy array, those diagonals consisting of pairs with that LST difference will be computed. If set to None (default), the main diagonal (LST difference of 0) and the first off-main diagonal (LST difference of 1 unit) corresponding to pairs with 0 and 1 unit LST difference are computed. Applies only if key 'axes' contains LST axis (=1). 'avgcov' [boolean] It specifies if the collapse of square covariance matrix is to be collapsed further to a single number after applying 'postX' weights. If not set or set to False (default), this late stage collapse will not be performed. Otherwise, it will be averaged in a weighted average sense where the 'postX' weights would have already been applied during the collapsing operation 'wts' [NoneType or Dictionary] If not set, a default dictionary (see default values below) will be created. It must have the follwoing keys and values: 'preX' [list of numpy arrays] It contains pre-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postX' [list of numpy arrays] It contains post-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of 'preX' weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postXnorm' [boolean] If False (default), no normalization is done after the application of postX weights. If set to True, the delay cross power spectrum will be normalized by the sum of the weights. cosmo [instance of cosmology class from astropy] An instance of class FLRW or default_cosmology of astropy cosmology module. Default uses Planck 2015 cosmology, with H0=100 h km/s/Mpc units [string] Specifies the units of output power spectum. Accepted values are 'Jy' and 'K' (default)) and the power spectrum will be in corresponding squared units. Output: Dictionary with the keys 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndaycomb,) array), 'day_ind' ((ndaycomb,) array), 'dday' ((ndaycomb,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains a key named 'errinfo' which is a dictionary. It contains information about power spectrum uncertainties obtained from subsample differences. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum uncertainties incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum uncertainties incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum Examples: (1) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': None, 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}} This will not do anything because axes cannot include value 2 which denote the 'days' axis and the uncertainties are obtained through subsample differencing along days axis regardless. Output delay power spectrum has shape (Nspw, Nlst, Ndaycomb, Ntriads, Nlags) (2) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}, 'dlst_range': None} This will not do anything about coherent averaging along axis=2 because axes cannot include value 2 which denote the 'days' axis and the uncertainties are obtained through subsample differencing along days axis regardless. Output delay power spectrum has shape (Nspw, 2, Nlst, Ndaycomb, Ntriads, Ntriads, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4,5]} (3) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [3], 'dlst_range': [0.0, 1.0, 2.0]} This will not do anything about coherent averaging along axis=2 because axes cannot include value 2 which denote the 'days' axis and the uncertainties are obtained through subsample differencing along days axis regardless. Output delay power spectrum has shape (Nspw, 3, Nlst, 1, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1,2], 3: [4]} (4) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [1,3], 'dlst_range': [1.0, 2.0, 3.0, 4.0]} Output delay power spectrum has shape (Nspw, 4, Ndaycomb, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1], 3: [3]} (5) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': [3], 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, Ndays, 1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4]} (6) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': []} Output delay power spectrum has shape (Nspw, 1, Ndays, 1, Nlags) diagoffsets = {}, axesmap = {1: [1], 3: [3]} ------------------------------------------------------------------------ """ if not isinstance(units,str): raise TypeError('Input parameter units must be a string') if units.lower() == 'k': if not isinstance(beamparms, dict): raise TypeError('Input beamparms must be a dictionary') if 'freqs' not in beamparms: beamparms['freqs'] = self.f beamparms_orig = copy.deepcopy(beamparms) if autoinfo is None: autoinfo = {'axes': None, 'wts': [NP.ones(1, dtpye=NP.float)]} elif not isinstance(autoinfo, dict): raise TypeError('Input autoinfo must be a dictionary') if 'axes' not in autoinfo: autoinfo['axes'] = None else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input autoinfo must be an integer, list, tuple or numpy array') else: autoinfo['axes'] = NP.asarray(autoinfo['axes']).reshape(-1) if 'wts' not in autoinfo: if autoinfo['axes'] is not None: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] * len(autoinfo['axes']) else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['wts'], list): raise TypeError('wts in input autoinfo must be a list of numpy arrays') else: if len(autoinfo['wts']) != len(autoinfo['axes']): raise ValueError('Input list of wts must be same as length of autoinfo axes') else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] if xinfo is None: xinfo = {'axes': None, 'wts': {'preX': [NP.ones(1, dtpye=NP.float)], 'postX': [NP.ones(1, dtpye=NP.float)], 'preXnorm': False, 'postXnorm': False}} elif not isinstance(xinfo, dict): raise TypeError('Input xinfo must be a dictionary') if 'axes' not in xinfo: xinfo['axes'] = None else: if not isinstance(xinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input xinfo must be an integer, list, tuple or numpy array') else: xinfo['axes'] = NP.asarray(xinfo['axes']).reshape(-1) if 'wts' not in xinfo: xinfo['wts'] = {} for xkey in ['preX', 'postX']: if xinfo['axes'] is not None: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] * len(xinfo['axes']) else: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] xinfo['wts']['preXnorm'] = False xinfo['wts']['postXnorm'] = False else: if xinfo['axes'] is not None: if not isinstance(xinfo['wts'], dict): raise TypeError('wts in input xinfo must be a dictionary') for xkey in ['preX', 'postX']: if not isinstance(xinfo['wts'][xkey], list): raise TypeError('{0} wts in input xinfo must be a list of numpy arrays'.format(xkey)) else: if len(xinfo['wts'][xkey]) != len(xinfo['axes']): raise ValueError('Input list of {0} wts must be same as length of xinfo axes'.format(xkey)) else: for xkey in ['preX', 'postX']: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] if 'preXnorm' not in xinfo['wts']: xinfo['wts']['preXnorm'] = False if 'postXnorm' not in xinfo['wts']: xinfo['wts']['postXnorm'] = False if not isinstance(xinfo['wts']['preXnorm'], NP.bool): raise TypeError('preXnorm in input xinfo must be a boolean') if not isinstance(xinfo['wts']['postXnorm'], NP.bool): raise TypeError('postXnorm in input xinfo must be a boolean') if 'avgcov' not in xinfo: xinfo['avgcov'] = False if not isinstance(xinfo['avgcov'], NP.bool): raise TypeError('avgcov under input xinfo must be boolean') if 'collapse_axes' not in xinfo: xinfo['collapse_axes'] = [] if not isinstance(xinfo['collapse_axes'], (int,list,tuple,NP.ndarray)): raise TypeError('collapse_axes under input xinfo must be an integer, tuple, list or numpy array') else: xinfo['collapse_axes'] = NP.asarray(xinfo['collapse_axes']).reshape(-1) if (autoinfo['axes'] is not None) and (xinfo['axes'] is not None): if NP.intersect1d(autoinfo['axes'], xinfo['axes']).size > 0: raise ValueError("Inputs autoinfo['axes'] and xinfo['axes'] must have no intersection") cohax = autoinfo['axes'] if cohax is None: cohax = [] if 2 in cohax: # Remove axis=2 from cohax if isinstance(cohax, list): cohax.remove(2) if isinstance(cohax, NP.ndarray): cohax = cohax.tolist() cohax.remove(2) cohax = NP.asarray(cohax) incohax = xinfo['axes'] if incohax is None: incohax = [] if 2 in incohax: # Remove axis=2 from incohax if isinstance(incohax, list): incohax.remove(2) if isinstance(incohax, NP.ndarray): incohax = incohax.tolist() incohax.remove(2) incohax = NP.asarray(incohax) if selection is None: selection = {'triads': None, 'lst': None, 'days': None} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') if cpds is None: cpds = {} sampling = ['oversampled', 'resampled'] for smplng in sampling: if smplng == 'oversampled': cpds[smplng] = copy.deepcopy(self.cPhaseDS) else: cpds[smplng] = copy.deepcopy(self.cPhaseDS_resampled) triad_ind, lst_ind, day_ind, day_ind_eicpdiff = self.subset(selection=selection) result = {'triads': self.cPhase.cpinfo['raw']['triads'][triad_ind], 'triads_ind': triad_ind, 'lst': self.cPhase.cpinfo['errinfo']['lstbins'][lst_ind], 'lst_ind': lst_ind, 'dlst': self.cPhase.cpinfo['errinfo']['dlstbins'][lst_ind], 'days': self.cPhase.cpinfo['errinfo']['daybins'][day_ind], 'day_ind': day_ind_eicpdiff, 'dday': self.cPhase.cpinfo['errinfo']['diff_dbins'][day_ind]} dlstbin = NP.mean(self.cPhase.cpinfo['errinfo']['dlstbins']) if 'dlst_range' in xinfo: if xinfo['dlst_range'] is None: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated else: dlst_range = NP.asarray(xinfo['dlst_range']).ravel() / 60.0 # Difference in LST between a pair of LST (in hours) if dlst_range.size == 1: dlst_range = NP.insert(dlst_range, 0, 0.0) lstshifts = NP.arange(max([0, NP.ceil(1.0*dlst_range.min()/dlstbin).astype(NP.int)]), min([NP.ceil(1.0*dlst_range.max()/dlstbin).astype(NP.int), result['lst'].size])) else: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated result['lstXoffsets'] = lstshifts * dlstbin # LST interval corresponding to diagonal offsets created by the LST covariance for smplng in sampling: result[smplng] = {} wl = FCNST.c / (cpds[smplng]['freq_center'] * U.Hz) z = CNST.rest_freq_HI / cpds[smplng]['freq_center'] - 1 dz = CNST.rest_freq_HI / cpds[smplng]['freq_center']**2 * cpds[smplng]['bw_eff'] dkprll_deta = DS.dkprll_deta(z, cosmo=cosmo) kprll = dkprll_deta.reshape(-1,1) * cpds[smplng]['lags'] rz_los = cosmo.comoving_distance(z) # in Mpc/h drz_los = FCNST.c * cpds[smplng]['bw_eff']*U.Hz * (1+z)**2 / (CNST.rest_freq_HI * U.Hz) / (cosmo.H0 * cosmo.efunc(z)) # in Mpc/h if units == 'Jy': jacobian1 = 1 / (cpds[smplng]['bw_eff'] * U.Hz) jacobian2 = drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = 1.0 elif units == 'K': beamparms = copy.deepcopy(beamparms_orig) omega_bw = self.beam3Dvol(beamparms, freq_wts=cpds[smplng]['freq_wts']) jacobian1 = 1 / (omega_bw * U.Hz) # The steradian is present but not explicitly assigned jacobian2 = rz_los**2 * drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = wl**2 / (2*FCNST.k_B) else: raise ValueError('Input value for units invalid') factor = jacobian1 * jacobian2 * temperature_from_fluxdensity**2 result[smplng]['z'] = z result[smplng]['kprll'] = kprll result[smplng]['lags'] = NP.copy(cpds[smplng]['lags']) result[smplng]['freq_center'] = cpds[smplng]['freq_center'] result[smplng]['bw_eff'] = cpds[smplng]['bw_eff'] result[smplng]['shape'] = cpds[smplng]['shape'] result[smplng]['freq_wts'] = cpds[smplng]['freq_wts'] result[smplng]['lag_corr_length'] = cpds[smplng]['lag_corr_length'] dpool = 'errinfo' if dpool in cpds[smplng]: result[smplng][dpool] = {} inpshape = list(cpds[smplng][dpool]['dspec0']['mean'].shape) inpshape[1] = lst_ind.size inpshape[2] = day_ind_eicpdiff.size inpshape[3] = triad_ind.size if len(cohax) > 0: nsamples_coh = NP.prod(NP.asarray(inpshape)[NP.asarray(cohax)]) else: nsamples_coh = 1 if len(incohax) > 0: nsamples = NP.prod(NP.asarray(inpshape)[NP.asarray(incohax)]) nsamples_incoh = nsamples * (nsamples - 1) else: nsamples_incoh = 1 twts_multidim_idx = NP.ix_(lst_ind,day_ind_eicpdiff,triad_ind,NP.arange(1)) # shape=(nlst,ndays,ntriads,1) dspec_multidim_idx = NP.ix_(NP.arange(wl.size),lst_ind,day_ind_eicpdiff,triad_ind,NP.arange(inpshape[4])) # shape=(nspw,nlst,ndays,ntriads,nchan) max_wt_in_chan = NP.max(NP.sum(cpds[smplng]['errinfo']['dspec0']['twts'].data, axis=(0,1,2,3))) select_chan = NP.argmax(NP.sum(cpds[smplng]['errinfo']['dspec0']['twts'].data, axis=(0,1,2,3))) twts = {'0': NP.copy(cpds[smplng]['errinfo']['dspec0']['twts'].data[:,:,:,[select_chan]]), '1': NP.copy(cpds[smplng]['errinfo']['dspec1']['twts'].data[:,:,:,[select_chan]])} if nsamples_coh > 1: awts_shape = tuple(NP.ones(cpds[smplng]['errinfo']['dspec']['mean'].ndim, dtype=NP.int)) awts = NP.ones(awts_shape, dtype=NP.complex) awts_shape = NP.asarray(awts_shape) for caxind,caxis in enumerate(cohax): curr_awts_shape = NP.copy(awts_shape) curr_awts_shape[caxis] = -1 awts = awts * autoinfo['wts'][caxind].reshape(tuple(curr_awts_shape)) for stat in ['mean', 'median']: dspec0 = NP.copy(cpds[smplng][dpool]['dspec0'][stat][dspec_multidim_idx]) dspec1 = NP.copy(cpds[smplng][dpool]['dspec1'][stat][dspec_multidim_idx]) if nsamples_coh > 1: if stat == 'mean': dspec0 = NP.sum(twts['0'][NP.newaxis,...] * awts * dspec0, axis=cohax, keepdims=True) / NP.sum(twts['0'][twts_multidim_idx][NP.newaxis,...] * awts, axis=cohax, keepdims=True) dspec1 = NP.sum(twts['1'][NP.newaxis,...] * awts * dspec1, axis=cohax, keepdims=True) / NP.sum(twts['1'][twts_multidim_idx][NP.newaxis,...] * awts, axis=cohax, keepdims=True) else: dspec0 = NP.median(dspec0, axis=cohax, keepdims=True) dspec1 = NP.median(dspec1, axis=cohax, keepdims=True) if nsamples_incoh > 1: expandax_map = {} wts_shape = tuple(NP.ones(dspec0.ndim, dtype=NP.int)) preXwts = NP.ones(wts_shape, dtype=NP.complex) wts_shape = NP.asarray(wts_shape) for incaxind,incaxis in enumerate(xinfo['axes']): curr_wts_shape = NP.copy(wts_shape) curr_wts_shape[incaxis] = -1 preXwts = preXwts * xinfo['wts']['preX'][incaxind].reshape(tuple(curr_wts_shape)) preXwts0 = NP.copy(preXwts) preXwts1 = NP.copy(preXwts) for incax in NP.sort(incohax)[::-1]: dspec0 = NP.expand_dims(dspec0, axis=incax) preXwts0 = NP.expand_dims(preXwts0, axis=incax) if incax == 1: preXwts0_outshape = list(preXwts0.shape) preXwts0_outshape[incax+1] = dspec0.shape[incax+1] preXwts0_outshape = tuple(preXwts0_outshape) preXwts0 = NP.broadcast_to(preXwts0, preXwts0_outshape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() preXwts1_tmp = NP.expand_dims(preXwts1, axis=incax) preXwts1_shape = NP.asarray(preXwts1_tmp.shape) preXwts1_shape[incax] = lstshifts.size preXwts1_shape[incax+1] = preXwts0_outshape[incax+1] preXwts1_shape = tuple(preXwts1_shape) preXwts1 = NP.broadcast_to(preXwts1_tmp, preXwts1_shape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() dspec1_tmp = NP.expand_dims(dspec1, axis=incax) dspec1_shape = NP.asarray(dspec1_tmp.shape) dspec1_shape[incax] = lstshifts.size # dspec1_shape = NP.insert(dspec1_shape, incax, lstshifts.size) dspec1_shape = tuple(dspec1_shape) dspec1 = NP.broadcast_to(dspec1_tmp, dspec1_shape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() for lstshiftind, lstshift in enumerate(lstshifts): dspec1[:,lstshiftind,...] = NP.roll(dspec1_tmp[:,0,...], lstshift, axis=incax) dspec1[:,lstshiftind,:lstshift,...] = NP.nan preXwts1[:,lstshiftind,...] = NP.roll(preXwts1_tmp[:,0,...], lstshift, axis=incax) preXwts1[:,lstshiftind,:lstshift,...] = NP.nan else: dspec1 = NP.expand_dims(dspec1, axis=incax+1) preXwts1 = NP.expand_dims(preXwts1, axis=incax+1) expandax_map[incax] = incax + NP.arange(2) for ekey in expandax_map: if ekey > incax: expandax_map[ekey] += 1 result[smplng][dpool][stat] = factor.reshape((-1,)+tuple(NP.ones(dspec0.ndim-1, dtype=NP.int))) * (dspec0*U.Unit('Jy Hz') * preXwts0) * (dspec1*U.Unit('Jy Hz') * preXwts1).conj() if xinfo['wts']['preXnorm']: result[smplng][dpool][stat] = result[smplng][dpool][stat] / NP.nansum(preXwts0 * preXwts1.conj(), axis=NP.union1d(NP.where(logical_or(NP.asarray(preXwts0.shape)>1, NP.asarray(preXwts1.shape)>1))), keepdims=True) # Normalize by summing the weights over the expanded axes if (len(xinfo['collapse_axes']) > 0) or (xinfo['avgcov']): # Remove axis=2 if present if 2 in xinfo['collapse_axes']: # Remove axis=2 from cohax if isinstance(xinfo['collapse_axes'], list): xinfo['collapse_axes'].remove(2) if isinstance(xinfo['collapse_axes'], NP.ndarray): xinfo['collapse_axes'] = xinfo['collapse_axes'].tolist() xinfo['collapse_axes'].remove(2) xinfo['collapse_axes'] = NP.asarray(xinfo['collapse_axes']) if (len(xinfo['collapse_axes']) > 0) or (xinfo['avgcov']): # if any one of collapsing of incoherent axes or # averaging of full covariance is requested diagoffsets = {} # Stores the correlation index difference along each axis. diagweights = {} # Stores the number of points summed in the trace along the offset diagonal for colaxind, colax in enumerate(xinfo['collapse_axes']): if colax == 1: shp = NP.ones(cpds[smplng][dpool]['dspec0'][stat].ndim, dtype=NP.int) shp[colax] = lst_ind.size multdim_idx = tuple([NP.arange(axdim) for axdim in shp]) diagweights[colax] = NP.sum(NP.logical_not(NP.isnan(cpds[smplng][dpool]['dspec0'][stat][dspec_multidim_idx][multdim_idx]))) - lstshifts # diagweights[colax] = result[smplng][dpool][stat].shape[expandax_map[colax][-1]] - lstshifts if stat == 'mean': result[smplng][dpool][stat] = NP.nanmean(result[smplng][dpool][stat], axis=expandax_map[colax][-1]) else: result[smplng][dpool][stat] = NP.nanmedian(result[smplng][dpool][stat], axis=expandax_map[colax][-1]) diagoffsets[colax] = lstshifts else: pspec_unit = result[smplng][dpool][stat].si.unit result[smplng][dpool][stat], offsets, diagwts = OPS.array_trace(result[smplng][dpool][stat].si.value, offsets=None, axis1=expandax_map[colax][0], axis2=expandax_map[colax][1], outaxis='axis1') diagwts_shape = NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int) diagwts_shape[expandax_map[colax][0]] = diagwts.size diagoffsets[colax] = offsets diagweights[colax] = NP.copy(diagwts) result[smplng][dpool][stat] = result[smplng][dpool][stat] * pspec_unit / diagwts.reshape(diagwts_shape) for ekey in expandax_map: if ekey > colax: expandax_map[ekey] -= 1 expandax_map[colax] = NP.asarray(expandax_map[colax][0]).ravel() wts_shape = tuple(NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int)) postXwts = NP.ones(wts_shape, dtype=NP.complex) wts_shape = NP.asarray(wts_shape) for colaxind, colax in enumerate(xinfo['collapse_axes']): curr_wts_shape = NP.copy(wts_shape) curr_wts_shape[expandax_map[colax]] = -1 postXwts = postXwts * xinfo['wts']['postX'][colaxind].reshape(tuple(curr_wts_shape)) result[smplng][dpool][stat] = result[smplng][dpool][stat] * postXwts axes_to_sum = tuple(NP.asarray([expandax_map[colax] for colax in xinfo['collapse_axes']]).ravel()) # for post-X normalization and collapse of covariance matrix if xinfo['wts']['postXnorm']: result[smplng][dpool][stat] = result[smplng][dpool][stat] / NP.nansum(postXwts, axis=axes_to_sum, keepdims=True) # Normalize by summing the weights over the collapsed axes if xinfo['avgcov']: # collapse the axes further (postXwts have already # been applied) diagoffset_weights = 1.0 result[smplng][dpool][stat] = NP.nanmean(result[smplng][dpool][stat], axis=axes_to_sum, keepdims=True) for colaxind in zip(*sorted(zip(NP.arange(xinfo['collapse_axes'].size), xinfo['collapse_axes']), reverse=True))[0]: # It is import to sort the collapsable axes in # reverse order before deleting elements below, # otherwise the axes ordering may be get messed up diagoffset_weights_shape = NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int) diagoffset_weights_shape[expandax_map[xinfo['collapse_axes'][colaxind]][0]] = diagweights[xinfo['collapse_axes'][colaxind]].size diagoffset_weights = diagoffset_weights * diagweights[xinfo['collapse_axes'][colaxind]].reshape(diagoffset_weights_shape) del diagoffsets[xinfo['collapse_axes'][colaxind]] result[smplng][dpool][stat] = NP.nansum(result[smplng][dpool][stat]*diagoffset_weights, axis=axes_to_sum, keepdims=True) / NP.nansum(diagoffset_weights, axis=axes_to_sum, keepdims=True) else: result[smplng][dpool][stat] = factor.reshape((-1,)+tuple(NP.ones(dspec.ndim-1, dtype=NP.int))) * NP.abs(dspec * U.Jy)**2 diagoffsets = {} expandax_map = {} if units == 'Jy': result[smplng][dpool][stat] = result[smplng][dpool][stat].to('Jy2 Mpc') elif units == 'K': result[smplng][dpool][stat] = result[smplng][dpool][stat].to('K2 Mpc3') else: raise ValueError('Input value for units invalid') result[smplng][dpool]['diagoffsets'] = diagoffsets result[smplng][dpool]['diagweights'] = diagweights result[smplng][dpool]['axesmap'] = expandax_map result[smplng][dpool]['nsamples_incoh'] = nsamples_incoh result[smplng][dpool]['nsamples_coh'] = nsamples_coh return result ############################################################################ def rescale_power_spectrum(self, cpdps, visfile, blindex, visunits='Jy'): """ ------------------------------------------------------------------------ Rescale power spectrum to dimensional quantity by converting the ratio given visibility amplitude information Inputs: cpdps [dictionary] Dictionary with the keys 'triads', 'triads_ind', 'lstbins', 'lst', 'dlst', 'lst_ind', 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'mean' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape=(nspw,nlst,ndays,ntriads,nchan). It has units of Mpc/h. If incohax was set, those axes will be set to 1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape=(nspw,nlst,ndays,ntriads,nchan). It has units of Mpc/h. If incohax was set, those axes will be set to 1. visfile [string] Full path to the visibility file in NPZ format that consists of the following keys and values: 'vis' [numpy array] Complex visibilities averaged over all redundant baselines of different classes of baselines. It is of shape (nlst,nbl,nchan) 'last' [numpy array] Array of LST in units of days where the fractional part is LST in days. blindex [numpy array] 3-element array of baseline indices to use in selecting the triad corresponding to closure phase power spectrum in cpdps. It will index into the 'vis' array in NPZ file visfile visunits [string] Units of visibility in visfile. Accepted values are 'Jy' (default; for Jansky) and 'K' (for Kelvin) Outputs: Same dictionary as input cpdps except it has the following additional keys and values. Under 'resampled' and 'oversampled' keys, there are now new keys called 'mean-absscale' and 'median-absscale' keys which are each dictionaries with the following keys and values: 'converted' [numpy array] Values of power (in units of visunits^2) with same shape as the values under 'mean' and 'median' keys -- (nspw,nlst,ndays,ntriads,nchan) unless some of those axes have already been averaged coherently or incoherently 'units' [string] Units of power in key 'converted'. Its values are square of the input visunits -- 'Jy^2' or 'K^2' ------------------------------------------------------------------------ """ if not isinstance(cpdps, dict): raise TypeError('Input cpdps must be a dictionary') if not isinstance(visfile, str): raise TypeError('Input visfile must be a string containing full file path') if isinstance(blindex, NP.ndarray): raise TypeError('Input blindex must be a numpy array') if blindex.size != 3: raise ValueError('Input blindex must be a 3-element array') if not isinstance(visunits, str): raise TypeError('Input visunits must be a string') if visunits not in ['Jy', 'K']: raise ValueError('Input visunits currently not accepted') datapool = [] for dpool in ['resampled', 'oversampled']: if dpool in cpdps: datapool += [dpool] scaleinfo = NP.load(visfile) vis = scaleinfo['vis'][:,blindex,:] # shape=(nlst,nbl,nchan) vis_lstfrac, vis_lstint = NP.modf(scaleinfo['last']) # shape=(nlst,) vis_lstHA = vis_lstfrac * 24.0 # in hours vis_lstdeg = vis_lstHA * 15.0 # in degrees cpdps_lstdeg = 15.0*cpdps['lst'] # in degrees lstmatrix = cpdps_lstdeg.reshape(-1,1) - vis_lstdeg.reshape(1,-1) lstmatrix[NP.abs(lstmatrix) > 180.0] -= 360.0 ind_minlstsep = NP.argmin(NP.abs(lstmatrix), axis=1) vis_nearestLST = vis[blindex,ind_minlstsep,:] # nlst x nbl x nchan for dpool in datapool: freq_wts = cpdps[dpool]['freq_wts'] # nspw x nchan freqwtd_avgvis_nearestLST = NP.sum(freq_wts[:,NP.newaxis,NP.newaxis,:] * vis_nearestLST[NP.newaxis,:,:,:], axis=-1, keepdims=True) / NP.sum(freq_wts[:,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) # nspw x nlst x nbl x (nchan=1) vis_square_multscalar = 1 / NP.sum(1/NP.abs(freqwtd_avgvis_nearestLST)**2, axis=2, keepdims=True) # nspw x nlst x (nbl=1) x (nchan=1) for stat in ['mean', 'median']: cpdps[dpool][stat+'-absscale'] = {} cpdps[dpool][stat+'-absscale']['converted'] = cpdps[dpool][stat] * vis_square_multscalar[:,:,NP.newaxis,:,:] # nspw x nlst x ndays x ntriads x nlags cpdps[dpool][stat+'-absscale']['units'] = '{0}^2'.format(visunits) return cpdps ############################################################################ def average_rescaled_power_spectrum(rcpdps, avgax, kprll_llim=None): """ ------------------------------------------------------------------------ Average the rescaled power spectrum with physical units along certain axes with inverse variance or regular averaging Inputs: rcpdps [dictionary] Dictionary with the keys 'triads', 'triads_ind', 'lstbins', 'lst', 'dlst', 'lst_ind', 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'mean' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape=(nspw,nlst,ndays,ntriads,nchan). It has units of Mpc/h. If incohax was set, those axes will be set to 1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape=(nspw,nlst,ndays,ntriads,nchan). It has units of Mpc/h. If incohax was set, those axes will be set to 1. 'mean-absscale' and 'median-absscale' [dictionary] Each dictionary consists of the following keys and values: 'converted' [numpy array] Values of power (in units of value in key 'units') with same shape as the values under 'mean' and 'median' keys -- (nspw,nlst,ndays,ntriads,nchan) unless some of those axes have already been averaged coherently or incoherently 'units' [string] Units of power in key 'converted'. Its values are square of either 'Jy^2' or 'K^2' avgax [int, list, tuple] Specifies the axes over which the power in absolute scale (with physical units) should be averaged. This counts as incoherent averaging. The averaging is done with inverse-variance weighting if the input kprll_llim is set to choose the range of kprll from which the variance and inverse variance will be determined. Otherwise, a regular averaging is performed. kprll_llim [float] Lower limit of absolute value of kprll (in Mpc/h) beyond which the variance will be determined in order to estimate the inverse variance weights. If set to None, the weights are uniform. If set to a value, values beyond this kprll_llim are used to estimate the variance and hence the inverse-variance weights. Outputs: Dictionary with the same structure as the input dictionary rcpdps except with the following additional keys and values. Under the dictionaries under keys 'mean-absscale' and 'median-absscale', there is an additional key-value pair: 'avg' [numpy array] Values of power (in units of value in key 'units') with same shape as the values under 'converted' -- (nspw,nlst,ndays,ntriads,nchan) except those axes which were averaged in this member function, and those axes will be retained but with axis size=1. ------------------------------------------------------------------------ """ if not isinstance(rcpdps, dict): raise TypeError('Input rcpdps must be a dictionary') if isinstance(avgax, int): if avgax >= 4: raise ValueError('Input avgax has a value greater than the maximum axis number over which averaging can be performed') avgax =
NP.asarray(avgax)
numpy.asarray
''' ############################################################################### BINNER MODULE ############################################################################### Routines in this module: Mappings -------- > w2f(x) > dw2f(x,dx) > freqspace(w0,sigma) > two_photon_frequency_grid(wi0,ws0,sigma_i,sigma_s) > padnextpow2(X,Y,Z) > square_grid(x0,dx,y0,dy,n) > rect_ycut(X) FROG binner ----------- > binner(X,Y,Z,grid) > FROG_grid(x) GS binner --------- > grid2d_data(x,y,z) ''' import numpy as np from scipy import interpolate ''' ------------------------------------------------------------------------------- Mappings ------------------------------------------------------------------------------- ''' def w2f(x, dx=0): """ Wavelength to Frequency or vice-versa """ omega=2*np.pi*c/x if dx: domega=2*np.pi*c/x**2*dx return omega,domega else: return omega def dw2f(x,dx, error=0): """ Wavelength to Frequency or vice-versa """ omega=2*np.pi*c/x domega=2*np.pi*c/x**2*dx if error: ddx=error ddomega=ddx/dx*domega return domega,ddomega else: return domega def freqspace(w0,sigma, Nsamples=2**8,Nsigma=4.5): ''' Make a frequency line centered on w0 with standard deviation sigma. Nsamples is the number of data points. Nsigma is the size of the grid in frequency sigmas. ''' #Frequency range wr=(Nsigma*np.sqrt(np.log(256))*(sigma)) #Frequency spacing dw=wr/(0.5*Nsamples) #Frequency interval w=np.linspace(w0-wr,w0+wr-dw,Nsamples) return w def two_photon_frequency_grid(wi0,ws0,sigma_i,sigma_s, Nsamples=[2**8,2**8],Nsigma=[4.5,4.5],sparseGrid=False): ''' Make a two-photon frequency grid centered on (wi0,ws0) with marginals (sigma_i,sigma_s). Nsamples is the number of data points. Nsigma is the size of the grid in frequency sigmas. ''' if np.size(Nsamples)==1: Ni,Ns=Nsamples,Nsamples else: Ni,Ns=Nsamples if np.size(Nsigma)==1: Nsigi,Nsigs=Nsigma,Nsigma else: Nsigi,Nsigs=Nsigma #Frequency range wir=(Nsigi*np.sqrt(np.log(256))*(sigma_i)) wsr=(Nsigs*np.sqrt(np.log(256))*(sigma_s)) #Frequency spacing dwi=wir/(0.5*Ni) dws=wsr/(0.5*Ns) #Frequency interval wi=np.linspace(wi0-wir,wi0+wir-dwi,Ni) ws=np.linspace(ws0-wsr,ws0+wsr-dws,Ns) #Make grid if sparseGrid: Wi,Ws=np.meshgrid(wi,ws,sparse=True) else: Wi,Ws=np.meshgrid(wi,ws) return Wi,Ws def padnextpow2(X,Y,Z, grid_size=0): ''' Extend X,Y arrays grid keeping the same grid spacing and pad Z with zeros so that the size of the grid is the next power of 2 or more. Parameters ---------- X: ndarray 2D x axis meshgrid array Y: ndarray 2D y axis meshgrid array Z: ndarray 2D z axis array grid_size: int, optional Specify a particular grid size to use. Returns ---------- out:tuple(ndarray,ndarray,ndarray) Extended X,Y meshgrid with padded array Z. ''' x=X[0,:] #print X xmin,xmax,dx=x.min(),x.max(),np.diff(x)[0] y=Y[:,0] #print Y ymin,ymax,dy=y.min(),y.max(),np.diff(y)[0] #Find next power of 2 if grid_size: np2x=np.log2(grid_size) np2y=np.log2(grid_size) else: np2x=int(np.ceil(np.log2(x.size))) np2y=int(np.ceil(np.log2(y.size))) #Take largest value if np2x>np2y: np2y=np2x else: np2x=np2y #Extend start and stop for array size 2**nextpow2 xpad=int(2**np2x-x.size) xmin=xmin-xpad//2*dx xmax=xmin+(2**np2x-1)*dx ypad=int(2**np2x-y.size) ymin=ymin-ypad//2*dy ymax=ymin+(2**np2y-1)*dy #Define array xlin=np.arange(xmin,xmax+0.5*dx,dx) ylin=np.arange(ymin,ymax+0.5*dy,dy) #INTERPOLATED GRID X,Y=np.meshgrid(xlin,ylin) Z=np.pad(Z,pad_width=((ypad//2,ypad-ypad//2),(xpad//2,xpad-xpad//2)),mode='constant') return X,Y,Z def square_grid(x0,dx,y0,dy,n): ''' Create square grid from center, spacing, and number of points ''' #Create linear spacing xlin=np.arange(x0-n//2*dx,x0+n//2*dx,dx) ylin=np.arange(y0-n//2*dy,y0+n//2*dy,dy) #Make number of points is right xlin,ylin=xlin[0:n],ylin[0:n] X,Y=np.meshgrid(xlin,ylin) return X,Y def rect_ycut(X, fract=0.5): """ Return a copy of X with elements to the right of the cut zeroed. """ n=np.array(X.shape) X[:,np.int(np.floor(fract*n[1])):-1]=0 return X ''' ------------------------------------------------------------------------------- FROG binner ------------------------------------------------------------------------------- ''' def binner(X,Y,Z,grid,method='cubic'): ''' Bin data according to specified grid. Parameters ---------- X: ndarray 2D x axis meshgrid array Y: ndarray 2D y axis meshgrid array Z: ndarray 2D z axis array grid: tuple (Xb,Yb) Xb,Yb meshgrid to fit data to. method: {'cubic','linear','nearest'} Interpolation methods. See np.interpolate.griddata. Returns ---------- out: tuple (ndarray,ndarray,ndarray) (Xb,Yb,Zb) tuple of ndarrays of data on grid. ''' x=(X.reshape(-1)).copy() y=(Y.reshape(-1)).copy() z=(Z.reshape(-1)).copy() #Specified Grid X,Y=grid Z=interpolate.griddata(np.vstack((x,y)).T,z,(X,Y),method=method) #Remove NANs and negative numbers Z[np.isnan(Z)]=0 Z[Z<0]=0 return X,Y,Z def FROG_grid(x, k0=0,axis=0,n=64): ''' Make a grid which satisfies the grid requirements for FROG, i.e. number of points is a power of 2 and frequency and time axes are Fourier transforms. Parameters ---------- x:ndarray or tuple (int,int) Either an array in one dimension or a tuple (x0,dx) specifying the center of the array and the spacing between points. k0:float,optional Centre frequency or time. axis:int,optional Use axis=0 to define the grid in terms of time and axis=1 to define it in terms of frequency. n: int,optional Number of points along each axis. Must be a power of 2. Returns ---------- out: tuple (ndarray,ndarray) (X,Y) FROG meshgrid ''' #Check if x is an array. if isinstance(x,np.ndarray): xmin,xmax,dx=x.min(),x.max(),np.diff(x)[0] if n>x.size: #Extend grid to the specified number of points xpad=int(n-x.size) xmin=xmin-xpad//2*dx xmax=xmin+(n-1)*dx xlin=np.arange(xmin,xmax+0.5*dx,dx) elif n<x.size: #Reduce the grid to the specified number of points start=(x.size-n)//2 xlin=x[start:start+n] else: xlin=x #Check if x is a tuple x=(x0,dx) elif isinstance(x,tuple): x0,dx=x #Create line xlin=np.arange(x0-n//2*dx,x0+n//2*dx,dx) #Make number of points right xlin=xlin[0:n] else: print('Argument x not an array or a tuple.') #FFT line ylin=fft_axis(xlin)+k0 if axis==0: X,Y=np.meshgrid(xlin,ylin) elif axis==1: X,Y=np.meshgrid(ylin,xlin) return X,Y ''' ------------------------------------------------------------------------------- GS binner ------------------------------------------------------------------------------- ''' def grid2d_data(x,y,z, grid='data',grid_size=0,method='nearest'): ''' Take a list of data points (x,y,z) such that x=[x1,x1,x1,x2,x2,x2...] y=[y1,y2,y3,y1,y2,y3...] and grid the data using meshgrid. Different grid options are provided. ''' n=np.where(np.abs(np.diff(x))>0) #nx,ny=n[0].size,n[0][0]+1 ny=(n[0][0]+1) nx=(x.size//ny) #print(nx,ny) x,y,z=x[0:nx*ny],y[0:nx*ny],z[0:nx*ny] xmin,xmax=np.min(x),np.max(x) ymin,ymax=np.min(y),np.max(y) dx=(x.max()-x.min())/(nx-1) dy=(y.max()-y.min())/(ny-1) #dx=np.abs(np.diff(x)[np.where(np.diff(x)>0)].mean()) #dy=np.abs(np.diff(y)[np.where(np.diff(y)<0)].mean()) if isinstance(grid,tuple): #Specified Grid X,Y=grid Z=interpolate.griddata(np.vstack((x,y)).T,z,(X,Y),method=method) elif isinstance(grid,list): #Grid based on data but extend to specified limits if len(grid)==4: xmin,xmax,ymin,ymax=grid xmin=xmin-(xmin-x.min())%dx xmax=xmax+(dx-(xmax-x.max())%dx) ymin=ymin-(ymin-y.min())%dy ymax=ymax+(dy-(ymax-y.max())%dy) xlin=np.arange(xmin,xmax+dx,dx) ylin=np.arange(ymin,ymax+dy,dy) else: print('Please specify bounds [xmin,xmax,ymin,ymax] for limits') # xlin=np.arange(int((x.min()-xmin)/dx)*dx+x.min(),int((x.max()-xmax)/dx)*dx+x.max(),dx) # ylin=np.arange(int((y.min()-ymin)/dy)*dy+y.min(),int((y.max()-ymax)/dy)*dy+y.max(),dy) X,Y=np.meshgrid(xlin,ylin) Z=interpolate.griddata(np.vstack((x,y)).T,z,(X,Y),method=method) elif grid=='nextpow2': ''' Extend grid keeping the same grid spacing so that the size of the grid is the next power of 2. ''' #Find next power of 2 if grid_size: np2x=np.log2(grid_size) np2y=np.log2(grid_size) else: np2x=np.ceil(np.log2(nx)) np2y=np.ceil(
np.log2(ny)
numpy.log2
import dicom import os from dicom.sequence import Sequence import numpy as np import glob np.random.seed(1234) import matplotlib.pyplot as plt from matplotlib import animation import os import pickle as pickle #file_list = glob.glob('/data/dsb15_pkl/pkl_validate/*/study/sax_*.pkl') file_list = glob.glob(os.path.expanduser('~/test/*/study/sax_*.pkl') ) #folder_list = glob.glob( os.path.expanduser('~/storage/data/dsb15/*/*/study/*/') ) print(len(file_list)) #folder_list.sort() np.random.seed(317070) np.random.shuffle(file_list) file_list = sorted(file_list) def convert_to_number(value): value = str(value) try: if "." in value: return float(value) else: return int(value) except: pass return value def clean_metadata(metadatadict): keys = sorted(list(metadatadict.keys())) for key in keys: value = metadatadict[key] if key == 'PatientAge': metadatadict[key] = int(value[:-1]) else: if isinstance(value, Sequence): #convert to list value = [i for i in value] if isinstance(value, list): metadatadict[key] = [convert_to_number(i) for i in value] else: metadatadict[key] = convert_to_number(value) return metadatadict def normalize_contrast(imdata, metadata=None): # normalize contrast flat_data = np.concatenate([i.flatten() for i in imdata]).flatten() high = np.percentile(flat_data, 95.0) low = np.percentile(flat_data, 5.0) for i in range(len(imdata)): image = imdata[i] image = 1.0 * (image - low) / (high - low) image = np.clip(image, 0.0, 1.0) imdata[i] = image return imdata def clean_image_data(imdata, metadata): """ clean up 4d-tensor of imdata consistently (fix contrast, move upside up, etc...) :param imdata: :return: """ # normalize contrast flat_data = np.concatenate([i.flatten() for i in imdata]).flatten() high = np.percentile(flat_data, 95.0) low = np.percentile(flat_data, 5.0) print(high,low) for i in range(len(imdata)): image = imdata[i] image = 1.0 * (image - low) / (high - low) image = np.clip(image, 0.0, 1.0) imdata[i] = image return imdata def set_upside_up(imdata, metadata=None): # turn upside up F = np.array(metadata["ImageOrientationPatient"]).reshape( (2,3) ) f_1 = F[1,:]/np.linalg.norm(F[1,:]) f_2 = F[0,:]/np.linalg.norm(F[0,:]) x_e = np.array([1,0,0]) y_e = np.array([0,1,0]) z_e = np.array([0,0,1]) a, b, c = False, False, False if abs(
np.dot(y_e, f_1)
numpy.dot
"""@package utils This package implements useful functions. Copyright (c) 2020 <NAME>, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill Copyright (c) 2020 <NAME>, IBM Research, Thomas J. Watson Research Center Yorktown Heights Copyright (c) 2020 <NAME>, IBM Research, Thomas J. Watson Research Center Yorktown Heights Copyright (c) 2020 <NAME>, Department of Electrical and Computer Engineering, University of Connecticut Copyright (c) 2020 <NAME>, Department of Electrical and Computer Engineering, University of Connecticut Copyright (c) 2020 <NAME>, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill All rights reserved. If you found this helpful and are using it within our software please cite the following publication: * <NAME>, <NAME>, <NAME>, <NAME>, <NAME> and <NAME>, **A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning**, The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020), Palermo, Italy, 2020. """ import numpy as np def extract_path(paths, discount): for path in paths: p_rewards = path["rewards"] returns = [] return_so_far = 0 for t in range(len(p_rewards) - 1, -1, -1): return_so_far = p_rewards[t] + discount * return_so_far returns.append(return_so_far) # reverse return array returns =
np.array(returns[::-1])
numpy.array
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fock gradients of Gaussian gates ================================ .. currentmodule:: thewalrus.fock_gradients This module contains the Fock representation of the standard Gaussian gates and the Kerr gate, as well as their gradients. .. autosummary:: :toctree: api Dgate Sgate Rgate Kgate S2gate BSgate """ import numpy as np from numba import jit @jit(nopython=True) def displacement(alpha, cutoff, dtype=np.complex128): # pragma: no cover r"""Calculate the matrix elements of the real or complex displacement gate using a recursion relation. Args: alpha (float or complex): value of the displacement. cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: (array): matrix representing the displacement operation. """ D = np.zeros((cutoff, cutoff), dtype=dtype) y = np.array([alpha, -np.conj(alpha)]) sqns = np.sqrt(np.arange(cutoff)) D[0, 0] = np.exp(-0.5 * np.abs(y[0]) ** 2) D[1, 0] = y[0] * D[0, 0] for m in range(2, cutoff): D[m, 0] = y[0] / sqns[m] * D[m - 1, 0] for m in range(0, cutoff): for n in range(1, cutoff): D[m, n] = y[1] / sqns[n] * D[m, n - 1] + sqns[m] / sqns[n] * D[m - 1, n - 1] return D @jit(nopython=True) def squeezing(r, theta, cutoff, dtype=np.complex128): # pragma: no cover r"""Calculate the matrix elements of the real or complex squeezing gate using a recursion relation. Args: r (float): amplitude of the squeezing. theta (float): phase of the squeezing. cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: (array): matrix representing the squeezing operation. """ S = np.zeros((cutoff, cutoff), dtype=dtype) eitheta_tanhr = np.exp(1j * theta) * np.tanh(r) sinhr = 1.0 / np.cosh(r) R = np.array([[-eitheta_tanhr, sinhr], [sinhr, np.conj(eitheta_tanhr)],]) sqns = np.sqrt(np.arange(cutoff)) S[0, 0] = np.sqrt(sinhr) for m in range(2, cutoff, 2): S[m, 0] = sqns[m - 1] / sqns[m] * R[0, 0] * S[m - 2, 0] for m in range(0, cutoff): for n in range(1, cutoff): if (m + n) % 2 == 0: S[m, n] = ( sqns[n - 1] / sqns[n] * R[1, 1] * S[m, n - 2] + sqns[m] / sqns[n] * R[0, 1] * S[m - 1, n - 1] ) return S @jit(nopython=True) def grad_Dgate(T, theta, cutoff, dtype=np.complex128): # pragma: no cover """Calculates the gradient of the Dgate. Args: T (array[complex]): array representing the gate theta (float): displacement phase cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex]]: The gradient of the Dgate with respect to r (the amplitude) and theta (the phase) """ gradTr = np.zeros((cutoff, cutoff), dtype=dtype) gradTtheta = np.zeros((cutoff, cutoff), dtype=dtype) exptheta = np.exp(1j * theta) for n in range(cutoff): for m in range(cutoff): gradTtheta[n, m] = 1j * (n - m) * T[n, m] gradTr[n, m] = np.sqrt(m + 1) * T[n, m + 1] * exptheta if m > 0: gradTr[n, m] -= np.sqrt(m) * T[n, m - 1] * np.conj(exptheta) return gradTr, gradTtheta def Dgate(r, theta, cutoff, grad=False, dtype=np.complex128): """Calculates the Fock representation of the Dgate and its gradient. Args: r (float): displacement magnitude theta (float): displacement phase cutoff (int): Fock ladder cutoff grad (boolean): whether to calculate the gradient or not dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex], array[complex]]: The Fock representations of the gate and its gradients with sizes ``[cutoff]*2`` """ if not grad: return displacement(r * np.exp(1j * theta), cutoff, dtype=dtype), None, None T = displacement(r * np.exp(1j * theta), cutoff + 1) (gradTr, gradTtheta) = grad_Dgate(T, theta, cutoff, dtype=dtype) return T[:cutoff, :cutoff], gradTr, gradTtheta @jit(nopython=True) def grad_Sgate(T, theta, cutoff, dtype=np.complex128): # pragma: no cover """Calculates the gradient of the Sgate. Args: T (array[complex]): array representing the gate theta (float): squeezing phase cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex]]: The gradient of the Sgate with respect to r (the amplitude) and theta (the phase) """ gradTr = np.zeros((cutoff, cutoff), dtype=dtype) gradTtheta = np.zeros((cutoff, cutoff), dtype=dtype) exptheta = np.exp(1j * theta) for n in range(cutoff): offset = n % 2 for m in range(offset, cutoff, 2): gradTtheta[n, m] = 0.5j * (n - m) * T[n, m] gradTr[n, m] = -0.5 * np.sqrt((m + 1) * (m + 2)) * T[n, m + 2] * exptheta if m > 1: gradTr[n, m] += 0.5 * np.sqrt(m * (m - 1)) * T[n, m - 2] * np.conj(exptheta) return gradTr, gradTtheta def Sgate(r, theta, cutoff, grad=False, dtype=np.complex128): """Calculates the Fock representation of the Sgate and its gradient. Args: r (float): squeezing magnitude theta (float): squeezing phase cutoff (int): Fock ladder cutoff grad (boolean): whether to calculate the gradient or not dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex], array[complex]]: The Fock representations of the gate and its gradients with sizes ``[cutoff]*2`` """ if not grad: return squeezing(r, theta, cutoff, dtype=dtype), None, None T = squeezing(r, theta, cutoff + 2) (gradTr, gradTtheta) = grad_Sgate(T, theta, cutoff, dtype=dtype) return T[:cutoff, :cutoff], gradTr, gradTtheta @jit(nopython=True) def grad_S2gate(T, theta, cutoff, dtype=np.complex128): # pragma: no cover """Calculates the gradient of the S2gate. Args: T (array[complex]): array representing the gate theta (float): two-mode squeezing phase cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex]]: The gradient of the S2gate with respect to r (the amplitude) and theta (the phase) """ gradTr = np.zeros((cutoff, cutoff, cutoff, cutoff), dtype=dtype) gradTtheta = np.zeros((cutoff, cutoff, cutoff, cutoff), dtype=dtype) exptheta = np.exp(1j * theta) for n in range(cutoff): for k in range(cutoff): for m in range(cutoff): l = m - n + k if 0 <= l < cutoff: gradTtheta[n, k, m, l] = 1j * (n - m) * T[n, k, m, l] gradTr[n, k, m, l] = ( np.sqrt((m + 1) * (l + 1)) * T[n, k, m + 1, l + 1] * exptheta ) if m > 0 and l > 0: gradTr[n, k, m, l] -= ( np.sqrt(m * l) * T[n, k, m - 1, l - 1] * np.conj(exptheta) ) return gradTr, gradTtheta @jit(nopython=True) def two_mode_squeezing(r, theta, cutoff, dtype=np.complex128): # pragma: no cover """Calculates the matrix elements of the S2gate recursively. Args: r (float): squeezing magnitude theta (float): squeezing phase cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: array[float]: The Fock representation of the gate """ sc = 1.0 / np.cosh(r) eiptr = np.exp(-1j * theta) * np.tanh(r) R = -np.array( [ [0, -np.conj(eiptr), -sc, 0], [-np.conj(eiptr), 0, 0, -sc], [-sc, 0, 0, eiptr], [0, -sc, eiptr, 0], ] ) sqrt = np.sqrt(np.arange(cutoff)) Z = np.zeros((cutoff + 1, cutoff + 1, cutoff + 1, cutoff + 1), dtype=dtype) Z[0, 0, 0, 0] = sc # rank 2 for n in range(1, cutoff): Z[n, n, 0, 0] = R[0, 1] * Z[n - 1, n - 1, 0, 0] # rank 3 for m in range(0, cutoff): for n in range(0, m): p = m - n if 0 < p < cutoff: Z[m, n, p, 0] = R[0, 2] * sqrt[m] / sqrt[p] * Z[m - 1, n, p - 1, 0] # rank 4 for m in range(0, cutoff): for n in range(0, cutoff): for p in range(0, cutoff): q = p - (m - n) if 0 < q < cutoff: Z[m, n, p, q] = ( R[1, 3] * sqrt[n] / sqrt[q] * Z[m, n - 1, p, q - 1] + R[2, 3] * sqrt[p] / sqrt[q] * Z[m, n, p - 1, q - 1] ) return Z[:cutoff, :cutoff, :cutoff, :cutoff] #pylint: disable=too-many-arguments def S2gate(r, theta, cutoff, grad=False, sf_order=False, dtype=np.complex128): """Calculates the Fock representation of the S2gate and its gradient. Args: r (float): two-mode squeezing magnitude theta (float): two-mode squeezing phase cutoff (int): Fock ladder cutoff grad (boolean): whether to calculate the gradient or not sf_order (boolean): whether to use Strawberry Fields ordering for the indices dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex], array[complex]]: The Fock representations of the gate and its gradients with sizes ``[cutoff]*2`` """ if not grad: if sf_order: index_order = (0, 2, 1, 3) return ( two_mode_squeezing(r, theta, cutoff, dtype=dtype).transpose(index_order), None, None, ) return two_mode_squeezing(r, theta, cutoff, dtype=dtype), None, None T = two_mode_squeezing(r, theta, cutoff + 1, dtype=dtype) (gradTr, gradTtheta) = grad_S2gate(T, theta, cutoff, dtype=dtype) if sf_order: index_order = (0, 2, 1, 3) return ( T[:cutoff, :cutoff, :cutoff, :cutoff].transpose(index_order), gradTr.transpose(index_order), gradTtheta.transpose(index_order), ) return T[:cutoff, :cutoff, :cutoff, :cutoff], gradTr, gradTtheta @jit(nopython=True) def grad_BSgate(T, phi, cutoff, dtype=np.complex128): # pragma: no cover """Calculates the gradient of the BSgate. Args: T (array[complex]): array representing the gate theta (float): phase angle parametrizing the gate cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex]]: The gradient of the BSgate with respect to r (the amplitude) and theta (the phase) """ expphi = np.exp(1j * phi) gradTtheta = np.zeros((cutoff, cutoff, cutoff, cutoff), dtype=dtype) gradTphi = np.zeros((cutoff, cutoff, cutoff, cutoff), dtype=dtype) for n in range(cutoff): for k in range(cutoff): for m in range(cutoff): l = n + k - m if 0 <= l < cutoff: gradTphi[n, k, m, l] = -1j * (n - m) * T[n, k, m, l] if m > 0: gradTtheta[n, k, m, l] = ( np.sqrt(m * (l + 1)) * T[n, k, m - 1, l + 1] * expphi ) if l > 0: gradTtheta[n, k, m, l] -= ( np.sqrt((m + 1) * l) * T[n, k, m + 1, l - 1] * np.conj(expphi) ) return gradTtheta, gradTphi @jit(nopython=True) def beamsplitter(theta, phi, cutoff, dtype=np.complex128): # pragma: no cover r"""Calculates the Fock representation of the beamsplitter. Args: theta (float): transmissivity angle of the beamsplitter. The transmissivity is :math:`t=\cos(\theta)` phi (float): reflection phase of the beamsplitter cutoff (int): Fock ladder cutoff dtype (data type): Specifies the data type used for the calculation Returns: array[float]: The Fock representation of the gate """ ct = np.cos(theta) st = np.sin(theta) * np.exp(1j * phi) R = np.array( [[0, 0, ct, -np.conj(st)], [0, 0, st, ct], [ct, st, 0, 0], [-np.conj(st), ct, 0, 0]] ) sqrt = np.sqrt(np.arange(cutoff + 1)) Z = np.zeros((cutoff + 1, cutoff + 1, cutoff + 1, cutoff + 1), dtype=dtype) Z[0, 0, 0, 0] = 1.0 # rank 3 for m in range(0, cutoff): for n in range(0, cutoff - m): p = m + n if 0 < p < cutoff: Z[m, n, p, 0] = ( R[0, 2] * sqrt[m] / sqrt[p] * Z[m - 1, n, p - 1, 0] + R[1, 2] * sqrt[n] / sqrt[p] * Z[m, n - 1, p - 1, 0] ) # rank 4 for m in range(0, cutoff): for n in range(0, cutoff): for p in range(0, cutoff): q = m + n - p if 0 < q < cutoff: Z[m, n, p, q] = ( R[0, 3] * sqrt[m] / sqrt[q] * Z[m - 1, n, p, q - 1] + R[1, 3] * sqrt[n] / sqrt[q] * Z[m, n - 1, p, q - 1] ) return Z[:cutoff, :cutoff, :cutoff, :cutoff] #pylint: disable=too-many-arguments def BSgate(theta, phi, cutoff, grad=False, sf_order=False, dtype=np.complex128): r"""Calculates the Fock representation of the S2gate and its gradient. Args: theta (float): transmissivity angle of the beamsplitter. The transmissivity is :math:`t=\cos(\theta)` phi (float): reflection phase of the beamsplitter cutoff (int): Fock ladder cutoff grad (boolean): whether to calculate the gradient or not sf_order (boolean): whether to use Strawberry Fields ordering for the indices dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[float], array[float] or None]: The Fock representations of the gate and its gradient with size ``[cutoff]*4`` """ if not grad: if sf_order: index_order = (0, 2, 1, 3) return beamsplitter(theta, phi, cutoff, dtype=dtype).transpose(index_order), None, None return beamsplitter(theta, phi, cutoff, dtype=dtype), None, None T = beamsplitter(theta, phi, cutoff + 1, dtype=dtype) gradTtheta, gradTphi = grad_BSgate(T, phi, cutoff, dtype=dtype) if sf_order: index_order = (0, 2, 1, 3) return ( T[:cutoff, :cutoff, :cutoff, :cutoff].transpose(index_order), gradTtheta.transpose(index_order), gradTphi.transpose(index_order), ) return T[:cutoff, :cutoff, :cutoff, :cutoff], gradTtheta, gradTphi def Rgate(theta, cutoff, grad=False, dtype=np.complex128): """Calculates the Fock representation of the Rgate and its gradient. Args: theta (float): parameter of the gate cutoff (int): Fock ladder cutoff grad (boolean): whether to calculate the gradient or not dtype (data type): Specifies the data type used for the calculation Returns: tuple[array[complex], array[complex] or None]: The Fock representations of the gate and its gradient with size ``[cutoff]*2`` """ ns =
np.arange(cutoff, dtype=dtype)
numpy.arange
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den =
N.array([2,1,1])
numpy.array
# Third Party import librosa import numpy as np import tensorflow as tf # =============================================== # code from Arsha for loading data. # =============================================== def load_wav(vid_path, sr, mode='train'): wav, sr_ret = librosa.load(vid_path, sr=sr) assert sr_ret == sr if mode == 'train': extended_wav = np.append(wav, wav) if
np.random.random()
numpy.random.random
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace import numpy as np @dace.program def add(A: dace.complex64[5, 5], B: dace.float64[5, 5]): return A + B def test_add(): A = np.random.randint(0, high=10, size=(5, 5), dtype=np.uint64).astype(np.complex64) B = np.random.randint(-10, high=0, size=(5, 5), dtype=np.int32).astype(np.float64) C = add(A, B) assert(np.linalg.norm(C - A - B) /
np.linalg.norm(A + B)
numpy.linalg.norm
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `loader` module.""" import os import _pytest from mtnlion import loader import numpy as np import pytest @pytest.fixture(scope="session") def save_npz(tmpdir_factory: _pytest.tmpdir.TempdirFactory): """Test the saving of numpy zip files.""" filename = "test.npz" fn1 = tmpdir_factory.mktemp("data").join(filename) data = {"test1": np.arange(0, 50), "test2":
np.arange(50, 100)
numpy.arange
import numpy as np import math import matplotlib.pyplot as plt import mplhep as hep # Benstein polynomial calculation def bern_elem(x, v, n): # Bernstein element calculation normalization = 1. * math.factorial(n) / (math.factorial(v) * math.factorial(n - v)) Bvn = normalization * (x**v) * (1 - x)**(n - v) return float(Bvn) def TF(pT, rho, par_map=np.ones((3, 3)), n_rho=2, n_pT=2): # Calculate TF Polynomial for (n_pT, n_rho) degree Bernstein poly val = 0 for i_pT in range(0, n_pT + 1): for i_rho in range(0, n_rho + 1): val += (bern_elem(pT, i_pT, n_pT) * bern_elem(rho, i_rho, n_rho) * par_map[i_pT][i_rho]) return val def TF_params(xparlist, xparnames=None, nrho=None, npt=None): # TF map from param/name lists if xparnames is not None: from operator import methodcaller def _get(s): return s[-1][0] ptdeg = max( list( map( int, list( map(_get, list(map(methodcaller("split", 'pt_par'), xparnames))))))) rhodeg = max( list( map( int, list( map(_get, list(map(methodcaller("split", 'rho_par'), xparnames))))))) else: rhodeg, ptdeg = nrho, npt TF_cf_map = np.array(xparlist).reshape(ptdeg + 1, rhodeg + 1) return TF_cf_map, rhodeg, ptdeg def TF_smooth_plot(_tfmap, _rhodeg, _ptdeg): # Define fine bins for smooth TF plots fptbins = np.arange(450, 1202, 2) fmsdbins = np.arange(40, 201.5, .5) fptpts, fmsdpts = np.meshgrid(fptbins[:-1] + 0.3 * np.diff(fptbins), fmsdbins[:-1] + 0.5 * np.diff(fmsdbins), indexing='ij') frhopts = 2 * np.log(fmsdpts / fptpts) fptscaled = (fptpts - 450.) / (1200. - 450.) frhoscaled = (frhopts - (-6)) / ((-2.1) - (-6)) fvalidbins = (frhoscaled >= 0) & (frhoscaled <= 1) frhoscaled[~fvalidbins] = 1 # we will mask these out later def wrapTF(pT, rho): return TF(pT, rho, n_pT=_ptdeg, n_rho=_rhodeg, par_map=_tfmap) TFres = np.array(list(map(wrapTF, fptscaled.flatten(), frhoscaled.flatten()))).reshape(fptpts.shape) # return TF, msd bins, pt bins, mask return TFres, fmsdpts, fptpts, fvalidbins # TF Plots def plotTF(TF, msd, pt, mask=None, MC=False, raw=False, rhodeg=2, ptdeg=2, out=None, year="2017", label=None): """ Parameters: TF: Transfer Factor array msd: Mass bins array (meshgrid-like) pt: pT bins array (meshgrid-like) """ import matplotlib.pyplot as plt import mplhep as hep plt.style.use([hep.style.ROOT, {'font.size': 24}]) plt.switch_backend('agg') fig, ax = plt.subplots() if mask is not None: TF = np.ma.array(TF, mask=~mask) zmin, zmax = np.floor(10 * np.min(TF)) / 10, np.ceil(10 * np.max(TF)) / 10 zmin, zmax = zmin + 0.001, zmax - 0.001 clim = np.round(np.min([abs(zmin - 1), abs(zmax - 1)]), 1) if clim < .3: clim = .3 if clim > .5: clim = .5 levels = np.linspace(1 - clim, 1 + clim, 500) if np.min(TF) < 1 - clim and np.max(TF) > 1 + clim: _extend = 'both' elif np.max(TF) > 1 + clim: _extend = 'max' elif np.min(TF) < 1 - clim: _extend = 'min' else: _extend = 'neither' if mask is not None: contf = ax.contourf(msd, pt, TF, levels=levels, corner_mask=False, cmap='RdBu_r', extend=_extend) else: contf = ax.contourf(msd, pt, TF, levels=levels, cmap='RdBu_r', extend=_extend) cax = hep.make_square_add_cbar(ax, pad=0.2, size=0.5) if abs(1 - zmin) > .3 and abs(1 - zmax) > .3: c_extend = 'both' elif abs(1 - zmin) > .3: c_extend = 'min' elif abs(1 - zmax) > .3: c_extend = 'max' else: c_extend = 'neither' cbar = fig.colorbar(contf, cax=cax, extend=c_extend) cbar.set_ticks([np.arange(1 - clim, 1 + clim, 0.1)]) def rho_bound(ms, rho): # rho = {-6, -2.1} fpt = ms * np.e**(-rho / 2) return fpt x = np.arange(40, 70) ax.plot(x, rho_bound(x, -6), 'black', lw=3) ax.fill_between(x, rho_bound(x, -6), 1200, facecolor="none", hatch="xx", edgecolor="black", linewidth=0.0) x = np.arange(150, 201) ax.plot(x, rho_bound(x, -2.1) + 5, 'black', lw=3) ax.fill_between(x, rho_bound(x, -2.1), facecolor="none", hatch="xx", edgecolor="black", linewidth=0.0) _mbins, _pbins = np.linspace(40, 201, 24), np.array([450, 500, 550, 600, 675, 800, 1200]) sampling = np.meshgrid(_mbins[:-1] + 0.5 * np.diff(_mbins), _pbins[:-1] + 0.3 * np.diff(_pbins)) valmask = (sampling[1] > rho_bound(sampling[0], -2.1)) & (sampling[1] < rho_bound( sampling[0], -6)) ax.scatter( sampling[0][valmask], sampling[1][valmask], marker='x', color='black', s=40, alpha=.4, ) ax.set_xlim(40, 201) ax.set_ylim(450, 1200) ax.invert_yaxis() tMC = "Tagger Response" if MC else "Residual" if raw and MC: tMC = "Tagger Response (prefit)" if label is None: label = '{} TF({},{})'.format(tMC, ptdeg, rhodeg) ax.set_title(label, pad=9, fontsize=22, loc='left') ax.set_title("({})".format(str(year)), pad=9, fontsize=22, loc='right') ax.set_xlabel(r'Jet $\mathrm{m_{SD}}$', ha='right', x=1) ax.set_ylabel(r'Jet $\mathrm{p_{T}}$', ha='right', y=1) cbar.set_label(r'TF', ha='right', y=1) label = "MC" if MC else "Data" if raw: label = "MCRaw" import mplhep as hep hep.cms.label(loc=2, data=not raw, rlabel="", ax=ax) if out is not None: fig.savefig('{}.png'.format(out)) else: return fig def plotTF_ratio(in_ratio, mask, region, args=None, zrange=None): fig, ax = plt.subplots() H = np.ma.masked_where(in_ratio * mask <= 0.01, in_ratio * mask) zmin, zmax = np.nanmin(H), np.nanmax(H) if zrange is None: # Scale clim to fit range up to a max of 0.6 clim = np.max([.3,
np.min([0.6, 1 - zmin, zmax - 1])
numpy.min
#%% import os cwd = os.getcwd() dir_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(dir_path) import argparse import sys import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import torchvision.utils import numpy as np import os.path from scipy.io import loadmat from model import * from utils import * from args_python import * from matplotlib import pyplot as plt from torch.utils.tensorboard import SummaryWriter from torch.utils.data import Dataset import torchvision.transforms as transforms from sklearn.model_selection import train_test_split import hdf5storage EulerN=3 QuaternionN=4 ScaleSpaceAndGainN=2 class CustomDataset(Dataset): """TensorDataset with support of transforms. """ def __init__(self, tensors, transform=None): assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors) self.tensors = tensors self.transform = transform def __getitem__(self, index): x = self.tensors[0][index] if self.transform: x = self.transform(x) y = self.tensors[1][index] return x, y def __len__(self): return self.tensors[0].size(0) #%% def train(args, model, device, train_loader, optimizer, epoch, writer, Rbeta, zipped_vals, scheduler): model.train() run_loss = 0.0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) R_est = euler2R(output[:,0:EulerN]) R_target = euler2R(target[:,0:EulerN]) gt, pred, rot_loss = getlossrotation(False, R_est, R_target) gain_scale_loss = getlossspacescale(output[:,EulerN],target[:,EulerN]) + getlossgain(output[:,EulerN+1],target[:,EulerN+1]) loss = rot_loss + gain_scale_loss if args.test: print("Ground truth : {} \n Predicted values : {}".format(torch.transpose(gt,1,2), pred)) break run_loss += loss.item() loss.backward() optimizer.step() scheduler.step() if (batch_idx+1) % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.8f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx * len(data) / len(train_loader.dataset), run_loss/args.log_interval)) # # grid = torchvision.utils.make_grid(data) writer.add_scalar('training_loss', run_loss/args.log_interval, epoch*len(train_loader)+batch_idx) # writer.add_image('images', grid) writer.add_graph(model, data) for tag, value in model.named_parameters(): tag = tag.replace('.', '/') writer.add_histogram(tag, value.detach().cpu().numpy(), batch_idx+1) run_loss = 0.0 def validate(args, model, device, val_loader, Rbeta, zipped_vals): model.eval() val_loss = 0.0 with torch.no_grad(): for data, target in val_loader: data, target = data.to(device), target.to(device) output = model(data) R_est = euler2R(output[:,0:EulerN]) R_target = euler2R(target[:,0:EulerN]) gt, pred, rot_loss = getlossrotation(False, R_est, R_target) gain_scale_loss = getlossspacescale(output[:,EulerN],target[:,EulerN]) + getlossgain(output[:,EulerN+1],target[:,EulerN+1]) loss_val = rot_loss + gain_scale_loss val_loss += loss_val val_loss /= len(val_loader) print('\nValidation set: Average loss: {:.8f}\n'.format(val_loss.item())) if args.test: print("Ground truth : {} \n\n Predicted values : {} \n".format(torch.transpose(gt,1,2), pred)) return val_loss def test(args, model, device, test_loader, Rbeta, zipped_vals, data_stat): if args.get_pred_only: model.eval() test_out_list = [] with torch.no_grad(): for data in test_loader: data = data[0].to(device) output = model(data) test_out_list.append(output.cpu().numpy()) save_mat = np.concatenate(test_out_list) hdf5storage.savemat(args.pred_folder+'/pred_labels.mat', {'labeldata':save_mat}) else: model.eval() test_loss = 0.0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) R_est = euler2R(output[:,0:EulerN]) R_target = euler2R(target[:,0:EulerN]) gt, pred, rot_loss = getlossrotation(True, R_est, R_target) gain_scale_loss = getlossspacescale(output[:,EulerN],target[:,EulerN]) + getlossgain(output[:,EulerN+1],target[:,EulerN+1]) loss_test = rot_loss + gain_scale_loss test_loss += loss_test test_loss /= len(test_loader) print('\nTest set: Average loss: {:.8f}\n'.format(test_loss.item())) print("Ground truth : {} \n\n Predicted values : {} \n".format(torch.transpose(gt,1,2), pred)) # value = torch.add(torch.matmul(pred,gt),-1*torch.eye(3)) # print("Loss value for these sample {}".format(torch.norm(value,p='fro',dim=(2, 3)))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch 3D angle regression from 2D images') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=100, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 30)') parser.add_argument('--no-cuda', action='store_false', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--UseQuaternionNotEuler', action='store_true', default=False, help='give this flag in order to use the Quaternion representation, otherwise the Euler angles representation will be used') parser.add_argument('--ScaleSpaceMin', type=float, default=0.8, help='minimum value of the space scaling') parser.add_argument('--ScaleSpaceMax', type=float, default=1.2, help='maximum value of the space scaling') parser.add_argument('--GainMin', type=float, default=0.8, help='minimum value of the gain') parser.add_argument('--GainMax', type=float, default=1.2, help='maximum value of the gain') parser.add_argument('--RootDirectory4Data', default='./', help='the name of the root director for the data') parser.add_argument('--arch', default='VGG',help='the architecture to use. options are VGG, MLP for now. Can add more') parser.add_argument('--carve_val', action='store_false', default=True, help='Whether validation set has to be carved out from the training set. Default is true') parser.add_argument('--test', action='store_true', default=False, help='Whether train or test mode. Default is train mode.') parser.add_argument('--get_pred_only', action='store_true', default=False, help='Get only predictions from images') parser.add_argument('--pred_folder', default='./', help='Directory of file with test images.') args = parser.parse_args() # args=Args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") trainingdirectory = args.RootDirectory4Data+"/"+"training" trainingimagefile="imagefile.mat" traininglabelfile="labelfile.mat" train_images = hdf5storage.loadmat(os.path.join(trainingdirectory, trainingimagefile))['imagedata'] train_labels = hdf5storage.loadmat(os.path.join(trainingdirectory, traininglabelfile))['labeldata'] if args.carve_val: print("Carving out validation set from training set") train_images, val_images, train_labels, val_labels = train_test_split(train_images, train_labels, test_size=0.1, random_state=42) else: print("Loading validation set") validationdirectory = args.RootDirectory4Data+"/"+"validation" validationimagefile="imagefile.mat" validationlabelfile="labelfile.mat" val_images = hdf5storage.loadmat(os.path.join(validationdirectory, validationimagefile))['imagedata'] val_labels = hdf5storage.loadmat(os.path.join(validationdirectory, validationlabelfile))['labeldata'] train_images =
np.expand_dims(train_images,1)
numpy.expand_dims
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ cie.py: converts wavelength spectra into XYZ and RGB colorspaces =================================================================== Conversion of the binned wavelength spectra into XYZ (using CIE weighting functions) and then RGB produces a spectrum [FIXED] Unphysical color repetition ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Uniform scaling by maximal single X,Y,Z or R,G,B prior to clipping gets rid of the unphysical color repetition but theres kinda a between the green and the blue, where cyan should be #hRGB_raw /= hRGB_raw[0,:,0].max() # scaling by maximal red, results in muted spectrum #hRGB_raw /= hRGB_raw[0,:,1].max() # scaling by maximal green, OK #hRGB_raw /= hRGB_raw[0,:,2].max() # scaling by maximal blue, similar to green by pumps the blues and nice yellow The entire spectral locus is outside sRGB gamut (the triangle), so all bins are being clipped. Not clipping produces a psychedelic mess. [ISSUE] Blue/Green transition looks unphysical ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Need better way to handle out of gamut ? Raw numbers show that green ramps up thru 430..480 nm but its all negative, so that info is clipped. :: In [68]: np.set_printoptions(linewidth=150) In [75]: np.hstack([wd[:-1,None],c.raw[0],c.xyz[0],c.rgb[0]]) Out[75]: array([[ 350. , 0. , 0.016, 0.102, 0. , 0. , 0. , -0. , 0. , 0. ], [ 370. , 0.015, 0.105, 1.922, 0. , 0. , 0.001, -0.001, 0. , 0.001], [ 390. , 1.873, 0.582, 20.444, 0.001, 0. , 0.011, -0.003, 0. , 0.012], [ 410. , 49.306, 2.691, 205.061, 0.028, 0.002, 0.115, 0.03 , -0.019, 0.123], [ 430. , 273.393, 10.384, 1386.823, 0.153, 0.006, 0.779, 0.1 , -0.105, 0.83 ], [ 450. , 343.75 , 33.415, 1781.385, 0.193, 0.019, 1. , 0.098, -0.11 , 1.064], [ 470. , 191.832, 89.944, 1294.473, 0.108, 0.05 , 0.727, -0.091, 0.021, 0.764], [ 490. , 32.012, 213.069, 465.525, 0.018, 0.12 , 0.261, -0.256, 0.218, 0.253], [ 510. , 16.48 , 500.611, 155.962, 0.009, 0.281, 0.088, -0.446, 0.522, 0.036], [ 530. , 159.607, 869.052, 43.036, 0.09 , 0.488, 0.024, -0.472, 0.829, -0.069], [ 550. , 433.715, 994.463, 8.758, 0.243, 0.558, 0.005, -0.072, 0.812, -0.095], [ 570. , 772.904, 950.107, 1.308, 0.434, 0.533, 0.001, 0.586, 0.58 , -0.084], [ 590. , 1021.039, 762.587, 0.143, 0.573, 0.428, 0. , 1.199, 0.248, -0.055], [ 610. , 1000.205, 500.338, 0.012, 0.561, 0.281, 0. , 1.388, -0.017, -0.026], [ 630. , 656.21 , 263.667, 0.001, 0.368, 0.148, 0. , 0.966, -0.079, -0.01 ], [ 650. , 283.632, 110.045, 0. , 0.159, 0.062, 0. , 0.421, -0.038, -0.004], [ 670. , 80.766, 36.117, 0. , 0.045, 0.02 , 0. , 0.116, -0.006, -0.002], [ 690. , 17.024, 11.172, 0. , 0.01 , 0.006, 0. , 0.021, 0.003, -0.001]]) Chromatic Adaption ~~~~~~~~~~~~~~~~~~~~ * http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html Refs ~~~~~ https://github.com/colour-science/colour/issues/191 http://www.scipy-lectures.org/advanced/image_processing/index.html http://www.scipy-lectures.org/packages/scikit-image/index.html#scikit-image http://www.scipy.org/scikits.html separate from scipy, but under the "brand" """ import os, logging, numpy as np log = logging.getLogger(__name__) np.set_printoptions(linewidth=150) import matplotlib.pyplot as plt import ciexyz.ciexyz as _cie from env.graphics.ciexyz.XYZ import Spectrum from env.graphics.ciexyz.RGB import RGB class CIE(object): def __init__(self, colorspace="sRGB/D65", whitepoint=None): cs = RGB(colorspace) self.x2r = cs.x2r self.whitepoint = whitepoint def hist0d_XYZ(self,w, nb=100): X = np.sum(_cie.X(w)) Y = np.sum(_cie.Y(w)) Z = np.sum(_cie.Z(w)) hX = np.repeat(X, nb) hY = np.repeat(Y, nb) hZ = np.repeat(Z, nb) raw = np.dstack([hX,hY,hZ]) self.raw = np.copy(raw) return raw def hist1d_XYZ(self,w,x,xb): hX, hXx = np.histogram(x,bins=xb, weights=_cie.X(w)) hY, hYx = np.histogram(x,bins=xb, weights=_cie.Y(w)) hZ, hZx = np.histogram(x,bins=xb, weights=_cie.Z(w)) assert np.all(hXx == xb) & np.all(hYx == xb ) & np.all(hZx == xb) raw = np.dstack([hX,hY,hZ]) self.raw = np.copy(raw) return raw def hist2d_XYZ(self,w,x,y,xb,yb): bins = [xb,yb] hX, hXx, hXy = np.histogram2d(x,y,bins=bins, weights=_cie.X(w)) hY, hYx, hYy = np.histogram2d(x,y,bins=bins, weights=_cie.Y(w)) hZ, hZx, hZy = np.histogram2d(x,y,bins=bins, weights=_cie.Z(w)) assert np.all(hXx == xb) & np.all(hYx == xb ) & np.all(hZx == xb) assert np.all(hXy == yb) & np.all(hYy == yb ) & np.all(hZy == yb) return np.dstack([hX,hY,hZ]) def norm_XYZ(self, hXYZ, norm=2, scale=1): """ Trying to find an appropriate way to normalize XYZ values 0,1,2 scale by maximal of X,Y,Z 3 scale by maximal X+Y+Z 4 scale by Yint of an externally determined whitepoint (problem is that is liable to be with very much more light than are looking at...) 5 scale by Yint of the spectrum provided, this is also yielding very small X,Y,Z >50 scale is used, for normalization with Y value obtained from the histogram norm identified bin Hmm, some adhoc exposure factor seems unavoidable given the range of intensities so perhaps the adhoc techniques are appropriate after all. Initial thinking was that the out-of-gamut problem was tied up with the exposure problem, but they are kinda orthogonal: think vectors in XYZ space, the length of the vector doesnt change the hue. """ if norm in [0,1,2]: nscale = hXYZ[:,:,norm].max() elif norm == 3: nscale = np.sum(hXYZ, axis=2).max() elif norm == 4: assert not self.whitepoint is None nscale = self.whitepoint[4] elif norm == 5 or norm > 50: nscale = scale else: nscale = 1 pass hXYZ /= nscale self.scale = nscale self.xyz = np.copy(hXYZ) return hXYZ def XYZ_to_RGB(self, hXYZ): return np.dot( hXYZ, self.x2r.T ) def hist0d(self, w, norm=2, nb=100): hXYZ_raw = self.hist0d_XYZ(w, nb=nb) hXYZ = self.norm_XYZ(hXYZ_raw, norm=norm) hRGB = self.XYZ_to_RGB(hXYZ) self.rgb =
np.copy(hRGB)
numpy.copy
#!/usr/bin/env python3 import numpy as np from scipy.stats import norm import time import multiprocessing as mp from sklearn import mixture def get_gmm_from_pf(pf, n_components): s = np.random.choice(pf.Np, pf.Np, p = pf.W) X = pf.X[s] gmm = mixture.GaussianMixture(n_components=n_components, covariance_type='diag', max_iter=10, tol = 3e-3).fit(X) return gmm def gmm_worker(arg): pfs, ii ,n_components = arg gmm = get_gmm_from_pf(pfs[ii],n_components) return gmm def get_fuzed_prob(x, gmms, A): f = 1 for ii in range(len(gmms)): f = f * (np.exp(gmms[ii].score(x.reshape(1, -1)))**A[ii]) return f def matropolis_hasting(pf, gmms, A): new_particles = np.zeros_like(pf.X) x = pf.X[0] w = get_fuzed_prob(x, gmms, A) if w == 0 or np.isnan(w) == True: w = 1/pf.Np for jj in range(pf.Np): s_t =
np.random.choice(pf.Np)
numpy.random.choice
import math as m import numpy as np from matplotlib import pyplot as plt from BDPoisson1D.FirstOrderNonLinear import dirichlet_non_linear_first_order_solver_recurrent_mesh from BDMesh import Mesh1DUniform from BDFunction1D import Function from BDFunction1D.Functional import Functional from BDFunction1D.Differentiation import NumericGradient from BDFunction1D.Interpolation import InterpolateFunction class TestFunction(Function): """ Some known differentiable function """ def evaluate_point(self, x): return m.sin(x) ** 2 class TestFunctional(Functional): """ f(x, y), RHS of the ODE """ def evaluate_point(self, x): y = self.f.evaluate_point(x) if y >= 0.5: return 2 * np.sign(m.sin(x)) * m.cos(x) * m.sqrt(y) else: return 2 * np.sign(m.cos(x)) * m.sin(x) * m.sqrt(1 - y) class TestFunctionalDf(Functional): """ df/dy(x, y) """ def evaluate_point(self, x): y = self.f.evaluate_point(x) if y >= 0.5: return np.sign(m.sin(x)) * m.cos(x) / m.sqrt(y) else: return -np.sign(m.cos(x)) * m.sin(x) / m.sqrt(1 - y) class MixFunction(Function): """ Some known differentiable function """ def evaluate_point(self, x): return 0.0 class GuessFunction(Function): """ Some known differentiable function """ def evaluate_point(self, x): return 0.0 y0 = TestFunction() dy0_numeric = NumericGradient(y0) shift = np.pi * 11 + 1 start = -3*np.pi/2 + shift stop = 3*np.pi/2 + shift + 0.5 bc1 = y0.evaluate_point(start) bc2 = y0.evaluate_point(stop) y = GuessFunction() p = MixFunction() f = TestFunctional(y) df_dy = TestFunctionalDf(y) root_mesh = Mesh1DUniform(start, stop, bc1, bc2, 0.001) dirichlet_non_linear_first_order_solver_recurrent_mesh(root_mesh, y, p, f, df_dy, w=0.0, max_iter=100, threshold=1e-7) y = InterpolateFunction(root_mesh.physical_nodes, root_mesh.solution) mesh_refinement_threshold = 1e-7 idxs = np.where(abs(np.asarray(root_mesh.residual)) > mesh_refinement_threshold) dy = np.gradient(root_mesh.solution, root_mesh.physical_nodes, edge_order=2) _, (ax1, ax2, ax3) = plt.subplots(3, sharex=True) ax1.plot(root_mesh.physical_nodes, y0.evaluate(root_mesh.physical_nodes), 'b-') ax1.plot(root_mesh.physical_nodes, root_mesh.solution, 'r-') ax1.plot(np.asarray(root_mesh.physical_nodes)[idxs], np.asarray(root_mesh.solution)[idxs], 'ro') ax2.plot(root_mesh.physical_nodes, root_mesh.residual, 'r-') ax2.plot(
np.asarray(root_mesh.physical_nodes)
numpy.asarray
import numpy as np from PIL import Image nets = ["caffenet", "googlenet", "vggf", "vgg16", "vgg19"] def load(nets): res = [] for net in nets: data_path = "perturbations/perturbation_%s.npy" % net imgs =
np.load(data_path, allow_pickle=True, encoding="latin1")
numpy.load
"""Implements the echo-top-based storm-tracking algorithm. This algorithm is discussed in Section 3c of Homeyer et al. (2017). The main advantage of this algorithm (in my experience) over segmotion (Lakshmanan and Smith 2010) is that it provides more intuitive and longer storm tracks. The main disadvantage of the echo-top-based algorithm (in my experience) is that it provides only storm centers, not objects. In other words, the echo-top-based algorithm does not provide the bounding polygons. --- REFERENCES --- <NAME>. and <NAME>, 2018: "A method for identifying midlatitude mesoscale convective systems in radar mosaics, part II: Tracking". Journal of Applied Meteorology and Climatology, in press, doi:10.1175/JAMC-D-17-0294.1. <NAME>., and <NAME>, and <NAME>, 2017: "On the development of above-anvil cirrus plumes in extratropical convection". Journal of the Atmospheric Sciences, 74 (5), 1617-1633. <NAME>., and <NAME>, 2010: "Evaluating a storm tracking algorithm". 26th Conference on Interactive Information Processing Systems, Atlanta, GA, American Meteorological Society. """ import copy import os.path import warnings from itertools import chain import numpy import pandas from scipy.ndimage.filters import gaussian_filter from scipy.stats import mode as scipy_mode from skimage.measure import label as label_image from gewittergefahr.gg_io import myrorss_and_mrms_io from gewittergefahr.gg_io import storm_tracking_io as tracking_io from gewittergefahr.gg_utils import temporal_tracking from gewittergefahr.gg_utils import track_reanalysis from gewittergefahr.gg_utils import radar_utils from gewittergefahr.gg_utils import radar_sparse_to_full as radar_s2f from gewittergefahr.gg_utils import dilation from gewittergefahr.gg_utils import grids from gewittergefahr.gg_utils import projections from gewittergefahr.gg_utils import polygons from gewittergefahr.gg_utils import geodetic_utils from gewittergefahr.gg_utils import time_conversion from gewittergefahr.gg_utils import storm_tracking_utils as tracking_utils from gewittergefahr.gg_utils import echo_classification as echo_classifn from gewittergefahr.gg_utils import error_checking TOLERANCE = 1e-6 TIME_FORMAT = '%Y-%m-%d-%H%M%S' SEPARATOR_STRING = '\n\n' + '*' * 50 + '\n\n' RADIANS_TO_DEGREES = 180. / numpy.pi DEGREES_LAT_TO_METRES = 60 * 1852 CENTRAL_PROJ_LATITUDE_DEG = 35. CENTRAL_PROJ_LONGITUDE_DEG = 265. VALID_RADAR_FIELD_NAMES = [ radar_utils.ECHO_TOP_15DBZ_NAME, radar_utils.ECHO_TOP_18DBZ_NAME, radar_utils.ECHO_TOP_20DBZ_NAME, radar_utils.ECHO_TOP_25DBZ_NAME, radar_utils.ECHO_TOP_40DBZ_NAME, radar_utils.ECHO_TOP_50DBZ_NAME, radar_utils.REFL_COLUMN_MAX_NAME # HACK ] VALID_RADAR_SOURCE_NAMES = [ radar_utils.MYRORSS_SOURCE_ID, radar_utils.MRMS_SOURCE_ID ] DEFAULT_MIN_ECHO_TOP_KM = 4. DEFAULT_SMOOTHING_RADIUS_DEG_LAT = 0.024 DEFAULT_HALF_WIDTH_FOR_MAX_FILTER_DEG_LAT = 0.06 DEFAULT_MIN_INTERMAX_DISTANCE_METRES = 0.1 * DEGREES_LAT_TO_METRES DEFAULT_MIN_SIZE_PIXELS = 0 DEFAULT_MAX_LINK_TIME_SECONDS = 360 DEFAULT_MAX_VELOCITY_DIFF_M_S01 = 30. DEFAULT_MAX_LINK_DISTANCE_M_S01 = ( 0.125 * DEGREES_LAT_TO_METRES / DEFAULT_MAX_LINK_TIME_SECONDS ) DEFAULT_MAX_JOIN_TIME_SEC = 720 DEFAULT_MAX_JOIN_ERROR_M_S01 = 30. DEFAULT_MIN_REANALYZED_DURATION_SEC = 1 DUMMY_TRACKING_SCALE_METRES2 = int(numpy.round(numpy.pi * 1e8)) # 10-km radius MAX_VALUES_KEY = 'max_values' def _check_radar_field(radar_field_name): """Error-checks radar field. :param radar_field_name: Field name (string). :raises: ValueError: if `radar_field_name not in VALID_RADAR_FIELD_NAMES`. """ error_checking.assert_is_string(radar_field_name) if radar_field_name not in VALID_RADAR_FIELD_NAMES: error_string = ( '\n{0:s}\nValid radar fields (listed above) do not include "{1:s}".' ).format(str(VALID_RADAR_FIELD_NAMES), radar_field_name) raise ValueError(error_string) def _check_radar_source(radar_source_name): """Error-checks source of radar data. :param radar_source_name: Data source (string). :raises: ValueError: if `radar_source_name not in VALID_RADAR_SOURCE_NAMES`. """ error_checking.assert_is_string(radar_source_name) if radar_source_name not in VALID_RADAR_SOURCE_NAMES: error_string = ( '\n{0:s}\nValid radar sources (listed above) do not include ' '"{1:s}".' ).format(str(VALID_RADAR_SOURCE_NAMES), radar_source_name) raise ValueError(error_string) def _gaussian_smooth_radar_field(radar_matrix, e_folding_radius_pixels, cutoff_radius_pixels=None): """Applies Gaussian smoother to radar field. NaN's are treated as zero. M = number of rows (unique grid-point latitudes) N = number of columns (unique grid-point longitudes) :param radar_matrix: M-by-N numpy array of data values. :param e_folding_radius_pixels: e-folding radius. :param cutoff_radius_pixels: Cutoff radius. If `cutoff_radius_pixels is None`, will default to `3 * e_folding_radius_pixels`. :return: smoothed_radar_matrix: Smoothed version of input. """ e_folding_radius_pixels = float(e_folding_radius_pixels) if cutoff_radius_pixels is None: cutoff_radius_pixels = 3 * e_folding_radius_pixels radar_matrix[numpy.isnan(radar_matrix)] = 0. smoothed_radar_matrix = gaussian_filter( input=radar_matrix, sigma=e_folding_radius_pixels, order=0, mode='constant', cval=0., truncate=cutoff_radius_pixels / e_folding_radius_pixels) smoothed_radar_matrix[ numpy.absolute(smoothed_radar_matrix) < TOLERANCE ] = numpy.nan return smoothed_radar_matrix def _find_local_maxima(radar_matrix, radar_metadata_dict, neigh_half_width_pixels): """Finds local maxima in radar field. M = number of rows (unique grid-point latitudes) N = number of columns (unique grid-point longitudes) P = number of local maxima :param radar_matrix: M-by-N numpy array of data values. :param radar_metadata_dict: Dictionary created by `myrorss_and_mrms_io.read_metadata_from_raw_file`. :param neigh_half_width_pixels: Half-width of neighbourhood for max filter. :return: local_max_dict_simple: Dictionary with the following keys. local_max_dict_simple['latitudes_deg']: length-P numpy array with latitudes (deg N) of local maxima. local_max_dict_simple['longitudes_deg']: length-P numpy array with longitudes (deg E) of local maxima. local_max_dict_simple['max_values']: length-P numpy array with magnitudes of local maxima. """ filtered_radar_matrix = dilation.dilate_2d_matrix( input_matrix=radar_matrix, percentile_level=100., half_width_in_pixels=neigh_half_width_pixels) max_index_arrays = numpy.where( numpy.absolute(filtered_radar_matrix - radar_matrix) < TOLERANCE ) max_row_indices = max_index_arrays[0] max_column_indices = max_index_arrays[1] max_latitudes_deg, max_longitudes_deg = radar_utils.rowcol_to_latlng( grid_rows=max_row_indices, grid_columns=max_column_indices, nw_grid_point_lat_deg= radar_metadata_dict[radar_utils.NW_GRID_POINT_LAT_COLUMN], nw_grid_point_lng_deg= radar_metadata_dict[radar_utils.NW_GRID_POINT_LNG_COLUMN], lat_spacing_deg=radar_metadata_dict[radar_utils.LAT_SPACING_COLUMN], lng_spacing_deg=radar_metadata_dict[radar_utils.LNG_SPACING_COLUMN] ) max_values = radar_matrix[max_row_indices, max_column_indices] sort_indices = numpy.argsort(-max_values) max_values = max_values[sort_indices] max_latitudes_deg = max_latitudes_deg[sort_indices] max_longitudes_deg = max_longitudes_deg[sort_indices] return { temporal_tracking.LATITUDES_KEY: max_latitudes_deg, temporal_tracking.LONGITUDES_KEY: max_longitudes_deg, MAX_VALUES_KEY: max_values } def _remove_redundant_local_maxima(local_max_dict, projection_object, min_intermax_distance_metres): """Removes redundant local maxima at one time. P = number of local maxima retained :param local_max_dict: Dictionary with at least the following keys. local_max_dict['latitudes_deg']: See doc for `_find_local_maxima`. local_max_dict['longitudes_deg']: Same. local_max_dict['max_values']: Same. :param projection_object: Instance of `pyproj.Proj` (used to convert local maxima from lat-long to x-y coordinates). :param min_intermax_distance_metres: Minimum distance between any pair of local maxima. :return: local_max_dict: Same as input, except that no pair of maxima is within `min_intermax_distance_metres`. Also contains additional columns listed below. local_max_dict['x_coords_metres']: length-P numpy array with x-coordinates of local maxima. local_max_dict['y_coords_metres']: length-P numpy array with y-coordinates of local maxima. """ x_coords_metres, y_coords_metres = projections.project_latlng_to_xy( latitudes_deg=local_max_dict[temporal_tracking.LATITUDES_KEY], longitudes_deg=local_max_dict[temporal_tracking.LONGITUDES_KEY], projection_object=projection_object, false_easting_metres=0., false_northing_metres=0.) local_max_dict.update({ temporal_tracking.X_COORDS_KEY: x_coords_metres, temporal_tracking.Y_COORDS_KEY: y_coords_metres }) num_maxima = len(x_coords_metres) keep_max_flags = numpy.full(num_maxima, True, dtype=bool) for i in range(num_maxima): if not keep_max_flags[i]: continue these_distances_metres = numpy.sqrt( (x_coords_metres - x_coords_metres[i]) ** 2 + (y_coords_metres - y_coords_metres[i]) ** 2 ) these_redundant_indices = numpy.where(numpy.logical_and( these_distances_metres < min_intermax_distance_metres, keep_max_flags ))[0] if len(these_redundant_indices) == 1: continue keep_max_flags[these_redundant_indices] = False this_best_index = numpy.argmax( local_max_dict[MAX_VALUES_KEY][these_redundant_indices] ) this_best_index = these_redundant_indices[this_best_index] keep_max_flags[this_best_index] = True indices_to_keep = numpy.where(keep_max_flags)[0] for this_key in local_max_dict: if isinstance(local_max_dict[this_key], list): local_max_dict[this_key] = [ local_max_dict[this_key][k] for k in indices_to_keep ] elif isinstance(local_max_dict[this_key], numpy.ndarray): local_max_dict[this_key] = local_max_dict[this_key][ indices_to_keep] # x_coords_metres, y_coords_metres = projections.project_latlng_to_xy( # latitudes_deg=local_max_dict[temporal_tracking.LATITUDES_KEY], # longitudes_deg=local_max_dict[temporal_tracking.LONGITUDES_KEY], # projection_object=projection_object, # false_easting_metres=0., false_northing_metres=0.) # # coord_matrix_metres = numpy.hstack(( # numpy.reshape(x_coords_metres, (x_coords_metres.size, 1)), # numpy.reshape(y_coords_metres, (y_coords_metres.size, 1)) # )) # # distance_matrix_metres = euclidean_distances( # X=coord_matrix_metres, Y=coord_matrix_metres) # # for i in range(len(x_coords_metres)): # distance_matrix_metres[i, i] = numpy.inf # # these_rows, these_columns = numpy.where( # distance_matrix_metres < min_intermax_distance_metres) # # for i in range(len(these_rows)): # print ( # '{0:d}th max (at {1:.2f} deg N and {2:.2f} deg E) and {3:d}th max ' # '(at {4:.2f} deg N and {5:.2f} deg E) are within {6:.1f} metres' # ).format( # these_rows[i], # local_max_dict[temporal_tracking.LATITUDES_KEY][these_rows[i]], # local_max_dict[temporal_tracking.LONGITUDES_KEY][these_rows[i]], # these_columns[i], # local_max_dict[temporal_tracking.LATITUDES_KEY][these_columns[i]], # local_max_dict[temporal_tracking.LONGITUDES_KEY][these_columns[i]], # distance_matrix_metres[these_rows[i], these_columns[i]] # ) return local_max_dict def _check_time_period( first_spc_date_string, last_spc_date_string, first_time_unix_sec, last_time_unix_sec): """Error-checks time period. :param first_spc_date_string: First SPC date in period (format "yyyymmdd"). :param last_spc_date_string: Last SPC date in period. :param first_time_unix_sec: First time in period. If `first_time_unix_sec is None`, defaults to first time on first SPC date. :param last_time_unix_sec: Last time in period. If `last_time_unix_sec is None`, defaults to last time on last SPC date. :return: spc_date_strings: 1-D list of SPC dates (format "yyyymmdd"). :return: first_time_unix_sec: Same as input, but may have been replaced with default. :return: last_time_unix_sec: Same as input, but may have been replaced with default. """ spc_date_strings = time_conversion.get_spc_dates_in_range( first_spc_date_string=first_spc_date_string, last_spc_date_string=last_spc_date_string) if first_time_unix_sec is None: first_time_unix_sec = time_conversion.string_to_unix_sec( first_spc_date_string, time_conversion.SPC_DATE_FORMAT ) + time_conversion.MIN_SECONDS_INTO_SPC_DATE if last_time_unix_sec is None: last_time_unix_sec = time_conversion.string_to_unix_sec( last_spc_date_string, time_conversion.SPC_DATE_FORMAT ) + time_conversion.MAX_SECONDS_INTO_SPC_DATE error_checking.assert_is_greater(last_time_unix_sec, first_time_unix_sec) assert time_conversion.is_time_in_spc_date( first_time_unix_sec, first_spc_date_string) assert time_conversion.is_time_in_spc_date( last_time_unix_sec, last_spc_date_string) return spc_date_strings, first_time_unix_sec, last_time_unix_sec def _find_input_radar_files( top_radar_dir_name, radar_field_name, radar_source_name, first_spc_date_string, last_spc_date_string, first_time_unix_sec, last_time_unix_sec): """Finds radar files (inputs to `run_tracking` -- basically main method). T = number of files found :param top_radar_dir_name: Name of top-level directory with radar files. Files therein will be found by `myrorss_and_mrms_io.find_raw_files_one_spc_date`. :param radar_field_name: Field name (must be accepted by `_check_radar_field`). :param radar_source_name: Data source (must be accepted by `_check_radar_source`). :param first_spc_date_string: See doc for `_check_time_period`. :param last_spc_date_string: Same. :param first_time_unix_sec: Same. :param last_time_unix_sec: Same. :return: radar_file_names: length-T list of paths to radar files. :return: valid_times_unix_sec: length-T numpy array of valid times. """ _check_radar_field(radar_field_name) _check_radar_source(radar_source_name) spc_date_strings, first_time_unix_sec, last_time_unix_sec = ( _check_time_period( first_spc_date_string=first_spc_date_string, last_spc_date_string=last_spc_date_string, first_time_unix_sec=first_time_unix_sec, last_time_unix_sec=last_time_unix_sec) ) radar_file_names = [] valid_times_unix_sec = numpy.array([], dtype=int) num_spc_dates = len(spc_date_strings) for i in range(num_spc_dates): these_file_names = myrorss_and_mrms_io.find_raw_files_one_spc_date( spc_date_string=spc_date_strings[i], field_name=radar_field_name, data_source=radar_source_name, top_directory_name=top_radar_dir_name, raise_error_if_missing=False) if len(these_file_names) == 0: continue if i == 0: this_first_time_unix_sec = first_time_unix_sec + 0 else: this_first_time_unix_sec = time_conversion.get_start_of_spc_date( spc_date_strings[i]) if i == num_spc_dates - 1: this_last_time_unix_sec = last_time_unix_sec + 0 else: this_last_time_unix_sec = time_conversion.get_end_of_spc_date( spc_date_strings[i]) these_times_unix_sec = numpy.array([ myrorss_and_mrms_io.raw_file_name_to_time(f) for f in these_file_names ], dtype=int) good_indices = numpy.where(numpy.logical_and( these_times_unix_sec >= this_first_time_unix_sec, these_times_unix_sec <= this_last_time_unix_sec ))[0] radar_file_names += [these_file_names[k] for k in good_indices] valid_times_unix_sec = numpy.concatenate(( valid_times_unix_sec, these_times_unix_sec[good_indices] )) sort_indices = numpy.argsort(valid_times_unix_sec) valid_times_unix_sec = valid_times_unix_sec[sort_indices] radar_file_names = [radar_file_names[k] for k in sort_indices] return radar_file_names, valid_times_unix_sec def _find_input_tracking_files( top_tracking_dir_name, first_spc_date_string, last_spc_date_string, first_time_unix_sec, last_time_unix_sec): """Finds tracking files (inputs to `reanalyze_across_spc_dates`). T = number of SPC dates :param top_tracking_dir_name: Name of top-level directory with tracking files. Files therein will be found by `storm_tracking_io.find_files_one_spc_date`. :param first_spc_date_string: See doc for `_check_time_period`. :param last_spc_date_string: Same. :param first_time_unix_sec: Same. :param last_time_unix_sec: Same. :return: spc_date_strings: length-T list of SPC dates (format "yyyymmdd"). :return: tracking_file_names_by_date: length-T list, where the [i]th element is a 1-D list of paths to tracking files for the [i]th date. :return: valid_times_by_date_unix_sec: length-T list, where the [i]th element is a 1-D numpy array of valid times for the [i]th date. """ spc_date_strings, first_time_unix_sec, last_time_unix_sec = ( _check_time_period( first_spc_date_string=first_spc_date_string, last_spc_date_string=last_spc_date_string, first_time_unix_sec=first_time_unix_sec, last_time_unix_sec=last_time_unix_sec) ) num_spc_dates = len(spc_date_strings) tracking_file_names_by_date = [['']] * num_spc_dates valid_times_by_date_unix_sec = [numpy.array([], dtype=int)] * num_spc_dates keep_date_indices = [] for i in range(num_spc_dates): these_file_names = tracking_io.find_files_one_spc_date( spc_date_string=spc_date_strings[i], source_name=tracking_utils.SEGMOTION_NAME, top_tracking_dir_name=top_tracking_dir_name, tracking_scale_metres2=DUMMY_TRACKING_SCALE_METRES2, raise_error_if_missing=False )[0] if len(these_file_names) == 0: tracking_file_names_by_date[i] = [] continue keep_date_indices.append(i) if i == 0: this_first_time_unix_sec = first_time_unix_sec + 0 else: this_first_time_unix_sec = time_conversion.get_start_of_spc_date( spc_date_strings[i]) if i == num_spc_dates - 1: this_last_time_unix_sec = last_time_unix_sec + 0 else: this_last_time_unix_sec = time_conversion.get_end_of_spc_date( spc_date_strings[i]) these_times_unix_sec = numpy.array([ tracking_io.file_name_to_time(f) for f in these_file_names ], dtype=int) sort_indices = numpy.argsort(these_times_unix_sec) these_file_names = [these_file_names[k] for k in sort_indices] these_times_unix_sec = these_times_unix_sec[sort_indices] good_indices = numpy.where(numpy.logical_and( these_times_unix_sec >= this_first_time_unix_sec, these_times_unix_sec <= this_last_time_unix_sec ))[0] tracking_file_names_by_date[i] = [ these_file_names[k] for k in good_indices ] valid_times_by_date_unix_sec[i] = these_times_unix_sec[good_indices] spc_date_strings = [spc_date_strings[i] for i in keep_date_indices] tracking_file_names_by_date = [ tracking_file_names_by_date[i] for i in keep_date_indices ] valid_times_by_date_unix_sec = [ valid_times_by_date_unix_sec[i] for i in keep_date_indices ] return (spc_date_strings, tracking_file_names_by_date, valid_times_by_date_unix_sec) def _make_regions_contiguous( region_to_grid_rows, region_to_grid_columns, grid_cell_to_region, num_grid_rows, num_grid_columns): """Makes regions (local maxima) contiguous. M = number of rows in radar grid N = number of columns in radar grid :param region_to_grid_rows: 1-D list, where the [k]th element is a numpy array with row indices of grid cells in the [k]th region. :param region_to_grid_columns: Same but for columns. :param grid_cell_to_region: Double-indexed dictionary. If key [i, j] has value k, grid cell [i, j] belongs to region k. :param num_grid_rows: M in the above discussion. :param num_grid_columns: N in the above discussion. :return: radar_to_region_matrix: M-by-N numpy array of region indices, where -1 means "not part of a region". """ num_maxima = len(region_to_grid_rows) radar_to_region_matrix = numpy.full( (num_grid_rows, num_grid_columns), -1, dtype=int ) for k in range(num_maxima): radar_to_region_matrix[ region_to_grid_rows[k], region_to_grid_columns[k] ] = k if len(region_to_grid_rows[k]) == 1: continue isolated_rows = [] isolated_columns = [] for i, j in zip(region_to_grid_rows[k], region_to_grid_columns[k]): neigh_row_flags = numpy.logical_and( region_to_grid_rows[k] >= i - 1, region_to_grid_rows[k] <= i + 1 ) neigh_column_flags = numpy.logical_and( region_to_grid_columns[k] >= j - 1, region_to_grid_columns[k] <= j + 1 ) num_neighbours = -1 + numpy.sum(numpy.logical_and( neigh_row_flags, neigh_column_flags )) if num_neighbours > 0: continue isolated_rows.append(i) isolated_columns.append(j) isolated_rows = numpy.array(isolated_rows, dtype=int) isolated_columns = numpy.array(isolated_columns, dtype=int) for i, j in zip(isolated_rows, isolated_columns): these_region_indices = [] for i_new in range(i - 1, i + 2): for j_new in range(j - 1, j + 2): if (i_new, j_new) in grid_cell_to_region: these_region_indices.append( grid_cell_to_region[i_new, j_new] ) else: these_region_indices.append(numpy.nan) these_region_indices = numpy.array(these_region_indices) these_region_indices[these_region_indices == k] = numpy.nan this_mode_object = scipy_mode( these_region_indices, axis=None, nan_policy='omit') radar_to_region_matrix[i, j] = int(numpy.round( this_mode_object.mode )) return radar_to_region_matrix def _local_maxima_to_regions( local_max_dict, echo_top_matrix_km, min_echo_top_km, radar_latitudes_deg, radar_longitudes_deg): """Converts local maxima at one time from points to regions. :param local_max_dict: See doc for `_local_maxima_to_polygons`. :param echo_top_matrix_km: Same. :param min_echo_top_km: Same. :param radar_latitudes_deg: length-M numpy array of grid-point latitudes (deg N). :param radar_longitudes_deg: length-N numpy array of grid-point longitudes (deg E). :return: radar_to_region_matrix: M-by-N numpy array of integers. If radar_to_region_matrix[i, j] = k, grid cell [i, j] belongs to the [k]th local max. If radar_to_region_matrix[i, j] = -1, grid cell [i, j] is not part of a local max. """ orig_region_id_matrix = label_image( echo_top_matrix_km >= min_echo_top_km, connectivity=2) rows_in_any_region, columns_in_any_region = numpy.where( orig_region_id_matrix > 0) num_maxima = len(local_max_dict[temporal_tracking.LATITUDES_KEY]) region_to_grid_rows = [None] * num_maxima region_to_grid_columns = [None] * num_maxima grid_cell_to_regions = {} for k in range(num_maxima): this_row = numpy.argmin(numpy.absolute( local_max_dict[temporal_tracking.LATITUDES_KEY][k] - radar_latitudes_deg )) this_column = numpy.argmin(numpy.absolute( local_max_dict[temporal_tracking.LONGITUDES_KEY][k] - radar_longitudes_deg )) this_region_id = orig_region_id_matrix[this_row, this_column] if this_region_id == 0: region_to_grid_rows[k] = numpy.array([this_row], dtype=int) region_to_grid_columns[k] = numpy.array([this_column], dtype=int) else: these_subindices = numpy.where( orig_region_id_matrix[rows_in_any_region, columns_in_any_region] == this_region_id ) region_to_grid_rows[k] = rows_in_any_region[these_subindices] region_to_grid_columns[k] = columns_in_any_region[these_subindices] for i, j in zip(region_to_grid_rows[k], region_to_grid_columns[k]): if (i, j) in grid_cell_to_regions: grid_cell_to_regions[i, j].append(k) else: grid_cell_to_regions[i, j] = [k] for this_key in grid_cell_to_regions: grid_cell_to_regions[this_key] = numpy.array( grid_cell_to_regions[this_key], dtype=int ) these_keys = list(grid_cell_to_regions.keys()) rows_in_any_region = numpy.array([a[0] for a in these_keys], dtype=int) columns_in_any_region = numpy.array([a[1] for a in these_keys], dtype=int) projection_object = projections.init_azimuthal_equidistant_projection( central_latitude_deg=numpy.mean(radar_latitudes_deg), central_longitude_deg=numpy.mean(radar_longitudes_deg) ) x_in_any_region_metres, y_in_any_region_metres = ( projections.project_latlng_to_xy( latitudes_deg=radar_latitudes_deg[rows_in_any_region], longitudes_deg=radar_longitudes_deg[columns_in_any_region], projection_object=projection_object) ) point_x_coords_metres, point_y_coords_metres = ( projections.project_latlng_to_xy( latitudes_deg=local_max_dict[temporal_tracking.LATITUDES_KEY], longitudes_deg=local_max_dict[temporal_tracking.LONGITUDES_KEY], projection_object=projection_object) ) region_to_grid_rows = [numpy.array([], dtype=int)] * num_maxima region_to_grid_columns = [numpy.array([], dtype=int)] * num_maxima grid_cell_to_region = {} for m in range(len(rows_in_any_region)): i = rows_in_any_region[m] j = columns_in_any_region[m] these_region_indices = grid_cell_to_regions[i, j] if len(these_region_indices) == 1: k = these_region_indices[0] else: these_x_diffs_metres = ( x_in_any_region_metres[m] - point_x_coords_metres[these_region_indices] ) these_y_diffs_metres = ( y_in_any_region_metres[m] - point_y_coords_metres[these_region_indices] ) these_distances_metres2 = ( these_x_diffs_metres ** 2 + these_y_diffs_metres ** 2 ) k = these_region_indices[numpy.nanargmin(these_distances_metres2)] region_to_grid_rows[k] = numpy.concatenate(( region_to_grid_rows[k], numpy.array([i], dtype=int) )) region_to_grid_columns[k] = numpy.concatenate(( region_to_grid_columns[k], numpy.array([j], dtype=int) )) grid_cell_to_region[i, j] = k return _make_regions_contiguous( region_to_grid_rows=region_to_grid_rows, region_to_grid_columns=region_to_grid_columns, grid_cell_to_region=grid_cell_to_region, num_grid_rows=echo_top_matrix_km.shape[0], num_grid_columns=echo_top_matrix_km.shape[1] ) def _local_maxima_to_polygons( local_max_dict, echo_top_matrix_km, min_echo_top_km, radar_metadata_dict, recompute_centroids=True): """Converts local maxima at one time from points to polygons. P = number of local maxima M = number of rows in radar grid N = number of columns in radar grid :param local_max_dict: Dictionary with the following keys. local_max_dict["latitudes_deg"]: length-P numpy array of latitudes (deg N). local_max_dict["longitudes_deg"]: length-P numpy array of longitudes (deg E). :param echo_top_matrix_km: M-by-N numpy array of echo tops (km above ground or sea level). :param min_echo_top_km: Minimum echo top (smaller values are not considered local maxima). :param radar_metadata_dict: Dictionary created by `myrorss_and_mrms_io.read_metadata_from_raw_file`. :param recompute_centroids: Boolean flag. If True, storm centroids (point maxima) will become centroids of respective polygons. :return: local_max_dict: Same as input but with the following extra columns. local_max_dict["grid_point_rows_array_list"]: length-P list, where the [k]th element is a numpy array with row indices of grid points in the [k]th polygon. local_max_dict["grid_point_columns_array_list"]: Same but for columns. local_max_dict["grid_point_lats_array_list_deg"]: Same but for latitudes (deg N). local_max_dict["grid_point_lngs_array_list_deg"]: Same but for longitudes (deg E). local_max_dict["polygon_objects_rowcol"]: length-P list of polygons (`shapely.geometry.Polygon` objects) with coordinates in row-column space. local_max_dict["polygon_objects_latlng"]: length-P list of polygons (`shapely.geometry.Polygon` objects) with coordinates in lat-long space. """ latitude_extent_deg = ( radar_metadata_dict[radar_utils.LAT_SPACING_COLUMN] * (radar_metadata_dict[radar_utils.NUM_LAT_COLUMN] - 1) ) min_latitude_deg = ( radar_metadata_dict[radar_utils.NW_GRID_POINT_LAT_COLUMN] - latitude_extent_deg ) radar_latitudes_deg, radar_longitudes_deg = grids.get_latlng_grid_points( min_latitude_deg=min_latitude_deg, min_longitude_deg=radar_metadata_dict[ radar_utils.NW_GRID_POINT_LNG_COLUMN], lat_spacing_deg=radar_metadata_dict[radar_utils.LAT_SPACING_COLUMN], lng_spacing_deg=radar_metadata_dict[radar_utils.LNG_SPACING_COLUMN], num_rows=radar_metadata_dict[radar_utils.NUM_LAT_COLUMN], num_columns=radar_metadata_dict[radar_utils.NUM_LNG_COLUMN] ) radar_latitudes_deg = radar_latitudes_deg[::-1] radar_to_region_matrix = _local_maxima_to_regions( local_max_dict=local_max_dict, echo_top_matrix_km=echo_top_matrix_km, min_echo_top_km=min_echo_top_km, radar_latitudes_deg=radar_latitudes_deg, radar_longitudes_deg=radar_longitudes_deg) num_maxima = len(local_max_dict[temporal_tracking.LATITUDES_KEY]) local_max_dict[temporal_tracking.GRID_POINT_ROWS_KEY] = [[]] * num_maxima local_max_dict[temporal_tracking.GRID_POINT_COLUMNS_KEY] = [[]] * num_maxima local_max_dict[temporal_tracking.GRID_POINT_LATITUDES_KEY] = ( [[]] * num_maxima ) local_max_dict[temporal_tracking.GRID_POINT_LONGITUDES_KEY] = ( [[]] * num_maxima ) local_max_dict[temporal_tracking.POLYGON_OBJECTS_ROWCOL_KEY] = numpy.full( num_maxima, numpy.nan, dtype=object ) local_max_dict[temporal_tracking.POLYGON_OBJECTS_LATLNG_KEY] = numpy.full( num_maxima, numpy.nan, dtype=object ) good_indices = [] for k in range(num_maxima): (local_max_dict[temporal_tracking.GRID_POINT_ROWS_KEY][k], local_max_dict[temporal_tracking.GRID_POINT_COLUMNS_KEY][k] ) = numpy.where(radar_to_region_matrix == k) if len(local_max_dict[temporal_tracking.GRID_POINT_ROWS_KEY][k]) == 0: continue good_indices.append(k) these_vertex_rows, these_vertex_columns = ( polygons.grid_points_in_poly_to_vertices( grid_point_row_indices=local_max_dict[ temporal_tracking.GRID_POINT_ROWS_KEY][k], grid_point_column_indices=local_max_dict[ temporal_tracking.GRID_POINT_COLUMNS_KEY][k] ) ) (local_max_dict[temporal_tracking.GRID_POINT_LATITUDES_KEY][k], local_max_dict[temporal_tracking.GRID_POINT_LONGITUDES_KEY][k] ) = radar_utils.rowcol_to_latlng( grid_rows=local_max_dict[temporal_tracking.GRID_POINT_ROWS_KEY][k], grid_columns=local_max_dict[ temporal_tracking.GRID_POINT_COLUMNS_KEY][k], nw_grid_point_lat_deg=radar_metadata_dict[ radar_utils.NW_GRID_POINT_LAT_COLUMN], nw_grid_point_lng_deg=radar_metadata_dict[ radar_utils.NW_GRID_POINT_LNG_COLUMN], lat_spacing_deg=radar_metadata_dict[ radar_utils.LAT_SPACING_COLUMN], lng_spacing_deg=radar_metadata_dict[radar_utils.LNG_SPACING_COLUMN] ) these_vertex_latitudes_deg, these_vertex_longitudes_deg = ( radar_utils.rowcol_to_latlng( grid_rows=these_vertex_rows, grid_columns=these_vertex_columns, nw_grid_point_lat_deg=radar_metadata_dict[ radar_utils.NW_GRID_POINT_LAT_COLUMN], nw_grid_point_lng_deg=radar_metadata_dict[ radar_utils.NW_GRID_POINT_LNG_COLUMN], lat_spacing_deg=radar_metadata_dict[ radar_utils.LAT_SPACING_COLUMN], lng_spacing_deg=radar_metadata_dict[ radar_utils.LNG_SPACING_COLUMN] ) ) local_max_dict[temporal_tracking.POLYGON_OBJECTS_ROWCOL_KEY][k] = ( polygons.vertex_arrays_to_polygon_object( exterior_x_coords=these_vertex_columns, exterior_y_coords=these_vertex_rows) ) local_max_dict[temporal_tracking.POLYGON_OBJECTS_LATLNG_KEY][k] = ( polygons.vertex_arrays_to_polygon_object( exterior_x_coords=these_vertex_longitudes_deg, exterior_y_coords=these_vertex_latitudes_deg) ) if not recompute_centroids: continue this_centroid_object_latlng = local_max_dict[ temporal_tracking.POLYGON_OBJECTS_LATLNG_KEY ][k].centroid local_max_dict[temporal_tracking.LATITUDES_KEY][k] = ( this_centroid_object_latlng.y ) local_max_dict[temporal_tracking.LONGITUDES_KEY][k] = ( this_centroid_object_latlng.x ) if len(good_indices) == num_maxima: return local_max_dict print(( 'REMOVED {0:d} of {1:d} regions (presumably because it was not ' 'contiguous).' ).format( num_maxima - len(good_indices), num_maxima )) good_indices = numpy.array(good_indices, dtype=int) for this_key in local_max_dict: if isinstance(local_max_dict[this_key], list): local_max_dict[this_key] = [ local_max_dict[this_key][k] for k in good_indices ] elif isinstance(local_max_dict[this_key], numpy.ndarray): local_max_dict[this_key] = local_max_dict[this_key][good_indices] return local_max_dict def _remove_small_polygons(local_max_dict, min_size_pixels): """Removes small polygons (storm objects) at one time. :param local_max_dict: Dictionary created by `_local_maxima_to_polygons`. :param min_size_pixels: Minimum size. :return: local_max_dict: Same as input but maybe with fewer storm objects. """ if min_size_pixels == 0: return local_max_dict num_grid_cells_by_polygon = numpy.array( [len(r) for r in local_max_dict[temporal_tracking.GRID_POINT_ROWS_KEY]], dtype=int ) indices_to_keep = numpy.where( num_grid_cells_by_polygon >= min_size_pixels )[0] for this_key in local_max_dict: if isinstance(local_max_dict[this_key], list): local_max_dict[this_key] = [ local_max_dict[this_key][k] for k in indices_to_keep ] elif isinstance(local_max_dict[this_key], numpy.ndarray): local_max_dict[this_key] = local_max_dict[this_key][indices_to_keep] return local_max_dict def _write_new_tracks(storm_object_table, top_output_dir_name, valid_times_unix_sec): """Writes tracking files (one Pickle file per time step). These files are the main output of both `run_tracking` and `reanalyze_across_spc_dates`. :param storm_object_table: See doc for `storm_tracking_io.write_file`. :param top_output_dir_name: Name of top-level directory. File locations therein will be determined by `storm_tracking_io.find_file`. :param valid_times_unix_sec: 1-D numpy array of valid times. One file will be written for each. """ for this_time_unix_sec in valid_times_unix_sec: this_file_name = tracking_io.find_file( top_tracking_dir_name=top_output_dir_name, valid_time_unix_sec=this_time_unix_sec, spc_date_string=time_conversion.time_to_spc_date_string( this_time_unix_sec), tracking_scale_metres2=DUMMY_TRACKING_SCALE_METRES2, source_name=tracking_utils.SEGMOTION_NAME, raise_error_if_missing=False) print('Writing new data to: "{0:s}"...'.format(this_file_name)) tracking_io.write_file( storm_object_table=storm_object_table.loc[ storm_object_table[tracking_utils.VALID_TIME_COLUMN] == this_time_unix_sec ], pickle_file_name=this_file_name ) def _velocities_latlng_to_xy( east_velocities_m_s01, north_velocities_m_s01, latitudes_deg, longitudes_deg): """Converts velocities from lat-long components to x-y components. P = number of velocities :param east_velocities_m_s01: length-P numpy array of eastward instantaneous velocities (metres per second). :param north_velocities_m_s01: length-P numpy array of northward instantaneous velocities (metres per second). :param latitudes_deg: length-P numpy array of current latitudes (deg N). :param longitudes_deg: length-P numpy array of current longitudes (deg E). :return: x_velocities_m_s01: length-P numpy of x-velocities (metres per second in positive x-direction). :return: y_velocities_m_s01: Same but for y-direction. """ projection_object = projections.init_azimuthal_equidistant_projection( central_latitude_deg=CENTRAL_PROJ_LATITUDE_DEG, central_longitude_deg=CENTRAL_PROJ_LONGITUDE_DEG) scalar_displacements_metres = numpy.sqrt( east_velocities_m_s01 ** 2 + north_velocities_m_s01 ** 2) standard_bearings_deg = RADIANS_TO_DEGREES * numpy.arctan2( north_velocities_m_s01, east_velocities_m_s01) geodetic_bearings_deg = geodetic_utils.standard_to_geodetic_angles( standard_bearings_deg) new_latitudes_deg, new_longitudes_deg = ( geodetic_utils.start_points_and_displacements_to_endpoints( start_latitudes_deg=latitudes_deg, start_longitudes_deg=longitudes_deg, scalar_displacements_metres=scalar_displacements_metres, geodetic_bearings_deg=geodetic_bearings_deg) ) x_coords_metres, y_coords_metres = projections.project_latlng_to_xy( latitudes_deg=latitudes_deg, longitudes_deg=longitudes_deg, projection_object=projection_object, false_easting_metres=0., false_northing_metres=0.) new_x_coords_metres, new_y_coords_metres = projections.project_latlng_to_xy( latitudes_deg=new_latitudes_deg, longitudes_deg=new_longitudes_deg, projection_object=projection_object, false_easting_metres=0., false_northing_metres=0.) return (new_x_coords_metres - x_coords_metres, new_y_coords_metres - y_coords_metres) def _storm_objects_latlng_to_xy(storm_object_table): """Converts centroids and velocities from lat-long to x-y coordinates. :param storm_object_table: See doc for `storm_tracking_io.write_file`. :return: storm_object_table: Same as input but with the following columns. storm_object_table.centroid_x_metres: x-coordinate of storm-object centroid. storm_object_table.centroid_y_metres: y-coordinate of storm-object centroid. storm_object_table.x_velocity_m_s01: Velocity in +x-direction (metres per second). storm_object_table.y_velocity_m_s01: Velocity in +y-direction (metres per second). """ projection_object = projections.init_azimuthal_equidistant_projection( central_latitude_deg=CENTRAL_PROJ_LATITUDE_DEG, central_longitude_deg=CENTRAL_PROJ_LONGITUDE_DEG) centroid_x_coords_metres, centroid_y_coords_metres = ( projections.project_latlng_to_xy( latitudes_deg=storm_object_table[ tracking_utils.CENTROID_LATITUDE_COLUMN].values, longitudes_deg=storm_object_table[ tracking_utils.CENTROID_LONGITUDE_COLUMN].values, projection_object=projection_object, false_easting_metres=0., false_northing_metres=0.) ) x_velocities_m_s01, y_velocities_m_s01 = _velocities_latlng_to_xy( east_velocities_m_s01=storm_object_table[ tracking_utils.EAST_VELOCITY_COLUMN].values, north_velocities_m_s01=storm_object_table[ tracking_utils.NORTH_VELOCITY_COLUMN].values, latitudes_deg=storm_object_table[ tracking_utils.CENTROID_LATITUDE_COLUMN].values, longitudes_deg=storm_object_table[ tracking_utils.CENTROID_LONGITUDE_COLUMN].values ) return storm_object_table.assign(**{ temporal_tracking.CENTROID_X_COLUMN: centroid_x_coords_metres, temporal_tracking.CENTROID_Y_COLUMN: centroid_y_coords_metres, temporal_tracking.X_VELOCITY_COLUMN: x_velocities_m_s01, temporal_tracking.Y_VELOCITY_COLUMN: y_velocities_m_s01 }) def _shuffle_tracking_data( storm_object_table_by_date, tracking_file_names_by_date, valid_times_by_date_unix_sec, current_date_index, top_output_dir_name): """Shuffles data into and out of memory. T = number of SPC dates :param storm_object_table_by_date: length-T list of pandas DataFrames. If data for the [i]th date are currently out of memory, storm_object_table_by_date[i] = None. If data for the [i]th date are currently in memory, storm_object_table_by_date[i] has columns listed in `storm_tracking_io.write_file`. :param tracking_file_names_by_date: See doc for `_find_input_tracking_files`. :param valid_times_by_date_unix_sec: Same. :param current_date_index: Index of date currently being processed. Must be in range 0...(T - 1). :param top_output_dir_name: Name of top-level output directory. See doc for `_write_new_tracks`. :return: storm_object_table_by_date: Same as input, except that different items are in memory. """ num_spc_dates = len(tracking_file_names_by_date) # Shuffle data out of memory. if current_date_index == num_spc_dates: for j in [num_spc_dates - 2, num_spc_dates - 1]: if j < 0: continue _write_new_tracks( storm_object_table=storm_object_table_by_date[j], top_output_dir_name=top_output_dir_name, valid_times_unix_sec=valid_times_by_date_unix_sec[j] ) print('\n') storm_object_table_by_date[j] = pandas.DataFrame() return storm_object_table_by_date if current_date_index >= 2: _write_new_tracks( storm_object_table=storm_object_table_by_date[ current_date_index - 2], top_output_dir_name=top_output_dir_name, valid_times_unix_sec=valid_times_by_date_unix_sec[ current_date_index - 2] ) print('\n') storm_object_table_by_date[current_date_index - 2] = pandas.DataFrame() # Shuffle data into memory. these_indices = numpy.linspace( current_date_index - 1, current_date_index + 2, num=4, dtype=int) for j in these_indices: if j < 0 or j >= num_spc_dates: continue if storm_object_table_by_date[j] is not None: continue storm_object_table_by_date[j] = tracking_io.read_many_files( tracking_file_names_by_date[j] ) print('\n') storm_object_table_by_date[j] = _storm_objects_latlng_to_xy( storm_object_table_by_date[j] ) return storm_object_table_by_date def _radar_times_to_tracking_periods( radar_times_unix_sec, max_time_interval_sec): """Converts radar times to effective start/end times for tracking. When there is a gap of > `max_time_interval_sec` between successive radar times t_0 and t_1, tracking effectively ends at t_0 and then restarts at t_1. T = number of effective tracking periods :param radar_times_unix_sec: 1-D numpy array of radar times. :param max_time_interval_sec: Max time interval between successive radar times. :return: tracking_start_times_unix_sec: length-T numpy array of start times. :return: tracking_end_times_unix_sec: length-T numpy array of end times. """ radar_time_diffs_sec = numpy.diff(radar_times_unix_sec) num_radar_times = len(radar_times_unix_sec) gap_indices =
numpy.where(radar_time_diffs_sec > max_time_interval_sec)
numpy.where
# -*- mode: python; coding: utf-8 -* # Copyright (c) 2019 Radio Astronomy Software Group # Licensed under the 2-clause BSD License from __future__ import division import unittest import nose.tools as nt import os import numpy as np import pyuvdata.tests as uvtest from pyuvdata import UVData from pyuvdata import UVCal from pyuvdata.data import DATA_PATH from pyuvdata import UVFlag from pyuvdata.uvflag import lst_from_uv from pyuvdata.uvflag import flags2waterfall from pyuvdata.uvflag import and_rows_cols from pyuvdata import version as uvversion import shutil import copy import six test_d_file = os.path.join(DATA_PATH, 'zen.2457698.40355.xx.HH.uvcAA') test_c_file = os.path.join(DATA_PATH, 'zen.2457555.42443.HH.uvcA.omni.calfits') test_f_file = test_d_file + '.testuvflag.h5' test_outfile = os.path.join(DATA_PATH, 'test', 'outtest_uvflag.h5') pyuvdata_version_str = uvversion.version + '.' if uvversion.git_hash is not '': pyuvdata_version_str += (' Git origin: ' + uvversion.git_origin + '. Git hash: ' + uvversion.git_hash + '. Git branch: ' + uvversion.git_branch + '. Git description: ' + uvversion.git_description + '.') def test_init_UVData(): uv = UVData() uv.read_miriad(test_d_file) uvf = UVFlag(uv, history='I made a UVFlag object', label='test') nt.assert_true(uvf.metric_array.shape == uv.flag_array.shape) nt.assert_true(np.all(uvf.metric_array == 0)) nt.assert_true(uvf.weights_array.shape == uv.flag_array.shape) nt.assert_true(np.all(uvf.weights_array == 1)) nt.assert_true(uvf.type == 'baseline') nt.assert_true(uvf.mode == 'metric') nt.assert_true(np.all(uvf.time_array == uv.time_array)) nt.assert_true(np.all(uvf.lst_array == uv.lst_array)) nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.polarization_array)) nt.assert_true(np.all(uvf.baseline_array == uv.baseline_array)) nt.assert_true(np.all(uvf.ant_1_array == uv.ant_1_array)) nt.assert_true(np.all(uvf.ant_2_array == uv.ant_2_array)) nt.assert_true('I made a UVFlag object' in uvf.history) nt.assert_true('Flag object with type "baseline"' in uvf.history) nt.assert_true(pyuvdata_version_str in uvf.history) nt.assert_true(uvf.label == 'test') def test_init_UVData_copy_flags(): uv = UVData() uv.read_miriad(test_d_file) uvf = uvtest.checkWarnings(UVFlag, [uv], {'copy_flags': True, 'mode': 'metric'}, nwarnings=1, message='Copying flags to type=="baseline"') nt.assert_false(hasattr(uvf, 'metric_array')) # Should be flag due to copy flags nt.assert_true(np.array_equal(uvf.flag_array, uv.flag_array)) nt.assert_true(uvf.weights_array.shape == uv.flag_array.shape) nt.assert_true(np.all(uvf.weights_array == 1)) nt.assert_true(uvf.type == 'baseline') nt.assert_true(uvf.mode == 'flag') nt.assert_true(np.all(uvf.time_array == uv.time_array)) nt.assert_true(np.all(uvf.lst_array == uv.lst_array)) nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.polarization_array)) nt.assert_true(np.all(uvf.baseline_array == uv.baseline_array)) nt.assert_true(np.all(uvf.ant_1_array == uv.ant_1_array)) nt.assert_true(np.all(uvf.ant_2_array == uv.ant_2_array)) nt.assert_true('Flag object with type "baseline"' in uvf.history) nt.assert_true(pyuvdata_version_str in uvf.history) def test_init_UVCal(): uvc = UVCal() uvc.read_calfits(test_c_file) uvf = UVFlag(uvc) nt.assert_true(uvf.metric_array.shape == uvc.flag_array.shape) nt.assert_true(np.all(uvf.metric_array == 0)) nt.assert_true(uvf.weights_array.shape == uvc.flag_array.shape) nt.assert_true(np.all(uvf.weights_array == 1)) nt.assert_true(uvf.type == 'antenna') nt.assert_true(uvf.mode == 'metric') nt.assert_true(np.all(uvf.time_array == uvc.time_array)) lst = lst_from_uv(uvc) nt.assert_true(np.all(uvf.lst_array == lst)) nt.assert_true(np.all(uvf.freq_array == uvc.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uvc.jones_array)) nt.assert_true(np.all(uvf.ant_array == uvc.ant_array)) nt.assert_true('Flag object with type "antenna"' in uvf.history) nt.assert_true(pyuvdata_version_str in uvf.history) def test_init_cal_copy_flags(): uv = UVCal() uv.read_calfits(test_c_file) uvf = uvtest.checkWarnings(UVFlag, [uv], {'copy_flags': True, 'mode': 'metric'}, nwarnings=1, message='Copying flags to type=="antenna"') nt.assert_false(hasattr(uvf, 'metric_array')) # Should be flag due to copy flags nt.assert_true(np.array_equal(uvf.flag_array, uv.flag_array)) nt.assert_true(uvf.weights_array.shape == uv.flag_array.shape) nt.assert_true(uvf.type == 'antenna') nt.assert_true(uvf.mode == 'flag') nt.assert_true(np.all(uvf.time_array == np.unique(uv.time_array))) nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.jones_array)) nt.assert_true(pyuvdata_version_str in uvf.history) def test_init_waterfall_uvd(): uv = UVData() uv.read_miriad(test_d_file) uvf = UVFlag(uv, waterfall=True) nt.assert_true(uvf.metric_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Npols)) nt.assert_true(np.all(uvf.metric_array == 0)) nt.assert_true(uvf.weights_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Npols)) nt.assert_true(np.all(uvf.weights_array == 1)) nt.assert_true(uvf.type == 'waterfall') nt.assert_true(uvf.mode == 'metric') nt.assert_true(np.all(uvf.time_array == np.unique(uv.time_array))) nt.assert_true(np.all(uvf.lst_array == np.unique(uv.lst_array))) nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.polarization_array)) nt.assert_true('Flag object with type "waterfall"' in uvf.history) nt.assert_true(pyuvdata_version_str in uvf.history) def test_init_waterfall_uvc(): uv = UVCal() uv.read_calfits(test_c_file) uvf = UVFlag(uv, waterfall=True) nt.assert_true(uvf.metric_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Njones)) nt.assert_true(np.all(uvf.metric_array == 0)) nt.assert_true(uvf.weights_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Njones)) nt.assert_true(np.all(uvf.weights_array == 1)) nt.assert_true(uvf.type == 'waterfall') nt.assert_true(uvf.mode == 'metric') nt.assert_true(np.all(uvf.time_array == np.unique(uv.time_array))) nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.jones_array)) nt.assert_true('Flag object with type "waterfall"' in uvf.history) nt.assert_true(pyuvdata_version_str in uvf.history) def test_init_waterfall_flag(): uv = UVCal() uv.read_calfits(test_c_file) uvf = UVFlag(uv, waterfall=True, mode='flag') nt.assert_true(uvf.flag_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Njones)) nt.assert_true(not np.any(uvf.flag_array)) nt.assert_true(uvf.weights_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Njones)) nt.assert_true(np.all(uvf.weights_array == 1)) nt.assert_true(uvf.type == 'waterfall') nt.assert_true(uvf.mode == 'flag') nt.assert_true(np.all(uvf.time_array == np.unique(uv.time_array))) nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.jones_array)) nt.assert_true('Flag object with type "waterfall"' in uvf.history) nt.assert_true(pyuvdata_version_str in uvf.history) def test_init_waterfall_copy_flags(): uv = UVCal() uv.read_calfits(test_c_file) uvf = uvtest.checkWarnings(UVFlag, [uv], {'copy_flags': True, 'mode': 'flag', 'waterfall': True}, nwarnings=1, message='Copying flags into waterfall') nt.assert_false(hasattr(uvf, 'flag_array')) # Should be metric due to copy flags nt.assert_true(uvf.metric_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Njones)) nt.assert_true(uvf.weights_array.shape == (uv.Ntimes, uv.Nfreqs, uv.Njones)) nt.assert_true(uvf.type == 'waterfall') nt.assert_true(uvf.mode == 'metric') nt.assert_true(np.all(uvf.time_array == np.unique(uv.time_array))) nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.jones_array)) nt.assert_true('Flag object with type "waterfall"' in uvf.history) nt.assert_true(pyuvdata_version_str in uvf.history) @uvtest.skipIf_no_h5py def test_read_write_loop(): uv = UVData() uv.read_miriad(test_d_file) uvf = UVFlag(uv, label='test') uvf.write(test_outfile, clobber=True) uvf2 = UVFlag(test_outfile) # Update history to match expected additions that were made uvf.history += 'Written by ' + pyuvdata_version_str uvf.history += ' Read by ' + pyuvdata_version_str nt.assert_true(uvf.__eq__(uvf2, check_history=True)) @uvtest.skipIf_no_h5py def test_read_write_ant(): uv = UVCal() uv.read_calfits(test_c_file) uvf = UVFlag(uv, mode='flag', label='test') uvf.write(test_outfile, clobber=True) uvf2 = UVFlag(test_outfile) # Update history to match expected additions that were made uvf.history += 'Written by ' + pyuvdata_version_str uvf.history += ' Read by ' + pyuvdata_version_str nt.assert_true(uvf.__eq__(uvf2, check_history=True)) @uvtest.skipIf_no_h5py def test_read_write_nocompress(): uv = UVData() uv.read_miriad(test_d_file) uvf = UVFlag(uv, label='test') uvf.write(test_outfile, clobber=True, data_compression=None) uvf2 = UVFlag(test_outfile) # Update history to match expected additions that were made uvf.history += 'Written by ' + pyuvdata_version_str uvf.history += ' Read by ' + pyuvdata_version_str nt.assert_true(uvf.__eq__(uvf2, check_history=True)) @uvtest.skipIf_no_h5py def test_read_write_nocompress_flag(): uv = UVData() uv.read_miriad(test_d_file) uvf = UVFlag(uv, mode='flag', label='test') uvf.write(test_outfile, clobber=True, data_compression=None) uvf2 = UVFlag(test_outfile) # Update history to match expected additions that were made uvf.history += 'Written by ' + pyuvdata_version_str uvf.history += ' Read by ' + pyuvdata_version_str nt.assert_true(uvf.__eq__(uvf2, check_history=True)) @uvtest.skipIf_no_h5py def test_init_list(): uv = UVData() uv.read_miriad(test_d_file) uv.time_array -= 1 uvf = UVFlag([uv, test_f_file]) uvf1 = UVFlag(uv) uvf2 = UVFlag(test_f_file) nt.assert_true(np.array_equal(np.concatenate((uvf1.metric_array, uvf2.metric_array), axis=0), uvf.metric_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.weights_array, uvf2.weights_array), axis=0), uvf.weights_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.time_array, uvf2.time_array)), uvf.time_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.baseline_array, uvf2.baseline_array)), uvf.baseline_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.ant_1_array, uvf2.ant_1_array)), uvf.ant_1_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.ant_2_array, uvf2.ant_2_array)), uvf.ant_2_array)) nt.assert_true(uvf.mode == 'metric') nt.assert_true(np.all(uvf.freq_array == uv.freq_array[0])) nt.assert_true(np.all(uvf.polarization_array == uv.polarization_array)) @uvtest.skipIf_no_h5py def test_read_list(): uv = UVData() uv.read_miriad(test_d_file) uv.time_array -= 1 uvf = UVFlag(uv) uvf.write(test_outfile, clobber=True) uvf.read([test_outfile, test_f_file]) uvf1 = UVFlag(uv) uvf2 = UVFlag(test_f_file) nt.assert_true(np.array_equal(np.concatenate((uvf1.metric_array, uvf2.metric_array), axis=0), uvf.metric_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.weights_array, uvf2.weights_array), axis=0), uvf.weights_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.time_array, uvf2.time_array)), uvf.time_array)) nt.assert_true(np.array_equal(np.concatenate((uvf1.baseline_array, uvf2.baseline_array)), uvf.baseline_array)) nt.assert_true(np.array_equal(
np.concatenate((uvf1.ant_1_array, uvf2.ant_1_array))
numpy.concatenate
import sys import numpy as np import pdb def is_local_minimum_1d(arr): if len(arr) == 1: return np.array([True]) ret = np.empty(arr.shape, dtype=bool) ret[0] = arr[0] < arr[1] ret[-1] = arr[-1] < arr[-2] if len(ret) > 2: ret[1:-1] = np.array([arr[i-1] > arr[i] and arr[i] < arr[i+1] for i in range(1, len(ret)-1)]) return ret def basin_size(data, coords): in_basin = set() search = {coords} diffs = [(0, -1), (0, 1), (1, 0), (-1, 0)] maxy, maxx = data.shape while search: current = search.pop() if (-1 < current[0] < maxy) and (-1 < current[1] < maxx) and data[current] < 9: in_basin.add(current) search |= set((current[0]+dfy, current[1]+dfx) for (dfy, dfx) in diffs) - in_basin return len(in_basin) def main(data): minima = np.logical_and(np.apply_along_axis(is_local_minimum_1d, 1, data),
np.apply_along_axis(is_local_minimum_1d, 0, data)
numpy.apply_along_axis
# -*- coding: utf-8 -*- # pylint: disable=E1101 import string from collections import OrderedDict import numpy as np import pandas as pd import pandas.util.testing as pdt import pytest from kartothek.core.dataset import DatasetMetadata from kartothek.core.index import ExplicitSecondaryIndex from kartothek.core.uuid import gen_uuid from kartothek.io_components.metapartition import MetaPartition from kartothek.serialization import DataFrameSerializer def test_file_structure_dataset_v4(store_factory, bound_store_dataframes): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_helper = pd.DataFrame( {"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]} ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=4 ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 store = store_factory() # TODO: json -> msgpack expected_keys = set( [ "dataset_uuid.by-dataset-metadata.json", "dataset_uuid/helper/cluster_1.parquet", "dataset_uuid/helper/cluster_2.parquet", "dataset_uuid/helper/_common_metadata", "dataset_uuid/core/cluster_1.parquet", "dataset_uuid/core/cluster_2.parquet", "dataset_uuid/core/_common_metadata", ] ) assert set(expected_keys) == set(store.keys()) def test_file_structure_dataset_v4_partition_on(store_factory, bound_store_dataframes): store = store_factory() assert set(store.keys()) == set() df = pd.DataFrame( {"P": [1, 2, 3, 1, 2, 3], "L": [1, 1, 1, 2, 2, 2], "TARGET": np.arange(10, 16)} ) df_helper = pd.DataFrame( { "P": [1, 2, 3, 1, 2, 3], "L": [1, 1, 1, 2, 2, 2], "info": string.ascii_lowercase[:2], } ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) assert isinstance(dataset, DatasetMetadata) assert dataset.partition_keys == ["P", "L"] assert len(dataset.partitions) == 12 store = store_factory() expected_keys = set( [ "dataset_uuid.by-dataset-metadata.json", "dataset_uuid/helper/P=1/L=1/cluster_1.parquet", "dataset_uuid/helper/P=1/L=1/cluster_2.parquet", "dataset_uuid/helper/P=1/L=2/cluster_1.parquet", "dataset_uuid/helper/P=1/L=2/cluster_2.parquet", "dataset_uuid/helper/P=2/L=1/cluster_1.parquet", "dataset_uuid/helper/P=2/L=1/cluster_2.parquet", "dataset_uuid/helper/P=2/L=2/cluster_1.parquet", "dataset_uuid/helper/P=2/L=2/cluster_2.parquet", "dataset_uuid/helper/P=3/L=1/cluster_1.parquet", "dataset_uuid/helper/P=3/L=1/cluster_2.parquet", "dataset_uuid/helper/P=3/L=2/cluster_1.parquet", "dataset_uuid/helper/P=3/L=2/cluster_2.parquet", "dataset_uuid/helper/_common_metadata", "dataset_uuid/core/P=1/L=1/cluster_1.parquet", "dataset_uuid/core/P=1/L=1/cluster_2.parquet", "dataset_uuid/core/P=1/L=2/cluster_1.parquet", "dataset_uuid/core/P=1/L=2/cluster_2.parquet", "dataset_uuid/core/P=2/L=1/cluster_1.parquet", "dataset_uuid/core/P=2/L=1/cluster_2.parquet", "dataset_uuid/core/P=2/L=2/cluster_1.parquet", "dataset_uuid/core/P=2/L=2/cluster_2.parquet", "dataset_uuid/core/P=3/L=1/cluster_1.parquet", "dataset_uuid/core/P=3/L=1/cluster_2.parquet", "dataset_uuid/core/P=3/L=2/cluster_1.parquet", "dataset_uuid/core/P=3/L=2/cluster_2.parquet", "dataset_uuid/core/_common_metadata", ] ) assert set(expected_keys) == set(store.keys()) def test_file_structure_dataset_v4_partition_on_second_table_no_index_col( store_factory, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 2), "L": np.arange(0, 2), "TARGET": np.arange(10, 12)} ) df_helper = pd.DataFrame({"P": [0, 0, 1], "info": string.ascii_lowercase[:2]}) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] with pytest.raises(Exception): bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) def test_file_structure_dataset_v4_partition_on_second_table_no_index_col_simple_group( store_factory, bound_store_dataframes ): """ Pandas seems to stop evaluating the groupby expression if the dataframes after the first column split is of length 1. This seems to be an optimization which should, however, still raise a KeyError """ df = pd.DataFrame( {"P": np.arange(0, 2), "L": np.arange(0, 2), "TARGET": np.arange(10, 12)} ) df_helper = pd.DataFrame({"P": [0, 1], "info": string.ascii_lowercase[:2]}) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] with pytest.raises(Exception): bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) def test_store_dataframes_as_dataset( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L":
np.arange(0, 10)
numpy.arange
"""Functions to produce a H-mesh from stage design.""" import numpy as np from . import design, geometry # import matplotlib.pyplot as plt # Configure numbers of points nxb = 97 # Blade chord nr = 81 # Span nr_casc = 4 # Radial points in cascade mode nrt = 65 # Pitch rate = 0.5 # Axial chords required to fully relax dxsmth_c = 0.25 # Distance over which to fillet shroud corners def streamwise_grid(dx_c): """Generate non-dimensional streamwise grid vector for a blade row. The first step in generating an H-mesh is to lay out a vector of axial coordinates --- all grid points at a fixed streamwise index are at the same axial coordinate. Specify the number of points across the blade chord, clustered towards the leading and trailing edges. The clustering is then mirrored up- and downstream of the row. If the boundary of the row is within half a chord of the leading or trailing edges, the clustering is truncated. Otherwise, the grid is extendend with constant cell size the requested distance. The coordinate system origin is the row leading edge. The coordinates are normalised by the chord such that the trailing edge is at unity distance. Parameters ---------- dx_c: array, length 2 Distances to row inlet and exit planes, normalised by axial chord [--]. Returns ------- x_c: array Streamwise grid vector, normalised by axial chord [--]. """ clust = geometry.cluster(nxb) dclust = np.diff(clust) dmax = dclust.max() # Stretch clustering outside of blade row nxb2 = nxb // 2 # Blade semi-chord x_c = clust + 0.0 # Make a copy of clustering function x_c = np.insert(x_c[1:], 0, clust[nxb2:] - 1.0) # In front of LE x_c = np.append(x_c[:-1], x_c[-1] + clust[: nxb2 + 1]) # Behind TE # Numbers of points in inlet/outlet # Half a chord subtracted to allow for mesh stretching from LE/TE # N.B. Can be negative if we are going to truncate later nxu, nxd = [int((dx_ci - 0.5) / dmax) for dx_ci in dx_c] if nxu > 0: # Inlet extend inlet if needed x_c = np.insert(x_c[1:], 0,
np.linspace(-dx_c[0], x_c[0], nxu)
numpy.linspace
#!/usr/bin/env python3 """ Plot the subpopulation deviations for the American Community Survey of USCB. Copyright (c) Meta Platforms, Inc. and affiliates. This script offers command-line options "--interactive" and "--no-interactive" for plotting interactively and non-interactively, respectively. Interactive is the default. The interactive setting does the same as the non-interactive, but without saving to disk any plots, and without plotting any classical reliability diagrams or any scatterplots of the covariates used as controls. When run non-interactively (i.e., with command-line option "--no-interactive"), this script creates a directory, "weighted", in the working directory if the directory does not already exist, then creates a subdirectory there for one of the four supported combinations of covariates used for conditioning: "MV", "NOC", "MV+NOC", or "NOC+MV", where "MV" refers to "time since last move", "NOC" refers to "number of own children", "MV+NOC" refers to both "time since last move" and "number of own children" (in that order), and "NOC+MV" refers to "number of own children" and "time since last move", in that order. In all cases, there is also an additional covariate appended, namely the log of the adjusted household personal income. The command line flag "--var" specifies which of the four possibilities to use, defaulting to "MV" if not specified. The script fills each subdirectory of the main directory, "weighted", with subdirectories corresponding to counties in California, comparing each county to all counties in California put together. The script fills each of these subdirectories, "County_of_[county]-[regressand]" (where [county] is the name of the county and [regressand] is the variate used for the observed reponses), with 8 or 10 files (only 8 for "MV+NOC" or "NOC+MV"): 1. metrics.txt -- metrics about the plots 2. cumulative.pdf -- plot of cumulative differences between the county & state 3. equiscores10.pdf -- reliability diagram of the county & state with 10 bins (equispaced in scores) 4. equiscores20.pdf -- reliability diagram of the county & state with 20 bins (equispaced in scores) 5. equiscores100.pdf -- reliability diagram of the county & state with 100 bins (equispaced in scores) 6. equierrs10.pdf -- reliability diagram of the county & state with 10 bins (the error bar is about the same for every bin) 7. equierrs20.pdf -- reliability diagram of the county & state with 20 bins (the error bar is about the same for every bin) 8. equierrs100.pdf -- reliability diagram of the county & state with 100 bins (the error bar is about the same for every bin) 9. inputs.pdf -- PDF scatterplot of the covariates used as controls, overlaying the subpopulation on the full population; shading corresponds to the arc length along the Hilbert curve 10. inputs.jpg -- compressed scatterplot of the covariates used as controls, overlaying the subpopulation on the full population; shading corresponds to the arc length along the Hilbert curve The script also creates two files, "inputs.pdf" and "inputs.jpg", in the subdirectories "MV" and "NOC". These files scatterplot the covariates used as controls, without overlaying any subpopulation over the full population; the shading in the plots corresponds to the arc length along the Hilbert curve. The data comes from the American Community Survey of the U.S. Census Bureau, specifically the household data from the state of California and its counties. The results/responses are given by the variates specified in the list "exs" defined below (together with the value of the variate to be considered "success" in the sense of Bernoulli trials, or else the nonnegative integer count for the variate, counting people, for instance). This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import argparse import math import numpy as np import os import subprocess import matplotlib from matplotlib.backend_bases import MouseButton from matplotlib.ticker import FixedFormatter from matplotlib import get_backend default_backend = get_backend() matplotlib.use('agg') import matplotlib.pyplot as plt from hilbertcurve.hilbertcurve import HilbertCurve from subpop_weighted import equiscores, equierrs, cumulative def icumulative(r, s, t, u, covariates, inds, majorticks, minorticks, bernoulli=True, title='subpop. deviation is the slope as a function of $A_k$', fraction=1, weights=None, window='Figure'): """ Cumulative difference between observations from a subpop. & the full pop. Plots the difference between the normalized cumulative weighted sums of r for the subpopulation indices inds and the normalized cumulative weighted sums of r from the full population interpolated to the subpop. indices, with majorticks major ticks and minorticks minor ticks on the lower axis, labeling the major ticks with the corresponding values from s. This is an interactive version of subpop_weighted.cumulative (probably not suitable in general for all data sets, however). Parameters ---------- r : array_like random outcomes s : array_like scores (must be unique and in strictly increasing order) t : array_like normalized values of the covariates u : array_like unnormalized values of the covariates covariates : array_like strings labeling the covariates inds : array_like indices of the subset within s that defines the subpopulation (must be unique and in strictly increasing order) majorticks : int number of major ticks on each of the horizontal axes minorticks : int number of minor ticks on the lower axis bernoulli : bool, optional set to True (the default) for Bernoulli variates; set to False to use empirical estimates of the variance rather than the formula p(1-p) for a Bernoulli variate whose mean is p title : string, optional title of the plot fraction : float, optional proportion of the full horizontal axis to display weights : array_like, optional weights of the observations (the default None results in equal weighting) window : string, optional title of the window displayed in the title bar Returns ------- None """ def histcounts(nbins, a): # Counts the number of entries of a # falling into each of nbins equispaced bins. j = 0 nbin = np.zeros(nbins, dtype=np.int64) for k in range(len(a)): if a[k] > a[-1] * (j + 1) / nbins: j += 1 if j == nbins: break nbin[j] += 1 return nbin def aggregate(r, s, inds, w): # Determines the total weight and variance of the nonzero entries of r # in a bin around each entry of s corresponding to the subset of s # specified by the indices inds. The bin ranges from halfway # to the nearest entry of s from inds on the left to halfway # to the nearest entry of s from inds on the right. ss = s[inds] q = np.insert(np.append(ss, [1e20]), 0, [-1e20]) t = np.asarray([(q[k] + q[k + 1]) / 2 for k in range(len(q) - 1)]) rc = np.zeros((len(inds))) rc2 = np.zeros((len(inds))) sc = np.zeros((len(inds))) j = 0 for k in range(len(s)): if s[k] > t[j + 1]: j += 1 if j == len(inds): break if s[k] >= t[0]: sc[j] += w[k] rc[j] += w[k] * r[k] rc2[j] += w[k] * r[k]**2 means = rc / sc return means, rc2 / sc - means**2 def on_move(event): if event.inaxes: ax = event.inaxes k = round(event.xdata * (len(inds) - 1)) toptxt = '' bottomtxt = '' for j in range(len(covariates)): toptxt += covariates[j] if(np.allclose( np.round(u[inds[k], j]), u[inds[k], j], rtol=1e-5)): toptxt += ' = {}'.format(round(u[inds[k], j])) else: toptxt += ' = {:.2f}'.format(u[inds[k], j]) toptxt += '\n' bottomtxt += 'normalized ' + covariates[j] bottomtxt += ' = {:.2f}'.format(t[inds[k], j]) bottomtxt += '\n' toptxt += '$S_{i_k}$' + ' = {:.2f}'.format(s[inds[k]]) bottomtxt += '$S_{i_k}$' + ' = {:.2f}'.format(s[inds[k]]) toptext.set_text(toptxt) bottomtext.set_text(bottomtxt) plt.draw() def on_click(event): if event.button is MouseButton.LEFT: plt.disconnect(binding_id) plt.close() assert all(s[k] < s[k + 1] for k in range(len(s) - 1)) assert all(inds[k] < inds[k + 1] for k in range(len(inds) - 1)) # Determine the weighting scheme. if weights is None: w = np.ones((len(s))) else: w = weights.copy() assert np.all(w > 0) w /= w.sum() # Create the figure. plt.figure(window) ax = plt.axes() # Aggregate r according to inds, s, and w. rt, rtvar = aggregate(r, s, inds, w) # Subsample r, s, and w. rs = r[inds] ss = s[inds] ws = w[inds] ws /= ws[:int(len(ws) * fraction)].sum() # Accumulate the weighted rs and rt, as well as ws. f = np.insert(np.cumsum(ws * rs), 0, [0]) ft = np.insert(np.cumsum(ws * rt), 0, [0]) x = np.insert(np.cumsum(ws), 0, [0]) # Plot the difference. plt.plot( x[:int(len(x) * fraction)], (f - ft)[:int(len(f) * fraction)], 'k') # Make sure the plot includes the origin. plt.plot(0, 'k') # Add an indicator of the scale of 1/sqrt(n) to the vertical axis. rtsub = np.insert(rt, 0, [0])[:(int(len(rt) * fraction) + 1)] if bernoulli: lenscale = np.sqrt(np.sum(ws**2 * rtsub[1:] * (1 - rtsub[1:]))) else: lenscale = np.sqrt(np.sum(ws**2 * rtvar)) plt.plot(2 * lenscale, 'k') plt.plot(-2 * lenscale, 'k') kwargs = { 'head_length': 2 * lenscale, 'head_width': fraction / 20, 'width': 0, 'linewidth': 0, 'length_includes_head': True, 'color': 'k'} plt.arrow(.1e-100, -2 * lenscale, 0, 4 * lenscale, shape='left', **kwargs) plt.arrow(.1e-100, 2 * lenscale, 0, -4 * lenscale, shape='right', **kwargs) plt.margins(x=0, y=.6) # Label the major ticks of the lower axis with the values of ss. lenxf = int(len(x) * fraction) sl = ['{:.2f}'.format(a) for a in np.insert(ss, 0, [0])[:lenxf:(lenxf // majorticks)].tolist()] plt.xticks(x[:lenxf:(lenxf // majorticks)], sl) if len(rtsub) >= 300 and minorticks >= 50: # Indicate the distribution of s via unlabeled minor ticks. plt.minorticks_on() ax.tick_params(which='minor', axis='x') ax.tick_params(which='minor', axis='y', left=False) ax.set_xticks(x[np.cumsum(histcounts(minorticks, ss[:int((len(x) - 1) * fraction)]))], minor=True) # Label the axes. plt.xlabel('$S_{i_k}$ (the subscript on $S$ is $i_k$)') plt.ylabel('$F_k - \\tilde{F}_k$') ax2 = plt.twiny() plt.xlabel( '$k/n$ (together with minor ticks at equispaced values of $A_k$)') ax2.tick_params(which='minor', axis='x', top=True, direction='in', pad=-16) ax2.set_xticks(np.arange(0, 1 + 1 / majorticks, 1 / majorticks), minor=True) ks = ['{:.2f}'.format(a) for a in np.arange(0, 1 + 1 / majorticks, 1 / majorticks).tolist()] alist = (lenxf - 1) * np.arange(0, 1 + 1 / majorticks, 1 / majorticks) alist = alist.tolist() plt.xticks([x[int(a)] for a in alist], ks) # Include an unbreakable space character (NBSP) as a subscript "_{ }" # on the numerical labels to match the baseline offset of the subscript # of "k" on "A_k" in order to keep all labels aligned vertically. ax2.xaxis.set_minor_formatter(FixedFormatter( [r'$A_k\!=\!{:.2f}$'.format(1 / majorticks)] + [r'${:.2f}'.format(k / majorticks) + r'_{ }$' for k in range(2, majorticks)])) # Title the plot. plt.title(title) # Clean up the whitespace in the plot. plt.tight_layout() # Set the locations (in the plot) of the covariate values. xmid = s[-1] / 2 toptext = plt.text(xmid, max(2 * lenscale, np.max(f - ft)), '', ha='center', va='bottom') bottomtext = plt.text(xmid, min(-2 * lenscale, np.min(f - ft)), '', ha='center', va='top') # Set up interactivity. binding_id = plt.connect('motion_notify_event', on_move) plt.connect('button_press_event', on_click) # Show the plot. plt.show() plt.close() # Specify which counties and variates to process, as well as the coded value # of interest for each variate (or None if the values of interest are # nonnegative integer counts). exs = [ {'county': 'Humboldt', 'var': 'LNGI', 'val': 2}, {'county': 'Los Angeles', 'var': 'NP', 'val': None}, {'county': 'Napa', 'var': 'SATELLITE', 'val': 1}, {'county': 'Orange', 'var': 'HISPEED', 'val': 1}, {'county': 'San Joaquin', 'var': 'NRC', 'val': None}, {'county': 'Stanislaus', 'var': 'NRC', 'val': None}, ] # Specify the name of the file of comma-separated values # for the household data in the American Community Survey. filename = 'psam_h06.csv' # Parse the command-line arguments (if any). parser = argparse.ArgumentParser() parser.add_argument( '--var', default='MV', choices=['MV', 'NOC', 'MV+NOC', 'NOC+MV']) parser.add_argument('--interactive', dest='interactive', action='store_true') parser.add_argument( '--no-interactive', dest='interactive', action='store_false') parser.add_argument( '--non-interactive', dest='interactive', action='store_false') parser.set_defaults(interactive=True) clargs = parser.parse_args() # Make matplotlib interactive if clargs.interactive is True. if clargs.interactive: plt.switch_backend(default_backend) # Count the number of lines in the file for filename. lines = 0 with open(filename, 'r') as f: for line in f: lines += 1 print(f'reading and filtering all {lines} lines from {filename}....') # Determine the number of columns in the file for filename. with open(filename, 'r') as f: line = f.readline() num_cols = line.count(',') + 1 # Read and store all but the first two columns in the file for filename. raw = np.zeros((lines, num_cols - 2)) with open(filename, 'r') as f: for line_num, line in enumerate(f): parsed = line.split(',')[2:] if line_num == 0: # The initial line is a header ... save its column labels. header = parsed.copy() # Eliminate the newline character at the end of the line. header[-1] = header[-1][:-1] else: # All but the initial line consist of data ... extract the ints. raw[line_num - 1, :] = np.array( [int(s if s != '' else -1) for s in parsed]) # Rename especially interesting columns with easier-to-understand phrases. header[header.index('MV')] = 'duration since the last move' header[header.index('NOC')] = 'number of householder\'s own children' # Filter out undesirable observations -- keep only strictly positive weights, # strictly positive household personal incomes, and strictly positive factors # for adjusting the income. keep = np.logical_and.reduce([ raw[:, header.index('WGTP')] > 0, raw[:, header.index('HINCP')] > 0, raw[:, header.index('ADJINC')] > 0]) raw = raw[keep, :] print(f'm = raw.shape[0] = {raw.shape[0]}') # Form a dictionary of the lower- and upper-bounds on the ranges of numbers # of the public-use microdata areas (PUMAs) for the counties in California. puma = { 'Alameda': (101, 110), 'Alpine, Amador, Calaveras, Inyo, Mariposa, Mono and Tuolumne': (300, 300), 'Butte': (701, 702), 'Colusa, Glenn, Tehama and Trinity': (1100, 1100), 'Contra Costa': (1301, 1309), 'Del Norte, Lassen, Modoc, Plumas and Siskiyou': (1500, 1500), 'El Dorado': (1700, 1700), 'Fresno': (1901, 1907), 'Humboldt': (2300, 2300), 'Imperial': (2500, 2500), 'Kern': (2901, 2905), 'Kings': (3100, 3100), 'Lake and Mendocino': (3300, 3300), 'Los Angeles': (3701, 3769), 'Madera': (3900, 3900), 'Marin': (4101, 4102), 'Merced': (4701, 4702), 'Monterey': (5301, 5303), 'Napa': (5500, 5500), 'Nevada and Sierra': (5700, 5700), 'Orange': (5901, 5918), 'Placer': (6101, 6103), 'Riverside': (6501, 6515), 'Sacramento': (6701, 6712), 'San Bernardino': (7101, 7115), 'San Diego': (7301, 7322), 'San Francisco': (7501, 7507), '<NAME>': (7701, 7704), '<NAME>': (7901, 7902), '<NAME>': (8101, 8106), '<NAME>': (8301, 8303), 'Santa Clara': (8501, 8514), '<NAME>': (8701, 8702), 'Shasta': (8900, 8900), 'Solano': (9501, 9503), 'Sonoma': (9701, 9703), 'Stanislaus': (9901, 9904), '<NAME>': (10100, 10100), 'Tulare': (10701, 10703), 'Ventura': (11101, 11106), 'Yolo': (11300, 11300), } # Read the weights. w = raw[:, header.index('WGTP')] # Read the input covariates. # Adjust the household personal income by the relevant factor. var0 = '$\\log_{10}$ of the adjusted household personal income' s0 = raw[:, header.index('HINCP')] * raw[:, header.index('ADJINC')] / 1e6 # Convert the adjusted incomes to a log (base-10) scale. s0 = np.log(s0) / math.log(10) # Dither in order to ensure the uniqueness of the scores. np.random.seed(seed=3820497) s0 = s0 * (np.ones(s0.shape) + np.random.normal(size=s0.shape) * 1e-8) # Consider the time until the last move for var 'MV' # or the number of the household's own children for var 'NOC'. if clargs.var == 'MV+NOC': var1 = 'duration since the last move' var2 = 'number of householder\'s own children' s1 = raw[:, header.index(var1)].astype(np.float64) s2 = raw[:, header.index(var2)].astype(np.float64) s2 = np.clip(s2, 0, 8) t = np.vstack((s0, s1, s2)).T elif clargs.var == 'NOC+MV': var1 = 'number of householder\'s own children' var2 = 'duration since the last move' s1 = raw[:, header.index(var1)].astype(np.float64) s1 = np.clip(s1, 0, 8) s2 = raw[:, header.index(var2)].astype(np.float64) t = np.vstack((s0, s1, s2)).T else: if clargs.var == 'MV': var1 = 'duration since the last move' elif clargs.var == 'NOC': var1 = 'number of householder\'s own children' else: raise NotImplementedError( clargs.var + ' is not an implemented option.') var2 = None s1 = raw[:, header.index(var1)].astype(np.float64) if var1 == 'number of householder\'s own children': s1 = np.clip(s1, 0, 8) t = np.vstack((s0, s1)).T # Proprocess and order the inputs. # Set the number of covariates. p = t.shape[1] # Set the number of bits in the discretization (mantissa). precision = 64 # Determine the data type from precision. if precision == 8: dtype = np.uint8 elif precision == 16: dtype = np.uint16 elif precision == 32: dtype = np.uint32 elif precision == 64: dtype = np.uint64 else: raise TypeError(f'There is no support for precision = {precision}.') # Normalize and round the inputs. it = t.copy() for k in range(p): it[:, k] /= np.max(it[:, k]) it = np.rint((2**precision - 1) * it.astype(np.longdouble)).astype(dtype=dtype) # Perform the Hilbert mapping from p dimensions to one dimension. hc = HilbertCurve(precision, p) ints = hc.distances_from_points(it) assert np.unique(ints).size == it.shape[0] # Sort according to the scores. perm = np.argsort(ints) t = t[perm, :] u = t.copy() for k in range(p): t[:, k] /= np.max(t[:, k]) # Construct scores for plotting. imin = np.min(ints) imax = np.max(ints) s = (np.sort(ints) - imin) / (imax - imin) # Ensure uniqueness even after roundoff errors. eps = np.finfo(np.float64).eps s = s + np.arange(0, s.size * eps, eps) s = s.astype(np.float64) if not clargs.interactive: # Create directories as needed. dir = 'weighted' try: os.mkdir(dir) except FileExistsError: pass dir = 'weighted/' + clargs.var try: os.mkdir(dir) except FileExistsError: pass if var2 is None and not clargs.interactive: # Plot all inputs from the full population. procs = [] plt.figure() plt.xlabel(var0) plt.ylabel(var1) colors = .2 + .6 * np.vstack((s, s, s)).T plt.scatter(u[:, 0], u[:, 1], s=5, c=colors, marker='D', linewidths=0) filename = dir + '/' + 'inputs' plt.savefig(filename + '.pdf', bbox_inches='tight') args = [ 'convert', '-density', '600', filename + '.pdf', filename + '.jpg'] procs.append(subprocess.Popen(args)) # Process the examples. for ex in exs: # Form the results. np.random.seed(seed=3820497) # Read the result (raw integer count if the specified value is None, # Bernoulli indicator of success otherwise). if ex['val'] is None: r = raw[:, header.index(ex['var'])] else: r = raw[:, header.index(ex['var'])] == ex['val'] # Sort according to the scores. r = r[perm] if not clargs.interactive: # Set a directory for the county (creating the directory if necessary). dir = 'weighted/' + clargs.var + '/County_of_' dir += ex['county'].replace(' ', '_').replace(',', '') dir += '-' dir += ex['var'] try: os.mkdir(dir) except FileExistsError: pass dir += '/' print(f'./{dir} is under construction....') # Identify the indices of the subset corresponding to the county. slice = raw[perm, header.index('PUMA')] inds = slice >= (puma[ex['county']][0] * np.ones(raw.shape[0])) inds = inds & (slice <= (puma[ex['county']][1] * np.ones(raw.shape[0]))) inds =
np.nonzero(inds)
numpy.nonzero
import bpy import os from math import pi,radians import numpy as np PATH2CMAPS = os.path.join( os.path.split(__file__)[0] , 'cmaps') class MeshSingleColor(object): def __init__(self, XYZ, CONN, color=(1,1,1), specular=0.2, alpha=1.0): self.XYZ = XYZ self.CONN = CONN # self.mesh = None self.color = color self.specular = float(specular) self.alpha = float(alpha) self.nverts = 0 self._generate_mesh() def _get_verts_edges_faces(self, conn): verts = self.XYZ[conn].tolist() n = len(conn) if n==3: #triangle edges0 = np.array([(0,1), (1,2), (2,0)]) faces0 = np.array([(0,1,2)]) elif n==4: #tetrahedron edges0 = np.array([(0,1), (1,2), (2,0), (1,3), (3,0), (2,3), (3,0)]) faces0 = np.array([(0,1,2), (0,1,3), (0,2,3), (1,2,3)]) elif n==8: #hexahedron edges0 = np.array([(0,1),(1,2),(2,3),(3,0), (4,5),(5,6),(6,7),(7,4), (0,4),(1,5),(2,6),(3,7)]) faces0 = np.array([(0,1,2,3), (4,5,6,7), (0,1,5,4), (3,2,6,7), (0,3,7,4), (1,2,6,5)]) else: raise( ValueError('Unknown element type. Must be 3-, 4- or 8-connected.') ) ### edges = (edges0 + self.nverts).tolist() faces = (faces0 + self.nverts).tolist() self.nverts += n return verts,edges,faces def _generate_mesh(self): VERTS,EDGES,FACES = [],[],[] for conn in self.CONN: v,e,f = self._get_verts_edges_faces(conn) VERTS += v EDGES += e FACES += f self.VERTS = VERTS self.EDGES = EDGES self.FACES = FACES def add_to_scene(self, scene): ### create mesh mesh = bpy.data.meshes.new('MeshSingleColor') mesh.from_pydata(self.VERTS, self.EDGES, self.FACES) obj = bpy.data.objects.new('MeshSingleColor', mesh) scene.objects.link(obj) ### create material: mat = bpy.data.materials.new('MeshGroup-Material') mat.diffuse_color = self.color mat.specular_intensity = self.specular mat.use_transparency = True mat.alpha = self.alpha obj.data.materials.append(mat) obj.select = True class MeshColorMapped(object): def __init__(self, XYZ, CONN, S, smin=None, smax=None, cmapname='jet', specular=0.5, alpha=1): self.XYZ = XYZ self.CONN = CONN self.S = S self.CMAP = None self.CID = None self.nColors = 64 self.smin = S.min() if smin is None else smin self.smax = S.max() if smax is None else smax self.meshes = None self.specular = float(specular) self.alpha = float(alpha) self._set_colormap(cmapname) self._set_element_data() self._generate_meshes() def _generate_meshes(self): self.meshes = [] for u,color in zip(self.uPART, self.colors): conn = self.CONN[ self.PART==u ] mesh = MeshSingleColor(self.XYZ, conn, color=color, specular=self.specular, alpha=self.alpha) self.meshes.append(mesh) def _set_colormap(self, cmap='jet'): if cmap is None: self.CMAP = np.array([(0,0,1)]*64) else: fname = os.path.join(PATH2CMAPS, '%s.npy' %str(cmap)) self.CMAP = np.load(fname) def _set_element_data(self): S,smin,smax = self.S, self.smin, self.smax nColors = self.nColors CID =
np.array([0]*S.size)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2016-2017, <NAME>; Luczywo, Nadia # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ============================================================================= # DOCS # ============================================================================= """Several implementations of normalization methods """ # ============================================================================= # IMPORTS # ============================================================================= import numpy as np from numpy import linalg from .validate import MIN, MAX, criteriarr # ============================================================================= # EXCEPTIONS # ============================================================================= class DuplicatedNameError(ValueError): pass class NormalizerNotFound(AttributeError): pass class FunctionNotRegisteredAsNormalizer(ValueError): pass # ============================================================================= # REGISTERS # ============================================================================= NORMALIZERS = {} def register(name, func=None): if name in NORMALIZERS: raise DuplicatedNameError(name) if func is None: def _dec(func): NORMALIZERS[name] = func return func return _dec else: NORMALIZERS[name] = func return func def get(name, d=None): try: return NORMALIZERS[name] except KeyError: if d is not None: return d raise NormalizerNotFound(name) def nameof(normalizer): for k, v in NORMALIZERS.items(): if v == normalizer: return k raise FunctionNotRegisteredAsNormalizer(str(normalizer)) def norm(name, arr, *args, **kwargs): normalizer = get(name) return normalizer(arr, *args, **kwargs) # ============================================================================= # IMPLEMENTATIONS # ============================================================================= @register("none") def none(arr, criteria=None, axis=None): """This do not nothing and only try to return an numpy.ndarray of the given data """ return np.asarray(arr) @register("sum") def sum(arr, criteria=None, axis=None): r"""Divide of every value on the array by sum of values along an axis. .. math:: \overline{X}_{ij} = \frac{X_{ij}}{\sum\limits_{j=1}^m X_{ij}} Parameters ---------- arr : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. criteria : Not used Returns ------- narray : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) array of ratios Examples -------- >>> from skcriteria import norm >>> mtx = [[1, 2], [3, 4]] >>> norm.sum(mtx) # ratios with the sum of the array aarray([[ 0.1 , 0.2 ], [ 0.30000001, 0.40000001]], dtype=float64) >>> norm.sum(mtx, axis=0) # ratios with the sum of the array by column array([[ 0.25 , 0.33333334], [ 0.75 , 0.66666669]], dtype=float64) >>> norm.sum(mtx, axis=1) # ratios with the sum of the array by row array([[ 0.33333334, 0.66666669], [ 0.42857143, 0.5714286 ]], dtype=float64) """ arr = np.asarray(arr, dtype=float) sumval = np.sum(arr, axis=axis, keepdims=True) return arr / sumval @register("max") def max(arr, criteria=None, axis=None): r"""Divide of every value on the array by max value along an axis. .. math:: \overline{X}_{ij} = \frac{X_{ij}}{\max_{X_{ij}}} Parameters ---------- arr : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. criteria : Not used Returns ------- narray : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) array of ratios Examples -------- >>> from skcriteria import norm >>> mtx = [[1, 2], [3, 4]] >>> norm.max(mtx) # ratios with the max value of the array array([[ 0.25, 0.5 ], [ 0.75, 1. ]], dtype=float64) >>> norm.max(mtx, axis=0) # ratios with the max value of the arr by column array([[ 0.33333334, 0.5 ], [ 1. , 1. ]], dtype=float64) >>> norm.max(mtx, axis=1) # ratios with the max value of the array by row array([[ 0.5 , 1. ], [ 0.75, 1. ]], dtype=float64) """ arr = np.asarray(arr, dtype=float) maxval = np.max(arr, axis=axis, keepdims=True) return arr / maxval @register("vector") def vector(arr, criteria=None, axis=None): r"""Caculates the set of ratios as the square roots of the sum of squared responses of a given axis as denominators. If *axis* is *None* sum all the array. .. math:: \overline{X}_{ij} = \frac{X_{ij}}{\sqrt{\sum\limits_{j=1}^m X_{ij}^{2}}} Parameters ---------- arr : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. criteria : Not used Returns ------- narray : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) array of ratios Examples -------- >>> from skcriteria import norm >>> mtx = [[1, 2], [3, 4]] >>> norm.vector(mtx) # ratios with the vector value of the array array([[ 0.18257418, 0.36514837], [ 0.54772252, 0.73029673]], dtype=float64) >>> norm.vector(mtx, axis=0) # ratios by column array([[ 0.31622776, 0.44721359], [ 0.94868326, 0.89442718]], dtype=float64) >>> norm.vector(mtx, axis=1) # ratios by row array([[ 0.44721359, 0.89442718], [ 0.60000002, 0.80000001]], dtype=float64) """ arr = np.asarray(arr, dtype=float) frob = linalg.norm(arr, None, axis=axis) return arr / frob @register("push_negatives") def push_negatives(arr, criteria=None, axis=None): r"""If an array has negative values this function increment the values proportionally to made all the array positive along an axis. .. math:: \overline{X}_{ij} = \begin{cases} X_{ij} + min_{X_{ij}} & \text{if } X_{ij} < 0\\ X_{ij} & \text{otherwise} \end{cases} Parameters ---------- arr : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. criteria : Not used Returns ------- narray : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) array of ratios Examples -------- >>> from skcriteria import norm >>> mtx = [[1, 2], [3, 4]] >>> mtx_lt0 = [[-1, 2], [3, 4]] # has a negative value >>> norm.push_negatives(mtx) # array without negatives don't be affected array([[1, 2], [3, 4]]) >>> # all the array is incremented by 1 to eliminate the negative >>> norm.push_negatives(mtx_lt0) array([[0, 3], [4, 5]]) >>> # by column only the first one (with the negative value) is affected >>> norm.push_negatives(mtx_lt0, axis=0) array([[0, 2], [4, 4]]) >>> # by row only the first row (with the negative value) is affected >>> norm.push_negatives(mtx_lt0, axis=1) array([[0, 3], [3, 4]]) """ arr = np.asarray(arr) mins = np.min(arr, axis=axis, keepdims=True) delta = (mins < 0) * mins return arr - delta @register("add1to0") def add1to0(arr, criteria=None, axis=None): r"""If a value in the array is 0, then an :math:`1` is added to all the values .. math:: \overline{X}_{ij} = X_{ij} + 1 Parameters ---------- arr : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. criteria : Not used Returns ------- narray : (:py:class:`numpy.ndarray`, :py:class:`numpy.ndarray`) array of ratios Examples -------- >>> from skcriteria import norm >>> mtx = [[1, 2], [3, 4]] >>> mtx_w0 = [[0,1], [2,3]] >>> norm.add1to0(mtx) array([[1, 2], [3, 4]]) >>> # added 1 >>> norm.add1to0(mtx_w0) array([[ 1, 2], [ 3, 4]]) """ arr = np.asarray(arr) if 0 in arr: if len(arr.shape) == 1 or axis is None: return arr + 1 else: zeros =
np.any(arr == 0, axis=axis)
numpy.any
import sys,os from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy as np import numpy.linalg as nplin import scipy as sp from scipy.linalg import pinvh as spinv from scipy.sparse import csr_matrix,csc_matrix,random from sklearn.preprocessing import OneHotEncoder as OneHotEncoder from sklearn.linear_model import lasso_path import Bio # Code to test sparse inference with FEM """ Function to generate sequences for testing. Generate a lot of sequences, then keep only sequences that are more likely `energetically'. Expect that this is more biologically realistic than assuming that all possible sequences are part of the sample space. """ # In[3]: def try_1hot(): n_seq,n_positions,n_residues = 5,5,4 np.random.seed(7) seqs = np.random.randint(0,n_residues,size=(n_seq,n_positions)) enc = OneHotEncoder(n_values=n_residues) onehot = csr_matrix(enc.fit_transform(seqs)).toarray() print(onehot) onehot = csr_matrix(enc.transform(seqs[:3])).toarray() print(onehot) onehot = csr_matrix(enc.transform(seqs[3:])).toarray() print(onehot) try_1hot() # In[4]: def normalize_w(w,n_positions,n_residues): n_size = n_residues*n_positions wr_1 = np.mean(w.reshape((n_positions,n_residues,n_size)),axis=1) #w(i,A,jB) w = (w.reshape((n_positions,n_residues,n_size)) - wr_1[:,np.newaxis,:]).reshape((n_size,n_size)) #w(iA,jB) return w def zero_out(w,index,n_residues): w[index*n_residues:(index+1)*n_residues,index*n_residues:(index+1)*n_residues]=0.0 def split_seqs(seqs,index): #remove column i in the sequence return np.copy(np.hstack([seqs[:,:index],seqs[:,index+1:]])) def split_couplings(w,index,n_residues): #remove row block i in the coupling matrix when we're using only column i return np.copy(np.vstack([w[:index*n_residues],w[(index+1)*n_residues:]])) print(split_couplings(np.arange(24).reshape((6,4)),1,2)) # In[5]: def nrgy(onehot,w,b): nrgy = onehot.multiply(onehot.dot(w) + b).toarray() # print(nrgy - np.log(2*np.cosh(nrgy))) return np.sum(nrgy - np.log(2*np.cosh(nrgy)),axis=1) #ln prob def generate_sequences(n_residues,n_positions,n_seq): n_size = n_residues*n_positions n_trial = 10*(n_size) #monte carlo steps to find the right sequences res_interactions = np.sign(random(n_positions,n_positions,density=0.3).A) res_interactions = np.kron(res_interactions,np.ones((n_residues,n_residues))) w = res_interactions*(np.random.rand(n_size,n_size)-0.5) b = np.zeros((n_size)) #different versions of random matrices # w = random(n_size,n_size,density=0.3).A -random(n_size,n_size,density=0.3).A # w /= np.sqrt(float(n_positions)) # w = ((np.random.rand(n_size,n_size))-0.5)/np.sqrt(float(n_positions))#(float(n_positions*n_residues))##*float(n_residues)) # w = (np.random.normal(size=(n_size,n_size)))/(float(n_positions))#*(float(n_positions)))#*float(n_residues)) # b = (np.random.rand(n_size)-0.5)/float(n_residues) # w = w+w.T #symmetric for indx in range(n_positions): #no terms W_iA,iB for B != A zero_out(w,indx,n_residues) #w[indx*n_residues:(indx+1)*n_residues,indx*n_residues:(indx+1)*n_residues]=0.0 # trial_seq = np.random.randint(0,n_residues,size=(n_seq,n_positions)) #X(s,i) trial_seq = np.tile(np.random.randint(0,n_residues,size=(n_positions)),(n_seq,1)) print(trial_seq[0]) enc = OneHotEncoder(n_values=n_residues) onehot = csr_matrix(enc.fit_transform(trial_seq)) old_nrgy = nrgy(onehot,w,b) + n_positions*(n_residues-1)*np.log(2) for trial in range(n_trial): # print('before',np.mean(old_nrgy)) index_array = np.random.choice(range(n_positions),size=2,replace=False) index,index1 = index_array[0],index_array[1] r_trial = np.random.randint(0,n_residues,size=(n_seq)) r_trial1 = np.random.randint(0,n_residues,size=(n_seq)) mod_seq = np.copy(trial_seq) mod_seq[:,index] = r_trial mod_seq[:,index1] = r_trial1 mod_nrgy = nrgy(csr_matrix(enc.fit_transform(mod_seq)),w,b) + n_positions*(n_residues-1)*np.log(2) # if trial%1000==0: print(seq_change) seq_change = mod_nrgy-old_nrgy > np.log(np.random.rand(n_seq)) if trial>n_size: trial_seq[seq_change,index] = r_trial[seq_change] trial_seq[seq_change,index1] = r_trial1[seq_change] old_nrgy[seq_change] = mod_nrgy[seq_change] else: best_seq = np.argmax(mod_nrgy-old_nrgy) trial_seq = np.tile(mod_seq[best_seq],(n_seq,1)) old_nrgy = np.tile(mod_nrgy[best_seq],(n_seq)) # if trial%n_size == 0: print('after',np.mean(old_nrgy))#,trial_seq[0:5]) # seqs_i = split_seqs(trial_seq,index) # trial_onehot = csr_matrix(enc.fit_transform(seqs_i)) #X(s,\delta_{A_i=A}) seqs,iA # w_i = split_couplings(w,index,n_residues)[:,index*n_residues:(index+1)*n_residues] # h_trial = (trial_onehot.dot(w_i)+ b[index*n_residues:(index+1)*n_residues]) #X(s,jB)w(jB,iA) = XW(s,iA) #now normalize with the denominator 2 cosh(H_is_i) # r_index = trial_seq[:,index] # befo =np.sum(w_trial_energy_iA[np.arange(n_seq),r_index]) # if trial%5000==0: print('before',str(index),befo) # w_change = w_trial_energy_iA[np.arange(n_seq),r_trial]-w_trial_energy_iA[np.arange(n_seq),r_index] \ # > 5*np.log(np.random.rand(n_seq)) # later = np.sum(w_trial_energy_iA[np.arange(n_seq)[w_change],r_trial[w_change]])+\ # np.sum(w_trial_energy_iA[np.arange(n_seq)[~w_change],r_index[~w_change]]) # if later>befo: # trial_seq[w_change,index] = r_trial[w_change] # if trial%5000==0: print('after',trial,index,later) print(trial_seq[:10,:10]) return trial_seq,w,b np.random.seed(10) seqs,w_true,b_true = generate_sequences(5,100,20000) # Now we want to set up the iteration for recovering w_true from the training sequences # First, a function to calculate the correlation function from the 1-hot encoding # In[9]: def corr(onehot): #corr_out = onehot.transpose().dot(onehot).toarray()/np.float(onehot.shape[0]) corr_out = np.cov(onehot.A,rowvar=False) expect = np.array(onehot.mean(axis=0)) #expectation value return expect,corr_out# - np.outer(expect,expect) #connected correlation function # In[368]: def sparse_invert(w,b,eps=1e-6,reps=20,tolerance=1e-2): # return x: wx=b with x of small norm in a cross between l1 and l2 size = w.shape[1] x_old,lambda_x = np.random.rand(size)-0.5,np.diag(np.random.rand(size)) # print(nplin.norm(w.dot(x_old)-b)) for rep in range(reps): x = (nplin.inv(w.T.dot(w) + eps*lambda_x.T.dot(lambda_x))).dot(w.T.dot(b)) if np.allclose(x,x_old): break if rep==0: var = 0.5*np.std(x)**2 #var = var/np.sqrt(np.float(rep+1)) lambda_x = np.power(var/(var+x**2),0.25) lambda_x = np.diag(lambda_x) x_old = x # print(np.median(x),nplin.norm(w.dot(x)-b),nplin.norm(w.dot(x)-b)**2+eps*np.sum(np.abs(x))) return spinv(w).dot(b) # In[7]: def iterate3(seqs,w,b,index,eps=1e-2,tolerance=1e-6,n_iter=6): #this version works, uses h_BC n_seq,n_pos = seqs.shape n_res = int(w.shape[0]/(n_pos)) encoder = OneHotEncoder(n_values=n_res) onehot = csr_matrix(encoder.fit_transform(seqs)) target = onehot.A[:,index*n_res:(index+1)*n_res] split_seqs0 = split_seqs(seqs,index) encoder = OneHotEncoder(n_values=n_res) onehot = csr_matrix(encoder.fit_transform(split_seqs0)) b_init = np.mean(target,axis=0) b_init_zero = b_init > 0.99 b_init[~b_init_zero] = 0.5/float(n_seq) b_init = np.log(b_init/np.sum(b_init)) b[index*n_res:(index+1)*n_res] = b_init # if b_init[b_init_zero].shape[0] > 0: # w[:,index*n_res:(index+1)*n_res] = 0.0 # print(index,' no variation') # return np.arange(n_iter),np.zeros(n_iter) expect_onehot,corr_onehot = corr(onehot) corr_inv = spinv(corr_onehot) #print('corr_inv max',np.max(corr_inv)) disc = np.zeros((n_iter)) discr_old = 1e12 for itera in range(n_iter): h_seq = np.array(onehot.dot(np.vstack([w[:index*n_res,index*n_res:(index+1)*n_res],\ w[(index+1)*n_res:,index*n_res:(index+1)*n_res]]))).reshape(n_seq,n_res) b[index*n_res:(index+1)*n_res] -= np.mean(b[index*n_res:(index+1)*n_res]) h_seq += b[np.newaxis,index*n_res:(index+1)*n_res] #print('h_seq_max',np.max(h_seq)) exp_h_seq = np.exp(h_seq) exp_h_seq /=
np.sum(exp_h_seq,axis=1)
numpy.sum
# -*- coding: utf-8 -*- """ Usage: app.py [-i INPUT_FILE] [-f FEATURE_FILE] [-a ANNOTATION_FILE] [-v VELOCITY_FILE] [-m PROJECTION_MODE] [-n NETWORK_DATA] [--samplelimit=<n>] [--log] [--port=<n>] app.py -h | --help Options: -h --help Show this screen. -i INPUT_FILE, --input=INPUT_FILE input file -f FEATURE_FILE, --feature=FEATURE_FILE feature file -a ANNOTATION_FILE, --annotation=ANNOTATION_FILE annotation file -v VELOCITY_FILE, --velocity=VELOCITY_FILE velocity file (same dimensions as input) -m PROJECTION_MODE, --mode=PROJECTION_MODE default projection mode (pca, graphdr, or none) [default: graphdr] -n NETWORK_DATA, --networkdata=NETWORK_DATA network data (feature or input) [default: feature] --samplelimit=<n> sample size limit [default: 100000] --port=<n> port [default: 8050] --log apply log transform to feature file """ ##TODO: Loom, DataPool import base64 import io import re import sys import time import zipfile from functools import reduce import dash import dash_colorscales import multiprocess import networkx as nx import numpy as np import pandas as pd import plotly.graph_objs as go import umap from dash import dcc, html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate from docopt import docopt from plotly.colors import DEFAULT_PLOTLY_COLORS from scipy.cluster import hierarchy as sch from scipy.spatial.distance import squareform, pdist from sklearn.cluster import * from sklearn.decomposition import PCA from sklearn.manifold import Isomap from sklearn.mixture import GaussianMixture from sklearn.mixture.gaussian_mixture import _compute_precision_cholesky from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler import quasildr.structdr as scms2 from quasildr import utils from quasildr.graphdr import * def match(x, y): ydict = {} for i, yy in enumerate(y): ydict[yy] = i inds = [] for xx in x: if xx in ydict: inds.append(ydict[xx]) else: inds.append(-1) return np.array(inds) if __name__ == "__main__": arguments = docopt( __doc__, version="1.0") SAMPLELIMIT = int(arguments['--samplelimit']) MAX_PCS = 100 DEFAULT_PCS = 30 DEFAULT_DR_K = 10 DEFAULT_DR_REG = 100 COLORPATTERN = re.compile("^#[0-9,A-F,a-f][0-9,A-F,a-f][0-9,A-F,a-f][0-9,A-F,a-f][0-9,A-F,a-f][0-9,A-F,a-f]$") ITERATIONS = [1, 5, 10, 20, 40, 80, 160] BATCHSIZE = 500 BINS = [0.0, 0.06666666666666667, 0.13333333333333333, 0.2, 0.26666666666666666, 0.3333333333333333, 0.4, 0.4666666666666667, 0.5333333333333333, 0.6, 0.6666666666666666, 0.7333333333333333, 0.8, 0.8666666666666667, 0.9333333333333333, 1.0] SYMBOLS = ["circle", "cross", "square", "diamond", "circle-open", "square-open", "diamond-open"] DEFAULT_COLORSCALE = ['#440154', '#471867', '#472a79', '#413d84', '#3a4e8c', '#2f5e8f', '#296d90', '#1f7c91', '#1b8a90', '#16988d', '#21af83', '#5bc865', '#89d54a', '#b1dd2f', '#d8e324', '#fee825'] DEFAULT_OPACITY = 0.8 CELLCOLOR = '#ff6138' FEATURECOLOR = '#00a388' BGCOLOR = '#FFFFFF' ##FAFBFC' message = [] # configure data if arguments['--input'] is not None: try: if arguments['--input'].endswith('.T'): input_data = pd.read_csv(arguments['--input'][:-2], delimiter='\t', index_col=0).T else: input_data = pd.read_csv(arguments['--input'], delimiter='\t', nrows=SAMPLELIMIT + 1, index_col=0) input_data = input_data.iloc[:SAMPLELIMIT, :] if input_data.shape[1] <= 3: input_data['z'] = 0 #input_data_sd = np.std(input_data.values, axis=0) #input_data = input_data.iloc[:, np.argsort(-input_data_sd)] with_user_input_data = True except Exception as e: print(e) with_user_input_data = False message.append("Warning: cannot read input data.") else: with_user_input_data = False if arguments['--feature'] is not None: try: if arguments['--feature'].endswith('.T'): feature_data = pd.read_csv(arguments['--feature'][:-2], delimiter='\t', nrows=SAMPLELIMIT + 1, index_col=0).T else: feature_data = pd.read_csv(arguments['--feature'], delimiter='\t', index_col=0) feature_data = feature_data.iloc[:, :SAMPLELIMIT] if arguments['--log']: feature_data = np.log(feature_data + 1) feature_data_sd = np.std(feature_data.values, axis=1) feature_data = feature_data.iloc[np.argsort(-feature_data_sd), :] with_feature_data = True except Exception as e: print(e) with_feature_data = False message.append("Warning: feature data not loaded. Feature related functions disabled.") else: with_feature_data = False if not with_feature_data and not with_user_input_data: sys.exit("Each feature file or input file need to be readable.") if arguments['--velocity'] is not None: try: if arguments['--velocity'].endswith('.T'): velocity_input_data = pd.read_csv(arguments['--velocity'][:-2], delimiter='\t', index_col=0).T else: velocity_input_data = pd.read_csv(arguments['--velocity'], delimiter='\t', nrows=SAMPLELIMIT + 1, index_col=0) velocity_input_data = velocity_input_data.iloc[:SAMPLELIMIT, :] with_velocity_input_data = True except Exception as e: print(e) with_velocity_input_data = False message.append("Warning: cannot read velocity data.") else: with_velocity_input_data = False # Prepare input data if with_feature_data and not with_user_input_data: input_data = feature_data.T with_user_input_data = False else: with_user_input_data = True if with_velocity_input_data: if np.any(input_data.shape != velocity_input_data.shape) or np.any( input_data.index != velocity_input_data.index): with_velocity_input_data = False message.append('Warning: Velocity data does not match input data.') N_PCs = np.minimum(MAX_PCS, np.minimum(input_data.shape[0], input_data.shape[1])) if arguments['--mode'] == 'none': data = input_data.copy() projection_mode = 'none' if with_velocity_input_data: velocity_data = velocity_input_data.copy() with_velocity_data = True else: with_velocity_data = False else: input_data_pca = PCA(N_PCs) data = pd.DataFrame(input_data_pca.fit_transform(input_data.values), index=input_data.index, columns=['PC' + str(i) for i in range(1, N_PCs + 1)]) if with_velocity_input_data: velocity_data = pd.DataFrame(input_data_pca.transform(velocity_input_data.values), index=velocity_input_data.index, columns=['PC' + str(i) for i in range(1, N_PCs + 1)]) with_velocity_data = True else: with_velocity_data = False if arguments['--mode'] == 'pca': projection_mode = 'pca' elif arguments['--mode'] == 'graphdr': mapped = graphdr(data.values[:, :DEFAULT_PCS], n_neighbors=DEFAULT_DR_K, regularization=DEFAULT_DR_REG) data = pd.DataFrame(mapped, index=data.index, columns=['GraphDR' + str(i) for i in range(1, mapped.shape[1] + 1)]) projection_mode = 'graphdr' else: raise ValueError('Default mode has to be either pca or graphdr') if with_velocity_data: velocity_data = velocity_data / np.std(data.iloc[:, 0]) data = (data - np.mean(data, axis=0)) / np.std(data.iloc[:, 0]) if with_user_input_data: if len(np.intersect1d(feature_data.columns, data.index)) != len(data.index): with_feature_data = False print(feature_data.columns) print(data.index) message.append("Warning: feature data column names does not match with input data row names.") else: assert len(np.intersect1d(feature_data.columns, data.index)) == len(data.index) if arguments['--networkdata'] == 'feature' and with_feature_data: network_data = feature_data with_network_data = True elif arguments['--networkdata'] == 'input': network_data = input_data.T with_network_data = True else: with_network_data = False message.append("Warning: --networkdata has to be either \"feature\" with -f option specified or \"input\".") if with_network_data: network_data_pca = PCA(N_PCs) network_data_pca_z = network_data_pca.fit_transform(network_data.values.T) if arguments['--annotation'] is not None: try: # set low memory to false to avoid mixed types if arguments['--annotation'].endswith('.T'): annotation_data = pd.read_csv(arguments['--annotation'][:-2], delimiter='\t', low_memory=False, index_col=0).T else: annotation_data = pd.read_csv(arguments['--annotation'], delimiter='\t', low_memory=False, nrows=SAMPLELIMIT + 1, index_col=0) annotation_data = annotation_data.iloc[:SAMPLELIMIT, :] with_annotation_data = True except Exception as e: print(e) with_annotation_data = False message.append("Warning: cannot read annotation data.") if with_annotation_data: try: assert np.all(annotation_data.index == data.index) except: with_annotation_data = False message.append("Warning: annotation data row names does not match with input data row names.") else: with_annotation_data = False if not with_annotation_data: annotation_data = data.iloc[:, :0].copy() with_trajectory_data = False # initialize ndim = 6 history = [] s = scms2.Scms(np.asarray(data.iloc[:, :ndim]).copy(), 0) traj = data.iloc[:, :ndim].copy() history.append(traj.copy()) output_dict = {'index': traj.index.values} app = dash.Dash(__name__) server = app.server ''' ~~~~~~~~~~~~~~~~ ~~ APP LAYOUT ~~ ~~~~~~~~~~~~~~~~ ''' app.layout = html.Div(children=[ html.Div(id='notification'), html.Div(id='all-plots', children=[ html.H3(children='TRENTI', style={'color': '#1f1f27', 'font-size': '1.5vw', 'margin-left': '1.1%', 'margin-top': '0.5rem', 'margin-bottom': '0.5rem'}), html.Hr(style={'margin': '1rem 53% 1.5rem 1.1%'}), html.Div(id='pane_left', children=[ html.Div(children=[ html.P('Configure files:'), html.Div(className='row', children=[ html.Div(children=[ dcc.Upload( id='upload_feature', children=html.Div(id='upload_feature_label', children=['Feature ' + (u" \u2713" if with_feature_data else "")]), style={ 'lineHeight': '3rem', 'borderWidth': '0.1rem', 'borderStyle': 'solid' if with_feature_data else 'dashed', 'borderRadius': '0.5rem', 'textAlign': 'center', } )], style={ 'margin-left': '0.8%', 'margin-right': '0.8%', 'font-size': '0.75vw', 'width': '17%', 'height': '3rem', 'display': 'inline-block', 'text-overflow': 'clip', }), html.Div(children=[ dcc.Upload( id='upload', children=html.Div(id='upload_label', children=[ 'Input (optional)' + (u" \u2713" if with_user_input_data else "")]), style={ 'lineHeight': '3rem', 'borderWidth': '0.1rem', 'borderStyle': 'solid' if with_user_input_data else 'dashed', 'borderRadius': '0.5rem', 'textAlign': 'center', } )], style={ 'margin-left': '0.8%', 'margin-right': '0.8%', 'font-size': '0.75vw', 'width': '17%', 'height': '3rem', 'display': 'inline-block', 'text-overflow': 'clip', }), html.Div(children=[ dcc.Upload( id='upload_annotation', children=html.Div(id='upload_annotation_label', children=[ 'Annotation (optional)' + (u" \u2713" if with_annotation_data else "")]), style={ 'lineHeight': '3rem', 'borderWidth': '0.1rem', 'borderStyle': 'solid' if with_annotation_data else 'dashed', 'borderRadius': '0.5rem', 'textAlign': 'center', } )], style={ 'margin-left': '0.8%', 'margin-right': '0.8%', 'font-size': '0.75vw', 'width': '20%', 'height': '3rem', 'display': 'inline-block', 'text-overflow': 'clip', }), html.Div(children=[ dcc.Upload( id='upload_velocity', children=html.Div(id='upload_velocity_label', children=[ 'Velocity (optional)' + (u" \u2713" if with_velocity_input_data else "")]), style={ 'lineHeight': '3rem', 'borderWidth': '0.1rem', 'borderStyle': 'solid' if with_velocity_input_data else 'dashed', 'borderRadius': '0.5rem', 'textAlign': 'center', } )], style={ 'margin-left': '0.8%', 'width': '18%', 'height': '3rem', 'font-size': '0.75vw', 'display': 'inline-block', 'text-overflow': 'clip', }), html.Div(children=[ dcc.Upload( id='upload_trajectory', children=html.Div(id='upload_trajectory_label', children=[ 'Trajectory (optional)' + (u" \u2713" if with_trajectory_data else "")]), style={ 'lineHeight': '3rem', 'borderWidth': '0.1rem', 'borderStyle': 'solid' if with_trajectory_data else 'dashed', 'borderRadius': '0.5rem', 'textAlign': 'center', } )], style={ 'margin-left': '0.8%', 'width': '18%', 'height': '3rem', 'font-size': '0.75vw', 'display': 'inline-block', 'text-overflow': 'clip', }), ], style={'margin': '2% 2% 3% 0%'}), html.P('Drag the slider to select the number of SCMS steps:'), html.Div(className='row', children=[ html.Div([ dcc.Slider( id='ITERATIONS-slider', min=min(ITERATIONS), max=max(ITERATIONS), value=min(ITERATIONS), step=None, marks={str(n): str(n) for n in ITERATIONS}, ), ], style={'width': '42%', 'display': 'inline-block', 'margin-right': '2%', 'margin-top': '0.5rem', 'margin-bottom': '0.5rem'}), html.Div([ html.Button('Run', id='run-button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '12%'}), html.Div([ html.Button('Reset', id='reset-button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '12%'}), html.Div([ html.Button('Bootstrap', id='bootstrap-button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '12%'}), html.Div([ html.Button('Save', id='save-button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '12%'}), ], style={'margin': '2%'}), html.Br(), html.Div(className='row', children=[ html.P('Dot size:', style={ 'display': 'inline-block', 'position': 'absolute', } ), html.Div([ dcc.Slider( id='dotsize-slider', min=0, max=10, value=np.maximum(6 - np.log10(data.shape[0]), 0), step=0.01, marks={i: str(i) for i in range(1, 11)}, ) ], style={'width': '40.5%', 'display': 'inline-block', 'margin-left': '2%', 'marginBottom': '1rem', 'margin-top': '2.5rem'}), html.Div([ dash_colorscales.DashColorscales( id='colorscale-picker', colorscale=DEFAULT_COLORSCALE, nSwatches=16, fixSwatches=True ) ], style={'display': 'inline-block'}), html.Div([ html.P('Advanced options:', style={ 'verticalAlign': 'top', } ), html.Div([ dcc.RadioItems( options=[ {'label': 'Algorithm', 'value': 'show_alg_options'}, {'label': 'Visualization', 'value': 'show_disp_options'}, {'label': 'Projection', 'value': 'show_embedding_options', 'disabled': False if with_feature_data else True}, {'label': 'Clustering', 'value': 'show_cluster_options', 'disabled': False if with_feature_data else True}, {'label': 'Network', 'value': 'show_network_options', 'disabled': not with_network_data}, {'label': 'None', 'value': 'show_no_options'} ], labelStyle={'display': 'inline-block', 'margin-right': '0.3vw'}, id='show-options', value='show_no_options', )], style={'display': 'inline-block'}), ], style={'display': 'inline-block', 'width': '27%'}), ]), ], style={'margin': '0 2.2% 2.2% 2.2%'}), html.Div( className="row", children=[ html.Div(id="alg-options", className="three columns", children=[ html.Label('Density Ridge Type'), dcc.Dropdown( id='dimensionality_dropdown', options=[ {'label': '0 (Cluster)', 'value': 0}, {'label': '1 (Trajectory)', 'value': 1}, {'label': '2 (Surface)', 'value': 2} ], value=1, clearable=False, ), html.Label('Input Dim.'), dcc.Dropdown( id='ndim_dropdown', options=[{'label': str(i), 'value': i} for i in range(2, data.shape[1] + 1) ], value=6, clearable=False, ), html.Label('Bandwidth'), dcc.Dropdown( id='bandwidth_dropdown', options=[ {'label': '0 (Adaptive bandwidth)' if i == 0 else '{: .2f}'.format(i), 'value': i} for i in np.linspace(0, 5, 101) ], value=0.3, clearable=False, ), html.Label('Adpative Bandwidth'), html.Label('(kth-neighbors)'), dcc.Dropdown( id='min_radius_dropdown', options=[ {'label': '0 (Uniform bandwidth)' if i == 0 else str(i), 'value': i} for i in range(0, 201) ], value=10, clearable=False, ), html.Label('Stepsize'), dcc.Dropdown( id='stepsize_dropdown', options=[ {'label': '{: .2f}'.format(i), 'value': i} for i in np.linspace(0.05, 1, 20) ], value=1.0, clearable=False, ), html.Label('Relaxation'), dcc.Dropdown( id='relaxation_dropdown', options=[ {'label': '{: .1f}'.format(i), 'value': i} for i in np.linspace(0, 4, 41) ], value=0, clearable=False, ), html.Label('Threads'), dcc.Dropdown( id='njobs_dropdown', options=[ {'label': str(i), 'value': i} for i in range(1, multiprocess.cpu_count() + 1) ], value=1 if SAMPLELIMIT < 1000 else multiprocess.cpu_count() / 2, clearable=False, ), html.Label('Method'), dcc.RadioItems( id='method_checkbox', options=[ {'label': 'MSLogP', 'value': 'MSLogP'}, {'label': 'MSP', 'value': 'MSP'}, ], value='MSLogP', ), html.Div([ html.Button('Subsampling to:', id='subsample_button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '100%', 'margin-top': '1rem'}), dcc.Dropdown( id='subsample_dropdown', options=[ {'label': str(i * 100), 'value': i * 100} for i in range(1, 101) if i * 100 < data.shape[0] ], value=2000 if data.shape[0] >= 2000 else data.shape[0], clearable=False, ), ], style={'padding': '1rem 2.2% 0rem 2.2%', 'margin-left': 0, 'display': 'none'}), html.Div(id="disp-options", className="three columns", children=[ html.Div([ html.Label('Opacity'), dcc.Slider( id='opacity-slider', min=0, max=1, value=DEFAULT_OPACITY, step=0.1, marks={0: '0', 0.5: '0.5', 1: '1'}, ), ], style={'margin-bottom': '2.5rem'}), html.Div([ html.Label('Smoothing radius'), dcc.Slider( id='smoothing-slider', min=0., max=1., value=0., step=0.01, marks={0: '0', 0.5: '0.5', 1: '1'}, )], style={'margin-bottom': '2.5rem'}), html.Div([ html.Label('Velocity arrow size'), dcc.Slider( id='conesize-slider', min=-1., max=3., value=0.5, step=0.1, marks={-1: '0.1', 0: '1', 1: '10', 2: '100', 3: '1000'}, )], style={'margin-bottom': '2.5rem'}), html.Div(className='row', children=[ html.Label('3D plot dimensions'), html.Div([ dcc.Dropdown( id='x_dropdown', options=[ {'label': str(i + 1) if i != -1 else '', 'value': i} for i in range(-1, 6) ], value=0, clearable=False, )], style={'display': 'inline-block', 'width': '33%'}), html.Div([ dcc.Dropdown( id='y_dropdown', options=[ {'label': str(i + 1) if i != -1 else '', 'value': i} for i in range(-1, 6) ], value=1, clearable=False, )], style={'display': 'inline-block', 'width': '33%'}), html.Div([ dcc.Dropdown( id='z_dropdown', options=[ {'label': str(i + 1) if i != -1 else '', 'value': i} for i in range(-1, 6) ], value=2 if traj.shape[1] > 2 else -1, clearable=False, )], style={'display': 'inline-block', 'width': '33%'}), ]), html.Div([ html.Label('Aspect ratio:', style={'margin-top': '1rem'}), dcc.RadioItems( id='scatter3d_aspect_options', options=[ {'label': 'Fixed', 'value': 'data'}, {'label': 'Auto', 'value': 'auto'}, ], value='auto', labelStyle={'display': 'inline-block', 'margin-right': '0.3vw'}, ), html.Label('Display / Compute:', style={'margin-top': '1rem'}), dcc.Checklist( options=[ {'label': 'Colorbar ', 'value': 'show_legend'}, {'label': 'Selected Cells', 'value': 'show_selected'}, {'label': 'Original Data', 'value': 'show_original'}, {'label': 'Projection Paths', 'value': 'show_traces'}, {'label': 'Log Density', 'value': 'show_logp'}, {'label': 'KNN Graph (Input)', 'value': 'show_knn'}, {'label': 'KNN Graph (Traj.)', 'value': 'show_knn_traj'}, {'label': 'MST', 'value': 'show_mst'}, {'label': '↳ Segment', 'value': 'show_segments'}, {'label': '↳ ↳ Cell order', 'value': 'show_order'}, {'label': 'Velocity (if avai.)', 'value': 'show_velocity', 'disabled': not with_velocity_data}, {'label': 'Bootstrap (if avai.)', 'value': 'show_bootstrap'}, {'label': 'Annotation', 'value': 'show_annotation', 'disabled': annotation_data.shape[1] == 0}, ], value=['show_legend', 'show_selected', 'show_velocity', 'show_bootstrap'], labelStyle={}, id='display-checklist', ), ], style={}), html.Div(id='annotation_dropdown_div', children=[ dcc.Dropdown( id='annotation_dropdown', options=[ ], value=0, clearable=False, ), html.Label('Annotation type', style={'margin-top': '1rem'}), dcc.RadioItems( id='annotation_type', options=[ {'label': 'Auto', 'value': 'auto'}, {'label': 'Numerical', 'value': 'numerical'}, {'label': 'Categorical', 'value': 'categorical'}, {'label': 'None', 'value': 'none'}, ], value='auto', labelStyle={'display': 'inline-block', 'margin-right': '0.3vw'}, ), dcc.Checklist( options=[ {'label': 'Label ', 'value': 'show_label'}], value=['show_label'], labelStyle={}, id='label_checklist', ) ], style={'display': 'block' if with_annotation_data else 'none'}), ], style={'padding': '1rem 2.2% 0rem 2.2%', 'margin-left': 0, 'display': 'none'}), html.Div(id="network-options", className="three columns", children=[ html.Div([ html.Label('Hover over a cell to display the local network, click to cluster.', style={'margin-top': '1rem'}), html.Label('Bandwidth'), dcc.Dropdown( id='network_bandwidth_dropdown', options=[ {'label': '0 (Adaptive bandwidth)' if i == 0 else '{: .2f}'.format(i), 'value': i} for i in np.linspace(0, 5, 101) ], value=0.2, clearable=False, ), html.Label('Adpative Bandwidth'), html.Label('(kth-neighbors)'), dcc.Dropdown( id='network_min_radius_dropdown', options=[ {'label': '0 (Uniform bandwidth)' if i == 0 else str(i), 'value': i} for i in range(0, 201) ], value=0, clearable=False, ), html.Label('N PCs'), dcc.Dropdown( id='network_n_pcs', options=[ {'label': '0 (All dimensions)' if i == 0 else str(i), 'value': i} for i in range(0, MAX_PCS + 1) ], value=MAX_PCS, clearable=False, ), html.Label('Display:', style={'margin-top': '1rem'}), dcc.Checklist( options=[ {'label': 'Colorbar ', 'value': 'show_legend'}, {'label': 'Values ', 'value': 'show_values'}, {'label': 'Diagnonal', 'value': 'show_diagonal'}], value=['show_legend', 'show_values'], labelStyle={}, id='heatmap_checklist', ), html.Label('Network type:', style={'margin-top': '1rem'}), dcc.RadioItems( id='heatmap_precision_options', options=[ {'label': 'Local precision', 'value': 'show_precision'}, {'label': 'Local covariance', 'value': 'show_covariance'}, ], value='show_covariance'), html.Label('Local neighborhood space:', style={'margin-top': '1rem'}), dcc.RadioItems( id='heatmap_reference_options', options=[ {'label': 'Original', 'value': 'cell'}, {'label': 'Trajectory', 'value': 'trajectory'}, ], value='trajectory' ), # html.Label('Max PCs to display:',style={'margin-top':'1rem'}), # dcc.Dropdown( # id='heatmap_dim_dropdown', # options=[ # {'label': str(i), 'value': i} # for i in range(1,500+1) # ], # value=20, # clearable=False, # ), html.Div([ html.Button('Reset node order', id='reset-heatmap-order-button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '100%', 'margin-top': '1rem'}), ], style={}), ], style={'padding': '1rem 2.2% 0rem 2.2%', 'margin-left': 0, 'display': 'none'}), html.Div(id="embedding-options", className="three columns", children=[ html.Label('Pre-processing:', style={'margin-top': '1rem'}), dcc.RadioItems( id='dr_method', options=[ {'label': 'PCA', 'value': 'pca'}, {'label': 'GraphDR', 'value': 'graphdr'}, {'label': 'Diffusion Map', 'value': 'diffusion_map'}, {'label': 'UMAP', 'value': 'umap'}, {'label': 'None', 'value': 'none'}], value=arguments['--mode'], ), html.Div([ html.Button('Run projection', id='run-projection-button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '100%', 'margin-top': '1rem'}), html.Label('Projection options:', style={'margin-top': '1rem'}), dcc.Checklist( options=[ {'label': 'Standardize', 'value': 'scale'}, {'label': 'Use selected cells ', 'value': 'subset'}], value=[], labelStyle={}, id='dr_checklist', ), html.Div(id="embedding-method-options", children=[ html.Label('Number of Input PCs'), dcc.Dropdown( id='dr_N_PCs', options=[ {'label': str(i), 'value': i} for i in range(2, MAX_PCS + 1) ], value=DEFAULT_PCS, clearable=False, ), html.Label('Metric'), dcc.Dropdown( id='dr_metric_dropdown', options=[ {'label': i, 'value': i} for i in ['euclidean', 'chebyshev', 'canberra', 'braycurtis', 'mahalanobis', 'seuclidean', 'cosine', 'correlation', 'hamming', 'jaccard'] ], value='euclidean', clearable=False, ), html.Label('Number of Neighbors'), dcc.Dropdown( id='dr_n_neighbors_dropdown', options=[ {'label': str(i), 'value': i} for i in range(2, 201) ], value=DEFAULT_DR_K, clearable=False, ), html.Label('Output Dim'), dcc.Dropdown( id='dr_dim_dropdown', options=[ {'label': str(i), 'value': i} for i in range(1, MAX_PCS + 1) ], value=3, clearable=False, ), html.Label('Min distance'), dcc.Dropdown( id='dr_min_dist_dropdown', options=[ {'label': str(i), 'value': i} for i in [0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5] ], value=0.1, clearable=False, ), html.Label('Regularization (nonlinearity)'), dcc.Dropdown( id='dr_lambda_dropdown', options=[ {'label': str(i), 'value': i} for i in [0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0] ], value=DEFAULT_DR_REG, clearable=False, ), ]), html.Label('Post processing (Visualize trajectory):', style={'margin-top': '1rem'}), html.Div([ dcc.RadioItems( id='embedding-checklist', options=[ {'label': 'None', 'value': 'show_absolutely_nothing'}, {'label': 'ISOMAP', 'value': 'show_isomap'}], value='show_absolutely_nothing', ), html.Label('Isomap dimensions'), dcc.Dropdown( id='isomap_dim', options=[ {'label': str(i), 'value': i} for i in range(2, 4) ], value=3, clearable=False, ), html.Label('N neighbors'), dcc.Dropdown( id='isomap_n_neighbors_dropdown', options=[ {'label': str(i), 'value': i} for i in range(5, 101) ], value=15, clearable=False, ), ]), ], style={'padding': '1rem 2.2% 0rem 2.2%', 'margin-left': 0, 'display': 'none'}), html.Div(id="cluster-options", className="three columns", children=[ html.Label('Clustering methods:', style={'margin-top': '1rem'}), dcc.RadioItems( id='cl_method', options=[ {'label': 'Spectral clustering', 'value': 'spectral'}, {'label': 'K-means', 'value': 'kmeans'}, {'label': 'Gaussian mixture', 'value': 'gmm'}, {'label': 'Meanshift', 'value': 'meanshift'}, ], value='spectral'), html.Div([ html.Button('Run clustering', id='run-cluster-button', style={'width': '100%'}) ], style={'display': 'inline-block', 'margin': '0.5%', 'width': '100%', 'margin-top': '1rem'}), html.Label('Clustering input:', style={'margin-top': '1rem'}), dcc.RadioItems( id='cl-input-checklist', options=[ {'label': 'Use input data', 'value': 'cl_use_input'}, {'label': 'Use embedding', 'value': 'cl_use_embedding'}], value='cl_use_input', ), html.Div(id="cluster-method-options", children=[ html.Label('Number of Neighbors'), dcc.Dropdown( id='cl_n_neighbors_dropdown', options=[ {'label': str(i), 'value': i} for i in range(2, 201) ], value=30, clearable=False, ), html.Label('Number of Clusters'), dcc.Dropdown( id='cl_n_clusters_dropdown', options=[ {'label': str(i), 'value': i} for i in range(2, 201) ], value=20, clearable=False, ), html.Div(children=[ html.Label('Bandwidth'), dcc.Dropdown( id='cl-meanshift-bandwidth', options=[ {'label': '{: .2f}'.format(i), 'value': i} for i in np.linspace(0, 5, 101) ], value=0.5, clearable=False, ), ], style={'display': 'none'}) ] ) ], style={'padding': '1rem 2.2% 0rem 2.2%', 'margin-left': 0, 'display': 'none'}, ), dcc.Loading(id='loading_scatter_3d_div', children=[ html.Div(id='scatter_3d_div', className="nine columns", children=[ dcc.Graph( id='scatter_3d', figure=dict( data=[ go.Scatter3d( x=traj.iloc[:, 0], y=traj.iloc[:, 1], z=traj.iloc[:, 2], mode='markers', customdata=traj.index, marker=dict( size=np.maximum(6 - np.log10(data.shape[0]), 1), color=traj.iloc[:, 0], line=dict( color='rgba(217, 217, 217, 0.14)', width=0 ), opacity=0.8, showscale=True, colorscale=list(zip(BINS, DEFAULT_COLORSCALE)), colorbar=dict(len=0.5, yanchor='top', y=0.85), ) ), ], layout=go.Layout( margin=dict( l=0, r=0, b=0, t=0 ), legend=dict(orientation='h'), paper_bgcolor=BGCOLOR, plot_bgcolor=BGCOLOR, ) ), style={'height': '55vh'}, ), ], style={'margin-left': '12.5%'}), ],type="circle"), ]), ], className='six columns', style={'margin': 0}), html.Div(id='pane_right', children=[ html.Div(id='selector_panel', children=[ html.P('Cell selector (Lasso select):', style={'display': 'inline-block', 'margin': '0rem 1rem 1rem 1rem'}), dcc.Loading(id='loading_select_sample_div', children=[ html.Div([ html.Div( dcc.Graph( id='select-sample1', selectedData={'points': [], 'range': None}, figure=dict( data=[], layout=dict( paper_bgcolor=BGCOLOR, plot_bgcolor=BGCOLOR, )), style={'height': '28vh'} ), className="four columns" ), html.Div( dcc.Graph( id='select-sample2', selectedData={'points': [], 'range': None}, figure=dict( data=[], layout=dict( paper_bgcolor=BGCOLOR, plot_bgcolor=BGCOLOR, )), style={'height': '28vh'} ), className="four columns"), html.Div( dcc.Graph( id='select-sample3', selectedData={'points': [], 'range': None}, figure=dict( data=[], layout=dict( paper_bgcolor=BGCOLOR, plot_bgcolor=BGCOLOR, )), style={'height': '28vh'} ), className="four columns") ], className="row"), ],type="circle"), html.Div([ html.P('Feature selector (Click or drag and use dropdown below):', style={'display': 'inline-block', 'margin': '3rem 1rem 1rem 1rem'}), html.Div([ dcc.RadioItems( options=[ {'label': 'Mean-SD plot', 'value': 'mean_sd'}, {'label': 'Mean-Diff plot', 'value': 'mean_diff'}, ], labelStyle={'display': 'inline-block', 'margin': '0.25vw'}, id='feature_plot_options', value='mean_sd', )], style={'margin-left': '1rem'}), ], style={'display': 'inline-block'}), dcc.Loading(id='loading_select_feature_div', children=[ dcc.Graph( id='select-feature', selectedData={'points': [], 'range': None}, figure=dict( data=[], layout=dict( paper_bgcolor=BGCOLOR, plot_bgcolor=BGCOLOR, ) ), style={'height': '38vh'} # animate = True ),], type="circle"), html.P('Type or select feature / gene name:', style={'display': 'inline-block', 'margin': '2rem 1rem 1rem 1rem'}), dcc.Dropdown( options=[], id='gene-dropdown' ), ], style={'margin': '0 0 2.2%'}), html.Div(id='coexpression_panel', children=[ # html.Label('Local gene expression'), # dcc.RadioItems( # options=[ # {'label': 'Local', # 'value': 'show_local'}, # {'label': 'Global', # 'value': 'show_global'}, # ], # labelStyle={'display': 'inline-block', 'margin-right':'0.3vw'}, # id='local-exp-options', # value = 'show_global', # ), # dcc.Graph(id = 'localexp_scatter', # figure = { 'layout': go.Layout( # margin = dict(t=0,b=0,l=0,r=0), # legend = dict(orientation = 'h'), # paper_bgcolor=BGCOLOR, # plot_bgcolor=BGCOLOR # )}, # style={'height':'30vh','width':'30vw','margin-left':'10vw',}), html.Div([ html.Label( 'Select displayed features / genes (Click on above or use dropdown below):'), dcc.Dropdown( options=[{'label': gene, 'value': gene} for gene in network_data.index] if with_network_data else [], id='networkgene-dropdown', multi=True, value=network_data.index[:20].tolist() if with_network_data else [], ), ], style={'margin': '0 0 2.2%'}), html.Label('Local covariation network'), html.Label('Effective sample size: ', id='effective_n', style={'text-align': 'center', 'margin-top': '2%'}), dcc.Graph(id='coexp_heatmap', figure={'data': [go.Heatmap(x=network_data.index[:20].tolist(), y=network_data.index[:20].tolist(), z=np.zeros((20, 20)), colorscale='Viridis', xgap=1, ygap=1, showscale=False)] if with_network_data else [], 'layout': go.Layout( margin=dict(t=10), legend=dict(orientation='h'), paper_bgcolor=BGCOLOR, plot_bgcolor=BGCOLOR )}, style={'height': '60vh', 'width': '40vw', 'margin-left': '5vw', 'margin-top': '2%'}) ], style={'margin': '0 0 2.2%', 'display': 'none'}) ], className='six columns', style={'margin': '0'})]), html.Div(id='fullscreen_div', className="twelve columns", children=[ dcc.Graph( id='scatter_3d_fc', figure=dict( data=[], layout=go.Layout( margin=dict( r=0, t=0 ), legend=dict(orientation='h'), paper_bgcolor=BGCOLOR, plot_bgcolor=BGCOLOR ) ), style={'height': '90vh', 'width': '100vw'} )], style={'display': 'none'}), html.Div([ dcc.Checklist( options=[ {'label': 'Full screen', 'value': 'full_screen'}], value=[], labelStyle={'display': 'inline-block'}, id='full-screen-options', )], className='twelve columns', style={'margin-left': '1.1%'}), html.Div(id='dummy', style={'display': 'none'}), html.Div(id='dummy2', style={'display': 'none'}), html.Div(id='dummy3', style={'display': 'none'}), html.Div(id='dummy4', style={'display': 'none'}), html.Div(id='dummy_dr', style={'display': 'none'}), html.Div(id='dummy_cl', style={'display': 'none'}) ]) # app.css.append_css( # {'external_url': 'https://codepen.io/jzthree/pen/ERrLwd.css'}) save_button_counter = 0 @app.callback( Output('dummy', 'children'), [Input('save-button', 'n_clicks'), Input('notification', 'n_clicks')]) def save_traj_notification(n_clicks_save, n_clicks_alert): global save_button_counter global message if n_clicks_save != None and n_clicks_save != save_button_counter: save_button_counter = n_clicks_save traj.to_csv('./output.txt', sep='\t', index_label=False) message.append('Cell coordinates saved to ./output.txt.') if len(output_dict) > 1: output_df = pd.DataFrame.from_dict(output_dict) output_df = output_df.set_index('index') output_df.to_csv('./output_info.txt', sep='\t', index_label=False) message.append('Computed cell state information saved to ./output_info.txt.') return [] @app.callback(Output('scatter_3d_fc', 'figure'), [Input('scatter_3d', 'figure'), Input('fullscreen_div', 'style')], [State('full-screen-options', 'value'), State('scatter_3d_fc', 'figure')]) def update_scatter_3d_fc(figure, style, value, bfigure): if 'full_screen' in value: bfigure['data'] = figure['data'] bfigure['layout'] = figure['layout'] return bfigure else: return bfigure @app.callback(Output('fullscreen_div', 'style'), [Input('full-screen-options', 'value')]) def update_fullscreen_div(value): if 'full_screen' in value: return {'display': 'block'} else: return {'display': 'none'} @app.callback(Output('all-plots', 'style'), [Input('full-screen-options', 'value')]) def update_all_plots(value): if 'full_screen' in value: return {'display': 'none'} else: return {'display': 'block'} @app.callback( Output('notification', 'children'), [Input('dummy', 'children'), Input('upload_label', 'children'), Input('upload_feature_label', 'children'), Input('upload_annotation_label', 'children'), Input('upload_trajectory_label', 'children'), Input('scatter_3d', 'figure'), Input('show-options', 'options'), Input('dummy_dr', 'children')]) def notify(*args): global message if len(message) > 0: message_delivered = message message = [] return html.Div(id='alert', children="; ".join(message_delivered), className='alert') else: return [] @app.callback( Output('alg-options', 'style'), [Input('show-options', 'value')], [State('alg-options', 'style')] ) def show_options_a(value, style): if value == 'show_alg_options': style['display'] = 'block' else: style['display'] = 'none' return style @app.callback( Output('disp-options', 'style'), [Input('show-options', 'value')], [State('disp-options', 'style')] ) def show_options_b(value, style): if value == 'show_disp_options': style['display'] = 'block' else: style['display'] = 'none' return style @app.callback( Output('embedding-options', 'style'), [Input('show-options', 'value')], [State('embedding-options', 'style')] ) def show_options_c(value, style): if value == 'show_embedding_options': style['display'] = 'block' else: style['display'] = 'none' return style @app.callback( Output('cluster-options', 'style'), [Input('show-options', 'value')], [State('cluster-options', 'style')] ) def show_options_d(value, style): if value == 'show_cluster_options': style['display'] = 'block' else: style['display'] = 'none' return style @app.callback( Output('network-options', 'style'), [Input('show-options', 'value')], [State('network-options', 'style')] ) def show_options_e(value, style): if value == 'show_network_options': style['display'] = 'block' else: style['display'] = 'none' return style @app.callback( Output('selector_panel', 'style'), [Input('show-options', 'value')], [State('selector_panel', 'style')] ) def update_selector_panel(value, style): if value == 'show_network_options': style['display'] = 'none' else: style['display'] = 'block' return style @app.callback( Output('coexpression_panel', 'style'), [Input('show-options', 'value')], [State('coexpression_panel', 'style')] ) def update_coexpression_panel(value, style): if value == 'show_network_options': style['display'] = 'block' else: style['display'] = 'none' return style @app.callback( Output('scatter_3d_div', 'style'), [Input('show-options', 'value')], [State('scatter_3d_div', 'style')] ) def update_scatter_3d_div_style(value, style): if value != 'show_no_options': style['margin-left'] = 0 else: style['margin-left'] = '12.5%' return style @app.callback( Output('x_dropdown', 'options'), [Input('ndim_dropdown', 'value')]) def update_x_dropdown(ndim): return [{'label': str(i + 1) if i != -1 else '', 'value': i} for i in range(-1, ndim)] @app.callback( Output('y_dropdown', 'options'), [Input('ndim_dropdown', 'value')]) def update_y_dropdown(ndim): return [{'label': str(i + 1) if i != -1 else '', 'value': i} for i in range(-1, ndim)] @app.callback( Output('z_dropdown', 'options'), [Input('ndim_dropdown', 'value')]) def update_z_dropdown(ndim): return [{'label': str(i + 1) if i != -1 else '', 'value': i} for i in range(-1, ndim)] @app.callback( Output('x_dropdown', 'value'), [Input('ndim_dropdown', 'value')], [State('x_dropdown', 'value')]) def update_x_dropdown_value(ndim, value): if value >= ndim: return -1 else: return value @app.callback( Output('y_dropdown', 'value'), [Input('ndim_dropdown', 'value')], [State('y_dropdown', 'value')]) def update_y_dropdown_value(ndim, value): if value >= ndim: return -1 else: return value @app.callback( Output('z_dropdown', 'value'), [Input('ndim_dropdown', 'value')], [State('z_dropdown', 'value'), State('x_dropdown', 'value'), State('y_dropdown', 'value')]) def update_z_dropdown_value(ndim, value, valuex, valuey): if value >= ndim: return -1 else: if value == -1 and valuex == 0 and valuey == 1 and ndim > 2: return 2 else: return value @app.callback( Output('annotation_dropdown', 'options'), [Input('upload_annotation_label', 'children'), Input('dummy_cl', 'children')]) def update_annotation_dropdown_options(children, dummy): return [{'label': annotation_data.columns.values[i], 'value': annotation_data.columns.values[i]} for i in range(annotation_data.shape[1])] @app.callback( Output('annotation_dropdown', 'value'), [Input('dummy_cl', 'children')]) def update_annotation_dropdown_value(cl_name): if len(cl_name) > 0: return cl_name[0] # @app.callback( # Output('annotation_dropdown_div', 'style'), # [Input('upload_annotation_label', 'children')]) # def update_annotation_dropdown_div_style(children): # if annotation_data.shape[1] > 1: # return {'display': 'block'} # else: # return {'display': 'none'} @app.callback( Output('show-options', 'options'), [Input('dummy_dr', 'children'), Input('upload_label', 'children'), Input('upload_feature_label', 'children')], [State('show-options', 'options')] ) def disable_network_options(a, b, c, options): global message assert options[-2]['label'] == 'Network' options[-2]['disabled'] = not with_network_data if options[-2]['disabled']: message.append("Network disabled.") assert options[-4]['label'] == 'Projection' options[-4]['disabled'] = not with_feature_data if options[-4]['disabled']: message.append("Projection disabled.") return options @app.callback( Output('show-options', 'value'), [Input('show-options', 'options')], [State('show-options', 'value')] ) def disable_network_value(options, value): global message assert options[-2]['label'] == 'Network' assert options[-2]['value'] == 'show_network_options' if options[-2]['disabled'] and value == 'show_network_options': value = 'show_no_options' return value @app.callback( Output('dummy_cl', 'children'), [ Input('run-cluster-button', 'n_clicks'), ], [ State('cl_method', 'value'), State('cl_n_neighbors_dropdown', 'value'), State('cl_n_clusters_dropdown', 'value'), State('cl-input-checklist', 'value'), State('cl-meanshift-bandwidth', 'value'), State('njobs_dropdown', 'value'), ] ) def run_clustering(n_clicks_run_clustering, cl_method, n_neighbors, n_clusters, cl_input, bandwidth, n_jobs): global annotation_data global output_dict if n_clicks_run_clustering == None or n_clicks_run_clustering == 0: return [] if cl_method == 'spectral': model = SpectralClustering(affinity='nearest_neighbors', assign_labels='discretize', n_neighbors=n_neighbors, n_clusters=n_clusters, n_jobs=n_jobs) c_name = 'c_' + cl_method + '_n' + str(n_neighbors) + '_k' + str(n_clusters) elif cl_method == 'kmeans': model = KMeans(n_clusters, n_jobs=n_jobs) c_name = 'c_' + cl_method + '_k' + str(n_clusters) elif cl_method == 'gmm': model = GaussianMixture(n_clusters) c_name = 'c_' + cl_method + '_k' + str(n_clusters) elif cl_method == 'meanshift': model = MeanShift(bandwidth, n_jobs=n_jobs) c_name = 'c_' + cl_method + '_h' + '{: .2f}'.format(bandwidth) cl_data = input_data.values if cl_input == 'cl_use_input' else data.values model.fit(cl_data) output_dict[c_name] = model.labels_ if cl_method != 'gmm' else model.predict(cl_data) annotation_data[c_name] = output_dict[c_name] return [c_name] @app.callback( Output('dummy_dr', 'children'), [ Input('run-projection-button', 'n_clicks'), Input('upload_feature_label', 'children'), Input('upload_label', 'children'), Input('upload_velocity_label', 'children'), ], [ State('dr_method', 'value'), State('dr_checklist', 'value'), State('dr_n_neighbors_dropdown', 'value'), State('dr_N_PCs', 'value'), State('dr_min_dist_dropdown', 'value'), State('dr_metric_dropdown', 'value'), State('dr_dim_dropdown', 'value'), State('dr_lambda_dropdown', 'value'), State('bandwidth_dropdown', 'value'), State('min_radius_dropdown', 'value'), State('njobs_dropdown', 'value'), State('select-sample1', 'selectedData'), State('select-sample2', 'selectedData'), State('select-sample3', 'selectedData'), ], ) def run_projection(n_clicks_run_projection, dummy, dummy2, dummy3, dr_method, dr_checklist, dr_n_neighbors, dr_N_PCs, \ dr_min_dist, dr_metric, dr_dim, dr_lambda, bw, min_radius, n_jobs, selectedData1, selectedData2, selectedData3): global data global traj global history global output_dict global s global with_pca global projection_mode global n_clicks_run_projection_counter global input_data_pca global N_PCs global with_velocity_data global velocity_data global run_projection_initial_call # prevent it from running during initialization if n_clicks_run_projection: pass else: return [] print("Run Projection...") if 'subset' in dr_checklist: index = input_data.index.values for _, d in enumerate([selectedData1, selectedData2, selectedData3]): if d: selected_index = [p['customdata'] for p in d['points']] else: selected_index = [] if len(selected_index) > 0: index = np.intersect1d(index, selected_index) # if no cell is selected, compute for all cells if len(index) == 0: selectind = np.arange(input_data.shape[0]) else: selectind = match(index, input_data.index.values) else: selectind = np.arange(input_data.shape[0]) N_PCs = reduce(np.minimum, [len(selectind), MAX_PCS, input_data.shape[0], input_data.shape[1]]) input_data_pca = PCA(N_PCs) if dr_method == "none": data = input_data.copy() projection_mode = 'none' else: if 'scale' in dr_checklist: input_data_scaler = StandardScaler() data = pd.DataFrame( input_data_pca.fit_transform(input_data_scaler.fit_transform(input_data.values[selectind, :])), index=input_data.index[selectind], columns=['PC' + str(i) for i in range(1, N_PCs + 1)]) if with_velocity_input_data: velocity_data = pd.DataFrame( input_data_pca.transform(velocity_input_data.values[selectind, :] / input_data_scaler.scale_), index=velocity_input_data.index[selectind], columns=['PC' + str(i) for i in range(1, N_PCs + 1)]) with_velocity_data = True else: data = pd.DataFrame(input_data_pca.fit_transform(input_data.values[selectind, :]), index=input_data.index[selectind], columns=['PC' + str(i) for i in range(1, N_PCs + 1)]) if with_velocity_input_data: velocity_data = pd.DataFrame(input_data_pca.transform(velocity_input_data.values[selectind, :]), index=velocity_input_data.index[selectind], columns=['PC' + str(i) for i in range(1, N_PCs + 1)]) with_velocity_data = True if 'diffusion_map' == dr_method: D = squareform(pdist(data.values[:, :dr_N_PCs], metric=dr_metric)) bws = np.median(D, axis=1) # D = kneighbors_graph(data.values[:,:dr_N_PCs], dr_n_neighbors, mode='distance', n_jobs=n_jobs) bw_square_sums = np.add.outer(bws ** 2, bws ** 2) D = np.exp(- D ** 2 / bw_square_sums) * np.sqrt(2 * np.multiply.outer(bws, bws) / bw_square_sums) # make symmetric W = D q = 1.0 / np.asarray(W.sum(axis=0)) W = W * q[:, np.newaxis] * q[np.newaxis, :] z = 1.0 / np.sqrt(np.asarray(W.sum(axis=0))) W = W * z[:, np.newaxis] * z[np.newaxis, :] eigvals, eigvecs = np.linalg.eigh(W) # eigvals, eigvecs = eigsh(W, k=N_PCs, which='LM') eigvecs = eigvecs[:, ::-1][:, :N_PCs] data = pd.DataFrame(eigvecs, index=feature_data.columns, columns=['DC' + str(i) for i in range(1, eigvecs.shape[1] + 1)]) projection_mode = 'diffusion_map' elif 'umap' == dr_method: mapped = umap.UMAP(n_components=dr_dim, n_neighbors=dr_n_neighbors, min_dist=dr_min_dist, metric=dr_metric).fit_transform(data.values[:, :dr_N_PCs]) data = pd.DataFrame(mapped, index=feature_data.columns, columns=['UMAP' + str(i) for i in range(1, mapped.shape[1] + 1)]) projection_mode = 'umap' elif 'graphdr' == dr_method: mapped = graphdr(data.values[:, :dr_N_PCs], n_neighbors=dr_n_neighbors, regularization=dr_lambda, metric=dr_metric) data = pd.DataFrame(mapped, index=feature_data.columns, columns=['GraphDR' + str(i) for i in range(1, mapped.shape[1] + 1)]) projection_mode = 'graphdr' else: projection_mode = 'pca' if projection_mode not in ['pca', 'graphdr', 'none']: if with_velocity_input_data: with_velocity_data = False message.append('Velocity is only supported for PCA, GraphDR, or no projection.') # scale if with_velocity_data: velocity_data = velocity_data / np.std(data.iloc[:, 0]) data = (data - np.mean(data, axis=0)) / np.std(data.iloc[:, 0]) # reinitialize traj = data.iloc[:, :ndim].copy() s = scms2.Scms(np.asarray(data.iloc[:, :ndim]).copy(), bw, min_radius=min_radius) history = [traj.copy()] output_dict = {'index': traj.index.values} return [] current_gene = None run_button_counter = 0 reset_button_counter = 0 bootstrap_button_counter = 0 bootstrap_trajs = [] # note upload_label, upload_annotation_label, ndim_dropdown(value) and isplay-checklist(values) should not be in the input and it has been covered by dependencies @app.callback( Output('scatter_3d', 'figure'), [ Input('run-button', 'n_clicks'), Input('reset-button', 'n_clicks'), Input('bootstrap-button', 'n_clicks'), Input('upload_trajectory_label', 'children'), Input('opacity-slider', 'value'), Input('dotsize-slider', 'value'), Input('colorscale-picker', 'colorscale'), Input('gene-dropdown', 'value'), Input('select-sample1', 'selectedData'), Input('select-sample2', 'selectedData'), Input('select-sample3', 'selectedData'), Input('smoothing-slider', 'value'), Input('conesize-slider', 'value'), Input('scatter3d_aspect_options', 'value'), Input('x_dropdown', 'value'), Input('y_dropdown', 'value'), Input('z_dropdown', 'value'), Input('annotation_dropdown', 'value'), Input('embedding-checklist', 'value'), Input('isomap_n_neighbors_dropdown', 'value'), Input('annotation_type', 'value'), Input('label_checklist', 'value'), Input('dummy_dr', 'children'), Input('dummy4', 'children')], [State('scatter_3d', 'figure'), State('scatter_3d', 'relayoutData'), State('ITERATIONS-slider', 'value'), State('ndim_dropdown', 'value'), State('dimensionality_dropdown', 'value'), State('bandwidth_dropdown', 'value'), State('min_radius_dropdown', 'value'), State('relaxation_dropdown', 'value'), State('stepsize_dropdown', 'value'), State('njobs_dropdown', 'value'), State('method_checkbox', 'value'), State('display-checklist', 'value'), ]) def update_traj_3d(n_clicks_run, n_clicks_reset, n_clicks_bootstrap, upload_trajectory_label, opacity, dotsize, colorscale, selected_gene, selectedData1, selectedData2, selectedData3, smooth_radius, conesize, scatter3d_aspect_option, dimx, dimy, dimz, annotation_index, embedding_value, isomap_n_neighbors, annotation_type, label_checklist_value, dummy_dr, dummy4, \ figure, relayoutData, n_iter, ndim_, dim, bw, min_radius, relaxation, step_size, n_jobs, method, display_value): global s global traj global data global history global ndim global run_button_counter global reset_button_counter global bootstrap_button_counter global output_dict global seg_identity global mst_betweenness_centrality global message global maxlogp global bootstrap_trajs # global traj_copy cm = list(zip(BINS, colorscale)) def select_traj(traj, dimx, dimy, dimz): if dimx != -1: x = traj.iloc[:, dimx] else: x = np.zeros(traj.shape[0]) if dimy != -1: y = traj.iloc[:, dimy] else: y = np.zeros(traj.shape[0]) if dimz != -1: z = traj.iloc[:, dimz] else: z = np.zeros(traj.shape[0]) return x, y, z if (n_clicks_reset != None and n_clicks_reset != reset_button_counter) or ndim_ != ndim: traj = data.iloc[:, :ndim_].copy() s = scms2.Scms(np.asarray(data.iloc[:, :ndim_]).copy(), bw, min_radius=min_radius) reset_button_counter = n_clicks_reset ndim = ndim_ history = [traj.copy()] bootstrap_trajs = [] bootstrap_traces = [] output_dict = {'index': traj.index.values} if s.min_radius != min_radius or s.bw != bw: s.reset_bw(bw, min_radius=min_radius) # run SCMS if n_clicks_run != None and n_clicks_run != run_button_counter: start_time = time.time() if n_jobs > 1: pool = multiprocess.Pool(n_jobs) for _ in range(n_iter): # s.reset_bw(bw, min_radius=min_radius) if n_jobs == 1: update = np.vstack([s.scms_update(batch_data, method=method, stepsize=step_size, ridge_dimensionality=dim, relaxation=relaxation)[0] for batch_data in np.array_split(traj.iloc[:, :ndim].values, np.ceil(traj.shape[0] / BATCHSIZE))]) else: update = pool.map( lambda pos: s.scms_update(pos, method=method, stepsize=step_size, ridge_dimensionality=dim, relaxation=relaxation)[0], np.array_split(np.asarray(traj.iloc[:, :ndim]), np.ceil(traj.shape[0] / (BATCHSIZE * n_jobs)))) update = np.vstack(update) traj.iloc[:, :ndim] = traj.iloc[:, :ndim] + update history.append(traj.copy()) if n_jobs > 1: pool.close() pool.terminate() pool.join() run_button_counter = n_clicks_run print("Elapsed time: {: .2f}".format(time.time() - start_time)) # if gene is selected, color by gene value if selected_gene: c = feature_data.loc[:, traj.index].values[feature_data.index.values == selected_gene, :].flatten() if smooth_radius > 0: smooth_mat = np.exp(-(squareform(pdist(traj)) / smooth_radius) ** 2) c = smooth_mat.dot(c) / np.sum(smooth_mat, axis=1) else: c = np.asarray(traj.iloc[:, 0]) # run bootstrap bootstrap_traces = [] if n_clicks_bootstrap != None and n_clicks_bootstrap != bootstrap_button_counter: bootstrap_button_counter = n_clicks_bootstrap if projection_mode == 'pca' or projection_mode == 'none': bootstrap_trajs = [] for i in range(5): b = scms2.Scms(scms2.bootstrap_resample(np.asarray(data.iloc[:, :ndim].copy()))[0], bw, min_radius=min_radius) bootstrap_traj = data.copy() bootstrap_traj.iloc[:, :ndim] = np.vstack([b.scms(batch_data, n_iterations=n_iter, threshold=0, method=method, stepsize=step_size, ridge_dimensionality=dim, relaxation=relaxation, n_jobs=n_jobs)[0] for batch_data in np.array_split(bootstrap_traj.iloc[:, :ndim].values, np.ceil(bootstrap_traj.shape[0] / ( BATCHSIZE * n_jobs)))]) bootstrap_trajs.append(bootstrap_traj) traj = data.copy() s = scms2.Scms(np.asarray(data.iloc[:, :ndim]).copy(), bw, min_radius=min_radius) traj.iloc[:, :ndim] = np.vstack([s.scms(batch_data, n_iterations=n_iter, threshold=0, method=method, stepsize=step_size, ridge_dimensionality=dim, relaxation=relaxation)[0] for batch_data in np.array_split(traj.iloc[:, :ndim].values, np.ceil( traj.shape[0] / (BATCHSIZE * n_jobs)))]) else: message.append("Boostrap is only supported for PCA projection or no projection.") if 'show_bootstrap' in display_value and len(bootstrap_trajs) > 0: for i, traj in enumerate(bootstrap_trajs): x, y, z = select_traj(traj, dimx, dimy, dimz) bootstrap_traces.append( go.Scatter3d( x=x, y=y, z=z, mode='markers', marker=dict( size=dotsize * 0.5, color=c, # line=dict( # color='rgba(217, 217, 217, 0.14)', # width=0.5 # ), opacity=0.8, showscale=False ), name='Bootstrap ' + str(i + 1) ) ) input_trace = [] if 'show_original' in display_value: datax, datay, dataz = select_traj(data, dimx, dimy, dimz) def prune_segments(edge_list, prune_threshold=3): edge_list = np.asarray(edge_list) degree = utils.count_degree(edge_list, traj.shape[0]) segments = utils.extract_segments(edge_list, degree) prune_threshold = 3 seglens = np.asarray([len(seg) for seg in segments if len(seg) != 0]) seg_min_degrees = np.asarray([np.min(degree[seg]) for seg in segments if len(seg) != 0]) remove_seginds = (seglens <= prune_threshold) * (seg_min_degrees == 1) while np.any(remove_seginds): remove_nodeinds_segments = [segments[i] for i in np.where(remove_seginds)[0]] # remove_nodeinds = segments[np.where(remove_seginds)[0][np.argmin(seglens[np.where(remove_seginds)[0]])]] remove_nodeinds_segments_includebranchpoint = [np.any(degree[nodeinds] > 2) for nodeinds in remove_nodeinds_segments] edge_list_new = [] for edge in edge_list: remove = False for includebranchpoint, nodeinds in zip(remove_nodeinds_segments_includebranchpoint, remove_nodeinds_segments): if includebranchpoint: if edge[0] in nodeinds and edge[1] in nodeinds: remove = True else: if edge[0] in nodeinds or edge[1] in nodeinds: remove = True if not remove: edge_list_new.append(edge) edge_list = edge_list_new edge_list = np.asarray(edge_list) degree = utils.count_degree(edge_list, traj.shape[0]) segments = utils.extract_segments(edge_list, degree) seglens = np.asarray([len(seg) for seg in segments if len(seg) != 0]) seg_min_degrees = np.asarray([np.min(degree[seg]) for seg in segments if len(seg) != 0]) remove_seginds = (seglens <= prune_threshold) * (seg_min_degrees == 1) return segments, edge_list isomap_trace = [] if 'show_isomap' == embedding_value: e = Isomap(n_components=3, n_neighbors=isomap_n_neighbors).fit_transform(traj.values) x = e[:, 0] y = e[:, 1] z = e[:, 2] isomap_trace.append(go.Scatter3d( x=x, y=y, z=z, mode='markers', customdata=traj.index, marker=dict( size=dotsize, color=c, opacity=opacity * 0.3, colorscale=cm, showscale=False ), name='ISOMAP' )) else: x, y, z = select_traj(traj, dimx, dimy, dimz) if with_velocity_data: u, v, w = select_traj(velocity_data, dimx, dimy, dimz) mst_traces = [] segment_traces = [] order_trace = [] if 'show_mst' in display_value: edge_list_raw = utils.make_mst(np.asarray(traj.iloc[:, :ndim])) if 'show_segments' in display_value: segments, edge_list = prune_segments(edge_list_raw) seg_identity = np.zeros(traj.shape[0]) for i, seg in enumerate(segments): seg_identity[seg] = i + 1 output_dict['Segment'] = seg_identity print(str(np.sum(seg_identity == 0)) + ' cells are not assigned to segments.') if 'show_order' in display_value: g = nx.from_edgelist(edge_list) mst_betweenness_centrality_dict = nx.betweenness_centrality(g) mst_betweenness_centrality = np.empty(traj.shape[0]) mst_betweenness_centrality.fill(np.nan) for k in mst_betweenness_centrality_dict: mst_betweenness_centrality[k] = mst_betweenness_centrality_dict[k] output_dict['MST Betweenness Centrality'] = mst_betweenness_centrality output_dict[ 'Cell Order (MST betweenness centrality rank)'] = mst_betweenness_centrality.argsort().argsort() valid_inds = ~np.isnan(mst_betweenness_centrality) order_trace.append( go.Scatter3d( x=x[valid_inds], y=y[valid_inds], z=z[valid_inds], text=['%.3e' % x for x in mst_betweenness_centrality[valid_inds]], mode='markers', customdata=traj.index[valid_inds], marker=dict( size=dotsize, color=mst_betweenness_centrality[valid_inds], opacity=1, colorscale=cm, showscale='show_legend' in display_value, colorbar=dict(len=0.5, yanchor='top', y=0.85), ), hoverinfo='text', name='Betweenness centrality', visible='legendonly' ) ) if 'show_segments' in display_value: if len(segments) < 100: for i in range(len(segments)): if 'show_original' in display_value: segment_traces.append( go.Scatter3d( x=datax[seg_identity == (i + 1)], y=datay[seg_identity == (i + 1)], z=dataz[seg_identity == (i + 1)], mode='markers', customdata=traj.index[seg_identity == (i + 1)], marker=dict( symbol=SYMBOLS[int(i / 10)], size=dotsize, color=DEFAULT_PLOTLY_COLORS[i % 10], opacity=opacity * 0.3, showscale=False ), name='Original S' + str(i + 1), ) ) segment_traces.append( go.Scatter3d( x=x[seg_identity == (i + 1)], y=y[seg_identity == (i + 1)], z=z[seg_identity == (i + 1)], mode='markers', customdata=traj.index[seg_identity == (i + 1)], marker=dict( symbol=SYMBOLS[int(i / 10)], color=DEFAULT_PLOTLY_COLORS[i % 10], size=dotsize, opacity=opacity, showscale=False ), name='S' + str(i + 1), ) ) if 'show_original' in display_value: segment_traces.append( go.Scatter3d( x=datax[seg_identity == 0], y=datay[seg_identity == 0], z=dataz[seg_identity == 0], mode='markers', customdata=traj.index[seg_identity == 0], marker=dict( size=dotsize, symbol=SYMBOLS[int((i + 1) / 10)], color=DEFAULT_PLOTLY_COLORS[i % 10], opacity=opacity * 0.3, showscale=False ), # visible = 'legendonly', name='Original Segments Unassigned', ) ) segment_traces.append( go.Scatter3d( x=x[seg_identity == 0], y=y[seg_identity == 0], z=z[seg_identity == 0], customdata=traj.index[seg_identity == 0], mode='markers', marker=dict( size=dotsize, symbol=SYMBOLS[int((i + 1) / 10)], color=DEFAULT_PLOTLY_COLORS[(i + 1) % 10], opacity=opacity, showscale=False ), # visible = 'legendonly', name='Segments Unassigned', ) ) else: message.append( ">100 many segments. Maybe the trajectory hasn't converged or used inappropriate parameter?") mst_traces = [] list_x = [] list_y = [] list_z = [] list_color = [] for edge in edge_list_raw: i, j = edge if 'show_segments' in display_value: if seg_identity[i] == 0 or seg_identity[j] == 0: continue if dimx != -1: xs = [traj.iloc[i, dimx], traj.iloc[j, dimx]] else: xs = [0, 0] if dimy != -1: ys = [traj.iloc[i, dimy], traj.iloc[j, dimy]] else: ys = [0, 0] if dimz != -1: zs = [traj.iloc[i, dimz], traj.iloc[j, dimz]] else: zs = [0, 0] list_x.extend(xs) list_y.extend(ys) list_z.extend(zs) list_color.extend(xs) list_x.append(None) list_y.append(None) list_z.append(None) list_color.append('#FFFFFF') mst_traces.append( go.Scatter3d( x=list_x, y=list_y, z=list_z, mode='lines', line=dict( color=list_color, width=dotsize * 0.5, showscale=False, ), name='MST', ) ) knn_traces = [] if 'show_knn' in display_value or 'show_knn_traj' in display_value: if 'show_knn_traj' in display_value: nbrs = NearestNeighbors(n_neighbors=5).fit(np.asarray(traj.iloc[:, :ndim])) edge_list_raw = np.vstack(nbrs.kneighbors_graph(np.asarray(traj.iloc[:, :ndim])).nonzero()).T else: nbrs = NearestNeighbors(n_neighbors=5).fit(np.asarray(data.iloc[:, :ndim])) edge_list_raw = np.vstack(nbrs.kneighbors_graph(np.asarray(data.iloc[:, :ndim])).nonzero()).T list_x = [] list_y = [] list_z = [] list_color = [] for edge in edge_list_raw: i, j = edge if 'show_segments' in display_value and 'show_mst' in display_value: if seg_identity[i] == 0 or seg_identity[j] == 0: continue if dimx != -1: xs = [traj.iloc[i, dimx], traj.iloc[j, dimx]] else: xs = [0, 0] if dimy != -1: ys = [traj.iloc[i, dimy], traj.iloc[j, dimy]] else: ys = [0, 0] if dimz != -1: zs = [traj.iloc[i, dimz], traj.iloc[j, dimz]] else: zs = [0, 0] list_x.extend(xs) list_y.extend(ys) list_z.extend(zs) list_color.extend(xs) list_x.append(None) list_y.append(None) list_z.append(None) list_color.append('#FFFFFF') knn_traces.append( go.Scatter3d( x=list_x, y=list_y, z=list_z, mode='lines', line=dict( color=list_color, width=dotsize * 0.5, showscale=False, ), name='KNN Graph' ) ) history_traces = [] if 'show_traces' in display_value and len(history) > 1: list_x = [] list_y = [] list_z = [] list_color = [] for i in range(traj.shape[0]): if 'show_segments' in display_value: if seg_identity[i] == 0: continue if dimx != -1: xs = [traj.iloc[i, dimx] for traj in history] else: xs = [0 for traj in history] if dimy != -1: ys = [traj.iloc[i, dimy] for traj in history] else: ys = [0 for traj in history] if dimz != -1: zs = [traj.iloc[i, dimz] for traj in history] else: zs = [0 for traj in history] list_x.extend(xs) list_y.extend(ys) list_z.extend(zs) list_color.extend(xs) list_x.append(None) list_y.append(None) list_z.append(None) list_color.append('#FFFFFF') history_traces.append( go.Scatter3d( x=list_x, y=list_y, z=list_z, mode='lines', opacity=opacity, line=dict( color=list_color, colorscale=cm, width=1, showscale=False, ), name='Projection traces', ) ) # highlight selected points selected_trace = [] # Commented now because of colorscale issue. May still be useful if that is fixed (good to show in trace names). index = traj.index for _, d in enumerate([selectedData1, selectedData2, selectedData3]): if d: selected_index = [p['customdata'] for p in d['points']] else: selected_index = [] if len(selected_index) > 0: index = np.intersect1d(index, selected_index) if len(index) > 1 and len(index) != traj.shape[0]: inds =
np.isin(traj.index, index)
numpy.isin
import numpy as np import copy, subprocess, os, yaml import matplotlib.pyplot as plt from random import randint import matplotlib.animation as animation from numpy.lib.type_check import nan_to_num import initial, boundary, cfxx, rhs, hcal, newgrd, mkzero, cip1d from matplotlib._version import get_versions as mplv from matplotlib.animation import PillowWriter os.system("del /Q .\png\*.png") # Open Config File with open('config.yml','r', encoding='utf-8') as yml: #堰上げ背水 #with open('config_jump.yml','r', encoding='utf-8') as yml: #跳水 #with open('config_trans.yml','r', encoding='utf-8') as yml: #遷移流 #with open('config_back_water.yml','r', encoding='utf-8') as yml: #堰上げ背水 #with open('config_drop_down.yml','r', encoding='utf-8') as yml: #低下背水 #with open('config_bump.yml','r', encoding='utf-8') as yml: #突起のある流れ config = yaml.load(yml) xl=float(config['xl']); nx=int(config['nx']) j_channel=int(config['j_channel']) slope=float(config['slope']) x_slope=float(config['x_slope']) slope1=float(config['slope1']); slope2=float(config['slope2']) xb1=float(config['xb1']); xb2=float(config['xb2']); xb3=float(config['xb3']) dbed=float(config['dbed']) qp=float(config['qp']); g=float(config['g']); snm=float(config['snm']) alh=float(config['alh']); lmax=int(config['lmax']); errmax=float(config['errmax']) hmin=float(config['hmin']) j_upstm=int(config['j_upstm']); j_dwstm=int(config['j_dwstm']) etime=float(config['etime']); dt=float(config['dt']); tuk=float(config['tuk']) alpha_up=float(config['alpha_up']); alpha_dw=float(config['alpha_dw']) nx1=nx+1; nx2=nx+2 dx=xl/nx; xct=xl/2. x=
np.linspace(0,xl,nx+1)
numpy.linspace
from numpy.testing import (assert_allclose, assert_almost_equal, assert_array_equal, assert_array_almost_equal_nulp) import numpy as np import pytest import matplotlib.mlab as mlab from matplotlib.cbook.deprecation import MatplotlibDeprecationWarning def _stride_repeat(*args, **kwargs): with pytest.warns(MatplotlibDeprecationWarning): return mlab.stride_repeat(*args, **kwargs) class TestStride: def get_base(self, x): y = x while y.base is not None: y = y.base return y def calc_window_target(self, x, NFFT, noverlap=0, axis=0): """ This is an adaptation of the original window extraction algorithm. This is here to test to make sure the new implementation has the same result. """ step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) result = np.zeros((NFFT, n)) # do the ffts of the slices for i in range(n): result[:, i] = x[ind[i]:ind[i]+NFFT] if axis == 1: result = result.T return result @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D']) def test_stride_windows_invalid_input_shape(self, shape): x = np.arange(np.prod(shape)).reshape(shape) with pytest.raises(ValueError): mlab.stride_windows(x, 5) @pytest.mark.parametrize('n, noverlap', [(0, None), (11, None), (2, 2), (2, 3)], ids=['n less than 1', 'n greater than input', 'noverlap greater than n', 'noverlap equal to n']) def test_stride_windows_invalid_params(self, n, noverlap): x = np.arange(10) with pytest.raises(ValueError): mlab.stride_windows(x, n, noverlap) @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D']) def test_stride_repeat_invalid_input_shape(self, shape): x = np.arange(np.prod(shape)).reshape(shape) with pytest.raises(ValueError): _stride_repeat(x, 5) @pytest.mark.parametrize('axis', [-1, 2], ids=['axis less than 0', 'axis greater than input shape']) def test_stride_repeat_invalid_axis(self, axis): x = np.array(0) with pytest.raises(ValueError): _stride_repeat(x, 5, axis=axis) def test_stride_repeat_n_lt_1_ValueError(self): x = np.arange(10) with pytest.raises(ValueError): _stride_repeat(x, 0) @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1']) @pytest.mark.parametrize('n', [1, 5], ids=['n1', 'n5']) def test_stride_repeat(self, n, axis): x = np.arange(10) y = _stride_repeat(x, n, axis=axis) expected_shape = [10, 10] expected_shape[axis] = n yr = np.repeat(np.expand_dims(x, axis), n, axis=axis) assert yr.shape == y.shape assert_array_equal(yr, y) assert tuple(expected_shape) == y.shape assert self.get_base(y) is x @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1']) @pytest.mark.parametrize('n, noverlap', [(1, 0), (5, 0), (15, 2), (13, -3)], ids=['n1-noverlap0', 'n5-noverlap0', 'n15-noverlap2', 'n13-noverlapn3']) def test_stride_windows(self, n, noverlap, axis): x = np.arange(100) y = mlab.stride_windows(x, n, noverlap=noverlap, axis=axis) expected_shape = [0, 0] expected_shape[axis] = n expected_shape[1 - axis] = 100 // (n - noverlap) yt = self.calc_window_target(x, n, noverlap=noverlap, axis=axis) assert yt.shape == y.shape assert_array_equal(yt, y) assert tuple(expected_shape) == y.shape assert self.get_base(y) is x @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1']) def test_stride_windows_n32_noverlap0_unflatten(self, axis): n = 32 x = np.arange(n)[np.newaxis] x1 = np.tile(x, (21, 1)) x2 = x1.flatten() y = mlab.stride_windows(x2, n, axis=axis) if axis == 0: x1 = x1.T assert y.shape == x1.shape assert_array_equal(y, x1) def test_stride_ensure_integer_type(self): N = 100 x = np.full(N + 20, np.nan) y = x[10:-10] y[:] = 0.3 # previous to #3845 lead to corrupt access y_strided = mlab.stride_windows(y, n=33, noverlap=0.6) assert_array_equal(y_strided, 0.3) # previous to #3845 lead to corrupt access y_strided = mlab.stride_windows(y, n=33.3, noverlap=0) assert_array_equal(y_strided, 0.3) # even previous to #3845 could not find any problematic # configuration however, let's be sure it's not accidentally # introduced y_strided = _stride_repeat(y, n=33.815) assert_array_equal(y_strided, 0.3) def _apply_window(*args, **kwargs): with pytest.warns(MatplotlibDeprecationWarning): return mlab.apply_window(*args, **kwargs) class TestWindow: def setup(self): np.random.seed(0) n = 1000 self.sig_rand = np.random.standard_normal(n) + 100. self.sig_ones = np.ones(n) def check_window_apply_repeat(self, x, window, NFFT, noverlap): """ This is an adaptation of the original window application algorithm. This is here to test to make sure the new implementation has the same result. """ step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) result = np.zeros((NFFT, n)) if np.iterable(window): windowVals = window else: windowVals = window(np.ones(NFFT, x.dtype)) # do the ffts of the slices for i in range(n): result[:, i] = windowVals * x[ind[i]:ind[i]+NFFT] return result def test_window_none_rand(self): res = mlab.window_none(self.sig_ones) assert_array_equal(res, self.sig_ones) def test_window_none_ones(self): res = mlab.window_none(self.sig_rand) assert_array_equal(res, self.sig_rand) def test_window_hanning_rand(self): targ = np.hanning(len(self.sig_rand)) * self.sig_rand res = mlab.window_hanning(self.sig_rand) assert_allclose(targ, res, atol=1e-06) def test_window_hanning_ones(self): targ = np.hanning(len(self.sig_ones)) res = mlab.window_hanning(self.sig_ones) assert_allclose(targ, res, atol=1e-06) def test_apply_window_1D_axis1_ValueError(self): x = self.sig_rand window = mlab.window_hanning with pytest.raises(ValueError): _apply_window(x, window, axis=1, return_window=False) def test_apply_window_1D_els_wrongsize_ValueError(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0]-1)) with pytest.raises(ValueError): _apply_window(x, window) def test_apply_window_0D_ValueError(self): x = np.array(0) window = mlab.window_hanning with pytest.raises(ValueError): _apply_window(x, window, axis=1, return_window=False) def test_apply_window_3D_ValueError(self): x = self.sig_rand[np.newaxis][np.newaxis] window = mlab.window_hanning with pytest.raises(ValueError): _apply_window(x, window, axis=1, return_window=False) def test_apply_window_hanning_1D(self): x = self.sig_rand window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = _apply_window(x, window, return_window=True) yt = window(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = window(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = window1(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window(x[:, i]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els1_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1(x[:, i]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els2_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = _apply_window(x, window, axis=0, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1*x[:, i] assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_els3_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = _apply_window(x, window, axis=0, return_window=True) yt = _apply_window(x, window1, axis=0, return_window=False) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_2D_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning y = _apply_window(x, window, axis=1, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window(x[i, :]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_els1_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning(np.ones(x.shape[1])) window1 = mlab.window_hanning y = _apply_window(x, window, axis=1, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1(x[i, :]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_els2_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y, window2 = _apply_window(x, window, axis=1, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1 * x[i, :] assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_2D_els3_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y = _apply_window(x, window, axis=1, return_window=False) yt = _apply_window(x, window1, axis=1, return_window=False) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_stride_windows_hanning_2D_n13_noverlapn3_axis0(self): x = self.sig_rand window = mlab.window_hanning yi = mlab.stride_windows(x, n=13, noverlap=2, axis=0) y = _apply_window(yi, window, axis=0, return_window=False) yt = self.check_window_apply_repeat(x, window, 13, 2) assert yt.shape == y.shape assert x.shape != y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_stack_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = _apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = _apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08) def test_apply_window_hanning_2D_stack_windows_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = _apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = _apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08) def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self): n = 32 ydata = np.arange(n) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = _apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydata = ydata.flatten() ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0) result = _apply_window(ydata1, mlab.window_hanning, axis=0, return_window=False) assert_allclose(ycontrol.T, result, atol=1e-08) class TestDetrend: def setup(self): np.random.seed(0) n = 1000 x = np.linspace(0., 100, n) self.sig_zeros = np.zeros(n) self.sig_off = self.sig_zeros + 100. self.sig_slope = np.linspace(-10., 90., n) self.sig_slope_mean = x - x.mean() sig_rand = np.random.standard_normal(n) sig_sin = np.sin(x*2*np.pi/(n/100)) sig_rand -= sig_rand.mean() sig_sin -= sig_sin.mean() self.sig_base = sig_rand + sig_sin self.atol = 1e-08 def test_detrend_none_0D_zeros(self): input = 0. targ = input mlab.detrend_none(input) assert input == targ def test_detrend_none_0D_zeros_axis1(self): input = 0. targ = input mlab.detrend_none(input, axis=1) assert input == targ def test_detrend_str_none_0D_zeros(self): input = 0. targ = input mlab.detrend(input, key='none') assert input == targ def test_detrend_detrend_none_0D_zeros(self): input = 0. targ = input mlab.detrend(input, key=mlab.detrend_none) assert input == targ def test_detrend_none_0D_off(self): input = 5.5 targ = input mlab.detrend_none(input) assert input == targ def test_detrend_none_1D_off(self): input = self.sig_off targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_slope(self): input = self.sig_slope targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_base(self): input = self.sig_base targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_base_slope_off_list(self): input = self.sig_base + self.sig_slope + self.sig_off targ = input.tolist() res = mlab.detrend_none(input.tolist()) assert res == targ def test_detrend_none_2D(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] input = np.vstack(arri) targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_2D_T(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] input = np.vstack(arri) targ = input res = mlab.detrend_none(input.T) assert_array_equal(res.T, targ) def test_detrend_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend_mean(input) assert_almost_equal(res, targ) def test_detrend_str_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend(input, key='mean') assert_almost_equal(res, targ) def test_detrend_detrend_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend(input, key=mlab.detrend_mean) assert_almost_equal(res, targ) def test_detrend_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend_mean(input) assert_almost_equal(res, targ) def test_detrend_str_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key='mean') assert_almost_equal(res, targ) def test_detrend_detrend_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key=mlab.detrend_mean) assert_almost_equal(res, targ) def test_detrend_mean_1D_zeros(self): input = self.sig_zeros targ = self.sig_zeros res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base(self): input = self.sig_base targ = self.sig_base res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_off(self): input = self.sig_base + self.sig_off targ = self.sig_base res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_slope(self): input = self.sig_base + self.sig_slope targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_slope_off(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_axis0(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_list(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input.tolist()) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_list_axis0(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input.tolist(), axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_default(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none_T(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri).T targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res.T, targ, atol=1e-08) def test_detrend_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend_mean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axis1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=1) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axism1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=-1) assert_allclose(res, targ, atol=1e-08) def test_detrend_2D_default(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_2D_none(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, axis=None) assert_allclose(res, targ, atol=1e-08) def test_detrend_str_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key='mean', axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_str_constant_2D_none_T(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri).T targ = np.vstack(arrt) res = mlab.detrend(input, key='constant', axis=None) assert_allclose(res.T, targ, atol=1e-08) def test_detrend_str_default_2D_axis1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, key='default', axis=1) assert_allclose(res, targ, atol=1e-08) def test_detrend_detrend_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key=mlab.detrend_mean, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_bad_key_str_ValueError(self): input = self.sig_slope[np.newaxis] with pytest.raises(ValueError): mlab.detrend(input, key='spam') def test_detrend_bad_key_var_ValueError(self): input = self.sig_slope[np.newaxis] with pytest.raises(ValueError): mlab.detrend(input, key=5) def test_detrend_mean_0D_d0_ValueError(self): input = 5.5 with pytest.raises(ValueError): mlab.detrend_mean(input, axis=0) def test_detrend_0D_d0_ValueError(self): input = 5.5 with pytest.raises(ValueError): mlab.detrend(input, axis=0) def test_detrend_mean_1D_d1_ValueError(self): input = self.sig_slope with pytest.raises(ValueError): mlab.detrend_mean(input, axis=1) def test_detrend_1D_d1_ValueError(self): input = self.sig_slope with pytest.raises(ValueError): mlab.detrend(input, axis=1) def test_detrend_mean_2D_d2_ValueError(self): input = self.sig_slope[np.newaxis] with pytest.raises(ValueError): mlab.detrend_mean(input, axis=2) def test_detrend_2D_d2_ValueError(self): input = self.sig_slope[np.newaxis] with pytest.raises(ValueError): mlab.detrend(input, axis=2) def test_detrend_linear_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend_linear(input) assert_almost_equal(res, targ) def test_detrend_linear_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend_linear(input) assert_almost_equal(res, targ) def test_detrend_str_linear_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key='linear') assert_almost_equal(res, targ) def test_detrend_detrend_linear_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key=mlab.detrend_linear) assert_almost_equal(res, targ) def test_detrend_linear_1d_off(self): input = self.sig_off targ = self.sig_zeros res = mlab.detrend_linear(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_1d_slope(self): input = self.sig_slope targ = self.sig_zeros res = mlab.detrend_linear(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_1d_slope_off(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend_linear(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_str_linear_1d_slope_off(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend(input, key='linear') assert_allclose(res, targ, atol=self.atol) def test_detrend_detrend_linear_1d_slope_off(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend(input, key=mlab.detrend_linear) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_1d_slope_off_list(self): input = self.sig_slope + self.sig_off targ = self.sig_zeros res = mlab.detrend_linear(input.tolist()) assert_allclose(res, targ, atol=self.atol) def test_detrend_linear_2D_ValueError(self): input = self.sig_slope[np.newaxis] with pytest.raises(ValueError): mlab.detrend_linear(input) def test_detrend_str_linear_2d_slope_off_axis0(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key='linear', axis=0) assert_allclose(res, targ, atol=self.atol) def test_detrend_detrend_linear_1d_slope_off_axis1(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend(input, key=mlab.detrend_linear, axis=0) assert_allclose(res, targ, atol=self.atol) def test_detrend_str_linear_2d_slope_off_axis0_notranspose(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, key='linear', axis=1) assert_allclose(res, targ, atol=self.atol) def test_detrend_detrend_linear_1d_slope_off_axis1_notranspose(self): arri = [self.sig_off, self.sig_slope, self.sig_slope + self.sig_off] arrt = [self.sig_zeros, self.sig_zeros, self.sig_zeros] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend(input, key=mlab.detrend_linear, axis=1) assert_allclose(res, targ, atol=self.atol) @pytest.mark.parametrize('iscomplex', [False, True], ids=['real', 'complex'], scope='class') @pytest.mark.parametrize('sides', ['onesided', 'twosided', 'default'], scope='class') @pytest.mark.parametrize( 'fstims,len_x,NFFT_density,nover_density,pad_to_density,pad_to_spectrum', [ ([], None, -1, -1, -1, -1), ([4], None, -1, -1, -1, -1), ([4, 5, 10], None, -1, -1, -1, -1), ([], None, None, -1, -1, None), ([], None, -1, -1, None, None), ([], None, None, -1, None, None), ([], 1024, 512, -1, -1, 128), ([], 256, -1, -1, 33, 257), ([], 255, 33, -1, -1, None), ([], 256, 128, -1, 256, 256), ([], None, -1, 32, -1, -1), ], ids=[ 'nosig', 'Fs4', 'FsAll', 'nosig_noNFFT', 'nosig_nopad_to', 'nosig_noNFFT_no_pad_to', 'nosig_trim', 'nosig_odd', 'nosig_oddlen', 'nosig_stretch', 'nosig_overlap', ], scope='class') class TestSpectral: @pytest.fixture(scope='class', autouse=True) def stim(self, request, fstims, iscomplex, sides, len_x, NFFT_density, nover_density, pad_to_density, pad_to_spectrum): Fs = 100. x = np.arange(0, 10, 1 / Fs) if len_x is not None: x = x[:len_x] # get the stimulus frequencies, defaulting to None fstims = [Fs / fstim for fstim in fstims] # get the constants, default to calculated values if NFFT_density is None: NFFT_density_real = 256 elif NFFT_density < 0: NFFT_density_real = NFFT_density = 100 else: NFFT_density_real = NFFT_density if nover_density is None: nover_density_real = 0 elif nover_density < 0: nover_density_real = nover_density = NFFT_density_real // 2 else: nover_density_real = nover_density if pad_to_density is None: pad_to_density_real = NFFT_density_real elif pad_to_density < 0: pad_to_density = int(2**np.ceil(np.log2(NFFT_density_real))) pad_to_density_real = pad_to_density else: pad_to_density_real = pad_to_density if pad_to_spectrum is None: pad_to_spectrum_real = len(x) elif pad_to_spectrum < 0: pad_to_spectrum_real = pad_to_spectrum = len(x) else: pad_to_spectrum_real = pad_to_spectrum if pad_to_spectrum is None: NFFT_spectrum_real = NFFT_spectrum = pad_to_spectrum_real else: NFFT_spectrum_real = NFFT_spectrum = len(x) nover_spectrum = 0 NFFT_specgram = NFFT_density nover_specgram = nover_density pad_to_specgram = pad_to_density NFFT_specgram_real = NFFT_density_real nover_specgram_real = nover_density_real if sides == 'onesided' or (sides == 'default' and not iscomplex): # frequencies for specgram, psd, and csd # need to handle even and odd differently if pad_to_density_real % 2: freqs_density = np.linspace(0, Fs / 2, num=pad_to_density_real, endpoint=False)[::2] else: freqs_density = np.linspace(0, Fs / 2, num=pad_to_density_real // 2 + 1) # frequencies for complex, magnitude, angle, and phase spectrums # need to handle even and odd differently if pad_to_spectrum_real % 2: freqs_spectrum = np.linspace(0, Fs / 2, num=pad_to_spectrum_real, endpoint=False)[::2] else: freqs_spectrum = np.linspace(0, Fs / 2, num=pad_to_spectrum_real // 2 + 1) else: # frequencies for specgram, psd, and csd # need to handle even and odd differentl if pad_to_density_real % 2: freqs_density = np.linspace(-Fs / 2, Fs / 2, num=2 * pad_to_density_real, endpoint=False)[1::2] else: freqs_density = np.linspace(-Fs / 2, Fs / 2, num=pad_to_density_real, endpoint=False) # frequencies for complex, magnitude, angle, and phase spectrums # need to handle even and odd differently if pad_to_spectrum_real % 2: freqs_spectrum = np.linspace(-Fs / 2, Fs / 2, num=2 * pad_to_spectrum_real, endpoint=False)[1::2] else: freqs_spectrum = np.linspace(-Fs / 2, Fs / 2, num=pad_to_spectrum_real, endpoint=False) freqs_specgram = freqs_density # time points for specgram t_start = NFFT_specgram_real // 2 t_stop = len(x) - NFFT_specgram_real // 2 + 1 t_step = NFFT_specgram_real - nover_specgram_real t_specgram = x[t_start:t_stop:t_step] if NFFT_specgram_real % 2: t_specgram += 1 / Fs / 2 if len(t_specgram) == 0: t_specgram = np.array([NFFT_specgram_real / (2 * Fs)]) t_spectrum = np.array([NFFT_spectrum_real / (2 * Fs)]) t_density = t_specgram y = np.zeros_like(x) for i, fstim in enumerate(fstims): y += np.sin(fstim * x * np.pi * 2) * 10**i if iscomplex: y = y.astype('complex') # Interestingly, the instance on which this fixture is called is not # the same as the one on which a test is run. So we need to modify the # class itself when using a class-scoped fixture. cls = request.cls cls.Fs = Fs cls.sides = sides cls.fstims = fstims cls.NFFT_density = NFFT_density cls.nover_density = nover_density cls.pad_to_density = pad_to_density cls.NFFT_spectrum = NFFT_spectrum cls.nover_spectrum = nover_spectrum cls.pad_to_spectrum = pad_to_spectrum cls.NFFT_specgram = NFFT_specgram cls.nover_specgram = nover_specgram cls.pad_to_specgram = pad_to_specgram cls.t_specgram = t_specgram cls.t_density = t_density cls.t_spectrum = t_spectrum cls.y = y cls.freqs_density = freqs_density cls.freqs_spectrum = freqs_spectrum cls.freqs_specgram = freqs_specgram cls.NFFT_density_real = NFFT_density_real def check_freqs(self, vals, targfreqs, resfreqs, fstims): assert resfreqs.argmin() == 0 assert resfreqs.argmax() == len(resfreqs)-1 assert_allclose(resfreqs, targfreqs, atol=1e-06) for fstim in fstims: i = np.abs(resfreqs - fstim).argmin() assert vals[i] > vals[i+2] assert vals[i] > vals[i-2] def check_maxfreq(self, spec, fsp, fstims): # skip the test if there are no frequencies if len(fstims) == 0: return # if twosided, do the test for each side if fsp.min() < 0: fspa = np.abs(fsp) zeroind = fspa.argmin() self.check_maxfreq(spec[:zeroind], fspa[:zeroind], fstims) self.check_maxfreq(spec[zeroind:], fspa[zeroind:], fstims) return fstimst = fstims[:] spect = spec.copy() # go through each peak and make sure it is correctly the maximum peak while fstimst: maxind = spect.argmax() maxfreq = fsp[maxind] assert_almost_equal(maxfreq, fstimst[-1]) del fstimst[-1] spect[maxind-5:maxind+5] = 0 def test_spectral_helper_raises(self): # We don't use parametrize here to handle ``y = self.y``. for kwargs in [ # Various error conditions: {"y": self.y+1, "mode": "complex"}, # Modes requiring ``x is y``. {"y": self.y+1, "mode": "magnitude"}, {"y": self.y+1, "mode": "angle"}, {"y": self.y+1, "mode": "phase"}, {"mode": "spam"}, # Bad mode. {"y": self.y, "sides": "eggs"}, # Bad sides. {"y": self.y, "NFFT": 10, "noverlap": 20}, # noverlap > NFFT. {"NFFT": 10, "noverlap": 10}, # noverlap == NFFT. {"y": self.y, "NFFT": 10, "window": np.ones(9)}, # len(win) != NFFT. ]: with pytest.raises(ValueError): mlab._spectral_helper(x=self.y, **kwargs) @pytest.mark.parametrize('mode', ['default', 'psd']) def test_single_spectrum_helper_unsupported_modes(self, mode): with pytest.raises(ValueError): mlab._single_spectrum_helper(x=self.y, mode=mode) @pytest.mark.parametrize("mode, case", [ ("psd", "density"), ("magnitude", "specgram"), ("magnitude", "spectrum"), ]) def test_spectral_helper_psd(self, mode, case): freqs = getattr(self, f"freqs_{case}") spec, fsp, t = mlab._spectral_helper( x=self.y, y=self.y, NFFT=getattr(self, f"NFFT_{case}"), Fs=self.Fs, noverlap=getattr(self, f"nover_{case}"), pad_to=getattr(self, f"pad_to_{case}"), sides=self.sides, mode=mode) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, getattr(self, f"t_{case}"), atol=1e-06) assert spec.shape[0] == freqs.shape[0] assert spec.shape[1] == getattr(self, f"t_{case}").shape[0] def test_csd(self): freqs = self.freqs_density spec, fsp = mlab.csd(x=self.y, y=self.y+1, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_allclose(fsp, freqs, atol=1e-06) assert spec.shape == freqs.shape def test_csd_padding(self): """Test zero padding of csd().""" if self.NFFT_density is None: # for derived classes return sargs = dict(x=self.y, y=self.y+1, Fs=self.Fs, window=mlab.window_none, sides=self.sides) spec0, _ = mlab.csd(NFFT=self.NFFT_density, **sargs) spec1, _ = mlab.csd(NFFT=self.NFFT_density*2, **sargs) assert_almost_equal(np.sum(np.conjugate(spec0)*spec0).real, np.sum(np.conjugate(spec1/2)*spec1/2).real) def test_psd(self): freqs = self.freqs_density spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert spec.shape == freqs.shape self.check_freqs(spec, freqs, fsp, self.fstims) @pytest.mark.parametrize( 'make_data, detrend', [(np.zeros, mlab.detrend_mean), (np.zeros, 'mean'), (np.arange, mlab.detrend_linear), (np.arange, 'linear')]) def test_psd_detrend(self, make_data, detrend): if self.NFFT_density is None: return ydata = make_data(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ydata = np.vstack([ydata1, ydata2]) ydata = np.tile(ydata, (20, 1)) ydatab = ydata.T.flatten() ydata = ydata.flatten() ycontrol = np.zeros_like(ydata) spec_g, fsp_g = mlab.psd(x=ydata, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=detrend) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=detrend) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides) assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal with pytest.raises(AssertionError): assert_allclose(spec_b, spec_c, atol=1e-08) def test_psd_window_hanning(self): if self.NFFT_density is None: return ydata = np.arange(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1, windowVals = _apply_window(ydata1, mlab.window_hanning, return_window=True) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydatab = ydata.T.flatten() ydataf = ydata.flatten() ycontrol = ycontrol.flatten() spec_g, fsp_g = mlab.psd(x=ydataf, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_hanning) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_hanning) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_none) spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum() assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal with pytest.raises(AssertionError): assert_allclose(spec_b, spec_c, atol=1e-08) def test_psd_window_hanning_detrend_linear(self): if self.NFFT_density is None: return ydata = np.arange(self.NFFT_density) ycontrol = np.zeros(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = ycontrol ycontrol2 = ycontrol ycontrol1, windowVals = _apply_window(ycontrol1, mlab.window_hanning, return_window=True) ycontrol2 = mlab.window_hanning(ycontrol2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydatab = ydata.T.flatten() ydataf = ydata.flatten() ycontrol = ycontrol.flatten() spec_g, fsp_g = mlab.psd(x=ydataf, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear, window=mlab.window_hanning) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear, window=mlab.window_hanning) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_none) spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum() assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal with pytest.raises(AssertionError): assert_allclose(spec_b, spec_c, atol=1e-08) def test_psd_windowarray(self): freqs = self.freqs_density spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=np.ones(self.NFFT_density_real)) assert_allclose(fsp, freqs, atol=1e-06) assert spec.shape == freqs.shape def test_psd_windowarray_scale_by_freq(self): win = mlab.window_hanning(np.ones(self.NFFT_density_real)) spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning) spec_s, fsp_s = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning, scale_by_freq=True) spec_n, fsp_n = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning, scale_by_freq=False) assert_array_equal(fsp, fsp_s) assert_array_equal(fsp, fsp_n) assert_array_equal(spec, spec_s) assert_allclose(spec_s*(win**2).sum(), spec_n/self.Fs*win.sum()**2, atol=1e-08) @pytest.mark.parametrize( "kind", ["complex", "magnitude", "angle", "phase"]) def test_spectrum(self, kind): freqs = self.freqs_spectrum spec, fsp = getattr(mlab, f"{kind}_spectrum")( x=self.y, Fs=self.Fs, sides=self.sides, pad_to=self.pad_to_spectrum) assert_allclose(fsp, freqs, atol=1e-06) assert spec.shape == freqs.shape if kind == "magnitude": self.check_maxfreq(spec, fsp, self.fstims) self.check_freqs(spec, freqs, fsp, self.fstims) @pytest.mark.parametrize( 'kwargs', [{}, {'mode': 'default'}, {'mode': 'psd'}, {'mode': 'magnitude'}, {'mode': 'complex'}, {'mode': 'angle'}, {'mode': 'phase'}]) def test_specgram(self, kwargs): freqs = self.freqs_specgram spec, fsp, t = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, **kwargs) if kwargs.get('mode') == 'complex': spec = np.abs(spec) specm = np.mean(spec, axis=1) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, self.t_specgram, atol=1e-06) assert spec.shape[0] == freqs.shape[0] assert spec.shape[1] == self.t_specgram.shape[0] if kwargs.get('mode') not in ['complex', 'angle', 'phase']: # using a single freq, so all time slices should be about the same if np.abs(spec.max()) != 0: assert_allclose( np.diff(spec, axis=1).max() / np.abs(spec.max()), 0, atol=1e-02) if kwargs.get('mode') not in ['angle', 'phase']: self.check_freqs(specm, freqs, fsp, self.fstims) def test_specgram_warn_only1seg(self): """Warning should be raised if len(x) <= NFFT.""" with pytest.warns(UserWarning, match="Only one segment is calculated"): mlab.specgram(x=self.y, NFFT=len(self.y), Fs=self.Fs) def test_psd_csd_equal(self): Pxx, freqsxx = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) Pxy, freqsxy = mlab.csd(x=self.y, y=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_array_almost_equal_nulp(Pxx, Pxy) assert_array_equal(freqsxx, freqsxy) @pytest.mark.parametrize("mode", ["default", "psd"]) def test_specgram_auto_default_psd_equal(self, mode): """ Test that mlab.specgram without mode and with mode 'default' and 'psd' are all the same. """ speca, freqspeca, ta = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides) specb, freqspecb, tb = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode=mode) assert_array_equal(speca, specb) assert_array_equal(freqspeca, freqspecb) assert_array_equal(ta, tb) @pytest.mark.parametrize( "mode, conv", [ ("magnitude", np.abs), ("angle", np.angle), ("phase", lambda x: np.unwrap(np.angle(x), axis=0)) ]) def test_specgram_complex_equivalent(self, mode, conv): specc, freqspecc, tc = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode='complex') specm, freqspecm, tm = mlab.specgram(x=self.y, NFFT=self.NFFT_specgram, Fs=self.Fs, noverlap=self.nover_specgram, pad_to=self.pad_to_specgram, sides=self.sides, mode=mode) assert_array_equal(freqspecc, freqspecm) assert_array_equal(tc, tm) assert_allclose(conv(specc), specm, atol=1e-06) def test_psd_windowarray_equal(self): win = mlab.window_hanning(np.ones(self.NFFT_density_real)) speca, fspa = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=win) specb, fspb = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_array_equal(fspa, fspb) assert_allclose(speca, specb, atol=1e-08) # extra test for cohere... def test_cohere(): N = 1024 np.random.seed(19680801) x = np.random.randn(N) # phase offset y = np.roll(x, 20) # high-freq roll-off y = np.convolve(y, np.ones(20) / 20., mode='same') cohsq, f = mlab.cohere(x, y, NFFT=256, Fs=2, noverlap=128) assert_allclose(np.mean(cohsq), 0.837, atol=1.e-3) assert np.isreal(np.mean(cohsq)) #***************************************************************** # These Tests where taken from SCIPY with some minor modifications # this can be retrieved from: # https://github.com/scipy/scipy/blob/master/scipy/stats/tests/test_kdeoth.py #***************************************************************** class TestGaussianKDE: def test_kde_integer_input(self): """Regression test for #1181.""" x1 = np.arange(5) kde = mlab.GaussianKDE(x1) y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721] np.testing.assert_array_almost_equal(kde(x1), y_expected, decimal=6) def test_gaussian_kde_covariance_caching(self): x1 = np.array([-7, -5, 1, 4, 5], dtype=float) xs = np.linspace(-10, 10, num=5) # These expected values are from scipy 0.10, before some changes to # gaussian_kde. They were not compared with any external reference. y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475] # set it to the default bandwidth. kde2 = mlab.GaussianKDE(x1, 'scott') y2 = kde2(xs) np.testing.assert_array_almost_equal(y_expected, y2, decimal=7) def test_kde_bandwidth_method(self): np.random.seed(8765678) n_basesample = 50 xn = np.random.randn(n_basesample) # Default gkde = mlab.GaussianKDE(xn) # Supply a callable gkde2 = mlab.GaussianKDE(xn, 'scott') # Supply a scalar gkde3 = mlab.GaussianKDE(xn, bw_method=gkde.factor) xs = np.linspace(-7, 7, 51) kdepdf = gkde.evaluate(xs) kdepdf2 = gkde2.evaluate(xs) assert kdepdf.all() == kdepdf2.all() kdepdf3 = gkde3.evaluate(xs) assert kdepdf.all() == kdepdf3.all() class TestGaussianKDECustom: def test_no_data(self): """Pass no data into the GaussianKDE class.""" with pytest.raises(ValueError): mlab.GaussianKDE([]) def test_single_dataset_element(self): """Pass a single dataset element into the GaussianKDE class.""" with pytest.raises(ValueError): mlab.GaussianKDE([42]) def test_silverman_multidim_dataset(self): """Test silverman's for a multi-dimensional array.""" x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) with pytest.raises(np.linalg.LinAlgError): mlab.GaussianKDE(x1, "silverman") def test_silverman_singledim_dataset(self): """Test silverman's output for a single dimension list.""" x1 = np.array([-7, -5, 1, 4, 5]) mygauss = mlab.GaussianKDE(x1, "silverman") y_expected = 0.76770389927475502 assert_almost_equal(mygauss.covariance_factor(), y_expected, 7) def test_scott_multidim_dataset(self): """Test scott's output for a multi-dimensional array.""" x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) with pytest.raises(np.linalg.LinAlgError): mlab.GaussianKDE(x1, "scott") def test_scott_singledim_dataset(self): """Test scott's output a single-dimensional array.""" x1 = np.array([-7, -5, 1, 4, 5]) mygauss = mlab.GaussianKDE(x1, "scott") y_expected = 0.72477966367769553 assert_almost_equal(mygauss.covariance_factor(), y_expected, 7) def test_scalar_empty_dataset(self): """Test the scalar's cov factor for an empty array.""" with pytest.raises(ValueError): mlab.GaussianKDE([], bw_method=5) def test_scalar_covariance_dataset(self): """Test a scalar's cov factor.""" np.random.seed(8765678) n_basesample = 50 multidim_data = [np.random.randn(n_basesample) for i in range(5)] kde = mlab.GaussianKDE(multidim_data, bw_method=0.5) assert kde.covariance_factor() == 0.5 def test_callable_covariance_dataset(self): """Test the callable's cov factor for a multi-dimensional array.""" np.random.seed(8765678) n_basesample = 50 multidim_data = [np.random.randn(n_basesample) for i in range(5)] def callable_fun(x): return 0.55 kde = mlab.GaussianKDE(multidim_data, bw_method=callable_fun) assert kde.covariance_factor() == 0.55 def test_callable_singledim_dataset(self): """Test the callable's cov factor for a single-dimensional array.""" np.random.seed(8765678) n_basesample = 50 multidim_data =
np.random.randn(n_basesample)
numpy.random.randn
import scipy.io.wavfile as sio import scipy.signal as sis from scipy import interpolate import numpy as np import math import matplotlib.pyplot as plt import mylib as myl import sys import copy as cp import re import scipy.fftpack as sf # NOTE: int2float might be removed after scipy update/check # (check defaults in myl.sig_preproc) # read wav file # IN: # fileName # OUT: # signal ndarray # sampleRate def wavread(f,opt={'do_preproc':True}): ## signal input fs, s_in = sio.read(f) # int -> float s = myl.wav_int2float(s_in) # preproc if opt['do_preproc']: s = myl.sig_preproc(s) return s, fs # DCT # IN: # y - 1D signal vector # opt # ['fs'] - sample rate # ['wintyp'] - <'kaiser'>, any type supported by # scipy.signal.get_window() # ['winparam'] - <1> additionally needed window parameters, # scalar, string, list ..., depends on 'wintyp' # ['nsm'] - <3> number of spectral moments # ['rmo'] - skip first (lowest) cosine (=constant offset) # in spectral moment calculation <1>|0 # ['lb'] - lower cutoff frequency for coef truncation <0> # ['ub'] - upper cutoff frequency (if 0, no cutoff) <0> # Recommended e.g. for f0 DCT, so that only influence # of events with <= 10Hz on f0 contour is considered) # ['peak_prct'] - <80> lower percentile threshold to be superseeded for # amplitude maxima in DCT spectrum # OUT: # dct # ['c_orig'] all coefs # ['f_orig'] their frequencies # ['c'] coefs with freq between lb and ub # ['f'] their freqs # ['i'] their indices in c_orig # ['sm'] spectral moments based on c # ['opt'] input options # ['m'] y mean # ['sd'] y standard dev # ['cbin'] array of sum(abs(coef)) in frequency bins # ['fbin'] corresponding lower boundary freqs # ['f_max'] frequency of global amplitude maximum # ['f_lmax'] frequencies of local maxima (array of minlen 1) # ['c_cog'] the coef amplitude of the cog freq (sm[0]) # PROBLEMS: # - if segment is too short (< 5 samples) lowest freqs associated to # DCT components are too high for ub, that is dct_trunc() returns # empty array. # -> np.nan assigned to respective variables def dct_wrapper(y,opt): dflt={'wintyp':'kaiser','winparam':1,'nsm':3,'rmo':True, 'lb':0,'ub':0,'peak_prct':80} opt = myl.opt_default(opt,dflt) # weight window w = sig_window(opt['wintyp'],len(y),opt['winparam']) y = y*w #print(1,len(y)) # centralize y = y-np.mean(y) #print(2,len(y)) # DCT coefs c = sf.dct(y,norm='ortho') #print(3,len(c)) # indices (starting with 0) ly = len(y) ci = myl.idx_a(ly) # corresponding cos frequencies f = ci+1 * (opt['fs']/(ly*2)) # band pass truncation of coefs # indices of coefs with lb <= freq <= ub i = dct_trunc(f,ci,opt) #print('f ci i',f,ci,i) # analysis segment too short -> DCT freqs above ub if len(i)==0: sm = myl.ea() while len(sm) <= opt['nsm']: sm = np.append(sm,np.nan) return {'c_orig':c,'f_orig':f,'c':myl.ea(),'f':myl.ea(),'i':[],'sm':sm,'opt':opt, 'm':np.nan,'sd':np.nan,'cbin':myl.ea(),'fbin':myl.ea(), 'f_max':np.nan, 'f_lmax':myl.ea(), 'c_cog': np.nan} # mean abs error from band-limited IDCT #mae = dct_mae(c,i,y) # remove constant offset with index 0 # already removed by dct_trunc in case lb>0. Thus checked for i[0]==0 # (i[0] indeed represents constant offset; tested by # cr = np.zeros(ly); cr[0]=c[0]; yr = sf.idct(cr); print(yr) if opt['rmo']==True and len(i)>1 and i[0]==0: j = i[1:len(i)] else: j = i if type(j) is not list: j = [j] # coefs and their frequencies between lb and ub # (+ constant offset removed) fi = f[j] ci = c[j] # spectral moments if len(j)>0: sm = specmom(ci,fi,opt['nsm']) else: sm = np.zeros(opt['nsm']) # frequency bins fbin, cbin = dct_fbin(fi,ci,opt) # frequencies of global and local maxima in DCT spectrum f_max, f_lmax, px = dct_peak(ci,fi,sm[0],opt) # return return {'c_orig':c,'f_orig':f,'c':ci,'f':fi,'i':j,'sm':sm,'opt':opt, 'm':np.mean(y),'sd':np.std(y),'cbin':cbin,'fbin':fbin, 'f_max':f_max, 'f_lmax':f_lmax, 'c_cog': px} # returns local and max peak frequencies # IN: # x: array of abs coef amplitudes # f: corresponding frequencies # cog: center of gravity # OUT: # f_gm: freq of global maximu # f_lm: array of freq of local maxima # px: threshold to be superseeded (derived from prct specs) def dct_peak(x,f,cog,opt): x = abs(cp.deepcopy(x)) ## global maximum i = myl.find(x,'is','max') if len(i)>1: i=int(np.mean(i)) f_gm = float(f[i]) ## local maxima # threshold to be superseeded px = dct_px(x,f,cog,opt) idx = myl.find(x,'>=',px) # 2d array of neighboring+1 indices # e.g. [[0,1,2],[5,6],[9,10]] ii = [] # min freq distance between maxima fd_min = 1 for i in myl.idx(idx): if len(ii)==0: ii.append([idx[i]]) elif idx[i]>ii[-1][-1]+1: xi = x[ii[-1]] fi = f[ii[-1]] j = myl.find(xi,'is','max') #print('xi',xi,'fi',fi,'f',f[idx[i]]) if len(j)>0 and f[idx[i]]>fi[j[0]]+fd_min: #print('->1') ii.append([idx[i]]) else: #print('->2') ii[-1].append(idx[i]) #myl.stopgo() #!c else: ii[-1].append(idx[i]) # get index of x maximum within each subsegment # and return corresponding frequencies f_lm = [] for si in ii: zi = myl.find(x[si],'is','max') if len(zi)>1: zi=int(np.mean(zi)) else: zi = zi[0] i = si[zi] if not np.isnan(i): f_lm.append(f[i]) #print('px',px) #print('i',ii) #print('x',x) #print('f',f) #print('m',f_gm,f_lm) #myl.stopgo() return f_gm, f_lm, px # return center-of-gravity related amplitude # IN: # x: array of coefs # f: corresponding freqs # cog: center of gravity freq # opt # OUT: # coef amplitude related to cog def dct_px(x,f,cog,opt): x = abs(cp.deepcopy(x)) # cog outside freq range if cog <= f[0]: return x[0] elif cog >= f[-1]: return x[-1] # find f-indices adjacent to cog for i in range(len(f)-1): if f[i] == cog: return x[i] elif f[i+1] == cog: return x[i+1] elif f[i] < cog and f[i+1] > cog: # interpolate #xi = np.interp(cog,f[i:i+2],x[i:i+2]) #print('cog:',cog,'xi',f[i:i+2],x[i:i+2],'->',xi) return np.interp(cog,f[i:i+2],x[i:i+2]) return np.percentile(x,opt['peak_prct']) # pre-emphasis # alpha > 1 (interpreted as lower cutoff freq) # alpha <- exp(-2 pi alpha delta) # s'[n] = s[n]-alpha*s[n-1] # IN: # signal # alpha - s[n-1] weight <0.95> # fs - sample rate <-1> # do_scale - <FALSE> if TRUE than the pre-emphasized signal is scaled to # same abs_mean value as original signal (in general pre-emphasis # leads to overall energy loss) def pre_emphasis(y,a=0.95,fs=-1,do_scale=False): # determining alpha directly or from cutoff freq if a>1: if fs <= 0: print('pre emphasis: alpha cannot be calculated deltaT. Set to 0.95') a = 0.95 else: a = math.exp(-2*math.pi*a*1/fs) #print('alpha',a) # shifted signal ype = np.append(y[0], y[1:] - a * y[:-1]) # scaling if do_scale: sf = np.mean(abs(y))/np.mean(abs(ype)) ype*=sf ## plot #ys = y[30000:40000] #ypes = ype[30000:40000] #t = np.linspace(0,len(ys),len(ys)) #fig, spl = plt.subplots(2,1,squeeze=False) #cid1 = fig.canvas.mpl_connect('button_press_event', onclick_next) #cid2 = fig.canvas.mpl_connect('key_press_event', onclick_exit) #spl[0,0].plot(t,ys) #spl[1,0].plot(t,ypes) #plt.show() ## return ype # frequency bins: symmetric 2-Hz windows around freq integers # in bandpass overlapped by 1 Hz # IN: # f - ndarray frequencies # c - ndarray coefs # opt['lb'] - lower and upper truncation freqs # ['ub'] # OUT: # fbin - ndarray, lower bnd of freq bins # cbin - ndarray, summed abs coef values in these bins def dct_fbin(f,c,opt): fb = myl.idx_seg(math.floor(opt['lb']),math.ceil(opt['ub'])) cbin = np.zeros(len(fb)-1); for j in myl.idx_a(len(fb)-1): k = myl.intersect(myl.find(f,'>=',fb[j]), myl.find(f,'<=',fb[j+1])) cbin[j] = sum(abs(c[k])) fbin = fb[myl.idx_a(len(fb)-1)] return fbin, cbin # spectral moments # IN: # c - ndarray, coefficients # f - ndarray, related frequencies <1:len(c)> # n - number of spectral moments <3> # OUT: # m - ndarray moments (increasing) def specmom(c,f=[],n=3): if len(f)==0: f = myl.idx_a(len(c))+1 c = abs(c) s = sum(c) k=0; m = np.asarray([]) for i in myl.idx_seg(1,n): m = myl.push(m, sum(c*((f-k)**i))/s) k = m[-1] return m # wrapper around IDCT # IN: # c - coef vector derived by dct # i - indices of coefs to be taken for IDCT; if empty (default), # all coefs taken) # OUT: # y - IDCT result def idct_bp(c,i=myl.ea()): if len(i)==0: return sf.idct(c,norm='ortho') cr = np.zeros(len(c)) cr[i]=c[i] return sf.idct(cr) # mean abs error from IDCT def dct_mae(c,i,y): cr = np.zeros(len(c)) cr[i]=c[i] yr = sf.idct(cr) return myl.mae(yr,y) # indices to truncate DCT output to freq band # IN: # f - ndarray, all frequencies # ci - all indices of coef ndarray # opt['lb'] - lower cutoff freq # ['ub'] - upper cutoff freq # OUT: # i - ndarray, indices in F of elements to be kept def dct_trunc(f,ci,opt): if opt['lb']>0: ihp = myl.find(f,'>=',opt['lb']) else: ihp = ci if opt['ub']>0: ilp = myl.find(f,'<=',opt['ub']) else: ilp = ci return myl.intersect(ihp,ilp) # wrapper around wavread and energy calculation # IN: # f: wavFileName (any number of channels) or array containing # the signal (any number of channels=columns) # opt: energy extraction and postprocessing # .win, .wintyp, .winparam: window parameters # .sts: stepsize for energy contour # .do_preproc: centralizing signal # .do_out: remove outliers # .do_interp: linear interpolation over silence # .do_smooth: smoothing (median or savitzky golay) # .out dict; see pp_outl() # .smooth dict; see pp_smooth() # fs: <-1> needed if f is array # OUT: # y: time + energy contour 2-dim np.array # (1st column: time, other columns: energy) def wrapper_energy(f,opt = {}, fs = -1): opt = myl.opt_default(opt,{'wintyp':'hamming', 'winparam':'', 'sts':0.01, 'win':0.05, 'do_preproc': True, 'do_out': False, 'do_interp': False, 'do_smooth': False, 'out': {}, 'smooth': {}}) opt['out'] = myl.opt_default(opt['out'], {'f': 3, 'm': 'mean'}) opt['smooth'] = myl.opt_default(opt['smooth'],{"mtd": "sgolay", "win": 7, "ord": 3}) if type(f) is str: s, fs = wavread(f,opt) else: if fs < 0: sys.exit("array input requires sample rate fs. Exit.") s = f opt['fs']=fs # convert to 2-dim array; each column represents a channel if np.ndim(s)==1: s = np.expand_dims(s, axis=1) # output (.T-ed later, reserve first list for time) y = myl.ea() # over channels for i in np.arange(0,s.shape[1]): e = sig_energy(s[:,i],opt) # setting outlier to 0 if opt['do_out']: e = pp_outl(e,opt['out']) # interpolation over 0 if opt['do_interp']: e = pp_interp(e) # smoothing if opt['do_smooth']: e = pp_smooth(e,opt['smooth']) # <0 -> 0 e[myl.find(e,'<',0)]=0 y = myl.push(y,e) # output if np.ndim(y)==1: y = np.expand_dims(y, axis=1) else: y = y.T # concat time as 1st column sts = opt['sts'] t = np.arange(0,sts*y.shape[0],sts) if len(t) != y.shape[0]: while len(t) > y.shape[0]: t = t[0:len(t)-1] while len(t) < y.shape[0]: t = np.append(t,t[-1]+sts) t = np.expand_dims(t, axis=1) y = np.concatenate((t,y),axis=1) return y ### replacing outliers by 0 ################### def pp_outl(y,opt): if "m" not in opt: return y # ignore zeros opt['zi'] = True io = myl.outl_idx(y,opt) if np.size(io)>0: y[io] = 0 return y ### interpolation over 0 (+constant extrapolation) ############# def pp_interp(y,opt={}): xi = myl.find(y,'==',0) xp = myl.find(y,'>',0) yp = y[xp] if "kind" in opt: f = interpolate.interp1d(xp,yp,kind=opt["kind"], fill_value=(yp[0],yp[-1])) yi = f(xi) else: yi = np.interp(xi,xp,yp) y[xi]=yi return y #!check ### smoothing ######################################## # remark: savgol_filter() causes warning # Using a non-tuple sequence for multidimensional indexing is deprecated # will be out with scipy.signal 1.2.0 # (https://github.com/scipy/scipy/issues/9086) def pp_smooth(y,opt): if opt['mtd']=='sgolay': if len(y) <= opt['win']: return y y = sis.savgol_filter(y,opt['win'],opt['ord']) elif opt['mtd']=='med': y = sis.medfilt(y,opt['win']) return y # calculates energy contour from acoustic signal # do_preproc per default False. If not yet preprocessed by myl.sig_preproc() # set to True # IN: # x ndarray signal # opt['fs'] - sample frequency # ['wintyp'] - <'hamming'>, any type supported by # scipy.signal.get_window() # ['winparam'] - <''> additionally needed window parameters, # scalar, string, list ... # ['sts'] - stepsize of moving window # ['win'] - window length # OUT: # y ndarray energy contour def sig_energy(x,opt): dflt={'wintyp':'hamming','winparam':'','sts':0.01,'win':0.05} opt = myl.opt_default(opt,dflt) # stepsize and winlength in samples sts = round(opt['sts']*opt['fs']) win = min([math.floor(len(x)/2),round(opt['win']*opt['fs'])]) # weighting window w = sig_window(opt['wintyp'],win,opt['winparam']) # energy values y = np.asarray([]) for j in myl.idx_a(len(x)-win,sts): s = x[j:j+len(w)]*w y = myl.push(y,myl.rmsd(s)) return y # wrapper around windows # IN: # typ: any type supported by scipy.signal.get_window() # lng: <1> length # par: <''> additional parameters as string, scalar, list etc # OUT: # window array def sig_window(typ,l=1,par=''): if typ=='none' or typ=='const': return np.ones(l) if ((type(par) is str) and (len(par) == 0)): return sis.get_window(typ,l) return sis.get_window((typ,par),l) # pause detection # IN: # s - mono signal # opt['fs'] - sample frequency # ['ons'] - idx onset <0> (to be added to time output) # ['flt']['f'] - filter options, boundary frequencies in Hz # (2 values for btype 'band', else 1): <8000> (evtl. lowered by fu_filt()) # ['btype'] - <'band'>|'high'|<'low'> # ['ord'] - butterworth order <5> # ['fs'] - (internally copied) # ['l'] - analysis window length (in sec) # ['l_ref'] - reference window length (in sec) # ['e_rel'] - min energy quotient analysisWindow/referenceWindow # ['fbnd'] - True|<False> assume pause at beginning and end of file # ['n'] - <-1> extract exactly n pauses (if > -1) # ['min_pau_l'] - min pause length <0.5> sec # ['min_chunk_l'] - min inter-pausal chunk length <0.2> sec # ['force_chunk'] - <False>, if True, pause-only is replaced by chunk-only # ['margin'] - <0> time to reduce pause on both sides (sec; if chunks need init and final silence) # OUT: # pau['tp'] 2-dim array of pause [on off] (in sec) # ['tpi'] 2-dim array of pause [on off] (indices in s = sampleIdx-1 !!) # ['tc'] 2-dim array of speech chunks [on off] (i.e. non-pause, in sec) # ['tci'] 2-dim array of speech chunks [on off] (indices) # ['e_ratio'] - energy ratios corresponding to pauses in ['tp'] (analysisWindow/referenceWindow) def pau_detector(s,opt={}): if 'fs' not in opt: sys.exit('pau_detector: opt does not contain key fs.') dflt = {'e_rel':0.0767,'l':0.1524,'l_ref':5,'n':-1,'fbnd':False,'ons':0,'force_chunk':False, 'min_pau_l':0.4,'min_chunk_l':0.2,'margin':0, 'flt':{'btype':'low','f':np.asarray([8000]),'ord':5}} opt = myl.opt_default(opt,dflt) opt['flt']['fs'] = opt['fs'] ## removing DC, low-pass filtering flt = fu_filt(s,opt['flt']) y = flt['y'] ## pause detection for >=n pauses t, e_ratio = pau_detector_sub(y,opt) if len(t)>0: ## extending 1st and last pause to file boundaries if opt['fbnd']==True: t[0,0]=0 t[-1,-1]=len(y)-1 ## merging pauses across too short chunks ## merging chunks across too small pauses if (opt['min_pau_l']>0 or opt['min_chunk_l']>0): t, e_ratio = pau_detector_merge(t,e_ratio,opt) ## too many pauses? # -> subsequently remove the ones with highest e-ratio if (opt['n']>0 and len(t)>opt['n']): t, e_ratio = pau_detector_red(t,e_ratio,opt) ## speech chunks tc = pau2chunk(t,len(y)) ## pause-only -> chunk-only if (opt['force_chunk']==True and len(tc)==0): tc = cp.deepcopy(t) t = np.asarray([]) e_ratio = np.asarray([]) ## add onset t = t+opt['ons'] tc = tc+opt['ons'] ## return dict ## incl fields with indices to seconds (index+1=sampleIndex) pau={'tpi':t, 'tci':tc, 'e_ratio': e_ratio} pau['tp'] = myl.idx2sec(t,opt['fs']) pau['tc'] = myl.idx2sec(tc,opt['fs']) #print(pau) return pau # merging pauses across too short chunks # merging chunks across too small pauses # IN: # t [[on off]...] of pauses # e [e_rat ...] # OUT: # t [[on off]...] merged # e [e_rat ...] merged (simply mean of merged segments taken) def pau_detector_merge(t,e,opt): ## min pause and chunk length in samples mpl = myl.sec2smp(opt['min_pau_l'],opt['fs']) mcl = myl.sec2smp(opt['min_chunk_l'],opt['fs']) ## merging chunks across short pauses tm = np.asarray([]) em = np.asarray([]) for i in myl.idx_a(len(t)): if ((t[i,1]-t[i,0] >= mpl) or (opt['fbnd']==True and (i==0 or i==len(t)-1))): tm = myl.push(tm,t[i,:]) em = myl.push(em,e[i]) # nothing done in previous step? if len(tm)==0: tm = cp.deepcopy(t) em = cp.deepcopy(e) if len(tm)==0: return t, e ## merging pauses across short chunks tn = np.asarray([tm[0,:]]) en = np.asarray([em[0]]) if (tn[0,0]<mcl): tn[0,0]=0 for i in np.arange(1,len(tm),1): if (tm[i,0] - tn[-1,1] < mcl): tn[-1,1] = tm[i,1] en[-1] = np.mean([en[-1],em[i]]) else: tn = myl.push(tn,tm[i,:]) en = myl.push(en,em[i]) #print("t:\n", t, "\ntm:\n", tm, "\ntn:\n", tn) #!v return tn, en # pause to chunk intervals # IN: # t [[on off]] of pause segments (indices in signal) # l length of signal vector # OUT: # tc [[on off]] of speech chunks def pau2chunk(t,l): if len(t)==0: return np.asarray([[0,l-1]]) if t[0,0]>0: tc = np.asarray([[0,t[0,0]-1]]) else: tc = np.asarray([]) for i in np.arange(0,len(t)-1,1): if t[i,1] < t[i+1,0]-1: tc = myl.push(tc,[t[i,1]+1,t[i+1,0]-1]) if t[-1,1]<l-1: tc = myl.push(tc,[t[-1,1]+1,l-1]) return tc # called by pau_detector # IN: # as for pau_detector # OUT: # t [on off] # e_ratio def pau_detector_sub(y,opt): ## settings # reference window span rl = math.floor(opt['l_ref']*opt['fs']) # signal length ls = len(y) # min pause length ml = opt['l']*opt['fs'] # global rmse and pause threshold e_rel = cp.deepcopy(opt['e_rel']) # global rmse # as fallback in case reference window is likely to be pause # almost-zeros excluded (cf percentile) since otherwise pauses # show a too high influence, i.e. lower the reference too much # so that too few pauses detected #e_glob = myl.rmsd(y) ya = abs(y) qq = np.percentile(ya,[50]) e_glob = myl.rmsd(ya[ya>qq[0]]) t_glob = opt['e_rel']*e_glob # stepsize sts=max([1,math.floor(0.05*opt['fs'])]) # energy calculation in analysis and reference windows wopt_en = {'win':ml,'rng':[0,ls]} wopt_ref = {'win':rl,'rng':[0,ls]} # loop until opt.n criterion is fulfilled # increasing energy threshold up to 1 while e_rel < 1: # pause [on off], pause index t=np.asarray([]) j=0 # [e_y/e_rw] indices as in t e_ratio=np.asarray([]) i_steps = np.arange(1,ls,sts) for i in i_steps: # window yi = myl.windowing_idx(i,wopt_en) e_y = myl.rmsd(y[yi]) # energy in reference window e_r = myl.rmsd(y[myl.windowing_idx(i,wopt_ref)]) # take overall energy as reference if reference window is pause if (e_r <= t_glob): e_r = e_glob # if rmse in window below threshold if e_y <= e_r*e_rel: yis = yi[0] yie = yi[-1] if len(t)-1==j: # values belong to already detected pause if len(t)>0 and yis<t[j,1]: t[j,1]=yie # evtl. needed to throw away superfluous # pauses with high e_ratio e_ratio[j]=np.mean([e_ratio[j],e_y/e_r]) else: t = myl.push(t,[yis, yie]) e_ratio = myl.push(e_ratio,e_y/e_r) j=j+1 else: t=myl.push(t,[yis, yie]) e_ratio = myl.push(e_ratio,e_y/e_r) # (more than) enough pauses detected? if len(t) >= opt['n']: break e_rel = e_rel+0.1 if opt['margin']==0 or len(t)==0: return t, e_ratio # shorten pauses by margins mar=int(opt['margin']*opt['fs']) tm, erm = myl.ea(), myl.ea() for i in myl.idx_a(len(t)): # only slim non-init and -fin pauses if i>0: ts = t[i,0]+mar else: ts = t[i,0] if i < len(t)-1: te = t[i,1]-mar else: te = t[i,1] # pause disappeared if te <= ts: # ... but needs to be kept if opt['n']>0: tm = myl.push(tm,[t[i,0],t[i,1]]) erm = myl.push(erm,e_ratio[i]) continue # pause still there tm = myl.push(tm,[ts,te]) erm = myl.push(erm,e_ratio[i]) return tm, erm def pau_detector_red(t,e_ratio,opt): # keep boundary pauses if opt['fbnd']==True: n=opt['n']-2 #bp = [t[0,],t[-1,]] bp = np.concatenate((np.array([t[0,]]),np.array([t[-1,]])),axis=0) ii = np.arange(1,len(t)-1,1) t = t[ii,] e_ratio=e_ratio[ii] else: n=opt['n'] bp=np.asarray([]) if n==0: t=[] # remove pause with highest e_ratio while len(t)>n: i = myl.find(e_ratio,'is','max') j = myl.find(np.arange(1,len(e_ratio),1),'!=',i[0]) t = t[j,] e_ratio = e_ratio[j] # re-add boundary pauses if removed if opt['fbnd']==True: if len(t)==0: t=np.concatenate((np.array([bp[0,]]),np.array([bp[1,]])),axis=0) else: t=np.concatenate((np.array([bp[0,]]),np.array([t]),np.array([bp[1,]])),axis=0) return t, e_ratio # spectral balance calculation according to Fant 2000 # IN: # sig: signal (vowel segment) # fs: sampe rate # opt: # 'win': length of central window in ms <len(sig)>; -1 is same as len(sig) # 'ub': upper freq boundary in Hz <-1> default: no low-pass filtering # 'domain': <'freq'>|'time'; pre-emp in frequency (Fant) or time domain # 'alpha': <0.95> for time domain only y[n] = x[n]-alpha*x[n-1] # if alpha>0 it is interpreted as lower freq threshold for pre-emp # OUT: # sb: spectral tilt def splh_spl(sig,fs,opt_in={}): opt = cp.deepcopy(opt_in) opt = myl.opt_default(opt,{'win':len(sig),'f':-1,'btype':'none', 'domain':'freq','alpha':0.95}) #print(opt) #myl.stopgo() ## cut out center window ################################## ls = len(sig) if opt['win'] <= 0: opt['win'] = ls if opt['win'] < ls: wi = myl.windowing_idx(int(ls/2), {'rng':[0, ls], 'win':int(opt['win']*fs)}) y = sig[wi] else: y = cp.deepcopy(sig) if len(y)==0: return np.nan # reference sound pressure level p_ref = pRef('spl') ## pre-emp in time domain #################################### if opt['domain']=='time': # low pass filtering if opt['btype'] != 'none': flt = fu_filt(y,{'fs':fs,'f':opt['f'],'ord':6, 'btype':opt['btype']}) y = flt['y'] yp = pre_emphasis(y,opt['alpha'],fs,False) y_db = 20*np.log10(myl.rmsd(y)/p_ref) yp_db = 20*np.log10(myl.rmsd(yp)/p_ref) #print(yp_db - y_db) return yp_db - y_db ## pre-emp in frequency domain ############################## # according to Fant # actual length of cut signal n = len(y) ## hamming windowing y *= np.hamming(n) ## spectrum Y = np.fft.fft(y,n) N = int(len(Y)/2) ## frequency components XN = np.fft.fftfreq(n,d=1/fs) X = XN[0:N] # same as X = np.linspace(0, fs/2, N, endpoint=True) ## amplitudes # sqrt(Y.real**2 + Y.imag**2) # to be normalized: # *2 since only half of transform is used # /N since output needs to be normalized by number of samples # (tested on sinus, cf # http://www.cbcity.de/die-fft-mit-python-einfach-erklaert) a = 2*np.abs(Y[:N])/N ## vowel-relevant upper frequency boundary if opt['btype'] != 'none': vi = fu_filt_freq(X,opt) if len(vi)>0: X = X[vi] a = a[vi] ## Fant preemphasis filter (Fant et al 2000, p10f eq 20) preemp = 10*np.log10((1+X**2/200**2)/(1+X**2/5000**2)) ap = 10*np.log10(a)+preemp # retransform to absolute scale ap = 10**(ap/10) # corresponds to gain values in Fant 2000, p11 #for i in myl.idx(a): # print(X[i],preemp[i]) #myl.stopgo() ## get sound pressure level of both spectra # as 20*log10(P_eff/P_ref) spl = 20*np.log10(myl.rmsd(a)/p_ref) splh = 20*np.log10(myl.rmsd(ap)/p_ref) ## get energy level of both spectra #spl = 20*np.log10(myl.mse(a)/p_ref) #splh = 20*np.log10(myl.mse(ap)/p_ref) ## spectral balance sb = splh-spl #print(spl,splh,sb) #myl.stopgo() #fig = plt.figure() #plt.plot(X,20*np.log10(a),'b') #plt.plot(X,20*np.log10(preemp),'g') #plt.plot(X,20*np.log10(ap),'r') #plt.show() return sb # returns indices of freq in x fullfilling conditions in opt # IN: # X: freq array # opt: 'btype' - 'none'|'low'|'high'|'band'|'stop' # 'f': 1 freq for low|high, 2 freq for band|stop # OUT: # i: indices in X fulfilling condition def fu_filt_freq(X,opt): typ = opt['btype'] f = opt['f'] # all indices if typ=='none': return myl.idx_a(len(X)) # error handling if re.search('(band|stop)',typ) and (not myl.listType(f)): print('filter type requires frequency list. Done nothing.') return myl.idx_a(len(X)) if re.search('(low|high)',typ) and myl.listType(f): print('filter type requires only 1 frequency value. Done nothing.') return myl.idx_a(len(X)) if typ=='low': return np.nonzero(X<=f) elif typ=='high': return np.nonzero(X>=f) elif typ == 'band': i = set(np.nonzero(X>=f[0])) return np.sort(np.array(i.intersection(set(np.nonzero(X<=f[1]))))) elif typ == 'stop': i = set(np.nonzero(X<=f[0])) return np.sort(np.array(i.union(set(np.nonzero(X>=f[1]))))) return myl.idx_a(len(X)) # returns reverence levels for typ # IN: # typ # 'spl': sound pressure level # 'i': intensity level # OUT: # corresponding reference level def pRef(typ): if typ=='spl': return 2*10**(-5) return 10**(-12) # syllable nucleus detection # IN: # s - mono signal # opt['fs'] - sample frequency # ['ons'] - onset in sec <0> (to be added to time output) # ['flt']['f'] - filter options, boundary frequencies in Hz # (2 values for btype 'band', else 1): <np.asarray([200,4000])> # ['btype'] - <'band'>|'high'|'low' # ['ord'] - butterworth order <5> # ['fs'] - (internally copied) # ['l'] - analysis window length # ['l_ref'] - reference window length # ['d_min'] - min distance between subsequent nuclei (in sec) # ['e_min'] - min energy required for nucleus as a proportion to max energy <0.16> # ['e_rel'] - min energy quotient analysisWindow/referenceWindow # ['e_val'] - quotient, how sagged the energy valley between two nucleus # candidates should be. Measured relative to the lower energy # candidate. The lower, the deeper the required valley between # two peaks. Meaningful range ]0, 1]. Recommended range: # [0.9 1[ # ['center'] - boolean; subtract mean energy # OUT: # ncl['t'] - vector of syl ncl time stamps (in sec) # ['ti'] - corresponding vector idx in s # ['e_ratio'] - corresponding energy ratios (analysisWindow/referenceWindow) # bnd['t'] - vector of syl boundary time stamps (in sec) # ['ti'] - corresponding vector idx in s # ['e_ratio'] - corresponding energy ratios (analysisWindow/referenceWindow) def syl_ncl(s,opt={}): ## settings if 'fs' not in opt: sys.exit('syl_ncl: opt does not contain key fs.') dflt = {'flt':{'f':np.asarray([200,4000]),'btype':'band','ord':5}, 'e_rel':1.05,'l':0.08,'l_ref':0.15, 'd_min':0.12, 'e_min':0.1, 'ons':0, 'e_val': 1, 'center': False} opt = myl.opt_default(opt,dflt) opt['flt']['fs'] = opt['fs'] if syl_ncl_trouble(s,opt): t = np.asarray([round(len(s)/2+opt['ons'])]) ncl = {'ti':t, 't':myl.idx2sec(t,opt['fs']), 'e_ratio':[0]} bnd = cp.deepcopy(ncl) return ncl, bnd # reference window length rws = math.floor(opt['l_ref']*opt['fs']) # energy win length ml = math.floor(opt['l']*opt['fs']) # stepsize sts = max([1,math.floor(0.03*opt['fs'])]) # minimum distance between subsequent nuclei # (in indices) #md = math.floor(opt['d_min']*opt['fs']/sts) md = math.floor(opt['d_min']*opt['fs']) # bandpass filtering flt = fu_filt(s,opt['flt']) y = flt['y'] # signal length ls = len(y) # minimum energy as proportion of maximum energy found e_y = np.asarray([]) i_steps = np.arange(1,ls,sts) for i in i_steps: yi = np.arange(i,min([ls,i+ml-1]),1) e_y = np.append(e_y,myl.rmsd(y[yi])) if bool(opt['center']): e_y -= np.mean(e_y) e_min = opt['e_min']*max(e_y) # output vector collecting nucleus sample indices t = np.asarray([]) all_i = np.asarray([]) all_e = np.asarray([]) all_r = np.asarray([]) # energy calculation in analysis and reference windows wopt_en = {'win':ml,'rng':[0,ls]} wopt_ref = {'win':rws,'rng':[0,ls]} for i in i_steps: yi = myl.windowing_idx(i,wopt_en) #yi = np.arange(yw[0],yw[1],1) ys = y[yi] e_y = myl.rmsd(ys) #print(ys,'->',e_y) ri = myl.windowing_idx(i,wopt_ref) #ri = np.arange(rw[0],rw[1],1) rs = y[ri] e_rw = myl.rmsd(rs) all_i = np.append(all_i,i) all_e = np.append(all_e,e_y) all_r = np.append(all_r,e_rw) # local energy maxima # (do not use min duration md for order option, since local # maximum might be obscured already by energy increase # towards neighboring peak further away than md, and not only by # closer than md peaks) idx = sis.argrelmax(all_e,order=1) #plot_sylncl(all_e,idx) #!v #print(opt["ons"]/opt["fs"] + np.array(idx)*sts/opt["fs"]) #!v #myl.stopgo() #!v ### maxima related to syl ncl ## a) energy constraints # timestamps (idx) tx = np.asarray([]) # energy ratios e_ratiox = np.asarray([]) # idx in all_i tix = np.asarray([]).astype(int) for i in idx[0]: # valley between this and previous nucleus deep enough? if len(tix)>0: ie = all_e[tix[-1]:i] if len(ie)<3: continue valley = np.min(ie) nclmin = np.min([ie[0],all_e[i]]) if valley >= opt['e_val'] * nclmin: # replace previous nucleus by current one if all_e[i] > ie[0]: #!n all_e[tix[-1]] = all_e[i] #!n tx[-1] = all_i[i] #!n tix[-1] = i #!n e_ratiox[-1] = all_e[i]/all_r[i] #!n #print("valley constraint -- tx:", all_i[i]/opt["fs"], "nclmin:", nclmin, "valley:", valley, "ie0:", ie[0], "all_e:", all_e[i], "--> skip!") #!v continue if ((all_e[i] >= all_r[i]*opt['e_rel']) and (all_e[i] > e_min)): tx = np.append(tx,all_i[i]) tix = np.append(tix,i) e_ratiox = np.append(e_ratiox, all_e[i]/all_r[i]) #else: #!v # print("min_en constraint -- tx:", all_i[i]/opt["fs"], "all_e:", all_e[i], "all_r:", all_r[i], "e_min:", e_min, "--> skip!") #!v #print(len(tx)) #!v if len(tx)==0: dflt = {'ti':myl.ea(), 't':myl.ea(), 'e_ratio':myl.ea()} return dflt, dflt #plot_sylncl(all_e,tix) #!v ## b) min duration constraints # init by first found ncl t = np.array([tx[0]]) e_ratio = np.array([e_ratiox[0]]) # idx in all_i ti = np.array([tix[0]]).astype(int) for i in range(1,len(tx)): # ncl too close if np.abs(tx[i]-t[-1]) < md: # current ncl with higher energy: replace last stored one if e_ratiox[i] > e_ratio[-1]: t[-1] = tx[i] ti[-1] = tix[i] e_ratio[-1] = e_ratiox[i] else: t = np.append(t,tx[i]) ti = np.append(ti,tix[i]) e_ratio = np.append(e_ratio,e_ratiox[i]) #plot_sylncl(all_e,ti) #!v ### minima related to syl bnd tb = np.asarray([]) e_ratio_b = np.asarray([]) if len(t)>1: for i in range(len(ti)-1): j = myl.idx_seg(ti[i],ti[i+1]) j_min = myl.find(all_e[j],'is','min') if len(j_min)==0: j_min=[0] # bnd idx bj = j[0]+j_min[0] tb = np.append(tb,all_i[bj]) e_ratio_b = np.append(e_ratio_b, all_e[bj]/all_r[bj]) # add onset t = t+opt['ons'] tb = tb+opt['ons'] # output dict, # incl idx to seconds ncl = {'ti':t, 't':myl.idx2sec(t,opt['fs']), 'e_ratio':e_ratio} bnd = {'ti':tb, 't':myl.idx2sec(tb,opt['fs']), 'e_ratio':e_ratio_b} #print(ncl['t'], e_ratio) return ncl, bnd def syl_ncl_trouble(s,opt): if len(s)/opt['fs'] < 0.1: return True return False # wrapper around Butter filter # IN: # 1-dim vector # opt['fs'] - sample rate # ['f'] - scalar (high/low) or 2-element vector (band) of boundary freqs # ['order'] - order # ['btype'] - band|low|high; all other values: signal returned as is # OUT: # flt['y'] - filtered signal # ['b'] - coefs # ['a'] def fu_filt(y,opt): # do nothing if not re.search('^(high|low|band)$',opt['btype']): return {'y': y, 'b': myl.ea(), 'a': myl.ea()} # check f<fs/2 if (opt['btype'] == 'low' and opt['f']>=opt['fs']/2): opt['f']=opt['fs']/2-100 elif (opt['btype'] == 'band' and opt['f'][1]>=opt['fs']/2): opt['f'][1]=opt['fs']/2-100 fn = opt['f']/(opt['fs']/2) b, a = sis.butter(opt['ord'], fn, btype=opt['btype']) yf = sis.filtfilt(b,a,y) return {'y':yf,'b':b,'a':a} ##### discontinuity measurement ####################################### # measures delta and linear fit discontinuities between # adjacent array elements in terms of: # - delta # - reset of regression lines # - root mean squared deviation between overall regression line and # -- preceding segment's regression line # -- following segment's regression line # -- both, preceding and following, regression lines # - extrapolation rmsd between following regression line # and following regression line, extrapolated by regression # on preceding segment # IN: # x: nx2 array [[time val] ...] # OR # nx1 array [val ...] # for the latter indices are taken as time stamps # ts: nx1 array [time ...] of time stamps (or indices for size(x)=nx1) # at which to calculate discontinuity; if empty, discontinuity is # calculated at each point in time. If size(x)=nx1 ts MUST contain # indices # nx2 array [[t_off t_on] ...] to additionally account for pauses # opt: dict # .win: <'glob'>|'loc' calculate discontinuity over entire sequence # or within window # .l: <3> if win==loc, length of window in sec or idx # (splitpoint - .l : splitpoint + .l) # .do_plot: <0> plots orig contour and linear stylization # .plot: <{}> dict with plotting options; cf. discont_seg() # OUT: # d dict # (s1: pre-bnd segment [i-l,i[, # s2: post-bnd segment [i,i+l] # sc: joint segment [i-l,i+l]) # dlt: delta # res: reset # ry1: s1, rmsd between joint vs pre-bnd fit # ry2: s2, rmsd between joint vs post-bnd fit # ryc: sc, rmsd between joint vs pre+post-bnd fit # ry2e: s2: rmsd between pre-bnd fit extrapolated to s2 and post-bnd fit # rx1: s1, rmsd between joint fit and pre-boundary x-values # rx2: s2, rmsd between joint fit and post-boundary x-values # rxc: sc, rmsd between joint fit and pre+post-boundary x-values # rr1: s1, ratio rmse(joint_fit)/rmse(pre-bnd_fit) # rr2: s2, ratio rmse(joint_fit)/rmse(post-bnd_fit) # rrc: sc, ratio rmse(joint_fit)/rmse(pre+post-bnd_fit) # ra1: c1-rate s1 # ra2: c1-rate s2 # dlt_ra: ra2-ra1 # s1_c3: cubic fitting coefs of s1 # s1_c2 # s1_c1 # s1_c0 # s2_c3: cubic fitting coefs of s2 # s2_c2 # s2_c1 # s2_c0 # dlt_c3: s2_c3-s1_c3 # dlt_c2: s2_c2-s1_c2 # dlt_c1: s2_c1-s1_c1 # dlt_c0: s2_c0-s1_c0 # eucl_c: euclDist(s1_c*,s2_c*) # corr_c: corr(s1_c*,s2_c*) # v1: variance in s1 # v2: variance in s2 # vc: variance in sc # vr: variance ratio (mean(v1,v2))/vc # dlt_v: v2-v1 # m1: mean in s1 # m2: mean in s2 # dlt_m: m2-m1 # p: pause length (in sec or idx depending on numcol(x); # always 0, if t is empty or 1-dim) # i in each list refers to discontinuity between x[i-1] and x[i] # dimension of each list: if len(ts)==0: n-1 array (first x-element skipped) # else: mx6; m is number of ts-elements in range of x[:,0], # resp. in index range of x[1:-1] ## REMARKS: # for all variables but corr_c and vr higher values indicate higher discontinuity ## variables: # x1: original f0 contour for s1 # x2: original f0 contour for s2 # xc: original f0 contour for sc # y1: line fitted on segment a # y2: line fitted on segment b # yc: line fitted on segments a+b # yc1: yc part for x1 # yc2: yc part for x2 # ye: x1/y1-fitted line for x2 # cu1: cubic fit coefs of time-nrmd s1 # cu2: cubic fit coefs of time-nrmd s2 # yu1: polyval(cu1) # yu2: polyval(cu2); yu1 and yu2 are cut to same length def discont(x,ts=[],opt={}): # time: first column or indices if np.ndim(x)==1: t = np.arange(0,len(x)) x = np.asarray(x) else: t = x[:,0] x = x[:,1] # tsi: index pairs in x for which to derive discont values # [[infimum supremum]...] s1 right-aligned to infimum, s2 left-aligne to supremum # for 1-dim ts both values are adjacent [[i-1, i]...] # zp: zero pause True for 1-dim ts input, False for 2-dim tsi, zp = discont_tsi(t,ts) # opt init opt = myl.opt_default(opt,{'win':'glob','l':3,'do_plot':False, 'plot': {}}) # output d = discont_init() # linear fits # over time stamp pairs for ii in tsi: ## delta d['dlt'].append(x[ii[1]]-x[ii[0]]) ## segments (x, y values of pre-, post, joint segments) t1,t2,tc,x1,x2,xc,y1,y2,yc,yc1,yc2,ye,cu1,cu2,yu1,yu2 = discont_seg(t,x,ii,opt) d = discont_feat(d,t1,t2,tc,x1,x2,xc,y1,y2,yc,yc1,yc2,ye,cu1,cu2,yu1,yu2,zp) # to np.array for x in d: d[x] = np.asarray(d[x]) return d # init discont dict def discont_init(): return {"dlt": [], "res": [], "ry1": [], "ry2": [], "ryc": [], "ry2e": [], "rx1": [], "rx2": [], "rxc": [], "rr1": [], "rr2": [], "rrc": [], "ra1": [], "ra2": [], "dlt_ra": [], "s1_c3": [], "s1_c2": [], "s1_c1": [], "s1_c0": [], "s2_c3": [], "s2_c2": [], "s2_c1": [], "s2_c0": [], "dlt_c3": [], "dlt_c2": [], "dlt_c1": [], "dlt_c0": [], "eucl_c": [], "corr_c": [], "eucl_y": [], "corr_y": [], "v1": [], "v2": [], "vc": [], "vr": [], "dlt_v": [], "m1": [], "m2": [], "dlt_m": [], "p": []} # pre/post-boundary and joint segments def discont_seg(t,x,ii,opt): # preceding, following segment indices i1, i2 = discont_idx(t,ii,opt) #print(ii,"\n-> ", i1,"\n-> ", i2) #!v #myl.stopgo() #!v t1, t2, x1, x2 = t[i1], t[i2], x[i1], x[i2] tc = np.concatenate((t1,t2)) xc = np.concatenate((x1,x2)) # normalized time (only needed for reported polycoefs, not # for output lines tn1 = myl.nrm_vec(t1,{'mtd': 'minmax', 'rng': [-1, 1]}) tn2 = myl.nrm_vec(t2,{'mtd': 'minmax', 'rng': [-1, 1]}) # linear fit coefs c1 = myPolyfit(t1,x1,1) c2 = myPolyfit(t2,x2,1) cc = myPolyfit(tc,xc,1) # cubic fit coefs (for later shape comparison) cu1 = myPolyfit(tn1,x1,3) cu2 = myPolyfit(tn2,x2,3) yu1 = np.polyval(cu1,tn1) yu2 = np.polyval(cu2,tn2) # cut to same length (from boundary) ld = len(yu1)-len(yu2) if ld>0: yu1=yu1[ld:len(yu1)] elif ld<0: yu2=yu2[0:ld] # robust treatment while len(yu2)<len(yu1): yu2 = np.append(yu2,yu2[-1]) while len(yu1)<len(yu2): yu1 = np.append(yu1,yu1[-1]) # fit values y1 = np.polyval(c1,t1) y2 =
np.polyval(c2,t2)
numpy.polyval
import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib as mpl mpl.use('Agg') from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np from scipy.misc import imread def generateLabel(tensor, label, args): if args.soft_label: if label == 1: out = torch.Tensor(tensor.size()).uniform_(0.7, 1.2) else: out = torch.Tensor(tensor.size()).uniform_(0, 0.3) out = Variable(out).cuda() else: if label == 1: out = torch.ones_like(tensor) else: out = torch.zeros_like(tensor) out = out.cuda() return out def generateZ(args): if args.z_dis == "norm": Z = torch.randn(args.batch_size_gan, args.z_dim, args.z_start_vox[0], args.z_start_vox[1], args.z_start_vox[2]).normal_(0, 0.33) elif args.z_dis == "uni": Z = torch.rand(args.batch_size_gan, args.z_dim, args.z_start_vox[0], args.z_start_vox[1], args.z_start_vox[2]) else: print("z_dist is not normal or uniform") Z = Z.type(torch.FloatTensor) return Z def adjust_learning_rate(optimizer, epoch, init_lr, update_lr_epoch): """Sets the learning rate to the initial LR decayed by 10 every udpate_lr epochs""" lr = init_lr * (0.1 ** (epoch // update_lr_epoch)) print('Set new lr = ' + str(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr def plot_3D_scene(data_pred, data_label, log_img_name, src_img_name, free_voxels): x, y, z = np.meshgrid(
np.arange(data_pred.shape[0])
numpy.arange
import numpy as np from numba import njit import pandas as pd import src from scipy import optimize from scipy import optimize as opt from scipy.stats import truncnorm from .from_parameters_to_lambdas import force_sum_to_1, logit, reparam_lambdas, h_and_exp_betas_eqns, jac from typing import Tuple, List def gen_prior_shocks(nfirms, σerror=0.005): return np.random.normal(loc=0., scale=σerror, size=nfirms) @njit() def nb_clip(x, a, b): """ Clip x between a and b """ if x < a: return a if x > b: return b return x def jac_(x): return jac(x, βs=src.betas_transition) #@njit() #TODO: try to njit this def from_theta_to_lambda0(x, θ, prior_shock: float, starting_values=np.array([0.1, 0.5])): """ Generates a lambda0 vector from the theta vector and x It passes through the entropy and expected value of betas (H, EB) θ = [θ10, θ11, θ20, θ21] x : characteristics of firms prior_shock: puts randomness in the relationship between theta and lambda """ #TODO: bound H between 0 and log(cardinality(lambdas)) or use standardized H H = np.e**((θ[0] + θ[1]*x + prior_shock)) Eβ = -np.e**(θ[2] + θ[3]*x + prior_shock) #Bound it? def fun_(lambda_try): return h_and_exp_betas_eqns(lambda_try, src.betas_transition, Eβ, H) #Numerical procedure to get lambda vector from H, Eβ #sol = optimize.root(fun_, logit(starting_values), jac=jac_) sol = optimize.minimize(fun_, x0=src.logit(starting_values), method='Powell') lambdas_sol = force_sum_to_1(reparam_lambdas(sol.x)) if not sol.success: # Use Nelder-Mead from different starting_value sol = optimize.minimize(fun_, x0=src.logit(np.array([0.1, 0.08])), method='Nelder-Mead') lambdas_sol = force_sum_to_1(reparam_lambdas(sol.x)) if not sol.success: sol = optimize.minimize(fun_, x0=src.logit(
np.array([0.7, 0.1])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 1 17:39:00 2018 @author: kazuki.onodera """ import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import log_loss import utils M = 14 # ============================================================================= # load # ============================================================================= y_true = pd.read_pickle('../data/y_true.pkl').values y_pred = pd.read_pickle('../data/oof.pkl') weights = np.array([1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1]) tr = pd.read_pickle('../data/train.pkl') idx_gal = tr[tr['hostgal_photoz'] == 0].index idx_exgal = tr[tr['hostgal_photoz'] != 0].index y_pred.iloc[idx_gal, [1, 3, 4, 6, 7, 9, 10, 11, 13]] = 0 y_pred.iloc[idx_exgal, [0, 2, 5, 8, 12]] = 0 y_pred = y_pred.values.astype(float) y_pred /= y_pred.sum(1)[:,None] for i in range(14): print( log_loss(y_true[:,i], y_pred[:,i]) ) tmp = y_true * y_pred tr['loss'] = 1 - tmp.max(1) # ============================================================================= # y_pred # ============================================================================= #def eval_sub(y_true, y_pred, myweight=None): # y_pred = y_pred.copy() # N = y_true.shape[0] # if myweight is None: # myweight = np.ones(M) # for i in range(M): # y_pred[:,i] *= myweight[i] # # # normalize # y_pred /= y_pred.sum(1)[:,None] # # logloss = 0 # for i in range(M): # tmp = 0 # w = weights[i] # for j in range(N): # tmp += (y_true[j,i] * np.log( y_pred[j,i] )) # logloss += w * tmp / sum(y_true[:,i]) # logloss /= -sum(weights) # return logloss # # #eval_sub(y_true.values, y_pred.values.astype(float)) # #eval_sub(y_true, y_pred, weights) # ============================================================================= # # ============================================================================= def multi_weighted_logloss(y_true, y_pred, myweight=None): """ @author olivier https://www.kaggle.com/ogrellier multi logloss for PLAsTiCC challenge """ # class_weights taken from Giba's topic : https://www.kaggle.com/titericz # https://www.kaggle.com/c/PLAsTiCC-2018/discussion/67194 # with Kyle Boone's post https://www.kaggle.com/kyleboone classes = [6, 15, 16, 42, 52, 53, 62, 64, 65, 67, 88, 90, 92, 95] class_weight = {6: 1, 15: 2, 16: 1, 42: 1, 52: 1, 53: 1, 62: 1, 64: 2, 65: 1, 67: 1, 88: 1, 90: 1, 92: 1, 95: 1} if len(np.unique(y_true)) > 14: classes.append(99) class_weight[99] = 2 if myweight is None: myweight = np.ones(M) y_p = y_pred * myweight # normalize y_p /= y_p.sum(1)[:,None] # Normalize rows and limit y_preds to 1e-15, 1-1e-15 y_p = np.clip(a=y_p, a_min=1e-15, a_max=1 - 1e-15) # Transform to log y_p_log = np.log(y_p) # Get the log for ones, .values is used to drop the index of DataFrames # Exclude class 99 for now, since there is no class99 in the training set # we gave a special process for that class y_log_ones = np.sum(y_true * y_p_log, axis=0) # Get the number of positives for each class nb_pos = np.nansum(y_true, axis=0).astype(float) # Weight average and divide by the number of positives class_arr = np.array([class_weight[k] for k in sorted(class_weight.keys())]) y_w = y_log_ones * class_arr / nb_pos loss = - np.nansum(y_w) /
np.sum(class_arr)
numpy.sum
import numpy as np import matplotlib.pylab as plt class Relu: def __init__(self): self.mask=None def forward(self,x): self.mask = ( x<=0) out =x.copy() out[self.mask]=0 return out def backward(self,dout): dout[self.mask]=0 dx=dout return dx class Sigmoid: def __init__(self): self.out =None def forward (self,x): out =1/(1+ np.exp(-x)) self.out =out return out def backward(self,dout): return dout*(1-self.out)*self.out class Affine: def __init__(self,W,b): self.W=W self.b=b self.x=None self.dW=None self.db=None def forward(self,x): self.x=x out =np.dot(x,self.W)+self.b return out def backward(self,dout): dx=
np.dot(dout,self.W.T)
numpy.dot
from scipy.optimize.nonlin import TerminationCondition from your_code import L1Regularization, L2Regularization, HingeLoss, SquaredLoss, ZeroOneLoss from your_code import GradientDescent, accuracy, confusion_matrix from your_code import load_data import numpy as np import matplotlib.pyplot as plt # Problem 1a train_features, _, train_targets, _ = load_data('mnist-binary', fraction=1.0) gd = GradientDescent(loss='hinge', learning_rate=1e-4) gd.fit(train_features, train_targets) plt.figure() plt.plot(range(len(gd.loss_list)), gd.loss_list) plt.xlabel('Iterations') plt.ylabel('Loss') plt.title('Loss by Iterations') plt.savefig('experiments/Q1a_loss.png') plt.figure() plt.plot(range(len(gd.acc_list)), gd.acc_list) plt.xlabel('Iterations') plt.ylabel('Accuracy') plt.title('Accuracy by Iterations') plt.savefig('experiments/Q1a_accuracy.png') # Problem 1b train_features, _, train_targets, _ = load_data('mnist-binary', fraction=1.0) gd = GradientDescent(loss='hinge', learning_rate=1e-4) gd.fit(train_features, train_targets, batch_size=64, max_iter=1000*train_features.shape[0]) plt.figure() plt.plot(range(len(gd.loss_list)), gd.loss_list) plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('Loss by Epoch') plt.savefig('experiments/Q1b_loss.png') plt.figure() plt.plot(range(len(gd.acc_list)), gd.acc_list) plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.title('Accuracy by Epoch') plt.savefig('experiments/Q1b_accuracy.png') # Problem 2a train_features, _, train_targets, _ = load_data('synthetic', fraction=1.0) bias_list = np.linspace(-5.5, 0.5, 100) loss_list = [] w0 =
np.ones(train_features.shape[1])
numpy.ones