prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
from __future__ import absolute_import
import logging
from copy import copy
import numpy as np
import scipy.ndimage as nd
from .reference import generate_reference
from .reference_q4 import generate_reference_Q4, find_elm_borders_mesh, normalized_zero_mean
from ..IO.image_stack import ImageStack
from ..elements.b_splines import BSplineSurface
from ..elements.q4 import Q4
from ..mesh.meshUtilities import Mesh
from ..utils import convert_to_img_frame, find_element_borders
def correlate_img_to_ref_spline(node_pos, img, ref, settings):
"""
Correlate an image to a reference
The routine identifies the part of the image covered by the mesh and
tries to perform image correlation on this part of the image.
Parameters
----------
node_pos : ndarray
The position of the nodes
mesh : Mesh
The mesh object
img : ndarray
2d array containing the image
ref : Reference
The reference object
settings : DICInput
The settings which will be used during the analysis
Returns
-------
updated node positions, current pixel values
NOTES
-------
The function extracts a rectangular region of the image covered by the element, which may be very large
if the mesh is tilted. This would reduce the performance of the routine
"""
element_borders = find_element_borders(node_pos, settings.mesh)
image_frame, node_pos_img_coords = convert_to_img_frame(img, node_pos, settings.mesh, element_borders, settings)
node_position_increment, Ic, conv = correlate_frames(node_pos_img_coords, settings.mesh, image_frame, ref, settings)
node_position_new = node_pos + node_position_increment
return node_position_new, Ic, conv
def correlate_frames(node_pos, mesh, img, ref, settings):
"""
Parameters
----------
node_pos : ndarray
The position of the nodes
mesh : Mesh
The mesh object
img : ndarray
2d array containing the image frame
ref : Reference
The reference object
settings : DICInput
The settings which will be used during the analysis
Returns
-------
updated node positions, current pixel values
"""
logger = logging.getLogger(__name__)
node_pos = np.copy(node_pos).astype(settings.precision)
# Declare empty arrays
pixel_pos = np.zeros((2, ref.n_pixels), dtype=settings.precision)
dnod_x = np.zeros(mesh.n_nodes * 2)
image_filtered = nd.spline_filter(img, order=settings.interpolation_order).transpose()
for it in range(settings.maxit):
# Find nodal positions within ROI
np.dot(node_pos, ref.Nref_stack, out=pixel_pos)
# Find pixel values for current coordinates
Ic = nd.map_coordinates(image_filtered, pixel_pos, order=settings.interpolation_order, prefilter=False)
# Calculate position increment as (B^T B)^-1 * (B^T*dIk) "Least squares solution"
dnod = np.dot(ref.K, ref.I0_stack - Ic)
# Add increment to nodal positions
node_pos[0, :] += dnod[:mesh.n_nodes]
node_pos[1, :] += dnod[mesh.n_nodes:]
dnod_x += dnod
# Check for convergence
if np.max(np.abs(dnod)) < settings.tol:
logger.info('Frame converged in %s iterations', it)
return | np.array((dnod_x[:mesh.n_nodes], dnod_x[mesh.n_nodes:])) | numpy.array |
# MIT License
#
# Copyright (c) 2020 University of Oxford
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Test cases for the python API for tsdate.
"""
import unittest
import collections
import json
import warnings
import math
import numpy as np
import scipy
import msprime
import tsinfer
import tskit
import tsdate
from tsdate.base import NodeGridValues
from tsdate.prior import (SpansBySamples, PriorParams, ConditionalCoalescentTimes,
fill_priors, gamma_approx)
from tsdate.date import (Likelihoods, LogLikelihoods, LogLikelihoodsStreaming,
InOutAlgorithms, posterior_mean_var, constrain_ages_topo,
get_dates, date)
from tsdate.util import nodes_time
import utility_functions
class TestBasicFunctions(unittest.TestCase):
"""
Test for some of the basic functions used in tsdate
"""
def test_alpha_prob(self):
self.assertEqual(ConditionalCoalescentTimes.m_prob(2, 2, 3), 1.)
self.assertEqual(ConditionalCoalescentTimes.m_prob(2, 2, 4), 0.25)
def test_tau_expect(self):
self.assertEqual(ConditionalCoalescentTimes.tau_expect(10, 10), 1.8)
self.assertEqual(ConditionalCoalescentTimes.tau_expect(10, 100), 0.09)
self.assertEqual(ConditionalCoalescentTimes.tau_expect(100, 100), 1.98)
self.assertEqual(ConditionalCoalescentTimes.tau_expect(5, 10), 0.4)
def test_tau_squared_conditional(self):
self.assertAlmostEqual(
ConditionalCoalescentTimes.tau_squared_conditional(1, 10), 4.3981418)
self.assertAlmostEqual(
ConditionalCoalescentTimes.tau_squared_conditional(100, 100),
-4.87890977e-18)
def test_tau_var(self):
self.assertEqual(
ConditionalCoalescentTimes.tau_var(2, 2), 1)
self.assertAlmostEqual(
ConditionalCoalescentTimes.tau_var(10, 20), 0.0922995960)
self.assertAlmostEqual(
ConditionalCoalescentTimes.tau_var(50, 50), 1.15946186)
def test_gamma_approx(self):
self.assertEqual(gamma_approx(2, 1), (4., 2.))
self.assertEqual(gamma_approx(0.5, 0.1), (2.5, 5.0))
class TestNodeTipWeights(unittest.TestCase):
def verify_weights(self, ts):
span_data = SpansBySamples(ts)
# Check all non-sample nodes in a tree are represented
nonsample_nodes = collections.defaultdict(float)
for tree in ts.trees():
for n in tree.nodes():
if not tree.is_sample(n):
# do not count a span of a node where there are no sample descendants
nonsample_nodes[n] += (tree.span if tree.num_samples(n) > 0 else 0)
self.assertEqual(set(span_data.nodes_to_date), set(nonsample_nodes.keys()))
for id, span in nonsample_nodes.items():
self.assertAlmostEqual(span, span_data.node_spans[id])
for focal_node in span_data.nodes_to_date:
wt = 0
for _, weights in span_data.get_weights(focal_node).items():
self.assertTrue(0 <= focal_node < ts.num_nodes)
wt += np.sum(weights['weight'])
self.assertLessEqual(max(weights['descendant_tips']), ts.num_samples)
if not np.isnan(wt):
# Dangling nodes will have wt=nan
self.assertAlmostEqual(wt, 1.0)
return span_data
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
span_data = self.verify_weights(ts)
# with a single tree there should only be one weight
for node in span_data.nodes_to_date:
self.assertTrue(len(span_data.get_weights(node)), 1)
self.assertTrue(2 in span_data.get_weights(2)[ts.num_samples]['descendant_tips'])
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
n = ts.num_samples
span_data = self.verify_weights(ts)
# with a single tree there should only be one weight
for node in span_data.nodes_to_date:
self.assertTrue(len(span_data.get_weights(node)), 1)
for nd, expd_tips in [
(4, 3), # Node 4 (root) expected to have 3 descendant tips
(3, 2)]: # Node 3 (1st internal node) expected to have 2 descendant tips
self.assertTrue(
np.isin(span_data.get_weights(nd)[n]['descendant_tips'], expd_tips))
def test_one_tree_n4(self):
ts = utility_functions.single_tree_ts_n4()
n = ts.num_samples
span_data = self.verify_weights(ts)
# with a single tree there should only be one weight
for node in span_data.nodes_to_date:
self.assertTrue(len(span_data.get_weights(node)), 1)
for nd, expd_tips in [
(6, 4), # Node 6 (root) expected to have 4 descendant tips
(5, 3), # Node 5 (1st internal node) expected to have 3 descendant tips
(4, 2)]: # Node 4 (2nd internal node) expected to have 3 descendant tips
self.assertTrue(
np.isin(span_data.get_weights(nd)[n]['descendant_tips'], expd_tips))
def test_two_trees(self):
ts = utility_functions.two_tree_ts()
n = ts.num_samples
span_data = self.verify_weights(ts)
self.assertEqual(span_data.lookup_weight(5, n, 3), 1.0) # Root on R tree
self.assertEqual(span_data.lookup_weight(4, n, 3), 0.2) # Root on L tree ...
# ... but internal node on R tree
self.assertEqual(span_data.lookup_weight(4, n, 2), 0.8)
self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) # Internal nd on L tree
def test_missing_tree(self):
ts = utility_functions.two_tree_ts().keep_intervals(
[(0, 0.2)], simplify=False)
n = ts.num_samples
# Here we have no reference in the trees to node 5
with self.assertLogs(level="WARNING") as log:
SpansBySamples(ts)
self.assertGreater(len(log.output), 0)
self.assertIn("5", log.output[-1]) # Should mention the node number
self.assertIn("simplify", log.output[-1]) # Should advise to simplify
ts = ts.simplify()
span_data = self.verify_weights(ts)
# Root on (deleted) R tree is missing
self.assertTrue(5 not in span_data.nodes_to_date)
self.assertEqual(span_data.lookup_weight(4, n, 3), 1.0) # Root on L tree ...
# ... but internal on (deleted) R tree
self.assertFalse(np.isin(span_data.get_weights(4)[n]['descendant_tips'], 2))
self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) # Internal nd on L tree
def test_tree_with_unary_nodes(self):
ts = utility_functions.single_tree_ts_with_unary()
n = ts.num_samples
span_data = self.verify_weights(ts)
self.assertEqual(span_data.lookup_weight(7, n, 3), 1.0)
self.assertEqual(span_data.lookup_weight(6, n, 1), 0.5)
self.assertEqual(span_data.lookup_weight(6, n, 3), 0.5)
self.assertEqual(span_data.lookup_weight(5, n, 2), 0.5)
self.assertEqual(span_data.lookup_weight(5, n, 3), 0.5)
self.assertEqual(span_data.lookup_weight(4, n, 2), 0.75)
self.assertEqual(span_data.lookup_weight(4, n, 3), 0.25)
self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0)
@unittest.skip("Unary node is internal then the oldest node")
def test_tree_with_unary_nodes_oldest(self):
ts = utility_functions.two_tree_ts_with_unary_n3()
n = ts.num_samples
span_data = self.verify_weights(ts)
self.assertEqual(span_data.lookup_weight(9, n, 4), 0.5)
self.assertEqual(span_data.lookup_weight(8, n, 4), 1.0)
self.assertEqual(span_data.lookup_weight(7, n, 1), 0.5)
self.assertEqual(span_data.lookup_weight(7, n, 4), 0.5)
self.assertEqual(span_data.lookup_weight(6, n, 2), 0.5)
self.assertEqual(span_data.lookup_weight(6, n, 4), 0.5)
self.assertEqual(span_data.lookup_weight(5, n, 2), 0.5)
self.assertEqual(span_data.lookup_weight(4, n, 2), 1.0)
def test_polytomy_tree(self):
ts = utility_functions.polytomy_tree_ts()
span_data = self.verify_weights(ts)
self.assertEqual(span_data.lookup_weight(3, ts.num_samples, 3), 1.0)
def test_larger_find_node_tip_weights(self):
ts = msprime.simulate(10, recombination_rate=5,
mutation_rate=5, random_seed=123)
self.assertGreater(ts.num_trees, 1)
self.verify_weights(ts)
def test_dangling_nodes_warn(self):
ts = utility_functions.single_tree_ts_n2_dangling()
with self.assertLogs(level="WARNING") as log:
self.verify_weights(ts)
self.assertGreater(len(log.output), 0)
self.assertIn("dangling", log.output[0])
def test_single_tree_n2_delete_intervals(self):
ts = utility_functions.single_tree_ts_n2()
deleted_interval_ts = ts.delete_intervals([[0.5, 0.6]])
n = deleted_interval_ts.num_samples
span_data = self.verify_weights(ts)
span_data_deleted = self.verify_weights(deleted_interval_ts)
self.assertEqual(span_data.lookup_weight(2, n, 2),
span_data_deleted.lookup_weight(2, n, 2))
def test_single_tree_n4_delete_intervals(self):
ts = utility_functions.single_tree_ts_n4()
deleted_interval_ts = ts.delete_intervals([[0.5, 0.6]])
n = deleted_interval_ts.num_samples
span_data = self.verify_weights(ts)
span_data_deleted = self.verify_weights(deleted_interval_ts)
self.assertEqual(span_data.lookup_weight(4, n, 2),
span_data_deleted.lookup_weight(4, n, 2))
self.assertEqual(span_data.lookup_weight(5, n, 3),
span_data_deleted.lookup_weight(5, n, 3))
self.assertEqual(span_data.lookup_weight(6, n, 4),
span_data_deleted.lookup_weight(6, n, 4))
def test_two_tree_ts_delete_intervals(self):
ts = utility_functions.two_tree_ts()
deleted_interval_ts = ts.delete_intervals([[0.5, 0.6]])
n = deleted_interval_ts.num_samples
span_data = self.verify_weights(ts)
span_data_deleted = self.verify_weights(deleted_interval_ts)
self.assertEqual(span_data.lookup_weight(3, n, 2),
span_data_deleted.lookup_weight(3, n, 2))
self.assertAlmostEqual(
span_data_deleted.lookup_weight(4, n, 2)[0], 0.7 / 0.9)
self.assertAlmostEqual(
span_data_deleted.lookup_weight(4, n, 3)[0], 0.2 / 0.9)
self.assertEqual(span_data.lookup_weight(5, n, 3),
span_data_deleted.lookup_weight(3, n, 2))
@unittest.skip("YAN to fix")
def test_truncated_nodes(self):
Ne = 1e2
ts = msprime.simulate(
10, Ne=Ne, length=400, recombination_rate=1e-4, random_seed=12)
truncated_ts = utility_functions.truncate_ts_samples(
ts, average_span=200, random_seed=123)
span_data = self.verify_weights(truncated_ts)
raise NotImplementedError(str(span_data))
class TestMakePrior(unittest.TestCase):
# We only test make_prior() on single trees
def verify_priors(self, ts, prior_distr):
# Check prior contains all possible tips
priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr)
priors.add(ts.num_samples)
priors_df = priors[ts.num_samples]
self.assertEqual(priors_df.shape[0], ts.num_samples + 1)
return(priors_df)
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
priors = self.verify_priors(ts, 'gamma')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=1., beta=1., mean=1., var=1.)))
priors = self.verify_priors(ts, 'lognorm')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=-0.34657359, beta=0.69314718, mean=1., var=1.)))
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
prior2mv = {'mean': 1/3, 'var': 1/9}
prior3mv = {'mean': 1+1/3, 'var': 1+1/9}
priors = self.verify_priors(ts, 'lognorm')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=-1.44518588, beta=0.69314718, **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=0.04492816, beta=0.48550782, **prior3mv)))
priors = self.verify_priors(ts, 'gamma')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=1., beta=3., **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv)))
def test_one_tree_n4(self):
ts = utility_functions.single_tree_ts_n4()
self.skipTest("Fill in values instead of np.nan")
prior2mv = {'mean': np.nan, 'var': np.nan}
prior3mv = {'mean': np.nan, 'var': np.nan}
prior4mv = {'mean': np.nan, 'var': np.nan}
priors = self.verify_priors(ts, 'lognorm')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
self.assertTrue(np.allclose(
priors[4], PriorParams(alpha=np.nan, beta=np.nan, **prior4mv)))
priors = self.verify_priors(ts, 'gamma')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
self.assertTrue(np.allclose(
priors[4], PriorParams(alpha=np.nan, beta=np.nan, **prior4mv)))
def test_polytomy_tree(self):
ts = utility_functions.polytomy_tree_ts()
self.skipTest("Fill in values instead of np.nan")
prior3mv = {'mean': np.nan, 'var': np.nan}
priors = self.verify_priors(ts, 'lognorm')
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
priors = self.verify_prior(ts, 'gamma')
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
def test_two_tree_ts(self):
ts = utility_functions.two_tree_ts()
self.skipTest("Fill in values instead of np.nan")
prior2mv = {'mean': np.nan, 'var': np.nan}
prior3mv = {'mean': np.nan, 'var': np.nan}
priors = self.verify_priors(ts, 'lognorm')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
priors = self.verify_priors(ts, 'gamma')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
def test_single_tree_ts_with_unary(self):
ts = utility_functions.single_tree_ts_with_unary()
self.skipTest("Fill in values instead of np.nan")
prior2mv = {'mean': np.nan, 'var': np.nan}
prior3mv = {'mean': np.nan, 'var': np.nan}
priors = self.verify_priors(ts, 'lognorm')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
priors = self.verify_priors(ts, 'gamma')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=1., beta=3., **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv)))
def test_two_tree_mutation_ts(self):
ts = utility_functions.two_tree_mutation_ts()
self.skipTest("Fill in values instead of np.nan")
prior2mv = {'mean': np.nan, 'var': np.nan}
prior3mv = {'mean': np.nan, 'var': np.nan}
priors = self.verify_priors(ts, 'lognorm')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv)))
priors = self.verify_priors(ts, 'gamma')
self.assertTrue(np.allclose(
priors[2], PriorParams(alpha=1., beta=3., **prior2mv)))
self.assertTrue(np.allclose(
priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv)))
class TestMixturePrior(unittest.TestCase):
alpha_beta = [PriorParams.field_index('alpha'), PriorParams.field_index('beta')]
def get_mixture_prior_params(self, ts, prior_distr):
span_data = SpansBySamples(ts)
priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr)
priors.add(ts.num_samples, approximate=False)
mixture_priors = priors.get_mixture_prior_params(span_data)
return(mixture_priors)
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
mixture_priors = self.get_mixture_prior_params(ts, 'gamma')
self.assertTrue(
np.allclose(mixture_priors[2, self.alpha_beta], [1., 1.]))
mixture_priors = self.get_mixture_prior_params(ts, 'lognorm')
self.assertTrue(
np.allclose(mixture_priors[2, self.alpha_beta], [-0.34657359, 0.69314718]))
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
mixture_priors = self.get_mixture_prior_params(ts, 'gamma')
self.assertTrue(
np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.]))
self.assertTrue(
np.allclose(mixture_priors[4, self.alpha_beta], [1.6, 1.2]))
mixture_priors = self.get_mixture_prior_params(ts, 'lognorm')
self.assertTrue(
np.allclose(mixture_priors[3, self.alpha_beta], [-1.44518588, 0.69314718]))
self.assertTrue(
np.allclose(mixture_priors[4, self.alpha_beta], [0.04492816, 0.48550782]))
def test_one_tree_n4(self):
ts = utility_functions.single_tree_ts_n4()
mixture_priors = self.get_mixture_prior_params(ts, 'gamma')
self.assertTrue(
np.allclose(mixture_priors[4, self.alpha_beta], [0.81818182, 3.27272727]))
self.assertTrue(
np.allclose(mixture_priors[5, self.alpha_beta], [1.8, 3.6]))
self.assertTrue(
np.allclose(mixture_priors[6, self.alpha_beta], [1.97560976, 1.31707317]))
def test_polytomy_tree(self):
ts = utility_functions.polytomy_tree_ts()
mixture_priors = self.get_mixture_prior_params(ts, 'gamma')
self.assertTrue(
np.allclose(mixture_priors[3, self.alpha_beta], [1.6, 1.2]))
def test_two_trees(self):
ts = utility_functions.two_tree_ts()
mixture_priors = self.get_mixture_prior_params(ts, 'gamma')
self.assertTrue(
np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.]))
# Node 4 should be a mixture between 2 and 3 tips
self.assertTrue(
np.allclose(mixture_priors[4, self.alpha_beta], [0.60377, 1.13207]))
self.assertTrue(
np.allclose(mixture_priors[5, self.alpha_beta], [1.6, 1.2]))
def test_single_tree_ts_with_unary(self):
ts = utility_functions.single_tree_ts_with_unary()
mixture_priors = self.get_mixture_prior_params(ts, 'gamma')
# Root is a 3 tip prior
self.assertTrue(
np.allclose(mixture_priors[7, self.alpha_beta], [1.6, 1.2]))
# Node 6 should be a 50:50 mixture between 1 and 3 tips
self.assertTrue(
np.allclose(mixture_priors[6, self.alpha_beta], [0.44444, 0.66666]))
# Node 5 should be a 50:50 mixture of 2 and 3 tips
self.assertTrue(
np.allclose(mixture_priors[5, self.alpha_beta], [0.80645, 0.96774]))
# Node 4 should be a 75:25 mixture of 2 and 3 tips
self.assertTrue(
np.allclose(mixture_priors[4, self.alpha_beta], [0.62025, 1.06329]))
# Node 3 is a 2 tip prior
self.assertTrue(
np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.]))
def test_two_tree_mutation_ts(self):
ts = utility_functions.two_tree_mutation_ts()
mixture_priors = self.get_mixture_prior_params(ts, 'gamma')
self.assertTrue(
np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.]))
# Node 4 should be a mixture between 2 and 3 tips
self.assertTrue(
np.allclose(mixture_priors[4, self.alpha_beta], [0.60377, 1.13207]))
self.assertTrue(
np.allclose(mixture_priors[5, self.alpha_beta], [1.6, 1.2]))
def check_intervals(self, ts, delete_interval_ts, keep_interval_ts):
tests = list()
for distr in ['gamma', 'lognorm']:
mix_priors = self.get_mixture_prior_params(ts, distr)
for interval_ts in [delete_interval_ts, keep_interval_ts]:
mix_priors_ints = self.get_mixture_prior_params(interval_ts, distr)
for internal_node in range(ts.num_samples, ts.num_nodes):
tests.append(np.allclose(
mix_priors[internal_node, self.alpha_beta],
mix_priors_ints[internal_node, self.alpha_beta]))
return tests
def test_one_tree_n2_intervals(self):
ts = utility_functions.single_tree_ts_n2()
delete_interval_ts = ts.delete_intervals([[0.5, 0.6]])
keep_interval_ts = ts.keep_intervals([[0, 0.1]])
tests = self.check_intervals(ts, delete_interval_ts, keep_interval_ts)
self.assertTrue(np.all(tests))
def test_two_tree_mutation_ts_intervals(self):
ts = utility_functions.two_tree_mutation_ts()
ts_extra_length = utility_functions.two_tree_ts_extra_length()
delete_interval_ts = ts_extra_length.delete_intervals([[0.75, 1.25]])
keep_interval_ts = ts_extra_length.keep_intervals([[0, 1.]])
tests = self.check_intervals(ts, delete_interval_ts, keep_interval_ts)
self.assertTrue(np.all(tests))
class TestPriorVals(unittest.TestCase):
def verify_prior_vals(self, ts, prior_distr):
span_data = SpansBySamples(ts)
priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr)
priors.add(ts.num_samples, approximate=False)
grid = np.linspace(0, 3, 3)
mixture_priors = priors.get_mixture_prior_params(span_data)
prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr)
return prior_vals
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
prior_vals = self.verify_prior_vals(ts, 'gamma')
self.assertTrue(np.allclose(prior_vals[2], [0, 1, 0.22313016]))
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
prior_vals = self.verify_prior_vals(ts, 'gamma')
self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.011109]))
self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.3973851]))
def test_one_tree_n4(self):
ts = utility_functions.single_tree_ts_n4()
prior_vals = self.verify_prior_vals(ts, 'gamma')
self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.00467134]))
self.assertTrue(np.allclose(prior_vals[5], [0, 1, 0.02167806]))
self.assertTrue(np.allclose(prior_vals[6], [0, 1, 0.52637529]))
def test_polytomy_tree(self):
ts = utility_functions.polytomy_tree_ts()
prior_vals = self.verify_prior_vals(ts, 'gamma')
self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.3973851]))
def test_two_tree_ts(self):
ts = utility_functions.two_tree_ts()
prior_vals = self.verify_prior_vals(ts, 'gamma')
self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.011109]))
self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.080002]))
self.assertTrue(np.allclose(prior_vals[5], [0, 1, 0.3973851]))
def test_tree_with_unary_nodes(self):
ts = utility_functions.single_tree_ts_with_unary()
prior_vals = self.verify_prior_vals(ts, 'gamma')
self.assertTrue(np.allclose(prior_vals[7], [0, 1, 0.397385]))
self.assertTrue(np.allclose(prior_vals[6], [0, 1, 0.113122]))
self.assertTrue(np.allclose(prior_vals[5], [0, 1, 0.164433]))
self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.093389]))
self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.011109]))
def test_one_tree_n2_intervals(self):
ts = utility_functions.single_tree_ts_n2()
delete_interval_ts = ts.delete_intervals([[0.1, 0.3]])
keep_interval_ts = ts.keep_intervals([[0.4, 0.6]])
prior_vals = self.verify_prior_vals(ts, 'gamma')
prior_vals_keep = self.verify_prior_vals(keep_interval_ts, 'gamma')
prior_vals_delete = self.verify_prior_vals(delete_interval_ts, 'gamma')
self.assertTrue(np.allclose(prior_vals[2], prior_vals_keep[2]))
self.assertTrue(np.allclose(prior_vals[2], prior_vals_delete[2]))
class TestLikelihoodClass(unittest.TestCase):
def poisson(self, param, x, normalize=True):
ll = np.exp(-param) * param ** x / scipy.special.factorial(x)
if normalize:
return ll / np.max(ll)
else:
return ll
def log_poisson(self, param, x, normalize=True):
with np.errstate(divide='ignore'):
ll = np.log(np.exp(-param) * param ** x / scipy.special.factorial(x))
if normalize:
return ll - np.max(ll)
else:
return ll
def test_get_mut_edges(self):
ts = utility_functions.two_tree_mutation_ts()
mutations_per_edge = Likelihoods.get_mut_edges(ts)
for e in ts.edges():
if e.child == 3 and e.parent == 4:
self.assertEqual(mutations_per_edge[e.id], 2)
elif e.child == 0 and e.parent == 5:
self.assertEqual(mutations_per_edge[e.id], 1)
else:
self.assertEqual(mutations_per_edge[e.id], 0)
def test_create_class(self):
ts = utility_functions.two_tree_mutation_ts()
grid = np.array([0, 1, 2])
lik = Likelihoods(ts, grid)
loglik = LogLikelihoods(ts, grid)
self.assertRaises(AssertionError, lik.get_mut_lik_fixed_node, ts.edge(0))
self.assertRaises(AssertionError, lik.get_mut_lik_lower_tri, ts.edge(0))
self.assertRaises(AssertionError, lik.get_mut_lik_upper_tri, ts.edge(0))
self.assertRaises(AssertionError, loglik.get_mut_lik_fixed_node, ts.edge(0))
self.assertRaises(AssertionError, loglik.get_mut_lik_lower_tri, ts.edge(0))
self.assertRaises(AssertionError, loglik.get_mut_lik_upper_tri, ts.edge(0))
def test_no_theta_class(self):
ts = utility_functions.two_tree_mutation_ts()
grid = np.array([0, 1, 2])
lik = Likelihoods(ts, grid, theta=None)
self.assertRaises(RuntimeError, lik.precalculate_mutation_likelihoods)
def test_precalc_lik_lower(self):
ts = utility_functions.single_tree_ts_n3()
grid = np.array([0, 1, 2])
eps = 0
theta = 1
lik = Likelihoods(ts, grid, theta, eps)
for method in (0, 1, 2):
# TODO: Remove this loop and hard-code one of the methods after perf testing
lik.precalculate_mutation_likelihoods(unique_method=method)
self.assertEquals(ts.num_trees, 1)
span = ts.first().span
dt = grid
num_muts = 0
n_internal_edges = 0
expected_lik_dt = self.poisson(dt * (theta / 2 * span), num_muts)
for edge in ts.edges():
if ts.node(edge.child).is_sample():
self.assertRaises(AssertionError, lik.get_mut_lik_lower_tri, edge)
self.assertRaises(AssertionError, lik.get_mut_lik_upper_tri, edge)
fixed_edge_lik = lik.get_mut_lik_fixed_node(edge)
self.assertTrue(np.allclose(fixed_edge_lik, expected_lik_dt))
else:
n_internal_edges += 1 # only one internal edge in this tree
self.assertLessEqual(n_internal_edges, 1)
self.assertRaises(AssertionError, lik.get_mut_lik_fixed_node, edge)
lower_tri = lik.get_mut_lik_lower_tri(edge)
self.assertAlmostEqual(lower_tri[0], expected_lik_dt[0])
self.assertAlmostEqual(lower_tri[1], expected_lik_dt[1])
self.assertAlmostEqual(lower_tri[2], expected_lik_dt[0])
self.assertAlmostEqual(lower_tri[3], expected_lik_dt[2])
self.assertAlmostEqual(lower_tri[4], expected_lik_dt[1])
self.assertAlmostEqual(lower_tri[5], expected_lik_dt[0])
def test_precalc_lik_upper_multithread(self):
ts = utility_functions.two_tree_mutation_ts()
grid = np.array([0, 1, 2])
eps = 0
theta = 1
for L, pois in [(Likelihoods, self.poisson), (LogLikelihoods, self.log_poisson)]:
for normalize in (True, False):
lik = L(ts, grid, theta, eps, normalize=normalize)
dt = grid
for num_threads in (None, 1, 2):
n_internal_edges = 0
lik.precalculate_mutation_likelihoods(num_threads=num_threads)
for edge in ts.edges():
if not ts.node(edge.child).is_sample():
n_internal_edges += 1 # only two internal edges in this tree
self.assertLessEqual(n_internal_edges, 2)
if edge.parent == 4 and edge.child == 3:
num_muts = 2
elif edge.parent == 5 and edge.child == 4:
num_muts = 0
else:
self.fail("Unexpected edge")
span = edge.right - edge.left
expected_lik_dt = pois(
dt * (theta / 2 * span), num_muts, normalize=normalize)
upper_tri = lik.get_mut_lik_upper_tri(edge)
self.assertAlmostEqual(upper_tri[0], expected_lik_dt[0])
self.assertAlmostEqual(upper_tri[1], expected_lik_dt[1])
self.assertAlmostEqual(upper_tri[2], expected_lik_dt[2])
self.assertAlmostEqual(upper_tri[3], expected_lik_dt[0])
self.assertAlmostEqual(upper_tri[4], expected_lik_dt[1])
self.assertAlmostEqual(upper_tri[5], expected_lik_dt[0])
def test_tri_functions(self):
ts = utility_functions.two_tree_mutation_ts()
grid = np.array([0, 1, 2])
eps = 0
theta = 1
lik = Likelihoods(ts, grid, theta, eps)
lik.precalculate_mutation_likelihoods()
for e in ts.edges():
if e.child == 3 and e.parent == 4:
exp_branch_muts = 2
exp_span = 0.2
self.assertEqual(e.right - e.left, exp_span)
self.assertEqual(lik.mut_edges[e.id], exp_branch_muts)
pois_lambda = grid * theta / 2 * exp_span
cumul_pois = np.cumsum(self.poisson(pois_lambda, exp_branch_muts))
lower_tri = lik.get_mut_lik_lower_tri(e)
self.assertTrue(
np.allclose(lik.rowsum_lower_tri(lower_tri), cumul_pois))
upper_tri = lik.get_mut_lik_upper_tri(e)
self.assertTrue(
np.allclose(
lik.rowsum_upper_tri(upper_tri)[::-1],
cumul_pois))
def test_no_theta_class_loglikelihood(self):
ts = utility_functions.two_tree_mutation_ts()
grid = np.array([0, 1, 2])
lik = LogLikelihoods(ts, grid, theta=None)
self.assertRaises(RuntimeError, lik.precalculate_mutation_likelihoods)
def test_logsumexp(self):
lls = np.array([0.1, 0.2, 0.5])
ll_sum = np.sum(lls)
log_lls = np.log(lls)
self.assertEqual(LogLikelihoods.logsumexp(log_lls), np.log(ll_sum))
def test_log_tri_functions(self):
ts = utility_functions.two_tree_mutation_ts()
grid = np.array([0, 1, 2])
eps = 0
theta = 1
lik = Likelihoods(ts, grid, theta, eps)
loglik = LogLikelihoods(ts, grid, theta=theta, eps=eps)
lik.precalculate_mutation_likelihoods()
loglik.precalculate_mutation_likelihoods()
for e in ts.edges():
if e.child == 3 and e.parent == 4:
exp_branch_muts = 2
exp_span = 0.2
self.assertEqual(e.right - e.left, exp_span)
self.assertEqual(lik.mut_edges[e.id], exp_branch_muts)
self.assertEqual(loglik.mut_edges[e.id], exp_branch_muts)
pois_lambda = grid * theta / 2 * exp_span
cumul_pois = np.cumsum(self.poisson(pois_lambda, exp_branch_muts))
lower_tri = lik.get_mut_lik_lower_tri(e)
lower_tri_log = loglik.get_mut_lik_lower_tri(e)
self.assertTrue(
np.allclose(lik.rowsum_lower_tri(lower_tri), cumul_pois))
with np.errstate(divide='ignore'):
self.assertTrue(
np.allclose(loglik.rowsum_lower_tri(lower_tri_log),
np.log(cumul_pois)))
upper_tri = lik.get_mut_lik_upper_tri(e)
upper_tri_log = loglik.get_mut_lik_upper_tri(e)
self.assertTrue(
np.allclose(
lik.rowsum_upper_tri(upper_tri)[::-1],
cumul_pois))
with np.errstate(divide='ignore'):
self.assertTrue(
np.allclose(
loglik.rowsum_upper_tri(upper_tri_log)[::-1],
np.log(cumul_pois)))
def test_logsumexp_streaming(self):
lls = np.array([0.1, 0.2, 0.5])
ll_sum = np.sum(lls)
log_lls = np.log(lls)
self.assertTrue(np.allclose(LogLikelihoodsStreaming.logsumexp(log_lls),
np.log(ll_sum)))
class TestNodeGridValuesClass(unittest.TestCase):
# TODO - needs a few more tests in here
def test_init(self):
num_nodes = 5
ids = np.array([3, 4])
timepoints = np.array(range(10))
store = NodeGridValues(num_nodes, ids, timepoints, fill_value=6)
self.assertEquals(store.grid_data.shape, (len(ids), len(timepoints)))
self.assertEquals(len(store.fixed_data), (num_nodes-len(ids)))
self.assertTrue(np.all(store.grid_data == 6))
self.assertTrue(np.all(store.fixed_data == 6))
ids = np.array([3, 4], dtype=np.int32)
store = NodeGridValues(num_nodes, ids, timepoints, fill_value=5)
self.assertEquals(store.grid_data.shape, (len(ids), len(timepoints)))
self.assertEquals(len(store.fixed_data), num_nodes-len(ids))
self.assertTrue(np.all(store.fixed_data == 5))
def test_set_and_get(self):
num_nodes = 5
grid_size = 2
fill = {}
for ids in ([3, 4], []):
np.random.seed(1)
store = NodeGridValues(
num_nodes, np.array(ids, dtype=np.int32), np.array(range(grid_size)))
for i in range(num_nodes):
fill[i] = np.random.random(grid_size if i in ids else None)
store[i] = fill[i]
for i in range(num_nodes):
self.assertTrue(np.all(fill[i] == store[i]))
self.assertRaises(IndexError, store.__getitem__, num_nodes)
def test_bad_init(self):
ids = [3, 4]
self.assertRaises(ValueError, NodeGridValues, 3, np.array(ids),
np.array([0, 1.2, 2]))
self.assertRaises(AttributeError, NodeGridValues, 5, np.array(ids), -1)
self.assertRaises(ValueError, NodeGridValues, 5, np.array([-1]),
np.array([0, 1.2, 2]))
def test_clone(self):
num_nodes = 10
grid_size = 2
ids = [3, 4]
orig = NodeGridValues(num_nodes, np.array(ids), np.array(range(grid_size)))
orig[3] = np.array([1, 2])
orig[4] = np.array([4, 3])
orig[0] = 1.5
orig[9] = 2.5
# test with np.zeros
clone = NodeGridValues.clone_with_new_data(orig, 0)
self.assertEquals(clone.grid_data.shape, orig.grid_data.shape)
self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape)
self.assertTrue(np.all(clone.grid_data == 0))
self.assertTrue(np.all(clone.fixed_data == 0))
# test with something else
clone = NodeGridValues.clone_with_new_data(orig, 5)
self.assertEquals(clone.grid_data.shape, orig.grid_data.shape)
self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape)
self.assertTrue(np.all(clone.grid_data == 5))
self.assertTrue(np.all(clone.fixed_data == 5))
# test with different
scalars = np.arange(num_nodes - len(ids))
clone = NodeGridValues.clone_with_new_data(orig, 0, scalars)
self.assertEquals(clone.grid_data.shape, orig.grid_data.shape)
self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape)
self.assertTrue(np.all(clone.grid_data == 0))
self.assertTrue(np.all(clone.fixed_data == scalars))
clone = NodeGridValues.clone_with_new_data(
orig, np.array([[1, 2], [4, 3]]))
for i in range(num_nodes):
if i in ids:
self.assertTrue(np.all(clone[i] == orig[i]))
else:
self.assertTrue(np.isnan(clone[i]))
clone = NodeGridValues.clone_with_new_data(
orig, np.array([[1, 2], [4, 3]]), 0)
for i in range(num_nodes):
if i in ids:
self.assertTrue(np.all(clone[i] == orig[i]))
else:
self.assertEquals(clone[i], 0)
def test_bad_clone(self):
num_nodes = 10
ids = [3, 4]
orig = NodeGridValues(num_nodes, np.array(ids), np.array([0, 1.2]))
self.assertRaises(
ValueError,
NodeGridValues.clone_with_new_data,
orig, np.array([[1, 2, 3], [4, 5, 6]]))
self.assertRaises(
ValueError,
NodeGridValues.clone_with_new_data,
orig, 0, np.array([[1, 2], [4, 5]]))
class TestAlgorithmClass(unittest.TestCase):
def test_nonmatching_prior_vs_lik_timepoints(self):
ts = utility_functions.single_tree_ts_n3()
timepoints1 = np.array([0, 1.2, 2])
timepoints2 = np.array([0, 1.1, 2])
priors = tsdate.build_prior_grid(ts, timepoints1)
lls = Likelihoods(ts, timepoints2)
self.assertRaisesRegexp(ValueError, "timepoints", InOutAlgorithms, priors, lls)
def test_nonmatching_prior_vs_lik_fixednodes(self):
ts1 = utility_functions.single_tree_ts_n3()
ts2 = utility_functions.single_tree_ts_n2_dangling()
timepoints = np.array([0, 1.2, 2])
priors = tsdate.build_prior_grid(ts1, timepoints)
lls = Likelihoods(ts2, priors.timepoints)
self.assertRaisesRegexp(ValueError, "fixed", InOutAlgorithms, priors, lls)
class TestInsideAlgorithm(unittest.TestCase):
def run_inside_algorithm(self, ts, prior_distr, normalize=True):
priors = tsdate.build_prior_grid(ts, timepoints=np.array([0, 1.2, 2]),
approximate_priors=False,
prior_distribution=prior_distr)
theta = 1
eps = 1e-6
lls = Likelihoods(ts, priors.timepoints, theta, eps=eps)
lls.precalculate_mutation_likelihoods()
algo = InOutAlgorithms(priors, lls)
algo.inside_pass(normalize=normalize)
return algo, priors
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
algo = self.run_inside_algorithm(ts, 'gamma')[0]
self.assertTrue(np.allclose(algo.inside[2], np.array([0, 1, 0.10664654])))
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
algo = self.run_inside_algorithm(ts, 'gamma')[0]
self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.0114771635])))
self.assertTrue(np.allclose(algo.inside[4], np.array([0, 1, 0.1941815518])))
def test_one_tree_n4(self):
ts = utility_functions.single_tree_ts_n4()
algo = self.run_inside_algorithm(ts, 'gamma')[0]
self.assertTrue(np.allclose(algo.inside[4], np.array([0, 1, 0.00548801])))
self.assertTrue(np.allclose(algo.inside[5], np.array([0, 1, 0.0239174])))
self.assertTrue(np.allclose(algo.inside[6], np.array([0, 1, 0.26222197])))
def test_polytomy_tree(self):
ts = utility_functions.polytomy_tree_ts()
algo = self.run_inside_algorithm(ts, 'gamma')[0]
self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.12797265])))
def test_two_tree_ts(self):
ts = utility_functions.two_tree_ts()
algo, priors = self.run_inside_algorithm(ts, 'gamma', normalize=False)
# priors[3][1] * Ll_(0->3)(1.2 - 0 + eps) ** 2
node3_t1 = priors[3][1] * scipy.stats.poisson.pmf(
0, (1.2 + 1e-6) * 0.5 * 0.2) ** 2
# priors[3][2] * sum(Ll_(0->3)(2 - t + eps))
node3_t2 = priors[3][2] * scipy.stats.poisson.pmf(
0, (2 + 1e-6) * 0.5 * 0.2) ** 2
self.assertTrue(np.allclose(algo.inside[3],
np.array([0, node3_t1, node3_t2])))
"""
priors[4][1] * (Ll_(2->4)(1.2 - 0 + eps) * (Ll_(1->4)(1.2 - 0 + eps)) *
(Ll_(3->4)(1.2-1.2+eps) * node3_t1)
"""
node4_t1 = priors[4][1] * (scipy.stats.poisson.pmf(
0, (1.2 + 1e-6) * 0.5 * 1) * scipy.stats.poisson.pmf(
0, (1.2 + 1e-6) * 0.5 * 0.8) *
((scipy.stats.poisson.pmf(0, (1e-6) * 0.5 * 0.2) * node3_t1)))
"""
priors[4][2] * (Ll_(2->4)(2 - 0 + eps) * Ll_(1->4)(2 - 0 + eps) *
(sum_(t'<2)(Ll_(3->4)(2-t'+eps) * node3_t))
"""
node4_t2 = priors[4][2] * (scipy.stats.poisson.pmf(
0, (2 + 1e-6) * 0.5 * 1) * scipy.stats.poisson.pmf(
0, (2 + 1e-6) * 0.5 * 0.8) * ((scipy.stats.poisson.pmf(
0, (0.8 + 1e-6) * 0.5 * 0.2) * node3_t1) +
(scipy.stats.poisson.pmf(0, (1e-6 + 1e-6) * 0.5 * 0.2) * node3_t2)))
self.assertTrue(np.allclose(algo.inside[4], np.array([0, node4_t1, node4_t2])))
"""
priors[5][1] * (Ll_(4->5)(1.2 - 1.2 + eps) * (node3_t ** 0.8)) *
(Ll_(0->5)(1.2 - 0 + eps) * 1)
raising node4_t to 0.8 is geometric scaling
"""
node5_t1 = priors[5][1] * (scipy.stats.poisson.pmf(
0, (1e-6) * 0.5 * 0.8) * (node4_t1 ** 0.8)) * (scipy.stats.poisson.pmf(
0, (1.2 + 1e-6) * 0.5 * 0.8))
"""
prior[5][2] * (sum_(t'<1.2)(Ll_(4->5)(1.2 - 0 + eps) * (node3_t ** 0.8)) *
(Ll_(0->5)(1.2 - 0 + eps) * 1)
"""
node5_t2 = priors[5][2] * ((scipy.stats.poisson.pmf(
0, (0.8 + 1e-6) * 0.5 * 0.8) * (node4_t1 ** 0.8)) +
(scipy.stats.poisson.pmf(0, (1e-6 + 1e-6) * 0.5 * 0.8) *
(node4_t2 ** 0.8))) * (scipy.stats.poisson.pmf(
0, (2 + 1e-6) * 0.5 * 0.8))
self.assertTrue(np.allclose(algo.inside[5], np.array([0, node5_t1, node5_t2])))
def test_tree_with_unary_nodes(self):
ts = utility_functions.single_tree_ts_with_unary()
algo = self.run_inside_algorithm(ts, 'gamma')[0]
self.assertTrue(np.allclose(algo.inside[7], np.array([0, 1, 0.25406637])))
self.assertTrue(np.allclose(algo.inside[6], np.array([0, 1, 0.07506923])))
self.assertTrue(np.allclose(algo.inside[5], np.array([0, 1, 0.13189998])))
self.assertTrue(np.allclose(algo.inside[4], np.array([0, 1, 0.07370801])))
self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.01147716])))
def test_two_tree_mutation_ts(self):
ts = utility_functions.two_tree_mutation_ts()
algo = self.run_inside_algorithm(ts, 'gamma')[0]
self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.02176622])))
# self.assertTrue(np.allclose(upward[4], np.array([0, 2.90560754e-05, 1])))
# NB the replacement below has not been hand-calculated
self.assertTrue(np.allclose(algo.inside[4], np.array([0, 3.63200499e-11, 1])))
# self.assertTrue(np.allclose(upward[5], np.array([0, 5.65044738e-05, 1])))
# NB the replacement below has not been hand-calculated
self.assertTrue(np.allclose(algo.inside[5], np.array([0, 7.06320034e-11, 1])))
def test_dangling_fails(self):
ts = utility_functions.single_tree_ts_n2_dangling()
print(ts.draw_text())
print("Samples:", ts.samples())
priors = tsdate.build_prior_grid(ts, timepoints=np.array([0, 1.2, 2]))
theta = 1
eps = 1e-6
lls = Likelihoods(ts, priors.timepoints, theta, eps)
algo = InOutAlgorithms(priors, lls)
self.assertRaisesRegexp(ValueError, "dangling", algo.inside_pass)
class TestOutsideAlgorithm(unittest.TestCase):
def run_outside_algorithm(
self, ts, prior_distr="lognorm", normalize=False,
ignore_oldest_root=False):
span_data = SpansBySamples(ts)
priors = ConditionalCoalescentTimes(None, prior_distr)
priors.add(ts.num_samples, approximate=False)
grid = np.array([0, 1.2, 2])
mixture_priors = priors.get_mixture_prior_params(span_data)
prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr)
theta = 1
eps = 1e-6
lls = Likelihoods(ts, grid, theta, eps=eps)
lls.precalculate_mutation_likelihoods()
algo = InOutAlgorithms(prior_vals, lls)
algo.inside_pass()
algo.outside_pass(normalize=normalize, ignore_oldest_root=ignore_oldest_root)
return algo
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
for prior_distr in ('lognorm', 'gamma'):
algo = self.run_outside_algorithm(ts, prior_distr)
# Root, should this be 0,1,1 or 1,1,1
self.assertTrue(np.array_equal(
algo.outside[2], np.array([1, 1, 1])))
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
for prior_distr in ('lognorm', 'gamma'):
algo = self.run_outside_algorithm(ts, prior_distr)
# self.assertTrue(np.allclose(
# downward[3], np.array([0, 1, 0.33508884])))
self.assertTrue(np.allclose(algo.outside[4], np.array([1, 1, 1])))
# self.assertTrue(np.allclose(
# posterior[3], np.array([0, 0.99616886, 0.00383114])))
# self.assertTrue(np.allclose(
# posterior[4], np.array([0, 0.83739361, 0.16260639])))
def test_one_tree_n4(self):
ts = utility_functions.single_tree_ts_n4()
for prior_distr in ('lognorm', 'gamma'):
algo = self.run_outside_algorithm(ts, prior_distr)
# self.assertTrue(np.allclose(
# downward[4], np.array([0, 1, 0.02187283])))
# self.assertTrue(np.allclose(
# downward[5], np.array([0, 1, 0.41703272])))
# Root, should this be 0,1,1 or 1,1,1
self.assertTrue(np.allclose(
algo.outside[6], np.array([1, 1, 1])))
def test_outside_before_inside_fails(self):
ts = utility_functions.single_tree_ts_n2()
priors = tsdate.build_prior_grid(ts)
theta = 1
lls = Likelihoods(ts, priors.timepoints, theta)
lls.precalculate_mutation_likelihoods()
algo = InOutAlgorithms(priors, lls)
self.assertRaises(RuntimeError, algo.outside_pass)
def test_normalize_outside(self):
ts = msprime.simulate(50, Ne=10000, mutation_rate=1e-8, recombination_rate=1e-8)
normalize = self.run_outside_algorithm(ts, normalize=True)
no_normalize = self.run_outside_algorithm(ts, normalize=False)
self.assertTrue(
np.allclose(
normalize.outside.grid_data[:],
(no_normalize.outside.grid_data[:] /
np.max(
no_normalize.outside.grid_data[:], axis=1)[:, np.newaxis])))
def test_ignore_oldest_root(self):
ts = utility_functions.single_tree_ts_mutation_n3()
ignore_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=True)
use_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=False)
self.assertTrue(~np.array_equal(
ignore_oldest.outside[3], use_oldest.outside[3]))
# When node is not used in outside algorithm, all values should be equal
self.assertTrue(np.all(ignore_oldest.outside[3] == ignore_oldest.outside[3][0]))
self.assertTrue(np.all(use_oldest.outside[4] == use_oldest.outside[4][0]))
def test_ignore_oldest_root_two_mrcas(self):
ts = utility_functions.two_tree_two_mrcas()
ignore_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=True)
use_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=False)
self.assertTrue(~np.array_equal(
ignore_oldest.outside[7], use_oldest.outside[7]))
self.assertTrue(~np.array_equal(
ignore_oldest.outside[6], use_oldest.outside[6]))
# In this example, if the outside algorithm was *not* used, nodes 4 and 5 should
# have same outside values. If it is used, node 5 should seem younger than 4
self.assertTrue(np.array_equal(
ignore_oldest.outside[4], ignore_oldest.outside[5]))
self.assertTrue(~np.array_equal(
use_oldest.outside[4], use_oldest.outside[5]))
class TestTotalFunctionalValueTree(unittest.TestCase):
"""
Tests to ensure that we recover the total functional value of the tree.
We can also recover this property in the tree sequence in the special case where
all node times are known (or all bar one).
"""
def find_posterior(self, ts, prior_distr):
grid = np.array([0, 1.2, 2])
span_data = SpansBySamples(ts)
priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr)
priors.add(ts.num_samples, approximate=False)
mixture_priors = priors.get_mixture_prior_params(span_data)
prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr)
theta = 1
eps = 1e-6
lls = Likelihoods(ts, grid, theta, eps=eps)
lls.precalculate_mutation_likelihoods()
algo = InOutAlgorithms(prior_vals, lls)
algo.inside_pass()
posterior = algo.outside_pass(normalize=False)
self.assertTrue(np.array_equal(np.sum(
algo.inside.grid_data * algo.outside.grid_data, axis=1),
np.sum(algo.inside.grid_data * algo.outside.grid_data, axis=1)))
self.assertTrue(np.allclose(np.sum(
algo.inside.grid_data * algo.outside.grid_data, axis=1),
np.sum(algo.inside.grid_data[-1])))
return posterior, algo
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
for distr in ('gamma', 'lognorm'):
posterior, algo = self.find_posterior(ts, distr)
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
for distr in ('gamma', 'lognorm'):
posterior, algo = self.find_posterior(ts, distr)
def test_one_tree_n4(self):
ts = utility_functions.single_tree_ts_n4()
for distr in ('gamma', 'lognorm'):
posterior, algo = self.find_posterior(ts, distr)
def test_one_tree_n3_mutation(self):
ts = utility_functions.single_tree_ts_mutation_n3()
for distr in ('gamma', 'lognorm'):
posterior, algo = self.find_posterior(ts, distr)
def test_polytomy_tree(self):
ts = utility_functions.polytomy_tree_ts()
for distr in ('gamma', 'lognorm'):
posterior, algo = self.find_posterior(ts, distr)
def test_tree_with_unary_nodes(self):
ts = utility_functions.single_tree_ts_with_unary()
for distr in ('gamma', 'lognorm'):
posterior, algo = self.find_posterior(ts, distr)
class TestGilTree(unittest.TestCase):
"""
Test results against hardcoded values Gil independently worked out
"""
def test_gil_tree(self):
for cache_inside in [False, True]:
ts = utility_functions.gils_example_tree()
span_data = SpansBySamples(ts)
prior_distr = 'lognorm'
priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr)
priors.add(ts.num_samples, approximate=False)
grid = np.array([0, 0.1, 0.2, 0.5, 1, 2, 5])
mixture_prior = priors.get_mixture_prior_params(span_data)
prior_vals = fill_priors(mixture_prior, grid, ts, prior_distr=prior_distr)
prior_vals.grid_data[0] = [0, 0.5, 0.3, 0.1, 0.05, 0.02, 0.03]
prior_vals.grid_data[1] = [0, 0.05, 0.1, 0.2, 0.45, 0.1, 0.1]
theta = 2
eps = 0.01
lls = Likelihoods(ts, grid, theta, eps=eps, normalize=False)
lls.precalculate_mutation_likelihoods()
algo = InOutAlgorithms(prior_vals, lls)
algo.inside_pass(normalize=False, cache_inside=cache_inside)
algo.outside_pass(normalize=False)
self.assertTrue(
np.allclose(np.sum(algo.inside.grid_data * algo.outside.grid_data,
axis=1), [7.44449E-05, 7.44449E-05]))
self.assertTrue(
np.allclose(np.sum(algo.inside.grid_data * algo.outside.grid_data,
axis=1), np.sum(algo.inside.grid_data[-1])))
class TestOutsideEdgesOrdering(unittest.TestCase):
"""
Test that edges_by_child_desc() and edges_by_child_then_parent_desc() order edges
correctly.
"""
def edges_ordering(self, ts, fn):
fixed_nodes = set(ts.samples())
priors = tsdate.build_prior_grid(ts)
theta = None
liklhd = LogLikelihoods(ts, priors.timepoints, theta,
eps=1e-6, fixed_node_set=fixed_nodes, progress=False)
dynamic_prog = InOutAlgorithms(priors, liklhd, progress=False)
if fn == "outside_pass":
edges_by_child = dynamic_prog.edges_by_child_desc()
seen_children = list()
last_child_time = None
for child, edges in edges_by_child:
for edge in edges:
self.assertTrue(edge.child not in seen_children)
cur_child_time = ts.tables.nodes.time[child]
if last_child_time:
self.assertTrue(cur_child_time <= last_child_time)
seen_children.append(child)
last_child_time = ts.tables.nodes.time[child]
elif fn == "outside_maximization":
edges_by_child = dynamic_prog.edges_by_child_then_parent_desc()
seen_children = list()
last_child_time = None
for child, edges in edges_by_child:
last_parent_time = None
for edge in edges:
cur_parent_time = ts.tables.nodes.time[edge.parent]
if last_parent_time:
self.assertTrue(cur_parent_time >= last_parent_time)
last_parent_time = cur_parent_time
self.assertTrue(child not in seen_children)
cur_child_time = ts.tables.nodes.time[child]
if last_child_time:
self.assertTrue(cur_child_time <= last_child_time)
seen_children.append(child)
last_child_time = ts.tables.nodes.time[child]
def test_two_tree_outside_traversal(self):
"""
This is for the outside algorithm, where we simply want to traverse the ts
from oldest child nodes to youngest, grouping all child nodes of same id
together. In the outside maximization algorithm, we want to traverse the ts from
oldest child nodes to youngest, grouping all child nodes of same id together.
"""
ts = utility_functions.two_tree_two_mrcas()
self.edges_ordering(ts, "outside_pass")
self.edges_ordering(ts, "outside_maximization")
def test_simulated_inferred_outside_traversal(self):
ts = msprime.simulate(500, Ne=10000, length=5e4, mutation_rate=1e-8,
recombination_rate=1e-8, random_seed=12)
sample_data = tsinfer.SampleData.from_tree_sequence(ts, use_sites_time=False)
inferred_ts = tsinfer.infer(sample_data)
self.edges_ordering(inferred_ts, "outside_pass")
self.edges_ordering(inferred_ts, "outside_maximization")
class TestMaximization(unittest.TestCase):
"""
Test the outside maximization function
"""
def run_outside_maximization(self, ts, prior_distr="lognorm"):
priors = tsdate.build_prior_grid(ts, prior_distribution=prior_distr)
Ne = 0.5
theta = 1
eps = 1e-6
lls = Likelihoods(ts, priors.timepoints, theta, eps=eps)
lls.precalculate_mutation_likelihoods()
algo = InOutAlgorithms(priors, lls)
algo.inside_pass()
return lls, algo, algo.outside_maximization(Ne, eps=eps)
def test_one_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
for prior_distr in ('lognorm', 'gamma'):
lls, algo, maximized_ages = self.run_outside_maximization(ts, prior_distr)
self.assertTrue(np.array_equal(
maximized_ages,
np.array([0, 0, lls.timepoints[np.argmax(algo.inside[2])]])))
def test_one_tree_n3(self):
ts = utility_functions.single_tree_ts_n3()
for prior_distr in ('lognorm', 'gamma'):
lls, algo, maximized_ages = self.run_outside_maximization(ts, prior_distr)
node_4 = lls.timepoints[np.argmax(algo.inside[4])]
ll_mut = scipy.stats.poisson.pmf(
0, (node_4 - lls.timepoints[:np.argmax(algo.inside[4]) + 1] + 1e-6) *
1 / 2 * 1)
result = ll_mut / np.max(ll_mut)
inside_val = algo.inside[3][:(np.argmax(algo.inside[4]) + 1)]
node_3 = lls.timepoints[np.argmax(
result[:np.argmax(algo.inside[4]) + 1] * inside_val)]
self.assertTrue(np.array_equal(
maximized_ages,
np.array([0, 0, 0, node_3, node_4])))
def test_two_tree_ts(self):
ts = utility_functions.two_tree_ts()
for prior_distr in ('lognorm', 'gamma'):
lls, algo, maximized_ages = self.run_outside_maximization(ts, prior_distr)
node_5 = lls.timepoints[np.argmax(algo.inside[5])]
ll_mut = scipy.stats.poisson.pmf(
0, (node_5 - lls.timepoints[:np.argmax(algo.inside[5]) + 1] + 1e-6) *
1 / 2 * 0.8)
result = ll_mut / np.max(ll_mut)
inside_val = algo.inside[4][:(np.argmax(algo.inside[5]) + 1)]
node_4 = lls.timepoints[np.argmax(
result[:np.argmax(algo.inside[5]) + 1] * inside_val)]
ll_mut = scipy.stats.poisson.pmf(
0, (node_4 - lls.timepoints[:np.argmax(algo.inside[4]) + 1] + 1e-6) *
1 / 2 * 0.2)
result = ll_mut / np.max(ll_mut)
inside_val = algo.inside[3][:(np.argmax(algo.inside[4]) + 1)]
node_3 = lls.timepoints[np.argmax(
result[:np.argmax(algo.inside[4]) + 1] * inside_val)]
self.assertTrue(np.array_equal(
maximized_ages,
np.array([0, 0, 0, node_3, node_4, node_5])))
class TestDate(unittest.TestCase):
"""
Test inputs to tsdate.date()
"""
def test_date_input(self):
ts = utility_functions.single_tree_ts_n2()
self.assertRaises(ValueError, tsdate.date, ts, 1, method="foobar")
def test_sample_as_parent_fails(self):
ts = utility_functions.single_tree_ts_n3_sample_as_parent()
self.assertRaises(NotImplementedError, tsdate.date, ts, 1)
def test_recombination_not_implemented(self):
ts = utility_functions.single_tree_ts_n2()
self.assertRaises(NotImplementedError, tsdate.date, ts, 1,
recombination_rate=1e-8)
class TestBuildPriorGrid(unittest.TestCase):
"""
Test tsdate.build_prior_grid() works as expected
"""
def test_bad_timepoints(self):
ts = msprime.simulate(2, random_seed=123)
for bad in [-1, np.array([1]), np.array([-1, 2, 3]), np.array([1, 1, 1]),
"foobar"]:
self.assertRaises(ValueError, tsdate.build_prior_grid, ts, timepoints=bad)
for bad in [np.array(["hello", "there"])]:
self.assertRaises(TypeError, tsdate.build_prior_grid, ts, timepoints=bad)
def test_bad_prior_distr(self):
ts = msprime.simulate(2, random_seed=12)
self.assertRaises(ValueError, tsdate.build_prior_grid, ts,
prior_distribution="foobar")
class TestPosteriorMeanVar(unittest.TestCase):
"""
Test posterior_mean_var works as expected
"""
def test_posterior_mean_var(self):
ts = utility_functions.single_tree_ts_n2()
grid = np.array([0, 1.2, 2])
for distr in ('gamma', 'lognorm'):
posterior, algo = TestTotalFunctionalValueTree().find_posterior(ts, distr)
ts_node_metadata, mn_post, vr_post = posterior_mean_var(
ts, grid, posterior, 0.5)
self.assertTrue(np.array_equal(mn_post,
[0, 0, np.sum(grid * posterior[2]) /
np.sum(posterior[2])]))
def test_node_metadata_single_tree_n2(self):
ts = utility_functions.single_tree_ts_n2()
grid = np.array([0, 1.2, 2])
posterior, algo = TestTotalFunctionalValueTree().find_posterior(ts, "lognorm")
ts_node_metadata, mn_post, vr_post = posterior_mean_var(ts, grid, posterior, 0.5)
self.assertTrue(json.loads(
ts_node_metadata.node(2).metadata)["mn"] == mn_post[2])
self.assertTrue(json.loads(
ts_node_metadata.node(2).metadata)["vr"] == vr_post[2])
def test_node_metadata_simulated_tree(self):
larger_ts = msprime.simulate(
10, mutation_rate=1, recombination_rate=1, length=20)
_, mn_post, _, _, eps, _ = get_dates(larger_ts, 10000)
dated_ts = date(larger_ts, 10000)
metadata = dated_ts.tables.nodes.metadata
metadata_offset = dated_ts.tables.nodes.metadata_offset
unconstrained_mn = [
json.loads(met.decode())["mn"] for met in tskit.unpack_bytes(
metadata,
metadata_offset) if len(met.decode()) > 0]
self.assertTrue(np.array_equal(unconstrained_mn,
mn_post[larger_ts.num_samples:]))
self.assertTrue(np.all(
dated_ts.tables.nodes.time[larger_ts.num_samples:] >=
mn_post[larger_ts.num_samples:]))
class TestConstrainAgesTopo(unittest.TestCase):
"""
Test constrain_ages_topo works as expected
"""
def test_constrain_ages_topo(self):
"""
Set node 3 to be older than node 4 in two_tree_ts
"""
ts = utility_functions.two_tree_ts()
post_mn = np.array([0.0, 0.0, 0.0, 2.0, 1.0, 3.0])
eps = 1e-6
nodes_to_date = np.array([3, 4, 5])
constrained_ages = constrain_ages_topo(ts, post_mn, eps, nodes_to_date)
self.assertTrue(
np.array_equal(
np.array([0.0, 0.0, 0.0, 2.0, 2.000001, 3.0]), constrained_ages
)
)
def test_constrain_ages_topo_no_nodes_to_date(self):
ts = utility_functions.two_tree_ts()
post_mn = np.array([0.0, 0.0, 0.0, 2.0, 1.0, 3.0])
eps = 1e-6
nodes_to_date = None
constrained_ages = constrain_ages_topo(ts, post_mn, eps, nodes_to_date)
self.assertTrue(
np.array_equal(
np.array([0.0, 0.0, 0.0, 2.0, 2.000001, 3.0]), constrained_ages
)
)
def test_constrain_ages_topo_unary_nodes_unordered(self):
ts = utility_functions.single_tree_ts_with_unary()
post_mn = np.array([0.0, 0.0, 0.0, 2.0, 1.0, 0.5, 5.0, 1.0])
eps = 1e-6
constrained_ages = constrain_ages_topo(ts, post_mn, eps)
self.assertTrue(
np.allclose(
np.array([0.0, 0.0, 0.0, 2.0, 2.000001, 2.000002, 5.0, 5.000001]),
constrained_ages,
)
)
def test_constrain_ages_topo_part_dangling(self):
ts = utility_functions.two_tree_ts_n2_part_dangling()
post_mn = np.array([1.0, 0.0, 0.0, 0.1, 0.05])
eps = 1e-6
constrained_ages = constrain_ages_topo(ts, post_mn, eps)
self.assertTrue(
np.allclose(np.array([1.0, 0.0, 0.0, 1.000001, 1.000002]), constrained_ages)
)
def test_constrain_ages_topo_sample_as_parent(self):
ts = utility_functions.single_tree_ts_n3_sample_as_parent()
post_mn = np.array([0.0, 0.0, 0.0, 3.0, 1.0])
eps = 1e-6
constrained_ages = constrain_ages_topo(ts, post_mn, eps)
self.assertTrue(
np.allclose(np.array([0.0, 0.0, 0.0, 3.0, 3.000001]), constrained_ages)
)
def test_two_tree_ts_n3_non_contemporaneous(self):
ts = utility_functions.two_tree_ts_n3_non_contemporaneous()
post_mn = np.array([0.0, 0.0, 3.0, 4.0, 0.1, 4.1])
eps = 1e-6
constrained_ages = constrain_ages_topo(ts, post_mn, eps)
self.assertTrue(
np.allclose(np.array([0.0, 0.0, 3.0, 4.0, 4.000001, 4.1]), constrained_ages)
)
class TestPreprocessTs(unittest.TestCase):
"""
Test preprocess_ts works as expected
"""
def verify(self, ts, minimum_gap=None, remove_telomeres=None, **kwargs):
with self.assertLogs("tsdate.util", level="INFO") as logs:
if minimum_gap is not None and remove_telomeres is not None:
ts = tsdate.preprocess_ts(ts, minimum_gap=minimum_gap,
remove_telomeres=remove_telomeres)
elif minimum_gap is not None and remove_telomeres is None:
ts = tsdate.preprocess_ts(ts, minimum_gap=minimum_gap)
elif remove_telomeres is not None and minimum_gap is None:
ts = tsdate.preprocess_ts(ts, remove_telomeres=remove_telomeres)
else:
ts = tsdate.preprocess_ts(ts, **kwargs)
messages = [record.msg for record in logs.records]
self.assertIn("Beginning preprocessing", messages)
return ts
def test_no_sites(self):
ts = utility_functions.two_tree_ts()
self.assertRaises(ValueError, tsdate.preprocess_ts, ts)
def test_invariant_sites(self):
# Test that passing kwargs to simplify works as expected
ts = utility_functions.site_no_mutations()
with warnings.catch_warnings(record=True) as w:
removed = self.verify(ts)
self.assertTrue(removed.num_sites == 0)
self.assertTrue(len(w) == 1)
self.assertTrue(
tsdate.preprocess_ts(
ts, **{"filter_sites": False}).num_sites == ts.num_sites)
def test_no_intervals(self):
ts = utility_functions.two_tree_mutation_ts()
self.assertTrue(
ts.tables.edges == self.verify(ts, remove_telomeres=False).tables.edges)
self.assertTrue(
ts.tables.edges == self.verify(ts, minimum_gap=0.05).tables.edges)
def test_delete_interval(self):
ts = utility_functions.ts_w_data_desert(40, 60, 100)
trimmed = self.verify(ts, minimum_gap=20, remove_telomeres=False)
lefts = trimmed.tables.edges.left
rights = trimmed.tables.edges.right
self.assertTrue(
not np.any(np.logical_and(lefts > 41, lefts < 59)))
self.assertTrue(
not np.any(np.logical_and(rights > 41, rights < 59)))
def test_remove_telomeres(self):
ts = utility_functions.ts_w_data_desert(0, 5, 100)
removed = self.verify(ts, minimum_gap=ts.get_sequence_length())
lefts = removed.tables.edges.left
rights = removed.tables.edges.right
self.assertTrue(
not np.any(np.logical_and(lefts > 0, lefts < 4)))
self.assertTrue(
not np.any(np.logical_and(rights > 0, rights < 4)))
ts = utility_functions.ts_w_data_desert(95, 100, 100)
removed = self.verify(ts, minimum_gap=ts.get_sequence_length())
lefts = removed.tables.edges.left
rights = removed.tables.edges.right
self.assertTrue(
not np.any(np.logical_and(lefts > 96, lefts < 100)))
self.assertTrue(
not np.any(np.logical_and(rights > 96, rights < 100)))
class TestNodeTimes(unittest.TestCase):
"""
Test node_times works as expected.
"""
def test_node_times(self):
larger_ts = msprime.simulate(
10, mutation_rate=1, recombination_rate=1, length=20)
dated = date(larger_ts, 10000)
node_ages = nodes_time(dated)
self.assertTrue(np.all(dated.tables.nodes.time[:] >= node_ages))
def test_fails_unconstrained(self):
ts = utility_functions.two_tree_mutation_ts()
self.assertRaises(ValueError, nodes_time, ts, unconstrained=True)
class TestSiteTimes(unittest.TestCase):
"""
Test sites_time works as expected
"""
def test_no_sites(self):
ts = utility_functions.two_tree_ts()
self.assertRaises(ValueError, tsdate.sites_time_from_ts, ts)
def test_mutation_age_param(self):
ts = utility_functions.two_tree_mutation_ts()
self.assertRaises(
ValueError, tsdate.sites_time_from_ts, ts, mutation_age="sibling")
def test_sites_time_insideoutside(self):
ts = utility_functions.two_tree_mutation_ts()
dated = tsdate.date(ts, 1)
_, mn_post, _, _, eps, _ = get_dates(ts, 1)
self.assertTrue(np.array_equal(
mn_post[ts.tables.mutations.node],
tsdate.sites_time_from_ts(dated, unconstrained=True)))
self.assertTrue(np.array_equal(
dated.tables.nodes.time[ts.tables.mutations.node],
tsdate.sites_time_from_ts(dated, unconstrained=False)))
def test_sites_time_maximization(self):
ts = utility_functions.two_tree_mutation_ts()
dated = tsdate.date(ts, Ne=1, mutation_rate=1, method="maximization")
self.assertTrue(np.array_equal(
dated.tables.nodes.time[ts.tables.mutations.node],
tsdate.sites_time_from_ts(dated, unconstrained=False)))
def test_sites_time_mutation_age(self):
ts = utility_functions.two_tree_mutation_ts()
dated = tsdate.date(ts, Ne=1, mutation_rate=1)
sites_time_child = tsdate.sites_time_from_ts(dated, mutation_age="child")
dated_nodes_time = nodes_time(dated)
self.assertTrue(np.array_equal(
dated_nodes_time[ts.tables.mutations.node], sites_time_child))
sites_time_parent = tsdate.sites_time_from_ts(dated, mutation_age="parent")
parent_sites_check = np.zeros(dated.num_sites)
for tree in dated.trees():
for site in tree.sites():
for mut in site.mutations:
parent_sites_check[site.id] = dated_nodes_time[tree.parent(mut.node)]
self.assertTrue(np.array_equal(parent_sites_check, sites_time_parent))
sites_time_arithmetic = tsdate.sites_time_from_ts(
dated, mutation_age="arithmetic")
arithmetic_sites_check = np.zeros(dated.num_sites)
for tree in dated.trees():
for site in tree.sites():
for mut in site.mutations:
arithmetic_sites_check[site.id] = (
dated_nodes_time[mut.node] +
dated_nodes_time[tree.parent(mut.node)]) / 2
self.assertTrue(np.array_equal(
arithmetic_sites_check, sites_time_arithmetic))
sites_time_geometric = tsdate.sites_time_from_ts(dated, mutation_age="geometric")
geometric_sites_check = np.zeros(dated.num_sites)
for tree in dated.trees():
for site in tree.sites():
for mut in site.mutations:
geometric_sites_check[site.id] = np.sqrt(
dated_nodes_time[mut.node] *
dated_nodes_time[tree.parent(mut.node)])
self.assertTrue(np.array_equal(
geometric_sites_check, sites_time_geometric))
def test_sites_time_multiallelic(self):
ts = utility_functions.single_tree_ts_2mutations_multiallelic_n3()
sites_time = tsdate.sites_time_from_ts(ts, unconstrained=False)
self.assertTrue(np.array_equal(
[np.max(ts.tables.nodes.time[ts.tables.mutations.node])], sites_time))
sites_time = tsdate.sites_time_from_ts(
ts, unconstrained=False, ignore_multiallelic=False)
self.assertTrue(math.isnan(sites_time[0]))
def test_sites_time_singletons(self):
ts = utility_functions.single_tree_ts_2mutations_singletons_n3()
sites_time = tsdate.sites_time_from_ts(ts, unconstrained=False)
self.assertTrue(np.array_equal(sites_time, [1e-6]))
def test_sites_time_multiple_mutations(self):
ts = utility_functions.single_tree_ts_2mutations_n3()
sites_time = tsdate.sites_time_from_ts(ts, unconstrained=False)
self.assertTrue(np.array_equal(sites_time, [1]))
def test_sites_time_simulated(self):
larger_ts = msprime.simulate(
10, mutation_rate=1, recombination_rate=1, length=20)
_, mn_post, _, _, eps, _ = get_dates(larger_ts, 10000)
dated = date(larger_ts, 10000)
self.assertTrue(
np.array_equal(mn_post[larger_ts.tables.mutations.node],
tsdate.sites_time_from_ts(dated, unconstrained=True)))
self.assertTrue(np.array_equal(
dated.tables.nodes.time[larger_ts.tables.mutations.node],
tsdate.sites_time_from_ts(dated, unconstrained=False)))
class TestSampleDataTimes(unittest.TestCase):
"""
Test add_sampledata_times
"""
def test_wrong_number_of_sites(self):
ts = utility_functions.single_tree_ts_2mutations_n3()
sites_time = tsdate.sites_time_from_ts(ts, unconstrained=False)
sites_time = np.append(sites_time, [10])
samples = tsinfer.formats.SampleData.from_tree_sequence(
ts, use_sites_time=False)
self.assertRaises(ValueError, tsdate.add_sampledata_times, samples, sites_time)
def test_historic_samples(self):
samples = [msprime.Sample(population=0, time=0) for i in range(10)]
ancients = [msprime.Sample(population=0, time=1000) for i in range(10)]
samps = samples + ancients
ts = msprime.simulate(samples=samps, mutation_rate=1e-8,
recombination_rate=1e-8, Ne=10000, length=1e4)
samples = tsinfer.formats.SampleData.from_tree_sequence(
ts, use_individuals_time=True)
ancient_samples = np.where(
ts.tables.nodes.time[:][ts.samples()] != 0)[0].astype('int32')
ancient_samples_times = ts.tables.nodes.time[ancient_samples]
inferred = tsinfer.infer(samples)
dated = date(inferred, 10000, 1e-8)
sites_time = tsdate.sites_time_from_ts(dated)
dated_samples = tsdate.add_sampledata_times(samples, sites_time)
for variant in ts.variants(samples=ancient_samples):
if np.any(variant.genotypes == 1):
ancient_bound = np.max(ancient_samples_times[variant.genotypes == 1])
self.assertTrue(
dated_samples.sites_time[variant.site.id] >= ancient_bound)
def test_sampledata(self):
samples = [msprime.Sample(population=0, time=0) for i in range(10)]
ancients = [msprime.Sample(population=0, time=1000) for i in range(10)]
samps = samples + ancients
ts = msprime.simulate(samples=samps, mutation_rate=1e-8,
recombination_rate=1e-8, Ne=10000, length=1e4)
samples = tsinfer.formats.SampleData.from_tree_sequence(
ts, use_sites_time=False)
inferred = tsinfer.infer(samples)
dated = date(inferred, 10000, 1e-8)
sites_time = tsdate.sites_time_from_ts(dated)
sites_bound = samples.min_site_times(individuals_only=True)
check_sites_time = | np.maximum(sites_time, sites_bound) | numpy.maximum |
# coding: utf-8
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from libcity.model.abstract_model import AbstractModel
from math import sin, cos, sqrt, atan2, radians
import numpy as np
def identity_loss(y_true, y_pred):
return torch.mean(y_pred - 0 * y_true)
class CARA1(nn.Module):
def hard_sigmoid(self, x):
x = torch.tensor(x / 6 + 0.5)
x = F.threshold(-x, -1, -1)
x = F.threshold(-x, 0, 0)
return x
def __init__(self, output_dim, input_dim,
init='glorot_uniform', inner_init='orthogonal',
**kwargs):
super(CARA1, self).__init__()
self.output_dim = output_dim
self.init = init
self.inner_init = inner_init
self.activation = self.hard_sigmoid
self.inner_activation = nn.Tanh()
self.build(input_dim)
def add_weight(self, shape, initializer):
ts = torch.zeros(shape)
if initializer == 'glorot_uniform':
ts = nn.init.xavier_normal_(ts)
elif initializer == 'orthogonal':
ts = nn.init.orthogonal_(ts)
return nn.Parameter(ts)
def build(self, input_shape):
# self.input_spec = [InputSpec(shape=input_shape)]
self.input_dim = input_shape
self.W_z = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_z = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_z = self.add_weight((self.output_dim,),
initializer='zero')
self.W_r = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_r = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_r = self.add_weight((self.output_dim,),
initializer='zero')
self.W_h = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_h = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_h = self.add_weight((self.output_dim,),
initializer='zero')
self.A_h = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.A_u = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_a_h = self.add_weight((self.output_dim,),
initializer='zero')
self.b_a_u = self.add_weight((self.output_dim,),
initializer='zero')
self.W_t = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_t = self.add_weight((1, self.output_dim),
initializer=self.init)
self.b_t = self.add_weight((self.output_dim,),
initializer='zero')
self.W_g = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_g = self.add_weight((1, self.output_dim),
initializer=self.init)
self.b_g = self.add_weight((self.output_dim,),
initializer='zero')
def preprocess_input(self, x):
return x
def forward(self, x):
"""
X : batch * timeLen * dims(有拓展)
"""
tlen = x.shape[1]
output = torch.zeros((x.shape[0], self.output_dim))
for i in range(tlen):
output = self.step(x[:, i, :], output)
return output
def step(self, x, states):
"""
用于多批次同一时间
states为上一次多批次统一时间数据
"""
h_tm1 = states
# phi_t
u = x[:, self.output_dim: 2 * self.output_dim]
# delta_t
t = x[:, 2 * self.output_dim: (2 * self.output_dim) + 1]
# delta_g
g = x[:, (2 * self.output_dim) + 1:]
# phi_v
x = x[:, :self.output_dim]
t = self.inner_activation(torch.matmul(t, self.U_t))
g = self.inner_activation(torch.matmul(g, self.U_g))
# Time-based gate
t1 = self.inner_activation(torch.matmul(x, self.W_t) + t + self.b_t)
# Geo-based gate
g1 = self.inner_activation(torch.matmul(x, self.W_g) + g + self.b_g)
# Contextual Attention Gate
a = self.inner_activation(
torch.matmul(h_tm1, self.A_h) + torch.matmul(u, self.A_u) + self.b_a_h + self.b_a_u)
x_z = torch.matmul(x, self.W_z) + self.b_z
x_r = torch.matmul(x, self.W_r) + self.b_r
x_h = torch.matmul(x, self.W_h) + self.b_h
u_z_ = torch.matmul((1 - a) * u, self.W_z) + self.b_z
u_r_ = torch.matmul((1 - a) * u, self.W_r) + self.b_r
u_h_ = torch.matmul((1 - a) * u, self.W_h) + self.b_h
u_z = torch.matmul(a * u, self.W_z) + self.b_z
u_r = torch.matmul(a * u, self.W_r) + self.b_r
u_h = torch.matmul(a * u, self.W_h) + self.b_h
# update gate
z = self.inner_activation(x_z + torch.matmul(h_tm1, self.U_z) + u_z)
# reset gate
r = self.inner_activation(x_r + torch.matmul(h_tm1, self.U_r) + u_r)
# hidden state
hh = self.activation(x_h + torch.matmul(r * t1 * g1 * h_tm1, self.U_h) + u_h)
h = z * h_tm1 + (1 - z) * hh
h = (1 + u_z_ + u_r_ + u_h_) * h
return h
# return h
def bpr_triplet_loss(x):
positive_item_latent, negative_item_latent = x
reg = 0
loss = 1 - torch.log(torch.sigmoid(
torch.sum(positive_item_latent, dim=-1, keepdim=True) -
torch.sum(negative_item_latent, dim=-1, keepdim=True))) - reg
return loss
class Recommender(nn.Module):
def __init__(self, num_users, num_items, num_times, latent_dim, maxvenue=5):
super(Recommender, self).__init__()
self.maxVenue = maxvenue
self.latent_dim = latent_dim
# num * maxVenue * dim
self.U_Embedding = nn.Embedding(num_users, latent_dim)
self.V_Embedding = nn.Embedding(num_items, latent_dim)
self.T_Embedding = nn.Embedding(num_times, latent_dim)
torch.nn.init.uniform_(self.U_Embedding.weight)
torch.nn.init.uniform_(self.V_Embedding.weight)
torch.nn.init.uniform_(self.T_Embedding.weight)
self.rnn = nn.Sequential(
CARA1(latent_dim, latent_dim, input_shape=(self.maxVenue, (self.latent_dim * 2) + 2,), unroll=True))
# latent_dim * 2 + 2 = v_embedding + t_embedding + time_gap + distance
def forward(self, x):
# INPUT = [self.user_input, self.time_input, self.gap_time_input, self.pos_distance_input,
# self.neg_distance_input, self.checkins_input,
# self.neg_checkins_input]
# pass
# User latent factor
user_input = torch.tensor(x[0])
time_input = torch.tensor(x[1])
gap_time_input = torch.tensor(x[2], dtype=torch.float32)
pos_distance_input = torch.tensor(x[3], dtype=torch.float32)
neg_distance_input = torch.tensor(x[4], dtype=torch.float32)
checkins_input = torch.tensor(x[5])
neg_checkins_input = torch.tensor(x[6])
self.u_latent = self.U_Embedding(user_input)
self.t_latent = self.T_Embedding(time_input)
h, w = gap_time_input.shape
gap_time_input = gap_time_input.view(h, w, 1)
rnn_input = torch.cat([self.V_Embedding(checkins_input), self.T_Embedding(time_input), gap_time_input], -1)
neg_rnn_input = torch.cat([self.V_Embedding(neg_checkins_input), self.T_Embedding(time_input), gap_time_input],
-1)
h, w = pos_distance_input.shape
pos_distance_input = pos_distance_input.view(h, w, 1)
h, w = neg_distance_input.shape
neg_distance_input = neg_distance_input.view(h, w, 1)
rnn_input = torch.cat([rnn_input, pos_distance_input], -1)
neg_rnn_input = torch.cat([neg_rnn_input, neg_distance_input], -1)
self.checkins_emb = self.rnn(rnn_input)
self.neg_checkins_emb = self.rnn(neg_rnn_input)
pred = (self.checkins_emb * self.u_latent).sum(dim=1)
neg_pred = (self.neg_checkins_emb * self.u_latent).sum(dim=1)
return bpr_triplet_loss([pred, neg_pred])
def rank(self, uid, hist_venues, hist_times, hist_time_gap, hist_distances):
# hist_venues = hist_venues + [candidate_venue]
# hist_times = hist_times + [time]
# hist_time_gap = hist_time_gap + [time_gap]
# hist_distances = hist_distances + [distance]
# u_latent = self.U_Embedding(torch.tensor(uid))
# v_latent = self.V_Embedding(torch.tensor(hist_venues))
# t_latent = self.T_Embedding(torch.tensor(hist_times))
u_latent = self.U_Embedding.weight[uid]
v_latent = self.V_Embedding.weight[hist_venues.reshape(-1)].view(hist_venues.shape[0], hist_venues.shape[1], -1)
t_latent = self.T_Embedding.weight[hist_times.reshape(-1)].view(hist_times.shape[0], hist_times.shape[1], -1)
h, w = hist_time_gap.shape
hist_time_gap = hist_time_gap.reshape(h, w, 1)
h, w = hist_distances.shape
hist_distances = hist_distances.reshape(h, w, 1)
rnn_input = torch.cat([t_latent, torch.tensor(hist_time_gap, dtype=torch.float32)], dim=-1)
rnn_input = torch.cat([rnn_input, torch.tensor(hist_distances, dtype=torch.float32)], dim=-1)
rnn_input = torch.cat([v_latent, rnn_input], dim=-1)
dynamic_latent = self.rnn(rnn_input)
scores = torch.mul(dynamic_latent, u_latent).sum(1)
# scores = np.dot(dynamic_latent, u_latent)
return scores
class CARA(AbstractModel):
"""rnn model with long-term history attention"""
def __init__(self, config, data_feature):
super(CARA, self).__init__(config, data_feature)
self.loc_size = data_feature['loc_size']
self.tim_size = data_feature['tim_size']
self.uid_size = data_feature['uid_size']
self.poi_profile = data_feature['poi_profile']
self.id2locid = data_feature['id2locid']
self.id2loc = []
for i in range(self.loc_size - 1):
self.id2loc.append(self.id2locid[str(i)])
self.id2loc.append(self.loc_size)
self.id2loc = np.array(self.id2loc)
self.coor = self.poi_profile['coordinates'].apply(eval)
self.rec = Recommender(self.uid_size, self.loc_size, self.tim_size, 10)
def get_time_interval(self, x):
y = x[:, :-1]
y = np.concatenate([x[:, 0, None], y], axis=1)
return x - y
def get_time_interval2(self, x):
y = x[:-1]
y = np.concatenate([x[0, None], y], axis=0)
return x - y
def get_pos_distance(self, x):
x = np.array(x.tolist())
y = np.concatenate([x[:, 0, None, :], x[:, :-1, :]], axis=1)
r = 6373.0
rx = np.radians(x)
ry = np.radians(y)
d = x - y
a = np.sin(d[:, :, 0] / 2) ** 2 + np.cos(rx[:, :, 0]) * np.cos(ry[:, :, 0]) * np.sin(d[:, :, 1] / 2) ** 2
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
return r * c
def get_pos_distance2(self, x):
x = np.array(x.tolist())
y = | np.concatenate([x[0, None, :], x[:-1, :]], axis=0) | numpy.concatenate |
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import model_from_json
import numpy as np
import tensorflow.keras.models as models
def predict(temp_file):
test_image = image.load_img(temp_file, target_size = (224, 224))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
with open('Model Weights _ Json/model.json','r') as json_file:
json_model = json_file.read()
model = model_from_json(json_model)
model.load_weights('Model Weights _ Json/model_weights.h5')
result = model.predict(test_image)
return | np.argmax(result) | numpy.argmax |
import sys, os, re
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib
import seaborn as sns
from pylab import *
from sklearn.decomposition import PCA
# from sklearn.manifold import TSNE
# from openTSNE import TSNE
from tsnecuda import TSNE
import random
plt.style.use('ggplot')
sns.set_palette("husl")
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
def readFasta(fastaFile):
fh = open(fastaFile, 'r')
for line in fh:
header = ""
seq = ""
if line[0] == '>':
header = line.rstrip()[1:]
seq = fh.readline().rstrip()
yield [header, seq]
fh.close()
def calcShannonIndex(uniqueSet):
n_unique = len(uniqueSet)
pool_size = np.sum([c for c in uniqueSet.values()])
avg_seq_len = np.mean([len(c) for c in uniqueSet.keys()])
H = 0.0
for unique in uniqueSet.items():
pi = float(int(unique[1])/pool_size)
H += pi*np.log2(pi)
print("Unique sequences: %d\tTotal sequences: %d\nShannon index: %f\tMean sequence length: %f\n" % (n_unique, pool_size, -H, avg_seq_len))
return -H
def hamming_distance(s1, s2):
"""Return the Hamming distance between equal-length sequences"""
if len(s1) != len(s2):
raise ValueError("Undefined for sequences of unequal length")
return sum(el1 != el2 for el1, el2 in zip(s1, s2))
def plot_entropy_over_rounds(fileList, bc_1, bc_2):
'''Plots the information entropy of multiple rounds of sequences.'''
for file in fileList:
unique_sequences = {}
print(file)
pat_start = r"(" + bc_1 + ")"
pat_start = re.compile(pat_start)
pat_end = r"(" + bc_2 + ")"
pat_end = re.compile(pat_end)
for h,seq in readFasta(file):
search_start = pat_start.search(seq)
search_end = pat_end.search(seq)
if search_start and search_end:
seq_trimmed = seq[search_start.span()[1]:search_end.span()[0]]
if len(seq_trimmed) == 39:
if seq_trimmed in unique_sequences:
unique_sequences[seq_trimmed] += 1
else:
unique_sequences[seq_trimmed] = 1
negH = calcShannonIndex(unique_sequences)
def plot_hamming_distance_over_rounds(fileList, bc_1, bc_2, ref):
n_col = 5
n_row = 2
plt.figure(figsize=(15, 6))
for i, file in enumerate(fileList):
unique_sequences = {}
print(file)
pat_start = r"(" + bc_1 + ")"
pat_start = re.compile(pat_start)
pat_end = r"(" + bc_2 + ")"
pat_end = re.compile(pat_end)
for h,seq in readFasta(file):
search_start = pat_start.search(seq)
search_end = pat_end.search(seq)
if search_start and search_end:
seq_trimmed = seq[search_start.span()[1]:search_end.span()[0]]
if len(seq_trimmed) == len(ref):
if seq_trimmed in unique_sequences:
unique_sequences[seq_trimmed] += 1
else:
unique_sequences[seq_trimmed] = 1
hd_list = []
hd_dist = np.zeros(len(ref))
for uniqe_seq in unique_sequences:
hd = hamming_distance(uniqe_seq, ref)
hd_list.append(hd)
hd_dist[hd] += 1
print("Mean HD: %f" % (np.mean(hd_list)))
print("HD distribution: ", hd_dist)
plt.subplot(n_row, n_col, i+1)
plt.title("A1 R%d" % (i))
plt.xlabel("HD from 359")
plt.ylabel("Count")
plt.bar(np.arange(hd_dist.shape[0]), hd_dist)
plt.tight_layout()
plt.show(block=True)
# plt.savefig('randomer_fig4_hd_from_A1_359.pdf', dpi=300, bbox_inches='tight')
def gen_rand_seqs(seq_len, n_seq):
nt_arr = ['A', 'T', 'C', 'G']
rand_seqs = []
for i in range(n_seq):
rand_dna = ""
for i in range(seq_len):
rand_dna += nt_arr[random.randint(0, 3)]
rand_seqs.append(rand_dna)
return rand_seqs
def plot_hamming_distance_over_rounds_stacked(fileList, bc_1, bc_2, ref, labels=None, add_rand=False, write_csv=False, output_file_name="default"):
if write_csv:
fh = open(output_file_name + ".csv", 'w')
header = "Experiment"
for i in range(len(ref)):
header += ",%d" % (i)
fh.write(header+'\n')
n_col = 1
n_row = len(fileList)
if add_rand:
n_row += 1
plt.figure(figsize=(4, len(fileList)))
c = 0
for i, file in enumerate(fileList):
unique_sequences = {}
print(file)
pat_start = r"(" + bc_1 + ")"
pat_start = re.compile(pat_start)
pat_end = r"(" + bc_2 + ")"
pat_end = re.compile(pat_end)
for h,seq in readFasta(file):
search_start = pat_start.search(seq)
search_end = pat_end.search(seq)
if search_start and search_end:
seq_trimmed = seq[search_start.span()[1]:search_end.span()[0]]
if len(seq_trimmed) == len(ref):
if seq_trimmed in unique_sequences:
unique_sequences[seq_trimmed] += 1
else:
unique_sequences[seq_trimmed] = 1
hd_list = []
hd_dist = np.zeros(len(ref))
for uniqe_seq in unique_sequences:
hd = hamming_distance(uniqe_seq, ref)
hd_list.append(hd)
hd_dist[hd] += 1
# if hd <= 10:
# print(">%s_%d" %(file, c))
# print(uniqe_seq)
c += 1
print("Mean HD: %f" % (np.mean(hd_list)))
print("HD distribution: ", hd_dist)
if write_csv:
csv_line = "%s," % (file)
csv_line += ",".join([str(x) for x in hd_dist])
fh.write(csv_line+"\n")
plt.subplot(n_row, n_col, i+1)
# plt.title("A1 R%d" % (i))
# plt.xlabel("HD from 359")
# plt.ylabel("Count")
if labels != None:
plt.bar(np.arange(hd_dist.shape[0]), hd_dist, label="%s" % (labels[i]))
else:
plt.bar(np.arange(hd_dist.shape[0]), hd_dist, label="R%d" % (i))
plt.yticks([])
if add_rand == True:
plt.xticks([0, 10, 20, 30, 40])
plt.tick_params(axis='x', labelsize=0, length = 3, labelbottom=False)
elif add_rand == False:
if i != len(fileList)-1:
plt.xticks([0, 10, 20, 30, 40])
plt.tick_params(axis='x', labelsize=0, length = 3, labelbottom=False)
else:
plt.xticks([0, 10, 20, 30, 40])
plt.xlabel("HD from seqT1")
plt.legend()
if add_rand: ## Random sequences.
print("Random")
rand_seq = gen_rand_seqs(len(ref), 10000) # Generate 10k random seqs.
hd_list = []
hd_dist = np.zeros(len(ref))
for seq in rand_seq:
hd = hamming_distance(seq, ref)
hd_list.append(hd)
hd_dist[hd] += 1
print("Mean HD: %f" % (np.mean(hd_list)))
print("HD distribution: ", hd_dist)
if write_csv:
csv_line = "Random,"
csv_line += ",".join([str(x) for x in hd_dist])
fh.write(csv_line+"\n")
plt.subplot(n_row, n_col, n_row)
plt.bar(np.arange(hd_dist.shape[0]), hd_dist, label="Random")
plt.yticks([])
plt.legend()
plt.xticks([0, 10, 20, 30, 40])
plt.xlabel("HD from seqT1")
plt.tight_layout()
# plt.show(block=True)
plt.savefig(output_file_name + ".pdf", dpi=300, bbox_inches='tight')
nt_arr = ['A', 'T', 'C', 'G']
def generate_random_rna(nt_len):
rand_rna = ""
for i in range(nt_len):
rand_rna += nt_arr[random.randint(0, 3)]
return rand_rna
# encode_dict = {
# 'A': 0,
# 'T': 1,
# 'C': 2,
# 'G': 3,
# 'N': 4
# }
encode_dict = {
'A': [1,0,0],
'T': [1,1,0],
'C': [1,1,0],
'G': [0,0,1],
' ': [0,0,0]
}
def encode(sequence):
encoded = | np.zeros((45, 3), dtype=np.int) | numpy.zeros |
# coding: utf-8
# Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department
# Distributed under the terms of "New BSD License", see the LICENSE file.
from __future__ import division, print_function
import ast
from copy import copy
from collections import OrderedDict
from math import cos, sin
import numpy as np
from six import string_types
import warnings
from ase.geometry import cellpar_to_cell, complete_cell, get_distances
from matplotlib.colors import rgb2hex
from scipy.interpolate import interp1d
from pyiron.atomistics.structure.atom import Atom
from pyiron.atomistics.structure.sparse_list import SparseArray, SparseList
from pyiron.atomistics.structure.periodic_table import PeriodicTable, ChemicalElement, ElementColorDictionary
from pyiron.base.settings.generic import Settings
from scipy.spatial import cKDTree, Voronoi
try:
import spglib
except ImportError:
try:
import pyspglib as spglib
except ImportError:
raise ImportError("The spglib package needs to be installed")
__author__ = "<NAME>, <NAME>"
__copyright__ = "Copyright 2019, Max-Planck-Institut für Eisenforschung GmbH - " \
"Computational Materials Design (CM) Department"
__version__ = "1.0"
__maintainer__ = "<NAME>"
__email__ = "<EMAIL>"
__status__ = "production"
__date__ = "Sep 1, 2017"
s = Settings()
class Atoms(object):
"""
The Atoms class represents all the information required to describe a structure at the atomic scale. This class is
written in such a way that is compatible with the `ASE atoms class`_. Some of the functions in this module is based
on the corresponding implementation in the ASE package
Args:
elements (list/numpy.ndarray): List of strings containing the elements or a list of
atomistics.structure.periodic_table.ChemicalElement instances
numbers (list/numpy.ndarray): List of atomic numbers of elements
symbols (list/numpy.ndarray): List of chemical symbols
positions (list/numpy.ndarray): List of positions
scaled_positions (list/numpy.ndarray): List of scaled positions (relative coordinates)
pbc (list/numpy.ndarray/boolean): Tells if periodic boundary conditions should be applied on the three axes
cell (list/numpy.ndarray instance): A 3x3 array representing the lattice vectors of the structure
Note: Only one of elements/symbols or numbers should be assigned during initialization
Attributes:
indices (numpy.ndarray): A list of size N which gives the species index of the structure which has N atoms
.. _ASE atoms class: https://wiki.fysik.dtu.dk/ase/ase/atoms.html
"""
def __init__(self, symbols=None, positions=None, numbers=None, tags=None, momenta=None, masses=None,
magmoms=None, charges=None, scaled_positions=None, cell=None, pbc=None, celldisp=None, constraint=None,
calculator=None, info=None, indices=None, elements=None, dimension=None, species=None,
**qwargs):
if symbols is not None:
if elements is None:
elements = symbols
else:
raise ValueError("Only elements OR symbols should be given.")
if tags is not None or momenta is not None or masses is not None or charges is not None \
or celldisp is not None or constraint is not None or calculator is not None or info is not None:
s.logger.debug('Not supported parameter used!')
self._store_elements = dict()
self._species_to_index_dict = None
self.colorLut = ElementColorDictionary().to_lut()
self._is_scaled = False
if cell is not None:
# make it ASE compatible
if np.linalg.matrix_rank(cell) == 1:
cell = np.eye(len(cell)) * cell
else:
cell = np.array(cell)
self._cell = cell
self._species = list()
self.positions= None
self._pse = PeriodicTable()
self._tag_list = SparseArray()
self.indices = np.array([])
self._info = dict()
self.arrays = dict()
self.adsorbate_info = {}
self.bonds = None
self._pbc = False
self.dimension = 3 # Default
self.units = {"length": "A", "mass": "u"}
el_index_lst = list()
element_list = None
if (elements is None) and (numbers is None) and (indices is None):
return
if numbers is not None: # for ASE compatibility
if not (elements is None):
raise AssertionError()
elements = self.numbers_to_elements(numbers)
if elements is not None:
el_object_list = None
if isinstance(elements, str):
element_list = self.convert_formula(elements)
elif isinstance(elements, (list, tuple, np.ndarray)):
if not all([isinstance(el, elements[0].__class__) for el in elements]):
object_list = list()
for el in elements:
if isinstance(el, (str, np.str, np.str_)):
object_list.append(self.convert_element(el))
if isinstance(el, ChemicalElement):
object_list.append(el)
if isinstance(el, Atom):
object_list.append(el.element)
if isinstance(el, (int, np.integer)):
# pse = PeriodicTable()
object_list.append(self._pse.element(el))
el_object_list = object_list
if len(elements) == 0:
element_list = elements
else:
if isinstance(elements[0], (list, tuple, np.ndarray)):
elements = np.array(elements).flatten()
if isinstance(elements[0], string_types):
element_list = elements
elif isinstance(elements[0], ChemicalElement):
el_object_list = elements
elif isinstance(elements[0], Atom):
el_object_list = [el.element for el in elements]
positions = [el.position for el in elements]
elif elements.dtype in [int, np.integer]:
el_object_list = self.numbers_to_elements(elements)
else:
raise ValueError('Unknown static type for element in list: ' + str(type(elements[0])))
if el_object_list is None:
el_object_list = [self.convert_element(el) for el in element_list]
self.set_species(list(set(el_object_list)))
# species_to_index_dict = {el: i for i, el in enumerate(self.species)}
el_index_lst = [self._species_to_index_dict[el] for el in el_object_list]
elif indices is not None:
el_index_lst = indices
self.set_species(species)
if scaled_positions is not None:
if positions is not None:
raise ValueError("either position or scaled_positions can be given")
if cell is None:
raise ValueError('scaled_positions can only be used with a given cell')
positions = np.dot(np.array(cell).T, np.array(scaled_positions).T).T
if positions is None:
self.dimension = 3
if cell is not None:
positions = np.zeros((len(el_index_lst), self.dimension))
self.indices = np.array(el_index_lst)
self.positions = np.array(positions).astype(np.float)
self._tag_list._length = len(positions)
for key, val in qwargs.items():
print('set qwargs (ASE): ', key, val)
setattr(self, key, val)
if len(positions) > 0:
self.dimension = len(positions[0])
else:
self.dimension = 3
if dimension is not None:
self.dimension = dimension
if cell is not None:
if pbc is None:
self.pbc = True # default setting
else:
self.pbc = pbc
self.set_initial_magnetic_moments(magmoms)
@property
def cell(self):
"""
numpy.ndarray: A size 3x3 array which gives the lattice vectors of the cell as [a1, a2, a3]
"""
return self._cell
@cell.setter
def cell(self, value):
if value is None:
self._cell = None
else:
if self._is_scaled:
self.set_cell(value, scale_atoms=True)
else:
self.set_cell(value)
@property
def species(self):
"""
list: A list of atomistics.structure.periodic_table.ChemicalElement instances
"""
return self._species
# @species.setter
def set_species(self, value):
"""
Setting the species list
Args:
value (list): A list atomistics.structure.periodic_table.ChemicalElement instances
"""
if value is None:
return
value = list(value)
self._species_to_index_dict = {el: i for i, el in enumerate(value)}
self._species = value[:]
self._store_elements = {el.Abbreviation: el for el in value}
@property
def info(self):
"""
dict: This dictionary is merely used to be compatible with the ASE Atoms class.
"""
return self._info
@info.setter
def info(self, val):
self._info = val
@property
def pbc(self):
"""
list: A list of boolean values which gives the periodic boundary consitions along the three axes.
The default value is [True, True, True]
"""
if not isinstance(self._pbc, np.ndarray):
self.set_pbc(self._pbc)
return self._pbc
@pbc.setter
def pbc(self, val):
self._pbc = val
@property
def elements(self):
"""
numpy.ndarray: A size N list of atomistics.structure.periodic_table.ChemicalElement instances according
to the ordering of the atoms in the instance
"""
return np.array([self.species[el] for el in self.indices])
def new_array(self, name, a, dtype=None, shape=None):
"""
Adding a new array to the instance. This function is for the purpose of compatibility with the ASE package
Args:
name (str): Name of the array
a (list/numpy.ndarray): The array to be added
dtype (type): Data type of the array
shape (list/turple): Shape of the array
"""
if dtype is not None:
a = np.array(a, dtype, order='C')
if len(a) == 0 and shape is not None:
a.shape = (-1,) + shape
else:
if not a.flags['C_CONTIGUOUS']:
a = np.ascontiguousarray(a)
else:
a = a.copy()
if name in self.arrays:
raise RuntimeError
for b in self.arrays.values():
if len(a) != len(b):
raise ValueError('Array has wrong length: %d != %d.' %
(len(a), len(b)))
break
if shape is not None and a.shape[1:] != shape:
raise ValueError('Array has wrong shape %s != %s.' %
(a.shape, (a.shape[0:1] + shape)))
self.arrays[name] = a
def get_array(self, name, copy=True):
"""
Get an array. This function is for the purpose of compatibility with the ASE package
Args:
name (str): Name of the required array
copy (bool): True if a copy of the array is to be returned
Returns:
An array of a copy of the array
"""
if copy:
return self.arrays[name].copy()
else:
return self.arrays[name]
def set_array(self, name, a, dtype=None, shape=None):
"""
Update array. This function is for the purpose of compatibility with the ASE package
Args:
name (str): Name of the array
a (list/numpy.ndarray): The array to be added
dtype (type): Data type of the array
shape (list/turple): Shape of the array
"""
b = self.arrays.get(name)
if b is None:
if a is not None:
self.new_array(name, a, dtype, shape)
else:
if a is None:
del self.arrays[name]
else:
a = np.asarray(a)
if a.shape != b.shape:
raise ValueError('Array has wrong shape %s != %s.' %
(a.shape, b.shape))
b[:] = a
def add_tag(self, *args, **qwargs):
"""
Add tags to the atoms object.
Examples:
For selective dynamics::
>>> self.add_tag(selective_dynamics=[False, False, False])
"""
self._tag_list.add_tag(*args, **qwargs)
# @staticmethod
def numbers_to_elements(self, numbers):
"""
Convert atomic numbers in element objects (needed for compatibility with ASE)
Args:
numbers (list): List of Element Numbers (as Integers; default in ASE)
Returns:
list: A list of elements as needed for pyiron
"""
# pse = PeriodicTable() # TODO; extend to internal PSE which can contain additional elements and tags
atom_number_to_element = {}
for i_el in set(numbers):
i_el = int(i_el)
atom_number_to_element[i_el] = self._pse.element(i_el)
return [atom_number_to_element[i_el] for i_el in numbers]
def copy(self):
"""
Returns a copy of the instance
Returns:
pyiron.atomistics.structure.atoms.Atoms: A copy of the instance
"""
return self.__copy__()
def to_hdf(self, hdf, group_name="structure"):
"""
Save the object in a HDF5 file
Args:
hdf (pyiron.base.generic.hdfio.FileHDFio): HDF path to which the object is to be saved
group_name (str):
Group name with which the object should be stored. This same name should be used to retrieve the object
"""
# import time
with hdf.open(group_name) as hdf_structure:
# time_start = time.time()
hdf_structure["TYPE"] = str(type(self))
for el in self.species:
if isinstance(el.tags, dict):
with hdf_structure.open("new_species") as hdf_species:
el.to_hdf(hdf_species)
hdf_structure['species'] = [el.Abbreviation for el in self.species]
hdf_structure["indices"] = self.indices
with hdf_structure.open("tags") as hdf_tags:
for tag in self._tag_list.keys():
tag_value = self._tag_list[tag]
if isinstance(tag_value, SparseList):
tag_value.to_hdf(hdf_tags, tag)
hdf_structure["units"] = self.units
hdf_structure["dimension"] = self.dimension
if self.cell is not None:
with hdf_structure.open("cell") as hdf_cell:
hdf_cell["cell"] = self.cell
hdf_cell["pbc"] = self.pbc
# hdf_structure["coordinates"] = self.positions # "Atomic coordinates"
hdf_structure["positions"] = self.positions # "Atomic coordinates"
# potentials with explicit bonds (TIP3P, harmonic, etc.)
if self.bonds is not None:
hdf_structure["explicit_bonds"] = self.bonds
# print ('time in atoms.to_hdf: ', time.time() - time_start)
def from_hdf(self, hdf, group_name="structure"):
"""
Retrieve the object from a HDF5 file
Args:
hdf (pyiron.base.generic.hdfio.FileHDFio): HDF path to which the object is to be saved
group_name (str): Group name from which the Atoms object is retreived.
Returns:
pyiron_atomistic.structure.atoms.Atoms: The retrieved atoms class
"""
if "indices" in hdf[group_name].list_nodes():
with hdf.open(group_name) as hdf_atoms:
if "new_species" in hdf_atoms.list_groups():
with hdf_atoms.open("new_species") as hdf_species:
self._pse.from_hdf(hdf_species)
el_object_list = [self.convert_element(el, self._pse) for el in hdf_atoms["species"]]
self.indices = hdf_atoms["indices"]
self._tag_list._length = len(self)
self.set_species(el_object_list)
self.bonds = None
if "explicit_bonds" in hdf_atoms.list_nodes():
# print "bonds: "
self.bonds = hdf_atoms["explicit_bonds"]
if "tags" in hdf_atoms.list_groups():
with hdf_atoms.open("tags") as hdf_tags:
tags = hdf_tags.list_nodes()
for tag in tags:
# tr_dict = {'0': False, '1': True}
if isinstance(hdf_tags[tag], (list, np.ndarray)):
my_list = hdf_tags[tag]
self._tag_list[tag] = SparseList(my_list, length=len(self))
else:
my_dict = hdf_tags.get_pandas(tag).to_dict()
my_dict = {i: val for i, val in zip(my_dict["index"], my_dict["values"])}
self._tag_list[tag] = SparseList(my_dict, length=len(self))
tr_dict = {1: True, 0: False}
self.dimension = hdf_atoms["dimension"]
self.units = hdf_atoms["units"]
self.cell = None
if "cell" in hdf_atoms.list_groups():
with hdf_atoms.open("cell") as hdf_cell:
self.cell = hdf_cell["cell"]
self.pbc = hdf_cell["pbc"]
# Backward compatibility
position_tag = "positions"
if position_tag not in hdf_atoms.list_nodes():
position_tag = "coordinates"
if "is_absolute" in hdf_atoms.list_nodes():
if not tr_dict[hdf_atoms["is_absolute"]]:
self.set_scaled_positions(hdf_atoms[position_tag])
else:
self.positions = hdf_atoms[position_tag]
else:
self.positions = hdf_atoms[position_tag]
if "bonds" in hdf_atoms.list_nodes():
self.bonds = hdf_atoms["explicit_bonds"]
return self
else:
return self._from_hdf_old(hdf, group_name)
def _from_hdf_old(self, hdf, group_name="structure"):
"""
This function exits merely for the purpose of backward compatibility
"""
with hdf.open(group_name) as hdf_atoms:
self._pse = PeriodicTable()
if "species" in hdf_atoms.list_groups():
with hdf_atoms.open("species") as hdf_species:
self._pse.from_hdf(hdf_species)
chemical_symbols = np.array(hdf_atoms["elements"], dtype=str)
el_object_list = [self.convert_element(el, self._pse) for el in chemical_symbols]
self.set_species(list(set(el_object_list)))
self.indices = [self._species_to_index_dict[el] for el in el_object_list]
self._tag_list._length = len(self)
self.bonds = None
if "explicit_bonds" in hdf_atoms.list_nodes():
# print "bonds: "
self.bonds = hdf_atoms["explicit_bonds"]
if "tags" in hdf_atoms.list_groups():
with hdf_atoms.open("tags") as hdf_tags:
tags = hdf_tags.list_nodes()
for tag in tags:
# tr_dict = {'0': False, '1': True}
if isinstance(hdf_tags[tag], (list, np.ndarray)):
my_list = hdf_tags[tag]
self._tag_list[tag] = SparseList(my_list, length=len(self))
else:
my_dict = hdf_tags.get_pandas(tag).to_dict()
my_dict = {i: val for i, val in zip(my_dict["index"], my_dict["values"])}
self._tag_list[tag] = SparseList(my_dict, length=len(self))
self.cell = None
if "cell" in hdf_atoms.list_groups():
with hdf_atoms.open("cell") as hdf_cell:
self.cell = hdf_cell["cell"]
self.pbc = hdf_cell["pbc"]
tr_dict = {1: True, 0: False}
self.dimension = hdf_atoms["dimension"]
if "is_absolute" in hdf_atoms and not tr_dict[hdf_atoms["is_absolute"]]:
self.positions = hdf_atoms["coordinates"]
else:
self.set_scaled_positions(hdf_atoms["coordinates"])
self.units = hdf_atoms["units"]
if "bonds" in hdf_atoms.list_nodes():
self.bonds = hdf_atoms["explicit_bonds"]
return self
def center(self, vacuum=None, axis=(0, 1, 2)):
"""
Center atoms in unit cell.
Adopted from ASE code (https://wiki.fysik.dtu.dk/ase/_modules/ase/atoms.html#Atoms.center)
Args:
vacuum (float): If specified adjust the amount of vacuum when centering. If vacuum=10.0 there will thus be
10 Angstrom of vacuum on each side.
axis (tuple/list): List or turple of integers specifying the axis along which the atoms should be centered
"""
# Find the orientations of the faces of the unit cell
c = self.cell
if c is None:
c = np.identity(self.dimension)
self.cell = c
dirs = np.zeros_like(c)
for i in range(3):
dirs[i] = np.cross(c[i - 1], c[i - 2])
dirs[i] /= np.linalg.norm(dirs[i]) # normalize
if np.dot(dirs[i], c[i]) < 0.0:
dirs[i] *= -1
# Now, decide how much each basis vector should be made longer
if isinstance(axis, int):
axes = (axis,)
else:
axes = axis
p = self.positions
longer = np.zeros(3)
shift = np.zeros(3)
for i in axes:
p0 = np.dot(p, dirs[i]).min()
p1 = np.dot(p, dirs[i]).max()
height = np.dot(c[i], dirs[i])
if vacuum is not None:
lng = (p1 - p0 + 2 * vacuum) - height
else:
lng = 0.0 # Do not change unit cell size!
top = lng + height - p1
shf = 0.5 * (top - p0)
cosphi = np.dot(c[i], dirs[i]) / np.linalg.norm(c[i])
longer[i] = lng / cosphi
shift[i] = shf / cosphi
# Now, do it!
translation = np.zeros(3)
for i in axes:
nowlen = np.sqrt(np.dot(c[i], c[i]))
self.cell[i] *= 1 + longer[i] / nowlen
translation += shift[i] * c[i] / nowlen
self.positions += translation
if self.pbc is None:
self.pbc = self.dimension * [True]
def set_positions(self, positions):
"""
Set positions. This function is for compatability with ASE
Args:
positions (numpy.ndarray/list): Positions in absolute coordinates
"""
self.positions = np.array(positions)
self._tag_list._length = len(self)
def get_positions(self):
"""
Get positions. This function is for compatability with ASE
Returns:
numpy.ndarray: Positions in absolute coordinates
"""
return self.positions
def select_index(self, el):
"""
Returns the indices of a given element in the structure
Args:
el (str/atomistics.structures.periodic_table.ChemicalElement/list): Element for which the indices should
be returned
Returns:
numpy.ndarray: An array of indices of the atoms of the given element
"""
if isinstance(el, str):
return np.where(self.get_chemical_symbols()==el)[0]
elif isinstance(el, ChemicalElement):
return np.where([e==el for e in self.get_chemical_elements()])[0]
if isinstance(el, (list, np.ndarray)):
if isinstance(el[0], str):
return np.where(np.isin(self.get_chemical_symbols(), el))[0]
elif isinstance(el[0], ChemicalElement):
return np.where([e in el for e in self.get_chemical_elements()])[0]
def select_parent_index(self, el):
"""
Returns the indices of a given element in the structure ignoring user defined elements
Args:
el (str/atomistics.structures.periodic_table.ChemicalElement): Element for which the indices should
be returned
Returns:
numpy.ndarray: An array of indices of the atoms of the given element
"""
parent_basis = self.get_parent_basis()
return parent_basis.select_index(el)
def get_tags(self):
"""
Returns the keys of the stored tags of the structure
Returns:
dict_keys: Keys of the stored tags
"""
return self._tag_list.keys()
def get_pbc(self):
"""
Returns a boolean array of the periodic boundary conditions along the x, y and z axis respectively
Returns:
numpy.ndarray: Boolean array of length 3
"""
if not isinstance(self._pbc, np.ndarray):
self.set_pbc(self._pbc)
return np.array(self._pbc, bool)
def set_pbc(self, value):
"""
Sets the perioic boundary conditions on all three axis
Args:
value (numpy.ndarray/list): An array of bool type with length 3
"""
if value is None:
self._pbc = None
else:
if isinstance(value, np.ndarray):
self._pbc = value
elif value in (True, False):
value = self.dimension * [value]
if not (np.shape(np.array(value)) == (self.dimension,)):
raise AssertionError()
self._pbc = np.array(value, bool)
def convert_element(self, el, pse=None):
"""
Convert a string or an atom instance into a ChemicalElement instance
Args:
el (str/atomistics.structure.atom.Atom): String or atom instance from which the element should
be generated
pse (atomistics.structure.periodictable.PeriodicTable): PeriodicTable instance from which the element
is generated (optional)
Returns:
atomistics.structure.periodictable.ChemicalElement: The required chemical element
"""
if el in list(self._store_elements.keys()):
return self._store_elements[el]
if isinstance(el, string_types): # as symbol
element = Atom(el, pse=pse).element
elif isinstance(el, Atom):
element = el.element
el = el.element.Abbreviation
elif isinstance(el, ChemicalElement):
element = el
el = el.Abbreviation
else:
raise ValueError('Unknown static type to specify a element')
self._store_elements[el] = element
if hasattr(self, 'species'):
if element not in self.species:
self._species.append(element)
self.set_species(self._species)
return element
def get_chemical_formula(self):
"""
Returns the chemical formula of structure
Returns:
str: The chemical formula as a string
"""
species = self.get_number_species_atoms()
formula = ""
for string_sym, num in species.items():
if num == 1:
formula += str(string_sym)
else:
formula += str(string_sym) + str(num)
return formula
def get_chemical_indices(self):
"""
Returns the list of chemical indices as ordered in self.species
Returns:
numpy.ndarray: A list of chemical indices
"""
return self.indices
def get_atomic_numbers(self):
"""
Returns the atomic numbers of all the atoms in the structure
Returns:
numpy.ndarray: A list of atomic numbers
"""
el_lst = [el.AtomicNumber for el in self.species]
return np.array([el_lst[el] for el in self.indices])
def get_chemical_symbols(self):
"""
Returns the chemical symbols for all the atoms in the structure
Returns:
numpy.ndarray: A list of chemical symbols
"""
el_lst = [el.Abbreviation for el in self.species]
return np.array([el_lst[el] for el in self.indices])
def get_parent_symbols(self):
"""
Returns the chemical symbols for all the atoms in the structure even for user defined elements
Returns:
numpy.ndarray: A list of chemical symbols
"""
sp_parent_list = list()
for sp in self.species:
if isinstance(sp.Parent, (float, np.float, type(None))):
sp_parent_list.append(sp.Abbreviation)
else:
sp_parent_list.append(sp.Parent)
return np.array([sp_parent_list[i] for i in self.indices])
def get_parent_basis(self):
"""
Returns the basis with all user defined/special elements as the it's parent
Returns:
pyiron.atomistics.structure.atoms.Atoms: Structure without any user defined elements
"""
parent_basis = copy(self)
new_species = np.array(parent_basis.species)
for i, sp in enumerate(new_species):
if not isinstance(sp.Parent, (float, np.float, type(None))):
pse = PeriodicTable()
new_species[i] = pse.element(sp.Parent)
sym_list = [el.Abbreviation for el in new_species]
if len(sym_list) != len(np.unique(sym_list)):
uni, ind, inv_ind = np.unique(sym_list, return_index=True, return_inverse=True)
new_species = new_species[ind].copy()
parent_basis.set_species(list(new_species))
indices_copy = parent_basis.indices.copy()
for i, ind_ind in enumerate(inv_ind):
indices_copy[parent_basis.indices == i] = ind_ind
parent_basis.indices = indices_copy
return parent_basis
parent_basis.set_species(list(new_species))
return parent_basis
def get_chemical_elements(self):
"""
Returns the list of chemical element instances
Returns:
numpy.ndarray: A list of chemical element instances
"""
return self.elements
def get_number_species_atoms(self):
"""
Returns a dictionary with the species in the structure and the corresponding count in the structure
Returns:
collections.OrderedDict: An ordered dictionary with the species and the corresponding count
"""
count = OrderedDict()
# print "sorted: ", sorted(set(self.elements))
for el in sorted(set(self.get_chemical_symbols())):
count[el] = 0
for el in self.get_chemical_symbols():
count[el] += 1
return count
def get_species_symbols(self):
"""
Returns the symbols of the present species
Returns:
numpy.ndarray: List of the symbols of the species
"""
return np.array(sorted([el.Abbreviation for el in self.species]))
def get_species_objects(self):
"""
Returns:
"""
el_set = self.species
el_sym_lst = {el.Abbreviation: i for i, el in enumerate(el_set)}
el_sorted = self.get_species_symbols()
return [el_set[el_sym_lst[el]] for el in el_sorted]
def get_number_of_species(self):
"""
Returns:
"""
return len(self.species)
def get_number_of_degrees_of_freedom(self):
"""
Returns:
"""
return len(self) * self.dimension
def get_center_of_mass(self):
"""
Returns:
com (float): center of mass in A
"""
masses = self.get_masses()
return np.einsum('i,ij->j', masses, self.positions)/ | np.sum(masses) | numpy.sum |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 16 15:18:08 2021.
@author: <NAME>
"""
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rc
rc('font',**{'family':'serif','serif':['DejaVu Sans']})
rc('text',usetex=True)
params={'text.latex.preamble':[r'\usepackage{amsmath}',r'\usepackage{amssymb}']}
plt.rcParams.update(params);
from scipy import stats
# --------------------------------------------------------------------------- #
model_name = 'resnet18'#'resnet34'#'efficientnetb0'#'densenet121'#
model_name_str = 'ResNet-18'# 'ResNet-34'#'EfficientNet-B0'#'DenseNet-121'#'
splitLayer ='add_3'#'block2b_add'#'pool2_conv'#'add_1'#
rowsPerPacket = 4
quant1 = 8
quant2 = 8
results_dir = 'simData'
dataset = 'largeTest'
output_dir = os.path.join('mc_results',dataset,model_name+'_'+splitLayer)
os.makedirs(output_dir,exist_ok=True)
file_str = 'GC_'+str(quant1)+'Bits_'+str(quant2)+'Bits_rpp_'+str(rowsPerPacket)+'_MC_'
# --------------------------------------------------------------------------- #
lossProbability = [0.3,0.2,0.1,0.01]
burstLength = [1,2,3,4,5,6,7] # [1,2,3,4,5,6,7,8,9,10,11,12,13,14] #
step_MC = 5
num_MC = 20
MC_index = [i for i in range(0,num_MC+step_MC,step_MC)]
cloud_top1_acc = np.zeros([len(lossProbability),len(burstLength),num_MC],dtype=np.float64)
cloud_top5_acc = np.zeros_like(cloud_top1_acc)
full_top1_acc = np.zeros_like(cloud_top1_acc)
full_top5_acc = np.zeros_like(cloud_top1_acc)
caltec_top1_acc = np.zeros_like(cloud_top1_acc)
caltec_top5_acc = np.zeros_like(caltec_top1_acc)
altec_top1_acc = np.zeros_like(caltec_top1_acc)
altec_top5_acc = np.zeros_like(altec_top1_acc)
halrtc_top1_acc = np.zeros_like(caltec_top1_acc)
halrtc_top5_acc = np.zeros_like(caltec_top5_acc)
silrtc_top1_acc = np.zeros_like(halrtc_top1_acc)
silrtc_top5_acc = np.zeros_like(silrtc_top1_acc)
ns_top1_acc = np.zeros_like(caltec_top1_acc)
ns_top5_acc = np.zeros_like(caltec_top5_acc)
cloud_top1_mean = np.zeros([len(lossProbability),len(burstLength)],dtype=np.float64)
cloud_top5_mean = np.zeros_like(cloud_top1_mean)
full_top1_mean = np.zeros_like(cloud_top1_mean)
full_top5_mean = np.zeros_like(cloud_top1_mean)
caltec_top1_mean = np.zeros_like(cloud_top1_mean)
caltec_top5_mean = np.zeros_like(cloud_top5_mean)
altec_top1_mean = np.zeros_like(cloud_top1_mean)
altec_top5_mean = np.zeros_like(cloud_top5_mean)
halrtc_top1_mean = np.zeros_like(caltec_top1_mean)
halrtc_top5_mean = np.zeros_like(caltec_top1_mean)
silrtc_top1_mean = np.zeros_like(caltec_top1_mean)
silrtc_top5_mean = np.zeros_like(caltec_top1_mean)
ns_top1_mean = np.zeros_like(caltec_top1_mean)
ns_top5_mean = np.zeros_like(caltec_top5_mean)
# --------------------------------------------------------------------------- #
for i_lp in range(len(lossProbability)):
for i_bl in range(len(burstLength)):
print(f'loss probability {lossProbability[i_lp]} burst length {burstLength[i_bl]}')
df_results = pd.read_csv(os.path.join(results_dir,dataset,model_name,splitLayer+'_lp_'+str(lossProbability[i_lp])+'_Bl_'+str(burstLength[i_bl]),file_str+str(MC_index[0])+'_'+str(MC_index[-1])+'_.csv'))
full_top1_acc[i_lp,i_bl,:] = df_results['full_top1_accuracy'].to_numpy()
cloud_top1_acc[i_lp,i_bl,:] = df_results['cloud_top1_accuracy'].to_numpy()
full_top5_acc[i_lp,i_bl,:] = df_results['full_top5_accuracy'].to_numpy()
cloud_top5_acc[i_lp,i_bl,:] = df_results['cloud_top5_accuracy'].to_numpy()
full_top1_mean[i_lp,i_bl] = np.mean(full_top1_acc[i_lp,i_bl,:])
full_top5_mean[i_lp,i_bl] = np.mean(full_top5_acc[i_lp,i_bl,:])
cloud_top1_mean[i_lp,i_bl] = np.mean(cloud_top1_acc[i_lp,i_bl,:])
cloud_top5_mean[i_lp,i_bl] = | np.mean(cloud_top5_acc[i_lp,i_bl,:]) | numpy.mean |
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""""
Ernie pretrain data reader
"""
import collections
import re
import argparse
import random
import jieba
import numpy as np
from opencc import OpenCC
from mindspore.mindrecord import FileWriter
from src.tokenizer import convert_to_unicode, CharTokenizer
from src.utils import get_file_list
class ErnieDataReader:
"""Ernie data reader"""
def __init__(self,
file_list,
vocab_path,
short_seq_prob,
masked_word_prob,
max_predictions_per_seq,
dupe_factor,
max_seq_len=512,
random_seed=1,
do_lower_case=True,
generate_neg_sample=False):
# short_seq_prob, masked_word_prob, max_predictions_per_seq, vocab_words
self.vocab = self.load_vocab(vocab_path)
self.tokenizer = CharTokenizer(
vocab_file=vocab_path, do_lower_case=do_lower_case)
self.short_seq_prob = short_seq_prob
self.masked_word_prob = masked_word_prob
self.max_predictions_per_seq = max_predictions_per_seq
self.dupe_factor = dupe_factor
self.file_list = file_list
self.max_seq_len = max_seq_len
self.generate_neg_sample = generate_neg_sample
self.global_rng = random.Random(random_seed)
self.pad_id = self.vocab["[PAD]"]
self.cls_id = self.vocab["[CLS]"]
self.sep_id = self.vocab["[SEP]"]
self.mask_id = self.vocab["[MASK]"]
def load_vocab(self, vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
fin = open(vocab_file)
for num, line in enumerate(fin):
items = convert_to_unicode(line.strip()).split("\t")
if len(items) > 2:
break
token = items[0]
index = items[1] if len(items) == 2 else num
token = token.strip()
vocab[token] = int(index)
return vocab
def random_pair_neg_samples(self, pos_samples):
""" randomly generate negative samples using pos_samples
Args:
pos_samples: list of positive samples
Returns:
neg_samples: list of negative samples
"""
np.random.shuffle(pos_samples)
num_sample = len(pos_samples)
neg_samples = []
miss_num = 0
def split_sent(sample, max_len, sep_id):
token_ids, _, _, seg_labels, _ = sample
sep_index = token_ids.index(sep_id)
left_len = sep_index - 1
if left_len <= max_len:
return (token_ids[1:sep_index], seg_labels[1:sep_index])
return [
token_ids[sep_index + 1:-1], seg_labels[sep_index + 1:-1]
]
for i in range(num_sample):
pair_index = (i + 1) % num_sample
left_tokens, left_seg_labels = split_sent(
pos_samples[i], (self.max_seq_len - 3) // 2, self.sep_id)
right_tokens, right_seg_labels = split_sent(
pos_samples[pair_index],
self.max_seq_len - 3 - len(left_tokens), self.sep_id)
token_seq = [self.cls_id] + left_tokens + [self.sep_id] + \
right_tokens + [self.sep_id]
if len(token_seq) > self.max_seq_len:
miss_num += 1
continue
type_seq = [0] * (len(left_tokens) + 2) + [1] * (len(right_tokens) +
1)
pos_seq = range(len(token_seq))
seg_label_seq = [-1] + left_seg_labels + [-1] + right_seg_labels + [
-1
]
assert len(token_seq) == len(type_seq) == len(pos_seq) == len(seg_label_seq), \
"[ERROR]len(src_id) == lne(sent_id) == len(pos_id) must be True"
neg_samples.append([token_seq, type_seq, pos_seq, seg_label_seq, 0])
return neg_samples, miss_num
def mixin_negative_samples(self, sample_generator, buffer=1000):
""" 1. generate negative samples by randomly group sentence_1 and sentence_2 of positive samples
2. combine negative samples and positive samples
Args:
pos_sample_generator: a generator producing a parsed positive sample,
which is a list: [token_ids, sent_ids, pos_ids, 1]
Returns:
sample: one sample from shuffled positive samples and negative samples
"""
pos_samples = []
neg_samples = []
num_total_miss = 0
pos_sample_num = 0
try:
while True:
while len(pos_samples) < buffer:
sample = next(sample_generator)
next_sentence_label = sample[-1]
if next_sentence_label == 1:
pos_samples.append(sample)
pos_sample_num += 1
else:
neg_samples.append(sample)
new_neg_samples, miss_num = self.random_pair_neg_samples(
pos_samples)
num_total_miss += miss_num
samples = pos_samples + neg_samples + new_neg_samples
pos_samples = []
neg_samples = []
np.random.shuffle(samples)
for sample in samples:
yield sample
except StopIteration:
print("stopiteration: reach end of file")
if len(pos_samples) == 1:
yield pos_samples[0]
elif not pos_samples:
yield None
else:
new_neg_samples, miss_num = self.random_pair_neg_samples(
pos_samples)
num_total_miss += miss_num
samples = pos_samples + neg_samples + new_neg_samples
pos_samples = []
neg_samples = []
| np.random.shuffle(samples) | numpy.random.shuffle |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import random
from .builder import DATASETS
from .custom import CustomDataset
from collections import OrderedDict
from mmseg.core import eval_metrics, intersect_and_union, pre_eval_to_metrics
import mmcv
import numpy as np
from mmcv.utils import print_log
from prettytable import PrettyTable
from mmseg.core import eval_metrics
import os
from sklearn import metrics
from mmseg.utils import get_root_logger
@DATASETS.register_module()
class HSIGANDataset(CustomDataset):
"""Pascal VOC dataset.
Args:
split (str): Split txt file for Pascal VOC.
"""
CLASSES = ('noncancer', 'cancer')
PALETTE = [[0, 0, 0], [255, 255, 255]]
def __init__(self, split, gan_img_dir=None, gan_ann_dir=None, gan_split=None, gan_suffix=None,
fake_rate=0.2, **kwargs):
super(HSIGANDataset, self).__init__(
img_suffix='.hdr', seg_map_suffix='.png', split=split, **kwargs)
assert osp.exists(self.img_dir) and self.split is not None
if gan_img_dir is not None:
self.gan_img_dir = gan_img_dir
self.gan_ann_dir = gan_ann_dir
self.gan_split = gan_split
self.gan_suffix = gan_suffix
if self.data_root is not None:
if not osp.isabs(self.gan_img_dir):
self.gan_img_dir = osp.join(self.data_root, self.gan_img_dir)
if not (self.ann_dir is None or osp.isabs(self.gan_ann_dir)):
self.gan_ann_dir = osp.join(self.data_root, self.gan_ann_dir)
if not (self.gan_split is None or osp.isabs(self.gan_split)):
self.gan_split = osp.join(self.data_root, self.gan_split)
self.gan_infos = self.load_annotations(self.gan_img_dir, self.gan_suffix,
self.gan_ann_dir, self.seg_map_suffix,
self.gan_split)
self.len_ganx = len(self.gan_infos)
self.fake_rate = fake_rate/(1 + fake_rate)
self.len_gan = int(self.fake_rate * len(self.img_infos))
else:
self.len_gan = 0
self.len_real = len(self.img_infos)
def __len__(self):
return self.len_real + self.len_gan
def pre_pipeline(self, results):
"""Prepare results dict for pipeline."""
results['seg_fields'] = []
results['img_prefix'] = self.img_dir
results['seg_prefix'] = self.ann_dir
if self.custom_classes:
results['label_map'] = self.label_map
def pre_gan_pipeline(self, results):
"""Prepare results dict for pipeline."""
results['seg_fields'] = []
results['img_prefix'] = self.gan_img_dir
results['seg_prefix'] = self.gan_ann_dir
if self.custom_classes:
results['label_map'] = self.label_map
def get_ann_info(self, idx):
"""Get annotation by index."""
return self.img_infos[idx]['ann']
def get_gan_ann_info(self, idx):
"""Get annotation by index."""
return self.gan_infos[idx]['ann']
def prepare_train_img(self, idx):
if idx < self.len_real:
img_info = self.img_infos[idx]
ann_info = self.get_ann_info(idx)
results = dict(img_info=img_info, ann_info=ann_info)
self.pre_pipeline(results)
else:
random_idx = random.randint(0, self.len_ganx-1)
img_info = self.gan_infos[random_idx]
ann_info = self.get_gan_ann_info(random_idx)
# img_info = self.gan_infos[idx - self.len_real]
# ann_info = self.get_gan_ann_info(idx - self.len_real)
results = dict(img_info=img_info, ann_info=ann_info)
self.pre_gan_pipeline(results)
return self.pipeline(results)
def evaluate(self,
results,
metric='mIoU',
logger=None,
gt_seg_maps=None,
**kwargs):
"""Evaluate the dataset.
Args:
results (list[tuple[torch.Tensor]] | list[str]): per image pre_eval
results or predict segmentation map for computing evaluation
metric.
metric (str | list[str]): Metrics to be evaluated. 'mIoU',
'mDice' and 'mFscore' are supported.
logger (logging.Logger | None | str): Logger used for printing
related information during evaluation. Default: None.
gt_seg_maps (generator[ndarray]): Custom gt seg maps as input,
used in ConcatDataset
Returns:
dict[str, float]: Default metrics.
"""
if isinstance(metric, str):
metric = [metric]
allowed_metrics = ['mIoU', 'mDice', 'mFscore']
if not set(metric).issubset(set(allowed_metrics)):
raise KeyError('metric {} is not supported'.format(metric))
eval_results = {}
# test a list of files
if mmcv.is_list_of(results, np.ndarray) or mmcv.is_list_of(
results, str):
if gt_seg_maps is None:
gt_seg_maps = self.get_gt_seg_maps()
num_classes = len(self.CLASSES)
ret_metrics = eval_metrics(
results,
gt_seg_maps,
num_classes,
self.ignore_index,
metric,
label_map=self.label_map,
reduce_zero_label=self.reduce_zero_label)
# get kappa
con_mat = np.zeros((2, 2))
for result, gt in zip(results, self.get_gt_seg_maps()):
con_mat += metrics.confusion_matrix(gt.flatten(), result.flatten(), labels=[1, 0])
# test a list of pre_eval_results
else:
ret_metrics = pre_eval_to_metrics(results, metric)
# get kappa
con_mat = np.zeros((2, 2))
pre_eval_results = tuple(zip(*results))
total_area_intersect = sum(pre_eval_results[0])
total_area_label = sum(pre_eval_results[3])
con_mat[0][0] = total_area_intersect[0]
con_mat[1][1] = total_area_intersect[1]
con_mat[0][1] = total_area_label[1] - total_area_intersect[1]
con_mat[1][0] = total_area_label[0] - total_area_intersect[0]
# Because dataset.CLASSES is required for per-eval.
if self.CLASSES is None:
class_names = tuple(range(num_classes))
else:
class_names = self.CLASSES
# summary table
ret_metrics_summary = OrderedDict({
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
for ret_metric, ret_metric_value in ret_metrics.items()
})
# each class table
ret_metrics.pop('aAcc', None)
ret_metrics_class = OrderedDict({
ret_metric: np.round(ret_metric_value * 100, 2)
for ret_metric, ret_metric_value in ret_metrics.items()
})
ret_metrics_class.update({'Class': class_names})
ret_metrics_class.move_to_end('Class', last=False)
# for logger
class_table_data = PrettyTable()
for key, val in ret_metrics_class.items():
class_table_data.add_column(key, val)
summary_table_data = PrettyTable()
for key, val in ret_metrics_summary.items():
if key == 'aAcc':
summary_table_data.add_column(key, [val])
else:
summary_table_data.add_column('m' + key, [val])
print_log('per class results:', logger)
print_log('\n' + class_table_data.get_string(), logger=logger)
print_log('Summary:', logger)
print_log('\n' + summary_table_data.get_string(), logger=logger)
# each metric dict
for key, value in ret_metrics_summary.items():
if key == 'aAcc':
eval_results[key] = value / 100.0
else:
eval_results['m' + key] = value / 100.0
ret_metrics_class.pop('Class', None)
for key, value in ret_metrics_class.items():
eval_results.update({
key + '.' + str(name): value[idx] / 100.0
for idx, name in enumerate(class_names)
})
print_log('mIoU:{:.4f}'.format(eval_results['mIoU']), logger=logger)
print_log('mDice:{:.4f}'.format(eval_results['mDice']), logger=logger)
print_log('mAcc:{:.4f}'.format(eval_results['mAcc']), logger=logger)
print_log('aAcc:{:.4f}'.format(eval_results['aAcc']), logger=logger)
print_log('kappa:{:.4f}'.format(kappa(con_mat)), logger=logger)
print_log('accuracy:{:.4f}'.format(accuracy(con_mat)), logger=logger)
# print_log('precision:{:.4f}'.format(precision(con_mat)), logger=logger)
# print_log('sensitivity:{:.4f}'.format(sensitivity(con_mat)), logger=logger)
# print_log('specificity:{:.4f}'.format(specificity(con_mat)), logger=logger)
return eval_results
def kappa(matrix):
matrix = np.array(matrix)
n = | np.sum(matrix) | numpy.sum |
import numpy as np
def F_1():
direction = {
# horz, depth
"forward": np.array([1, 0]),
"down" : np.array([0, 1]),
"up" : np.array([0, -1]),
}
positions = np.array([0, 0])
# read file.
with open('input.txt') as f:
for line in f:
dir, mag = line.split()
positions += direction[dir] * int(mag)
print("\thorz : ", positions[0])
print("\tdepth : ", positions[1])
print("\tproduct : ", positions[0] * positions[1])
def F_2():
direction = {
# horz, depth, aim
"forward": | np.array([1, 0, 0]) | numpy.array |
import os
import random
import numpy as np
import cv2
import json
import src.core as core
from src.core.evaluation_utils_2d import two_d_iou, calc_heatmap
from demos.demo_utils.bdd_demo_utils import read_bdd_format
from demos.demo_utils.vis_utils import draw_box_2d, draw_ellipse_2d_corners
from src.retina_net.anchor_generator.box_utils import vuhw_to_vuvu_np
categories = {
0: 'car',
1: 'truck',
2: 'bus',
3: 'person',
4: 'rider',
5: 'bike',
6: 'motor',
7: 'bkgrnd'}
def main():
#########################################################
# Specify Source Folders and Parameters For Frame Reader
#########################################################
data_split_dir = 'val'
# Specify whether the validation or inference results need to be
# visualized.
results_dir = 'testing'
uncertainty_method = 'bayes_od_none'
dataset_dir = os.path.expanduser('~/Datasets/bdd100k')
image_dir = os.path.join(dataset_dir, 'images', '100k', data_split_dir)
label_file_name = os.path.join(
dataset_dir, 'labels', data_split_dir) + '.json'
checkpoint_name = 'retinanet_bdd'
checkpoint_number = '101'
mean_dir = os.path.join(
core.data_dir(),
'outputs',
checkpoint_name,
'predictions',
results_dir,
'bdd',
checkpoint_number,
uncertainty_method,
'mean')
cov_dir = os.path.join(
core.data_dir(),
'outputs',
checkpoint_name,
'predictions',
results_dir,
'bdd',
checkpoint_number,
uncertainty_method,
'cov')
cat_param_dir = os.path.join(core.data_dir(),
'outputs',
checkpoint_name,
'predictions',
results_dir,
'bdd',
checkpoint_number,
uncertainty_method,
'cat_param')
frames_list = os.listdir(image_dir)[0:100]
index = random.randint(0, len(frames_list))
frame_id = frames_list[index]
print('Showing Frame ID:' + frame_id)
#############
# Read Frame
#############
im_path = image_dir + '/' + frame_id
image = cv2.imread(im_path)
all_labels = json.load(open(label_file_name, 'r'))
category_gt, boxes_2d_gt, _ = read_bdd_format(
frame_id, all_labels, categories=[
'car', 'truck', 'bus', 'person', 'rider', 'bike', 'motor'])
prediction_boxes_mean = np.load(mean_dir + '/' + frame_id + '.npy')
prediction_boxes_cov = np.load(cov_dir + '/' + frame_id + '.npy')
prediction_boxes_cat_params = np.load(
cat_param_dir + '/' + frame_id + '.npy')
# Read entropy for debugging purposes
transformation_mat = np.array([[1, 0, -0.5, 0],
[0, 1, 0, -0.5],
[1, 0, 0.5, 0],
[0, 1, 0, 0.5]])
prediction_boxes_cov = np.matmul(
np.matmul(
transformation_mat,
prediction_boxes_cov),
transformation_mat.T)
prediction_boxes = vuhw_to_vuvu_np(prediction_boxes_mean)
category_pred = | np.zeros(prediction_boxes_cat_params.shape) | numpy.zeros |
#!/usr/bin/env python
u"""
<NAME>' - 03/2022
TEST:
Estimate and Remove the contribution of a "Linear Ramp" to the Wrapped Phase
of a Differential InSAR Interferogram.
usage: rm_phase_ramp.py [-h] [--par PAR] in_interf
positional arguments:
in_interf Input Interferogram - Absolute Path
optional arguments:
-h, --help show this help message and exit
--par PAR, -P PAR Interferogram Parameter File
NOTE: In this implementation of the algorithm, a first guess or preliminary
estimate of the parameters defining the ramp must be provided by the user.
These parameters include the number of phase cycles characterizing the ramp
in the X and Y (columns and rows) directions of the input raster.
A GRID SEARCH around the user-defined first guess is performed to obtain the
best estimate of the ramp parameters.
PYTHON DEPENDENCIES:
argparse: Parser for command-line options, arguments and sub-commands
https://docs.python.org/3/library/argparse.html
numpy: The fundamental package for scientific computing with Python
https://numpy.org/
matplotlib: Visualization with Python
https://matplotlib.org/
tqdm: Progress Bar in Python.
https://tqdm.github.io/
datetime: Basic date and time types
https://docs.python.org/3/library/datetime.html#module-datetime
py_gamma: GAMMA's Python integration with the py_gamma module
UPDATE HISTORY:
"""
# - Python dependencies
from __future__ import print_function
import os
import argparse
import datetime
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from pathlib import Path
# - GAMMA's Python integration with the py_gamma module
import py_gamma as pg
from utils.read_keyword import read_keyword
from utils.make_dir import make_dir
def estimate_phase_ramp(dd_phase_complex: np.ndarray, cycle_r: int,
cycle_c: int, slope_r: int = 1, slope_c: int = 1,
s_radius: float = 2, s_step: float = 0.1) -> dict:
"""
Estimate a phase ramp from the provided input interferogram
:param dd_phase_complex: interferogram phase expressed as complex array
:param cycle_r: phase ramp number of cycles along rows
:param cycle_c: phase ramp number of cycles along columns
:param slope_r: phase ramp slope sign - rows axis
:param slope_c: phase ramp slope sign - columns axis
:param s_radius: grid search domain radius
:param s_step: grid search step
:return: Python dictionary containing the results of the grid search
"""
# - Generate synthetic field domain
array_dim = dd_phase_complex.shape
n_rows = array_dim[0]
n_columns = array_dim[1]
raster_mask = np.ones(array_dim)
raster_mask[np.isnan(dd_phase_complex)] = 0
# - Integration Domain used to define the phase ramp
xx_m, yy_m = np.meshgrid(np.arange(n_columns), np.arange(n_rows))
if s_radius > 0:
if cycle_r - s_radius <= 0:
n_cycle_r_vect_f = np.arange(s_step, cycle_r + s_radius + s_step,
s_step)
else:
n_cycle_r_vect_f = np.arange(cycle_r - s_radius,
cycle_r + s_radius + s_step,
s_step)
if cycle_c - s_radius <= 0:
n_cycle_c_vect_f = np.arange(s_step, cycle_c + s_radius + s_step,
s_step)
else:
n_cycle_c_vect_f = np.arange(cycle_c - s_radius,
cycle_c + s_radius + s_step,
s_step)
# - Create Grid Search Domain
error_array_f = np.zeros([len(n_cycle_r_vect_f), len(n_cycle_c_vect_f)])
for r_count, n_cycle_r in tqdm(enumerate(list(n_cycle_r_vect_f)),
total=len(n_cycle_r_vect_f), ncols=60):
for c_count, n_cycle_c in enumerate(list(n_cycle_c_vect_f)):
synth_real = slope_c * (2 * np.pi / n_columns) \
* n_cycle_c * xx_m
synth_imag = slope_r * (2 * np.pi / n_rows) \
* n_cycle_r * yy_m
synth_phase_plane = synth_real + synth_imag
synth_complex = np.exp(1j * synth_phase_plane)
# - Compute Complex Conjugate product between the synthetic
# - phase ramp and the input interferogram.
dd_phase_complex_corrected \
= np.angle(dd_phase_complex * np.conj(synth_complex))
# - Compute the Mean Absolute value of the phase residuals
# - > Mean Absolute Error
error = np.abs(dd_phase_complex_corrected)
mae = np.nansum(error) / np.nansum(raster_mask)
error_array_f[r_count, c_count] = mae
# - Find location of the Minimum Absolute Error Value
ind_min = np.where(error_array_f == np.nanmin(error_array_f))
n_cycle_c = n_cycle_c_vect_f[ind_min[1]][0]
n_cycle_r = n_cycle_r_vect_f[ind_min[0]][0]
freq_r = n_cycle_r/n_rows
freq_c = n_cycle_c/n_columns
else:
# - Integration Domain used to define the phase ramp
freq_r = cycle_r/n_rows
freq_c = cycle_c/n_columns
return{'freq_r': freq_r, 'freq_c': freq_c,
'xx_m': xx_m, 'yy_m': yy_m}
def main() -> None:
# - Read the system arguments listed after the program
parser = argparse.ArgumentParser(
description="""
"""
)
# - Positional Arguments
parser.add_argument('in_interf', type=str, default=None,
help='Input Interferogram - Absolute Path')
# - Interferogram Parameter File
parser.add_argument('--par', '-P', type=str,
help='Interferogram Parameter File',
default='DEM_gc_par')
args = parser.parse_args()
# - Output figures parameters
fig_format = 'jpeg'
# - Absolute Path to input interferogram
interf_input_path = Path(args.in_interf)
# - Extract Data Directory from input file path
data_dir = interf_input_path.parent
# - Create Output Directory
out_dir = make_dir(data_dir, 'DERAMP')
# -
interf_output_path = Path(os.path.join(data_dir, interf_input_path.name
+ '_deramped'))
# - Interferogram Coherence Mask calculated using pg.edf filter
coh_mask = Path(os.path.join(data_dir, interf_input_path.name
+ '.filt.coh'))
# - extract Reference SLC name
ref_slc = interf_input_path.name.split('-')[0].replace('coco', '')
# - Interferogram Parameter File
par_file = os.path.join(data_dir, args.par)
# - Interferogram Width
interf_width = int(read_keyword(par_file, 'width'))
# - Import Coherence Mask saved as Gamma Software binary image
# - Note: Set type = float
coh_in = pg.read_image(coh_mask, width=interf_width, dtype='float')
# - Show Coherence Mask
plt.figure()
plt.title('Interferogram Coherence')
plt.imshow(coh_in, cmap=plt.get_cmap('viridis'))
plt.colorbar()
plt.tight_layout()
plt.savefig(os.path.join(out_dir, 'coherence_map.'+fig_format),
dpi=200, format=fig_format)
plt.close()
# - Compute Binary Mask using grid point with Coherence > 0
coh_mask = np.zeros(coh_in.shape)
coh_mask[coh_in > 0.] = 1
# - Show Binary Mask
plt.figure()
plt.title('Binary Mask')
plt.imshow(coh_mask, cmap=plt.get_cmap('gray'))
plt.colorbar()
plt.savefig(os.path.join(out_dir, 'binary_mask.'+fig_format),
dpi=200, format=fig_format)
plt.close()
# - Read Complex Interferogram saved as Gamma Software binary image
# - Note: Set type = fcomplex
interf_in = pg.read_image(interf_input_path, width=interf_width,
dtype='fcomplex')
# - Interferogram Size
n_rows = interf_in.shape[0]
n_columns = interf_in.shape[1]
# - Compute wrapped interferometric phase
data_in_r_phase = np.angle(interf_in)
plt.figure()
plt.title('Input Interferometric Phase')
plt.imshow(data_in_r_phase, cmap=plt.cm.get_cmap('jet'))
plt.colorbar()
plt.savefig(os.path.join(out_dir, 'input_interferometric_phase.'+fig_format),
dpi=200, format=fig_format)
plt.close()
print('# - input_interferometric_phase.'+fig_format
+ ' - available inside DERAMP directory.')
# - Crop the interferogram over the area where the ramp is more easily
# - detectable.
print('\n\n# - Chose Interferogram sub region that will be used to'
'estimate the linear ramp: ')
row_min = int(input('# - Row Min: '))
row_max = int(input('# - Row Max: '))
col_min = int(input('# - Column Min: '))
col_max = int(input('# - Column Max: '))
# - Cropped Interferometric Phase Map: region used to estimate the
# - phase ramp.
data_in_r_phase_c = data_in_r_phase[row_min: row_max, col_min: col_max]
plt.figure()
plt.title('Cropped Interferometric Phase Map')
plt.imshow(data_in_r_phase_c, cmap=plt.cm.get_cmap('jet'))
plt.colorbar()
plt.savefig(os.path.join(out_dir,
'cropped_input_interferometric_phase.'+fig_format),
dpi=200, format=fig_format)
plt.close()
print('# - cropped_input_interferometric_phase.'+fig_format
+ ' - available inside DERAMP directory.')
# - Search Parameters
print('\n\n# - Phase Ramp Removal Parameters. Provide first guess: ')
n_cycles_r = int(input('# - Number of Cycles along Rows: '))
n_cycles_c = int(input('# - Number of Cycles along Columns: '))
slope_r = int(input('# - Phase Slope along Rows: '))
slope_c = int(input('# - Phase Slope along Columns: '))
s_radius = int(input('# - Search Radius - if > 0, use Grid Search: '))
# - Estimate Phase Ramp Parameters
print('# - Estimating Phase Ramp Parameters.')
ramp = estimate_phase_ramp(data_in_r_phase_c, n_cycles_r, n_cycles_c,
slope_r=slope_r, slope_c=slope_c,
s_radius=s_radius)
freq_r = ramp['freq_r']
freq_c = ramp['freq_c']
xx_m = ramp['xx_m']
yy_m = ramp['yy_m']
# - Generate Synthetic Ramp covering the entire interferogram domain.
synth_real = slope_c * 2 * np.pi * freq_c * xx_m
synth_imag = slope_r * 2 * np.pi * freq_r * yy_m
synth_phase_plane = synth_real + synth_imag
synth_complex = np.exp(1j * synth_phase_plane)
phase_ramp = np.angle(synth_complex)
print(' ')
print('# - Estimated Frequencies: ')
print(f'# - Fr [cycles/pixel]: {freq_r}')
print(f'# - Fc [cycles/pixel] : {freq_c}')
print('# - Total Number of Cycles: ')
print(f'# - Rows: {freq_r*n_rows}')
print(f'# - Columns : {freq_c*n_columns}')
# - Estimated Phase Ramp
plt.figure()
plt.title('Estimated Phase Ramp')
plt.imshow(phase_ramp, cmap=plt.cm.get_cmap('jet'))
plt.colorbar()
plt.savefig(os.path.join(out_dir,
'phase_ramp.'+fig_format),
dpi=200, format=fig_format)
plt.close()
# - Compute synthetic ramp
xx_m, yy_m = np.meshgrid(np.arange(n_columns), np.arange(n_rows))
# - Generate Synthetic Ramp
synth_real = slope_c * 2 * np.pi * freq_c * xx_m
synth_imag = slope_r * 2 * np.pi * freq_r * yy_m
synth_phase_plane = synth_real + synth_imag
# - Phase Ramp in Exponential Complex Format
synth_complex = np.exp(1j * synth_phase_plane)
# - Remove the estimated phase ramp from the input phase field by
# - computing the complex conjugate product between the input phase
# - field and the estimated ramp.
dd_phase_complex_corrected = interf_in * | np.conjugate(synth_complex) | numpy.conjugate |
import prona2019Mod.utils as utils
import itertools as it
from six import iteritems, string_types, PY2, next
import numpy as np
import sys
def _is_single(obj):
"""
Check whether `obj` is a single document or an entire corpus.
Returns (is_single, new) 2-tuple, where `new` yields the same
sequence as `obj`.
`obj` is a single document if it is an iterable of strings. It
is a corpus if it is an iterable of documents.
"""
obj_iter = iter(obj)
temp_iter = obj_iter
try:
peek = next(obj_iter)
obj_iter = it.chain([peek], obj_iter)
except StopIteration:
# An empty object is a single document
return True, obj
if isinstance(peek, string_types):
# It's a document, return the iterator
return True, obj_iter
if temp_iter == obj:
# Checking for iterator to the object
return False, obj_iter
else:
# If the first item isn't a string, assume obj is a corpus
return False, obj
'''
def _apply(corpus, chunksize=None, **kwargs):
"""Apply the transformation to a whole corpus and get the result as another corpus.
Parameters
----------
corpus : iterable of list of (int, number)
Corpus in BoW format.
chunksize : int, optional
If provided - more effective processing (by group of documents) will performed.
kwargs
Arbitrary keyword arguments.
Returns
-------
:class:`~gensim.interfaces.TransformedCorpus`
Transformed corpus.
"""
return TransformedCorpus(self, corpus, chunksize, **kwargs)
'''
def score_item(worda, wordb, components, scorer, phrasegrams):
"""score is retained from original dataset
"""
try:
return phrasegrams[tuple(components)][1]
except KeyError:
return -1
def analyze_sentence(sentence, threshold, common_terms, scorer,phrasegrams):
"""Analyze a sentence
`sentence` a token list representing the sentence to be analyzed.
`threshold` the minimum score for a bigram to be taken into account
`common_terms` the list of common terms, they have a special treatment
`scorer` the scorer function, as given to Phrases
"""
s = [utils.any2utf8(w) for w in sentence]
last_uncommon = None
in_between = []
# adding None is a trick that helps getting an automatic happy ending
# has it won't be a common_word, nor score
for word in s + [None]:
is_common = word in common_terms
if not is_common and last_uncommon:
chain = [last_uncommon] + in_between + [word]
# test between last_uncommon
score = score_item(
worda=last_uncommon,
wordb=word,
components=chain,
scorer=scorer,
phrasegrams=phrasegrams
)
if score > threshold:
yield (chain, score)
last_uncommon = None
in_between = []
else:
# release words individually
for w in it.chain([last_uncommon], in_between):
yield (w, None)
in_between = []
last_uncommon = word
elif not is_common:
last_uncommon = word
else: # common term
if last_uncommon:
# wait for uncommon resolution
in_between.append(word)
else:
yield (word, None)
def get_phrase(sentence,phrase_model):
is_single, sentence = _is_single(sentence)
if not is_single:
# if the input is an entire corpus (rather than a single sentence),
# return an iterable stream.
sys.exit("It is not a protein sequence")
delimiter = phrase_model['delimiter']
bigrams = analyze_sentence(
sentence,
threshold=phrase_model['threshold'],
common_terms=phrase_model['common_terms'],
scorer=None,
phrasegrams=phrase_model['phrasegrams']) # we will use our score_item function redefinition
new_s = []
for words, score in bigrams:
if score is not None:
words = delimiter.join(words)
new_s.append(words)
return [utils.to_unicode(w) for w in new_s]
def split_ngrams(seq, n):
"""
'AGAMQSASM' => [['AGA', 'MQS', 'ASM'], ['GAM','QSA'], ['AMQ', 'SAS']]
"""
all_ngrams=[]
for x in range(n):
all_ngrams.append(zip(*[iter(seq[x:])]*n))
str_ngrams = []
for ngrams in all_ngrams:
x = []
for ngram in ngrams:
x.append("".join(ngram))
str_ngrams.append(x)
return str_ngrams
def to_vecs(seq,phrase_model,kmer,word2vec_index):
"""
convert sequence to three n-length vectors
e.g. 'AGAMQSASM' => [ array([ ... * 100 ], array([ ... * 100 ], array([ ... * 100 ] ]
"""
ngram_patterns = split_ngrams(seq, kmer)
protvecs = []
for ngrams in ngram_patterns:
ngram_vecs = []
if phrase_model=='none':
ngramss = ngrams
else:
ngramss=get_phrase(get_phrase(ngrams,phrase_model),phrase_model)
for ngram in ngramss:
try:
ngram_vecs.append( | np.array(word2vec_index[ngram]) | numpy.array |
#!/usr/bin/env python
##
#
# Create a plot of predicted and actual positions by listening to
# ROS topics that contain pose and covariance information.
#
##
import rospy
import numpy as np
import GPy
import matplotlib.pyplot as plt
from nav_msgs.msg import Odometry
from geometry_msgs.msg import PoseWithCovarianceStamped
# Initialize a rospy node
rospy.init_node("prediction_plotter")
# Number of steps in the future to record predictions for
num_steps = 10
# Global variables store realtime infomation
actual_positions_x = []
actual_positions_y = []
actual_position_time = []
projected_positions = {}
projected_position_time = []
# Wait to get a prediction before starting to record actual pose
got_projected_position = False
# Parameters for timed callbacks
r = 10 # recording rate of messages, in Hz
rate = rospy.Rate(r)
interval = 1. / r
last_time = rospy.get_time()
# Callback functions
def real_pose_cb(data):
"""
Handle the actual position information from Stage
"""
global last_time
global actual_positions_x
global actual_positions_y
global actual_position_time
if (rospy.get_time() > last_time + interval) and got_projected_position:
x = data.pose.pose.position.x
y = data.pose.pose.position.y
t = data.header.stamp.to_sec()
actual_positions_x.append(x)
actual_positions_y.append(y)
actual_position_time.append(t)
last_time = rospy.get_time()
def projected_pose_cb(data, step_num):
"""
Put predicted pose data in a dictionary, index by the time at
which the prediction was made
"""
global projected_positions
global got_projected_position
global projected_position_time
# Indicated that we can start collecting real poses
if not got_projected_position:
got_projected_position = True
x = data.pose.pose.position.x
y = data.pose.pose.position.y
t = data.header.stamp.to_sec()
cov = data.pose.covariance
sigma = | np.zeros((2,2)) | numpy.zeros |
from __future__ import print_function
import mir_eval
import numpy as np
import soundfile as sf
from pystoi.stoi import stoi as source_stoi
import subprocess
import os
from copy import deepcopy as dc
import sys
def calc_sdr(degraded, reference):
"""
batch-wise SDR calculation for one audio file.
estimation: (batch, n_sample)
origin: (batch, n_sample)
"""
if len(degraded.shape) == 1:
degraded = np.expand_dims(degraded, 0)
reference = np.expand_dims(reference, 0)
origin_power = | np.sum(reference ** 2, 1, keepdims=True) | numpy.sum |
import unittest
import warnings
import numpy as np
from numpy.testing import assert_almost_equal
import openmdao.api as om
from openmdao.test_suite.components.sellar_feature import SellarIDF
from openmdao.utils.assert_utils import assert_near_equal, assert_check_partials
class TestEQConstraintComp(unittest.TestCase):
def test_sellar_idf(self):
prob = om.Problem(SellarIDF())
prob.driver = om.ScipyOptimizeDriver(optimizer='SLSQP', disp=False)
prob.setup()
# check derivatives
prob['y1'] = 100
prob['equal.rhs:y1'] = 1
prob.run_model()
cpd = prob.check_partials(out_stream=None)
assert_check_partials(cpd, atol=1e-5, rtol=1e-5)
# check results
prob.run_driver()
assert_near_equal(prob['x'], 0., 1e-5)
assert_near_equal(prob['z'], [1.977639, 0.], 1e-5)
assert_near_equal(prob['obj_cmp.obj'], 3.18339395045, 1e-5)
assert_almost_equal(prob['y1'], 3.16)
assert_almost_equal(prob['d1.y1'], 3.16)
assert_almost_equal(prob['y2'], 3.7552778)
assert_almost_equal(prob['d2.y2'], 3.7552778)
assert_almost_equal(prob['equal.y1'], 0.0)
assert_almost_equal(prob['equal.y2'], 0.0)
def test_create_on_init(self):
prob = om.Problem()
model = prob.model
# find intersection of two non-parallel lines
model.add_subsystem('indep', om.IndepVarComp('x', val=0.))
model.add_subsystem('f', om.ExecComp('y=3*x-3', x=0.))
model.add_subsystem('g', om.ExecComp('y=2.3*x+4', x=0.))
model.add_subsystem('equal', om.EQConstraintComp('y', val=11.))
model.connect('indep.x', 'f.x')
model.connect('indep.x', 'g.x')
model.connect('f.y', 'equal.lhs:y')
model.connect('g.y', 'equal.rhs:y')
model.add_design_var('indep.x', lower=0., upper=20.)
model.add_objective('f.y')
prob.setup(mode='fwd')
# verify that the output variable has been initialized
self.assertEqual(prob['equal.y'], 11.)
# verify that the constraint has not been added
self.assertFalse('equal.y' in model.get_constraints())
# manually add the constraint
model.add_constraint('equal.y', equals=0.)
prob.setup(mode='fwd')
prob.driver = om.ScipyOptimizeDriver(disp=False)
prob.run_driver()
assert_almost_equal(prob['equal.y'], 0.)
assert_almost_equal(prob['indep.x'], 10.)
assert_almost_equal(prob['f.y'], 27.)
assert_almost_equal(prob['g.y'], 27.)
cpd = prob.check_partials(out_stream=None)
assert_check_partials(cpd, atol=1e-5, rtol=1e-5)
def test_create_on_init_add_constraint(self):
prob = om.Problem()
model = prob.model
# find intersection of two non-parallel lines
model.add_subsystem('indep', om.IndepVarComp('x', val=0.))
model.add_subsystem('f', om.ExecComp('y=3*x-3', x=0.))
model.add_subsystem('g', om.ExecComp('y=2.3*x+4', x=0.))
model.add_subsystem('equal', om.EQConstraintComp('y', add_constraint=True))
model.connect('indep.x', 'f.x')
model.connect('indep.x', 'g.x')
model.connect('f.y', 'equal.lhs:y')
model.connect('g.y', 'equal.rhs:y')
model.add_design_var('indep.x', lower=0., upper=20.)
model.add_objective('f.y')
prob.setup(mode='fwd')
# verify that the constraint has been added as requested
self.assertTrue('equal.y' in model.get_constraints())
prob.driver = om.ScipyOptimizeDriver(disp=False)
prob.run_driver()
assert_almost_equal(prob['equal.y'], 0.)
assert_almost_equal(prob['indep.x'], 10.)
assert_almost_equal(prob['f.y'], 27.)
assert_almost_equal(prob['g.y'], 27.)
cpd = prob.check_partials(out_stream=None)
assert_check_partials(cpd, atol=1e-5, rtol=1e-5)
def test_create_on_init_add_constraint_no_normalization(self):
prob = om.Problem()
model = prob.model
# find intersection of two non-parallel lines
model.add_subsystem('indep', om.IndepVarComp('x', val=-2.0))
model.add_subsystem('f', om.ExecComp('y=3*x-3', x=0.))
model.add_subsystem('g', om.ExecComp('y=2.3*x+4', x=0.))
model.add_subsystem('equal', om.EQConstraintComp('y', add_constraint=True, normalize=False,
ref0=0, ref=100.0))
model.connect('indep.x', 'f.x')
model.connect('indep.x', 'g.x')
model.connect('f.y', 'equal.lhs:y')
model.connect('g.y', 'equal.rhs:y')
model.add_design_var('indep.x', lower=0., upper=20.)
model.add_objective('f.y')
prob.setup(mode='fwd')
# verify that the constraint has been added as requested
self.assertTrue('equal.y' in model.get_constraints())
# verify that the output is not being normalized
prob.run_model()
lhs = prob['f.y']
rhs = prob['g.y']
diff = lhs - rhs
assert_near_equal(prob['equal.y'], diff)
prob.driver = om.ScipyOptimizeDriver(disp=False)
prob.run_driver()
assert_almost_equal(prob['equal.y'], 0.)
assert_almost_equal(prob['indep.x'], 10.)
assert_almost_equal(prob['f.y'], 27.)
assert_almost_equal(prob['g.y'], 27.)
cpd = prob.check_partials(out_stream=None)
assert_check_partials(cpd, atol=1e-5, rtol=1e-5)
def test_vectorized(self):
prob = om.Problem()
model = prob.model
n = 100
# find intersection of two non-parallel lines, vectorized
model.add_subsystem('indep', om.IndepVarComp('x', val=np.ones(n)))
model.add_subsystem('f', om.ExecComp('y=3*x-3', x=np.ones(n), y=np.ones(n)))
model.add_subsystem('g', om.ExecComp('y=2.3*x+4', x=np.ones(n), y=np.ones(n)))
model.add_subsystem('equal', om.EQConstraintComp('y', val=np.ones(n), add_constraint=True))
model.add_subsystem('obj_cmp', om.ExecComp('obj=sum(y)', y=np.zeros(n)))
model.connect('indep.x', 'f.x')
model.connect('indep.x', 'g.x')
model.connect('f.y', 'equal.lhs:y')
model.connect('g.y', 'equal.rhs:y')
model.connect('f.y', 'obj_cmp.y')
model.add_design_var('indep.x', lower=np.zeros(n), upper=20.*np.ones(n))
model.add_objective('obj_cmp.obj')
prob.setup(mode='fwd')
prob.driver = om.ScipyOptimizeDriver(disp=False)
prob.run_driver()
assert_almost_equal(prob['equal.y'], np.zeros(n))
assert_almost_equal(prob['indep.x'], np.ones(n)*10.)
assert_almost_equal(prob['f.y'], np.ones(n)*27.)
assert_almost_equal(prob['g.y'], np.ones(n)*27.)
cpd = prob.check_partials(out_stream=None)
assert_check_partials(cpd, atol=1e-5, rtol=1e-5)
def test_set_shape(self):
prob = om.Problem()
model = prob.model
n = 100
# find intersection of two non-parallel lines, vectorized
model.add_subsystem('indep', om.IndepVarComp('x', val=np.ones(n)))
model.add_subsystem('f', om.ExecComp('y=3*x-3', x=np.ones(n), y=np.ones(n)))
model.add_subsystem('g', om.ExecComp('y=2.3*x+4', x=np.ones(n), y=np.ones(n)))
model.add_subsystem('equal', om.EQConstraintComp('y', shape=(n,), add_constraint=True))
model.add_subsystem('obj_cmp', om.ExecComp('obj=sum(y)', y=np.zeros(n)))
model.connect('indep.x', 'f.x')
model.connect('indep.x', 'g.x')
model.connect('f.y', 'equal.lhs:y')
model.connect('g.y', 'equal.rhs:y')
model.connect('f.y', 'obj_cmp.y')
model.add_design_var('indep.x', lower=np.zeros(n), upper=20.*np.ones(n))
model.add_objective('obj_cmp.obj')
prob.setup(mode='fwd')
prob.driver = om.ScipyOptimizeDriver(disp=False)
prob.run_driver()
assert_almost_equal(prob['equal.y'], np.zeros(n))
assert_almost_equal(prob['indep.x'], np.ones(n)*10.)
assert_almost_equal(prob['f.y'], np.ones(n)*27.)
assert_almost_equal(prob['g.y'], np.ones(n)*27.)
cpd = prob.check_partials(out_stream=None)
assert_check_partials(cpd, atol=1e-5, rtol=1e-5)
def test_vectorized_no_normalization(self):
prob = om.Problem()
model = prob.model
n = 100
# find intersection of two non-parallel lines, vectorized
model.add_subsystem('indep', om.IndepVarComp('x', val=-2.0*np.ones(n)))
model.add_subsystem('f', om.ExecComp('y=3*x-3', x=np.ones(n), y=np.ones(n)))
model.add_subsystem('g', om.ExecComp('y=2.3*x+4', x=np.ones(n), y=np.ones(n)))
model.add_subsystem('equal', om.EQConstraintComp('y', val=np.ones(n), add_constraint=True,
normalize=False))
model.add_subsystem('obj_cmp', om.ExecComp('obj=sum(y)', y=np.zeros(n)))
model.connect('indep.x', 'f.x')
model.connect('indep.x', 'g.x')
model.connect('f.y', 'equal.lhs:y')
model.connect('g.y', 'equal.rhs:y')
model.connect('f.y', 'obj_cmp.y')
model.add_design_var('indep.x', lower=np.zeros(n), upper=20.*np.ones(n))
model.add_objective('obj_cmp.obj')
prob.setup(mode='fwd')
prob.driver = om.ScipyOptimizeDriver(disp=False)
# verify that the output is not being normalized
prob.run_model()
lhs = prob['f.y']
rhs = prob['g.y']
diff = lhs - rhs
assert_near_equal(prob['equal.y'], diff)
prob.run_driver()
assert_almost_equal(prob['equal.y'], | np.zeros(n) | numpy.zeros |
import os
import numpy as np
import pybullet
import gym
import gym.spaces
import gym.utils
from jbdl.envs import get_mjcf_path, get_urdf_path
class XmlBasedRobot:
"""
Base class for mujoco .xml based agents.
"""
self_collision = True
def __init__(self, robot_name, action_dim, obs_dim, self_collision, add_ignored_joints=False):
self.parts = None
self.objects = []
self.jdict = None
self.ordered_joints = None
self.robot_body = None
self.add_ignored_joints = add_ignored_joints
high = | np.ones([action_dim]) | numpy.ones |
r"""
For NV experiment (Bristol, 2019), the same Hahn echo gate is applied many times.
Rather than compute the exponential to find the gate each time,
they are stored here instead.
"""
from numpy import array
precomputed_hahn_y_inversion_gates = {
1: array([[ 0.+0.j, -1.+0.j],
[ 1.+0.j, 0.+0.j]]),
2: array([[ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],
[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]),
3: array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j],
[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j]]),
4: array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j],
[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j]]),
5: array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],
[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]]), 6: array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j],
[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j]]), 7: | array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
-1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, -1.+0.j],
[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j]]) | numpy.array |
from typing import Any, NamedTuple, Optional
import random
import click
import chess.pgn
import numpy as np
from tqdm import tqdm
from neural_caissa.board.state import State
_OUTCOME = {'1/2-1/2': 0, '0-1': -1, '1-0': 1}
class CaissaData(NamedTuple):
# TODO: Make numpy typing work: import numpy.typing as npt
X_origin: Any
X_move: Optional[Any]
X_random: Optional[Any]
Y: Any
def _generate_dataset(data_file_path, full=False, samples=None) -> CaissaData:
X_origin, X_move, X_random, Y = [], [], [], []
games_counter = 0
progress_bar = tqdm(total=games_counter + 1)
with open(data_file_path, 'r') as pgn:
while games_counter < samples:
game = chess.pgn.read_game(pgn)
if game is None:
break
result = game.headers['Result']
if result not in _OUTCOME:
continue
_y = _OUTCOME.get(result)
board = game.board()
for move in game.mainline_moves():
x_origin = State(board).serialize_conv(turn=board.turn)
if full:
x_move, x_random = _get_next_and_random_moves(board, move)
X_move.append(x_move)
X_random.append(x_random)
board.push(move)
X_origin.append(x_origin)
Y.append(_y)
games_counter += 1
progress_bar.update(1)
progress_bar.close()
X_origin = np.array(X_origin)
Y = | np.array(Y) | numpy.array |
import numpy as np
import pytest
import rdsolver as rd
def test_grid_points_1d():
# Test standard
correct = np.array([1, 2, 3, 4, 5]).astype(float) / 5 * 2 * np.pi
assert np.isclose(rd.utils.grid_points_1d(5), correct).all()
# Test standard with specified length
correct = np.array([1, 2, 3, 4, 5]).astype(float)
assert np.isclose(rd.utils.grid_points_1d(5, L=5), correct).all()
# Test different starting point
correct = np.array([1, 2, 3, 4, 5]).astype(float) / 5 * 2 * np.pi - 1.0
assert np.isclose(rd.utils.grid_points_1d(5, x_start=-1.0), correct).all()
def test_grid_points_2d():
# Test standard
n = (5, 5)
correct_x = np.array([1, 2, 3, 4, 5]) / 5 * 2 * np.pi
correct_y = np.array([1, 2, 3, 4, 5]) / 5 * 2 * np.pi
correct_x_grid = np.array([[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4],
[5, 5, 5, 5, 5]]) / 5 * 2 * np.pi
correct_y_grid = np.array([[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5]]) / 5 * 2 * np.pi
correct_xx = np.array([1]*5 + [2]*5 + [3]*5 + [4]*5 + [5]*5) / 5 * 2 * np.pi
correct_yy = np.array([1, 2, 3, 4, 5]*5) / 5 * 2 * np.pi
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n)
assert np.isclose(x, correct_x).all()
assert np.isclose(y, correct_y).all()
assert np.isclose(x_grid, correct_x_grid).all()
assert np.isclose(y_grid, correct_y_grid).all()
assert np.isclose(xx, correct_xx).all()
assert np.isclose(yy, correct_yy).all()
# Test standard with different number of grid points
n = (5, 6)
correct_x = np.array([1, 2, 3, 4, 5]) / 5 * 2 * np.pi
correct_y = np.array([1, 2, 3, 4, 5, 6]) / 6 * 2 * np.pi
correct_x_grid = np.array([[1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5]]) / 5 * 2 * np.pi
correct_y_grid = np.array([[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6]]) / 6 * 2 * np.pi
correct_xx = np.array([1]*6 + [2]*6 + [3]*6 + [4]*6 + [5]*6) / 5 * 2 * np.pi
correct_yy = np.array([1, 2, 3, 4, 5, 6]*5) / 6 * 2 * np.pi
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n)
assert np.isclose(x, correct_x).all()
assert np.isclose(y, correct_y).all()
assert np.isclose(x_grid, correct_x_grid).all()
assert np.isclose(y_grid, correct_y_grid).all()
assert np.isclose(xx, correct_xx).all()
assert np.isclose(yy, correct_yy).all()
# Test different physical lengths and different number of grid poitns
n = (5, 6)
L = (2*np.pi, 1)
correct_x = np.array([1, 2, 3, 4, 5]) / 5 * 2 * np.pi
correct_y = np.array([1, 2, 3, 4, 5, 6]) / 6
correct_x_grid = np.array([[1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5]]) / 5 * 2 * np.pi
correct_y_grid = np.array([[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6]]) / 6
correct_xx = np.array([1]*6 + [2]*6 + [3]*6 + [4]*6 + [5]*6) / 5 * 2 * np.pi
correct_yy = np.array([1, 2, 3, 4, 5, 6]*5) / 6
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
assert np.isclose(x, correct_x).all()
assert np.isclose(y, correct_y).all()
assert np.isclose(x_grid, correct_x_grid).all()
assert np.isclose(y_grid, correct_y_grid).all()
assert np.isclose(xx, correct_xx).all()
assert np.isclose(yy, correct_yy).all()
# Test different physical lengths
n = (5, 5)
L = (2*np.pi, 1)
correct_x = np.array([1, 2, 3, 4, 5]) / 5 * 2 * np.pi
correct_y = np.array([1, 2, 3, 4, 5]) / 5
correct_x_grid = np.array([[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4],
[5, 5, 5, 5, 5]]) / 5 * 2 * np.pi
correct_y_grid = np.array([[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5]]) / 5
correct_xx = np.array([1]*5 + [2]*5 + [3]*5 + [4]*5 + [5]*5) / 5 * 2 * np.pi
correct_yy = np.array([1, 2, 3, 4, 5]*5) / 5
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
assert np.isclose(x, correct_x).all()
assert np.isclose(y, correct_y).all()
assert np.isclose(x_grid, correct_x_grid).all()
assert np.isclose(y_grid, correct_y_grid).all()
assert np.isclose(xx, correct_xx).all()
assert np.isclose(yy, correct_yy).all()
def test_wave_numbers_1d():
# 2π domain length
correct = np.array([0, 1, 2, -3, -2, -1])
assert (correct == rd.utils.wave_numbers_1d(6)).all()
# Other domain lengths
L = 1
correct = np.array([0, 1, 2, -3, -2, -1]) * (2 * np.pi / L)
assert (correct == rd.utils.wave_numbers_1d(6, L=L)).all()
L = 7.89
correct = np.array([0, 1, 2, -3, -2, -1]) * (2 * np.pi / L)
assert (correct == rd.utils.wave_numbers_1d(6, L=L)).all()
# Odd domains
correct = np.array([0, 1, 2, 3, -3, -2, -1])
assert (correct == rd.utils.wave_numbers_1d(7)).all()
L = 1
correct = np.array([0, 1, 2, 3, -3, -2, -1]) * (2 * np.pi / L)
assert (correct == rd.utils.wave_numbers_1d(7, L=L)).all()
L = 7.89
correct = np.array([0, 1, 2, 3, -3, -2, -1]) * (2 * np.pi / L)
assert (correct == rd.utils.wave_numbers_1d(7, L=L)).all()
def test_wave_numbers_2d():
# 2π domain length
correct_x = np.reshape(np.array([0, 1, 2, -3, -2, -1]*6), (6, 6), order='F')
correct_y = np.reshape(np.array([0, 1, 2, -3, -2, -1]*6), (6, 6), order='C')
kx, ky = rd.utils.wave_numbers_2d((6, 6))
assert (correct_x == kx).all()
assert (correct_y == ky).all()
# Mixed number of grid points
correct_x = np.reshape(np.array([0, 1, 2, -3, -2, -1]*8), (6, 8), order='F')
correct_y = np.reshape(np.array([0, 1, 2, 3, -4, -3, -2, -1]*6), (6, 8),
order='C')
kx, ky = rd.utils.wave_numbers_2d((6, 8))
assert (correct_x == kx).all()
assert (correct_y == ky).all()
# Mixed number of grid points amd different lengths
L = (3.4, 5.7)
correct_x = np.reshape(np.array([0, 1, 2, -3, -2, -1]*8), (6, 8),
order='F') * (2*np.pi / L[0])
correct_y = np.reshape(np.array([0, 1, 2, 3, -4, -3, -2, -1]*6), (6, 8),
order='C') * (2*np.pi / L[1])
kx, ky = rd.utils.wave_numbers_2d((6, 8), L=L)
assert (correct_x == kx).all()
assert (correct_y == ky).all()
def test_spectral_integrate_2d():
L = (2*np.pi, 2*np.pi)
n = (64, 64)
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
correct = 44.649967131680145266
assert np.isclose(rd.utils.spectral_integrate_2d(f, L=L), correct)
L = (2*np.pi, 2*np.pi)
n = (64, 128)
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
correct = 44.649967131680145266
assert np.isclose(rd.utils.spectral_integrate_2d(f, L=L), correct)
L = (2*np.pi, 4*np.pi)
n = (128, 64)
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
correct = 89.299934263360290533
assert np.isclose(rd.utils.spectral_integrate_2d(f, L=L), correct)
def test_diff_multiplier_periodic_1d():
# Error out on odd number of grid points
with pytest.raises(RuntimeError) as excinfo:
rd.utils.diff_multiplier_periodic_1d(65)
excinfo.match('Must have even number of grid points.')
# First derivative
correct = np.array([0, 1, 2, 3, 4, 0, -4, -3, -2, -1]) * 1j
assert (rd.utils.diff_multiplier_periodic_1d(10) == correct).all()
# Second derivative
correct = -np.array([0, 1, 2, 3, 4, 5, -4, -3, -2, -1])**2
assert (rd.utils.diff_multiplier_periodic_1d(10, order=2) == correct).all()
# Third derivative
correct = -np.array([0, 1, 2, 3, 4, 0, -4, -3, -2, -1])**3 * 1j
assert (rd.utils.diff_multiplier_periodic_1d(10, order=3) == correct).all()
def test_diff_multiplier_periodic_2d():
# Error out on odd number of grid points
with pytest.raises(RuntimeError) as excinfo:
rd.utils.diff_multiplier_periodic_2d((65, 64))
excinfo.match('Must have even number of grid points.')
# First derivative
n = (10, 10)
correct_yy = np.array(
[[i]*10 for i in [0, 1, 2, 3, 4, 0, -4, -3, -2, -1]]) * 1j
correct_xx = np.array(
[[0, 1, 2, 3, 4, 0, -4, -3, -2, -1] for _ in range(10)]) * 1j
mult_xx, mult_yy = rd.utils.diff_multiplier_periodic_2d(n)
assert np.isclose(mult_xx, correct_xx).all()
assert np.isclose(mult_yy, correct_yy).all()
# Second derivative
n = (10, 10)
correct_yy = -np.array(
[[i]*10 for i in [0, 1, 2, 3, 4, 5, -4, -3, -2, -1]])**2
correct_xx = -np.array(
[[0, 1, 2, 3, 4, 5, -4, -3, -2, -1] for _ in range(10)])**2
mult_xx, mult_yy = rd.utils.diff_multiplier_periodic_2d(n, order=2)
assert np.isclose(mult_xx, correct_xx).all()
assert np.isclose(mult_yy, correct_yy).all()
def test_diff_periodic_fft_2d():
# Test standard grid spacing
n = (64, 64)
L = None
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
df_dx, df_dy = rd.utils.diff_periodic_fft_2d(f, L=L)
df_dx_correct = f * np.cos(x_grid) * np.cos(y_grid)
df_dy_correct = -f * np.sin(x_grid) * np.sin(y_grid)
assert np.isclose(df_dx, df_dx_correct).all()
assert np.isclose(df_dy, df_dy_correct).all()
# Different physical lengths of x and y
n = (64, 64)
L = (2*np.pi, 4*np.pi)
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
df_dx, df_dy = rd.utils.diff_periodic_fft_2d(f, L=L)
df_dx_correct = f * np.cos(x_grid) * np.cos(y_grid)
df_dy_correct = -f * np.sin(x_grid) * np.sin(y_grid)
assert np.isclose(df_dx, df_dx_correct).all()
assert np.isclose(df_dy, df_dy_correct).all()
# Different number of grid points in x and y
n = (64, 128)
L = None
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
df_dx, df_dy = rd.utils.diff_periodic_fft_2d(f, L=L)
df_dx_correct = f * np.cos(x_grid) * np.cos(y_grid)
df_dy_correct = -f * np.sin(x_grid) * np.sin(y_grid)
assert np.isclose(df_dx, df_dx_correct).all()
assert np.isclose(df_dy, df_dy_correct).all()
# Different number of grid points in x and y and different lengths
n = (64, 128)
L = (4*np.pi, 2*np.pi)
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
df_dx, df_dy = rd.utils.diff_periodic_fft_2d(f, L=L)
df_dx_correct = f * np.cos(x_grid) * np.cos(y_grid)
df_dy_correct = -f * np.sin(x_grid) * np.sin(y_grid)
assert np.isclose(df_dx, df_dx_correct).all()
assert np.isclose(df_dy, df_dy_correct).all()
# Test standard grid spacing, second derivative
n = (64, 64)
L = None
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
df_dx, df_dy = rd.utils.diff_periodic_fft_2d(f, L=L, order=2)
df_dx_correct = f * np.cos(y_grid) \
* (np.cos(x_grid)**2 * np.cos(y_grid) - np.sin(x_grid))
df_dy_correct = f * np.sin(x_grid) \
* (np.sin(y_grid)**2 * np.sin(x_grid) - np.cos(y_grid))
assert np.isclose(df_dx, df_dx_correct).all()
assert np.isclose(df_dy, df_dy_correct).all()
# Different physical lengths of x and y, second derivative
n = (64, 64)
L = (2*np.pi, 4*np.pi)
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
df_dx, df_dy = rd.utils.diff_periodic_fft_2d(f, L=L, order=2)
df_dx_correct = f * np.cos(y_grid) \
* (np.cos(x_grid)**2 * np.cos(y_grid) - np.sin(x_grid))
df_dy_correct = f * np.sin(x_grid) \
* (np.sin(y_grid)**2 * np.sin(x_grid) - np.cos(y_grid))
assert np.isclose(df_dx, df_dx_correct).all()
assert np.isclose(df_dy, df_dy_correct).all()
# Different number of grid points in x and y, second derivative
n = (64, 128)
L = None
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * np.cos(y_grid))
df_dx, df_dy = rd.utils.diff_periodic_fft_2d(f, L=L, order=2)
df_dx_correct = f * np.cos(y_grid) \
* (np.cos(x_grid)**2 * np.cos(y_grid) - np.sin(x_grid))
df_dy_correct = f * np.sin(x_grid) \
* (np.sin(y_grid)**2 * np.sin(x_grid) - np.cos(y_grid))
assert np.isclose(df_dx, df_dx_correct).all()
assert np.isclose(df_dy, df_dy_correct).all()
# Different number of grid points in x and y and diff len, second derivative
n = (64, 128)
L = (4*np.pi, 2*np.pi)
x, y, xx, yy, x_grid, y_grid = rd.utils.grid_points_2d(n, L=L)
f = np.exp(np.sin(x_grid) * | np.cos(y_grid) | numpy.cos |
import numpy as np
import anoa.misc as misc
import anoa.core.ops as ops
import exceptions, copy
import anoa.core.decorator as decor
class _RMatmul_Const(ops.Transform):
@decor.linear_transform_initialisation("const")
def __init__(self, matrix):
self.matrix = matrix
self.matrixT = np.transpose(matrix)
def forward(self, x):
return np.matmul(self.matrix, x)
@decor.put_child_values_arguments
def adjoint(self, x):
return np.matmul(self.matrixT, x)
class _Matmul_Const(ops.Transform):
@decor.linear_transform_initialisation("const")
def __init__(self, matrix):
self.matrix = matrix
self.matrixT = np.transpose(matrix)
def forward(self, x):
return np.matmul(x, self.matrix)
@decor.put_child_values_arguments
def adjoint(self, x):
return np.matmul(x, self.matrixT)
class _Matmul_Op(ops.Transform):
def forward(self, x, y):
return np.matmul(x, y)
def adjoint(self, x, *op_vals):
child0 = op_vals[0]
child1 = op_vals[1]
grad0 = np.matmul(x, np.transpose(child1))
grad1 = np.matmul(np.transpose(child0), x)
return [grad0, grad1]
class _Mask(ops.Transform):
"""
???
"""
@decor.linear_transform_initialisation("unary")
def __init__(self, mask):
self.mask = mask
def forward(self, x):
return x * self.mask
@decor.put_child_values_arguments
def adjoint(self, x):
return x * self.mask
class _Sum(ops.Transform):
"""
???
"""
@decor.linear_transform_initialisation("unary")
def __init__(self, input_shape, axis=None):
self.input_shape = input_shape
self.axis = axis
def forward(self, x):
return np.sum(x, axis=self.axis)
@decor.put_child_values_arguments
@decor.normalise_axis
def adjoint(self, x):
# expand the axis to have the same dimension as self.shape
x_expand = x
for axis in self.axis: x_expand = np.expand_dims(x, axis)
# copy the elements into the new axis
return np.broadcast_to(x_expand, self.input_shape)
class _Shear(ops.Transform):
"""
???
"""
@decor.linear_transform_initialisation("unary")
def __init__(self, shift_per_pixel=1, direction_axis=-1, surface_normal_axis=-2):
self.shift_per_pixel = int(shift_per_pixel)
self.direction_axis = direction_axis
self.surface_normal_axis = surface_normal_axis
self.shift_per_pixel = shift_per_pixel
self.normal_shape = None
self.sheared_shape = None
def _assign_shape(self, normal_shape):
# convert the axis to non-negative axis
ndim = len(normal_shape)
self.normal_shape = normal_shape
self.direction_axis = misc._positive_axis(self.direction_axis, ndim)
self.surface_normal_axis = misc._positive_axis(self.surface_normal_axis, ndim)
# calculate the sheared shape
self.sheared_shape = list(normal_shape)
self.sheared_shape[self.direction_axis] = normal_shape[self.direction_axis] + (normal_shape[self.surface_normal_axis] - 1) * abs(self.shift_per_pixel)
self._get_indices()
def _get_indices(self):
# get the input index
idx_beginning = 0 if self.shift_per_pixel > 0 else self.sheared_shape[self.direction_axis]-self.normal_shape[self.direction_axis]
idx_end = self.normal_shape[self.direction_axis] if self.shift_per_pixel > 0 else self.sheared_shape[self.direction_axis]
self.input_index = np.index_exp[:] * (self.direction_axis) + np.index_exp[idx_beginning:idx_end] + np.index_exp[:] * (len(self.normal_shape) - self.direction_axis - 1)
# roll index
index = np.index_exp[:] * self.surface_normal_axis
index_suffix = np.index_exp[:] * (len(self.normal_shape) - self.surface_normal_axis - 1)
self.roll_axis = (self.direction_axis - 1) if self.surface_normal_axis < self.direction_axis else self.direction_axis
self.roll_index = []
for i in range(self.normal_shape[self.surface_normal_axis]):
self.roll_index.append(index + (i,) + index_suffix)
def forward(self, x):
if self.normal_shape is None or self.input_shape != self.normal_shape: self._assign_shape(self.input_shape)
y = np.zeros(self.sheared_shape)
# copy the input, x, to y first with zero padding in direction_axis
y[self.input_index] = x
# now roll the axis
for i in range(self.normal_shape[self.surface_normal_axis]):
# get the i-th slice of the surface_normal_axis
y[self.roll_index[i]] = np.roll(y[self.roll_index[i]], i * self.shift_per_pixel, axis=self.roll_axis)
return y
@decor.put_child_values_arguments
def adjoint(self, y):
# transpose of shearing is just de-shearing (shear in the opposite direction)
y_copy = np.copy(y)
# roll back the axis
for i in range(self.normal_shape[self.surface_normal_axis]):
# get the i-th slice of the surface_normal_axis
y_copy[self.roll_index[i]] = np.roll(y_copy[self.roll_index[i]], -i * self.shift_per_pixel, axis=self.roll_axis)
# truncate the array
x = y_copy[self.input_index]
return x
class _Deshear(_Shear):
"""
???
"""
def _assign_sheared_shape(self, sheared_shape):
# convert the axis to non-negative axis
ndim = len(sheared_shape)
self.sheared_shape = sheared_shape
self.direction_axis = misc._positive_axis(self.direction_axis, ndim)
self.surface_normal_axis = misc._positive_axis(self.surface_normal_axis, ndim)
# calculate the sheared shape
self.normal_shape = list(sheared_shape)
self.normal_shape[self.direction_axis] = sheared_shape[self.direction_axis] - (sheared_shape[self.surface_normal_axis] - 1) * abs(self.shift_per_pixel)
self._get_indices()
def forward(self, y):
if self.sheared_shape is None or self.input_shape != self.sheared_shape: self._assign_sheared_shape(self.input_shape)
y_copy = np.copy(y)
# roll back the axis
for i in range(self.normal_shape[self.surface_normal_axis]):
# get the i-th slice of the surface_normal_axis
y_copy[self.roll_index[i]] = np.roll(y_copy[self.roll_index[i]], -i * self.shift_per_pixel, axis=self.roll_axis)
# truncate the array
x = y_copy[self.input_index]
return x
@decor.put_child_values_arguments
def adjoint(self, x):
y = np.zeros(self.sheared_shape)
# copy the input, x, to y first with zero padding in direction_axis
y[self.input_index] = x
# now roll the axis
for i in range(self.normal_shape[self.surface_normal_axis]):
# get the i-th slice of the surface_normal_axis
y[self.roll_index[i]] = np.roll(y[self.roll_index[i]], i * self.shift_per_pixel, axis=self.roll_axis)
return y
class _Shift(ops.Transform):
"""
???
"""
@decor.linear_transform_initialisation("unary")
def __init__(self, shift, axis=-1, boundary="periodic"):
self.shift = shift
self.axis = axis
self.boundary = boundary.lower()
self.list_of_boundaries = ["periodic", "symmetric", "reflect", "zeros", "same"]
assert self.boundary in self.list_of_boundaries, "the boundary argument must be one of %s or a number" % self.list_of_boundaries
def forward(self, x):
# input checking
assert self.shift < x.shape[self.axis], "the input size in axis %d (%d) must be more than the shift: %d" % (self.axis, x.shape[self.axis], self.shift)
# roll the axis
y = np.roll(x, self.shift, axis=self.axis)
if self.boundary == "periodic":
return y
else:
axis = misc._positive_axis(self.axis, len(x.shape))
# index of the newly shifted-in elements
if self.shift >= 0:
idx_begin = 0
idx_end = self.shift
else:
idx_begin = x.shape[axis] + self.shift
idx_end = x.shape[axis]
index = np.index_exp[:] * axis + np.index_exp[idx_begin:idx_end] + np.index_exp[:] * (len(x.shape) - axis - 1)
if self.boundary == "zeros":
y[index] = 0
return y
elif self.boundary == "same":
# obtain the index for the edge of the shifted elements
if self.shift >= 0: idx_edge = self.shift
else: idx_edge = x.shape[axis] + self.shift - 1
index_edge = np.index_exp[:] * axis + np.index_exp[idx_edge:idx_edge+1] + np.index_exp[:] * (len(x.shape) - axis - 1)
# broadcast the edge's value to fill in the shifted-in elements
y[index] = np.broadcast_to(y[index_edge], y[index].shape)
return y
elif self.boundary == "symmetric":
# get the index of the input element in the shifted axis, reversed
if self.shift >= 0:
idx_begin = self.shift - 1
idx_end = -1
else:
idx_begin = x.shape[axis] - 1
idx_end = x.shape[axis] - 1 + self.shift
if idx_end == -1:
index_input = np.index_exp[:] * axis + np.index_exp[idx_begin::-1] + np.index_exp[:] * (len(x.shape) - axis - 1)
else:
index_input = np.index_exp[:] * axis + np.index_exp[idx_begin:idx_end:-1] + np.index_exp[:] * (len(x.shape) - axis - 1)
# fill in the shifted-in element with the input elements
y[index] = x[index_input]
return y
elif self.boundary == "reflect":
# get the index of the input element in the shifted axis, reversed
if self.shift >= 0:
idx_begin = self.shift
idx_end = 0
else:
idx_begin = x.shape[axis] - 2
idx_end = x.shape[axis] - 2 + self.shift
index_input = np.index_exp[:] * axis + np.index_exp[idx_begin:idx_end:-1] + np.index_exp[:] * (len(x.shape) - axis - 1)
# fill in the shifted-in element with the input elements
y[index] = x[index_input]
return y
@decor.put_child_values_arguments
def adjoint(self, x):
# input checking
assert self.shift < x.shape[self.axis], "the input size in axis %d must be more than the shift %d" % (self.axis, self.shift)
# roll the axis
y = np.roll(x, -self.shift, axis=self.axis)
if self.boundary == "periodic":
return y
else:
axis = misc._positive_axis(self.axis, len(x.shape))
# index of the newly shifted-in and shifted-out elements
if self.shift >= 0:
idx_begin_in = x.shape[axis] - self.shift
idx_end_in = x.shape[axis]
idx_begin_out = 0
idx_end_out = self.shift
else:
idx_begin_in = 0
idx_end_in = -self.shift
idx_begin_out = x.shape[axis] + self.shift
idx_end_out = x.shape[axis]
index_in = np.index_exp[:] * axis + np.index_exp[idx_begin_in:idx_end_in] + np.index_exp[:] * (len(x.shape) - axis - 1)
index_out = np.index_exp[:] * axis + np.index_exp[idx_begin_out:idx_end_out] + np.index_exp[:] * (len(x.shape) - axis - 1)
# zeroing the newly shifted-in elements
y[index_in] = 0
if self.boundary == "zeros":
return y
elif self.boundary == "same":
# obtain the index for the edge of the shifted elements
if self.shift >= 0: idx_edge = 0
else: idx_edge = x.shape[axis] - 1
index_edge = np.index_exp[:] * axis + (idx_edge,) + np.index_exp[:] * (len(x.shape) - axis - 1)
y[index_edge] += np.sum(x[index_out], axis=axis)
return y
elif self.boundary == "symmetric":
y[index_out] += np.flip(x[index_out], axis=axis)
return y
elif self.boundary == "reflect":
# obtain the shifted-out index + 1
if self.shift >= 0:
idx_begin = 1
idx_end = self.shift + 1
else:
idx_begin = x.shape[axis] + self.shift - 1
idx_end = x.shape[axis] - 1
index_out2 = np.index_exp[:] * axis + np.index_exp[idx_begin:idx_end] + np.index_exp[:] * (len(x.shape) - axis - 1)
y[index_out2] += np.flip(x[index_out], axis=axis)
return y
class _Flip(ops.Transform):
"""
???
"""
@decor.linear_transform_initialisation("unary")
def __init__(self, axis=-1):
self.axis = axis
def forward(self, x):
return np.flip(x, self.axis)
@decor.put_child_values_arguments
def adjoint(self, x):
return np.flip(x, self.axis)
class _Rot90(ops.Transform):
"""
???
"""
@decor.linear_transform_initialisation("unary")
def __init__(self, k=1, axis=(0,1)):
self.k = k
self.axis = axis
def forward(self, x):
return np.rot90(x, self.k, self.axis)
@decor.put_child_values_arguments
def adjoint(self, x):
return np.rot90(x, -self.k, self.axis)
class _Transpose(ops.Transform):
@decor.linear_transform_initialisation("unary")
def __init__(self, axes=None):
self.axes = axes
def forward(self, x):
return np.transpose(x, axes=self.axes)
@decor.put_child_values_arguments
def adjoint(self, x):
if self.axes == None: return np.transpose(x)
else:
original_axes = np.zeros((len(self.axes),))
original_axes[np.array(self.axes)] = np.arange(len(self.axes))
original_axes = original_axes.astype(int)
return np.transpose(x, original_axes)
class _MaxOrMin(_Sum): # it has the same __init__ as _Sum
"""
???
"""
@decor.make_output_array
@decor.normalise_axis
def adjoint(self, x, *child_values):
# expand the axis to have the same dimension as self.shape
x_expand = x
output_expand = self.value
for axis in self.axis:
x_expand = np.expand_dims(x, axis)
output_expand = | np.expand_dims(output_expand, axis) | numpy.expand_dims |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 4 10:34:22 2019
A class based formulation of other analyses.
It is structured as:
Dataset
_| |_
| |
Analysis Forecast
________________|________________
| | |
SubxForecast EC45Forecast Seas5Forecast
Dataset initialises the majority of the variables, handles data loading, copying
and subsetting, and provides deseasonalising and data reduction methods.
Analysis adds a preprocessing method for era5 data, and some additional variable setup
Forecast adds an error correction method, and forecast-specific variable setup
SubxForecast, EC45Forecast, and Seas5Forecast add filetype specific data processing.
@author: josh
"""
import iris
import copy as cp
import datetime as dt
import iris.coord_categorisation as iccat
from iris.analysis.cartography import cosine_latitude_weights
import numpy as np
import cf_units
import os
class Dataset:
def __init__(self,field,dates,leads=None):
"""
Dataset is the base class shared by all analysis and forecast data sets. It defines
all functions that are generic between datasets. Not normally used directly.
Args:
* field - A string used to identify which fields to load from file.
*date - a list or tuple of 2 datetime.datetime objects specifying the
first and last datetime to include in the data
*leads - used by the Forecast class only, a list or tuple of 2 floats,
specifying minimum and maximum lead times in days to include.
"""
self.field=field
self.dates=dates
self._d_l,self._d_u=dates
self.leads=leads
#Only data of the same forecast hour is currently supported.
assert dates[0].hour==dates[1].hour
self.hour=[dates[0].hour]
#Name of the primary time coordinate
self.T="time"
#The expected position of the primary time coordinate in the cube
self.t=0
#The day of year associated with 'dates'
self.calendar_bounds=[d.timetuple().tm_yday for d in dates]
self.type=Dataset
#A dictionary that can contain any number of iris CubeLists, each
#labelled with a keyword. The load_data method generates a "data" and
#a "clim" CubeList
self.data={}
#Used by the get_climatology method
self.dist_means=None
self.distribution=None
#The time unit to use
self.U=cf_units.Unit(f"Days since {cf_units.EPOCH}",\
calendar=cf_units.CALENDAR_GREGORIAN)
#Constraints applied to the data at different points.
self.constraints={
#keep only data with a valid time coordinate
"load":iris.Constraint(cube_func=lambda cube: cube.coords(self.T)!=[]),
#keep only data that falls within the calendar_bounds
"calendar":iris.Constraint(coord_values={"day_of_year":lambda cell:\
self._in_calendar_bounds(cell)}),
#keep only data for the right hour
"hour":iris.Constraint(coord_values={"hour":lambda cell:\
np.isin(cell,self.hour)[0]}),
#keep only data that falls within the dates
"data":iris.Constraint(coord_values={self.T:lambda cell:\
self._d_l<=cell<=self._d_u}),
#keep only data that falls outside the dates
"clim":iris.Constraint(coord_values={self.T:lambda cell:\
(self._d_l>cell)or (cell>self._d_u)})
}
self._setup()
def _setup(self):
"""empty method used by derived classes."""
pass
def set_path(self,path):
"""set the path from which to load data"""
if os.path.isdir(path):
self.path=path
else:
raise(ValueError("Not a valid path."))
def copy(self):
"""A method which returns a copy of the Dataset"""
copy=self.type(self.field,self.dates,self.leads)
copy.dist_means=self.dist_means
copy.distribution=self.distribution
copy.data=cp.deepcopy(self.data)
return copy
def add_constraints(self,constr_dict):
"""add a dictionary of constraints 'constr_dict' to the constraints
attribute. Any previously defined keywords will be overwritten."""
for key in constr_dict:
self.constraints[key]=constr_dict[key]
def load_data(self,strict=True):
"""Load data from self.path as a list of iris cubes, preprocess it,
and split it into two CubeLists "data" and "clim".
"""
CL=iris.cube.CubeList()
fs=[self.path+f for f in os.listdir(self.path) if f.endswith(".nc")]
for f in fs:
CL.append(iris.load_cube(f,constraint=self.constraints["load"]))
self.data=CL
self._clean_loaded_data()
a=self.data.extract(self.constraints["data"])
c=self.data.extract(self.constraints["clim"])
if strict:
if a is None: raise(ValueError("No data after applying constraints."))
if c is None: raise(ValueError("No climatology data after applying constraints."))
self.data={"data":a,"clim":c}
def _clean_loaded_data(self):
"""empty method used by derived classes."""
pass
def _in_calendar_bounds(self,x):
"""Evaluates whether a real number x lies between the calendar_bounds
of the dataset, wrapping around the end of the year if necessary."""
c0,c1=self.calendar_bounds
if c1<c0:
ans=(x<=c1) or (x>=c0)
else:
ans=(x<=c1) and (x>=c0)
return ans
def restrict_area(self,region):
"""A convenience method that restricts the spatial extent of the
Dataset to one of a few preset domains, defined by a string "region".
"""
if region.lower()=="europe":
lons=[-15,20]
lats=[32,60]
elif region.lower()=="france":
lons=[-5,8]
lats=[42,51]
elif region.lower()=="north_atlantic":
lons=[-80,40]
lats=[30,90]
else: raise(ValueError(f"Unrecognised region {region}."))
#We use this over intersection, because it works for cubelists
area_constr=iris.Constraint(longitude=lambda x: lons[0]<=x<=lons[1],\
latitude=lambda x: lats[0]<=x<=lats[1])
for key in self.data:
self.data[key]=self.data[key].extract(area_constr)
def add_cat_coord(self,iccat_function,coordname,base_coord):
"""Adds a categorical coordinate to all cubes in Dataset.data, defined
by 'iccat_function' relative to 'base_coord', and called 'coordname'.
Note that the name of the new coord is defined internally by
iccat_function; coordname serves only to graciously handle the case when
that coordinate already exists."""
for key in self.data:
for i,entry in enumerate(self.data[key]):
if entry.coords(coordname)==[]:
iccat_function(entry,base_coord)
def change_units(self,unit_str=None,cf_unit=None):
"""Changes the units of all cubes in the Dataset to a new unit given
either by a valid cf_units.Unit string specifier 'unit_str', or a
cf_units.Unit object, 'cf_unit'."""
if unit_str is not None and cf_unit is not None:
raise(ValueError("Only one unit can be provided."))
elif unit_str is not None:
unit=cf_units.Unit(unit_str)
elif cf_unit is not None:
unit=cf_unit
else: raise(ValueError("A unit must be provided."))
for key in self.data:
for i,entry in enumerate(self.data[key]):
entry.convert_units(unit)
def change_dates(self,newdates):
"""
Redefines the 'dates' attribute to the list of 2 datetimes 'newdates',
reapplying the "data" and "clim" constraints to match
**currently quite slow for large cubelists**
"""
self.dates=newdates
self._d_l,self._d_u=self.dates
self.calendar_bounds=[d.timetuple().tm_yday for d in self.dates]
CL_data=iris.cube.CubeList()
CL_clim=iris.cube.CubeList()
for key in self.data:
a=self.data[key].extract(self.constraints["data"])
if a != []:
CL_data.append(a)
a=self.data[key].extract(self.constraints["clim"])
if a != []:
CL_clim.append(a)
CL_data=iris.cube.CubeList([c for C in CL_data for c in C])
CL_clim=iris.cube.CubeList([c for C in CL_clim for c in C])
self.data["data"]=CL_data.concatenate()
self.data["clim"]=CL_clim.concatenate()
def change_calendar(self,newcalendar):
for key in self.data:
for i,entry in enumerate(self.data[key]):
newunit=cf_units.Unit(\
entry.coord("time").units.origin,calendar=newcalendar)
self.data[key][i].coord("time").unit=newunit
def aggregate_by(self,coords,bins,aggregator=iris.analysis.MEAN):
"""Aggregates the coordinates of all cubes in Dataset into user defined
bins.
Args:
*coords - A list of strings which are the coordinates
to be aggregated over.
*bins - A corresponding list of lists 'bins'. bins[i]
should contain the bounding values over which to group coords[i].
Kwargs:
*aggregator -A valid iris.analysis.Aggregator object which specifies
how to aggregate entries together.
"""
binlabels=[]
for j,coord in enumerate(coords):
binlabels.append(f"bin{j}")
for key in self.data:
for i,entry in enumerate(self.data[key]):
for j,(coord,b) in enumerate(zip(coords,bins)):
#remove potential old bins:
if self.data[key][i].coords(f"bin{j}")!=[]:
self.data[key][i].remove_coord(f"bin{j}")
if self.data[key][i].coords(coord)==[]:
raise(ValueError("No such coordinate in cube!"))
label=np.digitize(entry.coord(coord).points,b)
coord_dim=entry.coord_dims(entry.coord(coord))
entry.add_aux_coord(iris.coords.AuxCoord(label,\
var_name=f"bin{j}"),data_dims=coord_dim)
self.data[key][i]=entry.aggregated_by(binlabels,aggregator)
for j,coord in enumerate(coords):
if self.data[key][i].coords(coord)!=[]:
self.data[key][i].remove_coord(f"bin{j}")
def collapse_over(self,coord,aggregator=iris.analysis.MEAN):
"""Collapses all cubes in Dataset over a single coordinate.
Args:
*coords - A string which is the coordinate to collapse.
Kwargs:
*aggregator -A valid iris.analysis.Aggregator object which specifies
how to collapse the coordinate.
"""
for key in self.data:
for i,entry in enumerate(self.data[key]):
self.data[key][i]=self.data[key][i].collapsed(coord,aggregator)
def apply_coslat_mean(self,mask=None):
"""Collapses the latitude and longitude coordinates of all cubes in
Dataset, using a cosine latitude weighting.
Kwargs:
*mask:
A cube with matching latitude and longitude coordinates to
the cubes in Dataset. Each gridpoint in 'mask' should vary between
0 (totally masked) to 1 (totally unmasked).
"""
for key in self.data:
for i,entry in enumerate(self.data[key]):
weights = cosine_latitude_weights(entry)
#include the land sea mask in the weighting if one was passed.
if mask is not None:
weights=weights*mask.data
self.data[key][i]=entry.collapsed(["latitude","longitude"],\
iris.analysis.MEAN,weights=weights)
def regrid_to(self,dataset=None,cube=None,regridder=iris.analysis.Linear()):
"""regrids every cube in Dataset to match either those of another
Dataset object, or an iris.Cube object."""
if cube is None and dataset is None:
raise(ValueError("No reference for regridding provided!"))
elif cube is None:
ref_cube=dataset.data["data"][0]
else:
ref_cube=cube
for key in self.data:
for i,entry in enumerate(self.data[key]):
self.data[key][i]=entry.regrid(ref_cube,regridder)
def apply(self,func,*args,in_place=True,keys=None,**kwargs):
"""A method which applies a function to every cube in Dataset
Args:
*func - A function of the type func(cube,*args,**kwargs).
Kwargs:
in_place - A boolean, specifying whether func returns an output or
not. If True, cube is set equal to func(cube), unless the output
is None, in which case cube is removed from the CubeList.
"""
if keys is None:
keys=self.data
for key in keys:
for i,entry in enumerate(self.data[key]):
result=func(entry,*args,**kwargs)
if in_place:
pass
else:
if result is not None:
self.data[key][i]=result
else:
self.data[key].remove(self.data[key][i])
def apply_constraint(self,constraint,keys=None):
"""Apply a constraint to all cubes in Dataset"""
if keys is None:
keys=self.data
for key in keys:
self.data[key]=self.data[key].extract(constraint)
def get_climatology(self,percentiles):
"""Finds the distribution of all values in the Dataset.
Args:
* percentiles - A numpy array ([p_1,...,p_N]) where 0<=p_i<=100,
which defines the percentiles of the data distribution to calculate.
"""
self.percentiles=percentiles
lat,lon=self.data["clim"][0].shape[-2:]
dist=np.zeros([1,lat,lon])
#We call the whole cubelist into memory
self.data["clim"].realise_data()
dist=np.concatenate([f.data.reshape([-1,lat,lon]) for f in self.data["clim"]])
self.distribution=np.percentile(dist,percentiles,axis=0)
self.distribution[0]-=0.01
means=np.zeros([len(percentiles)-1,lat,lon])
for i in range(len(percentiles)-1):
for j in range(lat):
for k in range(lon):
means[i,j,k]=dist[np.digitize(dist[:,j,k],\
self.distribution[:,j,k],right=True)==i+1,j,k].mean()
#interpolates empty bins as being halfway between the distribution bounds
for i,j,k in np.argwhere(np.isnan(means)):
means[i,j,k]=self.distribution[i:i+2,j,k].mean()
self.dist_means=means
def get_seasonal_cycle(self,N=4,period=365.25,keys=None):
"""Fits N sine modes to the data series, with frequencies of n/(365.25 days)
for n in [1,...,N], in order to calculate a smooth seasonal cycle.
Kwargs:
*keys - A list of keys to self.data, specifying which data to use
to calculate the cycle. If keys is None, all data in the dataset
will be used.
"""
#Default is to include all data
if keys is None: keys = [key for key in self.data]
self.deseasonaliser=_Deseasonaliser(self.data,keys,N,period)
self.deseasonaliser.fit_cycle()
def remove_seasonal_cycle(self,deseasonaliser=None,strict_t_ax=False):
if deseasonaliser is None:
if self.deseasonaliser is None:
raise(ValueError("No _Deseasonaliser object found."))
else:
deseasonaliser=self.deseasonaliser
if deseasonaliser.coeffs is None:
deseasonaliser.fit_cycle()
for key in self.data:
for i,cube in enumerate(self.data[key]):
cycle=deseasonaliser.evaluate_cycle(cube.coord("time"),strict=strict_t_ax)
if cycle.shape!=cube.shape:
dim_map=[cube.coord_dims(coord)[0] for coord in \
["time","latitude","longitude"]]
cycle=iris.util.broadcast_to_shape(cycle,cube.shape,dim_map)
self.data[key][i].data=cube.data-cycle
def set_time_axis_first(self,tname="time"):
for key in self.data:
for entry in self.data[key]:
t_ax=entry.coord_dims(tname)[0]
if t_ax!=0:
ax=np.arange(entry.ndim)
entry.transpose([t_ax,*ax[ax!=t_ax]])
class _Deseasonaliser:
def __init__(self,data,keys,N,period=365.25,coeffs=None):
self.raw_data=[]
self.t=[]
self.t_unit=None
self.tref=None
self.keys=keys
self.N=N
self.pnum=2*(N+1)
self.period=period
self.coeffs=None
for key in keys:
for cube in data[key]:
self.raw_data.append(cube.data)
if self.t_unit is not None:
if self.t_unit!=cube.coord("time").units:
raise(ValueError("Clashing time units in data."))
else:
self.t_unit=cube.coord("time").units
self.t.append(cube.coord("time").points)
i=cube.coord_dims("time")[0]
self.raw_data= | np.concatenate(self.raw_data,axis=i) | numpy.concatenate |
from functools import partial
from warnings import warn
import numpy as np
from numpy.polynomial.legendre import leggauss
from scipy.special import erf, beta as beta_fn, gammaln
from scipy.linalg import solve_triangular
from numba import njit
from .sys_utilities import hash_array
def sub2ind(sizes, multi_index):
r"""
Map a d-dimensional index to the scalar index of the equivalent flat
1D array
Examples
--------
.. math::
\begin{bmatrix}
0,0 & 0,1 & 0,2\\
1,0 & 1,1 & 1,2\\
2,0 & 2,1 & 2,2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 3 & 6\\
1 & 4 & 7\\
2 & 5 & 8
\end{bmatrix}
>>> from pyapprox.utilities import sub2ind
>>> sizes = [3,3]
>>> ind = sub2ind(sizes,[1,0])
>>> print(ind)
1
Parameters
----------
sizes : integer
The number of elems in each dimension. For a 2D index
sizes = [numRows, numCols]
multi_index : np.ndarray (len(sizes))
The d-dimensional index
Returns
-------
scalar_index : integer
The scalar index
See Also
--------
pyapprox.utilities.sub2ind
"""
num_sets = len(sizes)
scalar_index = 0
shift = 1
for ii in range(num_sets):
scalar_index += shift * multi_index[ii]
shift *= sizes[ii]
return scalar_index
def ind2sub(sizes, scalar_index, num_elems):
r"""
Map a scalar index of a flat 1D array to the equivalent d-dimensional index
Examples
--------
.. math::
\begin{bmatrix}
0 & 3 & 6\\
1 & 4 & 7\\
2 & 5 & 8
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0,0 & 0,1 & 0,2\\
1,0 & 1,1 & 1,2\\
2,0 & 2,1 & 2,2
\end{bmatrix}
>>> from pyapprox.utilities import ind2sub
>>> sizes = [3,3]
>>> sub = ind2sub(sizes,1,9)
>>> print(sub)
[1 0]
Parameters
----------
sizes : integer
The number of elems in each dimension. For a 2D index
sizes = [numRows, numCols]
scalar_index : integer
The scalar index
num_elems : integer
The total number of elements in the d-dimensional matrix
Returns
-------
multi_index : np.ndarray (len(sizes))
The d-dimensional index
See Also
--------
pyapprox.utilities.sub2ind
"""
denom = num_elems
num_sets = len(sizes)
multi_index = np.empty((num_sets), dtype=int)
for ii in range(num_sets-1, -1, -1):
denom /= sizes[ii]
multi_index[ii] = scalar_index / denom
scalar_index = scalar_index % denom
return multi_index
def cartesian_product(input_sets, elem_size=1):
r"""
Compute the cartesian product of an arbitray number of sets.
The sets can consist of numbers or themselves be lists or vectors. All
the lists or vectors of a given set must have the same number of entries
(elem_size). However each set can have a different number of scalars,
lists, or vectors.
Parameters
----------
input_sets
The sets to be used in the cartesian product.
elem_size : integer
The size of the vectors within each set.
Returns
-------
result : np.ndarray (num_sets*elem_size, num_elems)
The cartesian product. num_elems = np.prod(sizes)/elem_size,
where sizes[ii] = len(input_sets[ii]), ii=0,..,num_sets-1.
result.dtype will be set to the first entry of the first input_set
"""
import itertools
out = []
# ::-1 reverse order to be backwards compatiable with old
# function below
for r in itertools.product(*input_sets[::-1]):
out.append(r)
out = np.asarray(out).T[::-1, :]
return out
try:
from pyapprox.cython.utilities import cartesian_product_pyx
# # fused type does not work for np.in32, np.float32, np.int64
# # so envoke cython cast
# if np.issubdtype(input_sets[0][0],np.signedinteger):
# return cartesian_product_pyx(input_sets,1,elem_size)
# if np.issubdtype(input_sets[0][0],np.floating):
# return cartesian_product_pyx(input_sets,1.,elem_size)
# else:
# return cartesian_product_pyx(
# input_sets,input_sets[0][0],elem_size)
# always convert to float then cast back
cast_input_sets = [np.asarray(s, dtype=float) for s in input_sets]
out = cartesian_product_pyx(cast_input_sets, 1., elem_size)
out = np.asarray(out, dtype=input_sets[0].dtype)
return out
except:
print('cartesian_product extension failed')
num_elems = 1
num_sets = len(input_sets)
sizes = np.empty((num_sets), dtype=int)
for ii in range(num_sets):
sizes[ii] = input_sets[ii].shape[0]/elem_size
num_elems *= sizes[ii]
# try:
# from pyapprox.weave import c_cartesian_product
# # note c_cartesian_product takes_num_elems as last arg and cython
# # takes elem_size
# return c_cartesian_product(input_sets, elem_size, sizes, num_elems)
# except:
# print ('cartesian_product extension failed')
result = np.empty(
(num_sets*elem_size, num_elems), dtype=type(input_sets[0][0]))
for ii in range(num_elems):
multi_index = ind2sub(sizes, ii, num_elems)
for jj in range(num_sets):
for kk in range(elem_size):
result[jj*elem_size+kk, ii] =\
input_sets[jj][multi_index[jj]*elem_size+kk]
return result
def outer_product(input_sets):
r"""
Construct the outer product of an arbitary number of sets.
Examples
--------
.. math::
\{1,2\}\times\{3,4\}=\{1\times3, 2\times3, 1\times4, 2\times4\} =
\{3, 6, 4, 8\}
Parameters
----------
input_sets
The sets to be used in the outer product
Returns
-------
result : np.ndarray(np.prod(sizes))
The outer product of the sets.
result.dtype will be set to the first entry of the first input_set
"""
out = cartesian_product(input_sets)
return np.prod(out, axis=0)
try:
from pyapprox.cython.utilities import outer_product_pyx
# fused type does not work for np.in32, np.float32, np.int64
# so envoke cython cast
if np.issubdtype(input_sets[0][0], np.signedinteger):
return outer_product_pyx(input_sets, 1)
if np.issubdtype(input_sets[0][0], np.floating):
return outer_product_pyx(input_sets, 1.)
else:
return outer_product_pyx(input_sets, input_sets[0][0])
except ImportError:
print('outer_product extension failed')
num_elems = 1
num_sets = len(input_sets)
sizes = np.empty((num_sets), dtype=int)
for ii in range(num_sets):
sizes[ii] = len(input_sets[ii])
num_elems *= sizes[ii]
# try:
# from pyapprox.weave import c_outer_product
# return c_outer_product(input_sets)
# except:
# print ('outer_product extension failed')
result = np.empty((num_elems), dtype=type(input_sets[0][0]))
for ii in range(num_elems):
result[ii] = 1.0
multi_index = ind2sub(sizes, ii, num_elems)
for jj in range(num_sets):
result[ii] *= input_sets[jj][multi_index[jj]]
return result
def unique_matrix_rows(matrix):
unique_rows = []
unique_rows_set = set()
for ii in range(matrix.shape[0]):
key = hash_array(matrix[ii, :])
if key not in unique_rows_set:
unique_rows_set.add(key)
unique_rows.append(matrix[ii, :])
return np.asarray(unique_rows)
def remove_common_rows(matrices):
num_cols = matrices[0].shape[1]
unique_rows_dict = dict()
for ii in range(len(matrices)):
matrix = matrices[ii]
assert matrix.shape[1] == num_cols
for jj in range(matrix.shape[0]):
key = hash_array(matrix[jj, :])
if key not in unique_rows_dict:
unique_rows_dict[key] = (ii, jj)
elif unique_rows_dict[key][0] != ii:
del unique_rows_dict[key]
# else:
# entry is a duplicate entry in the current. Allow this to
# occur but only add one of the duplicates to the unique rows dict
unique_rows = []
for key in list(unique_rows_dict.keys()):
ii, jj = unique_rows_dict[key]
unique_rows.append(matrices[ii][jj, :])
return np.asarray(unique_rows)
def allclose_unsorted_matrix_rows(matrix1, matrix2):
if matrix1.shape != matrix2.shape:
return False
matrix1_dict = dict()
for ii in range(matrix1.shape[0]):
key = hash_array(matrix1[ii, :])
# allow duplicates of rows
if key not in matrix1_dict:
matrix1_dict[key] = 0
else:
matrix1_dict[key] += 1
matrix2_dict = dict()
for ii in range(matrix2.shape[0]):
key = hash_array(matrix2[ii, :])
# allow duplicates of rows
if key not in matrix2_dict:
matrix2_dict[key] = 0
else:
matrix2_dict[key] += 1
if len(list(matrix1_dict.keys())) != len(list(matrix2_dict.keys())):
return False
for key in list(matrix1_dict.keys()):
if key not in matrix2_dict:
return False
if matrix2_dict[key] != matrix1_dict[key]:
return False
return True
def get_2d_cartesian_grid(num_pts_1d, ranges):
r"""
Get a 2d tensor grid with equidistant points.
Parameters
----------
num_pts_1d : integer
The number of points in each dimension
ranges : np.ndarray (4)
The lower and upper bound of each dimension [lb_1,ub_1,lb_2,ub_2]
Returns
-------
grid : np.ndarray (2,num_pts_1d**2)
The points in the tensor product grid.
[x1,x2,...x1,x2...]
[y1,y1,...y2,y2...]
"""
# from math_tools_cpp import cartesian_product_double as cartesian_product
from PyDakota.math_tools import cartesian_product
x1 = np.linspace(ranges[0], ranges[1], num_pts_1d)
x2 = np.linspace(ranges[2], ranges[3], num_pts_1d)
abscissa_1d = []
abscissa_1d.append(x1)
abscissa_1d.append(x2)
grid = cartesian_product(abscissa_1d, 1)
return grid
def invert_permutation_vector(p, dtype=int):
r"""
Returns the "inverse" of a permutation vector. I.e., returns the
permutation vector that performs the inverse of the original
permutation operation.
Parameters
----------
p: np.ndarray
Permutation vector
dtype: type
Data type passed to np.ndarray constructor
Returns
-------
pt: np.ndarray
Permutation vector that accomplishes the inverse of the
permutation p.
"""
N = np.max(p) + 1
pt = np.zeros(p.size, dtype=dtype)
pt[p] = np.arange(N, dtype=dtype)
return pt
def nchoosek(nn, kk):
try: # SciPy >= 0.19
from scipy.special import comb
except:
from scipy.misc import comb
result = np.asarray(np.round(comb(nn, kk)), dtype=int)
if np.isscalar(result):
result = np.asscalar(result)
return result
def total_degree_space_dimension(dimension, degree):
r"""
Return the number of basis functions in a total degree polynomial space,
i.e. the space of all polynomials with degree at most degree.
Parameters
----------
num_vars : integer
The number of variables of the polynomials
degree :
The degree of the total-degree space
Returns
-------
num_terms : integer
The number of basis functions in the total degree space
Notes
-----
Note
.. math:: {n \choose k} = frac{\Gamma(n+k+1)}{\Gamma(k+1)\Gamma{n-k+1}}, \qquad \Gamma(m)=(m-1)!
So for dimension :math:`d` and degree :math:`p` number of terms in
subspace is
.. math:: {d+p \choose p} = frac{\Gamma(d+p+1)}{\Gamma(p+1)\Gamma{d+p-p+1}}, \qquad \Gamma(m)=(m-1)!
"""
# return nchoosek(dimension+degree, degree)
# Following more robust for large values
return int(np.round(
np.exp(gammaln(degree+dimension+1) - gammaln(degree+1) - gammaln(
dimension+1))))
def total_degree_subspace_dimension(dimension, degree):
r"""
Return the number of basis functions in a total degree polynomial space,
with degree equal to degree.
Parameters
----------
num_vars : integer
The number of variables of the polynomials
degree :
The degree of the total-degree space
Returns
-------
num_terms : integer
The number of basis functions in the total degree space of a given
degree
"""
# subspace_dimension = nchoosek(nvars+degree-1, degree)
# Following more robust for large values
subspace_dimension = int(
np.round(np.exp(gammaln(degree+dimension) - gammaln(degree+1) -
gammaln(dimension))))
return subspace_dimension
def total_degree_encompassing_N(dimension, N):
r"""
Returns the smallest integer k such that the dimension of the total
degree-k space is greater than N.
"""
k = 0
while total_degree_subspace_dimension(dimension, k) < N:
k += 1
return k
def total_degree_barrier_indices(dimension, max_degree):
r"""
Returns linear indices that bound total degree spaces
Parameters
----------
dimension: int
Parametric dimension
max_degree: int
Maximum polynomial degree
Returns
-------
degree_barrier_indices: list
List of degree barrier indices up to (including) max_degree.
"""
degree_barrier_indices = [0]
for degree in range(1, max_degree+1):
degree_barrier_indices.append(
total_degree_subspace_dimension(dimension, degree))
return degree_barrier_indices
def total_degree_orthogonal_transformation(coefficients, d):
r"""
Returns an orthogonal matrix transformation that "matches" the input
coefficients.
Parameters
----------
coefficients: np.ndarray
Length-N vector of expansion coefficients
d: int
Parametric dimension
Returns
-------
Q: np.ndarray
A size N x N orthogonal matrix transformation. The first column
is a unit vector in the direction of coefficients.
"""
from scipy.linalg import qr
N = coefficients.size
degree_barrier_indices = [1]
max_degree = 0
while degree_barrier_indices[-1] < N-1:
max_degree += 1
degree_barrier_indices.append(
total_degree_subspace_dimension(d, max_degree))
q = np.zeros([N, N])
# Assume degree = 0 is just constant
q[0, 0] = 1.
for degree in range(1, max_degree+1):
i1 = degree_barrier_indices[degree-1]
i2 = degree_barrier_indices[degree]
M = i2-i1
q[i1:i2, i1:i2] = qr(coefficients[i1:i2].reshape([M, 1]))[0]
return q
def get_low_rank_matrix(num_rows, num_cols, rank):
r"""
Construct a matrix of size num_rows x num_cols with a given rank.
Parameters
----------
num_rows : integer
The number rows in the matrix
num_cols : integer
The number columns in the matrix
rank : integer
The rank of the matrix
Returns
-------
Amatrix : np.ndarray (num_rows,num_cols)
The low-rank matrix generated
"""
assert rank <= min(num_rows, num_cols)
# Generate a matrix with normally distributed entries
N = max(num_rows, num_cols)
Amatrix = np.random.normal(0, 1, (N, N))
# Make A symmetric positive definite
Amatrix = np.dot(Amatrix.T, Amatrix)
# Construct low rank approximation of A
eigvals, eigvecs = np.linalg.eigh(Amatrix.copy())
# Set smallest eigenvalues to zero. Note eigenvals are in
# ascending order
eigvals[:(eigvals.shape[0]-rank)] = 0.
# Construct rank r A matrix
Amatrix = np.dot(eigvecs, np.dot(np.diag(eigvals), eigvecs.T))
# Resize matrix to have requested size
Amatrix = Amatrix[:num_rows, :num_cols]
return Amatrix
def adjust_sign_svd(U, V, adjust_based_upon_U=True):
r"""
Ensure uniquness of svd by ensuring the first entry of each left singular
singular vector be positive. Only works for np.linalg.svd
if full_matrices=False
Parameters
----------
U : (M x M) matrix
left singular vectors of a singular value decomposition of a (M x N)
matrix A.
V : (N x N) matrix
right singular vectors of a singular value decomposition of a (M x N)
matrix A.
adjust_based_upon_U : boolean (default=True)
True - make the first entry of each column of U positive
False - make the first entry of each row of V positive
Returns
-------
U : (M x M) matrix
left singular vectors with first entry of the first
singular vector always being positive.
V : (M x M) matrix
right singular vectors consistent with sign adjustment applied to U.
"""
if U.shape[1] != V.shape[0]:
raise ValueError(
'U.shape[1] must equal V.shape[0]. If using np.linalg.svd set full_matrices=False')
if adjust_based_upon_U:
s = np.sign(U[0, :])
else:
s = np.sign(V[:, 0])
U *= s
V *= s[:, np.newaxis]
return U, V
def adjust_sign_eig(U):
r"""
Ensure uniquness of eigenvalue decompotision by ensuring the first entry
of the first singular vector of U is positive.
Parameters
----------
U : (M x M) matrix
left singular vectors of a singular value decomposition of a (M x M)
matrix A.
Returns
-------
U : (M x M) matrix
left singular vectors with first entry of the first
singular vector always being positive.
"""
s = np.sign(U[0, :])
U *= s
return U
def sorted_eigh(C):
r"""
Compute the eigenvalue decomposition of a matrix C and sort
the eigenvalues and corresponding eigenvectors by decreasing
magnitude.
Warning. This will prioritize large eigenvalues even if they
are negative. Do not use if need to distinguish between positive
and negative eigenvalues
Input
B: matrix (NxN)
matrix to decompose
Output
e: vector (N)
absolute values of the eigenvalues of C sorted by decreasing
magnitude
W: eigenvectors sorted so that they respect sorting of e
"""
e, W = np.linalg.eigh(C)
e = abs(e)
ind = np.argsort(e)
e = e[ind[::-1]]
W = W[:, ind[::-1]]
s = np.sign(W[0, :])
s[s == 0] = 1
W = W*s
return e.reshape((e.size, 1)), W
def continue_pivoted_lu_factorization(LU_factor, raw_pivots, current_iter,
max_iters, num_initial_rows=0):
it = current_iter
for it in range(current_iter, max_iters):
# find best pivot
if np.isscalar(num_initial_rows) and (it < num_initial_rows):
# pivot=np.argmax(np.absolute(LU_factor[it:num_initial_rows,it]))+it
pivot = it
elif (not np.isscalar(num_initial_rows) and
(it < num_initial_rows.shape[0])):
pivot = num_initial_rows[it]
else:
pivot = np.argmax(np.absolute(LU_factor[it:, it]))+it
# update pivots vector
# swap_rows(pivots,it,pivot)
raw_pivots[it] = pivot
# apply pivots(swap rows) in L factorization
swap_rows(LU_factor, it, pivot)
# check for singularity
if abs(LU_factor[it, it]) < np.finfo(float).eps:
msg = "pivot %1.2e" % abs(LU_factor[it, it])
msg += " is to small. Stopping factorization."
print(msg)
break
# update L_factor
LU_factor[it+1:, it] /= LU_factor[it, it]
# udpate U_factor
col_vector = LU_factor[it+1:, it]
row_vector = LU_factor[it, it+1:]
update = np.outer(col_vector, row_vector)
LU_factor[it+1:, it+1:] -= update
return LU_factor, raw_pivots, it
def unprecondition_LU_factor(LU_factor, precond_weights, num_pivots=None):
r"""
A=LU and WA=XY
Then WLU=XY
We also know Y=WU
So WLU=XWU => WL=XW so L=inv(W)*X*W
and U = inv(W)Y
"""
if num_pivots is None:
num_pivots = np.min(LU_factor.shape)
assert precond_weights.shape[1] == 1
assert precond_weights.shape[0] == LU_factor.shape[0]
# left multiply L an U by inv(W), i.e. compute inv(W).dot(L)
# and inv(W).dot(U)
# `np.array` creates a new copy of LU_factor, faster than `.copy()`
LU_factor = np.array(LU_factor)/precond_weights
# right multiply L by W, i.e. compute L.dot(W)
# Do not overwrite columns past num_pivots. If not all pivots have been
# performed the columns to the right of this point contain U factor
for ii in range(num_pivots):
LU_factor[ii+1:, ii] *= precond_weights[ii, 0]
return LU_factor
def split_lu_factorization_matrix(LU_factor, num_pivots=None):
r"""
Return the L and U factors of an inplace LU factorization
Parameters
----------
num_pivots : integer
The number of pivots performed. This allows LU in place matrix
to be split during evolution of LU algorithm
"""
if num_pivots is None:
num_pivots = np.min(LU_factor.shape)
L_factor = np.tril(LU_factor)
if L_factor.shape[1] < L_factor.shape[0]:
# if matrix over-determined ensure L is a square matrix
n0 = L_factor.shape[0]-L_factor.shape[1]
L_factor = np.hstack([L_factor, np.zeros((L_factor.shape[0], n0))])
if num_pivots < np.min(L_factor.shape):
n1 = L_factor.shape[0]-num_pivots
n2 = L_factor.shape[1]-num_pivots
L_factor[num_pivots:, num_pivots:] = np.eye(n1, n2)
np.fill_diagonal(L_factor, 1.)
U_factor = np.triu(LU_factor)
U_factor[num_pivots:, num_pivots:] = LU_factor[num_pivots:, num_pivots:]
return L_factor, U_factor
def truncated_pivoted_lu_factorization(A, max_iters, num_initial_rows=0,
truncate_L_factor=True):
r"""
Compute a incomplete pivoted LU decompostion of a matrix.
Parameters
----------
A np.ndarray (num_rows,num_cols)
The matrix to be factored
max_iters : integer
The maximum number of pivots to perform. Internally max)iters will be
set such that max_iters = min(max_iters,K), K=min(num_rows,num_cols)
num_initial_rows: integer or np.ndarray()
The number of the top rows of A to be chosen as pivots before
any remaining rows can be chosen.
If object is an array then entries are raw pivots which
will be used in order.
Returns
-------
L_factor : np.ndarray (max_iters,K)
The lower triangular factor with a unit diagonal.
K=min(num_rows,num_cols)
U_factor : np.ndarray (K,num_cols)
The upper triangular factor
raw_pivots : np.ndarray (num_rows)
The sequential pivots used to during algorithm to swap rows of A.
pivots can be obtained from raw_pivots using
get_final_pivots_from_sequential_pivots(raw_pivots)
pivots : np.ndarray (max_iters)
The index of the chosen rows in the original matrix A chosen as pivots
"""
num_rows, num_cols = A.shape
min_num_rows_cols = min(num_rows, num_cols)
max_iters = min(max_iters, min_num_rows_cols)
if (A.shape[1] < max_iters):
msg = "truncated_pivoted_lu_factorization: "
msg += " A is inconsistent with max_iters. Try deceasing max_iters or "
msg += " increasing the number of columns of A"
raise Exception(msg)
# Use L to store both L and U during factoriation then copy out U in post
# processing
# `np.array` creates a new copy of A (faster than `.copy()`)
LU_factor = np.array(A)
raw_pivots = np.arange(num_rows)
LU_factor, raw_pivots, it = continue_pivoted_lu_factorization(
LU_factor, raw_pivots, 0, max_iters, num_initial_rows)
if not truncate_L_factor:
return LU_factor, raw_pivots
else:
pivots = get_final_pivots_from_sequential_pivots(
raw_pivots)[:it+1]
L_factor, U_factor = split_lu_factorization_matrix(LU_factor, it+1)
L_factor = L_factor[:it+1, :it+1]
U_factor = U_factor[:it+1, :it+1]
return L_factor, U_factor, pivots
def add_columns_to_pivoted_lu_factorization(LU_factor, new_cols, raw_pivots):
r"""
Given factorization PA=LU add new columns to A in unpermuted order and
update LU factorization
Parameters
----------
raw_pivots : np.ndarray (num_pivots)
The pivots applied at each iteration of pivoted LU factorization.
If desired one can use get_final_pivots_from_sequential_pivots to
compute final position of rows after all pivots have been applied.
"""
assert LU_factor.shape[0] == new_cols.shape[0]
assert raw_pivots.shape[0] <= new_cols.shape[0]
num_pivots = raw_pivots.shape[0]
for it, pivot in enumerate(raw_pivots):
# inlined swap_rows() for performance
new_cols[[it, pivot]] = new_cols[[pivot, it]]
# update LU_factor
# recover state of col vector from permuted LU factor
# Let (jj,kk) represent iteration and pivot pairs
# then if lu factorization produced sequence of pairs
# (0,4),(1,2),(2,4) then LU_factor[:,0] here will be col_vector
# in LU algorithm with the second and third permutations
# so undo these permutations in reverse order
next_idx = it+1
# `col_vector` is a copy of the LU_factor subset
col_vector = np.array(LU_factor[next_idx:, it])
for ii in range(num_pivots-it-1):
# (it+1) necessary in two lines below because only dealing
# with compressed col vector which starts at row it in LU_factor
jj = raw_pivots[num_pivots-1-ii]-next_idx
kk = num_pivots-ii-1-next_idx
# inlined swap_rows()
col_vector[jj], col_vector[kk] = col_vector[kk], col_vector[jj]
new_cols[next_idx:, :] -= np.outer(col_vector, new_cols[it, :])
LU_factor = np.hstack((LU_factor, new_cols))
return LU_factor
def add_rows_to_pivoted_lu_factorization(LU_factor, new_rows, num_pivots):
assert LU_factor.shape[1] == new_rows.shape[1]
LU_factor_extra = np.array(new_rows) # take copy of `new_rows`
for it in range(num_pivots):
LU_factor_extra[:, it] /= LU_factor[it, it]
col_vector = LU_factor_extra[:, it]
row_vector = LU_factor[it, it+1:]
update = np.outer(col_vector, row_vector)
LU_factor_extra[:, it+1:] -= update
return np.vstack([LU_factor, LU_factor_extra])
def swap_rows(matrix, ii, jj):
matrix[[ii, jj]] = matrix[[jj, ii]]
def pivot_rows(pivots, matrix, in_place=True):
if not in_place:
matrix = matrix.copy()
num_pivots = pivots.shape[0]
assert num_pivots <= matrix.shape[0]
for ii in range(num_pivots):
swap_rows(matrix, ii, pivots[ii])
return matrix
def get_final_pivots_from_sequential_pivots(sequential_pivots, num_pivots=None):
if num_pivots is None:
num_pivots = sequential_pivots.shape[0]
assert num_pivots >= sequential_pivots.shape[0]
pivots = np.arange(num_pivots)
return pivot_rows(sequential_pivots, pivots, False)
def get_tensor_product_quadrature_rule(
degrees, num_vars, univariate_quadrature_rules, transform_samples=None,
density_function=None):
r"""
if get error about outer product failing it may be because
univariate_quadrature rule is returning a weights array for every level,
i.e. l=0,...level
"""
degrees = np.atleast_1d(degrees)
if degrees.shape[0] == 1 and num_vars > 1:
degrees = np.array([degrees[0]]*num_vars, dtype=int)
if callable(univariate_quadrature_rules):
univariate_quadrature_rules = [univariate_quadrature_rules]*num_vars
x_1d = []
w_1d = []
for ii in range(len(univariate_quadrature_rules)):
x, w = univariate_quadrature_rules[ii](degrees[ii])
x_1d.append(x)
w_1d.append(w)
samples = cartesian_product(x_1d, 1)
weights = outer_product(w_1d)
if density_function is not None:
weights *= density_function(samples)
if transform_samples is not None:
samples = transform_samples(samples)
return samples, weights
def piecewise_quadratic_interpolation(samples, mesh, mesh_vals, ranges):
assert mesh.shape[0] == mesh_vals.shape[0]
vals = np.zeros_like(samples)
samples = (samples-ranges[0])/(ranges[1]-ranges[0])
for ii in range(0, mesh.shape[0]-2, 2):
xl = mesh[ii]
xr = mesh[ii+2]
x = (samples-xl)/(xr-xl)
interval_vals = canonical_piecewise_quadratic_interpolation(
x, mesh_vals[ii:ii+3])
# to avoid double counting we set left boundary of each interval to
# zero except for first interval
if ii == 0:
interval_vals[(x < 0) | (x > 1)] = 0.
else:
interval_vals[(x <= 0) | (x > 1)] = 0.
vals += interval_vals
return vals
# I = np.argsort(samples)
# sorted_samples = samples[I]
# idx2=0
# for ii in range(0,mesh.shape[0]-2,2):
# xl=mesh[ii]; xr=mesh[ii+2]
# for jj in range(idx2,sorted_samples.shape[0]):
# if ii==0:
# if sorted_samples[jj]>=xl:
# idx1=jj
# break
# else:
# if sorted_samples[jj]>xl:
# idx1=jj
# break
# for jj in range(idx1,sorted_samples.shape[0]):
# if sorted_samples[jj]>xr:
# idx2=jj-1
# break
# if jj==sorted_samples.shape[0]-1:
# idx2=jj
# x=(sorted_samples[idx1:idx2+1]-xl)/(xr-xl)
# interval_vals = canonical_piecewise_quadratic_interpolation(
# x,mesh_vals[ii:ii+3])
# vals[idx1:idx2+1] += interval_vals
# return vals[np.argsort(I)]
def canonical_piecewise_quadratic_interpolation(x, nodal_vals):
r"""
Piecewise quadratic interpolation of nodes at [0,0.5,1]
Assumes all values are in [0,1].
"""
assert x.ndim == 1
assert nodal_vals.shape[0] == 3
vals = nodal_vals[0]*(1.0-3.0*x+2.0*x**2)+nodal_vals[1]*(4.0*x-4.0*x**2) +\
nodal_vals[2]*(-x+2.0*x**2)
return vals
def discrete_sampling(N, probs, states=None):
r"""
discrete_sampling -- samples iid from a discrete probability measure
x = discrete_sampling(N, prob, states)
Generates N iid samples from a random variable X whose probability mass
function is
prob(X = states[j]) = prob[j], 1 <= j <= length(prob).
If states is not given, the states are gives by 1 <= state <= length(prob)
"""
p = probs.squeeze()/np.sum(probs)
bins = np.digitize(
np.random.uniform(0., 1., (N, 1)), np.hstack((0, np.cumsum(p))))-1
if states is None:
x = bins
else:
assert(states.shape[0] == probs.shape[0])
x = states[bins]
return x.squeeze()
def lists_of_arrays_equal(list1, list2):
if len(list1) != len(list2):
return False
for ll in range(len(list1)):
if not np.allclose(list1[ll], list2[ll]):
return False
return True
def lists_of_lists_of_arrays_equal(list1, list2):
if len(list1) != len(list2):
return False
for ll in range(len(list1)):
for kk in range(len(list1[ll])):
if not np.allclose(list1[ll][kk], list2[ll][kk]):
return False
return True
def beta_pdf(alpha_stat, beta_stat, x):
# scipy implementation is slow
const = 1./beta_fn(alpha_stat, beta_stat)
return const*(x**(alpha_stat-1)*(1-x)**(beta_stat-1))
def pdf_under_affine_map(pdf, loc, scale, y):
return pdf((y-loc)/scale)/scale
def beta_pdf_on_ab(alpha_stat, beta_stat, a, b, x):
# const = 1./beta_fn(alpha_stat,beta_stat)
# const /= (b-a)**(alpha_stat+beta_stat-1)
# return const*((x-a)**(alpha_stat-1)*(b-x)**(beta_stat-1))
from functools import partial
pdf = partial(beta_pdf, alpha_stat, beta_stat)
return pdf_under_affine_map(pdf, a, (b-a), x)
def beta_pdf_derivative(alpha_stat, beta_stat, x):
r"""
x in [0,1]
"""
# beta_const = gamma_fn(alpha_stat+beta_stat)/(
# gamma_fn(alpha_stat)*gamma_fn(beta_stat))
beta_const = 1./beta_fn(alpha_stat, beta_stat)
deriv = 0
if alpha_stat > 1:
deriv += (alpha_stat-1)*(x**(alpha_stat-2)*(1-x)**(beta_stat-1))
if beta_stat > 1:
deriv -= (beta_stat - 1)*(x**(alpha_stat-1)*(1-x)**(beta_stat-2))
deriv *= beta_const
return deriv
def gaussian_cdf(mean, var, x):
return 0.5*(1+erf((x-mean)/(np.sqrt(var*2))))
def gaussian_pdf(mean, var, x, package=np):
r"""
set package=sympy if want to use for symbolic calculations
"""
return package.exp(-(x-mean)**2/(2*var)) / (2*package.pi*var)**.5
def gaussian_pdf_derivative(mean, var, x):
return -gaussian_pdf(mean, var, x)*(x-mean)/var
def pdf_derivative_under_affine_map(pdf_deriv, loc, scale, y):
r"""
Let y=g(x)=x*scale+loc and x = g^{-1}(y) = v(y) = (y-loc)/scale, scale>0
p_Y(y)=p_X(v(y))*|dv/dy(y)|=p_X((y-loc)/scale))/scale
dp_Y(y)/dy = dv/dy(y)*dp_X/dx(v(y))/scale = dp_X/dx(v(y))/scale**2
"""
return pdf_deriv((y-loc)/scale)/scale**2
def gradient_of_tensor_product_function(univariate_functions,
univariate_derivatives, samples):
num_samples = samples.shape[1]
num_vars = len(univariate_functions)
assert len(univariate_derivatives) == num_vars
gradient = np.empty((num_vars, num_samples))
# precompute data which is reused multiple times
function_values = []
for ii in range(num_vars):
function_values.append(univariate_functions[ii](samples[ii, :]))
for ii in range(num_vars):
gradient[ii, :] = univariate_derivatives[ii](samples[ii, :])
for jj in range(ii):
gradient[ii, :] *= function_values[jj]
for jj in range(ii+1, num_vars):
gradient[ii, :] *= function_values[jj]
return gradient
def evaluate_tensor_product_function(univariate_functions, samples):
num_samples = samples.shape[1]
num_vars = len(univariate_functions)
values = np.ones((num_samples))
for ii in range(num_vars):
values *= univariate_functions[ii](samples[ii, :])
return values
def cholesky_decomposition(Amat):
nrows = Amat.shape[0]
assert Amat.shape[1] == nrows
L = np.zeros((nrows, nrows))
for ii in range(nrows):
temp = Amat[ii, ii]-np.sum(L[ii, :ii]**2)
if temp <= 0:
raise Exception('matrix is not positive definite')
L[ii, ii] = np.sqrt(temp)
L[ii+1:, ii] =\
(Amat[ii+1:, ii]-np.sum(
L[ii+1:, :ii]*L[ii, :ii], axis=1))/L[ii, ii]
return L
def pivoted_cholesky_decomposition(A, npivots, init_pivots=None, tol=0.,
error_on_small_tol=False,
pivot_weights=None,
return_full=False,
econ=True):
r"""
Return a low-rank pivoted Cholesky decomposition of matrix A.
If A is positive definite and npivots is equal to the number of rows of A
then L.dot(L.T)==A
To obtain the pivoted form of L set
L = L[pivots,:]
Then P.T.dot(A).P == L.dot(L.T)
where P is the standard pivot matrix which can be obtained from the
pivot vector using the function
"""
Amat = A.copy()
nrows = Amat.shape[0]
assert Amat.shape[1] == nrows
assert npivots <= nrows
# L = np.zeros(((nrows,npivots)))
L = np.zeros(((nrows, nrows)))
# diag1 = np.diag(Amat).copy() # returns a copy of diag
diag = Amat.ravel()[::Amat.shape[0]+1] # returns a view of diag
# assert np.allclose(diag,diag1)
pivots = np.arange(nrows)
init_error = np.absolute(diag).sum()
L, pivots, diag, chol_flag, ncompleted_pivots, error = \
continue_pivoted_cholesky_decomposition(
Amat, L, npivots, init_pivots, tol,
error_on_small_tol,
pivot_weights, pivots, diag,
0, init_error, econ)
if not return_full:
return L[:, :ncompleted_pivots], pivots[:ncompleted_pivots], error,\
chol_flag
else:
return L, pivots, error, chol_flag, diag.copy(), init_error, \
ncompleted_pivots
def continue_pivoted_cholesky_decomposition(Amat, L, npivots, init_pivots, tol,
error_on_small_tol,
pivot_weights, pivots, diag,
ncompleted_pivots, init_error,
econ):
Amat = Amat.copy() # Do not overwrite incoming Amat
if econ is False and pivot_weights is not None:
msg = 'pivot weights not used when econ is False'
raise Exception(msg)
chol_flag = 0
assert ncompleted_pivots < npivots
for ii in range(ncompleted_pivots, npivots):
if init_pivots is None or ii >= len(init_pivots):
if econ:
if pivot_weights is None:
pivot = np.argmax(diag[pivots[ii:]])+ii
else:
pivot = np.argmax(
pivot_weights[pivots[ii:]]*diag[pivots[ii:]])+ii
else:
schur_complement = (
Amat[np.ix_(pivots[ii:], pivots[ii:])] -
L[pivots[ii:], :ii].dot(L[pivots[ii:], :ii].T))
schur_diag = np.diagonal(schur_complement)
pivot = np.argmax(
np.linalg.norm(schur_complement, axis=0)**2/schur_diag)
pivot += ii
else:
pivot = np.where(pivots == init_pivots[ii])[0][0]
assert pivot >= ii
swap_rows(pivots, ii, pivot)
if diag[pivots[ii]] <= 0:
msg = 'matrix is not positive definite'
if error_on_small_tol:
raise Exception(msg)
else:
print(msg)
chol_flag = 1
break
L[pivots[ii], ii] = np.sqrt(diag[pivots[ii]])
L[pivots[ii+1:], ii] = (
Amat[pivots[ii+1:], pivots[ii]] -
L[pivots[ii+1:], :ii].dot(L[pivots[ii], :ii]))/L[pivots[ii], ii]
diag[pivots[ii+1:]] -= L[pivots[ii+1:], ii]**2
# for jj in range(ii+1,nrows):
# L[pivots[jj],ii]=(Amat[pivots[ii],pivots[jj]]-
# L[pivots[ii],:ii].dot(L[pivots[jj],:ii]))/L[pivots[ii],ii]
# diag[pivots[jj]] -= L[pivots[jj],ii]**2
error = diag[pivots[ii+1:]].sum()/init_error
# print(ii,'error',error)
if error < tol:
msg = 'Tolerance reached. '
msg += f'Iteration:{ii}. Tol={tol}. Error={error}'
# If matrix is rank r then then error will be machine precision
# In such a case exiting without an error is the right thing to do
if error_on_small_tol:
raise Exception(msg)
else:
chol_flag = 1
print(msg)
break
return L, pivots, diag, chol_flag, ii+1, error
def get_pivot_matrix_from_vector(pivots, nrows):
P = np.eye(nrows)
P = P[pivots, :]
return P
def determinant_triangular_matrix(matrix):
return np.prod(np.diag(matrix))
def get_all_primes_less_than_or_equal_to_n(n):
primes = list()
primes.append(2)
for num in range(3, n+1, 2):
if all(num % i != 0 for i in range(2, int(num**.5) + 1)):
primes.append(num)
return np.asarray(primes)
@njit(cache=True)
def get_first_n_primes(n):
primes = list()
primes.append(2)
num = 3
while len(primes) < n:
# np.all does not work with numba
# if np.all([num % i != 0 for i in range(2, int(num**.5) + 1)]):
flag = True
for i in range(2, int(num**.5) + 1):
if (num % i == 0):
flag = False
break
if flag is True:
primes.append(num)
num += 2
return np.asarray(primes)
def approx_fprime(x, func, eps=np.sqrt(np.finfo(float).eps)):
r"""Approx the gradient of a vector valued function at a single
sample using finite_difference
"""
assert x.shape[1] == 1
nvars = x.shape[0]
fprime = []
func_at_x = func(x).squeeze()
assert func_at_x.ndim == 1
for ii in range(nvars):
x_plus_eps = x.copy()
x_plus_eps[ii] += eps
fprime.append((func(x_plus_eps).squeeze()-func_at_x)/eps)
return np.array(fprime)
def partial_functions_equal(func1, func2):
if not (isinstance(func1, partial) and isinstance(func2, partial)):
return False
are_equal = all([getattr(func1, attr) == getattr(func2, attr)
for attr in ['func', 'args', 'keywords']])
return are_equal
def get_all_sample_combinations(samples1, samples2):
r"""
For two sample sets of different random variables
loop over all combinations
samples1 vary slowest and samples2 vary fastest
Let samples1 = [[1,2],[2,3]]
samples2 = [[0, 0, 0],[0, 1, 2]]
Then samples will be
([1, 2, 0, 0, 0])
([1, 2, 0, 1, 2])
([3, 4, 0, 0, 0])
([3, 4, 0, 1, 2])
"""
import itertools
samples = []
for r in itertools.product(*[samples1.T, samples2.T]):
samples.append(np.concatenate(r))
return np.asarray(samples).T
def get_correlation_from_covariance(cov):
r"""
Compute the correlation matrix from a covariance matrix
Parameters
----------
cov : np.ndarray (nrows,nrows)
The symetric covariance matrix
Returns
-------
cor : np.ndarray (nrows,nrows)
The symetric correlation matrix
Examples
--------
>>> cov = np.asarray([[2,-1],[-1,2]])
>>> get_correlation_from_covariance(cov)
array([[ 1. , -0.5],
[-0.5, 1. ]])
"""
stdev_inv = 1/np.sqrt(np.diag(cov))
cor = stdev_inv[np.newaxis, :]*cov*stdev_inv[:, np.newaxis]
return cor
def compute_f_divergence(density1, density2, quad_rule, div_type,
normalize=False):
r"""
Compute f divergence between two densities
.. math:: \int_\Gamma f\left(\frac{p(z)}{q(z)}\right)q(x)\,dx
Parameters
----------
density1 : callable
The density p(z)
density2 : callable
The density q(z)
normalize : boolean
True - normalize the densities
False - Check that densities are normalized, i.e. integrate to 1
quad_rule : tuple
x,w - quadrature points and weights
x : np.ndarray (num_vars,num_samples)
w : np.ndarray (num_samples)
div_type : string
The type of f divergence (KL,TV,hellinger).
KL - Kullback-Leibler :math:`f(t)=t\log t`
TV - total variation :math:`f(t)=\frac{1}{2}\lvert t-1\rvert`
hellinger - squared Hellinger :math:`f(t)=(\sqrt(t)-1)^2`
"""
x, w = quad_rule
assert w.ndim == 1
density1_vals = density1(x).squeeze()
const1 = density1_vals.dot(w)
density2_vals = density2(x).squeeze()
const2 = density2_vals.dot(w)
if normalize:
density1_vals /= const1
density2_vals /= const2
else:
tol = 1e-14
# print(const1)
# print(const2)
assert np.allclose(const1, 1.0, atol=tol)
assert np.allclose(const2, 1.0, atol=tol)
const1, const2 = 1.0, 1.0
# normalize densities. May be needed if density is
# Unnormalized Bayesian Posterior
def d1(x): return density1(x)/const1
def d2(x): return density2(x)/const2
if div_type == 'KL':
# Kullback-Leibler
def f(t): return t*np.log(t)
elif div_type == 'TV':
# Total variation
def f(t): return 0.5*np.absolute(t-1)
elif div_type == 'hellinger':
# Squared hellinger int (p(z)**0.5-q(z)**0.5)**2 dz
# Note some formulations use 0.5 times above integral. We do not
# do that here
def f(t): return (np.sqrt(t)-1)**2
else:
raise Exception(f'Divergence type {div_type} not supported')
d1_vals, d2_vals = d1(x), d2(x)
II = np.where(d2_vals > 1e-15)[0]
ratios = np.zeros_like(d2_vals)+1e-15
ratios[II] = d1_vals[II]/d2_vals[II]
if not np.all(np.isfinite(ratios)):
print(d1_vals[II], d2_vals[II])
msg = 'Densities are not absolutely continuous. '
msg += 'Ensure that density2(z)=0 implies density1(z)=0'
raise Exception(msg)
divergence_integrand = f(ratios)*d2_vals
return divergence_integrand.dot(w)
def cholesky_solve_linear_system(L, rhs):
r"""
Solve LL'x = b using forwards and backwards substitution
"""
# Use forward subsitution to solve Ly = b
y = solve_triangular(L, rhs, lower=True)
# Use backwards subsitution to solve L'x = y
x = solve_triangular(L.T, y, lower=False)
return x
def update_cholesky_factorization(L_11, A_12, A_22):
r"""
Update a Cholesky factorization.
Specifically compute the Cholesky factorization of
.. math:: A=\begin{bmatrix} A_{11} & A_{12}\\ A_{12}^T & A_{22}\end{bmatrix}
where :math:`L_{11}` is the Cholesky factorization of :math:`A_{11}`.
Noting that
.. math::
\begin{bmatrix} A_{11} & A_{12}\\ A_{12}^T & A_{22}\end{bmatrix} =
\begin{bmatrix} L_{11} & 0\\ L_{12}^T & L_{22}\end{bmatrix}
\begin{bmatrix} L_{11}^T & L_{12}\\ 0 & L_{22}^T\end{bmatrix}
we can equate terms to find
.. math::
L_{12} = L_{11}^{-1}A_{12}, \quad
L_{22}L_{22}^T = A_{22}-L_{12}^TL_{12}
"""
if L_11.shape[0] == 0:
return np.linalg.cholesky(A_22)
nrows, ncols = A_12.shape
assert A_22.shape == (ncols, ncols)
assert L_11.shape == (nrows, nrows)
L_12 = solve_triangular(L_11, A_12, lower=True)
print(A_22 - L_12.T.dot(L_12))
L_22 = np.linalg.cholesky(A_22 - L_12.T.dot(L_12))
L = np.block([[L_11, np.zeros((nrows, ncols))], [L_12.T, L_22]])
return L
def update_cholesky_factorization_inverse(L_11_inv, L_12, L_22):
nrows, ncols = L_12.shape
L_22_inv = np.linalg.inv(L_22)
L_inv = np.block(
[[L_11_inv, np.zeros((nrows, ncols))],
[-L_22_inv.dot(L_12.T.dot(L_11_inv)), L_22_inv]])
return L_inv
def update_trace_involving_cholesky_inverse(L_11_inv, L_12, L_22_inv, B,
prev_trace):
r"""
Update the trace of matrix matrix product involving the inverse of a
matrix with a cholesky factorization.
That is compute
.. math:: \mathrm{Trace}\leftA^{inv}B\right}
where :math:`A=LL^T`
"""
nrows, ncols = L_12.shape
assert B.shape == (nrows+ncols, nrows+ncols)
B_11 = B[:nrows, :nrows]
B_12 = B[:nrows, nrows:]
B_21 = B[nrows:, :nrows]
B_22 = B[nrows:, nrows:]
# assert np.allclose(B, np.block([[B_11, B_12],[B_21, B_22]]))
C = -np.dot(L_22_inv.dot(L_12.T), L_11_inv)
C_T_L_22_inv = C.T.dot(L_22_inv)
trace = prev_trace + np.sum(C.T.dot(C)*B_11) + \
np.sum(C_T_L_22_inv*B_12) + np.sum(C_T_L_22_inv.T*B_21) + \
np.sum(L_22_inv.T.dot(L_22_inv)*B_22)
return trace
def num_entries_square_triangular_matrix(N, include_diagonal=True):
r"""Num entries in upper (or lower) NxN traingular matrix"""
if include_diagonal:
return int(N*(N+1)/2)
else:
return int(N*(N-1)/2)
def num_entries_rectangular_triangular_matrix(M, N, upper=True):
r"""Num entries in upper (or lower) MxN traingular matrix.
This is useful for nested for loops like
(upper=True)
for ii in range(M):
for jj in range(ii+1):
(upper=False)
for jj in range(N):
for ii in range(jj+1):
"""
assert M >= N
if upper:
return num_entries_square_triangular_matrix(N)
else:
return num_entries_square_triangular_matrix(M) -\
num_entries_square_triangular_matrix(M-N)
def flattened_rectangular_lower_triangular_matrix_index(ii, jj, M, N):
r"""
Get flattened index kk from row and column indices (ii,jj) of a
lower triangular part of MxN matrix
"""
assert M >= N
assert ii >= jj
if ii == 0:
return 0
T = num_entries_rectangular_triangular_matrix(ii, min(ii, N), upper=False)
kk = T+jj
return kk
def evaluate_quadratic_form(matrix, samples):
r"""
Evaluate x.T.dot(A).dot(x) for several vectors x
Parameters
----------
num_samples : np.ndarray (nvars,nsamples)
The vectors x
matrix : np.ndarray(nvars,nvars)
The matrix A
Returns
-------
vals : np.ndarray (nsamples)
Evaluations of the quadratic form for each vector x
"""
return (samples.T.dot(matrix)*samples.T).sum(axis=1)
def split_dataset(samples, values, ndata1):
"""
Split a data set into two sets.
Parameters
----------
samples : np.ndarray (nvars,nsamples)
The samples to be split
values : np.ndarray (nsamples,nqoi)
Values of the data at ``samples``
ndata1 : integer
The number of samples allocated to the first split. All remaining
samples will be added to the second split.
Returns
-------
samples1 : np.ndarray (nvars,ndata1)
The samples of the first split data set
values1 : np.ndarray (nvars,ndata1)
The values of the first split data set
samples2 : np.ndarray (nvars,ndata1)
The samples of the first split data set
values2 : np.ndarray (nvars,ndata1)
The values of the first split data set
"""
assert ndata1 <= samples.shape[1]
assert values.shape[0] == samples.shape[1]
II = np.random.permutation(samples.shape[1])
samples1 = samples[:, II[:ndata1]]
samples2 = samples[:, II[ndata1:]]
values1 = values[II[:ndata1], :]
values2 = values[II[ndata1:], :]
return samples1, samples2, values1, values2
def leave_one_out_lsq_cross_validation(basis_mat, values, alpha=0, coef=None):
"""
let :math:`x_i` be the ith row of :math:`X` and let
:math:`\beta=(X^\top X)^{-1}X^\top y` such that the residuals
at the training samples satisfy
.. math:: r_i = X\beta-y
then the leave one out cross validation errors are given by
.. math:: e_i = \frac{r_i}{1-h_i}
where
:math:`h_i = x_i^\top(X^\top X)^{-1}x_i`
"""
assert values.ndim == 2
assert basis_mat.shape[0] > basis_mat.shape[1]+2
gram_mat = basis_mat.T.dot(basis_mat)
gram_mat += alpha*np.eye(gram_mat.shape[0])
H_mat = basis_mat.dot(np.linalg.inv(gram_mat).dot(basis_mat.T))
H_diag = np.diag(H_mat)
if coef is None:
coef = np.linalg.lstsq(
gram_mat, basis_mat.T.dot(values), rcond=None)[0]
assert coef.ndim == 2
residuals = basis_mat.dot(coef) - values
cv_errors = residuals / (1-H_diag[:, None])
cv_score = np.sqrt(np.sum(cv_errors**2, axis=0)/basis_mat.shape[0])
return cv_errors, cv_score, coef
def leave_many_out_lsq_cross_validation(basis_mat, values, fold_sample_indices,
alpha=0, coef=None):
nfolds = len(fold_sample_indices)
nsamples = basis_mat.shape[0]
cv_errors = []
cv_score = 0
gram_mat = basis_mat.T.dot(basis_mat)
gram_mat += alpha*np.eye(gram_mat.shape[0])
if coef is None:
coef = np.linalg.lstsq(
gram_mat, basis_mat.T.dot(values), rcond=None)[0]
residuals = basis_mat.dot(coef) - values
gram_mat_inv = | np.linalg.inv(gram_mat) | numpy.linalg.inv |
# -*- coding: utf-8 -*-
from __future__ import division
from collections import namedtuple
import numpy as np
import torch
import time
Transition = namedtuple('Transition', ('timestep', 'state', 'action', 'reward', 'nonterminal'))
# blank_trans = Transition(0, torch.zeros(84, 84, dtype=torch.uint8), None, 0, False)
# Segment tree data structure where parent node values are sum/max of children node values
class SegmentTree():
def __init__(self, size):
self.index = 0
self.size = size
self.full = False # Used to track actual capacity
self.sum_tree = np.zeros((2 * size - 1, ), dtype=np.float32) # Initialise fixed size tree with all (priority) zeros
self.data = np.array([None] * size) # Wrap-around cyclic buffer
self.max = 1 # Initial max value to return (1 = 1^ω)
# Propagates value up tree given a tree index
def _propagate(self, index, value):
parent = (index - 1) // 2
left, right = 2 * parent + 1, 2 * parent + 2
self.sum_tree[parent] = self.sum_tree[left] + self.sum_tree[right]
if parent != 0:
self._propagate(parent, value)
# Updates value given a tree index
def update(self, index, value):
self.sum_tree[index] = value # Set new value
self._propagate(index, value) # Propagate value
self.max = max(value, self.max)
def append(self, data, value):
self.data[self.index] = data # Store data in underlying data structure
self.update(self.index + self.size - 1, value) # Update tree
self.index = (self.index + 1) % self.size # Update index
self.full = self.full or self.index == 0 # Save when capacity reached
self.max = max(value, self.max)
# Searches for the location of a value in sum tree
def _retrieve(self, index, value):
left, right = 2 * index + 1, 2 * index + 2
if left >= len(self.sum_tree):
return index
elif value <= self.sum_tree[left]:
return self._retrieve(left, value)
else:
return self._retrieve(right, value - self.sum_tree[left])
def find_parallel(self, value):
if isinstance(value, float):
value = | np.array([value]) | numpy.array |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# maxlengthations under the License.
# ==============================================================================
"""Tests for bincount ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import context
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
from tensorflow.python.ops import bincount_ops
from tensorflow.python.ops import gen_count_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops.ragged import ragged_factory_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.platform import test
class TestSparseCount(test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(
{
"testcase_name": "_no_maxlength",
"x": np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32),
"expected_indices": [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5]],
"expected_values": [1, 1, 1, 2, 1],
"expected_shape": [2, 6]
}, {
"testcase_name": "_maxlength",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"maxlength": 7,
"expected_indices": [[0, 1], [0, 2], [0, 3], [1, 0], [1, 4]],
"expected_values": [1, 1, 1, 1, 2],
"expected_shape": [2, 7]
}, {
"testcase_name": "_minlength",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"minlength": 9,
"expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4],
[1, 7]],
"expected_values": [1, 1, 1, 1, 1, 2, 1],
"expected_shape": [2, 9]
}, {
"testcase_name": "_minlength_larger_values",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"minlength": 3,
"expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4],
[1, 7]],
"expected_values": [1, 1, 1, 1, 1, 2, 1],
"expected_shape": [2, 8]
}, {
"testcase_name": "_no_maxlength_binary",
"x": np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32),
"expected_indices": [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5]],
"expected_values": [1, 1, 1, 1, 1],
"expected_shape": [2, 6],
"binary_output": True,
}, {
"testcase_name": "_maxlength_binary",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"maxlength": 7,
"expected_indices": [[0, 1], [0, 2], [0, 3], [1, 0], [1, 4]],
"expected_values": [1, 1, 1, 1, 1],
"expected_shape": [2, 7],
"binary_output": True,
}, {
"testcase_name": "_minlength_binary",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"minlength": 9,
"expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4],
[1, 7]],
"expected_values": [1, 1, 1, 1, 1, 1, 1],
"expected_shape": [2, 9],
"binary_output": True,
}, {
"testcase_name": "_minlength_larger_values_binary",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"minlength": 3,
"expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4],
[1, 7]],
"expected_values": [1, 1, 1, 1, 1, 1, 1],
"expected_shape": [2, 8],
"binary_output": True,
}, {
"testcase_name": "_no_maxlength_weights",
"x": np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32),
"expected_indices": [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5]],
"expected_values": [2, 1, 0.5, 9, 3],
"expected_shape": [2, 6],
"weights": [[0.5, 1, 2], [3, 4, 5]]
}, {
"testcase_name": "_maxlength_weights",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"maxlength": 7,
"expected_indices": [[0, 1], [0, 2], [0, 3], [1, 0], [1, 4]],
"expected_values": [2, 1, 0.5, 3, 9],
"expected_shape": [2, 7],
"weights": [[0.5, 1, 2, 11], [7, 3, 4, 5]]
}, {
"testcase_name": "_minlength_weights",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"minlength": 9,
"expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4],
[1, 7]],
"expected_values": [2, 1, 0.5, 3, 5, 13, 4],
"expected_shape": [2, 9],
"weights": [[0.5, 1, 2, 3], [4, 5, 6, 7]]
}, {
"testcase_name": "_minlength_larger_values_weights",
"x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32),
"minlength": 3,
"expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4],
[1, 7]],
"expected_values": [2, 1, 0.5, 3, 5, 13, 4],
"expected_shape": [2, 8],
"weights": [[0.5, 1, 2, 3], [4, 5, 6, 7]]
}, {
"testcase_name": "_1d",
"x": np.array([3, 2, 1, 1], dtype=np.int32),
"expected_indices": [[1], [2], [3]],
"expected_values": [2, 1, 1],
"expected_shape": [4]
}, {
"testcase_name": "_all_axes",
"x": | np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32) | numpy.array |
import gym
import sys
import numpy as np
import os.path as osp
import multiprocessing as mp
import sys
import torch
from IPython import embed
class BasicTask:
def __init__(self, max_steps=sys.maxsize):
self.steps = 0
self.max_steps = max_steps
def reset(self, *args):
self.steps = 0
state = self.env.reset(*args)
return state
def normalize_state(self, state):
return state
def step(self, action):
next_state, reward, done, info = self.env.step(action)
self.steps += 1
done = (done or self.steps >= self.max_steps)
return next_state, reward, done, info
def random_action(self):
return self.env.action_space.sample()
class GridWorldTask(BasicTask):
def __init__(
self,
layouts=['map{}'.format(i) for i in range(11, 31)],
num_obj_types=5,
task_length=2,
history_length=4,
max_steps=300,
train_combos=None,
test_combos=None,
gaussian_img=True,
record=False,
):
from synpo.gridworld.env import GridWorld, read_map, ComboEnv, PORGBEnv
self.train_combos = train_combos
self.test_combos = test_combos
self.num_combos = len(train_combos) + len(test_combos)
self.env = PORGBEnv(ComboEnv(GridWorld(
layouts,
window=history_length,
task_length=task_length,
num_obj_types=num_obj_types,
train_combos=train_combos,
test_combos=test_combos,
gaussian_img=gaussian_img)), record=record)
self.action_dim = self.env.action_space.n
self.max_steps = max_steps
self.name = 'gridworld'
def save_config(self):
return self.__dict__
def reset(self, index=None, sample_pos=True, train=True):
self.steps = 0
state = self.env.reset(index, sample_pos=sample_pos, train=train)
return state[0]
def step(self, action):
next_state, reward, done, info = self.env.step(action)
self.steps += 1
done = (done or self.steps >= self.max_steps)
return next_state[0], reward, done, info
def normalize_state(self, state):
return np.asarray([ | np.asarray(s) | numpy.asarray |
import unittest
import pysal
import numpy as np
from scipy import sparse
from pysal.spreg import error_sp_het as HET
from pysal.common import RTOL
class TestBaseGMErrorHet(unittest.TestCase):
def setUp(self):
db=pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
y = np.array(db.by_col("HOVAL"))
self.y = np.reshape(y, (49,1))
X = []
X.append(db.by_col("INC"))
X.append(db.by_col("CRIME"))
self.X = np.array(X).T
self.X = np.hstack((np.ones(self.y.shape),self.X))
self.X = sparse.csr_matrix(self.X)
self.w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
self.w.transform = 'r'
def test_model(self):
reg = HET.BaseGM_Error_Het(self.y, self.X, self.w.sparse, step1c=True)
betas = np.array([[ 47.99626638], [ 0.71048989], [ -0.55876126], [ 0.41178776]])
np.testing.assert_allclose(reg.betas,betas,RTOL)
u = np.array([ 27.38122697])
np.testing.assert_allclose(reg.u[0],u,RTOL)
ef = np.array([ 32.29765975])
np.testing.assert_allclose(reg.e_filtered[0],ef,RTOL)
predy = np.array([ 53.08577603])
np.testing.assert_allclose(reg.predy[0],predy,RTOL)
n = 49
np.testing.assert_allclose(reg.n,n)
k = 3
np.testing.assert_allclose(reg.k,k)
y = np.array([ 80.467003])
| np.testing.assert_allclose(reg.y[0],y,RTOL) | numpy.testing.assert_allclose |
# A python implementation of Ailey's matlab tensor code.
import os
import numpy as np
import math
import SimpleITK as sitk
from scipy import ndimage
import nibabel as nib
from PIL import Image
import scipy.misc
from scipy import signal
import warnings
warnings.filterwarnings("ignore")
def doggen(sigma):
"""
Helper function to generate derivatives of Gaussian kernels, in either 1D, 2D, or 3D.
Source code in MATLAB obtained from <NAME>, Stanford University, September 2015
:param sigma: Sigma for use (see defaults in generate_FSL_structure_tensor)
:return: Derivative of Gaussian kernel with dimensions of sigma.
"""
halfsize = np.ceil(3 * np.max(sigma))
x = range(np.single(-halfsize), np.single(halfsize + 1)); # Python colon is not inclusive at end, while MATLAB is.
dim = len(sigma);
if dim == 1:
X = np.array(x); # Remember that, by default, numpy arrays are elementwise multiplicative
X = X.astype(float);
k = -X * np.exp(-X ** 2 / (2 * sigma ** 2));
elif dim == 2:
[X, Y] = np.meshgrid(x, x);
X = X.astype(float);
Y = Y.astype(float);
k = -X * np.exp(-X ** 2 / (2 * sigma[0] ^ 2) * np.exp(-Y ** 2))
elif dim == 3:
[X, Y, Z] = np.meshgrid(x, x, x);
X = X.transpose(0, 2, 1); # Obtained through vigorous testing (see below...)
Y = Y.transpose(2, 0, 1);
Z = Z.transpose(2, 1, 0);
X = X.astype(float);
Y = Y.astype(float);
Z = Z.astype(float);
k = -X * np.exp(np.divide(-np.power(X, 2), 2 * np.power(sigma[0], 2))) * np.exp(
np.divide(-np.power(Y, 2), 2 * np.power(sigma[1], 2))) * np.exp(
np.divide(-np.power(Z, 2), 2 * np.power(sigma[2], 2)))
else:
print
'Only supports up to 3 dimensions'
return np.divide(k, np.sum(np.abs(k[:])));
def gaussgen(sigma):
"""
Function to generate Gaussian kernels, in 1D, 2D and 3D.
Source code in MATLAB obtained from <NAME>, Stanford University, September 2015
:param sigma: Sigma for use in generating Gaussian kernel (see defaults in generate_FSL_structure_tensor)
:return: Gaussian kernel with dimensions of sigma.
"""
halfsize = np.ceil(3 * max(sigma));
x = range(np.single(-halfsize), np.single(halfsize + 1));
dim = len(sigma);
if dim == 1:
x = x.astype(float);
k = np.exp(-x ** 2 / (2 * sigma ^ 2));
elif dim == 2:
[X, Y] = np.meshgrid(x, x);
X = X.astype(float);
Y = Y.astype(float);
k = np.exp(-X ** 2 / (2 * sigma[0] ** 2)) * np.exp(-Y ** 2 / (2 * sigma[1] ** 2));
elif dim == 3:
[X, Y, Z] = np.meshgrid(x, x, x);
X = X.transpose(0, 2, 1); # Obtained through vigorous testing (see below...)
Y = Y.transpose(2, 0, 1);
Z = Z.transpose(2, 1, 0);
X = X.astype(float);
Y = Y.astype(float);
Z = Z.astype(float);
k = np.exp(-X ** 2 / (2 * sigma[0] ** 2)) * np.exp(-Y ** 2 / (2 * sigma[1] ** 2)) * np.exp(
-Z ** 2 / (2 * sigma[2] ** 2));
else:
print
'Only supports up to dimension 3'
return np.divide(k, np.sum(np.abs(k)));
def tiff_to_array(folder_path, input_path):
"""
Function takes a single image (TIFF, or other also works), and returns
the single image as a numpy array. Called by tiff_stack_to_array.
:param input_path: Single image file to open.
:return: Numpy representation of image.
"""
im = Image.open(folder_path + input_path)
# im.show()
imarray = np.array(im)
# print(imarray)
return imarray
def tiff_stack_to_array(input_path):
"""
Function takes input_path, which should should lead to a directory.
Loads all TIFFs in input_path, then generates numpy arrays from the
TIFF stack by calling tiff_to_array helper function. Make sure TIFF
images are ordered in numerical order.
:param input_path: Folder or directory containing .tiff stack.
:return: Numpy array of tiff stack.
"""
im_list = [];
for filename in os.listdir(input_path):
if filename.endswith(".tiff"):
# print(os.path.join(directory, filename))
im_arr = tiff_to_array(input_path, filename)
im_list.append(im_arr)
s = np.stack(im_list, axis=2)
print
s.shape
return s
def nii_to_tiff_stack(input_path, token):
"""
Function loads an nii using SITK, then converts the nii into a folder containing a TIFF stack.
This function is useful later on for generating the structure tensor.
:param input_path: Path to .nii file.
:param token: Name of token.
"""
image = sitk.ReadImage(input_path);
planes_number = image.GetSize();
data = sitk.GetArrayFromImage(image)
z_dimension = planes_number[2];
## if we have (i, j, k), we want (k, j, i) (converts nibabel format to sitk format)
##new_im = aut_1367.swapaxes(0,2) # just swap i and k
if not os.path.exists(token + "_TIFFs"):
os.makedirs(token + "_TIFFs");
plane = 0;
for plane in range(0, z_dimension):
output = data[plane, :, :]
scipy.misc.toimage(output).save(token + "_TIFFs/" + token + "_" + str(plane) + '.tiff')
def generate_FSL_structure_tensor(img_data, filename, dogsigmaArr=[1], gausigmaArr=[2.3], angleArr=[25]):
"""
Function takes a numpy array (from TIFF_stack_to_array) and saves output
FSL structure tensor as filename string. Allows inputting alternate dogsigmaArr,
gausigmaArr, angleArr, although defaults to currently to parameters from MATLAB script.
Also returns tensorfsl (the tensor fsl structure) image numpy array.
## Parameters (the script loops through all parameters and saves each result automatically)
# dogsigmaArr = [1]; Sigma values for derivative of gaussian filter, recommended value: 0.6 - 1.3 (based on actual data)
# gausigmaArr = [2.3]; Sigma values for gaussian filter, recommended value: 1.3 - 2.3 (based on actual data)
# angleArr = [25]; Angle thresholds for fiber tracking, recommended value: 20 - 30.
Follows code from MATLAB CAPTURE scripts.
:param img_data: Numpy array of image, typically from tiff_stack_to_array called on a directory of TIFFs.
:param filename: Name to save the FSL structure tensor as.
:param dogsigmaArr: Sigma values for derivative of Gaussian filter, with recommended values between 0.6 - 1.3.
:param gausigmaArr: Sigma values for Gaussian filter, with recommended values between 1.3 - 2.3.
:param angleArr: Angle threshold for fiber tracking, with recommended values between 20 - 30.
:return tensorfsl: TensorFSL format of structure tensor (upper triangular matrix)
"""
for jj in range(len(dogsigmaArr)):
dogsigma = dogsigmaArr[jj];
print
"Start DoG Sigma on " + str(dogsigma);
# Generate dog kernels
dogkercc = doggen([dogsigma, dogsigma, dogsigma]);
dogkercc = np.transpose(dogkercc, (0, 2, 1)); # annoying
# print dogkercc.shape;
# print dogkercc[:, :, 0];
dogkerrr = | np.transpose(dogkercc, (1, 0, 2)) | numpy.transpose |
"""
Modified from matterport/Mask_RCNN/samples/shapes/
shapes.py
train_shapes.ipynb
"""
import os
import sys
import math
import random
import numpy as np
import cv2
import matplotlib
import matplotlib.pyplot as plt
import json
DATASET_PATH = r"dataset\coco2014"
CLASS_NAME = r"cat"
# Root directory of the project
ROOT_DIR = os.path.abspath("")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
from mrcnn.model import log
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
class CustomConfig(Config):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
NAME = CLASS_NAME
# Train on 1 GPU and 8 images per GPU. We can put multiple images on each
# GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
GPU_COUNT = 1
IMAGES_PER_GPU = 4 # 8
# Number of classes (including background)
NUM_CLASSES = 1 + 1 # background + cat
# Use small images for faster training. Set the limits of the small side
# the large side, and that determines the image shape.
IMAGE_MIN_DIM = 256
IMAGE_MAX_DIM = 256
# Use smaller anchors because our image and objects are small
RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels
# Reduce training ROIs per image because the images are small and have
# few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE = 32
# Use a small epoch since the data is simple
STEPS_PER_EPOCH = 10
# use small validation steps since the epoch is small
VALIDATION_STEPS = 5
class InferenceConfig(CustomConfig):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
class CustomDataset(utils.Dataset):
"""Generates the shapes synthetic dataset. The dataset consists of simple
shapes (triangles, squares, circles) placed randomly on a blank surface.
The images are generated on the fly. No file access required.
"""
def load_data(self, dataset_dir, subset):
"""Load a subset of the nuclei dataset.
dataset_dir: Root directory of the dataset
subset: Subset to load. Either the name of the sub-directory,
such as stage1_train, stage1_test, ...etc. or, one of:
* train: stage1_train excluding validation images
* val: validation images from VAL_IMAGE_IDS
"""
# Add classes. We have one class.
# Naming the dataset nucleus, and the class nucleus
self.add_class(CLASS_NAME, 1, CLASS_NAME)
# Which subset?
# "val": use hard-coded list above
# "train": use data from stage1_train minus the hard-coded list above
# else: use the data from the specified sub-directory
dataset_dir = os.path.join(dataset_dir, subset)
# Get image ids from directory names
file_list = [v for v in os.listdir(dataset_dir) if ".jpg" in v]
image_ids = list(range(len(file_list)))
print(image_ids)
# Add images
for image_id in image_ids:
self.add_image("cat", image_id=image_id, path=os.path.join(dataset_dir, file_list[image_id]))
def image_reference(self, image_id):
"""Return the shapes data of the image."""
info = self.image_info[image_id]
if info["source"] == "shapes":
return info["shapes"]
else:
super(self.__class__).image_reference(self, image_id)
def load_mask(self, image_id):
"""Generate instance masks for shapes of the given image ID.
"""
info = self.image_info[image_id]
json_data = str(info['path']).replace(".jpg", ".json")
fin = open(json_data, 'r')
json_dict = json.load(fin)
h, w = json_dict['imageHeight'], json_dict['imageWidth']
masks = []
for shape_data in json_dict["shapes"]:
mask = | np.zeros([h, w], np.uint8) | numpy.zeros |
import cv2
import numpy as np
from aip import AipOcr
from PIL import Image, ImageDraw, ImageFont
import os, math
def crop_image(src_img, x_start, x_end, y_start, y_end):
"""
图片裁剪
:param src_img: 原始图片
:param x_start: x 起始坐标
:param x_end: x 结束坐标
:param y_start: y 开始坐标
:param y_end: y 结束坐标
:return:
"""
tmp_img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)
tmp_img = tmp_img[y_start:y_end, x_start:x_end] # 长,宽
return cv2.cvtColor(tmp_img, cv2.COLOR_RGB2BGR)
def adjust_lightness(src_img, lightness_value):
"""
:param src_img: 待调整亮度的图片
:param lightness_value: 亮度值
:return:
"""
height, width, channel = src_img.shape # 获取shape的数值,height和width、通道
# 新建全零图片数组src2,将height和width,类型设置为原图片的通道类型(色素全为零,输出为全黑图片)
src2 = np.zeros([height, width, channel], src_img.dtype)
# new_img = cv2.addWeighted(src_img, a, src2, 1 - a, lightnessValue) # 处理后的图片
new_img = cv2.addWeighted(src_img, 1, src2, 1, lightness_value) # 处理后的图片
return new_img
def add_watermark(src_img, water_text, position, color):
"""
添加水印
:param src_img: 原始图片
:param water_text: 水印文字
:param position: 水印位置
:param color: 水印文字颜色
:return:
"""
# 根据选择的位置,确定水印的起始位置
height, width, channel = src_img.shape
x_padding, y_padding = width * 0.05, height * 0.05 # 与边缘的间距
scale = min((width / 1000), (height / 1000)) # 按照图片的长宽大小对字体进行一个放大,scale 即为放大倍数
font_size = 20 + int(scale) * 5 # 根据 scale 增加字体的大小,从而使得字体大小适应图片的大小
font_path = "{0}/ui/font.ttf".format(os.getcwd())
font = ImageFont.truetype(font_path, font_size, encoding="utf-8") # 获取自定义的字体
(text_width, text_height) = font.getsize(water_text)
x_start, y_start = 0, 0 # 水印文字的左下角坐标
if position == "左上角":
x_start = x_padding
y_start = y_padding
elif position == "右上角":
x_start = width - text_width - x_padding
y_start = y_padding
elif position == "中间":
x_start = (width - text_width) / 2
y_start = (height - text_height) / 2
elif position == "左下角":
x_start = x_padding
y_start = height - y_padding - text_height
elif position == "右下角":
x_start = width - text_width - x_padding
y_start = height - y_padding - text_height
img_pil = Image.fromarray(cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)) # 将 OpenCV 的 BGR 色彩转换成 PIL 需要的 RGB 色彩
draw = ImageDraw.Draw(img_pil)
draw.text((x_start, y_start), water_text, color, font=font)
return cv2.cvtColor(np.asarray(img_pil), cv2.COLOR_RGB2BGR) # 将 PIL 的 RGB 色彩转换成 OpenCV 的 BGR 色彩
def gaussian_blur(src_img, x_start, x_end, y_start, y_end, ksize, sigmaX):
"""
高斯模糊
"""
blur = src_img[y_start:y_end, x_start:x_end]
blur = cv2.GaussianBlur(blur, ksize, sigmaX)
src_img[y_start:y_end, x_start:x_end] = blur
return src_img
def compress_img(src_img, size):
"""
调整图片到指定大小
"""
return cv2.resize(src_img, size, interpolation=cv2.INTER_AREA)
def img_stitching(images):
"""
图片拼接
"""
stitcher = cv2.Stitcher_create()
status, stitch_img = stitcher.stitch(images)
if status != cv2.Stitcher_OK:
print(f"合拼图片失败,status = {status}")
return stitch_img
def img_encoding(image, dir_path):
"""
图片加密
:return:
"""
height, width, channel = image.shape
# 随机创建密钥文件
img_key = np.random.randint(0, 256, size=[height, width, channel], dtype=np.uint8)
# 保存密钥
np.save(dir_path + "/" + "img_key2", img_key)
# 返回加密后的图片
return cv2.bitwise_xor(image, img_key)
def img_decoding(image, key_file_path):
"""
图片解密
"""
img_key = | np.load(key_file_path) | numpy.load |
'''
<NAME>
<EMAIL>
November 4, 2017
'''
import sys
import random
import numpy as np
import scipy as sc
import matplotlib as mlp
import matplotlib.pyplot as plt
from matplotlib import rc
from scipy import special
from scipy import stats
def particleFilter(nsteps, a, b, c, d):
'''
Completes a simple 1D linear Guassian particle filter
xt = ax + N(0,b); yt = cxt + N(0,d);
Args:
nsteps (int) = number of steps to sample
a, b, c, d (float) = linear guassian parameters
Returns:
s (np.array) = 2xD array of particle samples for x_t and y_t
'''
s = np.zeros((2,nsteps))
s[0,0] = np.random.normal(0,1.0)
for i in range(1,nsteps):
#P(x_t|x_t-1)
s[0,i] = np.random.normal(a*s[0,i-1], np.sqrt(b))
#P(y_t|x_t)
s[1,i] = np.random.normal(c*s[0,i], np.sqrt(d))
return s
def kalmanFilter(nstep, Y, a, b, c, d):
'''
Completes a simple Kalman filter for 1D linear state-space
xt = ax + N(0,b); yt = cxt + N(0,d);
Args:
nstep (int) = number of steps to sample
Y (np.array) = 1xN set of observation data
a, b, c, d (float) = linear guassian parameters
Returns:
'''
mu = np.zeros(nstep)
var = np.zeros(nstep)
mu[0] = 0
var[0] = 1.0
for i in range(1,nstep):
#Covar_{t|t-1}
phat = a*var[i-1]*a + b
k = phat*c/(c*phat*c + d)
#Covar_{t|t}
var[i] = phat - k*c*phat
#mu_{t|t}
mu[i] = a*mu[i-1] + k*(Y[i] - c*a*mu[i-1])
return mu, var
def gaussian1D(x, mu, var):
"""
Calculates 1D gaussian density
Args:
x (flost) = point of interest
mu (float) = mean
var (float) = Variance squared
"""
small = 1e-8
e = (x-mu)*(1/(var+small))
e = e*(x-mu)
e = np.exp(-0.5*e)
return 1.0/(np.power(2*np.pi*(var+small),0.5))*e
def bootStrapFilter(y, nsteps, N, a, b, c, d, ess, resamp = 'standard'):
'''
Executes bootstrap filter
Args:
y (nd.array) = [D] array of observation data
nsteps (int) = number of timesteps
N (int) = number of particles
a, b, c, d (float) = linear guassian parameters
ess (float) = ESS trigger (set to number of particles if you want to resample every timestep)
resamp (string) = resampling method (standard, systematic)
Returns:
x (nd.array) = [nsteps, D] array of states
w_hist (nd.array) = [nsteps, D] array of filtering distributions g(y|x)
'''
small = 1e-8
x = np.zeros((nsteps, N)) + small
w_log = np.zeros((nsteps, N))
w = np.zeros((nsteps, N))
w_hist = np.zeros((nsteps, N))
#Initialize x, weights, log-weights
x[0,:] = np.random.normal(0, 1, N)
w[0,:] = 1.0/N + np.zeros((N))
w_log[0,:] = np.log(w[0,:])
w_hist[0,:] = w[0,:]
#Iterate over timesteps
for i in range(1,nsteps):
#First, sample particles for states
x[i,:] = np.random.normal(a*x[i-1,:], np.sqrt(b), N)
#Second update the importance weights
w_hist[i,:] = gaussian1D(y[i], c*x[i,:], d)
w_log[i,:] = w_log[i-1,:] + np.log(w_hist[i,:] + small)
w_log[i,:] = w_log[i,:] - np.max(w_log[i,:])
w[i,:] = np.exp(w_log[i,:])/np.sum(np.exp(w_log[i,:]))
#Calculate Kish's effective sample size
neff = 1.0/np.sum(np.power(w[i,:],2))
#ESS trigger
if(neff < ess):
#Third resample the points
if(resamp == 'systematic'):
ind = resampleSystematic(w[i,:],N)
else: #Standard resampling
ind = resample(w[i,:],N)
x = np.take(x, ind, 1)
w[i,:] = 1.0/N + np.zeros((N))
w_log[i,:] = np.log(w[i,:])
return x, w_hist
def auxFilter(y, nsteps, N, a, b, c, d, ess = float("inf"), resamp = 'standard'):
'''
Executes fully adapted auxilary particle filter
Args:
y (nd.array) = [D] array of observation data
nsteps (int) = number of timesteps
N (int) = number of particles
a, b, c, d (float) = linear guassian parameters
Returns:
x (nd.array) = [nsteps, D] array of states
w_hist (nd.array) = [nsteps, D] array of filtering distributions g(y|x)
'''
small = 1e-5
x = np.zeros((nsteps, N)) + small
w_log = np.zeros((nsteps, N))
w = | np.zeros((nsteps, N)) | numpy.zeros |
import numpy as np
import pandas as pd
import csv
from sklearn.datasets.base import Bunch
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import ShuffleSplit
from sklearn.metrics import r2_score
from collections import defaultdict
X = [[0, 15], [1, -10]]
print(StandardScaler().fit(X).transform(X))
iris_data_set = datasets.load_iris()
x = iris_data_set.data
y = iris_data_set.target
print(iris_data_set['feature_names'])
# print(x, y)
def load_my_fancy_dataset():
with open('ds1.csv') as csv_file:
data_file = csv.reader(csv_file)
temp = next(data_file)
n_samples = int(temp[0])
n_features = int(temp[1])
data = np.empty((n_samples, n_features))
target = np.empty((n_samples,), dtype=np.int)
feature_names = temp[2:]
for i, sample in enumerate(data_file):
data[i] = np.asarray(sample[:-1], dtype=np.float64)
target[i] = | np.asarray(sample[-1], dtype=np.int) | numpy.asarray |
"""EBLUP for the unit level model.
This module implements the basic EBLUP unit level model. The functionalities are organized in
classes. Each class has three main methods: *fit()*, *predict()* and *bootstrap_mse()*.
Linear Mixed Models (LMM) are the core underlying statistical framework used to model the
hierarchical nature of the small area estimation (SAE) techniques implemented in this module,
see <NAME>. and <NAME>. (2001) [#ms2001]_ for more details on LMM.
The *EblupUnitModel* class implements the model developed by <NAME>., <NAME>., and
<NAME>. (1988) [#bhf1988]_. The model parameters can fitted using restricted maximum
likelihood (REML) and maximum likelihood (ML). The normality assumption of the errors is not
necessary to predict the point estimates but is required for the taylor MSE estimation. The
predictions takes into account sampling rates. A bootstrap MSE estimation method is also implemted
for this class.
For a comprehensive review of the small area estimation models and its applications,
see <NAME>. and <NAME>. (2015) [#rm2015]_.
.. [#ms2001] <NAME>.and <NAME>. (2001), *Generalized, Linear, Mixed Models*,
New York: John Wiley & Sons, Inc.
.. [#bhf1988] <NAME>., <NAME>., and <NAME>. (1988). An error-components model for
prediction of county crop areas using survey and satellite data, *Journal of the American
Statistical Association*, **83**, 28-36.
.. [#rm2015] <NAME>. and <NAME>. (2015), *Small area estimation, 2nd edn.*,
<NAME> & Sons, Hoboken, New Jersey.
"""
from __future__ import annotations
import warnings
from typing import Any, Optional, Union
import numpy as np
import pandas as pd
import statsmodels.api as sm
from samplics.sae.sae_core_functions import area_stats
from samplics.utils.basic_functions import sumby
from samplics.utils.formats import numpy_array, dict_to_dataframe
from samplics.utils.types import Array, DictStrNum, Number, StringNumber
class EblupUnitModel:
"""*EblupUnitModel* implements the basic unit level model for means (a linear indicator).
*EblupUnitModel* takes the sample data as input and fits the basic linear mixed model.
The user can pick between restricted maximum likelihood (REML) or maximum likelihood (ML)
to fit the model parameters. Also, EblupUnitModel predicts the areas means and provides
the point and mean squared error (MSE) estimates of the empirical Bayes linear
unbiased (EBLUP). User can also obtain the bootstrap mse estimates of the MSE.
Setting attributes
| method (str): the fitting method of the model parameters which can take the possible
| values restricted maximum likelihood (REML) or maximum likelihood (ML).
| If not specified, "REML" is used as default.
Sample related attributes
| ys (array): the output sample observations.
| Xs (ndarray): the auxiliary information.
| scales (array): an array of scaling parameters for the unit levels errors.
| afactors (array): sum of the inverse squared of scale.
| areas (array): the full vector of small areas from the sampled observations.
| areas_list (array): the list of small areas from the sample data.
| samp_size (dict): the sample size per small areas from the sample.
| ys_mean (array): sample area means of the output variable.
| Xs_mean (ndarray): sample area means of the auxiliary variables.}}}}}
Model fitting attributes
| fitted (boolean): indicates whether the model has been fitted or not.
| fixed_effects (array): the estimated fixed effects of the regression model.
| fe_std (array): the estimated standard errors of the fixed effects.
| random_effects (array): the estimated area level random effects.
| re_std (number): the estimated standard error of the random effects.
| error_std (number): the estimated standard error of the unit level residuals.
| convergence (dict): a dictionnary holding the convergence status and the number of
| iterations from the model fitting algorithm.
| goodness (dict): a dictionary holding the log-likelihood, AIC, and BIC.
| gamma (dict): ratio of the between-area variability (re_std**2) to the total
| variability (re_std**2 + error_std**2 / a_factor).
Prediction related attributes
| areap (array): the list of areas for the prediction.
| Xmean (array): population means of the auxiliary variables.
| number_reps (int): number of replicates for the bootstrap MSE estimation.
| samp_rate (dict): sampling rates at the area level.
| area_est (array): area level EBLUP estimates.
| area_mse (array): area level taylor estimation of the MSE.
| area_mse_boot (array): area level bootstrap estimation of the MSE.
Main methods
| fit(): fits the linear mixed model to estimate the model parameters using REMl or ML
| methods.
| predict(): predicts the area level mean estimates which includes both the point
| estimates and the taylor MSE estimate.
| bootstrap_mse(): computes the area level bootstrap MSE estimates of the mean.
"""
def __init__(
self,
method: str = "REML",
):
# Setting
self.method: str = method.upper()
if self.method not in ("REML", "ML"):
raise AssertionError("Value provided for method is not valid!")
# Sample data
self.scales: np.ndarray
self.afactors: DictStrNum
self.ys: np.ndarray
self.Xs: np.ndarray
self.areas: np.ndarray
self.areas_list: np.ndarray
self.samp_size: DictStrNum
self.ys_mean: np.ndarray
self.Xs_mean: np.ndarray
# Fitting stats
self.fitted: bool = False
self.fixed_effects: np.ndarray
self.fe_std: np.ndarray
self.random_effects: np.ndarray
self.re_std: Number = 0
self.error_std: Number = 0
self.convergence: dict[str, Union[float, int, bool]] = {}
self.goodness: dict[str, Number] = {} # loglikehood, deviance, AIC, BIC
self.gamma: DictStrNum
# Predict(ion/ed) data
self.areap: np.ndarray
self.Xp_mean: np.ndarray
self.number_reps: int = 0
self.samp_rate: DictStrNum
self.area_est: DictStrNum
self.area_mse: DictStrNum
self.area_mse_boot: Optional[DictStrNum] = None
def _beta(
self,
y: np.ndarray,
X: np.ndarray,
area: np.ndarray,
weight: np.ndarray,
) -> np.ndarray:
Xw = X * weight[:, None]
p = X.shape[1]
beta1 = np.zeros((p, p))
beta2 = np.zeros(p)
for d in np.unique(area):
aread = area == d
w_d = weight[aread]
y_d = y[aread]
X_d = X[aread]
Xw_d = Xw[aread]
Xw_d_bar = np.sum(Xw_d, axis=0) / np.sum(w_d)
resid_d_w = X_d - Xw_d_bar * self.gamma[d]
beta1 = beta1 + np.matmul(np.transpose(Xw_d), resid_d_w)
beta2 = beta2 + np.sum(resid_d_w * y_d[:, None] * w_d[:, None], axis=0)
return np.asarray(np.matmul(np.linalg.inv(beta1), beta2))
def _mse(
self,
areas: np.ndarray,
Xs_mean: np.ndarray,
Xp_mean: np.ndarray,
gamma: np.ndarray,
samp_size: np.ndarray,
afactor: np.ndarray,
A_inv: np.ndarray,
) -> np.ndarray:
sigma2e = self.error_std ** 2
sigma2u = self.re_std ** 2
g1 = gamma * sigma2e / afactor
xbar_diff = Xp_mean - gamma[:, None] * Xs_mean
g2_matrix = xbar_diff @ A_inv @ | np.transpose(xbar_diff) | numpy.transpose |
from __future__ import print_function
from __future__ import division
import numpy as np
import csv
from scipy.ndimage.filters import gaussian_filter1d
import os
import file_namer
import spectrum_functions as specfun
import sys
from scipy import stats
def open_csv(filename, mode='r'):
"""Open a csv file in proper mode depending on Python version."""
return(open(filename, mode=mode+'b') if sys.version_info[0] == 2 else
open(filename, mode=mode, newline=''))
def ImportCSV(filename):
x = np.genfromtxt(filename,
delimiter = '\t', dtype = None, skip_header = 1)
return x
class Spectrum(object):
def __init__(self, intensity, units, SpectrumRange=None):
self.intensity = intensity
self.units = units
self.length = len(self.intensity)
self.SpectrumRange = SpectrumRange
def SaveSpectrumAsCSV(self,filename):
filename = file_namer.name_file(filename)
ExportSpectrumRange = np.copy(self.SpectrumRange)
ExportIntensity = np.copy(self.intensity)
ExportSpectrumRange.resize(len(ExportSpectrumRange), 1)
ExportIntensity.resize(len(ExportIntensity), 1)
ExportData = np.append(ExportSpectrumRange, ExportIntensity, axis = 1)
ExportHeaders = [
(self.unit_label + ' (' + self.units + ')'),
'Intensity']
with open_csv(filename, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter = '\t')
writer.writerow(ExportHeaders)
writer.writerows(ExportData)
print('Saved file...', filename)
def SmoothingFilter1D(self, sigma=2):
kernel = np.array([1, 1, 2, 1, 1])/6.
intensity = np.append(self.intensity[4::-1], np.append(self.intensity, self.intensity[-5::]))
smoothed = np.convolve(intensity, kernel, mode='same')
smoothed = gaussian_filter1d(self.intensity, sigma)
# smoothed[self.intensity > (0.01*np.max(self.intensity))] = self.intensity[self.intensity > (0.01*np.max(self.intensity))]
return smoothed
class CLSpectrum(Spectrum):
def __init__(self, intensity, WavelengthRange, units='nm'):
super(CLSpectrum, self).__init__(intensity, units)
self.SpectrumRange = WavelengthRange
self.unit_label = 'Wavelength'
self.secondary_units = 'eV'
self.secondary_unit_label = 'Energy'
@classmethod
def LoadFromCSV(cls, filename):
spectrum = ImportCSV(filename)
return cls(intensity=spectrum[:, 1], WavelengthRange=spectrum[:, 0], units='nm')
class EELSSpectrum(Spectrum):
def __init__(self, intensity, SpectrumRange=None, channel_eV = None, dispersion=0.005, ZLP=None, units='eV'):
'''intensity: 1D array
SpectrumRange: 1D array
channel_eV: 2 element array [channel #, eV value]
dispersion: float, width of each channel, must be provided if SpectrumRange is not, default is 5meV
ZLP: Boolean - True=ZLP is present
units: string, for plot axis
'''
super(EELSSpectrum, self).__init__(intensity, units)
if (SpectrumRange is not None):
if (len(intensity) != len(SpectrumRange)):
raise ValueError('intensity and SpectrumRange are not the same length!')
if SpectrumRange is not None:
self.dispersion = SpectrumRange[1] - SpectrumRange[0]
else:
self.dispersion = dispersion
if ZLP:
self.ZLP = self.FindZLP(self.intensity)
if SpectrumRange is not None:
self.SpectrumRange = SpectrumRange
else:
self.SpectrumRange = np.arange(0 - self.ZLP, self.length - self.ZLP) * self.dispersion
else:
if SpectrumRange is not None:
self.SpectrumRange = SpectrumRange
elif channel_eV is not None:
if len(channel_eV) == 2:
eV0 = channel_eV[1] - channel_eV[0] * dispersion
self.SpectrumRange = np.linspace(
eV0,
eV0 + self.length * dispersion,
self.length
)
else:
raise ValueError('You need to define the channel and the energy!')
else:
raise ValueError('You need to input the energy range!')
self.ZLP = int(round(0 - np.min(SpectrumRange)/self.dispersion))
self.unit_label = 'Energy'
self.secondary_units = 'nm'
self.secondary_unit_label = 'Wavelength'
@classmethod
def LoadFromCSV(cls, filename):
spectrum = ImportCSV(filename)
return cls(intensity=spectrum[:, 1], SpectrumRange=spectrum[:,0], dispersion=spectrum[1,0]-spectrum[0,0], units='eV')
def FindZLP(self, data):
ZLP = int(stats.mode(np.argmax(data, axis = -1), axis=None)[0])
return ZLP
def Normalize(self, ind=None):
'''Normalize data to integral'''
data_norm = specfun.normalize(self.intensity, ind)
return EELSSpectrum(data_norm, SpectrumRange=self.SpectrumRange, dispersion=self.dispersion, ZLP=self.ZLP, units=self.units)
def SymmetrizeAroundZLP(self):
if self.ZLP < (self.length-1)/2.:
data_sym = np.delete(self.intensity, np.s_[(2*self.ZLP+1):self.length], axis = -1)
range_sym = np.delete(self.SpectrumRange, np.s_[(2*self.ZLP+1):self.length], axis = -1)
elif self.ZLP > (self.length-1)/2.:
data_sym = np.delete(self.intensity, np.s_[:np.maximum(2*self.ZLP+1-self.length, 0)], axis = -1)
range_sym = np.delete(self.SpectrumRange, np.s_[:np.maximum(2*self.ZLP+1-self.length, 0)], axis = -1)
else:
data_sym = self.intensity
range_sym = self.SpectrumRange
data_sym[data_sym<0] = 0
return EELSSpectrum(data_sym, SpectrumRange=range_sym, dispersion=self.dispersion, ZLP=self.ZLP, units=self.units)
def PadSpectrum(self, pad_length, pad_value=0, pad_side='left'):
if pad_side == 'left':
padded = np.append(np.ones((pad_length, )) * pad_value, self.intensity)
padded_range = np.append(
np.linspace(
self.SpectrumRange[0] - pad_length * self.dispersion,
self.SpectrumRange[0] - self.dispersion,
pad_length),
self.SpectrumRange)
elif pad_side == 'right':
padded = np.append(self.intensity, np.ones((pad_length, 1)) * pad_value)
padded_range = np.append(
self.SpectrumRange,
np.linspace(
self.SpectrumRange[-1] + self.dispersion,
self.SpectrumRange[-1] + pad_length * self.dispersion,
pad_length)
)
else:
padded = np.append(
np.append(
np.ones((pad_length, 1)) * pad_value,
self.intensity),
np.ones((pad_length, 1)) * pad_value)
padded_range = np.append(
np.append(
np.linspace(
self.SpectrumRange[0] - pad_length * self.dispersion,
self.SpectrumRange[0] - self.dispersion,
pad_length),
self.SpectrumRange),
np.linspace(
self.SpectrumRange[-1] + self.dispersion,
self.SpectrumRange[-1] + pad_length * self.dispersion,
pad_length)
)
return EELSSpectrum(padded, SpectrumRange=padded_range, dispersion=self.dispersion, ZLP=self.ZLP, units=self.units)
def FindFW(self, intensityfraction):
FW = specfun.find_fw(self.intensity, self.dispersion, self.ZLP, intensityfraction)
return FW
def RL_PSFsym(self, PSF, PSF_pad=0):
PSF_sym = PSF.SymmetrizeAroundZLP()
if PSF_pad is not None:
data_length = np.size(self.SpectrumRange)
PSF_length = np.size(PSF_sym.intensity)
pad_length = int(data_length/2 - (1 + data_length) % 2 - (PSF_length-(PSF_length % 2))/2)
if PSF_sym.ZLP < data_length/2:
PSF_sym = PSF.PadSpectrum(pad_length, pad_value=PSF_pad, pad_side='left').SymmetrizeAroundZLP()
elif PSF_sym.ZLP > data_length/2:
PSF_sym = PSF_sym.PadSpectrum(pad_length, pad_value=PSF_pad, pad_side='right')
return PSF_sym
def RLDeconvolution(self, RLiterations, PSF):
'''
Input: RLiterations=number of iterations to perform
PSF=point spread function (an EELS spectrum object)
'''
print('Beginning deconvolution...')
x_deconv = RL(RLiterations, PSF.intensity, self.intensity)
print('Done %s iterations!' %RLiterations)
return EELSSpectrum(x_deconv, SpectrumRange=self.SpectrumRange, dispersion=self.dispersion, units=self.units)
def eVSlice(self, starteV, stopeV):
sliced = specfun.slice_range(
self.intensity,
[starteV, stopeV],
self.SpectrumRange)
return sliced
#Richardson-Lucy algorithm
def RL(iterations, PSF, Spec):
RL4 = Spec.copy()
for ii in range(iterations):
RL1 = | np.convolve(PSF, RL4, 'same') | numpy.convolve |
##############################################################
# Likelihood for the KiDS+VIKING-450 correlation functions #
##############################################################
#
# Originally set up by <NAME> and <NAME>
# for CFHTLenS data, by adapting <NAME>'s Monte Python
# likelihood euclid_lensing and <NAME>'s CosmoMC likelihood
# for weak lensing (adapted itself from JL's CosmoMC likelihood
# for the COSMOS).
#
# Adjusted for KV450 correlation function data from Hildebrandt
# et al. 2018 (arXiv:1812.06076) by <NAME> and Hendrik
# Hildebrandt.
#
# Adjusted for consistency test purpose by <NAME>
#
# Data available from:
#
# http://kids.strw.leidenuniv.nl/sciencedata.php
#
# ATTENTION:
# This likelihood only produces valid results for \Omega_k = 0,
# i.e. flat cosmologies!
##############################################################
from __future__ import print_function
import sys
from montepython.likelihood_class import Likelihood
import io_mp
#import scipy.integrate
from scipy import interpolate as itp
from scipy import special
from scipy.linalg import cholesky, solve_triangular
import os
import numpy as np
import math
#from timeit import default_timer as timer
try:
xrange
except NameError:
xrange = range
class kv450_joint_fix_cosmo_H0(Likelihood):
def __init__(self, path, data, command_line):
Likelihood.__init__(self, path, data, command_line)
# for loading of Nz-files:
self.z_bins_min = [0.1, 0.3, 0.5, 0.7, 0.9]
self.z_bins_max = [0.3, 0.5, 0.7, 0.9, 1.2]
# number of angular bins in which xipm is measured
# we always load the full data vector with 9 data points for xi_p and
# xi_m each; they are cut to the fiducial scales (or any arbitrarily
# defined scales with the 'cut_values.dat' files!
self.ntheta = 9
# Force the cosmological module to store Pk for redshifts up to
# max(self.z) and for k up to k_max
self.need_cosmo_arguments(data, {'output': 'mPk'})
self.need_cosmo_arguments(data, {'P_k_max_h/Mpc': self.k_max_h_by_Mpc})
## Compute non-linear power spectrum if requested
#if (self.use_halofit):
# it seems like HMcode needs the full argument to work...
if self.method_non_linear_Pk in ['halofit', 'HALOFIT', 'Halofit', 'hmcode', 'Hmcode', 'HMcode', 'HMCODE']:
self.need_cosmo_arguments(data, {'non linear': self.method_non_linear_Pk})
print('Using {:} to obtain the non-linear corrections for the matter power spectrum, P(k, z)! \n'.format(self.method_non_linear_Pk))
else:
print('Only using the linear P(k, z) for ALL calculations \n (check keywords for "method_non_linear_Pk"). \n')
# TODO: move min_kmax_hmc to data-file?!
# might not be really necessary; I didn't see a difference in the P(k, z) ratios between
# HMcode complaining about k_max being too low and not complaining at all...
if self.method_non_linear_Pk in ['hmcode', 'Hmcode', 'HMcode', 'HMCODE']:
#self.need_cosmo_arguments(data, {'hmcode_min_k_max': 1000.})
min_kmax_hmc = 170.
if self.k_max_h_by_Mpc < min_kmax_hmc:
self.need_cosmo_arguments(data, {'P_k_max_h/Mpc': min_kmax_hmc})
#print("Your choice of k_max_h_by_Mpc is too small for HMcode. \n Requested P_k_max_h/Mpc now up to k = {:.2f} h/Mpc \n This does NOT influence the scale above".format(min_kmax_hmc))
# This is for Cl-integration only!
# Define array of l values, and initialize them
# It is a logspace
# find nlmax in order to reach lmax with logarithmic steps dlnl
self.nlmax = np.int(np.log(self.lmax) / self.dlnl) + 1
# redefine slightly dlnl so that the last point is always exactly lmax
self.dlnl = np.log(self.lmax) / (self.nlmax - 1)
self.l = np.exp(self.dlnl * np.arange(self.nlmax))
#print(self.l.min(), self.l.max(), self.l.shape)
self.nzbins = len(self.z_bins_min)
self.nzcorrs = self.nzbins * (self.nzbins + 1) / 2
# Create labels for loading of dn/dz-files:
self.zbin_labels = []
for i in xrange(self.nzbins):
self.zbin_labels += ['{:.1f}t{:.1f}'.format(self.z_bins_min[i], self.z_bins_max[i])]
# read in public data vector:
# sub-sample 1
temp1 = self.__load_public_data_vector(id_sample='1')
theta_bins_1 = temp1[:, 0]
if (np.sum(
(theta_bins_1[:self.ntheta] -
theta_bins_1[self.ntheta:])**2) > 1e-6):
raise io_mp.LikelihoodError(
'The angular values at which xi_p and xi_m '
'are observed do not match.')
# sub-sample 2
temp2 = self.__load_public_data_vector(id_sample='2')
theta_bins_2 = temp2[:, 0]
if (np.sum(
(theta_bins_2[:self.ntheta] -
theta_bins_2[self.ntheta:])**2) > 1e-6):
raise io_mp.LikelihoodError(
'The angular values at which xi_p and xi_m '
'are observed do not match.')
# we assume theta_bins1 ~ theta_bins2
# so we smear the slightly difference by average
self.theta_bins = (theta_bins_1 + theta_bins_2) / 2.
# create the data-vector:
# xi_obs = {xi1(theta1, z_11)...xi1(theta_k, z_11), xi2(theta_1, z_11)...
# xi2(theta_k, z_11);...; xi1(theta1, z_nn)...xi1(theta_k, z_nn),
# xi2(theta_1, z_nn)... xi2(theta_k, z_nn)}
self.xi_obs_1 = self.__get_xi_obs(temp1[:, 1:])
self.xi_obs_2 = self.__get_xi_obs(temp2[:, 1:])
# load the full covariance matrix:
covmat11 = self.__load_public_cov_mat(id_cov='11')
covmat12 = self.__load_public_cov_mat(id_cov='12')
covmat22 = self.__load_public_cov_mat(id_cov='22')
#
covmat21 = covmat12.transpose()
# build a combined cov-mat, for that to work we assume, that the cov-mat dimension fits
# to the size of the *uncut*, single data-vector and is ordered in the same way as the
# *final* data-vector created here (i.e. vec = [xi+(1,1), xi-(1,1), xi+(1,2), xi-(1,2),...]!
covmat = np.asarray(np.bmat('covmat11, covmat12; covmat21, covmat22'))
# Read angular cut values
if self.use_cut_theta:
cut_values = np.zeros((self.nzbins, 2))
cutvalues_file_path = os.path.join(self.data_directory, 'KV450_COSMIC_SHEAR_DATA_RELEASE/SUPPLEMENTARY_FILES/CUT_VALUES/' + self.cutvalues_file)
if os.path.exists(cutvalues_file_path):
cut_values = np.loadtxt(cutvalues_file_path)
else:
raise io_mp.LikelihoodError('File not found:\n {:} \n Check that requested file exists in the following folder: \n {:}'.format(cutvalues_file_path, self.data_directory + 'KV450_COSMIC_SHEAR_DATA_RELEASE/SUPPLEMENTARY_FILES/CUT_VALUES/'))
# Compute theta mask
if self.use_cut_theta:
mask = self.__get_mask(cut_values)
else:
mask = np.ones(2 * self.nzcorrs * self.ntheta)
# combine two vectors' mask
mask = np.concatenate((mask, mask))
self.mask_indices = np.where(mask == 1)[0]
# apply mask also to covariance matrix
covmat = covmat[np.ix_(self.mask_indices, self.mask_indices)]
# precompute Cholesky transform for chi^2 calculation:
self.cholesky_transform = cholesky(covmat, lower=True)
# load theta-dependent c-term function if requested
# file is assumed to contain values for the same theta values as used
# for xi_pm!
if self.use_cterm_function:
fname = os.path.join(self.data_directory, 'KV450_COSMIC_SHEAR_DATA_RELEASE/SUPPLEMENTARY_FILES/KV450_xi_pm_c_term.dat')
# function is measured over same theta scales as xip, xim
self.xip_c_per_zbin, self.xim_c_per_zbin = np.loadtxt(fname, usecols=(3, 4), unpack=True)
print('Loaded (angular) scale-dependent c-term function from: \n', fname, '\n')
#print(self.xip_c_per_zbin.shape)
#####################################################################
# read redshift distribution
#####################################################################
# Read fiducial dn_dz from window files:
z_samples1 = []
hist_samples1 = []
z_samples2 = []
hist_samples2 = []
for zbin in range(self.nzbins):
# sub-sample 1
window_file_path = os.path.join(
self.data_directory, 'KV450_{:}/redshift'.format(self.sample1) + '/Nz_{0:}/Nz_{0:}_Mean/Nz_{0:}_z{1:}.asc'.format(self.nz_method, self.zbin_labels[zbin]))
if os.path.exists(window_file_path):
zptemp, hist_pz = np.loadtxt(window_file_path, usecols=[0, 1], unpack=True)
shift_to_midpoint = np.diff(zptemp)[0] / 2.
if zbin == 0:
zpcheck = zptemp
if np.sum((zptemp - zpcheck)**2) > 1e-6:
raise Exception('The redshift values for the window files at different bins do not match.')
# we add a zero as first element because we want to integrate down to z = 0!
z_samples1 += [np.concatenate((np.zeros(1), zptemp + shift_to_midpoint))]
hist_samples1 += [np.concatenate((np.zeros(1), hist_pz))]
else:
raise Exception("dn/dz file not found:\n %s"%window_file_path)
# sub-sample 2
window_file_path = os.path.join(
self.data_directory, 'KV450_{:}/redshift'.format(self.sample2) + '/Nz_{0:}/Nz_{0:}_Mean/Nz_{0:}_z{1:}.asc'.format(self.nz_method, self.zbin_labels[zbin]))
if os.path.exists(window_file_path):
zptemp, hist_pz = np.loadtxt(window_file_path, usecols=[0, 1], unpack=True)
shift_to_midpoint = np.diff(zptemp)[0] / 2.
if zbin == 0:
zpcheck = zptemp
if np.sum((zptemp - zpcheck)**2) > 1e-6:
raise Exception('The redshift values for the window files at different bins do not match.')
# we add a zero as first element because we want to integrate down to z = 0!
z_samples2 += [np.concatenate((np.zeros(1), zptemp + shift_to_midpoint))]
hist_samples2 += [np.concatenate((np.zeros(1), hist_pz))]
else:
raise Exception("dn/dz file not found:\n %s"%window_file_path)
print('Loaded redshift distributions from (sample1): \n', os.path.join(
self.data_directory, 'KV450_{:}/redshift'.format(self.sample1) + '/Nz_{0:}/Nz_{0:}_Mean/'.format(self.nz_method)), '\n')
print('Loaded redshift distributions from (sample2): \n', os.path.join(
self.data_directory, 'KV450_{:}/redshift'.format(self.sample2) + '/Nz_{0:}/Nz_{0:}_Mean/'.format(self.nz_method)), '\n')
z_samples1 = np.asarray(z_samples1)
hist_samples1 = np.asarray(hist_samples1)
z_samples2 = np.asarray(z_samples2)
hist_samples2 = np.asarray(hist_samples2)
self.z_samples = [z_samples1, z_samples2]
self.hist_samples = [hist_samples1, hist_samples2]
# we assume two sub-samples have the same redshift-spacing
self.nzmax = z_samples1.shape[1]
# requires that z-spacing is always the same for all bins...
self.z_p = z_samples1[0, :]
print('Redshift integrations performed at resolution of redshift distribution histograms! \n')
self.zmax = self.z_p.max()
self.need_cosmo_arguments(data, {'z_max_pk': self.zmax})
# redshift offsets
if 'D_z1_1' in data.mcmc_parameters:
# naive duplicated sets
self.z_offset = 'duplicated'
print("Redshift offsets strategy: naive duplicated sets.")
elif 'D_z1_m' in data.mcmc_parameters:
# mean and shift
self.z_offset = 'mean'
print("Redshift offsets strategy: using mean and shift fitting.")
elif 'D_z1' in data.mcmc_parameters:
# common set
self.z_offset = 'common'
print("Redshift offsets strategy: using common set.")
else:
# no offsets
self.z_offset = 'none'
print("Redshift offsets strategy: no offsets")
################################################
# intrinsic alignment
################################################
if 'A_IA_1' in data.mcmc_parameters:
self.A_IA = "duplicated"
print("A_IA strategy: naive duplicated sets.")
elif 'A_IA_m' in data.mcmc_parameters:
# mean and shift
self.A_IA = 'mean'
print("A_IA strategy: using mean and shift fitting.")
elif 'A_IA' in data.mcmc_parameters:
self.A_IA = "common"
print("A_IA is common.")
else:
self.A_IA = None
prit("A_IA is not used.")
################################################
# discrete theta values (to convert C_l to xi's)
################################################
if self.use_theory_binning:
thetamin = np.min(self.theta_bin_min_val) * 0.8
thetamax = np.max(self.theta_bin_max_val) * 1.2
else:
thetamin = np.min(self.theta_bins) * 0.8
thetamax = np.max(self.theta_bins) * 1.2
if self.integrate_Bessel_with == 'fftlog':
try:
import pycl2xi.fftlog as fftlog
except:
print('FFTLog was requested as integration method for the Bessel functions but is not installed. \n Download it from "https://github.com/tilmantroester/pycl2xi" and follow the installation instructions there (also requires the fftw3 library). \n Aborting run now... \n')
exit()
# this has to be declared a self, otherwise fftlog won't be available
self.Cl2xi = fftlog.Cl2xi
if self.integrate_Bessel_with == 'brute_force':
# we redefine these settings so that lll for Bessel integration corresponds
# to range that was used when comparing to CCL
self.xmax = 100.
self.dx_below_threshold = 0.02
self.dx_above_threshold = 0.07
self.dx_threshold = 0.2
self.dlntheta = 0.12
self.nthetatot = np.ceil(math.log(thetamax / thetamin) / self.dlntheta) + 1
self.nthetatot = np.int32(self.nthetatot)
self.theta = np.zeros(self.nthetatot, 'float64')
self.a2r = math.pi / (180. * 60.)
# define an array of thetas
for it in xrange(self.nthetatot):
self.theta[it] = thetamin * math.exp(self.dlntheta * it)
if self.integrate_Bessel_with in ['brute_force', 'cut_off']:
################################################################
# discrete l values used in the integral to convert C_l to xi's)
################################################################
# l = x / theta / self.a2r
# x = l * theta * self.a2r
# We start by considering the largest theta, theta[-1], and for that value we infer
# a list of l's from the requirement that corresponding x values are spaced linearly with a given stepsize, until xmax.
# Then we loop over smaller theta values, in decreasing order, and for each of them we complete the previous list of l's,
# always requiuring the same dx stepsize (so that dl does vary) up to xmax.
#
# We first apply this to a running value ll, in order to count the total numbner of ll's, called nl.
# Then we create the array lll[nl] and we fill it with the same values.
#
# we also compute on the fly the critical index il_max[it] such that ll[il_max[it]]*self.theta[it]*self.a2r
# is the first value of x above xmax
ll=1.
il=0
while (ll*self.theta[-1]*self.a2r < self.dx_threshold):
ll += self.dx_below_threshold/self.theta[-1]/self.a2r
il += 1
for it in xrange(self.nthetatot):
while (ll*self.theta[self.nthetatot-1-it]*self.a2r < self.xmax) and (ll+self.dx_above_threshold/self.theta[self.nthetatot-1-it]/self.a2r < self.lmax):
ll += self.dx_above_threshold/self.theta[self.nthetatot-1-it]/self.a2r
il += 1
self.nl = il+1
self.lll = np.zeros(self.nl, 'float64')
self.il_max = np.zeros(self.nthetatot, 'int')
il=0
self.lll[il]=1.
while (self.lll[il]*self.theta[-1]*self.a2r < self.dx_threshold):
il += 1
self.lll[il] = self.lll[il-1] + self.dx_below_threshold/self.theta[-1]/self.a2r
for it in xrange(self.nthetatot):
while (self.lll[il]*self.theta[self.nthetatot-1-it]*self.a2r < self.xmax) and (self.lll[il] + self.dx_above_threshold/self.theta[self.nthetatot-1-it]/self.a2r < self.lmax):
il += 1
self.lll[il] = self.lll[il-1] + self.dx_above_threshold/self.theta[self.nthetatot-1-it]/self.a2r
self.il_max[self.nthetatot-1-it] = il
# finally we compute the array l*dl that will be used in the trapezoidal integration
# (l is a factor in the integrand [l * C_l * Bessel], and dl is like a weight)
self.ldl = np.zeros(self.nl, 'float64')
self.ldl[0]=self.lll[0]*0.5*(self.lll[1]-self.lll[0])
for il in xrange(1,self.nl-1):
self.ldl[il]=self.lll[il]*0.5*(self.lll[il+1]-self.lll[il-1])
self.ldl[-1]=self.lll[-1]*0.5*(self.lll[-1]-self.lll[-2])
else:
# this is sufficient (FFTLog only uses 5k points internally anyways...)
ell_lin = np.arange(1., 501., 1)
ell_log = np.logspace(np.log10(501.), np.log10(self.lmax), 5000 - len(ell_lin))
self.lll = np.concatenate((ell_lin, ell_log))
# linspace --> overkill and too slow!
#self.lll = np.arange(1., self.lmax + 1., 1)
self.nl = self.lll.size
# here we set up arrays and some integrations necessary for the theory binning:
if self.use_theory_binning:
if self.read_weight_func_for_binning:
fname = os.path.join(self.data_directory, self.theory_weight_func_file)
thetas, weights = np.loadtxt(fname, unpack=True)
self.theory_weight_func = itp.splrep(thetas, weights)
else:
thetas = np.linspace(self.theta_bin_min_val, self.theta_bin_max_val, self.ntheta * int(self.theta_nodes_theory))
weights = self.a2r * thetas * self.theory_binning_const
self.theory_weight_func = itp.splrep(thetas, weights)
# first get the theta-bin borders based on ntheta and absolute min and absolute max values
a = np.linspace(np.log10(self.theta_bin_min_val), np.log10(self.theta_bin_max_val), self.ntheta + 1)
theta_bins = 10.**a
self.theta_bin_min = theta_bins[:-1]
self.theta_bin_max = theta_bins[1:]
self.int_weight_func = np.zeros(self.ntheta)
self.thetas_for_theory_binning = np.zeros((self.ntheta, int(self.theta_nodes_theory)))
for idx_theta in xrange(self.ntheta):
theta = np.linspace(self.theta_bin_min[idx_theta], self.theta_bin_max[idx_theta], int(self.theta_nodes_theory))
dtheta = (theta[1:] - theta[:-1]) * self.a2r
weight_func_integrand = itp.splev(theta, self.theory_weight_func)
self.int_weight_func[idx_theta] = np.sum(0.5 * (weight_func_integrand[1:] + weight_func_integrand[:-1]) * dtheta)
# for convenience:
self.thetas_for_theory_binning[idx_theta, :] = theta
################################################
# cosmo calculation
################################################
# Importing the python-wrapped CLASS from the correct folder, defined in
# the .conf file, or overwritten at this point by the log.param.
# If the cosmological code is CLASS, do the following to import all
# relevant quantities
try:
classy_path = ''
for elem in os.listdir(os.path.join(
data.path['cosmo'], "python", "build")):
if elem.find("lib.") != -1:
classy_path = os.path.join(
data.path['cosmo'], "python", "build", elem)
break
except OSError:
raise io_mp.ConfigurationError(
"You probably did not compile the python wrapper of CLASS. " +
"Please go to /path/to/class/python/ and do\n" +
"..]$ python setup.py build")
# Inserting the previously found path into the list of folders to
# search for python modules.
sys.path.insert(1, classy_path)
try:
from classy import Class
except ImportError:
raise io_mp.MissingLibraryError(
"You must have compiled the classy.pyx file. Please go to " +
"/path/to/class/python and run the command\n " +
"python setup.py build")
cosmo = Class()
print('Intitial cosmological parameters passed to CLASS code:')
print(data.cosmo_arguments)
# Prepare the cosmological module with the input parameters
cosmo.set(data.cosmo_arguments)
cosmo.compute(["lensing"])
# Omega_m contains all species!
self.Omega_m = cosmo.Omega_m()
self.small_h = cosmo.h()
print('Omega_m =', self.Omega_m)
print('h =', self.small_h)
# One wants to obtain here the relation between z and r, this is done
# by asking the cosmological module with the function z_of_r
self.r, self.dzdr = cosmo.z_of_r(self.z_p)
# linear growth rate
self.rho_crit = self.get_critical_density()
# derive the linear growth factor D(z)
self.linear_growth_rate = np.zeros_like(self.z_p)
#print(self.redshifts)
for index_z, z in enumerate(self.z_p):
# for CLASS ver >= 2.6:
self.linear_growth_rate[index_z] = cosmo.scale_independent_growth_factor(z)
# normalize to unity at z=0:
# for CLASS ver >= 2.6:
self.linear_growth_rate /= cosmo.scale_independent_growth_factor(0.)
# Get power spectrum P(k=l/r,z(r)) from cosmological module
#self.pk_dm = np.zeros_like(self.pk)
self.pk = np.zeros((self.nlmax, self.nzmax), 'float64')
self.pk_lin = np.zeros((self.nlmax, self.nzmax), 'float64')
kmax_in_inv_Mpc = self.k_max_h_by_Mpc * self.small_h
for index_l in xrange(self.nlmax):
for index_z in xrange(1, self.nzmax):
k_in_inv_Mpc = (self.l[index_l] + 0.5) / self.r[index_z]
if (k_in_inv_Mpc > kmax_in_inv_Mpc):
pk_dm = 0.
pk_lin_dm = 0.
else:
pk_dm = cosmo.pk(k_in_inv_Mpc, self.z_p[index_z])
pk_lin_dm = cosmo.pk_lin(k_in_inv_Mpc, self.z_p[index_z])
self.pk[index_l, index_z] = pk_dm
self.pk_lin[index_l, index_z] = pk_lin_dm
return
def __load_public_data_vector(self, id_sample):
"""
Read data vector and bring it into the desired format
"""
if id_sample == '1':
data_sample = self.sample1
elif id_sample == '2':
data_sample = self.sample2
else:
raise Exception("Unexpected data_sample id (should be '1' or '2') ! ")
# plus one for theta-column
data_xip = np.zeros((self.ntheta, self.nzcorrs + 1))
data_xim = np.zeros((self.ntheta, self.nzcorrs + 1))
idx_corr = 0
for zbin1 in xrange(self.nzbins):
for zbin2 in xrange(zbin1, self.nzbins):
fname = os.path.join(self.data_directory, 'KV450_{:}/data_vector/xi_for_cosmo_tomo_{:}_{:}_withK_{:}.dat'.format(data_sample, zbin1+1, zbin2+1, data_sample))
theta, xip, xim = np.loadtxt(fname, unpack=True)
# this assumes theta is the same for every tomographic bin and
# for both xi_p and xi_m!
if idx_corr == 0:
data_xip[:, 0] = theta
data_xim[:, 0] = theta
data_xip[:, idx_corr + 1] = xip
data_xim[:, idx_corr + 1] = xim
idx_corr += 1
data = np.concatenate((data_xip, data_xim))
print('Loaded data vectors from: \n', os.path.join(self.data_directory, 'KV450_{:}/'.format(data_sample)), '\n')
return data
def __load_public_cov_mat(self, id_cov):
"""
Read in the full covariance matrix and to bring it into format of self.xi_obs.
"""
if id_cov == '11':
cov_file = self.cov11_file
elif id_cov == '12':
cov_file = self.cov12_file
elif id_cov == '22':
cov_file = self.cov22_file
else:
raise Exception("Unexpected covariance id (should be '11', '12' or '22') ! ")
fname = os.path.join(self.data_directory, 'cov_for_joint/{:}'.format(cov_file))
if os.path.exists(fname):
matrix = np.loadtxt(fname)
print('Loaded covariance matrix (incl. shear calibration uncertainty) in a format usable with this likelihood from: \n', fname, '\n')
else:
raise Exception("cov_mat file not found:\n %s"%fname)
return matrix
def __get_mask(self, cut_values):
mask = np.zeros(2 * self.nzcorrs * self.ntheta)
iz = 0
for izl in xrange(self.nzbins):
for izh in xrange(izl, self.nzbins):
# this counts the bin combinations
# iz=1 =>(1,1), iz=2 =>(1,2) etc
iz = iz + 1
for i in xrange(self.ntheta):
j = (iz-1)*2*self.ntheta
#xi_plus_cut = max(cut_values[izl, 0], cut_values[izh, 0])
xi_plus_cut_low = max(cut_values[izl, 0], cut_values[izh, 0])
xi_plus_cut_high = max(cut_values[izl, 1], cut_values[izh, 1])
#xi_minus_cut = max(cut_values[izl, 1], cut_values[izh, 1])
xi_minus_cut_low = max(cut_values[izl, 2], cut_values[izh, 2])
xi_minus_cut_high = max(cut_values[izl, 3], cut_values[izh, 3])
if ((self.theta_bins[i] < xi_plus_cut_high) and (self.theta_bins[i]>xi_plus_cut_low)):
mask[j+i] = 1
if ((self.theta_bins[i] < xi_minus_cut_high) and (self.theta_bins[i]>xi_minus_cut_low)):
mask[self.ntheta + j+i] = 1
return mask
def __get_xi_obs(self, temp):
"""
This function takes xi_pm as read in from the data file and constructs
the xi_pm vector in its observed ordering:
xi_obs = {xi_p(theta1, z1xz1)... xi_p(thetaK, z1xz1), xi_m(theta1, z1xz1)...
xi_m(thetaK, z1xz1);... xi_p(theta1, zNxzN)... xi_p(thetaK, zNxzN),
xi_m(theta1, zNxzN)... xi_m(thetaK, zNxN)}
"""
xi_obs = np.zeros(self.ntheta * self.nzcorrs * 2)
# create the data-vector:
k = 0
for j in xrange(self.nzcorrs):
for i in xrange(2 * self.ntheta):
xi_obs[k] = temp[i, j]
k += 1
return xi_obs
def __get_xi_p_and_xi_m(self, vec_old):
"""
This function takes a xi_pm vector in the observed ordering (as it
comes out of the __get_xi_obs-function for example) and splits it again
in its xi_p and xi_m parts.
"""
'''
tmp = np.zeros((2 * self.ntheta, self.nzbins, self.nzbins), 'float64')
vec1_new = np.zeros((self.ntheta, self.nzbins, self.nzbins), 'float64')
vec2_new = np.zeros((self.ntheta, self.nzbins, self.nzbins), 'float64')
index_corr = 0
for index_zbin1 in xrange(self.nzbins):
for index_zbin2 in xrange(index_zbin1, self.nzbins):
#for index_theta in xrange(ntheta):
index_low = 2 * self.ntheta * index_corr
index_high = 2 * self.ntheta * index_corr + 2 * self.ntheta
#print(index_low, index_high)
tmp[:, index_zbin1, index_zbin2] = vec_old[index_low:index_high]
vec1_new[:, index_zbin1, index_zbin2] = tmp[:self.ntheta, index_zbin1, index_zbin2]
vec2_new[:, index_zbin1, index_zbin2] = tmp[self.ntheta:, index_zbin1, index_zbin2]
index_corr += 1
'''
tmp = np.zeros((2 * self.ntheta, self.nzcorrs), 'float64')
vec1_new = np.zeros((self.ntheta, self.nzcorrs), 'float64')
vec2_new = np.zeros((self.ntheta, self.nzcorrs), 'float64')
for index_corr in xrange(self.nzcorrs):
index_low = 2 * self.ntheta * index_corr
index_high = 2 * self.ntheta * index_corr + 2 * self.ntheta
#print(index_low, index_high)
tmp[:, index_corr] = vec_old[index_low:index_high]
vec1_new[:, index_corr] = tmp[:self.ntheta, index_corr]
vec2_new[:, index_corr] = tmp[self.ntheta:, index_corr]
return vec1_new, vec2_new
def baryon_feedback_bias_sqr(self, k, z, A_bary=1.):
"""
Fitting formula for baryon feedback after equation 10 and Table 2 from <NAME> al. 2014 (arXiv.1407.4301)
"""
# k is expected in h/Mpc and is divided in log by this unit...
x = np.log10(k)
a = 1. / (1. + z)
a_sqr = a * a
constant = {'AGN': {'A2': -0.11900, 'B2': 0.1300, 'C2': 0.6000, 'D2': 0.002110, 'E2': -2.0600,
'A1': 0.30800, 'B1': -0.6600, 'C1': -0.7600, 'D1': -0.002950, 'E1': 1.8400,
'A0': 0.15000, 'B0': 1.2200, 'C0': 1.3800, 'D0': 0.001300, 'E0': 3.5700},
'REF': {'A2': -0.05880, 'B2': -0.2510, 'C2': -0.9340, 'D2': -0.004540, 'E2': 0.8580,
'A1': 0.07280, 'B1': 0.0381, 'C1': 1.0600, 'D1': 0.006520, 'E1': -1.7900,
'A0': 0.00972, 'B0': 1.1200, 'C0': 0.7500, 'D0': -0.000196, 'E0': 4.5400},
'DBLIM': {'A2': -0.29500, 'B2': -0.9890, 'C2': -0.0143, 'D2': 0.001990, 'E2': -0.8250,
'A1': 0.49000, 'B1': 0.6420, 'C1': -0.0594, 'D1': -0.002350, 'E1': -0.0611,
'A0': -0.01660, 'B0': 1.0500, 'C0': 1.3000, 'D0': 0.001200, 'E0': 4.4800}}
A_z = constant[self.baryon_model]['A2']*a_sqr+constant[self.baryon_model]['A1']*a+constant[self.baryon_model]['A0']
B_z = constant[self.baryon_model]['B2']*a_sqr+constant[self.baryon_model]['B1']*a+constant[self.baryon_model]['B0']
C_z = constant[self.baryon_model]['C2']*a_sqr+constant[self.baryon_model]['C1']*a+constant[self.baryon_model]['C0']
D_z = constant[self.baryon_model]['D2']*a_sqr+constant[self.baryon_model]['D1']*a+constant[self.baryon_model]['D0']
E_z = constant[self.baryon_model]['E2']*a_sqr+constant[self.baryon_model]['E1']*a+constant[self.baryon_model]['E0']
# only for debugging; tested and works!
#print('AGN: A2=-0.11900, B2= 0.1300, C2= 0.6000, D2= 0.002110, E2=-2.0600')
#print(self.baryon_model+': A2={:.5f}, B2={:.5f}, C2={:.5f}, D2={:.5f}, E2={:.5f}'.format(constant[self.baryon_model]['A2'], constant[self.baryon_model]['B2'], constant[self.baryon_model]['C2'],constant[self.baryon_model]['D2'], constant[self.baryon_model]['E2']))
# original formula:
#bias_sqr = 1.-A_z*np.exp((B_z-C_z)**3)+D_z*x*np.exp(E_z*x)
# original formula with a free amplitude A_bary:
bias_sqr = 1. - A_bary * (A_z * np.exp((B_z * x - C_z)**3) - D_z * x * np.exp(E_z * x))
return bias_sqr
def get_IA_factor(self, z, linear_growth_rate, amplitude, exponent):
const = 5e-14 / self.small_h**2 # Mpc^3 / M_sol
# arbitrary convention
z0 = 0.3
#print(utils.growth_factor(z, self.Omega_m))
#print(self.rho_crit)
factor = -1. * amplitude * const * self.rho_crit * self.Omega_m / linear_growth_rate * ((1. + z) / (1. + z0))**exponent
return factor
def get_critical_density(self):
"""
The critical density of the Universe at redshift 0.
Returns
-------
rho_crit in solar masses per cubic Megaparsec.
"""
# yay, constants...
Mpc_cm = 3.08568025e24 # cm
M_sun_g = 1.98892e33 # g
G_const_Mpc_Msun_s = M_sun_g * (6.673e-8) / Mpc_cm**3.
H100_s = 100. / (Mpc_cm * 1.0e-5) # s^-1
rho_crit_0 = 3. * (self.small_h * H100_s)**2. / (8. * np.pi * G_const_Mpc_Msun_s)
return rho_crit_0
def loglkl(self, cosmo, data):
# get all cosmology dependent quantities here:
xi_theo_1 = self.cosmo_calculations(data, np.size(self.xi_obs_1), sample_index = 1)
xi_theo_2 = self.cosmo_calculations(data, np.size(self.xi_obs_2), sample_index = 2)
# final chi2
vec = np.concatenate((xi_theo_1, xi_theo_2))[self.mask_indices] - np.concatenate((self.xi_obs_1, self.xi_obs_2))[self.mask_indices]
if np.isinf(vec).any() or np.isnan(vec).any():
chi2 = 2e12
else:
# don't invert that matrix...
# use the Cholesky decomposition instead:
yt = solve_triangular(self.cholesky_transform, vec, lower=True)
chi2 = yt.dot(yt)
# enforce Gaussian priors on NUISANCE parameters if requested:
if self.use_gaussian_prior_for_nuisance:
for idx_nuisance, nuisance_name in enumerate(self.gaussian_prior_name):
scale = data.mcmc_parameters[nuisance_name]['scale']
chi2 += (data.mcmc_parameters[nuisance_name]['current'] * scale - self.gaussian_prior_center[idx_nuisance])**2 / self.gaussian_prior_sigma[idx_nuisance]**2
return -chi2/2.
def cosmo_calculations(self, data, size_xi_obs, sample_index):
# needed for IA modelling:
if self.A_IA == 'duplicated':
param_name1 = 'A_IA_{:}'.format(sample_index)
amp_IA = data.mcmc_parameters[param_name1]['current'] * data.mcmc_parameters[param_name1]['scale']
intrinsic_alignment = True
elif self.A_IA == 'mean':
param_name1 = 'A_IA_m'
param_name2 = 'A_IA_s'
amp_IA_mean = data.mcmc_parameters[param_name1]['current'] * data.mcmc_parameters[param_name1]['scale']
amp_IA_shift = data.mcmc_parameters[param_name2]['current'] * data.mcmc_parameters[param_name2]['scale']
if sample_index == 1:
amp_IA = amp_IA_mean + amp_IA_shift
elif sample_index == 2:
amp_IA = amp_IA_mean - amp_IA_shift
else:
raise Exception("Unexpected sample_index in amp_IA !")
intrinsic_alignment = True
elif self.A_IA == 'common':
param_name1 = 'A_IA'
amp_IA = data.mcmc_parameters[param_name1]['current'] * data.mcmc_parameters[param_name1]['scale']
intrinsic_alignment = True
else:
intrinsic_alignment = False
# exp_IA is not used
exp_IA = 0.
# Compute now the selection function p(r) = p(z) dz/dr normalized
# to one. The np.newaxis helps to broadcast the one-dimensional array
# dzdr to the proper shape. Note that p_norm is also broadcasted as
# an array of the same shape as p_z
# for KiDS-450 constant biases in photo-z are not sufficient:
pz = np.zeros((self.nzmax, self.nzbins), 'float64')
pz_norm = np.zeros(self.nzbins, 'float64')
for zbin in xrange(self.nzbins):
# redshift offset
if self.z_offset == 'duplicated':
param_name = 'D_z{:}_{:}'.format(zbin + 1, sample_index)
z_mod = self.z_p + data.mcmc_parameters[param_name]['current'] * data.mcmc_parameters[param_name]['scale']
elif self.z_offset == 'mean':
param_name1 = 'D_z{:}_m'.format(zbin + 1)
param_name2 = 'D_z{:}_s'.format(zbin + 1)
Dz_mean = data.mcmc_parameters[param_name1]['current'] * data.mcmc_parameters[param_name1]['scale']
Dz_shift = data.mcmc_parameters[param_name2]['current'] * data.mcmc_parameters[param_name2]['scale']
if sample_index == 1:
z_mod = self.z_p + (Dz_mean + Dz_shift)
elif sample_index == 2:
z_mod = self.z_p + (Dz_mean - Dz_shift)
else:
raise Exception("Unexpected sample_index in redshift offsets!")
elif self.z_offset == 'common':
param_name = 'D_z{:}'.format(zbin + 1)
z_mod = self.z_p + data.mcmc_parameters[param_name]['current'] * data.mcmc_parameters[param_name]['scale']
else:
z_mod = self.z_p
# the artificial zero-point is not included for spline
spline_pz = itp.interp1d(self.z_samples[sample_index-1][zbin, 1:], self.hist_samples[sample_index-1][zbin, 1:], kind=self.type_redshift_interp)
mask_min = z_mod >= self.z_samples[sample_index-1][zbin, 1:].min()
mask_max = z_mod <= self.z_samples[sample_index-1][zbin, 1:].max()
mask_z = mask_min & mask_max
# points outside the z-range of the histograms are set to 0!
pz[mask_z, zbin] = spline_pz(z_mod[mask_z])
# Normalize selection functions
dz = self.z_p[1:] - self.z_p[:-1]
pz_norm[zbin] = np.sum(0.5 * (pz[1:, zbin] + pz[:-1, zbin]) * dz)
pr = pz * (self.dzdr[:, np.newaxis] / pz_norm)
# nuisance parameter for m-correction (one value for all bins):
# implemented tomography-friendly so it's very easy to implement a dm per z-bin from here!
param_name = 'dm_{:}'.format(sample_index)
if param_name in data.mcmc_parameters:
dm_per_zbin = np.ones((self.ntheta, self.nzbins))
dm_per_zbin *= data.mcmc_parameters[param_name]['current'] * data.mcmc_parameters[param_name]['scale']
else:
# so that nothing will change if we don't marginalize over dm!
dm_per_zbin = np.zeros((self.ntheta, self.nzbins))
# nuisance parameters for constant c-correction:
dc1_per_zbin = np.zeros((self.ntheta, self.nzbins))
dc2_per_zbin = np.zeros((self.ntheta, self.nzbins))
for zbin in xrange(self.nzbins):
#param_name = 'dc_z{:}_{:}'.format(zbin + 1, sample_index)
# param_name = 'dc_{:}'.format(sample_index)
param_name = 'dc'
if param_name in data.mcmc_parameters:
dc1_per_zbin[:, zbin] = np.ones(self.ntheta) * data.mcmc_parameters[param_name]['current'] * data.mcmc_parameters[param_name]['scale']
# add here dc2 if xi- turns out to be affected!
#dc2_per_zbin[zbin] = dc2_per_zbin[zbin]
# correlate dc1/2_per_zbin in tomographic order of xi1/2:
dc1_sqr = np.zeros((self.ntheta, self.nzcorrs))
dc2_sqr = np.zeros((self.ntheta, self.nzcorrs))
# correlate dm_per_zbin in tomographic order of xi1/2:
dm_plus_one_sqr = np.zeros((self.ntheta, self.nzcorrs))
index_corr = 0
for zbin1 in xrange(self.nzbins):
for zbin2 in xrange(zbin1, self.nzbins):
# c-correction:
dc1_sqr[:, index_corr] = dc1_per_zbin[:, zbin1] * dc1_per_zbin[:, zbin2]
dc2_sqr[:, index_corr] = dc2_per_zbin[:, zbin1] * dc2_per_zbin[:, zbin2]
# m-correction:
dm_plus_one_sqr[:, index_corr] = (1. + dm_per_zbin[:, zbin1]) * (1. + dm_per_zbin[:, zbin2])
index_corr += 1
# get c-correction into form of xi_obs
temp = np.concatenate((dc1_sqr, dc2_sqr))
dc_sqr = self.__get_xi_obs(temp)
# get m-correction into form of xi_obs
temp = np.concatenate((dm_plus_one_sqr, dm_plus_one_sqr))
dm_plus_one_sqr_obs = self.__get_xi_obs(temp)
# Below we construct a theta-dependent c-correction function from
# measured data (for one z-bin) and scale it with an amplitude per z-bin
# which is to be fitted
# this is all independent of the constant c-correction calculated above
xip_c = np.zeros((self.ntheta, self.nzcorrs))
xim_c = np.zeros((self.ntheta, self.nzcorrs))
if self.use_cterm_function:
amps_cfunc = np.ones(self.nzbins)
for zbin in xrange(self.nzbins):
# param_name = 'Ac_{:}'.format(sample_index)
param_name = 'Ac'
if param_name in data.mcmc_parameters:
amps_cfunc[zbin] = data.mcmc_parameters[param_name]['current'] * data.mcmc_parameters[param_name]['scale']
index_corr = 0
for zbin1 in xrange(self.nzbins):
for zbin2 in xrange(zbin1, self.nzbins):
#sign = np.sign(amps_cfunc[zbin1]) * np.sign(amps_cfunc[zbin2])
#xip_c[:, index_corr] = sign * np.sqrt(np.abs(amps_cfunc[zbin1] * amps_cfunc[zbin2])) * self.xip_c_per_zbin
xip_c[:, index_corr] = amps_cfunc[zbin1] * amps_cfunc[zbin2] * self.xip_c_per_zbin
# TODO: we leave xim_c set to 0 for now!
#xim_c[:, index_corr] = amps_cfunc[zbin1] * amps_cfunc[zbin2] * self.xim_c_per_zbin
index_corr += 1
# get it into order of xi_obs
# contains only zeros if function is not requested
# TODO xim-component contains only zeros
temp = np.concatenate((xip_c, xim_c))
xipm_c = self.__get_xi_obs(temp)
# Compute function g_i(r), that depends on r and the bin
# g_i(r) = 2r(1+z(r)) int_r^+\infty drs p_r(rs) (rs-r)/rs
g = np.zeros((self.nzmax, self.nzbins), 'float64')
for Bin in xrange(self.nzbins):
# shift only necessary if z[0] = 0
for nr in xrange(1, self.nzmax - 1):
#for nr in xrange(self.nzmax - 1):
fun = pr[nr:, Bin] * (self.r[nr:] - self.r[nr]) / self.r[nr:]
g[nr, Bin] = np.sum(0.5*(fun[1:] + fun[:-1]) * (self.r[nr+1:] - self.r[nr:-1]))
g[nr, Bin] *= 2. * self.r[nr] * (1. + self.z_p[nr])
Cl_GG_integrand = np.zeros((self.nzmax, self.nzcorrs), 'float64')
Cl_GG = np.zeros((self.nlmax, self.nzcorrs), 'float64')
if intrinsic_alignment:
Cl_II_integrand = np.zeros_like(Cl_GG_integrand)
Cl_II = np.zeros_like(Cl_GG)
Cl_GI_integrand = np.zeros_like(Cl_GG_integrand)
Cl_GI = np.zeros_like(Cl_GG)
dr = self.r[1:] - self.r[:-1]
# Start loop over l for computation of C_l^shear
# Start loop over l for computation of E_l
for il in xrange(self.nlmax):
# find Cl_integrand = (g(r) / r)**2 * P(l/r,z(r))
for Bin1 in xrange(self.nzbins):
for Bin2 in xrange(Bin1, self.nzbins):
Cl_GG_integrand[1:, self.one_dim_index(Bin1,Bin2)] = g[1:, Bin1] * g[1:, Bin2] / self.r[1:]**2 * self.pk[il, 1:]
#print(self.Cl_integrand)
if intrinsic_alignment:
factor_IA = self.get_IA_factor(self.z_p, self.linear_growth_rate, amp_IA, exp_IA) #/ self.dzdr[1:]
#print(F_of_x)
#print(self.eta_r[1:, zbin1].shape)
if self.use_linear_pk_for_IA:
# this term (II) uses the linear matter power spectrum P_lin(k, z)
Cl_II_integrand[1:, self.one_dim_index(Bin1,Bin2)] = pr[1:, Bin1] * pr[1:, Bin2] * factor_IA[1:]**2 / self.r[1:]**2 * self.pk_lin[il, 1:]
# this term (GI) uses sqrt(P_lin(k, z) * P_nl(k, z))
Cl_GI_integrand[1:, self.one_dim_index(Bin1,Bin2)] = (g[1:, Bin1] * pr[1:, Bin2] + g[1:, Bin2] * pr[1:, Bin1]) * factor_IA[1:] / self.r[1:]**2 * np.sqrt(self.pk_lin[il, 1:] * self.pk[il, 1:])
else:
# both II and GI terms use the non-linear matter power spectrum P_nl(k, z)
Cl_II_integrand[1:, self.one_dim_index(Bin1,Bin2)] = pr[1:, Bin1] * pr[1:, Bin2] * factor_IA[1:]**2 / self.r[1:]**2 * self.pk[il, 1:]
Cl_GI_integrand[1:, self.one_dim_index(Bin1,Bin2)] = (g[1:, Bin1] * pr[1:, Bin2] + g[1:, Bin2] * pr[1:, Bin1]) * factor_IA[1:] / self.r[1:]**2 * self.pk[il, 1:]
# Integrate over r to get C_l^shear_ij = P_ij(l)
# C_l^shear_ij = 9/16 Omega0_m^2 H_0^4 \sum_0^rmax dr (g_i(r)
# g_j(r) /r**2) P(k=l/r,z(r)) dr
# It is then multiplied by 9/16*Omega_m**2
# and then by (h/2997.9)**4 to be dimensionless
# (since P(k)*dr is in units of Mpc**4)
for Bin in xrange(self.nzcorrs):
Cl_GG[il, Bin] = np.sum(0.5*(Cl_GG_integrand[1:, Bin] + Cl_GG_integrand[:-1, Bin]) * dr)
Cl_GG[il, Bin] *= 9. / 16. * self.Omega_m**2
Cl_GG[il, Bin] *= (self.small_h / 2997.9)**4
if intrinsic_alignment:
Cl_II[il, Bin] = np.sum(0.5 * (Cl_II_integrand[1:, Bin] + Cl_II_integrand[:-1, Bin]) * dr)
Cl_GI[il, Bin] = | np.sum(0.5 * (Cl_GI_integrand[1:, Bin] + Cl_GI_integrand[:-1, Bin]) * dr) | numpy.sum |
r"""
Kernel module, implements a few standard kernels for use with the
``GaussianProcess`` class. Options include the Squared Exponential
kernel and Matern 5/2 kernel, both with either a single correlation
length (``UniformSqExp``, ``UniformMat52``) or correlation lengths
for each input dimension (``SquaredExponential``, ``Matern52``).
The product form of the Matern 5/2 kernel (``ProductMat52``) is
also available.
"""
import numpy as np
class KernelBase(object):
"Base Kernel"
def get_n_params(self, inputs):
"""
Determine number of correlation length parameters based on inputs
Determines the number of parameters required for a given set of inputs.
Returns the number of parameters as an integer.
:param inputs: Set of inputs for which the number of correlation length
parameters is desired.
:type inputs: ndarray
:returns: Number of correlation length parameters
:rtype: int
"""
inputs = np.array(inputs)
assert inputs.ndim == 2, "Inputs must be a 2D array"
return inputs.shape[1]
def _check_inputs(self, x1, x2, params):
r"""
Common function for checking dimensions of inputs (default version)
This function checks the inputs to any kernel evaluation for consistency and ensures
that all input arrays have the correct dimensionality. It returns the reformatted
arrays, the number of inputs, and the number of hyperparameters. If the method
determines that the array dimensions are not all consistent with one another,
it will raise an ``AssertionError``. This method is called internally whenever
the kernel is evaluated.
:param x1: First parameter array. Should be a 1-D or 2-D array (1-D is acceptable
if either there is only a single point, or each point has only a single
parameter). If there is more than one parameter, the last dimension
must match the last dimension of ``x2`` and be one less than the length
of ``params``.
:type x1: array-like
:param x2: Second parameter array. The same restrictions apply that hold for ``x1``
described above.
:type x2: array-like
:param params: Hyperparameter array. Must have a length that is one more than the
last dimension of ``x1`` and ``x2``, hence minimum length is 2.
:type params: array-like
:returns: A tuple containing the following: reformatted ``x1``, ``n1``, reformatted
``x2``, ``n2``, ``params``, and ``D``. ``x1`` will be an array with
dimensions ``(n1, D - 1)``, ``x2`` will be an array with dimensions
``(n2, D - 1)``, and ``params`` will be an array with dimensions ``(D,)``.
``n1``, ``n2``, and ``D`` will be integers.
"""
params = np.array(params)
assert params.ndim == 1, "parameters must be a vector"
D = len(params)
assert D >= 1, "minimum number of parameters in a covariance kernel is 1"
x1 = np.array(x1)
assert x1.ndim == 1 or x1.ndim == 2, "bad number of dimensions in input x1"
if x1.ndim == 2:
assert x1.shape[1] == D, "bad shape for x1"
else:
if D == 1:
x1 = np.reshape(x1, (len(x1), 1))
else:
x1 = np.reshape(x1, (1, D))
n1 = x1.shape[0]
x2 = np.array(x2)
assert x2.ndim == 1 or x2.ndim == 2, "bad number of dimensions in input x2"
if x2.ndim == 2:
assert x2.shape[1] == D, "bad shape for x2"
else:
if D == 1:
x2 = np.reshape(x2, (len(x2), 1))
else:
x2 = np.reshape(x2, (1, D))
n2 = x2.shape[0]
return x1, n1, x2, n2, params, D
def kernel_f(self, x1, x2, params):
r"""
Compute kernel values for a set of inputs
Returns the value of the kernel for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric and then evaluates the kernel function
for those distances.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding all kernel values between points in arrays ``x1``
and ``x2``. Will be an array with shape ``(n1, n2)``, where ``n1``
is the length of the first axis of ``x1`` and ``n2`` is the length
of the first axis of ``x2``.
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
return self.calc_K(self.calc_r2(x1, x2, params))
def kernel_deriv(self, x1, x2, params):
r"""
Compute kernel gradient for a set of inputs
Returns the value of the kernel gradient for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric, kernel function, and the appropriate
derivative functions of the distance and kernel functions.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the gradient of the kernel function between points in arrays
``x1`` and ``x2`` with respect to the hyperparameters. Will be an array with
shape ``(D, n1, n2)``, where ``D`` is the length of ``params``, ``n1`` is the
length of the first axis of ``x1`` and ``n2`` is the length of the first axis
of ``x2``. The first axis indicates the different derivative components
(i.e. the derivative with respect to the first parameter is [0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
dKdr2 = self.calc_dKdr2(self.calc_r2(x1, x2, params))
dr2dtheta = self.calc_dr2dtheta(x1, x2, params)
dKdtheta = dKdr2*dr2dtheta
return dKdtheta
def kernel_hessian(self, x1, x2, params):
r"""
Calculate the Hessian of the kernel evaluated for all pairs of points with
respect to the hyperparameters
Returns the value of the kernel Hessian for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric, kernel function, and the appropriate
derivative functions of the distance and kernel functions.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the Hessian of the pair-wise distances between points in arrays
``x1`` and ``x2`` with respect to the hyperparameters. Will be an array with
shape ``(D, D, n1, n2)``, where ``D`` is the length of ``params``, ``n1`` is
the length of the first axis of ``x1`` and ``n2`` is the length of the first
axis of ``x2``. The first two axes indicates the different derivative components
(i.e. the second derivative with respect to the first parameter is [0,0,:,:],
the mixed partial with respect to the first and second parameters is [0,1,:,:]
or [1,0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
r2_matrix = self.calc_r2(x1, x2, params)
dKdr2 = self.calc_dKdr2(r2_matrix)
d2Kdr22 = self.calc_d2Kdr22(r2_matrix)
dr2dtheta = self.calc_dr2dtheta(x1, x2, params)
d2r2dtheta2 = self.calc_d2r2dtheta2(x1, x2, params)
d2Kdtheta2 = (d2Kdr22 * dr2dtheta[:,np.newaxis,:,:] * dr2dtheta[np.newaxis,:,:,:] +
dKdr2 * d2r2dtheta2)
return d2Kdtheta2
class UniformKernel(KernelBase):
r"""
Kernel with a single correlation length
"""
def get_n_params(self, inputs):
"""
Determine number of correlation length parameters based on inputs
Determines the number of parameters required for a given set of inputs.
Returns the number of parameters as an integer.
:param inputs: Set of inputs for which the number of correlation length
parameters is desired.
:type inputs: ndarray
:returns: Number of correlation length parameters
:rtype: int
"""
return 1
def _check_inputs(self, x1, x2, params):
r"""
Common function for checking dimensions of inputs
This function checks the inputs to any kernel evaluation for consistency and ensures
that all input arrays have the correct dimensionality. It returns the reformatted
arrays, the number of inputs, and the number of hyperparameters. If the method
determines that the array dimensions are not all consistent with one another,
it will raise an ``AssertionError``. This method is called internally whenever
the kernel is evaluated.
:param x1: First parameter array. Should be a 1-D or 2-D array (1-D is acceptable
if each point has only a single input parameter).
:type x1: array-like
:param x2: Second parameter array. The same restrictions apply that hold for ``x1``
described above.
:type x2: array-like
:param params: Hyperparameter array. Must have a length that is one more than the
last dimension of ``x1`` and ``x2``, hence minimum length is 2.
:type params: array-like
:returns: A tuple containing the following: reformatted ``x1``, ``n1``, reformatted
``x2``, ``n2``, ``params``, and ``D``.
``n1``, ``n2``, and ``D`` will be integers.
"""
params = np.array(params)
assert params.ndim == 1, "parameters must be a vector"
D = len(params)
assert D == 1, "Uniform kernels only support a single correlation length"
x1 = np.array(x1)
assert x1.ndim == 1 or x1.ndim == 2, "bad number of dimensions in input x1"
if not x1.ndim == 2:
x1 = np.reshape(x1, (-1, 1))
n1 = x1.shape[0]
x2 = np.array(x2)
assert x2.ndim == 1 or x2.ndim == 2, "bad number of dimensions in input x2"
if not x2.ndim == 2:
x2 = np.reshape(x2, (-1, 1))
n2 = x2.shape[0]
assert x1.shape[1] == x2.shape[1], "Input arrays do not have the same number of inputs"
return x1, n1, x2, n2, params, D
def calc_r2(self, x1, x2, params):
r"""
Calculate squared distance between all pairs of points
This method computes the scaled Euclidean distance between all pairs of points
in ``x1`` and ``x2``.
For example, if
``x1 = [1.]``, ``x2`` = [2.], and ``params = [2.]`` then ``calc_r`` would
return :math:`{\sqrt{exp(2)*(1 - 2)^2}=\sqrt{exp(2)}}`
as an array with shape ``(1,1)``.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding all pair-wise squared distances between points in arrays ``x1``
and ``x2``. Will be an array with shape ``(n1, n2)``, where ``n1``
is the length of the first axis of ``x1`` and ``n2`` is the length
of the first axis of ``x2``.
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
exp_theta = np.exp(params)[0]
r2_matrix = np.sum(exp_theta*(x1[:, np.newaxis, :] - x2[np.newaxis, :, :])**2, axis=-1)
if np.any(np.isinf(r2_matrix)):
raise FloatingPointError("Inf enountered in kernel distance computation")
return r2_matrix
def calc_dr2dtheta(self, x1, x2, params):
r"""
Calculate the first derivative of the distance between all pairs of points with
respect to the hyperparameters
This method computes the derivative of the scaled Euclidean distance between
all pairs of points in ``x1`` and ``x2`` with respect to the hyperparameters.
The gradient is held in an array with shape ``(D, n1, n2)``, where ``D`` is
the length of ``params``, ``n1`` is the length of the first axis of ``x1``,
and ``n2`` is the length of the first axis of ``x2``. This is used in the
computation of the gradient and Hessian of the kernel. The first index
represents the different derivatives with respect to each hyperparameter.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the derivative of the pair-wise distances between
points in arrays ``x1`` and ``x2`` with respect to the hyperparameters.
Will be an array with shape ``(D, n1, n2)``, where ``D`` is the length
of ``params``, ``n1`` is the length of the first axis of ``x1`` and
``n2`` is the length of the first axis of ``x2``. The first axis
indicates the different derivative components (i.e. the derivative
with respect to the first parameter is [0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
return np.reshape(self.calc_r2(x1, x2, params), (1, n1, n2))
def calc_d2r2dtheta2(self, x1, x2, params):
r"""
Calculate all second derivatives of the distance between all pairs of points with
respect to the hyperparameters
This method computes all second derivatives of the scaled Euclidean distance
between all pairs of points in ``x1`` and ``x2`` with respect to the
hyperparameters. The gradient is held in an array with shape ``(D, D, n1, n2)``,
where ``D`` is the length of ``params``, ``n1`` is the length of the first axis
of ``x1``, and ``n2`` is the length of the first axis of ``x2``. This is used in
the computation of the gradient and Hessian of the kernel. The first two indices
represents the different derivatives with respect to each hyperparameter.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the second derivatives of the pair-wise distances between
points in arrays ``x1`` and ``x2`` with respect to the hyperparameters.
Will be an array with shape ``(D, D, n1, n2)``, where ``D`` is the length
of ``params``, ``n1`` is the length of the first axis of ``x1`` and
``n2`` is the length of the first axis of ``x2``. The first two axes
indicates the different derivative components (i.e. the second derivative
with respect to the first parameter is [0,0,:,:], the mixed partial with
respect to the first and second parameters is [0,1,:,:] or [1,0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
return np.reshape(self.calc_r2(x1, x2, params), (1, 1, n1, n2))
class StationaryKernel(KernelBase):
r"""
Generic class representing a stationary kernel
This base class implements the necessary scaffolding for defining a stationary kernel.
Stationary kernels are only dependent on a distance measure between any two points, so
the base class holds all the necessary information for doing the distance computation.
Individual subclasses will implement the functional dependence of the kernel on the
distance, plus first and second derivatives (if desired) to compute the gradient or
Hessian of the kernel with respect to the hyperparameters.
This implementation uses a scaled euclidean distance metric. Each individual parameter
has a hyperparameter scale associated with it that is used in the distance computation.
If a different metric is to be defined, a new base class needs to be defined that
implements the ``calc_r``, and optionally ``calc_drdtheta`` and ``calc_d2rdtheta2``
methods if gradient or Hessian computation is desired. The methods ``kernel_f``,
``kernel_gradient``, and ``kernel_hessian`` can then be used to compute the appropriate
quantities with no further modification.
Note that the Kernel object just collates all of the methods together; the class itself
does not hold any information on the data point or hyperparamters, which are passed
directly to the appropriate methods. Thus, no information needs to be provided when
creating a new ``Kernel`` instance.
"""
def calc_r2(self, x1, x2, params):
r"""
Calculate squared distance between all pairs of points
This method computes the scaled Euclidean distance between all pairs of points
in ``x1`` and ``x2``. Each component distance is multiplied by the exponential of
the corresponding hyperparameter, prior to summing and taking the square root.
For example, if
``x1 = [1.]``, ``x2`` = [2.], and ``params = [2., 2.]`` then ``calc_r`` would
return :math:`{\sqrt{exp(2)*(1 - 2)^2}=\sqrt{exp(2)}}`
as an array with shape ``(1,1)``.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding all pair-wise squared distances between points in arrays ``x1``
and ``x2``. Will be an array with shape ``(n1, n2)``, where ``n1``
is the length of the first axis of ``x1`` and ``n2`` is the length
of the first axis of ``x2``.
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
exp_theta = np.exp(params)
r2_matrix = np.sum(exp_theta*(x1[:, np.newaxis, :] - x2[np.newaxis, :, :])**2, axis=-1)
if np.any(np.isinf(r2_matrix)):
raise FloatingPointError("Inf enountered in kernel distance computation")
return r2_matrix
def calc_dr2dtheta(self, x1, x2, params):
r"""
Calculate the first derivative of the distance between all pairs of points with
respect to the hyperparameters
This method computes the derivative of the scaled Euclidean distance between
all pairs of points in ``x1`` and ``x2`` with respect to the hyperparameters.
The gradient is held in an array with shape ``(D, n1, n2)``, where ``D`` is
the length of ``params``, ``n1`` is the length of the first axis of ``x1``,
and ``n2`` is the length of the first axis of ``x2``. This is used in the
computation of the gradient and Hessian of the kernel. The first index
represents the different derivatives with respect to each hyperparameter.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the derivative of the pair-wise distances between
points in arrays ``x1`` and ``x2`` with respect to the hyperparameters.
Will be an array with shape ``(D, n1, n2)``, where ``D`` is the length
of ``params``, ``n1`` is the length of the first axis of ``x1`` and
``n2`` is the length of the first axis of ``x2``. The first axis
indicates the different derivative components (i.e. the derivative
with respect to the first parameter is [0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
exp_theta = np.exp(params)
dr2dtheta = np.transpose(exp_theta*(x1[:, np.newaxis, :] - x2[np.newaxis, :, :])**2,
(2, 0, 1))
return dr2dtheta
def calc_d2r2dtheta2(self, x1, x2, params):
r"""
Calculate all second derivatives of the distance between all pairs of points with
respect to the hyperparameters
This method computes all second derivatives of the scaled Euclidean distance
between all pairs of points in ``x1`` and ``x2`` with respect to the
hyperparameters. The gradient is held in an array with shape ``(D, D, n1, n2)``,
where ``D`` is the length of ``params``, ``n1`` is the length of the first axis
of ``x1``, and ``n2`` is the length of the first axis of ``x2``. This is used in
the computation of the gradient and Hessian of the kernel. The first two indices
represents the different derivatives with respect to each hyperparameter.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the second derivatives of the pair-wise distances between
points in arrays ``x1`` and ``x2`` with respect to the hyperparameters.
Will be an array with shape ``(D, D, n1, n2)``, where ``D`` is the length
of ``params``, ``n1`` is the length of the first axis of ``x1`` and
``n2`` is the length of the first axis of ``x2``. The first two axes
indicates the different derivative components (i.e. the second derivative
with respect to the first parameter is [0,0,:,:], the mixed partial with
respect to the first and second parameters is [0,1,:,:] or [1,0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
exp_theta = np.exp(-params[:(D - 1)])
d2r2dtheta2 = np.zeros((D, D, n1, n2))
idx = np.arange(D)
d2r2dtheta2[idx, idx] = self.calc_dr2dtheta(x1, x2, params)
return d2r2dtheta2
class ProductKernel(KernelBase):
"Product form of kernel"
def calc_r2(self, x1, x2, params):
r"""
Calculate squared distance between all pairs of points
This method computes the scaled Euclidean distance between all pairs of points
in ``x1`` and ``x2`` along each axis. Each component distance is multiplied by
the exponential of the corresponding hyperparameter.
For example, if
``x1 = [[1., 2.]]``, ``x2`` = [[2., 4.]], and ``params = [2., 2.]`` then ``calc_r`` would
return the array :math:`{[exp(2)*(1 - 2)^2, exp(2)*(2 - 4)^2]}`
as an array with shape ``(2, 1,1)``.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding all pair-wise squared distances between points in arrays ``x1``
and ``x2``. Will be an array with shape ``(D, n1, n2)``, where ``D`` is
the number of dimensions, ``n1`` is the length of the first axis of
``x1`` and ``n2`` is the length of the first axis of ``x2``.
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
exp_theta = np.exp(params)
r2_matrix = exp_theta[np.newaxis, np.newaxis, :]*(x1[:, np.newaxis, :] - x2[np.newaxis, :, :])**2
if np.any(np.isinf(r2_matrix)):
raise FloatingPointError("Inf enountered in kernel distance computation")
return r2_matrix
def kernel_f(self, x1, x2, params):
r"""
Compute kernel values for a set of inputs
Returns the value of the kernel for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric and then evaluates the kernel function
for those distances.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding all kernel values between points in arrays ``x1``
and ``x2``. Will be an array with shape ``(n1, n2)``, where ``n1``
is the length of the first axis of ``x1`` and ``n2`` is the length
of the first axis of ``x2``.
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
return np.prod(self.calc_K(self.calc_r2(x1, x2, params)), axis=-1)
def kernel_deriv(self, x1, x2, params):
r"""
Compute kernel gradient for a set of inputs
Returns the value of the kernel gradient for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric, kernel function, and the appropriate
derivative functions of the distance and kernel functions.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the gradient of the kernel function between points in arrays
``x1`` and ``x2`` with respect to the hyperparameters. Will be an array with
shape ``(D, n1, n2)``, where ``D`` is the length of ``params``, ``n1`` is the
length of the first axis of ``x1`` and ``n2`` is the length of the first axis
of ``x2``. The first axis indicates the different derivative components
(i.e. the derivative with respect to the first parameter is [0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
r2_matrix = self.calc_r2(x1, x2, params)
diag = self.calc_dKdr2(r2_matrix)*r2_matrix
dKdtheta = np.broadcast_to(self.calc_K(r2_matrix), (D, n1, n2, D)).copy()
idx = np.arange(0, D, 1)
dKdtheta[idx, :, :, idx] = np.transpose(diag, (2, 0, 1))
return np.prod(dKdtheta, axis=-1)
def kernel_hessian(self, x1, x2, params):
r"""
Calculate the Hessian of the kernel evaluated for all pairs of points with
respect to the hyperparameters
Returns the value of the kernel Hessian for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric, kernel function, and the appropriate
derivative functions of the distance and kernel functions.
:param x1: First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of ``x2`` and
one less than the length of ``params``. ``x1`` may be 1-D if either
each point consists of a single parameter (and ``params`` has length
2) or the array only contains a single point (in which case, the array
will be reshaped to ``(1, D - 1)``).
:type x1: array-like
:param x2: Second input array. The same restrictions that apply to ``x1`` also
apply here.
:type x2: array-like
:param params: Hyperparameter array. Must be 1-D with length one greater than
the last dimension of ``x1`` and ``x2``.
:type params: array-like
:returns: Array holding the Hessian of the pair-wise distances between points in arrays
``x1`` and ``x2`` with respect to the hyperparameters. Will be an array with
shape ``(D, D, n1, n2)``, where ``D`` is the length of ``params``, ``n1`` is
the length of the first axis of ``x1`` and ``n2`` is the length of the first
axis of ``x2``. The first two axes indicates the different derivative components
(i.e. the second derivative with respect to the first parameter is [0,0,:,:],
the mixed partial with respect to the first and second parameters is [0,1,:,:]
or [1,0,:,:], etc.)
:rtype: ndarray
"""
x1, n1, x2, n2, params, D = self._check_inputs(x1, x2, params)
r2_matrix = self.calc_r2(x1, x2, params)
off_diag = self.calc_dKdr2(r2_matrix)*r2_matrix
diag = self.calc_d2Kdr22(r2_matrix)*r2_matrix**2 + self.calc_dKdr2(r2_matrix)*r2_matrix
d2Kdtheta2 = np.broadcast_to(self.calc_K(r2_matrix), (D, D, n1, n2, D)).copy()
idx = np.arange(0, D, 1)
print(d2Kdtheta2)
d2Kdtheta2[idx, :, :, :, idx] = np.transpose(off_diag[np.newaxis, :, :, :], (0, 3, 1, 2))
print(d2Kdtheta2)
d2Kdtheta2[:, idx, :, :, idx] = np.transpose(off_diag[np.newaxis, :, :, :], (0, 3, 1, 2))
print(d2Kdtheta2)
d2Kdtheta2[idx, idx, :, :, idx] = np.transpose(diag, (2, 0, 1))
print(d2Kdtheta2)
return np.prod(d2Kdtheta2, axis=-1)
class SqExpBase(object):
r"""
Base Implementation of the squared exponential kernel
Class representing the spatial functions for the squared exponential kernel.
"""
def calc_K(self, r2):
r"""
Compute K(r^2) for the squared exponential kernel
This method implements the squared exponential kernel function as a function of distance.
Given an array of distances, this function evaluates the kernel function of those values,
returning an array of the same shape.
:param r2: Array holding distances between all points. All values in this array must be
non-negative.
:type r2: array-like
:returns: Array holding kernel evaluations, with the same shape as the input ``r``
:rtype: ndarray
"""
assert np.all(r2 >= 0.), "kernel distances must be positive"
r2 = np.array(r2)
return np.exp(-0.5*r2)
def calc_dKdr2(self, r2):
r"""
Calculate first derivative of the squared exponential kernel as a function of
squared distance
This method implements the first derivative of the squared exponential kernel
function as a function of squared distance. Given an array of squared distances,
this function evaluates the derivative function of those values, returning an
array of the same shape.
:param r2: Array holding squared distances between all points. All values in
this array must be non-negative.
:type r2: array-like
:returns: Array holding kernel derivatives, with the same shape as the input ``r2``
:rtype: ndarray
"""
assert np.all(r2 >= 0.), "kernel distances must be positive"
r2 = np.array(r2)
return -0.5*np.exp(-0.5*r2)
def calc_d2Kdr22(self, r2):
r"""
Calculate second derivative of the squared exponential kernel as a
function of squared distance
This method implements the second derivative of the squared exponential
kernel function as a function of squared distance. Given an array of
squared distances, this function evaluates the second derivative
function of those values, returning an array of the same shape.
:param r2: Array holding distances between all points. All values in
this array must be non-negative.
:type r2: array-like
:returns: Array holding kernel second derivatives, with the same shape
as the input ``r2``
:rtype: ndarray
"""
assert np.all(r2 >= 0.), "kernel distances must be positive"
r2 = | np.array(r2) | numpy.array |
import numpy as np
def plot_psresp(slopes, dt, df, suf, mean_slope, slope_error, best_parameters, statistics):
"""
Plot the success fraction over slopes for parameters satisfying the significance criterion
and the histogram over the grid of parameters.
Parameters
----------
slopes : `~numpy.ndarray`
slopes of the power law model
dt : `~numpy.ndarray`
bin length for the light curve in units of ``t``
df : `~numpy.ndarray`
bin factor for the logarithmic periodogram
suf : `~numpy.ndarray`
Success fraction for each model parameter
mean_slope : `~float`
Mean slope of the power law
slope_error : `~float`
Error of the mean slope
best_parameters : `~numpy.ndarray`
Parameters satisfying the significance criterion
statistics : `~numpy.ndarray`
Data used to calculate the mean slope and its error
over a grid of ``dt`` and ``df``
- slope with the highest success fraction
- highest success fraction
- slope of the lower full width at half maximum for the success fraction distribution
- slope of the higher full width at half maximum for the success fraction distribution
Returns
-------
fig : `~matplotlib.Figure`
Figure
"""
import matplotlib.pyplot as plt
from matplotlib import rc
from matplotlib import rcParams
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig = plt.figure(figsize=(11, 11))
for indx in range(len(best_parameters[0])):
plt.plot(slopes, suf[:, dt == dt[best_parameters[0][indx]], df == df[best_parameters[1][indx]]],
label='t bin = {}, f = {}'.format(dt[best_parameters[0][indx]],
df[best_parameters[1][indx]]))
plt.axhline(y=0.5 * np.max(statistics[1, :, :][best_parameters]),
xmin=np.min(statistics[2, :, :][best_parameters]*2/3-2/3),
xmax=np.max(statistics[3, :, :][best_parameters])*2/3-2/3,
color='k'
)
plt.axvline(x=mean_slope,
ymin=0,
ymax=np.max(statistics[1, :, :][best_parameters]),
color='k'
)
plt.text(mean_slope + 0.01,
0.5 * np.max(statistics[1, :, :][best_parameters]) + 0.01,
'FWHM = {:.1f}'.format(slope_error))
plt.text(mean_slope + 0.01, 0.01, 'mean slope = {}'.format(mean_slope))
plt.xlabel('slope')
plt.ylabel('success fraction')
plt.xlim(np.min(slopes), np.max(slopes))
plt.ylim(0, 1)
plt.legend()
# plt.savefig('SuF', bbox_inches='tight')
return fig
fig = plt.figure(figsize=(11, 11))
ax = fig.gca(projection='3d')
X, Y, Z = -slopes, dt, df
suf_test = suf > 0.95 * | np.max(suf) | numpy.max |
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
import tqdm
from scipy import interpolate
from mouse_detection.tracker import EuclideanDistTracker
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.
Parameters
----------
y : array_like, shape (N,)
the values of the time history of the signal.
window_size : int
the length of the window. Must be an odd integer number.
order : int
the order of the polynomial used in the filtering.
Must be less then `window_size` - 1.
deriv: int
the order of the derivative to compute (default = 0 means only smoothing)
Returns
-------
ys : ndarray, shape (N)
the smoothed signal (or it's n-th derivative).
Notes
-----
The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.
Examples
--------
t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label='Noisy signal')
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
plt.plot(t, ysg, 'r', label='Filtered signal')
plt.legend()
plt.show()
References
----------
.. [1] <NAME>, <NAME>, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, <NAME>, <NAME>, <NAME>
Cambridge University Press ISBN-13: 9780521880688
"""
import numpy as np
from math import factorial
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError as msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
def write_video(filepath, shape, fps=30):
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
video_height, video_width, CHANNELS = shape
video_filename = filepath
writer = cv2.VideoWriter(video_filename, fourcc, fps, (video_width, video_height), isColor=True)
return writer
def read_video(video_path, block=False, num_blocks=None, index=None):
'''
Read video in blocks or directly in memory, if block mode is selected reads only block by index
:param video_path: path to the video
:param block: allow block reading
:param num_blocks: number of blocks. eg. 10
:param index: index of the block. eg. 2 for the third block
:return: np.array of frames as uint8 type
'''
print('Reading video: ', video_path)
cap = cv2.VideoCapture(video_path)
frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frameWidth = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frameHeight = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print('video props: (frameCount, frameHeight, frameWidth)=', (frameCount, frameHeight, frameWidth))
fc = 0
ret = True
if not block:
buf = np.empty((frameCount, frameHeight, frameWidth, 3), np.dtype('uint8'))
while fc < frameCount and ret:
ret, ff = cap.read()
if ret:
buf[fc] = ff
fc += 1
cap.release()
else:
# calculate block indices:
block_length = frameCount // num_blocks
a = index * block_length
b = a + block_length
if index == num_blocks - 1:
b += frameCount % num_blocks
buf = np.empty((b - a, frameHeight, frameWidth, 3), np.dtype('uint8'))
cnt = 0
while (fc < frameCount and ret and fc < b):
ret, frame = cap.read()
if fc < b and fc >= a:
buf[cnt] = frame
cnt += 1
fc += 1
return buf
class BackgroundSubtractorTH:
def __init__(self, init_frame=None, threshold=0.93):
self.init_frame = init_frame
self._track_window = None
self.threshold = threshold
def apply(self, frame):
if self.init_frame is not None:
frame = frame - self.init_frame
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
value = int(self.threshold * 255)
ret, th1 = cv2.threshold(frame_gray, value, 255, cv2.THRESH_BINARY)
frame = np.stack([th1, th1, th1], axis=-1)
cv2.normalize(frame, frame, 0, 255, cv2.NORM_MINMAX)
return frame
def createBackgroundSubtractorTH(init_image=None, bkg_threshold=0.93):
return BackgroundSubtractorTH(init_frame=init_image, threshold=bkg_threshold)
def _remove_blackchannel(img):
w = 0.98
miu = 0.95
##
# Calculate A
I_inv = 255.0 - img
I_min = np.min(I_inv, axis=2)
kernel = | np.ones((3, 3), np.float32) | numpy.ones |
# encoding: utf-8
from __future__ import division
import sys
import os
import time
import datetime
import pandas as pd
import numpy as np
import math
import ast
CURRENT_DIR = os.path.abspath(os.path.dirname(__file__))
ADD_PATH = "%s/../"%(CURRENT_DIR)
sys.path.append(ADD_PATH)
from tools.mail import MyEmail
from tools.html import html_with_style
DATA_PATH = "%s/../data/basic_matrix" % (CURRENT_DIR)
def reviewing_data(df,send_str):
if len(df) ==0:
send_str += '零单' + '<br>'
return send_str
send_str += '审核中单量:'+str(len(df[(df['type']=='nan')])) + ' ' + '<br>'
send_str += '审核中比例:'+str(100.0*len(df[(df['type']=='nan')])/len(df)) + ' ' + '<br>' + '<br>'
return send_str
def pass_rate(df,send_str):
if len(df) == 0:
send_str += '零完成单' + '<br>'
return send_str
out = []
concat = []
out.append((len(df),len(df[df['suggestion']=='1']),100.0*len(df[df['suggestion']=='1'])/len(df)))
if len(df[df['type']=='first']) == 0:
out.append((0,0,0))
else:
out.append((len(df[df['type']=='first']),len(df[(df['suggestion']=='1')&(df['type']=='first')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='first')])/len(df[df['type']=='first'])))
if len(df[df['type']=='regular']) == 0:
out.append((0,0,0))
else:
out.append((len(df[df['type']=='regular']),len(df[(df['suggestion']=='1')&(df['type']=='regular')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='regular')])/len(df[df['type']=='regular'])))
if len(df[df['type']=='again']) == 0:
out.append((0,0,0))
else:
out.append((len(df[df['type']=='again']),len(df[(df['suggestion']=='1')&(df['type']=='again')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='again')])/len(df[df['type']=='again'])))
frame = pd.DataFrame(out, index=['总通过率','新单通过率','续贷通过率','再次通过率'], columns=['订单申请数','通过数','通过率'])
concat.append(frame)
concat = pd.concat(concat, keys=['机审通过率'], axis=1)
send_str += html_with_style(concat) + '<br>'
return send_str
def baseline(df,send_str):
if len(df) == 0:
send_str += '无新单' + '<br>'
return send_str
out = []
concat = []
baseline_data = []
baseline = df['baseline'].values.tolist()
for i in baseline:
temp = ast.literal_eval(i)
if len(temp) != 0:
baseline_data.extend(temp)
if baseline_data == []:
send_str += '无baseline' + '<br>'
return send_str
for i in set(baseline_data):
out.append((i,baseline_data.count(i),100.0*baseline_data.count(i)/len(df)))
frame = pd.DataFrame(out, columns=['baseline','个数','拒绝率'])
concat.append(frame)
concat = pd.concat(concat, keys=['新单baseline拒绝率'], axis=1)
send_str += html_with_style(concat) + '<br>'
return send_str
def score(df,send_str):
if len(df) == 0:
send_str += '无新单' + '<br>'
return send_str
out = []
concat = []
temp = df['score'].values.tolist()
score = []
for i in temp:
try:
score.append(int(i))
except:
continue
score = np.array(score)
out.append(('>1000',sum(np.array(score)>1000),100.0*sum(np.array(score)>1000)/len(np.array(score))))
out.append(('901-1000',(sum(np.array(score)>900)-sum(np.array(score)>1000)),100.0*(sum(np.array(score)>900)-sum(np.array(score)>1000))/len(np.array(score))))
out.append(('801-900',(sum(np.array(score)>800)-sum(np.array(score)>900)),100.0*(sum(np.array(score)>800)-sum(np.array(score)>900))/len(np.array(score))))
out.append(('701-800',(sum( | np.array(score) | numpy.array |
import numpy as np
from onnx import TensorProto, helper
from finn.custom_op import CustomOp
import finn.util.basic as util
from finn.core.datatype import DataType
# adapted from <NAME>'s CS231 im2col code
# utilities to generate a patch matrix from a multichannel image
# of shape (batches, channels, height, width)
def compute_conv_output_dim(ifm_dim, k, stride, pad=0):
"""Returns spatial output dimension size for convolution with given params."""
return int(((ifm_dim + 2 * pad - k) / stride) + 1)
def get_im2col_indices_nchw(
x_shape, field_height, field_width, padding=0, stride_y=1, stride_x=1
):
"""Returns im2col indices."""
# First figure out what the size of the output should be
N, C, H, W = x_shape
assert (H + 2 * padding - field_height) % stride_y == 0
assert (W + 2 * padding - field_width) % stride_x == 0
out_height = compute_conv_output_dim(H, field_height, stride_y, padding)
out_width = compute_conv_output_dim(W, field_width, stride_x, padding)
i0 = np.repeat(np.arange(field_height), field_width)
i0 = np.tile(i0, C)
i1 = stride_y * np.repeat( | np.arange(out_height) | numpy.arange |
import numpy as np
import argparse
from base_module import Posenet, Camnet, discriminator, Encoder
from mmdgan_mh_enc import Pose_mmdgan_enc
import os
import random
import tensorflow as tf
import scipy.io as sio
import logging, logging.config
import sys
from eval_functions import err_3dpe
import ops
parse = argparse.ArgumentParser()
parse.add_argument("--batchsize", help= "the batch size used in training", default=128, type = int)
parse.add_argument("--epochs", help="number of epochs during training", default=50, type = int)
parse.add_argument("--latent_dim", help="dimension of latent space", default=1024, type = int)
parse.add_argument("--latent_dim_pose", help="dimension for pose in the latent space of discriminator", default=128, type=int)
parse.add_argument("--latent_dim_kcs", help="dimension for kcs in the latent space of discriminator", default=1024, type=int)
parse.add_argument("--d_output_dim", help="dimension for output of discriminator", default=8, type=int)
parse.add_argument("--lr", help="learning rate", default=1e-4, type=float)
parse.add_argument("--architecture", help="which architeture to use[mmdgan, mmdgan_enc]", default='mmdgan_enc', type=str)
parse.add_argument("--beta1", help="beta1 for adamoptimizor", default=0.5, type=float)
parse.add_argument("--diter", help="the number of discriminator updates oer generator updates", default=1, type=int)
parse.add_argument("--kernel", help="kernel type used in mmd[dot, mix_rbf, mix_rq]", default='mix_rq', type=str)
parse.add_argument("--repro_weight", help="weight of reprojection loss", default=10.0, type=float)
parse.add_argument("--cam_weight", help="weight of camera loss", default=10.0, type=float)
parse.add_argument("--gp_weight", help="weight of dot kernel in mix kernel", default=0.1, type=float)
parse.add_argument("--reg_weight", help="weight for regularizer", default=7.5, type=float)
parse.add_argument("--dot_weight", help="weight of dot kernel in mix kernel", default=10.0, type=float)
parse.add_argument("--lr_decay", help="learning rate decay rate", default=0.94, type=float)
parse.add_argument("--enc_weight", help="weight of encoder", default=10.0, type=float)
parse.add_argument("--sampling", help="set to true if generate samples", default=True, type=bool)
parse.add_argument("--checkpoint", help="which model to load", default=0, type=int)
# 931070 for gt data
# 971070 for shft
parse.add_argument("--num_samples", help="number of hypotheses", default=10, type=int)
parse.add_argument("--datatype", help="datatype used for training [GT, SHFT, GTMJ]", default='GT', type=str)
parse.add_argument("--load_path", help="specify the path to load model", default='./models', type=str)
args = parse.parse_args()
actions = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Photo', 'Posing', 'Purchases', 'Sitting',
'SittingDown', 'Smoking', 'Waiting', 'WalkDog', 'WalkTogether', 'Walking']
pose3d_dim = 16 * 3
pose2d_dim = 16 * 2
cam_dim = 6
lr = args.lr
model_name = '{}_regweight{}_encweight{}_2D{}'.format(args.architecture, args.reg_weight, args.enc_weight, args.datatype)
log_dir = 'logs_eval'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logging.config.fileConfig('./logging.conf')
logger = logging.getLogger()
fileHandler = logging.FileHandler("{0}/log.txt".format(log_dir))
logger.addHandler(fileHandler)
logger.info("Logs will be written to %s" % log_dir)
def log_arguments():
logger.info('Command: %s', ' '.join(sys.argv))
s = '\n'.join([' {}: {}'.format(arg, getattr(args, arg)) for arg in vars(args)])
s = 'Arguments:\n' + s
logger.info(s)
log_arguments()
posenet = Posenet(args.latent_dim, pose3d_dim)
camnet = Camnet(args.latent_dim, cam_dim)
disc = discriminator(args.latent_dim_pose, args.latent_dim_kcs, args.d_output_dim)
encoder = Encoder(args.latent_dim, args.latent_dim)
mmd_posenet = Pose_mmdgan_enc(posenet, camnet, disc, encoder, args.latent_dim, args.batchsize, log_dir, args.epochs, pose2d_dim, pose3d_dim,
args.kernel, args.repro_weight, args.cam_weight, args.gp_weight, args.reg_weight, args.dot_weight, args.enc_weight)
mmd_posenet.build_model()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
batchsize = args.batchsize
load_dir = os.path.join(args.load_path, model_name)
ckpt = tf.train.get_checkpoint_state(load_dir, latest_filename="checkpoint")
if args.checkpoint > 0:
ckpt_name = os.path.join(os.path.join(load_dir, "checkpoint-{}".format(args.checkpoint)))
else:
ckpt_name = ckpt.model_checkpoint_path
mmd_posenet.saver.restore(sess, ckpt_name)
print('Loading model {}'.format(os.path.basename(ckpt_name)))
path = 'new_data/test/2d{}_3dTEM'.format(args.datatype)
path_cam = 'new_data/test/2d{}_3dCAM'.format(args.datatype)
logger.info('{0:>15} {1:>30} {2:>30}'.format('Action', 'Protocol1', 'Protocol2'))
val_best_all = []
valcam_best_all = []
val_zc_all = []
valcam_zc_all = []
for action in actions:
data_2d_3d_test = sio.loadmat('{}/{}_2d{}_3d_test.mat'.format(path, action, args.datatype))
data_cam = sio.loadmat('{}/{}_2d{}_3d_test.mat'.format(path_cam, action, args.datatype))
poses2d_eval = data_2d_3d_test['poses_2d'][::64, :]
poses3d_eval = data_2d_3d_test['poses_3d'][::64, :] / 1000
poses_3d_cam = data_cam['poses_3d'][::64, :] / 1000
poses_zc = []
posescam_zc = []
# generate results under zero code setting
for eval in range(poses2d_eval.shape[0] // batchsize):
noise_zc = np.zeros([batchsize, args.latent_dim])
poses, cam = mmd_posenet.inference(sess, poses2d_eval[eval * batchsize: (eval + 1) * batchsize],
poses3d_eval[eval * batchsize: (eval + 1) * batchsize], noise_zc,
lr)
poses_reshape = np.reshape(poses, [poses.shape[0], 3, 16])
k = np.reshape(cam, [cam.shape[0], 2, 3])
R = ops.compute_R(k) # recover rotation matrix from camera matrix
poses_cam = np.matmul(R, poses_reshape) # transfer pose from the template frame to the camera frame
poses_cam_reshape = np.reshape(poses_cam, [poses_cam.shape[0], -1])
posescam_zc.append(poses_cam_reshape)
poses_zc.append(poses)
poses_zc = np.vstack(poses_zc)
posescam_zc = np.vstack(posescam_zc)
# compute the error under zero code setting
val_zc = 0.0
valcam_zc = 0.0
for p in range(poses_zc.shape[0]):
err_zc = 1000 * err_3dpe(poses3d_eval[p:p + 1, :], poses_zc[p:p + 1, :], True)
errcam_zc = 1000 * err_3dpe(poses_3d_cam[p:p + 1, :], 1.1 * posescam_zc[p:p + 1, :], False)
# scale the output according to the ratio between poses in camera frame and poses in template frame in the training set
val_zc = val_zc + err_zc
valcam_zc = valcam_zc + errcam_zc
val_zc_all.append(err_zc)
valcam_zc_all.append(errcam_zc)
val_zc = val_zc / poses_zc.shape[0]
valcam_zc = valcam_zc/posescam_zc.shape[0]
# generate results for multiple hypotheses
poses_samples_all = []
posescam_samples_all = []
R_all = []
poses_repro_all = []
for eval in range(poses2d_eval.shape[0] // batchsize):
poses_samples_batch = []
posescam_samples_batch = []
poses_repro_batch = []
for i in range(args.num_samples):
z_test = np.random.normal(0, 1, (batchsize, args.latent_dim))
posespred, campred = mmd_posenet.inference(sess, poses2d_eval[eval * batchsize: (eval + 1) * batchsize],
poses3d_eval[eval * batchsize: (eval + 1) * batchsize], z_test,
lr)
posespred_reshape = np.reshape(posespred, [posespred.shape[0], 3, 16])
poses_samples_batch.append(posespred)
k = np.reshape(campred, [campred.shape[0], 2, 3])
R = ops.compute_R(k)
posespred_cam = np.matmul(R, posespred_reshape)
posespred_cam_reshape = np.reshape(posespred_cam, [posespred_cam.shape[0], -1])
posescam_samples_batch.append(posespred_cam_reshape)
poses_repro = np.reshape(np.matmul(k, posespred_reshape), [posespred.shape[0], -1])
poses_repro_batch.append(poses_repro)
poses_samples_batch = np.stack(poses_samples_batch, axis=1)
poses_samples_all.append(poses_samples_batch)
posescam_samples_batch = np.stack(posescam_samples_batch,axis=1)
posescam_samples_all.append(posescam_samples_batch)
poses_repro_batch = np.stack(poses_repro_batch, axis=1)
poses_repro_all.append(poses_repro_batch)
R_all.append(R)
poses_samples_all = np.concatenate(poses_samples_all, axis=0)
posescam_samples_all = np.concatenate(posescam_samples_all, axis=0)
poses_repro_all = np.concatenate(poses_repro_all, axis=0)
R_all = np.concatenate(R_all, axis=0)
# compute error for bh setting
err = np.zeros([poses_samples_all.shape[0], poses_samples_all.shape[1]])
err_cam = | np.zeros([poses_samples_all.shape[0], poses_samples_all.shape[1]]) | numpy.zeros |
"""Control functions for WFSC."""
import numpy as np
# import multiprocessing
# from astropy.io import fits
# import matplotlib.pyplot as plt
import falco
def wrapper(mp, cvar, jacStruct):
"""
Outermost wrapper function for all the controller functions.
Parameters
----------
mp : ModelParameters
Structure containing optical model parameters
cvar : ModelParameters
Structure containing controller variables
jacStruct : ModelParameters
Structure containing control Jacobians for each specified DM.
Returns
-------
None
Changes are made by reference to mp.
"""
# if type(mp) is not falco.config.ModelParameters:
# raise TypeError('Input "mp" must be of type ModelParameters')
# pass
# with falco.util.TicToc('Using the Jacobian to make other matrices'):
print('Using the Jacobian to make other matrices...', end='')
# Compute matrices for linear control with regular EFC
cvar.GstarG_wsum = np.zeros((cvar.NeleAll, cvar.NeleAll))
cvar.RealGstarEab_wsum = np.zeros((cvar.NeleAll, 1))
for im in range(mp.jac.Nmode):
Gmode = np.zeros((mp.Fend.corr.Npix, 1), dtype=complex) # Initialize a row to concatenate onto
if(any(mp.dm_ind == 1)): Gmode = np.hstack((Gmode,np.squeeze(jacStruct.G1[:,:,im])))
if(any(mp.dm_ind == 2)): Gmode = np.hstack((Gmode,np.squeeze(jacStruct.G2[:,:,im])))
if(any(mp.dm_ind == 8)): Gmode = np.hstack((Gmode,np.squeeze(jacStruct.G8[:,:,im])))
if(any(mp.dm_ind == 9)): Gmode = np.hstack((Gmode,np.squeeze(jacStruct.G9[:,:,im])))
Gmode = Gmode[:, 1:] # Remove the zero column used for initialization
# Square matrix part stays the same if no re-linearization has occurrred.
cvar.GstarG_wsum += mp.jac.weights[im]*np.real(np.conj(Gmode).T @ Gmode)
# The G^*E part changes each iteration because the E-field changes.
# Apply 2-D spatial weighting to E-field in dark hole pixels.
Eweighted = mp.WspatialVec*cvar.EfieldVec[:, im]
# Apply the Jacobian weights and add to the total.
cvar.RealGstarEab_wsum += mp.jac.weights[im]*np.real(
np.conj(Gmode).T @ Eweighted.reshape(mp.Fend.corr.Npix, 1))
# Make the regularization matrix. (Define only diagonal here to save RAM.)
cvar.EyeGstarGdiag = np.max(np.diag(cvar.GstarG_wsum))*np.ones(cvar.NeleAll)
cvar.EyeNorm = np.max(np.diag(cvar.GstarG_wsum))
print('done.')
# Call the Controller Function
print('Control beginning ...')
# Established, conventional controllers
if mp.controller.lower() == 'plannedefc':
dDM = _planned_efc(mp, cvar)
elif mp.controller.lower() == 'gridsearchefc':
dDM = _grid_search_efc(mp, cvar)
# Update the DM commands by adding the delta control signal
if(any(mp.dm_ind == 1)): mp.dm1.V += dDM.dDM1V
if(any(mp.dm_ind == 2)): mp.dm2.V += dDM.dDM2V
if(any(mp.dm_ind == 8)): mp.dm8.V += dDM.dDM8V
if(any(mp.dm_ind == 9)): mp.dm9.V += dDM.dDM9V
# Save the delta from the previous command
if(any(mp.dm_ind == 1)): mp.dm1.dV = dDM.dDM1V
if(any(mp.dm_ind == 2)): mp.dm2.dV = dDM.dDM2V
if(any(mp.dm_ind == 8)): mp.dm8.dV = dDM.dDM8V
if(any(mp.dm_ind == 9)): mp.dm9.dV = dDM.dDM9V
def cull_actuators(mp, cvar, jacStruct):
"""
Remove weak actuators from the controlled set.
Parameters
----------
mp : ModelParameters
Structure containing optical model parameters
cvar : ModelParameters
Structure containing controller variables
jacStruct : ModelParameters
Structure containing control Jacobians for each specified DM.
Returns
-------
None
Changes are made by reference to mp and jacStruct.
"""
if type(mp) is not falco.config.ModelParameters:
raise TypeError('Input "mp" must be of type ModelParameters')
# Reduce the number of actuators used based on their relative strength
# in the Jacobian
if(cvar.flagCullAct and cvar.flagRelin):
print('Weeding out weak actuators from the control Jacobian...')
if(any(mp.dm_ind == 1)):
G1intNorm = np.sum(np.mean(np.abs(jacStruct.G1)**2, axis=2), axis=0)
G1intNorm = G1intNorm/np.max(G1intNorm)
mp.dm1.act_ele = np.nonzero(G1intNorm >= 10**(mp.logGmin))[0]
del G1intNorm
if(any(mp.dm_ind == 2)):
G2intNorm = np.sum(np.mean(np.abs(jacStruct.G2)**2, axis=2), axis=0)
G2intNorm = G2intNorm/np.max(G2intNorm)
mp.dm2.act_ele = np.nonzero(G2intNorm >= 10**(mp.logGmin))[0]
del G2intNorm
if(any(mp.dm_ind == 8)):
G8intNorm = np.sum(np.mean(np.abs(jacStruct.G8)**2, axis=2), axis=0)
G8intNorm = G8intNorm/np.max(G8intNorm)
mp.dm8.act_ele = np.nonzero(G8intNorm >= 10**(mp.logGmin))[0]
del G8intNorm
if(any(mp.dm_ind == 9)):
G9intNorm = np.sum(np.mean(np.abs(jacStruct.G9)**2, axis=2), axis=0)
G9intNorm = G9intNorm/np.max(G9intNorm)
mp.dm9.act_ele = np.nonzero(G9intNorm >= 10**(mp.logGmin))[0]
del G9intNorm
# Add back in all actuators that are tied (to make the tied actuator
# logic easier)
if(any(mp.dm_ind == 1)):
for ti in range(mp.dm1.tied.shape[0]):
if not (any(mp.dm1.act_ele == mp.dm1.tied[ti, 0])):
mp.dm1.act_ele = np.hstack([mp.dm1.act_ele, mp.dm1.tied[ti, 0]])
if not (any(mp.dm1.act_ele == mp.dm1.tied[ti, 1])):
mp.dm1.act_ele = np.hstack([mp.dm1.act_ele, mp.dm1.tied[ti, 1]])
# Need to sort for the logic in model_Jacobian.m
mp.dm1.act_ele = np.sort(mp.dm1.act_ele)
if(any(mp.dm_ind == 2)):
for ti in range(mp.dm2.tied.shape[0]):
if not any(mp.dm2.act_ele == mp.dm2.tied[ti, 0]):
mp.dm2.act_ele = np.hstack([mp.dm2.act_ele, mp.dm2.tied[ti, 0]])
if not any(mp.dm2.act_ele == mp.dm2.tied[ti, 1]):
mp.dm2.act_ele = np.hstack([mp.dm2.act_ele, mp.dm2.tied[ti, 1]])
# Need to sort for the logic in model_Jacobian.m
mp.dm2.act_ele = np.sort(mp.dm2.act_ele)
# if(any(mp.dm_ind == 8))
# for ti=1:size(mp.dm8.tied,1)
# if(any(mp.dm8.act_ele==mp.dm8.tied(ti,1))==false); mp.dm8.act_ele = [mp.dm8.act_ele; mp.dm8.tied(ti,1)]; end
# if(any(mp.dm8.act_ele==mp.dm8.tied(ti,2))==false); mp.dm8.act_ele = [mp.dm8.act_ele; mp.dm8.tied(ti,2)]; end
# end
# mp.dm8.act_ele = sort(mp.dm8.act_ele);
# end
# if(any(mp.dm_ind == 9))
# for ti=1:size(mp.dm9.tied,1)
# if(any(mp.dm9.act_ele==mp.dm9.tied(ti,1))==false); mp.dm9.act_ele = [mp.dm9.act_ele; mp.dm9.tied(ti,1)]; end
# if(any(mp.dm9.act_ele==mp.dm9.tied(ti,2))==false); mp.dm9.act_ele = [mp.dm9.act_ele; mp.dm9.tied(ti,2)]; end
# end
# mp.dm9.act_ele = sort(mp.dm9.act_ele);
# end
# Update the number of elements used per DM
if(any(mp.dm_ind == 1)): mp.dm1.Nele = mp.dm1.act_ele.size
if(any(mp.dm_ind == 2)): mp.dm2.Nele = mp.dm2.act_ele.size
if(any(mp.dm_ind == 8)): mp.dm8.Nele = mp.dm8.act_ele.size
if(any(mp.dm_ind == 9)): mp.dm9.Nele = mp.dm9.act_ele.size
if(any(mp.dm_ind == 1)): print(' DM1: %d/%d (%.2f%%) actuators kept for Jacobian' % (mp.dm1.Nele, mp.dm1.NactTotal, 100*mp.dm1.Nele/mp.dm1.NactTotal))
if(any(mp.dm_ind == 2)): print(' DM2: %d/%d (%.2f%%) actuators kept for Jacobian' % (mp.dm2.Nele, mp.dm2.NactTotal, 100*mp.dm2.Nele/mp.dm2.NactTotal))
if(any(mp.dm_ind == 8)): print(' DM8: %d/%d (%.2f%%) actuators kept for Jacobian' % (mp.dm8.Nele, mp.dm8.NactTotal, 100*mp.dm8.Nele/mp.dm8.NactTotal))
if(any(mp.dm_ind == 9)): print(' DM9: %d/%d (%.2f%%) actuators kept for Jacobian' % (mp.dm9.Nele, mp.dm9.NactTotal, 100*mp.dm9.Nele/mp.dm9.NactTotal))
# Crop out unused actuators from the control Jacobian
if(any(mp.dm_ind == 1)): jacStruct.G1 = jacStruct.G1[:, mp.dm1.act_ele, :]
if(any(mp.dm_ind == 2)): jacStruct.G2 = jacStruct.G2[:, mp.dm2.act_ele, :]
if(any(mp.dm_ind == 8)): jacStruct.G8 = jacStruct.G8[:, mp.dm8.act_ele, :]
if(any(mp.dm_ind == 9)): jacStruct.G9 = jacStruct.G9[:, mp.dm9.act_ele, :]
return None
def _grid_search_efc(mp, cvar):
"""
Perform a grid search over specified variables for the controller.
Parameters
----------
mp : ModelParameters
Structure containing optical model parameters
cvar : ModelParameters
Structure containing controller variables
Returns
-------
dDM : ModelParameters
Structure containing the delta DM commands for each DM
"""
# Make all combinations of the values
vals_list = [(x, y) for y in mp.ctrl.dmfacVec for x in mp.ctrl.log10regVec]
Nvals = len(mp.ctrl.log10regVec) * len(mp.ctrl.dmfacVec)
InormVec = np.zeros(Nvals) # Initialize
# Temporarily store computed DM commands so that the best one does not have
# to be re-computed
if(any(mp.dm_ind == 1)):
dDM1V_store = np.zeros((mp.dm1.Nact, mp.dm1.Nact, Nvals))
if(any(mp.dm_ind == 2)):
dDM2V_store = np.zeros((mp.dm2.Nact, mp.dm2.Nact, Nvals))
if(any(mp.dm_ind == 8)):
dDM8V_store = np.zeros((mp.dm8.NactTotal, Nvals))
if(any(mp.dm_ind == 9)):
dDM9V_store = np.zeros((mp.dm9.NactTotal, Nvals))
# Empirically find the regularization value giving the best contrast
# if(mp.flagParallel and mp.ctrl.flagUseModel):
# # Run the controller in parallel
# pool = multiprocessing.Pool(processes=mp.Nthreads)
# results = [pool.apply_async(_efc, args=(ni,vals_list,mp,cvar)) for ni in np.arange(Nvals,dtype=int) ]
# results_ctrl = [p.get() for p in results] # All the Jacobians in a list
# pool.close()
# pool.join()
#
# # Convert from a list to arrays:
# for ni in range(Nvals):
# InormVec[ni] = results_ctrl[ni][0]
# if(any(mp.dm_ind == 1)): dDM1V_store[:,:,ni] = results_ctrl[ni][1].dDM1V
# if(any(mp.dm_ind == 2)): dDM2V_store[:,:,ni] = results_ctrl[ni][1].dDM2V
# else:
for ni in range(Nvals):
[InormVec[ni], dDM_temp] = _efc(ni, vals_list, mp, cvar)
# delta voltage commands
if(any(mp.dm_ind == 1)): dDM1V_store[:, :, ni] = dDM_temp.dDM1V
if(any(mp.dm_ind == 2)): dDM2V_store[:, :, ni] = dDM_temp.dDM2V
if(any(mp.dm_ind == 8)): dDM8V_store[:, ni] = dDM_temp.dDM8V
if(any(mp.dm_ind == 9)): dDM9V_store[:, ni] = dDM_temp.dDM9V
# Print out results to the command line
print('Scaling factor:\t', end='')
for ni in range(Nvals):
print('%.2f\t\t' % (vals_list[ni][1]), end='')
print('\nlog10reg: \t', end='')
for ni in range(Nvals):
print('%.1f\t\t' % (vals_list[ni][0]), end='')
print('\nInorm: \t', end='')
for ni in range(Nvals):
print('%.2e\t' % (InormVec[ni]), end='')
print('\n', end='')
# Find the best scaling factor and Lagrange multiplier pair based on the
# best contrast.
# [cvar.cMin,indBest] = np.min(InormVec)
indBest = np.argmin(InormVec)
cvar.cMin = np.min(InormVec)
dDM = falco.config.Object()
# delta voltage commands
if(any(mp.dm_ind == 1)): dDM.dDM1V = np.squeeze(dDM1V_store[:, :, indBest])
if(any(mp.dm_ind == 2)): dDM.dDM2V = np.squeeze(dDM2V_store[:, :, indBest])
if(any(mp.dm_ind == 8)): dDM.dDM8V = np.squeeze(dDM8V_store[:, indBest])
if(any(mp.dm_ind == 9)): dDM.dDM9V = np.squeeze(dDM9V_store[:, indBest])
cvar.log10regUsed = vals_list[indBest][0]
dmfacBest = vals_list[indBest][1]
if(mp.ctrl.flagUseModel):
print('Model-based grid search expects log10reg, = %.1f,\t dmfac = %.2f,\t %4.2e normalized intensity.'
% (cvar.log10regUsed, dmfacBest, cvar.cMin))
else:
print('Empirical grid search finds log10reg, = %.1f,\t dmfac = %.2f,\t %4.2e normalized intensity.'
% (cvar.log10regUsed, dmfacBest, cvar.cMin))
return dDM
def _planned_efc(mp, cvar):
"""
Perform a scheduled/planned set of EFC iterations.
Parameters
----------
mp : ModelParameters
Structure containing optical model parameters
cvar : ModelParameters
Structure containing controller variables
Returns
-------
dDM : ModelParameters
Structure containing the delta DM commands for each DM
"""
# Make all combinations of the values
vals_list = [(x, y) for y in mp.ctrl.dmfacVec for x in mp.ctrl.log10regVec]
Nvals = len(mp.ctrl.log10regVec) * len(mp.ctrl.dmfacVec)
InormVec = np.zeros(Nvals) # Initialize
# Make more obvious names for conditions:
relinearizeNow = any(np.array(mp.gridSearchItrVec) == cvar.Itr)
useBestLog10Reg = np.imag(mp.ctrl.log10regSchedIn[cvar.Itr]) != 0
realLog10RegIsZero = np.real(mp.ctrl.log10regSchedIn[cvar.Itr]) == 0
# Step 1: Empirically find the "optimal" regularization value
# (if told to for this iteration).
if relinearizeNow:
# Temporarily store computed DM commands so that the best one does
# not have to be re-computed
if(any(mp.dm_ind == 1)):
dDM1V_store = np.zeros((mp.dm1.Nact, mp.dm1.Nact, Nvals))
if(any(mp.dm_ind == 2)):
dDM2V_store = np.zeros((mp.dm2.Nact, mp.dm2.Nact, Nvals))
if(any(mp.dm_ind == 8)):
dDM8V_store = np.zeros((mp.dm8.NactTotal, Nvals))
if(any(mp.dm_ind == 9)):
dDM9V_store = np.zeros((mp.dm9.NactTotal, Nvals))
for ni in range(Nvals):
[InormVec[ni], dDM_temp] = _efc(ni, vals_list, mp, cvar)
# delta voltage commands
if(any(mp.dm_ind == 1)): dDM1V_store[:, :, ni] = dDM_temp.dDM1V
if(any(mp.dm_ind == 2)): dDM2V_store[:, :, ni] = dDM_temp.dDM2V
if(any(mp.dm_ind == 8)): dDM8V_store[:, ni] = dDM_temp.dDM8V
if(any(mp.dm_ind == 9)): dDM9V_store[:, ni] = dDM_temp.dDM9V
# Print out results to the command line
print('Scaling factor:\t', end='')
for ni in range(Nvals): print('%.2f\t\t' % (vals_list[ni][1]), end='')
print('\nlog10reg: \t', end='')
for ni in range(Nvals): print('%.1f\t\t' % (vals_list[ni][0]), end='')
print('\nInorm: \t', end='')
for ni in range(Nvals): print('%.2e\t' % (InormVec[ni]), end='')
print('\n', end='')
# Find the best scaling factor and Lagrange multiplier pair based on
# the best contrast.
# [cvar.cMin,indBest] = np.min(InormVec)
indBest = np.argmin(InormVec)
cvar.cMin = np.min(InormVec)
cvar.latestBestlog10reg = vals_list[indBest][0]
cvar.latestBestDMfac = vals_list[indBest][1]
if(mp.ctrl.flagUseModel):
print(('Model-based grid search expects log10reg, = %.1f,\t ' +
'dmfac = %.2f,\t %4.2e normalized intensity.') %
(cvar.latestBestlog10reg, cvar.latestBestDMfac, cvar.cMin))
else:
print(('Empirical grid search finds log10reg, = %.1f,\t dmfac' +
' = %.2f,\t %4.2e normalized intensity.') %
(cvar.latestBestlog10reg, cvar.latestBestDMfac, cvar.cMin))
# Skip steps 2 and 3 if the schedule for this iteration is just to use the
# "optimal" regularization AND if grid search was performed this iteration.
if relinearizeNow and useBestLog10Reg and realLog10RegIsZero:
# delta voltage commands
dDM = falco.config.Object() # Initialize
if(any(mp.dm_ind == 1)): dDM.dDM1V = np.squeeze(dDM1V_store[:, :, indBest])
if(any(mp.dm_ind == 2)): dDM.dDM2V = np.squeeze(dDM2V_store[:, :, indBest])
if(any(mp.dm_ind == 8)): dDM.dDM8V = np.squeeze(dDM8V_store[:, indBest])
if(any(mp.dm_ind == 9)): dDM.dDM9V = np.squeeze(dDM9V_store[:, indBest])
log10regSchedOut = cvar.latestBestlog10reg
else:
# Step 2: For this iteration in the schedule, replace the imaginary
# part of the regularization with the latest "optimal" regularization
if useBestLog10Reg:
log10regSchedOut = cvar.latestBestlog10reg + \
np.real(mp.ctrl.log10regSchedIn[cvar.Itr])
else:
log10regSchedOut = np.real(mp.ctrl.log10regSchedIn[cvar.Itr])
# Step 3: Compute the EFC command to use
ni = 0
if not hasattr(cvar, 'latestBestDMfac'):
cvar.latestBestDMfac = 1
vals_list = [(x, y) for y in np.array([cvar.latestBestDMfac])
for x in np.array([log10regSchedOut])]
[cvar.cMin, dDM] = _efc(ni, vals_list, mp, cvar)
if mp.ctrl.flagUseModel:
print(('Model expects scheduled log10(reg) = %.1f\t to give ' +
'%4.2e normalized intensity.') %
(log10regSchedOut, cvar.cMin))
else:
print(('Scheduled log10reg = %.1f\t gives %4.2e normalized' +
' intensity.') % (log10regSchedOut, cvar.cMin))
cvar.log10regUsed = log10regSchedOut
return dDM
def efc_schedule_generator(scheduleMatrix):
"""
Generate the EFC schedule from an input matrix.
Parameters
----------
scheduleMatrix : array_like
DESCRIPTION.
Returns
-------
Nitr : int
Number of WFSC iterations.
relinItrVec : array_like
DESCRIPTION.
gridSearchItrVec : array_like
DESCRIPTION.
log10regSched : array_like
DESCRIPTION.
dm_ind_sched : list
DESCRIPTION.
Notes
-----
CONTROL SCHEDULE. Columns of sched_mat are:
% Column 0: # of iterations,
% Column 1: log10(regularization),
% Column 2: which DMs to use (12, 128, 129, or 1289) for control
% Column 3: flag (0 = false, 1 = true), whether to re-linearize
% at that iteration.
% Column 4: flag (0 = false, 1 = true), whether to perform an
% EFC parameter grid search to find the set giving the best
% contrast .
% The imaginary part of the log10(regularization) in column 1 is
% replaced for that iteration with the optimal log10(regularization)
% A row starting with [0, 0, 0, 1...] relinearizes only at that time
"""
# Number of correction iterations
Nitr = int(np.real(np.sum(scheduleMatrix[:, 0])))
# Create the vectors of:
# 1) iteration numbers at which to relinearize the Jacobian
# 2) log10(regularization) at each correction iteration
relinItrVec = np.array([]) # Initialize
gridSearchItrVec = [] # Initialize
log10regSched = np.zeros((Nitr,), dtype=complex) # Initialize
dmIndList = np.zeros((Nitr,), dtype=int) # Initialize
iterCount = 0
for iRow in range(scheduleMatrix.shape[0]):
# When to re-linearize
if int(np.real(scheduleMatrix[iRow, 3])) == 1:
relinItrVec = np.append(relinItrVec, iterCount)
# When to re-do the empirical EFC grid search
if int(np.real(scheduleMatrix[iRow, 4])) == 1:
gridSearchItrVec.append(iterCount)
# Make the vector of regularizations at each iteration
deltaIter = int(np.real(scheduleMatrix[iRow, 0]))
if not deltaIter == 0:
log10regSched[iterCount:(iterCount+deltaIter)] = \
scheduleMatrix[iRow, 1]
dmIndList[iterCount:(iterCount+deltaIter)] = \
int(np.real(scheduleMatrix[iRow, 2]))
iterCount += int(np.real(scheduleMatrix[iRow, 0]))
gridSearchItrVec = | np.asarray(gridSearchItrVec) | numpy.asarray |
import numpy as np
import neworder
import matplotlib.pyplot as plt
from matplotlib import colors
class Schelling(neworder.Model):
def __init__(self, timeline, gridsize, categories, similarity):
# NB missing this line can cause memory corruption
super().__init__(timeline, neworder.MonteCarlo.deterministic_identical_stream)
# category 0 is empty cell
self.ncategories = len(categories)
# randomly sample initial population according to category weights
init_pop = self.mc.sample(np.prod(gridsize), categories).reshape(gridsize)
self.sat = np.empty(gridsize, dtype=int)
self.similarity = similarity
self.domain = neworder.StateGrid(init_pop, neworder.Domain.CONSTRAIN)
self.fig, self.img = self.__init_visualisation()
def step(self):
# start with empty cells being satisfied
self.sat = (self.domain.state == 0)
# !count!
# count all neighbours, scaling by acceptable similarity ratio
n_any = self.domain.count_neighbours(lambda x: x>0) * self.similarity
for c in range(1,self.ncategories):
# count neighbour with a specific state
n_cat = self.domain.count_neighbours(lambda x: x==c)
self.sat = np.logical_or(self.sat, np.logical_and(n_cat > n_any, self.domain.state == c))
# !count!
n_unsat = np.sum(~self.sat)
pop = self.domain.state.copy()
free = list(zip(*np.where(pop == 0)))
for src in zip(* | np.where(~self.sat) | numpy.where |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
2D Convolutional Layer with multiple output channels
Reference:
http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html
<NAME>, 2018-12-13
"""
import matplotlib.pyplot as plt
from scipy import misc
import numpy as np
from skimage import exposure
from math import ceil
def convolution2d(conv_input, conv_kernel, bias, strides=(1, 1), padding='same'):
# This function which takes an input (Tensor) and a kernel (Tensor)
# and returns the convolution of them
# Args:
# conv_input: a numpy array of size [input_height, input_width, input # of channels].
# conv_kernel: a numpy array of size [kernel_height, kernel_width, input # of channels,
# output # of channels] represents the kernel of the Convolutional Layer's filter.
# bias: a numpy array of size [output # of channels], represents the bias of the Convolutional
# Layer's filter.
# strides: a tuple of (convolution vertical stride, convolution horizontal stride).
# padding: type of the padding scheme: 'same' or 'valid'.
# Returns:
# a numpy array (convolution output).
assert len(conv_kernel.shape) == 4, "The size of kernel should be (kernel_height, kernel_width, input # of channels, output # of channels)"
assert len(conv_input.shape) == 3, "The size of input should be (input_height, input_width, input # of channels)"
assert conv_kernel.shape[2] == conv_input.shape[2], "the input and the kernel should have the same depth."
input_w, input_h = conv_input.shape[1], conv_input.shape[0] # input_width and input_height
kernel_w, kernel_h = conv_kernel.shape[1], conv_kernel.shape[0] # kernel_width and kernel_height
output_depth = conv_kernel.shape[3]
if padding == 'same':
output_height = int(ceil(float(input_h) / float(strides[0])))
output_width = int(ceil(float(input_w) / float(strides[1])))
# Calculate the number of zeros which are needed to add as padding
pad_along_height = max((output_height - 1) * strides[0] + kernel_h - input_h, 0)
pad_along_width = max((output_width - 1) * strides[1] + kernel_w - input_w, 0)
pad_top = pad_along_height // 2 # amount of zero padding on the top
pad_bottom = pad_along_height - pad_top # amount of zero padding on the bottom
pad_left = pad_along_width // 2 # amount of zero padding on the left
pad_right = pad_along_width - pad_left # amount of zero padding on the right
output = np.zeros((output_height, output_width, output_depth)) # convolution output
# Add zero padding to the input image
image_padded = np.zeros((conv_input.shape[0] + pad_along_height,
conv_input.shape[1] + pad_along_width, conv_input.shape[2]))
image_padded[pad_top:-pad_bottom, pad_left:-pad_right, :] = conv_input
for ch in range(output_depth):
for x in range(output_width): # Loop over every pixel of the output
for y in range(output_height):
# element-wise multiplication of the kernel and the image
output[y, x, ch] = (conv_kernel[..., ch] *
image_padded[y * strides[0]:y * strides[0] + kernel_h,
x * strides[1]:x * strides[1] + kernel_w, :]).sum() + bias[ch]
elif padding == 'valid':
output_height = int(ceil(float(input_h - kernel_h + 1) / float(strides[0])))
output_width = int(ceil(float(input_w - kernel_w + 1) / float(strides[1])))
output = np.zeros((output_height, output_width, output_depth)) # convolution output
for ch in range(output_depth):
for x in range(output_width): # Loop over every pixel of the output
for y in range(output_height):
# element-wise multiplication of the kernel and the image
output[y, x, ch] = (conv_kernel[..., ch] *
conv_input[y * strides[0]:y * strides[0] + kernel_h,
x * strides[1]:x * strides[1] + kernel_w, :]).sum() + bias[ch]
return output
# load the image
img = misc.imread('image.jpg', mode='RGB')
# The edge detection kernel
kernel1 = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])[..., None]
kernel1 = | np.repeat(kernel1, 3, axis=2) | numpy.repeat |
import numpy as np
import matplotlib.pyplot as pl
from vaccontrib.covid import (
get_covid_matrices
)
from vaccontrib.main import (
get_reduced_vaccinated_susceptible_contribution_matrix,
get_reduced_vaccinated_susceptible_eigenvector,
get_eigenvector,
get_next_generation_matrix_from_matrices,
get_contribution_matrix,
)
from tqdm import tqdm
import matplotlib.ticker as mtick
import bfmplot as bp
colors = [
['#E75740', '#58BDB2'],
['#F2957D', '#268D7C'],
]
uv_colors = [ colors[0][0], colors[1][1] ]
reduction = | np.linspace(1,0,41) | numpy.linspace |
from __future__ import print_function, division
import os
import sys
root_dir = os.path.dirname(sys.path[0])
sys.path.append(root_dir)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from cryoio import mrc
import density, cryoops
import geometry
import cryoem
from notimplemented import correlation
import pyximport; pyximport.install(
setup_args={"include_dirs": np.get_include()}, reload_support=True)
import sincint
def demo(N=128, rad=0.5):
TtoF = sincint.gentrunctofull(N=N, rad=rad)
xy, trunc_xy, truncmask = geometry.gencoords(N, 2, rad, True)
print('shape of TtoF:', TtoF.shape)
print('slice shape:', trunc_xy.shape[0])
trunc_slice = np.arange(trunc_xy.shape[0])
sliced_image = TtoF.dot(trunc_slice).reshape(N, N)
trunc_xy_idx = np.int_(trunc_xy + int(N/2))
# Compare speed for getting slices in this way
new_trunc_slice = sliced_image[trunc_xy_idx[:, 0], trunc_xy_idx[:, 1]]
print('error:', sum(trunc_slice - new_trunc_slice))
pol_trunc_xy = correlation.cart2pol(trunc_xy)
# inside of rad
# sort trunc_xy coordinates
sorted_idx = np.lexsort((pol_trunc_xy[:, 1], pol_trunc_xy[:, 0])) # lexsort; first, sort rho; second, sort theta
sorted_pol_trunc_xy = pol_trunc_xy[sorted_idx]
# reconstuct sorted coordinates into original state
reco_pol_trunc_xy = sorted_pol_trunc_xy[sorted_idx.argsort()]
print('error for reconstructed coordinates:', sum(correlation.pol2cart(reco_pol_trunc_xy) - trunc_xy))
reco_trunc_slice = trunc_slice[sorted_idx.argsort()]
bingo_sliced_image = TtoF.dot(reco_trunc_slice).reshape(N, N)
# outside of rad
xy_outside = xy[~truncmask]
sliced_image_outside_rad = np.zeros((N, N))
sliced_image_outside_rad[~truncmask.reshape(N, N)] = np.arange(xy_outside.shape[0])
pol_xy_outside = correlation.cart2pol(xy_outside)
outside_sorted_idx = np.lexsort((pol_xy_outside[:, 1], pol_xy_outside[:, 0])) # lexsort; first, sort rho; second, sort theta
sorted_pol_xy_outside = pol_xy_outside[outside_sorted_idx]
reco_pol_xy_outside = np.arange(xy_outside.shape[0])[outside_sorted_idx.argsort()]
bingo_sliced_image_outside_rad = np.zeros((N, N))
bingo_sliced_image_outside_rad[~truncmask.reshape(N, N)] = reco_pol_xy_outside
fig, axes = plt.subplots(2, 2)
ax = axes.flatten()
ax[0].imshow(sliced_image)
ax[1].imshow(bingo_sliced_image)
ax[2].imshow(sliced_image_outside_rad)
ax[3].imshow(bingo_sliced_image_outside_rad)
plt.show()
def compare_interpolation(N=128, rad=1):
_, trunc_xy, _ = geometry.gencoords(N, 2, rad, True)
pol_trunc_xy = correlation.cart2pol(trunc_xy)
sorted_idx = np.lexsort((pol_trunc_xy[:, 1], pol_trunc_xy[:, 0])) # lexsort; first, sort rho; second, sort theta
sorted_pol_trunc_xy = pol_trunc_xy[sorted_idx]
interpolation = ['none', 'nearest', 'nearest_decimal_1', 'nearest_half']
fig, ax = plt.subplots(nrows=len(interpolation), sharex=True)
# fig, ax = plt.subplots()
def round_to(n, precision):
# correction = 0.5 if n >= 0 else -0.5
correction = np.ones_like(n) * 0.5
correction[n < 0] = -0.5
return np.int_(n / precision + correction) * precision
def round_half(n):
return round_to(n, 0.5)
def get_ip_func(ip_method):
if 'none' == ip_method.lower():
return lambda x: x
elif 'nearest' == ip_method.lower():
return np.round
elif 'nearest_decimal_1' == ip_method.lower():
return lambda x: np.round(x, 1)
elif 'nearest_half' == ip_method.lower():
return round_half
else:
raise ValueError('please input correct interpolation method.')
for i, ip in enumerate(interpolation):
ip_func = get_ip_func(ip)
ip_pol_xy = ip_func(sorted_pol_trunc_xy[:, 0])
unique_value, unique_index, unique_inverse, unique_counts = np.unique(ip_pol_xy,
return_index=True, return_inverse=True, return_counts=True)
ax[i].plot(unique_value, unique_counts, label='interpolation: {}'.format(ip))
ax[i].legend(frameon=False)
ax[i].set_ylabel('counts')
ax[-1].set_xlabel('radius')
plt.show()
def correlation_trunc_example(M):
N = M.shape[0]
rad = 1
proj = M.sum(axis=0)
FtoT = sincint.genfulltotrunc(N=N, rad=rad)
TtoF = sincint.gentrunctofull(N=N, rad=rad)
trunc = FtoT.dot(proj.flatten())
corr_trunc = correlation.calc_angular_correlation(trunc, N, 1)
corr_proj = TtoF.dot(corr_trunc).reshape(N, N)
fig, ax = plt.subplots(1,2)
ax[0].imshow(proj)
ax[1].imshow(corr_proj)
plt.show()
def view_rad_range(N=128):
fig, axes = plt.subplots(4, 5, figsize=(12.8, 8)) # , sharex=True, sharey=True, squeeze=False)
rad_list = np.arange(0.1, 1.1, step=0.2)
for i, rad in enumerate(rad_list):
TtoF = sincint.gentrunctofull(N, rad)
xy, trunc_xy, truncmask = geometry.gencoords(N, 2, rad, True)
N_T = trunc_xy.shape[0]
trunc = | np.arange(0, N_T) | numpy.arange |
#!/usr/bin/env python
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import copy
import numpy
from functools import reduce
from pyscf import gto, lib
from pyscf import scf, dft
from pyscf import mp
from pyscf import cc
from pyscf import ao2mo
from pyscf.cc import uccsd
from pyscf.cc import gccsd
from pyscf.cc import addons
from pyscf.cc import uccsd_rdm
from pyscf.fci import direct_uhf
mol = gto.Mole()
mol.verbose = 7
mol.output = '/dev/null'
mol.atom = [
[8 , (0. , 0. , 0.)],
[1 , (0. , -0.757 , 0.587)],
[1 , (0. , 0.757 , 0.587)]]
mol.basis = '631g'
mol.build()
rhf = scf.RHF(mol)
rhf.conv_tol_grad = 1e-8
rhf.kernel()
mf = scf.addons.convert_to_uhf(rhf)
myucc = cc.UCCSD(mf).run(conv_tol=1e-10)
mol_s2 = gto.Mole()
mol_s2.atom = [
[8 , (0. , 0. , 0.)],
[1 , (0. , -0.757 , 0.587)],
[1 , (0. , 0.757 , 0.587)]]
mol_s2.basis = '631g'
mol_s2.spin = 2
mol_s2.verbose = 5
mol_s2.output = '/dev/null'
mol_s2.build()
mf_s2 = scf.UHF(mol_s2).run()
eris = uccsd.UCCSD(mf_s2).ao2mo()
def tearDownModule():
global mol, rhf, mf, myucc, mol_s2, mf_s2, eris
mol.stdout.close()
mol_s2.stdout.close()
del mol, rhf, mf, myucc, mol_s2, mf_s2, eris
class KnownValues(unittest.TestCase):
# def test_with_df(self):
# mf = scf.UHF(mol).density_fit(auxbasis='weigend').run()
# mycc = cc.UCCSD(mf).run()
# self.assertAlmostEqual(mycc.e_tot, -76.118403942938741, 7)
def test_ERIS(self):
ucc1 = cc.UCCSD(mf)
nao,nmo = mf.mo_coeff[0].shape
numpy.random.seed(1)
mo_coeff = numpy.random.random((2,nao,nmo))
eris = cc.uccsd._make_eris_incore(ucc1, mo_coeff)
self.assertAlmostEqual(lib.finger(eris.oooo), 4.9638849382825754, 11)
self.assertAlmostEqual(lib.finger(eris.ovoo),-1.3623681896983584, 11)
self.assertAlmostEqual(lib.finger(eris.ovov), 125.81550684442163, 11)
self.assertAlmostEqual(lib.finger(eris.oovv), 55.123681017639598, 11)
self.assertAlmostEqual(lib.finger(eris.ovvo), 133.48083527898248, 11)
self.assertAlmostEqual(lib.finger(eris.ovvv), 59.421927525288183, 11)
self.assertAlmostEqual(lib.finger(eris.vvvv), 43.556602622204778, 11)
self.assertAlmostEqual(lib.finger(eris.OOOO),-407.05319440524585, 11)
self.assertAlmostEqual(lib.finger(eris.OVOO), 56.284299937160796, 11)
self.assertAlmostEqual(lib.finger(eris.OVOV),-287.72899895597448, 11)
self.assertAlmostEqual(lib.finger(eris.OOVV),-85.484299959144522, 11)
self.assertAlmostEqual(lib.finger(eris.OVVO),-228.18996145476956, 11)
self.assertAlmostEqual(lib.finger(eris.OVVV),-10.715902258877399, 11)
self.assertAlmostEqual(lib.finger(eris.VVVV),-89.908425473958303, 11)
self.assertAlmostEqual(lib.finger(eris.ooOO),-336.65979260175226, 11)
self.assertAlmostEqual(lib.finger(eris.ovOO),-16.405125847288176, 11)
self.assertAlmostEqual(lib.finger(eris.ovOV), 231.59042209500075, 11)
self.assertAlmostEqual(lib.finger(eris.ooVV), 20.338077193028354, 11)
self.assertAlmostEqual(lib.finger(eris.ovVO), 206.48662856981386, 11)
self.assertAlmostEqual(lib.finger(eris.ovVV),-71.273249852220516, 11)
self.assertAlmostEqual(lib.finger(eris.vvVV), 172.47130671068496, 11)
self.assertAlmostEqual(lib.finger(eris.OVoo),-19.927660309103977, 11)
self.assertAlmostEqual(lib.finger(eris.OOvv),-27.761433381797019, 11)
self.assertAlmostEqual(lib.finger(eris.OVvo),-140.09648311337384, 11)
self.assertAlmostEqual(lib.finger(eris.OVvv), 40.700983950220547, 11)
uccsd.MEMORYMIN, bak = 0, uccsd.MEMORYMIN
ucc1.max_memory = 0
eris1 = ucc1.ao2mo(mo_coeff)
uccsd.MEMORYMIN = bak
self.assertAlmostEqual(abs(numpy.array(eris1.oooo)-eris.oooo).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovoo)-eris.ovoo).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovov)-eris.ovov).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.oovv)-eris.oovv).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovvo)-eris.ovvo).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovvv)-eris.ovvv).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.vvvv)-eris.vvvv).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OOOO)-eris.OOOO).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OVOO)-eris.OVOO).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OVOV)-eris.OVOV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OOVV)-eris.OOVV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OVVO)-eris.OVVO).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OVVV)-eris.OVVV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.VVVV)-eris.VVVV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ooOO)-eris.ooOO).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovOO)-eris.ovOO).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovOV)-eris.ovOV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ooVV)-eris.ooVV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovVO)-eris.ovVO).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.ovVV)-eris.ovVV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.vvVV)-eris.vvVV).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OVoo)-eris.OVoo).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OOvv)-eris.OOvv).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OVvo)-eris.OVvo).max(), 0, 11)
self.assertAlmostEqual(abs(numpy.array(eris1.OVvv)-eris.OVvv).max(), 0, 11)
# Testing the complex MO integrals
def ao2mofn(mos):
if isinstance(mos, numpy.ndarray) and mos.ndim == 2:
mos = [mos]*4
nmos = [mo.shape[1] for mo in mos]
eri_mo = ao2mo.kernel(mf._eri, mos, compact=False).reshape(nmos)
return eri_mo * 1j
eris1 = cc.uccsd._make_eris_incore(ucc1, mo_coeff, ao2mofn=ao2mofn)
self.assertAlmostEqual(abs(eris1.oooo.imag-eris.oooo).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ovoo.imag-eris.ovoo).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ovov.imag-eris.ovov).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.oovv.imag-eris.oovv).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ovvo.imag-eris.ovvo).max(), 0, 11)
#self.assertAlmostEqual(abs(eris1.ovvv.imag-eris.ovvv).max(), 0, 11)
#self.assertAlmostEqual(abs(eris1.vvvv.imag-eris.vvvv).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OOOO.imag-eris.OOOO).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OVOO.imag-eris.OVOO).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OVOV.imag-eris.OVOV).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OOVV.imag-eris.OOVV).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OVVO.imag-eris.OVVO).max(), 0, 11)
#self.assertAlmostEqual(abs(eris1.OVVV.imag-eris.OVVV).max(), 0, 11)
#self.assertAlmostEqual(abs(eris1.VVVV.imag-eris.VVVV).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ooOO.imag-eris.ooOO).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ovOO.imag-eris.ovOO).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ovOV.imag-eris.ovOV).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ooVV.imag-eris.ooVV).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.ovVO.imag-eris.ovVO).max(), 0, 11)
#self.assertAlmostEqual(abs(eris1.ovVV.imag-eris.ovVV).max(), 0, 11)
#self.assertAlmostEqual(abs(eris1.vvVV.imag-eris.vvVV).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OVoo.imag-eris.OVoo).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OOvv.imag-eris.OOvv).max(), 0, 11)
self.assertAlmostEqual(abs(eris1.OVvo.imag-eris.OVvo).max(), 0, 11)
#self.assertAlmostEqual(abs(eris1.OVvv.imag-eris.OVvv).max(), 0, 11)
def test_amplitudes_from_rccsd(self):
e, t1, t2 = cc.RCCSD(rhf).set(conv_tol=1e-10).kernel()
t1, t2 = myucc.amplitudes_from_rccsd(t1, t2)
self.assertAlmostEqual(abs(t1[0]-myucc.t1[0]).max(), 0, 6)
self.assertAlmostEqual(abs(t1[1]-myucc.t1[1]).max(), 0, 6)
self.assertAlmostEqual(abs(t2[0]-myucc.t2[0]).max(), 0, 6)
self.assertAlmostEqual(abs(t2[1]-myucc.t2[1]).max(), 0, 6)
self.assertAlmostEqual(abs(t2[2]-myucc.t2[2]).max(), 0, 6)
def test_uccsd_frozen(self):
ucc1 = copy.copy(myucc)
ucc1.frozen = 1
self.assertEqual(ucc1.nmo, (12,12))
self.assertEqual(ucc1.nocc, (4,4))
ucc1.frozen = [0,1]
self.assertEqual(ucc1.nmo, (11,11))
self.assertEqual(ucc1.nocc, (3,3))
ucc1.frozen = [[0,1], [0,1]]
self.assertEqual(ucc1.nmo, (11,11))
self.assertEqual(ucc1.nocc, (3,3))
ucc1.frozen = [1,9]
self.assertEqual(ucc1.nmo, (11,11))
self.assertEqual(ucc1.nocc, (4,4))
ucc1.frozen = [[1,9], [1,9]]
self.assertEqual(ucc1.nmo, (11,11))
self.assertEqual(ucc1.nocc, (4,4))
ucc1.frozen = [9,10,12]
self.assertEqual(ucc1.nmo, (10,10))
self.assertEqual(ucc1.nocc, (5,5))
ucc1.nmo = (13,12)
ucc1.nocc = (5,4)
self.assertEqual(ucc1.nmo, (13,12))
self.assertEqual(ucc1.nocc, (5,4))
def test_uccsd_frozen(self):
# Freeze 1s electrons
frozen = [[0,1], [0,1]]
ucc = cc.UCCSD(mf_s2, frozen=frozen)
ucc.diis_start_cycle = 1
ecc, t1, t2 = ucc.kernel()
self.assertAlmostEqual(ecc, -0.07414978284611283, 8)
def test_rdm(self):
nocc = 5
nvir = 7
mol = gto.M()
mf = scf.UHF(mol)
mf.mo_occ = numpy.zeros((2,nocc+nvir))
mf.mo_occ[:,:nocc] = 1
mycc = uccsd.UCCSD(mf)
def antisym(t2):
t2 = t2 - t2.transpose(0,1,3,2)
t2 = t2 - t2.transpose(1,0,2,3)
return t2
orbspin = numpy.zeros((nocc+nvir)*2, dtype=int)
orbspin[1::2] = 1
numpy.random.seed(1)
t1 = numpy.random.random((2,nocc,nvir))*.1 - .1
t2ab = numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1
t2aa = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1)
t2bb = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1)
t2 = (t2aa,t2ab,t2bb)
l1 = numpy.random.random((2,nocc,nvir))*.1 - .1
l2ab = numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1
l2aa = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1)
l2bb = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1)
l2 = (l2aa,l2ab,l2bb)
dm1a, dm1b = mycc.make_rdm1(t1, t2, l1, l2)
dm2aa, dm2ab, dm2bb = mycc.make_rdm2(t1, t2, l1, l2)
ia = orbspin == 0
ib = orbspin == 1
oa = orbspin[:nocc*2] == 0
ob = orbspin[:nocc*2] == 1
va = orbspin[nocc*2:] == 0
vb = orbspin[nocc*2:] == 1
t1 = addons.spatial2spin(t1, orbspin)
t2 = addons.spatial2spin(t2, orbspin)
l1 = addons.spatial2spin(l1, orbspin)
l2 = addons.spatial2spin(l2, orbspin)
mf1 = scf.GHF(mol)
mf1.mo_occ = numpy.zeros((nocc+nvir)*2)
mf.mo_occ[:,:nocc*2] = 1
mycc1 = gccsd.GCCSD(mf1)
dm1 = mycc1.make_rdm1(t1, t2, l1, l2)
dm2 = mycc1.make_rdm2(t1, t2, l1, l2)
self.assertAlmostEqual(abs(dm1[ia][:,ia]-dm1a).max(), 0, 9)
self.assertAlmostEqual(abs(dm1[ib][:,ib]-dm1b).max(), 0, 9)
self.assertAlmostEqual(abs(dm2[ia][:,ia][:,:,ia][:,:,:,ia]-dm2aa).max(), 0, 9)
self.assertAlmostEqual(abs(dm2[ia][:,ia][:,:,ib][:,:,:,ib]-dm2ab).max(), 0, 9)
self.assertAlmostEqual(abs(dm2[ib][:,ib][:,:,ib][:,:,:,ib]-dm2bb).max(), 0, 9)
def test_h2o_rdm(self):
mol = mol_s2
mf = mf_s2
mycc = uccsd.UCCSD(mf)
mycc.frozen = 2
ecc, t1, t2 = mycc.kernel()
l1, l2 = mycc.solve_lambda()
dm1a,dm1b = mycc.make_rdm1(t1, t2, l1, l2)
dm2aa,dm2ab,dm2bb = mycc.make_rdm2(t1, t2, l1, l2)
mo_a = mf.mo_coeff[0]
mo_b = mf.mo_coeff[1]
nmoa = mo_a.shape[1]
nmob = mo_b.shape[1]
eriaa = ao2mo.kernel(mf._eri, mo_a, compact=False).reshape([nmoa]*4)
eribb = ao2mo.kernel(mf._eri, mo_b, compact=False).reshape([nmob]*4)
eriab = ao2mo.kernel(mf._eri, (mo_a,mo_a,mo_b,mo_b), compact=False)
eriab = eriab.reshape([nmoa,nmoa,nmob,nmob])
hcore = mf.get_hcore()
h1a = reduce(numpy.dot, (mo_a.T.conj(), hcore, mo_a))
h1b = reduce(numpy.dot, (mo_b.T.conj(), hcore, mo_b))
e1 = numpy.einsum('ij,ji', h1a, dm1a)
e1+= numpy.einsum('ij,ji', h1b, dm1b)
e1+= numpy.einsum('ijkl,ijkl', eriaa, dm2aa) * .5
e1+= numpy.einsum('ijkl,ijkl', eriab, dm2ab)
e1+= numpy.einsum('ijkl,ijkl', eribb, dm2bb) * .5
e1+= mol.energy_nuc()
self.assertAlmostEqual(e1, mycc.e_tot, 7)
d1 = uccsd_rdm._gamma1_intermediates(mycc, mycc.t1, mycc.t2, mycc.l1, mycc.l2)
mycc.max_memory = 0
d2 = uccsd_rdm._gamma2_intermediates(mycc, mycc.t1, mycc.t2, mycc.l1, mycc.l2, True)
dm2 = uccsd_rdm._make_rdm2(mycc, d1, d2, with_dm1=True, with_frozen=True)
e1 = numpy.einsum('ij,ji', h1a, dm1a)
e1+= numpy.einsum('ij,ji', h1b, dm1b)
e1+= numpy.einsum('ijkl,ijkl', eriaa, dm2[0]) * .5
e1+= numpy.einsum('ijkl,ijkl', eriab, dm2[1])
e1+= numpy.einsum('ijkl,ijkl', eribb, dm2[2]) * .5
e1+= mol.energy_nuc()
self.assertAlmostEqual(e1, mycc.e_tot, 7)
def test_h4_rdm(self):
mol = gto.Mole()
mol.verbose = 0
mol.atom = [
['H', ( 1.,-1. , 0. )],
['H', ( 0.,-1. ,-1. )],
['H', ( 1.,-0.5 , 0. )],
['H', ( 0.,-1. , 1. )],
]
mol.charge = 2
mol.spin = 2
mol.basis = '6-31g'
mol.build()
mf = scf.UHF(mol).set(init_guess='1e').run(conv_tol=1e-14)
ehf0 = mf.e_tot - mol.energy_nuc()
mycc = uccsd.UCCSD(mf).run()
mycc.solve_lambda()
eri_aa = ao2mo.kernel(mf._eri, mf.mo_coeff[0])
eri_bb = ao2mo.kernel(mf._eri, mf.mo_coeff[1])
eri_ab = ao2mo.kernel(mf._eri, [mf.mo_coeff[0], mf.mo_coeff[0],
mf.mo_coeff[1], mf.mo_coeff[1]])
h1a = reduce(numpy.dot, (mf.mo_coeff[0].T, mf.get_hcore(), mf.mo_coeff[0]))
h1b = reduce(numpy.dot, (mf.mo_coeff[1].T, mf.get_hcore(), mf.mo_coeff[1]))
efci, fcivec = direct_uhf.kernel((h1a,h1b), (eri_aa,eri_ab,eri_bb),
h1a.shape[0], mol.nelec)
dm1ref, dm2ref = direct_uhf.make_rdm12s(fcivec, h1a.shape[0], mol.nelec)
t1, t2 = mycc.t1, mycc.t2
l1, l2 = mycc.l1, mycc.l2
rdm1 = mycc.make_rdm1(t1, t2, l1, l2)
rdm2 = mycc.make_rdm2(t1, t2, l1, l2)
self.assertAlmostEqual(abs(dm1ref[0] - rdm1[0]).max(), 0, 6)
self.assertAlmostEqual(abs(dm1ref[1] - rdm1[1]).max(), 0, 6)
self.assertAlmostEqual(abs(dm2ref[0] - rdm2[0]).max(), 0, 6)
self.assertAlmostEqual(abs(dm2ref[1] - rdm2[1]).max(), 0, 6)
self.assertAlmostEqual(abs(dm2ref[2] - rdm2[2]).max(), 0, 6)
def test_eris_contract_vvvv_t2(self):
mol = gto.Mole()
nocca, noccb, nvira, nvirb = 5, 4, 12, 13
nvira_pair = nvira*(nvira+1)//2
nvirb_pair = nvirb*(nvirb+1)//2
numpy.random.seed(9)
t2 = | numpy.random.random((nocca,noccb,nvira,nvirb)) | numpy.random.random |
"""
Classic cart-pole system implemented by <NAME> et al.
Copied from http://incompleteideas.net/sutton/book/code/pole.c
permalink: https://perma.cc/C9ZM-652R
"""
import math
import gym
from gym import spaces, logger
from gym.utils import seeding
import numpy as np
from scipy.integrate import ode
g = 9.8 # gravity
force_mag = 10.0
tau = 0.02 # seconds between state updates
# cart
m_cart = 1
# pole 1
l_1 = 1 # length
m_1 = 0.1 # mass
# pole 2
l_2 = 1 # length
m_2 = 0.1 # mass
def f(time, state, input):
x = state[0]
x_dot = state[1]
theta_1 = state[2]
theta_1_dot = state[3]
theta_2 = state[4]
theta_2_dot = state[5]
x_dot_dot = ((l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_1_dot ** 2
+ g * l_2 * m_2 * np.sin(theta_2)) * (m_1 * np.cos(theta_2) + m_2 * np.cos(theta_2)
- m_1 * np.cos(theta_1 - theta_2) * np.cos(theta_1)
- m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1))) / (l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2
- l_2 * m_2 ** 2 - l_2 * m_1 ** 2 - 2 * l_2 * m_1 * m_2 - l_2 * m_1 * m_cart - l_2 * m_2 * m_cart
+ l_2 * m_1 ** 2 * np.cos(theta_1) ** 2 + l_2 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_2 * m_2 ** 2 * np.cos(theta_2) ** 2
+ l_2 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_2 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2
+ 2 * l_2 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_2 * m_1 * m_2 * np.cos(theta_2) ** 2
- 2 * l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)
- 2 * l_2 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \
+ ((- l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_2_dot ** 2
+ g * l_1 * np.sin(theta_1) * (m_1 + m_2)) * (m_1 * np.cos(theta_1) + m_2 * np.cos(theta_1)
- m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_2))) / (l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2
- l_1 * m_2 ** 2 - l_1 * m_1 ** 2 - 2 * l_1 * m_1 * m_2 - l_1 * m_1 * m_cart - l_1 * m_2 * m_cart
+ l_1 * m_1 ** 2 * np.cos(theta_1) ** 2 + l_1 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 * m_2 ** 2 * np.cos(theta_2) ** 2
+ l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_1 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2
+ 2 * l_1 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_1 * m_1 * m_2 * np.cos(theta_2) ** 2
- 2 * l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)
- 2 * l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \
- ((- m_2 * np.cos(theta_1 - theta_2) ** 2 + m_1 + m_2) *(l_1 * np.sin(theta_1) * (m_1 + m_2) * theta_1_dot ** 2
+ l_2 * m_2 * np.sin(theta_2) * theta_2_dot ** 2 + input)) / (m_1 ** 2 * np.cos(theta_1) ** 2 - m_1 * m_cart
- m_2 * m_cart - 2 * m_1 * m_2 + m_2 ** 2 * np.cos(theta_1) ** 2 + m_2 ** 2 * np.cos(theta_2) ** 2
+ m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 - m_1 ** 2 - m_2 ** 2 + 2 * m_1 * m_2 * np.cos(theta_1) ** 2
+ m_1 * m_2 * np.cos(theta_2) ** 2 + m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2
+ m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2 - 2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)
- 2 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2))
theta_1_dot_dot = ((m_1 * np.cos(theta_1) + m_2 * np.cos(theta_1)
- m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_2)) * (l_1 * np.sin(theta_1) * (m_1 + m_2) * theta_1_dot ** 2
+ l_2 * m_2 * np.sin(theta_2) * theta_2_dot ** 2 + input)) \
/ (l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 - l_1 * m_2 ** 2 - l_1 * m_1 ** 2 - 2 * l_1 * m_1 * m_2
- l_1 * m_1 * m_cart - l_1 * m_2 * m_cart + l_1 * m_1 ** 2 * np.cos(theta_1) ** 2
+ l_1 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 * m_2 ** 2 * np.cos(theta_2) ** 2
+ l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_1 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2
+ 2 * l_1 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_1 * m_1 * m_2 * np.cos(theta_2) ** 2
- 2 * l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)
- 2 * l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \
- ((- l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_2_dot ** 2
+ g * l_1 * np.sin(theta_1) * (m_1 + m_2)) * (- m_2 * np.cos(theta_2) ** 2 + m_1 + m_2 + m_cart)) \
/ (l_1 ** 2 * m_1 ** 2 * np.cos(theta_1) ** 2 - l_1 ** 2 * m_2 ** 2
- 2 * l_1 ** 2 * m_1 * m_2 - l_1 ** 2 * m_1 * m_cart - l_1 ** 2 * m_2 * m_cart - l_1 ** 2 * m_1 ** 2
+ l_1 ** 2 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 ** 2 * m_2 ** 2 * np.cos(theta_2) ** 2
+ l_1 ** 2 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 + 2 * l_1 ** 2 * m_1 * m_2 * np.cos(theta_1) ** 2
+ l_1 ** 2 * m_1 * m_2 * np.cos(theta_2) ** 2 + l_1 ** 2 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2
+ l_1 ** 2 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2
- 2 * l_1 ** 2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)
- 2 * l_1 ** 2 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \
+ ((l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_1_dot ** 2
+ g * l_2 * m_2 * np.sin(theta_2)) * (m_1 * np.cos(theta_1 - theta_2) + m_2 * np.cos(theta_1 - theta_2)
+ m_cart * np.cos(theta_1 - theta_2) - m_1 * np.cos(theta_1) * np.cos(theta_2)
- m_2 * np.cos(theta_1) * np.cos(theta_2))) / (l_1 * l_2 * m_1 ** 2 * np.cos(theta_1) ** 2 - l_1 * l_2 * m_2 ** 2
- 2 * l_1 * l_2 * m_1 * m_2 - l_1 * l_2 * m_1 * m_cart - l_1 * l_2 * m_2 * m_cart - l_1 * l_2 * m_1 ** 2
+ l_1 * l_2 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 * l_2 * m_2 ** 2 * np.cos(theta_2) ** 2
+ l_1 * l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 + 2 * l_1 * l_2 * m_1 * m_2 * np.cos(theta_1) ** 2
+ l_1 * l_2 * m_1 * m_2 * np.cos(theta_2) ** 2 + l_1 * l_2 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2
+ l_1 * l_2 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2
- 2 * l_1 * l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)
- 2 * l_1 * l_2 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2))
theta_2_dot_dot = ((- l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_2_dot ** 2
+ g * l_1 * np.sin(theta_1) * (m_1 + m_2)) * (m_1 * np.cos(theta_1 - theta_2)
+ m_2 * np.cos(theta_1 - theta_2) + m_cart * np.cos(theta_1 - theta_2) - m_1 * np.cos(theta_1) * np.cos(theta_2)
- m_2 * np.cos(theta_1) * np.cos(theta_2))) / (l_1 * l_2 * m_1 ** 2 * np.cos(theta_1) ** 2
- l_1 * l_2 * m_2 ** 2 - 2 * l_1 * l_2 * m_1 * m_2 - l_1 * l_2 * m_1 * m_cart
- l_1 * l_2 * m_2 * m_cart - l_1 * l_2 * m_1 ** 2 + l_1 * l_2 * m_2 ** 2 * np.cos(theta_1) ** 2
+ l_1 * l_2 * m_2 ** 2 * np.cos(theta_2) ** 2 + l_1 * l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2
+ 2 * l_1 * l_2 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_1 * l_2 * m_1 * m_2 * | np.cos(theta_2) | numpy.cos |
#CSTAT+ A GPU-accelerated spatial pattern analysis algorithm for high-resolution 2D/3D hydrologic connectivity using array vectorization and convolutional neural network
#Author: <NAME>, <NAME>
#Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907 USA.
#Email: <EMAIL>; Alternative: <EMAIL>
#This is the omnidirectional version: CSTAT+/OMNI
import os
from osgeo import gdal
import numpy as np
import copy as cp
from numpy import genfromtxt as gft
from scipy.ndimage.measurements import label
from itertools import combinations_with_replacement,product
from mxnet import nd,gpu
from timeit import default_timer as timer
import pandas as pd
#Binarize pattern
def prep(expe0,threshold,NoData):
#Provide threshold for High/Low, usually the depth of shallow sheetflow
expe1=cp.deepcopy(expe0)
expe2=cp.deepcopy(expe0)
expe1[(expe1>=threshold)]=1
expe1[(expe1<threshold)]=0
expe2[(expe2==NoData)]=-1
expe2[(expe2>0)]=0
connection_structure = np.array([[1,1,1],[1,1,1],[1,1,1]])
expela, num_features =label (expe1,structure=connection_structure)
expe3=expe2+expela
return (expe3)
def itercontrol(regions,k,bins,dibins,dibins4,binnum):
#Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin
co0=nd.zeros(binnum-1,gpu(0),dtype="float32")
codi0=nd.zeros((4,binnum-1),gpu(0),dtype="float32")
count0=nd.zeros(binnum-1,gpu(0),dtype="float32")
count4=nd.zeros((4,binnum-1),gpu(0),dtype="float32")
co4=nd.zeros((4,binnum-1),gpu(0),dtype="float32")
bins=nd.array(bins,gpu(0))
dibins=nd.array(dibins,gpu(0))
dibins4=nd.array(dibins4,gpu(0))
if k==2:
#Create segment index for the input array to meet the memory requirement
imax=list(range(int(regions.shape[0]/broadcdp)+(regions.shape[0]%broadcdp!=0)))
#Combinations with repeated indicies
iterator=list(combinations_with_replacement(imax,2))
for i in iterator:
if i[0]==i[1]:
vout=distanceAA2(regions,i,binnum,dibins,dibins4)
co0+=vout[0]
codi0+=vout[1]
count0+=vout[2]
co4+=vout[3]
count4+=vout[4]
else:
vout=distanceAA1(regions,i,binnum,dibins,dibins4)
co0+=vout[0]
codi0+=vout[1]
count0+=vout[2]
co4+=vout[3]
count4+=vout[4]
return (co0.asnumpy(),codi0.asnumpy(),count0.asnumpy(),co4.asnumpy(),count4.asnumpy())
elif k==1:
#Create segment index for the input array to meet the memory requirement
imax=list(range(int(regions.shape[0]/broadcdp)+(regions.shape[0]%broadcdp!=0)))
#Combinations with repeated indicies
iterator=list(combinations_with_replacement(imax,2))
for i in iterator:
if i[0]==i[1]:
count0+=distance2(regions,i,binnum,bins)
else:
count0+=distance1(regions,i,binnum,bins)
return (count0.asnumpy())
else:
#Unpack the tuple
regions_high,regions_low=regions
#Create segment index for the input array to meet the memory requirement
imax_high=list(range(int(regions_high.shape[0]/broadcdp)+(regions_high.shape[0]%broadcdp!=0)))
imax_low=list(range(int(regions_low.shape[0]/broadcdp)+(regions_low.shape[0]%broadcdp!=0)))
#Combinations with repeated indicies
iterator=list(product(imax_high,imax_low))
for i in iterator:
count0+=distance11(regions_high,regions_low,i,binnum,bins)
return (count0.asnumpy())
def distanceAA1(regions,i,binnum,dibins,dibins4):
#Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin
co0=nd.zeros(binnum-1,gpu(0),dtype="float32")
codi0=nd.zeros((5,binnum-1),gpu(0),dtype="float32")
count0=nd.zeros(binnum-1,gpu(0),dtype="float32")
count4=nd.zeros((5,binnum-1),gpu(0),dtype="float32")
co4=nd.zeros((5,binnum-1),gpu(0),dtype="float32")
#Calculate index coordinates and directions by chuncks
a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:]
b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:]
a1=nd.array(a,gpu(0))
b1=nd.array(b,gpu(0))
a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2))
x1_x2=a1_b1[:,0]
y1_y2=a1_b1[:,1]
labels=nd.zeros(x1_x2.shape[0],gpu(0),dtype="float32")
sdi0=(nd.degrees(nd.arctan((y1_y2)/(x1_x2)))+90).reshape((-1,))
ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,))
#Change 0 to 180 so it can apply sum of boolean mask without losing values
sdi0=nd.where(condition=(sdi0==0),x=labels+180,y=sdi0)
#Store sum of distances co0 and histogram of directions in each range bin
for p in range (0,binnum-1):
booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1]))
count0[p]+=nd.nansum(booleanmask)
co0[p]+=nd.nansum(ldis*booleanmask)
#Exclue values not in distance range bin
sdi1=nd.where(condition=(booleanmask==0),x=labels-1,y=sdi0)
for q in range (0,5):
booleanmaskdi=nd.equal((sdi1>=dibins[q]),(sdi1<dibins[q+1]))
codi0[q,p]+=nd.nansum(booleanmaskdi)
for k in range (0,5):
booleanmaskdi=nd.equal((sdi0>=dibins4[k]),(sdi0<dibins4[k+1]))
ldis0=ldis*booleanmaskdi
for l in range (0,binnum-1):
booleanmask=nd.equal((ldis0>=bins[l]),(ldis0<bins[l+1]))
count4[k,l]+=nd.nansum(booleanmask)
co4[k,l]+=nd.nansum(ldis0*booleanmask)
codi0[0,:]+=codi0[4,:]
codi0=codi0[0:4,:]
count4[0,:]+=count4[4,:]
count4=count4[0:4,:]
co4[0,:]+=co4[4,:]
co4=co4[0:4,:]
return(co0,codi0,count0,co4,count4)
def distanceAA2(regions,i,binnum,dibins,dibins4):
#Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin
co0=nd.zeros(binnum-1,gpu(0),dtype="float32")
codi0=nd.zeros((5,binnum-1),gpu(0),dtype="float32")
count0=nd.zeros(binnum-1,gpu(0),dtype="float32")
count4=nd.zeros((5,binnum-1),gpu(0),dtype="float32")
co4=nd.zeros((5,binnum-1),gpu(0),dtype="float32")
seed=nd.zeros((1,2),gpu(0))
#Calculate index coordinates and directions by chuncks
a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:]
b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:]
a1=nd.array(a,gpu(0))
b1=nd.array(b,gpu(0))
# print ("a1",a1,"b1",b1)
for ii in range (a1.shape[0]-1):
a1_b1=(nd.expand_dims(a1[ii].reshape((1,2)),axis=1)-b1[ii+1:,:]).reshape((a1[ii+1:,:].shape[0],2))
seed=nd.concat(seed,a1_b1,dim=0)
if seed.shape[0]>1:
x1_x2=seed[1:,0]
y1_y2=seed[1:,1]
labels=nd.zeros(x1_x2.shape[0],gpu(0),dtype="float32")
sdi0=(nd.degrees(nd.arctan((y1_y2)/(x1_x2)))+90).reshape((-1,))
ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,))
#Change 0 to 180 so it can apply sum of boolean mask without losing values
sdi0=nd.where(condition=(sdi0==0),x=labels+180,y=sdi0)
#Store sum of distances co0 and histogram of directions in each range bin
for p in range (0,binnum-1):
booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1]))
count0[p]+=nd.nansum(booleanmask)
co0[p]+=nd.nansum(ldis*booleanmask)
#Exclue values not in distance range bin
sdi1=nd.where(condition=(booleanmask==0),x=labels-1,y=sdi0)
for q in range (0,5):
booleanmaskdi=nd.equal((sdi1>=dibins[q]),(sdi1<dibins[q+1]))
codi0[q,p]+=nd.nansum(booleanmaskdi)
for k in range (0,5):
booleanmaskdi=nd.equal((sdi0>=dibins4[k]),(sdi0<dibins4[k+1]))
ldis0=ldis*booleanmaskdi
for l in range (0,binnum-1):
booleanmask=nd.equal((ldis0>=bins[l]),(ldis0<bins[l+1]))
count4[k,l]+=nd.nansum(booleanmask)
co4[k,l]+=nd.nansum(ldis0*booleanmask)
codi0[0,:]+=codi0[4,:]
codi0=codi0[0:4,:]
count4[0,:]+=count4[4,:]
count4=count4[0:4,:]
co4[0,:]+=co4[4,:]
co4=co4[0:4,:]
return(co0,codi0,count0,co4,count4)
#Full permutation distance computation
def distance1(regions,i,binnum,bins):
#Initiate empty array for storing the number of counted pairs in each distance range bin
count0=nd.zeros(binnum-1,gpu(0),dtype="float32")
#Calculate index coordinates and directions by chuncks
a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:]
b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:]
a1=nd.array(a,gpu(0))
b1=nd.array(b,gpu(0))
a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2))
x1_x2=a1_b1[:,0]
y1_y2=a1_b1[:,1]
ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,))
for p in range (0,binnum-1):
booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1]))
count0[p]+=nd.nansum(booleanmask)
return(count0)
#Full permutation distance computation between different regions: high and low
def distance11(regions_high,regions_low,i,binnum,bins):
#Initiate empty array for storing the number of counted pairs in each distance range bin
count0=nd.zeros(binnum-1,gpu(0),dtype="float32")
#Calculate index coordinates and directions by chuncks
a=regions_high[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions_high.shape[0]),:]
b=regions_low[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions_low.shape[0]),:]
a1=nd.array(a,gpu(0))
b1=nd.array(b,gpu(0))
a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2))
x1_x2=a1_b1[:,0]
y1_y2=a1_b1[:,1]
ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,))
for p in range (0,binnum-1):
booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1]))
count0[p]+=nd.nansum(booleanmask)
return(count0)
#Full combination distance computation
def distance2(regions,i,binnum,bins):
#Initiate empty array for storing the number of counted pairs in each distance range bin
count0=nd.zeros(binnum-1,gpu(0),dtype="float32")
seed=nd.zeros((1,2),gpu(0))
#Calculate index coordinates and directions by chuncks
a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:]
b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:]
a1=nd.array(a,gpu(0))
b1=nd.array(b,gpu(0))
for ii in range (a1.shape[0]-1):
a1_b1=(nd.expand_dims(a1[ii].reshape((1,2)),axis=1)-b1[ii+1:,:]).reshape((a1[ii+1:,:].shape[0],2))
seed=nd.concat(seed,a1_b1,dim=0)
if seed.shape[0]>1:
x1_x2=seed[1:,0]
y1_y2=seed[1:,1]
ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,))
for p in range (0,binnum-1):
booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1]))
count0[p]+=nd.nansum(booleanmask)
return(count0)
def omni(taoh_W,mean_d,cardh_his,taoh_W4,mean_d4,binnum):
#Compute OMNI
OMNIW=np.zeros(binnum,dtype="float32")
OMNIW4=np.zeros((4,binnum),dtype="float32")
#Convert Nan to zero to avoid issues
taoh_W1=np.nan_to_num(taoh_W)
mean_d1=np.nan_to_num(mean_d)
taoh_W41=np.nan_to_num(taoh_W4)
mean_d41=np.nan_to_num(mean_d4)
for j in range (binnum-1):
if taoh_W1[j+1]!=0:
OMNIW[0]+=(taoh_W1[j]+taoh_W1[j+1])*(mean_d1[j+1]-mean_d1[j])*0.5
for k in range (4):
for l in range (binnum-1):
if taoh_W41[k,l+1]!=0:
OMNIW4[k,0]+=(taoh_W41[k,l]+taoh_W41[k,l+1])*(mean_d41[k,l+1]-mean_d41[k,l])*0.5
results=np.vstack((taoh_W1,mean_d1,OMNIW,cardh_his))
results4=np.vstack((taoh_W41,mean_d41,OMNIW4))
return (results,results4)
def compu(flowpattern,bins,dibins,dibins4,binnum,gt):
#Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin
coAA=np.zeros((1,binnum-1),dtype="float32")
codiAA=np.zeros((4,binnum-1),dtype="float32")
countAA=np.zeros(binnum-1)
countAZ=np.zeros(binnum-1)
count4AA= | np.zeros((4,binnum-1),dtype="float32") | numpy.zeros |
"""
Reads either pickle or mat files and plots the results.
-- <EMAIL>
-- <EMAIL>
Usage:
python plotting.py --filelist <file containing list of pickle or mat file paths>
python plotting.py --file <pickle or mat file path>
"""
from __future__ import division
# pylint: disable=invalid-name
# pylint: disable=redefined-builtin
# pylint: disable=too-many-locals
import os
import pickle
import argparse
import warnings
import matplotlib.pyplot as plt
import matplotlib
from scipy.io import loadmat
import numpy as np
matplotlib.rcParams['mathtext.fontset'] = 'custom'
matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans'
matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic'
matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold'
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
def rgba(red, green, blue, a):
'''rgba: generates matplotlib compatible rgba values from html-style rgba values
'''
return (red / 255.0, green / 255.0, blue / 255.0, a)
def hex(hexstring):
'''hex: generates matplotlib-compatible rgba values from html-style hex colors
'''
if hexstring[0] == '#':
hexstring = hexstring[1:]
red = int(hexstring[:2], 16)
green = int(hexstring[2:4], 16)
blue = int(hexstring[4:], 16)
return rgba(red, green, blue, 1.0)
def transparent(red, green, blue, _, opacity=0.5):
'''transparent: converts a rgba color to a transparent opacity
'''
return (red, green, blue, opacity)
def read_results(file_path):
"""reads experiment result data from a '.m' file
:file_path: the path to the file
:returns: a dataframe object with all the various pieces of data
"""
if file_path.endswith('.mat'):
results = loadmat(file_path)
elif file_path.endswith('.p'):
with open(file_path, 'rb') as pickleF:
res = pickle.load(pickleF)
pickleF.close()
results = {}
for key in list(res.keys()):
if not hasattr(res[key], '__len__'):
results[key] = np.array(res[key])
elif isinstance(res[key], str):
results[key] = np.array(res[key])
elif isinstance(res[key], list):
results[key] = np.array(res[key])
elif isinstance(res[key], np.ndarray):
val = np.zeros(res[key].shape, dtype=res[key].dtype)
for idx, x in np.ndenumerate(res[key]):
if isinstance(x, list):
val[idx] = np.array(x)
else:
val[idx] = x
results[key] = val
else:
results[key] = res[key]
else:
raise ValueError('Wrong file format. It has to be either mat or pickle file')
return results
def get_plot_info(
meth_curr_opt_vals,
cum_costs,
meth_costs,
grid_pts,
outlier_frac,
init_opt_vals
):
"""generates means and standard deviation for the method's output
"""
num_experiments = len(meth_curr_opt_vals)
with warnings.catch_warnings():
warnings.simplefilter(action='ignore', category=FutureWarning)
idx = np.where(meth_curr_opt_vals == '-')
if idx[0].size != 0:
num_experiments = idx[0][0]
outlier_low_idx = max(np.round(outlier_frac * num_experiments), 1)
outlier_high_idx = min(
num_experiments,
int(num_experiments - np.rint(outlier_frac * num_experiments))
)
inlier_idx = np.arange(outlier_low_idx, outlier_high_idx)
num_grid_pts = len(grid_pts)
grid_vals = np.zeros((num_experiments, num_grid_pts))
for exp_iter in range(num_experiments):
if cum_costs is None:
curr_cum_costs = np.cumsum(meth_costs[exp_iter])
else:
curr_cum_costs = cum_costs[exp_iter]
if init_opt_vals is not None:
opt_vals = np.concatenate((np.array([init_opt_vals[exp_iter]]),
np.squeeze(meth_curr_opt_vals[exp_iter])), axis=0)
curr_cum_costs = np.concatenate((np.array([0]), np.squeeze(curr_cum_costs)),
axis=0)
else:
opt_vals = meth_curr_opt_vals[exp_iter]
interp = np.interp(grid_pts, curr_cum_costs.flatten(), opt_vals.flatten())
grid_vals[exp_iter, :] = np.maximum.accumulate(interp)
sorted_grid_vals = np.sort(grid_vals, axis=0)
inlier_grid_vals = sorted_grid_vals[inlier_idx, :]
def mean_and_std(arr1d):
""" Returns mean and standard deviation."""
finite_arr1d = arr1d[np.isfinite(arr1d)]
if finite_arr1d.size / arr1d.size >= 0.4:
return np.array([np.mean(finite_arr1d), np.std(finite_arr1d) / np.sqrt(arr1d.size)])
return np.array([np.NaN] * 2)
res = np.apply_along_axis(mean_and_std, 0, inlier_grid_vals)
return (res[0, :], res[1, :])
def gen_curves(
plot_order,
plot_legends,
results,
x_label,
y_label,
plot_markers,
plot_line_markers,
plot_colors,
x_bounds=None,
outlier_frac=0.1,
set_legend=True,
log_y=False,
log_x=False,
plot_title=None,
study_name=None,
num_workers=None,
time_distro_str=None,
fill_error=False,
err_bar_freq=5,
plot_type='plot'
):
# pylint: disable=too-many-arguments
# pylint: disable=too-many-branches
# pylint: disable=unused-argument
# pylint: disable=unused-variable
"""Plots the curves given the experiment result data
"""
NUM_GRID_PTS = 100
NUM_ERR_BARS = 10
LINE_WIDTH = 2
num_methods, num_experiments = results['curr_opt_vals'].shape
methods = [str(method).strip() for method in results['methods']]
if x_bounds is None or x_bounds == []:
x_bounds = [0.0, | np.asscalar(results['max_capital']) | numpy.asscalar |
# 2020.05.17
import numpy as np
import copy
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
from sklearn.metrics.pairwise import euclidean_distances
from mylearner import myLearner
class HierNode():
def __init__(self, learner, num_class, num_cluster, metric, isleaf=False, id='R'):
self.learner = myLearner(learner=learner, num_class=num_class)
self.kmeans = KMeans(n_clusters=num_cluster)
self.num_cluster = num_cluster
self.metric = metric
self.isleaf = isleaf
self.id = id
def metric_(self, X, Y):
if 'func' in self.metric.keys():
return self.metric['func'](X, Y, self.metric)
if X.shape[0] < self.num_cluster * self.metric['min_num_sample']:
return True
return False
def fit(self, X, Y):
self.kmeans.fit(X)
if self.metric_(X, Y) == True:
self.isleaf = True
if self.isleaf == True:
self.learner.fit(X, Y)
return self
def predict(self, X):
if self.isleaf == True:
try:
prob = self.learner.predict_proba(X)
except:
prob = self.learner.predict(X)
return prob
else:
return self.kmeans.predict(X)
# cluster on prob vector from learner instead of raw feature
class HierNode_fancy():
def __init__(self, learner, num_class, num_cluster, metric, isleaf=False, id='R'):
self.learner = myLearner(learner=learner, num_class=num_class)
self.kmeans = KMeans(n_clusters=num_cluster)
self.num_cluster = num_cluster
self.metric = metric
self.isleaf = isleaf
self.id = id
def metric_(self, X, Y):
if 'func' in self.metric.keys():
return self.metric['func'](X, Y, self.metric)
if X.shape[0] < self.num_cluster * self.metric['min_num_sample']:
return True
if self.learner.score(X, Y) > self.metric['purity']:
return True
return False
def fit(self, X, Y):
self.learner.fit(X, Y)
try:
prob = self.learner.predict_proba(X)
except:
prob = self.learner.predict(X)
if self.metric_(X, Y) == True:
self.isleaf = True
if self.isleaf == False:
self.kmeans.fit(prob)
def predict(self, X):
try:
prob = self.learner.predict_proba(X)
except:
prob = self.learner.predict(X)
if self.isleaf == True:
return prob
else:
return self.kmeans.predict(prob)
# query labels, reduce number of simple samples
class HierNode_query():
def __init__(self, learner, num_class, num_cluster, metric, isleaf=False, id='R'):
self.learner = myLearner(learner=learner, num_class=num_class)
self.kmeans = KMeans(n_clusters=num_cluster)
self.num_cluster = num_cluster
self.metric = metric
self.isleaf = isleaf
self.Y = []
self.X = []
self.num_class = num_class
self.hist = np.zeros((num_class))
self.uselearner = False
self.majority = -1
self.id = id
def metric_(self, X):
if 'func' in self.metric.keys():
return self.metric['func'](X, Y, self.metric)
if X.shape[0] < self.num_cluster * self.metric['min_num_sample']:
return True
l2 = euclidean_distances(X, np.mean(X, axis=0, keepdims=True))
if np.mean(l2) < self.metric['mse']:
return True
return False
def query_(self, X, Y, i):
l2 = euclidean_distances(X, self.X)
if i == 0:
idx = np.argmin(l2.reshape(-1))
self.Y = | np.array([Y[idx]]) | numpy.array |
import os
import sys
import numpy as np
import open3d as o3d
from pykdtree.kdtree import KDTree
from sklearn.cluster import DBSCAN
from scripts.kitti.map_builder import KittiLoader, load_poses, load_calib_matrix, SSEAnnotation, cloud_to_map
def save_debug_pcd(map_pcd: o3d.geometry.PointCloud, label_indices, label, color_indices: list):
pcd = o3d.geometry.PointCloud()
pcd_on_map = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(np.asarray(map_pcd.points)[label_indices])
pcd_on_map.points = o3d.utility.Vector3dVector(np.asarray(map_pcd.points))
pcd.paint_uniform_color([0, 0, 0])
pcd_on_map.paint_uniform_color([0, 0, 0])
colors = np.random.rand(len(color_indices), 3)
tmp_colors = np.asarray(pcd.colors)
tmp_map_colors = np.asarray(pcd_on_map.colors)
for ind, color_ind in enumerate(color_indices):
color = colors[ind]
tmp_colors[color_ind] = color
tmp_map_colors[label_indices[color_ind]] = color
pcd.colors = o3d.utility.Vector3dVector(tmp_colors)
pcd_on_map.colors = o3d.utility.Vector3dVector(tmp_map_colors)
o3d.io.write_point_cloud(os.path.join("debug", "{}.pcd".format(label)), pcd)
o3d.io.write_point_cloud(os.path.join("debug_map", "{}.pcd".format(label)), pcd_on_map)
def visualize_pcd_labels(pcd: o3d.geometry.PointCloud, labels: np.array, filename: str = None):
colors = np.concatenate([np.asarray([[0, 0, 0]]), np.random.rand(np.max(labels), 3)])
pcd_for_vis = o3d.geometry.PointCloud()
pcd_for_vis.points = o3d.utility.Vector3dVector(np.asarray(pcd.points))
pcd_for_vis.paint_uniform_color([0, 0, 0])
pcd_for_vis.colors = o3d.utility.Vector3dVector(colors[labels])
if filename is None:
o3d.visualization.draw_geometries([pcd_for_vis])
else:
o3d.io.write_point_cloud(filename, pcd_for_vis)
def dbscan_labels(pcd: o3d.geometry.PointCloud, labels: np.array) -> np.array:
unique_labels, labels_in_unique_indices = np.unique(labels, return_inverse=True)
result_labels = np.zeros_like(labels)
problem_counter = 0
many_clusters = []
cluster_sizes = []
full_minus_one = 0
for label_index, label in enumerate(unique_labels):
if label == 0:
continue
label_indices = np.where(labels_in_unique_indices == label_index)[0]
label_points = | np.asarray(pcd.points) | numpy.asarray |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import itertools
rng = np.random.RandomState(42)
def svdw(m):
n = m.shape[0]
assert m.shape == (n, n)
u, s, vt = np.linalg.svd(m)
w = u @ vt
assert np.allclose(u.T @ u, np.eye(n))
assert np.allclose(w.T @ w, np.eye(n))
assert np.allclose(u @ np.diag(s) @ u.T @ w, m)
return u, s, w
def check_eq(msg, a, b):
diff = np.abs(a - b).max()
assert diff < 1e-5, (msg, diff)
def svdw_jacobian(M, u, s, w):
n = M.shape[0]
assert M.shape == u.shape == w.shape == (n, n)
v = w.T @ u
dsdm = np.empty((n, n*n), dtype=M.dtype)
for i in range(n):
for j in range(n):
for k in range(n):
dsdm[i, j*n+k] = u.T[i, j] * v[k, i]
dwdy = np.empty((n*n, n*n), dtype=M.dtype)
dydm = np.empty_like(dwdy)
dudx = np.empty_like(dwdy)
dxdm = np.empty_like(dwdy)
for i, j, k, l in itertools.product(range(n), range(n), range(n), range(n)):
cij = u.T[i, k] * v[l, j]
cji = u.T[j, k] * v[l, i]
dydm[i*n+j, k*n+l] = 0 if i == j else (cij - cji) / (s[i] + s[j])
dwdy[i*n+j, k*n+l] = u[i, k] * v.T[l, j]
dudx[i*n+j, k*n+l] = 0 if l != j else u[i, k]
dxdm[i*n+j, k*n+l] = 0 if i == j else (
cij * s[j] + cji * s[i]) / (s[j]**2 - s[i]**2)
return dudx @ dxdm, dsdm, dwdy @ dydm
def svdw_jacobian_num(M, u, s, w, eps=1e-4):
n = M.shape[0]
assert M.shape == (n, n)
dudm = np.zeros((n*n, n*n), dtype=M.dtype)
dsdm = | np.zeros((n, n*n), dtype=M.dtype) | numpy.zeros |
from __future__ import print_function, division, absolute_import
import copy
import numpy as np
import skimage.draw
import skimage.measure
from .. import imgaug as ia
from .utils import normalize_shape, project_coords
# TODO functions: square(), to_aspect_ratio(), contains_point()
class BoundingBox(object):
"""Class representing bounding boxes.
Each bounding box is parameterized by its top left and bottom right
corners. Both are given as x and y-coordinates. The corners are intended
to lie inside the bounding box area. As a result, a bounding box that lies
completely inside the image but has maximum extensions would have
coordinates ``(0.0, 0.0)`` and ``(W - epsilon, H - epsilon)``. Note that
coordinates are saved internally as floats.
Parameters
----------
x1 : number
X-coordinate of the top left of the bounding box.
y1 : number
Y-coordinate of the top left of the bounding box.
x2 : number
X-coordinate of the bottom right of the bounding box.
y2 : number
Y-coordinate of the bottom right of the bounding box.
label : None or str, optional
Label of the bounding box, e.g. a string representing the class.
"""
def __init__(self, x1, y1, x2, y2, label=None):
"""Create a new BoundingBox instance."""
if x1 > x2:
x2, x1 = x1, x2
if y1 > y2:
y2, y1 = y1, y2
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
self.label = label
@property
def coords(self):
"""Get the top-left and bottom-right coordinates as one array.
Returns
-------
ndarray
A ``(N, 2)`` numpy array with ``N=2`` containing the top-left
and bottom-right coordinates.
"""
arr = np.empty((2, 2), dtype=np.float32)
arr[0, :] = (self.x1, self.y1)
arr[1, :] = (self.x2, self.y2)
return arr
@property
def x1_int(self):
"""Get the x-coordinate of the top left corner as an integer.
Returns
-------
int
X-coordinate of the top left corner, rounded to the closest
integer.
"""
# use numpy's round to have consistent behaviour between python
# versions
return int(np.round(self.x1))
@property
def y1_int(self):
"""Get the y-coordinate of the top left corner as an integer.
Returns
-------
int
Y-coordinate of the top left corner, rounded to the closest
integer.
"""
# use numpy's round to have consistent behaviour between python
# versions
return int(np.round(self.y1))
@property
def x2_int(self):
"""Get the x-coordinate of the bottom left corner as an integer.
Returns
-------
int
X-coordinate of the bottom left corner, rounded to the closest
integer.
"""
# use numpy's round to have consistent behaviour between python
# versions
return int(np.round(self.x2))
@property
def y2_int(self):
"""Get the y-coordinate of the bottom left corner as an integer.
Returns
-------
int
Y-coordinate of the bottom left corner, rounded to the closest
integer.
"""
# use numpy's round to have consistent behaviour between python
# versions
return int( | np.round(self.y2) | numpy.round |
import os.path
from data.base_dataset import BaseDataset
from data.image_folder import make_dataset
import numpy as np
import torch
import data.exrlib as exrlib
class ExrHeightDataset(BaseDataset):
def __init__(self, opt):
"""Initialize this dataset class.
Parameters:
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
BaseDataset.__init__(self, opt)
assert(opt.image_type == 'exr')
#self.A = os.path.join(opt.dataroot, opt.phase + '_input')
self.A1 = os.path.join(opt.dataroot, opt.phase + '_input_terraform')
self.B = os.path.join(opt.dataroot, opt.phase + '_output')
#self.A_paths = sorted(make_dataset(self.A, opt.max_dataset_size))
self.A1_paths = sorted(make_dataset(self.A1, opt.max_dataset_size))
self.B_paths = sorted(make_dataset(self.B, opt.max_dataset_size))
#self.A_size = len(self.A_paths) # get the size of dataset A
self.A1_size = len(self.A1_paths)
self.B_size = len(self.B_paths) # get the size of dataset B
btoA = self.opt.direction == 'BtoA'
input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image
output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image
self.A1_test_paths = sorted(make_dataset(os.path.join(opt.dataroot, 'test_input_terraform')))
self.B_test_paths = sorted(make_dataset(os.path.join(opt.dataroot, 'test_output')))
self.A1_test_size = len(self.A1_test_paths)
self.B_test_size = len(self.B_test_paths)
self.input_names = np.array(["RockDetailMask.RockDetailMask", "SoftDetailMask.SoftDetailMask", "cliffs.cliffs", "height.height", "mesa.mesa", "slope.slope", "slopex.slopex", "slopez.slopez"])
self.output_names = np.array(["RockDetailMask.RockDetailMask", "SoftDetailMask.SoftDetailMask", "bedrock.bedrock", "cliffs.cliffs", "flow.flow", "flowx.flowx", "flowz.flowz", "height.height", "mesa.mesa", "sediment.sediment", "water.water"])
self.input_channels = np.array([3, 6, 7]) #height, slopex, slopez
self.output_channels = np.array([7]) #height
if not self.opt.compute_bounds:
self.i_channels_min = np.array([[[0, -400, -400]]])
self.i_channels_max = np.array([[[824, 20, 20]]])
self.o_channels_min = np.array([[[-4]]])
self.o_channels_max = np.array([[[819]]])
return
channels_min = np.array([2**16 for _ in self.input_channels])
channels_max = np.array([0 for _ in self.input_channels])
examples = 0
for A1_path in self.A1_paths:
A1_img = exrlib.read_exr_float32(A1_path, list(self.input_names[self.input_channels]), 512, 512).transpose(2, 0, 1).reshape(len(self.input_channels), -1)
channels_min = np.min(np.concatenate((np.expand_dims(channels_min, 1), np.expand_dims(np.min(A1_img, 1), 1)), 1), 1)
channels_max = np.max(np.concatenate((np.expand_dims(channels_min, 1), np.expand_dims(np.max(A1_img, 1), 1)), 1), 1)
examples += 1
if examples >= 1000:
break
print(channels_min)
self.i_channels_min = np.expand_dims(np.expand_dims(np.array(channels_min), 1), 2)
print(channels_max)
self.i_channels_max = np.expand_dims(np.expand_dims(np.array(channels_max), 1), 2)
channels_min = np.array([2**16 for _ in self.output_channels])
channels_max = np.array([0 for _ in self.output_channels])
examples = 0
for B_path in self.B_paths:
B_img = exrlib.read_exr_float32(B_path, list(self.output_names[self.output_channels]), 512, 512).transpose(2, 0, 1).reshape(len(self.output_channels), -1)
channels_min = np.min(np.concatenate(( | np.expand_dims(channels_min, 1) | numpy.expand_dims |
import numpy as np
from scipy.spatial.distance import pdist, squareform
def k_closest(k, V, metric='cosine'):
""" Performs an approximate solution to the problem of finding
the closest group of k elements in a set of vectors.
:param k: The number of elements in the result set.
:param V: A 2-D array with vectors in rows for which to find
the closest set of k vectors.
:param metric: The metric for which to perform the distance measure.
Possible values are the ones defined for
scipy.spatial.distance.pdist.
:return An array of row indices for the k closest row vectors.
"""
d = pdist(V, metric)
D = squareform(d)
N = D.shape[0]
row_dists = np.zeros(N)
neighbors = np.zeros((N, k), dtype=np.int)
# For each element, calculate the sum of distances
# to itself (=0) and its k-1 nearest neighbors.
for i in range(0, N):
row = D[i,:]
# Get indices for the k closest items.
indices = | np.argsort(row) | numpy.argsort |
from cvxpy import *
import numpy as np
import scipy as sp
import scipy.sparse as sparse
# Discrete time model of the system (mass point with input force and friction)
# Constants #
Ts = 0.2 # sampling time (s)
M = 2 # mass (Kg)
b = 0.3 # friction coefficient (N*s/m)
Ad = sparse.csc_matrix([
[1.0, Ts],
[0, 1.0 -b/M*Ts]
])
Bd = sparse.csc_matrix([
[0.0],
[Ts/M]])
# Continous-time matrices (just for reference)
Ac = np.array([
[0.0, 1.0],
[0, -b/M]]
)
Bc = np.array([
[0.0],
[1/M]
])
[nx, nu] = Bd.shape # number of states and number or inputs
# Reference input and states
pref = 7.0
vref = 0.0
xref = np.array([pref, vref]) # reference state
uref = np.array([0.0]) # reference input
uinit = np.array([0.0]) # input at time step negative one - used to penalize the first delta 0. Could be the same as uref.
# Constraints
xmin = np.array([-100.0, -100.0])
xmax = np.array([100.0, 100.0])
umin = np.array([-1.5])*100
umax = | np.array([1.5]) | numpy.array |
###############################################
# rans(eXtreme) https://arxiv.org/abs/1401.5176
###############################################
# File: ransX_tseries.py
# Author: <NAME>
# Email: <EMAIL>
# Date: December/2020
# Desc: calculates time-averages over tavg
# Usage: run ransX_tseries.py
from UTILS.PROMPI.PROMPI_data import PROMPI_ransdat
from UTILS.TSERIES.ReadParamsTseries import ReadParamsTseries
from UTILS.Errors import Errors
import numpy as np
import os
import sys
def main():
# check python version
if sys.version_info[0] < 3:
print("Python " + str(sys.version_info[0]) + " is not supported. EXITING.")
sys.exit()
# create os independent path and read parameter file
paramFile = os.path.join('PARAMS', 'param.tseries')
params = ReadParamsTseries(paramFile)
# read input parameters
datadir = params.getForTseries('tseries')['datadir']
endianness = params.getForTseries('tseries')['endianness']
precision = params.getForTseries('tseries')['precision']
dataout = params.getForTseries('tseries')['dataout']
trange_beg = params.getForTseries('tseries')['trange_beg']
trange_end = params.getForTseries('tseries')['trange_end']
trange = [trange_beg, trange_end]
tavg = params.getForTseries('tseries')['tavg']
ransdat = [filee for filee in sorted(os.listdir(datadir)) if "ransdat" in filee]
ransdat = [filee.replace(filee, datadir + filee) for filee in ransdat]
filename = ransdat[0]
ts = PROMPI_ransdat(filename, endianness, precision)
time = []
dt = []
for filename in ransdat:
print(filename)
ts = PROMPI_ransdat(filename, endianness, precision)
rans_tstart, rans_tend, rans_tavg = ts.rans_header()
time.append(rans_tend)
dt.append(rans_tavg)
# print(rans_tend,rans_tavg)
# convert to array
time = np.asarray(time)
dt = | np.asarray(dt) | numpy.asarray |
# Contact: <NAME> [sara (dot) ferreira (at) fc (dot) up (dot) pt]
#
# This is free and unencumbered software released into the public domain.
#
# Anyone is free to copy, modify, publish, use, compile, sell, or
# distribute this software, either in source code form or as a compiled
# binary, for any purpose, commercial or non-commercial, and by any
# means.
#
# In jurisdictions that recognize copyright laws, the author or authors
# of this software dedicate any and all copyright interest in the
# software to the public domain. We make this dedication for the benefit
# of the public at large and to the detriment of our heirs and
# successors. We intend this dedication to be an overt act of
# relinquishment in perpetuity of all present and future rights to this
# software under copyright law.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
import cv2
import numpy as np
import os
import radialProfile
import glob
from matplotlib import pyplot as plt
import pickle
from scipy.interpolate import griddata
import pylab as py
import time
import sys
if(len(sys.argv) != 5):
print("Not enough arguments")
print("insert <dir> <features> <max_files> <output filename>")
exit()
dir=sys.argv[1]
if os.path.isdir(dir) is False:
print("this directory does not exist")
exit(0)
N=int(sys.argv[2])
number_iter=int(sys.argv[3])
output_filename=str(sys.argv[4])+".pkl"
data= {}
epsilon = 1e-8
#N = 50
y = []
error = []
#number_iter = 6200
psd1D_total = np.zeros([number_iter, N])
label_total = np.zeros([number_iter])
psd1D_org_mean = np.zeros(N)
psd1D_org_std = | np.zeros(N) | numpy.zeros |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import tensorflow as tf
import numpy as np
from scipy import stats, misc, special
from tests.distributions import utils
from zhusuan.distributions.multivariate import *
class TestMultinomial(tf.test.TestCase):
def test_init_check_shape(self):
with self.test_session(use_gpu=True):
with self.assertRaisesRegexp(ValueError, "should have rank"):
Multinomial(tf.zeros([]), 10)
def test_init_n(self):
dist = Multinomial(tf.ones([2]), 10)
self.assertTrue(isinstance(dist.n_categories, int))
self.assertEqual(dist.n_categories, 2)
self.assertTrue(isinstance(dist.n_experiments, int))
self.assertEqual(dist.n_experiments, 10)
with self.assertRaisesRegexp(ValueError, "must be positive"):
_ = Multinomial(tf.ones([2]), 0)
with self.test_session(use_gpu=True) as sess:
logits = tf.placeholder(tf.float32, None)
n_experiments = tf.placeholder(tf.int32, None)
dist2 = Multinomial(logits, n_experiments)
self.assertEqual(
sess.run([dist2.n_categories, dist2.n_experiments],
feed_dict={logits: np.ones([2]), n_experiments: 10}),
[2, 10])
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"should have rank"):
dist2.n_categories.eval(feed_dict={logits: 1.,
n_experiments: 10})
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"should be a scalar"):
dist2.n_experiments.eval(feed_dict={logits: [1.],
n_experiments: [10]})
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"must be positive"):
dist2.n_experiments.eval(feed_dict={logits: [1.],
n_experiments: 0})
def test_value_shape(self):
# static
dist = Multinomial(tf.placeholder(tf.float32, [None, 2]), 10)
self.assertEqual(dist.get_value_shape().as_list(), [2])
# dynamic
logits = tf.placeholder(tf.float32, None)
dist2 = Multinomial(logits, 10)
self.assertTrue(dist2._value_shape().dtype is tf.int32)
with self.test_session(use_gpu=True):
self.assertEqual(dist2._value_shape().eval(
feed_dict={logits: np.ones([2])}).tolist(), [2])
self.assertEqual(dist._value_shape().dtype, tf.int32)
def test_batch_shape(self):
def _distribution(param):
return Multinomial(param, 10)
utils.test_batch_shape_1parameter(
self, _distribution, np.zeros, is_univariate=False)
def test_sample_shape(self):
def _distribution(param):
return Multinomial(param, 10)
utils.test_1parameter_sample_shape_one_rank_less(
self, _distribution, np.zeros)
def test_log_prob_shape(self):
def _distribution(param):
return Multinomial(param, 10)
def _make_samples(shape):
samples = np.zeros(shape)
samples = samples.reshape((-1, shape[-1]))
samples[:, 0] = 1
return samples.reshape(shape)
utils.test_1parameter_log_prob_shape_one_rank_less(
self, _distribution, _make_samples, _make_samples)
def test_value(self):
with self.test_session(use_gpu=True):
def _test_value(logits, n_experiments, given):
logits = np.array(logits, np.float32)
normalized_logits = logits - misc.logsumexp(
logits, axis=-1, keepdims=True)
given = np.array(given)
dist = Multinomial(logits, n_experiments)
log_p = dist.log_prob(given)
target_log_p = np.log(misc.factorial(n_experiments)) - \
np.sum(np.log(misc.factorial(given)), -1) + \
np.sum(given * normalized_logits, -1)
self.assertAllClose(log_p.eval(), target_log_p)
p = dist.prob(given)
target_p = np.exp(target_log_p)
self.assertAllClose(p.eval(), target_p)
_test_value([-50., -20., 0.], 4, [1, 0, 3])
_test_value([1., 10., 1000.], 1, [1, 0, 0])
_test_value([[2., 3., 1.], [5., 7., 4.]], 3,
np.ones([3, 1, 3], dtype=np.int32))
_test_value([-10., 10., 20., 50.], 100, [[0, 1, 99, 100],
[100, 99, 1, 0]])
def test_dtype(self):
def _distribution(param, dtype=None):
return Multinomial(param, 10, dtype)
utils.test_dtype_1parameter_discrete(self, _distribution)
with self.assertRaisesRegexp(TypeError, "n_experiments must be"):
Multinomial([1., 1.], tf.placeholder(tf.float32, []))
class TestOnehotCategorical(tf.test.TestCase):
def test_init_check_shape(self):
with self.test_session(use_gpu=True):
with self.assertRaisesRegexp(ValueError, "should have rank"):
OnehotCategorical(logits=tf.zeros([]))
def test_init_n_categories(self):
cat = OnehotCategorical(tf.ones([10]))
self.assertTrue(isinstance(cat.n_categories, int))
self.assertEqual(cat.n_categories, 10)
with self.test_session(use_gpu=True):
logits = tf.placeholder(tf.float32, None)
cat2 = OnehotCategorical(logits)
self.assertEqual(
cat2.n_categories.eval(feed_dict={logits: np.ones([10])}), 10)
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"should have rank"):
cat2.n_categories.eval(feed_dict={logits: 1.})
def test_value_shape(self):
# static
cat = OnehotCategorical(tf.placeholder(tf.float32, [None, 10]))
self.assertEqual(cat.get_value_shape().as_list(), [10])
# dynamic
logits = tf.placeholder(tf.float32, None)
cat2 = OnehotCategorical(logits)
self.assertTrue(cat2._value_shape().dtype is tf.int32)
with self.test_session(use_gpu=True):
self.assertEqual(cat2._value_shape().eval(
feed_dict={logits: np.ones([2, 1, 3])}).tolist(), [3])
self.assertEqual(cat._value_shape().dtype, tf.int32)
def test_batch_shape(self):
utils.test_batch_shape_1parameter(
self, OnehotCategorical, np.zeros, is_univariate=False)
def test_sample_shape(self):
utils.test_1parameter_sample_shape_one_rank_less(
self, OnehotCategorical, np.zeros)
def test_log_prob_shape(self):
def _make_samples(shape):
samples = np.zeros(shape)
samples = samples.reshape((-1, shape[-1]))
samples[:, 0] = 1
return samples.reshape(shape)
utils.test_1parameter_log_prob_shape_one_rank_less(
self, OnehotCategorical, _make_samples, _make_samples)
def test_value(self):
with self.test_session(use_gpu=True):
def _test_value(logits, given):
logits = np.array(logits, np.float32)
normalized_logits = logits - misc.logsumexp(
logits, axis=-1, keepdims=True)
given = np.array(given, np.int32)
cat = OnehotCategorical(logits)
log_p = cat.log_prob(tf.one_hot(given, logits.shape[-1],
dtype=tf.int32))
def _one_hot(x, depth):
n_elements = x.size
ret = np.zeros((n_elements, depth))
ret[np.arange(n_elements), x.flat] = 1
return ret.reshape(list(x.shape) + [depth])
target_log_p = np.sum(_one_hot(
given, logits.shape[-1]) * normalized_logits, -1)
self.assertAllClose(log_p.eval(), target_log_p)
p = cat.prob(tf.one_hot(given, logits.shape[-1],
dtype=tf.int32))
target_p = np.sum(_one_hot(
given, logits.shape[-1]) * np.exp(normalized_logits), -1)
self.assertAllClose(p.eval(), target_p)
_test_value([0.], [0, 0, 0])
_test_value([-50., -10., -50.], [0, 1, 2, 1])
_test_value([0., 4.], [[0, 1], [0, 1]])
_test_value([[2., 3., 1.], [5., 7., 4.]],
np.ones([3, 1, 1], dtype=np.int32))
def test_dtype(self):
utils.test_dtype_1parameter_discrete(self, OnehotCategorical)
class TestDirichlet(tf.test.TestCase):
def test_init_check_shape(self):
with self.test_session(use_gpu=True):
with self.assertRaisesRegexp(ValueError, "should have rank"):
Dirichlet(alpha=tf.zeros([]))
def test_init_n_categories(self):
dist = Dirichlet(tf.ones([10]))
self.assertTrue(isinstance(dist.n_categories, int))
self.assertEqual(dist.n_categories, 10)
with self.assertRaisesRegexp(ValueError,
"n_categories.*should be at least 2"):
Dirichlet(tf.ones([3, 1]))
dist2 = Dirichlet(tf.placeholder(tf.float32, [3, None]))
self.assertTrue(dist2.n_categories is not None)
with self.test_session(use_gpu=True):
alpha = tf.placeholder(tf.float32, None)
dist3 = Dirichlet(alpha)
self.assertEqual(
dist3.n_categories.eval(feed_dict={alpha: np.ones([10])}), 10)
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"should have rank"):
dist3.n_categories.eval(feed_dict={alpha: 1.})
def test_value_shape(self):
# static
dist = Dirichlet(tf.placeholder(tf.float32, [None, 10]))
self.assertEqual(dist.get_value_shape().as_list(), [10])
# dynamic
alpha = tf.placeholder(tf.float32, None)
dist2 = Dirichlet(alpha)
self.assertEqual(dist2.get_value_shape().as_list(), [None])
self.assertTrue(dist2._value_shape().dtype is tf.int32)
with self.test_session(use_gpu=True):
self.assertEqual(dist2._value_shape().eval(
feed_dict={alpha: np.ones([2, 1, 3])}).tolist(), [3])
self.assertEqual(dist._value_shape().dtype, tf.int32)
def test_batch_shape(self):
utils.test_batch_shape_1parameter(
self, Dirichlet, np.zeros, is_univariate=False)
def test_sample_shape(self):
utils.test_1parameter_sample_shape_one_rank_less(
self, Dirichlet, np.zeros)
def test_log_prob_shape(self):
def _make_samples(shape):
samples = np.ones(shape, dtype=np.float32)
return samples / samples.sum(axis=-1, keepdims=True)
# TODO: This failed with a bug in Tensorflow, waiting fix.
# https://github.com/tensorflow/tensorflow/issues/8391
# _test_static([3, None], [3, 2, 1, None], [3, 2, 3])
utils.test_1parameter_log_prob_shape_one_rank_less(
self, Dirichlet, np.ones, _make_samples)
def test_value(self):
def dirichlet_logpdf(x, alpha):
# scipy's implementation of dirichlet logpdf doesn't support
# batch of x, we use this modified version.
def _lnB(alpha):
return np.sum(special.gammaln(alpha)) - \
special.gammaln(np.sum(alpha))
lnB = _lnB(alpha)
return - lnB + np.sum(np.log(x) * (alpha - 1), -1)
def dirichlet_pdf(x, alpha):
return np.exp(dirichlet_logpdf(x, alpha))
with self.test_session(use_gpu=True):
def _test_value_alpha_rank1(alpha, given):
alpha = np.array(alpha, np.float32)
given = np.array(given, np.float32)
dist = Dirichlet(alpha)
log_p = dist.log_prob(given)
target_log_p = dirichlet_logpdf(given, alpha)
self.assertAllClose(log_p.eval(), target_log_p)
p = dist.prob(given)
target_p = dirichlet_pdf(given, alpha)
self.assertAllClose(p.eval(), target_p)
_test_value_alpha_rank1([1., 1., 1.],
[[0.2, 0.5, 0.3], [0.3, 0.4, 0.3]])
_test_value_alpha_rank1([2., 3., 4.], [0.3, 0.7, 0.])
# TODO: fix for case when alpha=1, given=0
def _test_value_alpha_rank2_given_rank2(alpha, given):
alpha = np.array(alpha, np.float32)
given = np.array(given, np.float32)
alpha_b = alpha * np.ones_like(given)
given_b = given * np.ones_like(alpha)
dist = Dirichlet(alpha)
log_p = dist.log_prob(given)
target_log_p = np.array(
[dirichlet_logpdf(given_b[i], alpha_b[i])
for i in range(alpha_b.shape[0])])
self.assertAllClose(log_p.eval(), target_log_p)
p = dist.prob(given)
target_p = np.array(
[dirichlet_pdf(given_b[i], alpha_b[i])
for i in range(alpha_b.shape[0])])
self.assertAllClose(p.eval(), target_p)
_test_value_alpha_rank2_given_rank2([[1., 2.], [3., 4.]],
[0.5, 0.5])
_test_value_alpha_rank2_given_rank2([[5., 6.], [7., 8.]],
[[0.1, 0.9]])
_test_value_alpha_rank2_given_rank2([[100., 1.], [0.01, 10.]],
[[0., 1.], [1., 0.]])
def test_check_numerics(self):
alpha = tf.placeholder(tf.float32, None)
given = tf.placeholder(tf.float32, None)
dist = Dirichlet(alpha, check_numerics=True)
log_p = dist.log_prob(given)
with self.test_session(use_gpu=True):
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"log\(given\).*Tensor had Inf"):
log_p.eval(feed_dict={alpha: np.ones([2]), given: [0., 1.]})
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"lbeta\(alpha\).*Tensor had NaN"):
log_p.eval(feed_dict={alpha: [-1., 1.], given: [0.5, 0.5]})
def test_dtype(self):
utils.test_dtype_1parameter_continuous(self, Dirichlet)
class TestExpConcrete(tf.test.TestCase):
def test_init_check_shape(self):
with self.test_session(use_gpu=True):
with self.assertRaisesRegexp(ValueError, "should have rank"):
ExpConcrete(1., logits=tf.zeros([]))
def test_init_n_categories(self):
con = ExpConcrete(1., tf.ones([10]))
self.assertTrue(isinstance(con.n_categories, int))
self.assertEqual(con.n_categories, 10)
with self.test_session(use_gpu=True):
logits = tf.placeholder(tf.float32, None)
con2 = ExpConcrete(1., logits)
self.assertEqual(
con2.n_categories.eval(feed_dict={logits: np.ones([10])}), 10)
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"should have rank"):
con2.n_categories.eval(feed_dict={logits: 1.})
def test_init_temperature(self):
with self.assertRaisesRegexp(ValueError,
"should be a scalar"):
ExpConcrete([1.], [1., 2.])
with self.test_session(use_gpu=True):
temperature = tf.placeholder(tf.float32, None)
con = ExpConcrete(temperature, [1., 2.])
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
"should be a scalar"):
con.temperature.eval(feed_dict={temperature: [1.]})
def test_value_shape(self):
# static
con = ExpConcrete(1., tf.placeholder(tf.float32, [None, 10]))
self.assertEqual(con.get_value_shape().as_list(), [10])
# dynamic
logits = tf.placeholder(tf.float32, None)
con2 = ExpConcrete(1., logits)
self.assertTrue(con2._value_shape().dtype is tf.int32)
with self.test_session(use_gpu=True):
self.assertEqual(con2._value_shape().eval(
feed_dict={logits: np.ones([2, 1, 3])}).tolist(), [3])
self.assertEqual(con._value_shape().dtype, tf.int32)
def test_batch_shape(self):
def _proxy_distribution(logits):
return ExpConcrete(1., logits)
utils.test_batch_shape_1parameter(
self, _proxy_distribution, np.zeros, is_univariate=False)
def test_sample_shape(self):
def _proxy_distribution(logits):
return ExpConcrete(1., logits)
utils.test_1parameter_sample_shape_one_rank_less(
self, _proxy_distribution, np.zeros)
def test_log_prob_shape(self):
def _proxy_distribution(logits):
return ExpConcrete(1., logits)
def _make_samples(shape):
samples = np.ones(shape, dtype=np.float32)
return np.log(samples / samples.sum(axis=-1, keepdims=True))
utils.test_1parameter_log_prob_shape_one_rank_less(
self, _proxy_distribution, np.ones, _make_samples)
def test_value(self):
with self.test_session(use_gpu=True):
def _test_value(given, temperature, logits):
given = | np.array(given, np.float32) | numpy.array |
import sys,os
import numpy as np
import matplotlib.pyplot as plt
from desitarget import cuts
import fitsio
import astropy.io.fits as fits
import healpy as hp
from scipy.special import erf
from astropy.table import Table
colorcuts_function = cuts.isELG_colors
#deep DECaLS imaging, with photozs from HSC
truthf = '/project/projectdirs/desi/users/ajross/MCdata/desi_mcsyst_truth.dr7.34ra38.-7dec-3.fits'
truth = fitsio.read(truthf,1)
gmag = truth["g"]
w = gmag < 24.5
#truth = truth[w]
gmag = truth["g"]
rmag = truth["r"]
zmag = truth["z"]
photz = truth['hsc_mizuki_photoz_best']
#pixfn = '/project/projectdirs/desi/target/catalogs/dr8/0.31.1/pixweight/pixweight-dr8-0.31.1.fits' #update this to be more recent
pixfn = '/global/cfs/cdirs/desi/target/catalogs/dr9m/0.42.0/pixweight/main/resolve/dark/pixweight-dark.fits' #dr9m version
def mag2flux(mag) :
return 10**(-0.4*(mag-22.5))
def flux2mag(flux) :
mag = -2.5*np.log10(flux*(flux>0)+0.001*(flux<=0)) + 22.5
mag[(flux<=0)] = 0.
return mag
gflux = mag2flux(truth["g"])
rflux = mag2flux(truth["r"])
zflux = mag2flux(truth["z"])
w1flux = | np.zeros(gflux.shape) | numpy.zeros |
"""
This is the configuration file for generating a synthetic dataset from
scratch in the csalt architecture. It is imported as a Python modeule in
various subroutines, and will be copied into the directory
outputbase_dir/reduced_dir/basename/
for future reference once the data generation is complete.
"""
import numpy as np
"""
LOCATORS:
These set the desired locations and naming conventions of the outputs, as
well as the locations of necessary ancillary information.
"""
# base path
outputbase_dir = 'storage/'
# path to simobserve outputs and blank template .MS files
template_dir = outputbase_dir+'obs_templates/'
# path to storage space for "raw" synthetic dataset files
synthraw_dir = outputbase_dir+'synth_storage/'
# path to concatenated, "reduced" dataset files
reduced_dir = outputbase_dir+'data/'
# path to hard-copies of CASA logs
casalogs_dir = outputbase_dir+'CASA_logs/'
# path to CASA/simobserve-format antenna configuration files
antcfg_dir = '/pool/asha0/casa-release-5.7.2-4.el7/data/alma/simmos/'
# datafile naming base
basename = 'simple-demo'
# synthetic "raw" naming base
in_MS = synthraw_dir+basename+'/'+basename
# synthetic "reduced" naming base
dataname = reduced_dir+basename+'/'+basename
"""
SIMULATED OBSERVATION SETTINGS:
"""
# array observing settings
template = ['exo12m-lo', 'exo12m-hi'] # template names
config = ['alma.cycle8.3', 'alma.cycle8.6'] # antenna location lists
date = ['2022/04/20', '2022/07/11'] # observation dates (UTC)
HA_0 = ['-0.25h', '0.0h'] # HAs at observing starts
ttotal = ['2min', '5min'] # total on-source times
tinteg = ['30s', '30s'] # integration times per stamp
# spectral settings
dnu_native = [122070.3125, 122070.3125] # native channel spacings (Hz)
nu_rest = 345.7959899e9 # rest frequency (Hz)
V_tune = [4.0e3, 4.0e3] # LSRK tunings at centers (m/s)
V_span = [15.0e3, 15.0e3] # +/- ranges around V_tune (m/s)
nover = 1 # over-sampling factor (for SRF)
# spatial settings
RA = '16:00:00.00' # phase center RA
DEC = '-40:00:00.00' # phase center DEC
# noise model settings
RMS = [10.3, 5.4] # desired RMS (mJy/beam/chan)
"""
DATA REDUCTION SETTINGS:
"""
tavg = ['', ''] # time-averaging intervals
V_bounds = [5.2e3-5e3, 5.2e3+5e3] # excised V_LSRK range (m/s)
"""
INPUT MODEL PARAMETERS:
"""
# parametric_model inputs
incl = 40.
PA = 130.
mstar = 0.7
r_l = 200.
z0 = 2.5
psi = 1.
T0 = 115.
q = -0.5
Tmaxb = 20.
sigV0 = 261.
ltau0 = np.log10(500.)
ppp = -1.
Vsys = 5.2e3
dx = 0.
dy = 0.
pars = np.array([incl, PA, mstar, r_l, z0, psi, T0, q, Tmaxb,
sigV0, ltau0, ppp, Vsys, dx, dy])
# fixed inputs
FOV = [6.375, 6.375] # full FOV (arcsec)
Npix = [256, 256] # number of pixels per FOV
# note: pixsize = FOV/(Npix-1)
dist = 150. # distance (pc)
cfg_dict = {} # passable dictionary of kwargs
"""
ADDITIONAL MISCELLANY:
"""
# process phase center into degrees
RA_pieces = [np.float(RA.split(':')[i]) for i in np.arange(3)]
RAdeg = 15 * np.sum(np.array(RA_pieces) / [1., 60., 3600.])
DEC_pieces = [np.float(DEC.split(':')[i]) for i in | np.arange(3) | numpy.arange |
# -*- coding: utf-8 -*-
from pytta.classes._instanceinfo import RememberInstanceCreationInfo as RICI
from pytta.classes.filter import fractional_octave_frequencies as FOF
from pytta.classes import SignalObj, OctFilter, ImpulsiveResponse
from pytta.utils import fractional_octave_frequencies as FOF, freq_to_band
from math import isnan
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import time
import locale
from pytta import _h5utils as _h5
from pytta import _plot as plot
import copy as cp
# Analysis types and its units
anTypes = {'RT': ('s', 'Reverberation time'),
'C': ('dB', 'Clarity'),
'D': ('%', 'Definition'),
'G': ('dB', 'Strength factor'),
'L': ('dB', 'Level'),
'mixed': ('-', 'Mixed')}
class Analysis(RICI):
"""
Objects belonging to the Analysis class holds fractional octave band data.
It does conveniently the operations linearly between Analyses of the type
'Level'. Therefore those operations do not occur with values in dB scale.
Available Analysis' types below.
For more information see each parameter/attribute/method specific
documentation.
Creation parameters (default), (type):
--------------------------------------
* anType (), (string):
Type of the Analysis. May be:
- 'RT' for 'Reverberation time' Analysis in [s];
- 'C' for 'Clarity' in dB;
- 'D' for 'Definition' in %;
- 'G' for 'Strength factor' in dB;
- 'L' for any 'Level' Analysis in dB (e.g: SPL);
- 'mixed' for any combination between the types above.
* nthOct, (int):
The number of fractions per octave;
* minBand, (int | float):
The exact or approximated start frequency;
* maxBand, (int | float):
The exact or approximated stop frequency;
* data, (list | numpy array):
The data with the exact number of bands between the specified minimum
(minBand) and maximum band (maxBand);
* dataLabel (''), (string):
Label for plots;
* error, (list | numpy array):
The error with the exact number of bands between the specified
minimum (minBand) and maximum band (maxBand);
* errorLabel (''), (string):
Label for plots;
* comment ('No comments.'), (string):
Some comment about the object.
* xLabel (None), (string):
x axis plot label;
* yLabel (None), (string):
y axis plot label;
* title (None), (string):
plot title.
Attributes:
-----------
* bands (NumPy array):
The bands central frequencies.
Properties:
-----------
* minBand, (int | float):
When a new limit is set data is automatic adjusted.
* maxBand, (int | float):
When a new limit is set data is automatic adjusted.
Methods:
--------
* plot_bars():
Generates a bar plot.
"""
# Magic methods
def __init__(self,
anType,
nthOct,
minBand,
maxBand,
data,
dataLabel=None,
error=None,
errorLabel='Error',
comment='No comments.',
xLabel=None,
yLabel=None,
title=None):
super().__init__()
self.anType = anType
self.nthOct = nthOct
self._minBand = minBand
self._maxBand = maxBand
self.data = data
self.dataLabel = dataLabel
self.error = error
self.errorLabel = errorLabel
self.comment = comment
# Plot infos memory
self.xLabel = xLabel
self.yLabel = yLabel
self.title = title
return
def __str__(self):
return ('1/{} octave band {} '.format(self.nthOct, self.anType) +
'analysis from the {} [Hz] to the '.format(self.minBand) +
'{} [Hz] band.'.format(self.maxBand))
def __repr__(self):
return (f'{self.__class__.__name__}('
f'anType={self.anType!r}, '
f'nthOct={self.nthOct!r}, '
f'minBand={self.minBand!r}, '
f'maxBand={self.maxBand!r}, '
f'data={self.data!r}, '
f'comment={self.comment!r})')
def __add__(self, other):
if isinstance(other, Analysis):
if other.range != self.range:
raise ValueError("Can't subtract! Both Analysis have" +
" different band limits.")
if self.anType == 'L':
if other.anType == 'L':
data = []
for idx, value in enumerate(self.data):
d = 10*np.log10(10**(value/10) +
10**(other.data[idx]/10))
data.append(d)
anType = 'L'
elif other.anType in ['mixed', 'C', 'D', 'RT']:
data = self.data + other.data
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented " +
"for Analysis types " +
anTypes[self.anType][1] +
" and " +
anTypes[other.anType][1] +
".")
else:
data = self.data + other.data
anType = 'mixed'
elif isinstance(other, (int, float)):
if self.anType == 'L':
data = [10*np.log10(10**(dt/10) + 10**(other/10))
for dt in self.data]
anType = 'L'
else:
data = self.data + other
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented between " +
"Analysis and {}".format(type(other)) +
"types.")
selfDataLabel = self.dataLabel if self.dataLabel is not None \
else 'Analysis 1'
if hasattr(other,'dataLabel'):
if other.dataLabel is not None:
otherDataLabel = other.dataLabel
else:
otherDataLabel = 'Analysis 2'
else:
otherDataLabel = 'Analysis 2'
result = Analysis(anType=anType, nthOct=self.nthOct,
minBand=self.minBand, maxBand=self.maxBand,
data=data, dataLabel=selfDataLabel +
' + ' + otherDataLabel,
error=None, errorLabel=None,
comment=None,
xLabel=self.xLabel, yLabel=self.yLabel,
title=None)
return result
def __sub__(self, other):
if isinstance(other, Analysis):
if other.range != self.range:
raise ValueError("Can't subtract! Both Analysis have" +
" different band limits.")
if self.anType == 'L':
if other.anType == 'L':
data = []
for idx, value in enumerate(self.data):
d = 10*np.log10(10**(value/10) -
10**(other.data[idx]/10))
data.append(d)
anType = 'L'
elif other.anType in ['mixed', 'C', 'D', 'RT']:
data = self.data - other.data
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented " +
"for Analysis types " +
anTypes[self.anType][1] +
" and " +
anTypes[other.anType][1] +
".")
else:
data = self.data - other.data
anType = 'mixed'
elif isinstance(other, (int, float)):
if self.anType == 'L':
data = [10*np.log10(10**(dt/10) - 10**(other/10))
for dt in self.data]
anType = 'L'
else:
data = self.data - other
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented between " +
"Analysis and {}".format(type(other)) +
"types.")
selfDataLabel = self.dataLabel if self.dataLabel is not None \
else 'Analysis 1'
if hasattr(other,'dataLabel'):
if other.dataLabel is not None:
otherDataLabel = other.dataLabel
else:
otherDataLabel = 'Analysis 2'
else:
otherDataLabel = 'Analysis 2'
result = Analysis(anType=anType, nthOct=self.nthOct,
minBand=self.minBand, maxBand=self.maxBand,
data=data, dataLabel=selfDataLabel +
' - ' + otherDataLabel,
error=None, errorLabel=None,
comment=None,
xLabel=self.xLabel, yLabel=self.yLabel,
title=None)
return result
def __mul__(self, other):
if isinstance(other, Analysis):
if other.range != self.range:
raise ValueError("Can't multiply! Both Analysis have " +
"different band limits.")
anType='mixed'
data=self.data*other.data
elif isinstance(other, (int, float)):
anType='mixed'
data=self.data*other
else:
raise TypeError("Analysis can only be operated with int, float, " +
"or Analysis types.")
selfDataLabel = self.dataLabel if self.dataLabel is not None \
else 'Analysis 1'
if hasattr(other,'dataLabel'):
if other.dataLabel is not None:
otherDataLabel = other.dataLabel
else:
otherDataLabel = 'Analysis 2'
else:
otherDataLabel = 'Analysis 2'
result = Analysis(anType=anType, nthOct=self.nthOct,
minBand=self.minBand, maxBand=self.maxBand,
data=data, dataLabel=selfDataLabel +
' * ' + otherDataLabel,
error=None, errorLabel=None,
comment=None,
xLabel=self.xLabel, yLabel=self.yLabel,
title=None)
return result
def __rtruediv__(self, other):
if isinstance(other, Analysis):
if self.anType == 'L':
if other.range != self.range:
raise ValueError("Can't divide! Both Analysis have" +
" different band limits.")
elif other.anType in ['mixed', 'C', 'D', 'RT']:
data = other.data / self.data
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented " +
"for Analysis types " +
anTypes[self.anType][1] +
" and " +
anTypes[other.anType][1] +
".")
else:
data = other.data / self.data
anType = 'mixed'
elif isinstance(other, (int, float)):
if self.anType == 'L':
data = [10*np.log10(10**(dt/10) / other)
for dt in self.data]
anType = 'L'
else:
data = other / self.data
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented between " +
"Analysis and {}".format(type(other)) +
"types.")
selfDataLabel = self.dataLabel if self.dataLabel is not None \
else 'Analysis 1'
if hasattr(other,'dataLabel'):
if other.dataLabel is not None:
otherDataLabel = other.dataLabel
else:
otherDataLabel = 'Analysis 2'
else:
otherDataLabel = 'Analysis 2'
result = Analysis(anType=anType, nthOct=self.nthOct,
minBand=self.minBand, maxBand=self.maxBand,
data=data, dataLabel=selfDataLabel +
' / ' + otherDataLabel,
error=None, errorLabel=None,
comment=None,
xLabel=self.xLabel, yLabel=self.yLabel,
title=None)
return result
def __truediv__(self, other):
if isinstance(other, Analysis):
if self.anType == 'L':
if other.range != self.range:
raise ValueError("Can't divide! Both Analysis have" +
" different band limits.")
elif other.anType in ['mixed', 'C', 'D', 'RT']:
data = self.data / other.data
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented " +
"for Analysis types " +
anTypes[self.anType][1] +
" and " +
anTypes[other.anType][1] +
".")
else:
data = self.data / other.data
anType = 'mixed'
elif isinstance(other, (int, float)):
if self.anType == 'L':
data = [10*np.log10(10**(dt/10) / other)
for dt in self.data]
anType = 'L'
else:
data = self.data / other
anType = 'mixed'
else:
raise NotImplementedError("Operation not implemented between " +
"Analysis and {}".format(type(other)) +
"types.")
selfDataLabel = self.dataLabel if self.dataLabel is not None \
else 'Analysis 1'
if hasattr(other,'dataLabel'):
if other.dataLabel is not None:
otherDataLabel = other.dataLabel
else:
otherDataLabel = 'Analysis 2'
else:
otherDataLabel = 'Analysis 2'
result = Analysis(anType=anType, nthOct=self.nthOct,
minBand=self.minBand, maxBand=self.maxBand,
data=data, dataLabel=selfDataLabel +
' / ' + otherDataLabel,
error=None, errorLabel=None,
comment=None,
xLabel=self.xLabel, yLabel=self.yLabel,
title=None)
return result
# Properties
@property
def anType(self):
"""Type of the Analysis.
May be:
- 'RT' for 'Reverberation time' Analysis in [s];
- 'C' for 'Clarity' in dB;
- 'D' for 'Definition' in %;
- 'G' for 'Strength factor' in dB;
- 'L' for any 'Level' Analysis in dB (e.g: SPL);
- 'mixed' for any combination between the types above.
Return:
-------
string.
"""
return self._anType
@anType.setter
def anType(self, newType):
if type(newType) is not str:
raise TypeError("anType parameter makes reference to the " +
"calculated parameter, e.g. 'RT' for " +
"reverberation time, and must be a str value.")
elif newType not in anTypes:
raise ValueError(newType + " type not supported. May be 'RT, " +
"'C', 'D', 'G', 'L', or 'mixed'.")
self.unit = anTypes[newType][0]
self.anName = anTypes[newType][1]
self._anType = newType
return
@property
def nthOct(self):
"""octave band fraction.
Could be 1, 3, 6...
Return:
-------
int.
"""
return self._nthOct
@nthOct.setter
def nthOct(self, new):
if not isinstance(new, int):
raise TypeError("Number of bands per octave must be int")
if '_nthOct' in locals():
if self.nthOct > new:
raise TypeError("It's impossible to convert from " +
"{} to {} bands".format(self.nthOct, new) +
"per octave")
else:
raise NotImplementedError('Conversion between different ' +
'nthOct not implemented yet.')
else:
self._nthOct = new
return
@property
def minBand(self):
"""minimum octave fraction band.
When a new limit is set data is automatic adjusted.
Return:
-------
float.
"""
return self._minBand
@minBand.setter
def minBand(self, new):
if type(new) is not int and type(new) is not float:
raise TypeError("Frequency range values must \
be either int or float.")
if new in self.bands:
print("ATTENTION! Deleting data below " + str(new) + " [Hz].")
self._minBand = new
self.data = self.data[int(np.where(self.bands==new)[-1]):]
else:
adjNew = self.bands[int(np.where(self.bands<=new)[-1])]
print("'" + str(new) + "' is not a valid band. " +
"Taking the closest band: " + str(adjNew) + " [Hz].")
self._minBand = adjNew
self.data = self.data[int(np.where(self.bands==adjNew)[-1]):]
return
@property
def maxBand(self):
"""maximum octave fraction band.
When a new limit is set data is automatic adjusted.
Return:
-------
float.
"""
return self._maxBand
@maxBand.setter
def maxBand(self, new):
if type(new) is not int and type(new) is not float:
raise TypeError("Frequency range values must \
be either int or float.")
if new in self.bands:
print("ATTENTION! Deleting data above " + str(new) + " [Hz].")
self._maxBand = new
self.data = self.data[:int(np.where(self.bands==new)[-1])+1]
else:
adjNew = self.bands[int(np.where(self.bands<=new)[-1])]
print("'" + str(new) + "' is not a valid band. " +
"Taking the closest band: " + str(adjNew) + " [Hz].")
self._maxBand = adjNew
self.data = self.data[:int(np.where(self.bands==adjNew)[-1])+1]
return
# self._bandMax = new
# return
@property
def range(self):
return (self.minBand, self.maxBand)
@property
def data(self):
"""Fractional octave bands data.
data must be a list or NumPy ndarray with the same number of elements
than bands between the specified minimum (minBand) and maximum band
(maxBand).
Return:
-------
NumPy ndarray.
"""
return self._data
@data.setter
def data(self, newData):
bands = FOF(nthOct=self.nthOct,
freqRange=(self.minBand, self.maxBand))[:,1]
self._minBand = float(bands[0])
self._maxBand = float(bands[-1])
if not isinstance(newData, list) and \
not isinstance(newData, np.ndarray):
raise TypeError("'data' must be provided as a list or " +
"numpy ndarray.")
elif len(newData) != len(bands):
raise ValueError("Provided 'data' has different number of bands " +
"then the existent bands between " +
"{} and {} [Hz].".format(self.minBand,
self.maxBand))
# ...
self._data = np.array(newData)
self._bands = bands
return
@property
def error(self):
"""error per octave fraction band.
The error must be a list or NumPy ndarray with same number of elements
as bands between the specified minimum (minBand) and maximum bands
(maxBand);
Shown as +-error.
Return:
-------
NumPy ndarray.
"""
return self._error
@error.setter
def error(self, newError):
if not isinstance(newError, np.ndarray) and \
not isinstance(newError, list) and \
newError is not None:
raise TypeError("'error' must be provided as a list, numpy " +
"ndarray or None.")
if newError is not None:
if len(newError) != len(self.data):
raise ValueError("'error' must have the same length as 'data'.")
self._error = np.array(newError)
else:
self._error = newError
return
@property
def dataLabel(self):
"""Label of the data.
Used for plot purposes.
Return:
-------
str.
"""
return self._dataLabel
@dataLabel.setter
def dataLabel(self, newLabel):
if newLabel is not None and not isinstance(newLabel, str):
raise TypeError("'dataLabel' must be a string or None.")
self._dataLabel = newLabel
return
@property
def errorLabel(self):
"""Label of the error information.
Used for plot purposes.
Return:
-------
str.
"""
return self._errorLabel
@errorLabel.setter
def errorLabel(self, newLabel):
if newLabel is not None and not isinstance(newLabel, str):
raise TypeError("'errorLabel' must be a string or None.")
self._errorLabel = newLabel
return
@property
def bands(self):
"""The octave fraction bands central frequencies.
Return:
-------
list with the fractional octave bands of this Analysis.
"""
return self._bands
# Methods
def _h5_save(self, h5group):
"""
Saves itself inside a hdf5 group from an already opened file via
pytta.save(...).
"""
h5group.attrs['class'] = 'Analysis'
h5group.attrs['anType'] = self.anType
h5group.attrs['nthOct'] = self.nthOct
h5group.attrs['minBand'] = self.minBand
h5group.attrs['maxBand'] = self.maxBand
h5group.attrs['dataLabel'] = _h5.attr_parser(self.dataLabel)
h5group.attrs['errorLabel'] = _h5.attr_parser(self.errorLabel)
h5group.attrs['comment'] = _h5.attr_parser(self.comment)
h5group.attrs['xLabel'] = _h5.attr_parser(self.xLabel)
h5group.attrs['yLabel'] = _h5.attr_parser(self.yLabel)
h5group.attrs['title'] = _h5.attr_parser(self.title)
h5group['data'] = self.data
if self.error is not None:
h5group['error'] = self.error
return
def plot(self, **kwargs):
"""Plot the analysis data in fractinal octave bands.
Parameters (default), (type):
-----------------------------
* dataLabel ('Analysis type [unit]'), (str):
legend label for the current data
* errorLabel ('Error'), (str):
legend label for the current data error
* xLabel ('Time [s]'), (str):
x axis label.
* yLabel ('Amplitude'), (str):
y axis label.
* yLim (), (list):
inferior and superior limits.
>>> yLim = [-100, 100]
* title (), (str):
plot title
* decimalSep (','), (str):
may be dot or comma.
>>> decimalSep = ',' # in Brazil
* barWidth (0.75), float:
width of the bars from one fractional octave band.
0 < barWidth < 1.
* errorStyle ('standard'), str:
error curve style. May be 'laza' or None/'standard'.
* forceZeroCentering ('False'), bool:
force centered bars at Y zero.
Return:
--------
matplotlib.figure.Figure object.
"""
return self.plot_bars(**kwargs)
def plot_bars(self, dataLabel:str=None, errorLabel:str=None,
xLabel:str=None, yLabel:str=None,
yLim:list=None, xLim:list=None, title:str=None, decimalSep:str=',',
barWidth:float=0.75, errorStyle:str=None,
forceZeroCentering:bool=False, overlapBars:bool=False,
color:list=None):
"""Plot the analysis data in fractinal octave bands.
Parameters (default), (type):
-----------------------------
* dataLabel ('Analysis type [unit]'), (str):
legend label for the current data
* errorLabel ('Error'), (str):
legend label for the current data error
* xLabel ('Time [s]'), (str):
x axis label.
* yLabel ('Amplitude'), (str):
y axis label.
* yLim (), (list):
inferior and superior limits.
>>> yLim = [-100, 100]
* xLim (), (list):
bands limits.
>>> xLim = [100, 10000]
* title (), (str):
plot title
* decimalSep (','), (str):
may be dot or comma.
>>> decimalSep = ',' # in Brazil
* barWidth (0.75), float:
width of the bars from one fractional octave band.
0 < barWidth < 1.
* errorStyle ('standard'), str:
error curve style. May be 'laza' or None/'standard'.
* forceZeroCentering ('False'), bool:
force centered bars at Y zero.
* overlapBars ('False'), bool:
overlap bars. No side by side bars of different data.
* color (None), list:
list containing the color of each Analysis.
Return:
--------
matplotlib.figure.Figure object.
"""
if dataLabel is not None:
self.dataLabel = dataLabel
if errorLabel is not None:
self.errorLabel = errorLabel
if xLabel is not None:
self.barsXLabel = xLabel
else:
if hasattr(self, 'barsXLabel'):
if self.barsXLabel is not None:
xLabel = self.barsXLabel
if yLabel is not None:
self.barsYLabel = yLabel
else:
if hasattr(self, 'barsYLabel'):
if self.barsYLabel is not None:
yLabel = self.barsYLabel
if title is not None:
self.barsTitle = title
else:
if hasattr(self, 'barsTitle'):
if self.barsTitle is not None:
title = self.barsTitle
fig = plot.bars((self,), xLabel, yLabel, yLim, xLim,
self.title, decimalSep, barWidth, errorStyle,
forceZeroCentering, overlapBars, color)
return fig
class RoomAnalysis(Analysis):
"""Room monoaural acoustical parameters for quality analysis.
Provides interface to estimate several room parameters based on
the energy distribution of the impulse response. Calculations compliant to
ISO 3382-1 to obtain room acoustic parameters.
It has an implementation of Lundeby et al. [1] algorithm
to estimate the correction factor for the cumulative integral, as suggested
by the ISO 3382-1.
This class receives an one channel SignalObj or ImpulsiveResponse and
calculate all the room acoustic parameters.
Available room parameters: D50, C80, Ts, STearly, STlate, EDT, T20, T30.
Creation parameters (default), (type):
------------
* signalArray (ndarray | list), (NumPy array):
signal at specified domain. For 'freq' domain only half of the
spectra must be provided. The total numSamples should also
be provided.
* ir (), (SignalObj):
Monaural room impulse response signal.
* nthOct (1), (int):
Number of bands per octave. The default is 1.
* minFreq (20), (float):
Central frequency of the first band. The default is 2e1.
* maxFreq (20000) (float):
Central frequency of the last band. The default is 2e4.
* *args : () (Tuple):
See Analysis class.
* bypassLundeby (false), (bool):
Bypass Lundeby calculation, or not. The default is False.
* suppressWarnings (false), (bool):
Supress Lundeby warnings. The default is True.
* ircut (None), (float):
Cut the IR and throw away the silence tail. The default is None.
* **kwargs (), (Dict):
See Analysis.
Attributes (default), (data type):
-----------------------------------
* parameters (), (Tuple):
List of parameters names.
return tuple(self._params.keys())
* rms (), (np.ndarray):
Effective IR amplitude by frequency `band`.
* SPL (), (np.ndarray):
Equivalent IR level by frequency `band`.
* D50 (), (np.ndarray):
Room Definition by frequency `band`.
* C80 (), (np.ndarray):
Room Clarity by frequency `band`.
* Ts (), (np.ndarray):
Central Time by frequency `band`.
* STearly (), (np.ndarray):
Early energy distribution by frequency `band`.
* STlate (), (np.ndarray):
Late energy distribution by frequency `band`.
* EDT (), (np.ndarray):
Early Decay Time by frequency `band`.
* T20 (), (np.ndarray):
Reverberation time with 20 dB decay, by frequency `band`.
* T30 (), (np.ndarray):
Reverberation time with 30 dB decay, by frequency `band`.
Methods:
---------
* plot_param(name [str], **kwargs):
Plot a chart with the parameter passed in as `name`.
* plot_rms(label [str], **kwargs):
Plot a chart for the impulse response's `rms` by frequency `bands`.
* plot_SPL(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `SPL` by frequency `bands`.
* plot_C80(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `C80` by frequency `bands`.
* plot_D50(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `D50` by frequency `bands`.
* plot_T20(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `T20` by frequency `bands`.
* plot_T30(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `T30` by frequency `bands`.
* plot_Ts(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `Ts` by frequency `bands`.
* plot_EDT(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `EDT` by frequency `bands`.
* plot_STearly(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `STearly` by frequency `bands`.
* plot_STlate(label [str], yaxis [str], **kwargs):
Plot a chart for the impulse response's `STlate` by frequency `bands`.
For further information on methods see its specific documentation.
Authors:
<NAME>, <EMAIL>
<NAME>, <EMAIL>
<NAME>, <EMAIL>"""
def __init__(self, ir: SignalObj, nthOct: int = 1,
minFreq: float = 2e1, maxFreq: float = 2e4, *args,
plotLundeby: bool = False,
bypassLundeby: bool = False,
suppressWarnings: bool = True,
ircut: float = None, **kwargs):
_ir = ir.IR if type(ir) == ImpulsiveResponse else ir
minBand = freq_to_band(minFreq, nthOct, 1000, 10)
maxBand = freq_to_band(maxFreq, nthOct, 1000, 10)
nbands = maxBand - minBand + 1
super().__init__('mixed', nthOct, minFreq, maxFreq, nbands*[0], *args, **kwargs)
self.ir = crop_IR(_ir, ircut)
self._params = self.estimate_energy_parameters(self.ir, self.bands, plotLundeby,
bypassLundeby, suppressWarnings,
nthOct=nthOct, minFreq=minFreq,
maxFreq=maxFreq)
return
@staticmethod
def estimate_energy_parameters(ir: SignalObj, bands: np.ndarray,
plotLundeby: bool = False,
bypassLundeby: bool = False,
suppressWarnings: bool = False, **kwargs):
"""
Estimate the Impulse Response energy parameters.
Parameters
----------
bypassLundeby : bool
Whether to bypass calculation of Lundeby IR improvements or not.
The default is False.
suppressWarnings : bool
If supress warnings about IR quality and the bypassing of Lundeby calculations.
The default is False.
Returns
-------
params : Dict[str, np.ndarray]
A dict with parameters by name.
"""
listEDC, fhSignal = cumulative_integration(ir, bypassLundeby, plotLundeby, suppressWarnings, **kwargs)
params = {}
params['rms'] = fhSignal.rms()
params['SPL'] = fhSignal.spl()
params['Ts'] = central_time(fhSignal.timeSignal**2, fhSignal.timeVector)
params['D50'] = definition(listEDC, ir.samplingRate)
params['C80'] = clarity(listEDC, ir.samplingRate)
params['STearly'] = st_early(listEDC, ir.samplingRate)
params['STlate'] = st_late(listEDC, ir.samplingRate)
params['EDT'] = reverberation_time('EDT', listEDC)
params['T20'] = reverberation_time(20, listEDC)
params['T30'] = reverberation_time(30, listEDC)
# self._params['BR'], self._params['TR'] = timbre_ratios(self.T20)
return params
@property
def parameters(self):
"""List of parameters names."""
return tuple(self._params.keys())
@property
def rms(self):
"""Effective IR amplitude by frequency `band`."""
return self._params['rms']
@property
def SPL(self):
"""Equivalent IR level by frequency `band`."""
return self._params['SPL']
@property
def D50(self):
"""Room Definition by frequency `band`."""
return self._params['D50']
@property
def C80(self):
"""Effective IR amplitude, by frequency `band`."""
return self._params['C80']
@property
def Ts(self):
"""Central Time by frequency `band`."""
return self._params['Ts']
@property
def STearly(self):
"""Early energy distribution by frequency `band`."""
return self._params['STearly']
@property
def STlate(self):
"""Late energy distribution by frequency `band`."""
return self._params['STlate']
@property
def EDT(self):
"""Early Decay Time by frequency `band`."""
return self._params['EDT']
@property
def T20(self):
"""Reverberation time with 20 dB decay, by frequency `band`."""
return self._params['T20']
@property
def T30(self):
"""Reverberation time with 30 dB decay, by frequency `band`."""
return self._params['T30']
# @property
# def BR(self):
# """Reverberation time with 30 dB decay, by frequency `band`."""
# return self._params['BR']
# @property
# def TR(self):
# """Reverberation time with 30 dB decay, by frequency `band`."""
# return self._params['TR']
def plot_param(self, name: str, **kwargs):
"""
Plot a chart with the parameter passed in as `name`.
Parameters
----------
name : str
Room parameter name, e.g. `'T20' | 'C80' | 'SPL'`, etc.
kwargs: Dict
All kwargs accepted by `Analysis.plot_bar`.
Returns
-------
f : matplotlib.Figure
The figure of the plot chart.
"""
self._data = self._params[name]
f = self.plot(**kwargs)
self._data = np.zeros(self.bands.shape)
return f
def plot_rms(self, label='RMS', **kwargs):
"""Plot a chart for the impulse response's `rms` by frequency `bands`."""
return self.plot_param('rms', dataLabel=label, **kwargs)
def plot_SPL(self, label='SPL', yaxis='Level [dB]', **kwargs):
"""Plot a chart for the impulse response's `SPL` by frequency `bands`."""
return self.plot_param('SPL', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_C80(self, label='C80', yaxis='Clarity [dB]', **kwargs):
"""Plot a chart for the impulse response's `C80` by frequency `bands`."""
return self.plot_param('C80', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_D50(self, label='D50', yaxis='Definition [%]', **kwargs):
"""Plot a chart for the impulse response's `D50` by frequency `bands`."""
return self.plot_param('D50', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_T20(self, label='T20', yaxis='Reverberation time [s]', **kwargs):
"""Plot a chart for the impulse response's `T20` by frequency `bands`."""
return self.plot_param('T20', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_T30(self, label='T30', yaxis='Reverberation time [s]', **kwargs):
"""Plot a chart for the impulse response's `T30` by frequency `bands`."""
return self.plot_param('T30', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_Ts(self, label='Ts', yaxis='Central time [s]', **kwargs):
"""Plot a chart for the impulse response's `Ts` by frequency `bands`."""
return self.plot_param('Ts', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_EDT(self, label='EDT', yaxis='Early Decay Time [s]', **kwargs):
"""Plot a chart for the impulse response's `EDT` by frequency `bands`."""
return self.plot_param('EDT', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_STearly(self, label='STearly', yaxis='Early reflection level [dB]', **kwargs):
"""Plot a chart for the impulse response's `STearly` by frequency `bands`."""
return self.plot_param('STearly', dataLabel=label, yLabel=yaxis, **kwargs)
def plot_STlate(self, label='STlate', yaxis='Late reflection level [dB]', **kwargs):
"""Plot a chart for the impulse response's `STlate` by frequency `bands`."""
return self.plot_param('STlate', dataLabel=label, yLabel=yaxis, **kwargs)
# def plot_BR(self):
# """Plot a chart for the impulse response's `BR` by frequency `bands`."""
# return self.plot_param('BR')
# def plot_TR(self):
# """Plot a chart for the impulse response's `TR` by frequency `bands`."""
# return self.plot_param('TR')
def _filter(signal,
order: int = 4,
nthOct: int = 3,
minFreq: float = 20,
maxFreq: float = 20000,
refFreq: float = 1000,
base: int = 10):
of = OctFilter(order=order,
nthOct=nthOct,
samplingRate=signal.samplingRate,
minFreq=minFreq,
maxFreq=maxFreq,
refFreq=refFreq,
base=base)
result = of.filter(signal)
return result[0]
# @njit
def _level_profile(timeSignal, samplingRate,
numSamples, numChannels, blockSamples=None):
"""Get h(t) in octave bands and do the local time averaging in nblocks. Returns h^2_averaged(block)."""
def mean_squared(x):
return np.mean(x**2)
if blockSamples is None:
blockSamples = 100
nblocks = int(numSamples // blockSamples)
profile = np.zeros((nblocks, numChannels), dtype=np.float32)
timeStamp = np.zeros((nblocks, 1))
for ch in range(numChannels):
# if numChannels == 1:
# tmp = timeSignal
# else:
tmp = timeSignal[:, ch]
for idx in range(nblocks):
profile[idx, ch] = mean_squared(tmp[:blockSamples])
timeStamp[idx, 0] = idx*blockSamples/samplingRate
tmp = tmp[blockSamples:]
return profile, timeStamp
# @njit
def _start_sample_ISO3382(timeSignal, threshold) -> np.ndarray:
squaredIR = timeSignal**2
# assume the last 10% of the IR is noise, and calculate its noise level
last10Idx = -int(len(squaredIR)//10)
noiseLevel = np.mean(squaredIR[last10Idx:])
# get the maximum of the signal, that is the assumed IR peak
max_val = np.max(squaredIR)
max_idx = np.argmax(squaredIR)
# check if the SNR is enough to assume that the signal is an IR. If not,
# the signal is probably not an IR, so it starts at sample 1
idxNoShift = np.asarray([max_val < 100*noiseLevel or
max_idx > int(0.9*squaredIR.shape[0])])
# less than 20dB SNR or in the "noisy" part
if idxNoShift.any():
print("noiseLevelCheck: The SNR too bad or this is not an " +
"impulse response.")
return 0
# find the first sample that lies under the given threshold
threshold = abs(threshold)
startSample = 1
# # TODO - envelope mar/pdi - check!
# if idxNoShift:
# print("Something wrong!")
# return
# if maximum lies on the first point, then there is no point in searching
# for the beginning of the IR. Just return this position.
if max_idx > 0:
abs_dat = 10*np.log10(squaredIR[:max_idx]) \
- 10.*np.log10(max_val)
thresholdNotOk = True
thresholdShift = 0
while thresholdNotOk:
if len(np.where(abs_dat < (-threshold+thresholdShift))[0]) > 0:
lastBelowThreshold = \
np.where(abs_dat < (-threshold+thresholdShift))[0][-1]
thresholdNotOk = False
else:
thresholdShift += 1
if thresholdShift > 0:
print("_start_sample_ISO3382: 20 dB threshold too high. " +
"Decreasing it.")
if lastBelowThreshold > 0:
startSample = lastBelowThreshold
else:
startSample = 1
return startSample
# @njit
def _circular_time_shift(timeSignal, threshold=20):
# find the first sample where inputSignal level > 20 dB or > bgNoise level
startSample = _start_sample_ISO3382(timeSignal, threshold)
newTimeSignal = timeSignal[startSample:]
return (newTimeSignal, startSample)
# @njit
def _Lundeby_correction(band, timeSignal, samplingRate, numSamples,
numChannels, timeLength, suppressWarnings=True):
returnTuple = (np.float32(0), np.float32(0), np.int32(0), np.float32(0))
timeSignal, sampleShift = _circular_time_shift(timeSignal)
if sampleShift is None:
return returnTuple
numSamples -= sampleShift # discount shifted samples
numParts = 5 # number of parts per 10 dB decay. N = any([3, 10])
dBtoNoise = 7 # stop point 10 dB above first estimated background noise
useDynRange = 15 # dynamic range
# Window length - 10 to 50 ms, longer periods for lower frequencies and vice versa
repeat = True
i = 0
winTimeLength = 0.01
while repeat: # loop to find proper winTimeLength
winTimeLength = winTimeLength + 0.01*i
# 1) local time average:
blockSamples = int(winTimeLength * samplingRate)
timeWinData, timeVecWin = _level_profile(timeSignal, samplingRate,
numSamples, numChannels,
blockSamples)
# 2) estimate noise from h^2_averaged(block):
bgNoiseLevel = 10 * \
np.log10(
np.mean(timeWinData[-int(timeWinData.size/10):]))
# 3) Calculate preliminar slope
startIdx = np.argmax(np.abs(timeWinData/np.max(np.abs(timeWinData))))
stopIdx = startIdx + np.where(10*np.log10(timeWinData[startIdx+1:])
>= bgNoiseLevel + dBtoNoise)[0][-1]
dynRange = 10*np.log10(timeWinData[stopIdx]) \
- 10*np.log10(timeWinData[startIdx])
if (stopIdx == startIdx) or (dynRange > -5)[0]:
if not suppressWarnings:
print(band, "[Hz] band: SNR too low for the preliminar slope",
"calculation.")
# return returnTuple
# X*c = EDC (energy decaying curve)
X = np.ones((stopIdx-startIdx, 2), dtype=np.float32)
X[:, 1] = timeVecWin[startIdx:stopIdx, 0]
c = np.linalg.lstsq(X, 10*np.log10(timeWinData[startIdx:stopIdx]),
rcond=-1)[0]
if (c[1] == 0)[0] or np.isnan(c).any():
if not suppressWarnings:
print(band, "[Hz] band: regression failed. T would be inf.")
# return returnTuple
# 4) preliminary intersection
crossingPoint = (bgNoiseLevel - c[0]) / c[1] # [s]
if (crossingPoint > 2*(timeLength + sampleShift/samplingRate))[0]:
if not suppressWarnings:
print(band, "[Hz] band: preliminary intersection point between",
"bgNoiseLevel and the decay slope greater than signal length.")
# return returnTuple
# 5) new local time interval length
nBlocksInDecay = numParts * dynRange[0] / -10
dynRangeTime = timeVecWin[stopIdx] - timeVecWin[startIdx]
blockSamples = int(samplingRate * dynRangeTime[0] / nBlocksInDecay)
# 6) average
timeWinData, timeVecWin = _level_profile(timeSignal, samplingRate,
numSamples, numChannels,
blockSamples)
oldCrossingPoint = 11+crossingPoint # arbitrary higher value to enter loop
loopCounter = 0
while (np.abs(oldCrossingPoint - crossingPoint) > 0.001)[0]:
# 7) estimate background noise level (BGL)
bgNoiseMargin = 7
idxLast10Percent = int(len(timeWinData)-(len(timeWinData)//10))
bgStartTime = crossingPoint - bgNoiseMargin/c[1]
if (bgStartTime > timeVecWin[-1:][0])[0]:
idx10dBDecayBelowCrossPoint = len(timeVecWin)-1
else:
idx10dBDecayBelowCrossPoint = \
np.where(timeVecWin >= bgStartTime)[0][0]
BGL = np.mean(timeWinData[np.min(
np.array([idxLast10Percent,
idx10dBDecayBelowCrossPoint])):])
bgNoiseLevel = 10*np.log10(BGL)
# 8) estimate late decay slope
stopTime = (bgNoiseLevel + dBtoNoise - c[0])/c[1]
if (stopTime > timeVecWin[-1])[0]:
stopIdx = 0
else:
stopIdx = int(np.where(timeVecWin >= stopTime)[0][0])
startTime = (bgNoiseLevel + dBtoNoise + useDynRange - c[0])/c[1]
if (startTime < timeVecWin[0])[0]:
startIdx = 0
else:
startIdx = int(np.where(timeVecWin <= startTime)[0][0])
lateDynRange = np.abs(10*np.log10(timeWinData[stopIdx]) \
- 10*np.log10(timeWinData[startIdx]))
# where returns empty
if stopIdx == startIdx or (lateDynRange < useDynRange)[0]:
if not suppressWarnings:
print(band, "[Hz] band: SNR for the Lundeby late decay slope too",
"low. Skipping!")
# c[1] = np.inf
c[1] = 0
i += 1
break
X = np.ones((stopIdx-startIdx, 2), dtype=np.float32)
X[:, 1] = timeVecWin[startIdx:stopIdx, 0]
c = np.linalg.lstsq(X, 10*np.log10(timeWinData[startIdx:stopIdx]),
rcond=-1)[0]
if (c[1] >= 0)[0]:
if not suppressWarnings:
print(band, "[Hz] band: regression did not work, T -> inf.",
"Setting slope to 0!")
# c[1] = np.inf
c[1] = 0
i += 1
break
# 9) find crosspoint
oldCrossingPoint = crossingPoint
crossingPoint = (bgNoiseLevel - c[0]) / c[1]
loopCounter += 1
if loopCounter > 30:
if not suppressWarnings:
print(band, "[Hz] band: more than 30 iterations on regression.",
"Canceling!")
break
interIdx = crossingPoint * samplingRate # [sample]
i += i
if c[1][0] != 0:
repeat = False
if i > 5:
if not suppressWarnings:
print(band, "[Hz] band: too many iterations to find winTimeLength.", "Canceling!")
return returnTuple
return c[0][0], c[1][0], np.int32(interIdx[0]), BGL
# @njit
def energy_decay_calculation(band, timeSignal, timeVector, samplingRate,
numSamples, numChannels, timeLength, bypassLundeby,
suppressWarnings=True):
"""Calculate the Energy Decay Curve."""
if bypassLundeby is False:
lundebyParams = \
_Lundeby_correction(band,
timeSignal,
samplingRate,
numSamples,
numChannels,
timeLength,
suppressWarnings=suppressWarnings)
_, c1, interIdx, BGL = lundebyParams
lateRT = -60/c1 if c1 != 0 else 0
else:
interIdx = 0
lateRT = 1
if interIdx == 0:
interIdx = -1
truncatedTimeSignal = timeSignal[:interIdx, 0]
truncatedTimeVector = timeVector[:interIdx]
if lateRT != 0.0:
if not bypassLundeby:
C = samplingRate*BGL*lateRT/(6*np.log(10))
else:
C = 0
sqrInv = truncatedTimeSignal[::-1]**2
energyDecayFull = np.cumsum(sqrInv)[::-1] + C
energyDecay = energyDecayFull/energyDecayFull[0]
else:
if not suppressWarnings:
print(band, "[Hz] band: could not estimate C factor")
C = 0
energyDecay = np.zeros(truncatedTimeVector.size)
return (energyDecay, truncatedTimeVector, lundebyParams)
def cumulative_integration(inputSignal,
bypassLundeby,
plotLundebyResults,
suppressWarnings=True,
**kwargs):
"""Cumulative integration with proper corrections."""
def plot_lundeby():
c0, c1, interIdx, BGL = lundebyParams
fig = plt.figure(figsize=(10, 5))
ax = fig.add_axes([0.08, 0.15, 0.75, 0.8], polar=False,
projection='rectilinear', xscale='linear')
line = c1*inputSignal.timeVector + c0
ax.plot(inputSignal.timeVector, 10*np.log10(inputSignal.timeSignal**2), label='IR')
ax.axhline(y=10*np.log10(BGL), color='#1f77b4', label='BG Noise', c='red')
ax.plot(inputSignal.timeVector, line, label='Late slope', c='black')
ax.axvline(x=interIdx/inputSignal.samplingRate, label='Truncation point', c='green')
ax.grid()
ax.set_xlabel('Time [s]')
ax.set_ylabel('Amplitude [dBFS]')
plt.title('{0:.0f} [Hz]'.format(band))
ax.legend(loc='best', shadow=True, fontsize='x-large')
# timeSignal = inputSignal.timeSignal[:]
# Substituted by SignalObj.crop in analyse function
# timeSignal, sampleShift = _circular_time_shift(timeSignal)
# del sampleShift
# hSignal = SignalObj(timeSignal, inputSignal.lengthDomain, inputSignal.samplingRate)
hSignal = _filter(inputSignal, **kwargs)
bands = FOF(nthOct=kwargs['nthOct'],
freqRange=[kwargs['minFreq'],
kwargs['maxFreq']])[:, 1]
listEDC = []
for ch in range(hSignal.numChannels):
signal = hSignal[ch]
band = bands[ch]
energyDecay, energyVector, lundebyParams = \
energy_decay_calculation(band,
signal.timeSignal,
signal.timeVector,
signal.samplingRate,
signal.numSamples,
signal.numChannels,
signal.timeLength,
bypassLundeby,
suppressWarnings=suppressWarnings)
listEDC.append((energyDecay, energyVector))
if plotLundebyResults: # Placed here because Numba can't handle plots.
# plot_lundeby(band, timeVector, timeSignal, samplingRate,
# lundebyParams)
plot_lundeby()
return listEDC, hSignal
# @njit
def reverb_time_regression(energyDecay, energyVector, upperLim, lowerLim):
"""Interpolate the EDT to get the reverberation time."""
if not np.any(energyDecay):
return 0
first = np.where(10*np.log10(energyDecay) >= upperLim)[0][-1]
last = np.where(10*np.log10(energyDecay) >= lowerLim)[0][-1]
if last <= first:
# return np.nan
return 0
X = np.ones((last-first, 2))
X[:, 1] = energyVector[first:last]
c = np.linalg.lstsq(X, 10*np.log10(energyDecay[first:last]), rcond=-1)[0]
return -60/c[1]
def reverberation_time(decay, listEDC):
"""Call the reverberation time regression."""
try:
decay = int(decay)
y1 = -5
y2 = y1 - decay
except ValueError:
if decay in ['EDT', 'edt']:
y1 = 0
y2 = -10
else:
raise ValueError("Decay must be either 'EDT' or an integer \
corresponding to the amount of energy decayed to \
evaluate, e.g. (decay='20' | 20).")
RT = []
for ED in listEDC:
edc, edv = ED
RT.append(reverb_time_regression(edc, edv, y1, y2))
return np.array(RT, dtype='float32')
def definition(listEDC: list, fs: int, t: int = 50) -> np.ndarray:
"""
Room parameter.
Parameters
----------
sqrIR : np.ndarray
DESCRIPTION.
t_ms : int, optional
DESCRIPTION. The default is 50.
Returns
-------
definition : np.ndarray
The room "Definition" parameter, in percentage [%].
"""
t_ms = t * fs // 1000
definition = np.zeros((len(listEDC), ), dtype='float32')
for band, pair in enumerate(listEDC):
int_h2 = pair[0][0] # sum of squared IR from start to the end
intr_h2_ms = pair[0][t_ms] # sum of squared IR from the interval to the end
int_h2_ms = int_h2 - intr_h2_ms # sum of squared IR from start to interval
definition[band] = (int_h2_ms / int_h2)
# sumSIRt = sqrIR.sum(axis=0) # total sum of squared IR
# sumSIRi = sqrIR[:t_ms].sum(axis=0) # sum of initial portion of squared IR
# definition = np.round(100 * (sumSIRi / sumSIRt), 2) # [%]
return np.round(100 * definition, 2) # [%]
def clarity(listEDC: list, fs: int, t: int = 80) -> np.ndarray:
"""
Room parameter.
Parameters
----------
sqrIR : np.ndarray
DESCRIPTION.
t_ms : int, optional
DESCRIPTION. The default is 80.
Returns
-------
clarity : np.ndarray
The room "Clarity" parameter, in decibel [dB].
"""
t_ms = t * fs // 1000
clarity = np.zeros((len(listEDC), ), dtype='float32')
for band, pair in enumerate(listEDC):
int_h2 = pair[0][0] # sum of squared IR from start to the end
intr_h2_ms = pair[0][t_ms] # sum of squared IR from the interval to the end
int_h2_ms = int_h2 - intr_h2_ms # sum of squared IR from start to interval
clarity[band] = 10 * np.log10(int_h2_ms / intr_h2_ms) # [dB]
# sumSIRi = sqrIR[:t_ms].sum(axis=0) # sum of initial portion of squared IR
# sumSIRe = sqrIR[t_ms:].sum(axis=0) # sum of ending portion of squared IR
# clarity = np.round(10 * np.log10(sumSIRi / sumSIRe), 2) # [dB]
return np.round(clarity, 2)
def central_time(sqrIR: np.ndarray, tstamp: np.ndarray) -> np.ndarray:
"""
Room parameter.
Parameters
----------
sqrIR : np.ndarray
Squared room impulsive response.
tstamp : np.ndarray
Time stamps of each IR sample.
Returns
-------
central_time : np.ndarray
The time instant that balance of energy is equal before and after it.
"""
sumSIR = sqrIR.sum(axis=0)
sumTSIR = (tstamp[:, None] * sqrIR).sum(axis=0)
central_time = (sumTSIR / sumSIR) * 1000 # milisseconds
return central_time
def st_early(listEDC: list, fs: int) -> np.ndarray:
"""
Room parameter.
Parameters
----------
sqrIR : np.ndarray
DESCRIPTION.
Returns
-------
STearly : np.ndarray
DESCRIPTION.
"""
ms = fs // 1000
STearly = np.zeros((len(listEDC), ), dtype='float32')
for band, pair in enumerate(listEDC):
int_h2 = pair[0][0] # sum of squared IR from start to the end
intr_h2_10ms = pair[0][10 * ms] # sum of squared IR from the interval to the end
int_h2_10ms = int_h2 - intr_h2_10ms
intr_h2_20ms = pair[0][20 * ms] # sum of squared IR from the interval to the end
intr_h2_100ms = pair[0][100 * ms] # sum of squared IR from the interval to the end
int_h2_20a100ms = intr_h2_20ms - intr_h2_100ms
STearly[band] = 10 * np.log10(int_h2_20a100ms / int_h2_10ms) # [dB]
# sum10ms = sqrIR[:int(10 * ms)].sum(axis=0)
# sum20ms = sqrIR[int(20 * ms):int(100 * ms)].sum(axis=0)
# STearly = 10 * np.log10(sum20ms / sum10ms)
return np.round(STearly, 4)
def st_late(listEDC: list, fs: int) -> np.ndarray:
"""
Room parameter.
Parameters
----------
sqrIR : np.ndarray
DESCRIPTION.
Returns
-------
STlate : np.ndarray
DESCRIPTION.
"""
ms = fs // 1000
STlate = np.zeros((len(listEDC), ), dtype='float32')
for band, pair in enumerate(listEDC):
int_h2 = pair[0][0] # sum of squared IR from start to the end
intr_h2_10ms = pair[0][10 * ms] # sum of squared IR from the interval to the end
int_h2_10ms = int_h2 - intr_h2_10ms # sum of squared IR from start to interval
intr_h2_100ms = pair[0][100 * ms] # sum of squared IR from the interval to the end
STlate[band] = 10 * np.log10(intr_h2_100ms / int_h2_10ms) # [dB]
# sum10ms = sqrIR[:int(10 * ms)].sum(axis=0)
# sum100ms = sqrIR[int(100 * ms):int(1000 * ms)].sum(axis=0)
# STlate = 10 * np.log10(sum100ms / sum10ms)
return | np.round(STlate, 4) | numpy.round |
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Scrapes APASS, SDSS, PanSTARRs and Skymapper
# Created by <NAME>
# Email: <EMAIL>
__doc__ = """ Calculate the corrected magnitudes (AB) for sources within an
image fits file. This is accomplished by comparing field star observed
magnitudes against measured catalogue values and determines the offset. The
script currently uses the APASS, SDSS PanSTARRs and Skymapper catalogues. It
can calibrate images in the Johnson-Cousins filters (B,V,R) and SDSS
filters (u,g,r,i,z).
"""
__version__ = '1.5'
from scipy.optimize import curve_fit
from bs4 import BeautifulSoup
from astropy.wcs import WCS
from astropy.io import fits
from matplotlib.patches import Circle
import sep
import re
import argparse
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
import requests
def get_args():
""" Parse command line arguments """
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('Image File',metavar='FILE',type=str,action='store',
help='Name of the image fits file (xxxx.fits)')
parser.add_argument('--g',type=float,default=1.1,dest='gain',
help='Detector gain in electrons per ADU (default = 1.1)')
parser.add_argument('--d',type=str,default=os.getcwd(),dest='directory',
help='Desired directory (default = current directory)')
parser.add_argument('--sr',type=float,default=5,dest='searchrad',
help='Search radius in arcmin (default = 5)')
parser.add_argument('--f',type=str,default='V',dest='filter',
help='The filter used for the observations. Choices are\
either Johnson B,V,R or SDSS u,g,r,i,z (default = V)')
parser.add_argument('--sig',type=float,default=3,dest='sigma',
help='Number of sigma to use for clipping outlier stars\
during the magnitude offset calibration (default = 3)')
parser.add_argument('--ap',type=float,default=3,dest='aperture',
help='Radius of aperture for photometry in pixels (default = 5)')
args = parser.parse_args()
directory = args.directory
gain = args.gain
searchrad = args.searchrad
waveband = args.filter
im_file = args.__dict__['Image File']
sigma = args.sigma
aperture = args.aperture
# Check for valid filters
if (waveband != 'V' and waveband != 'B' and waveband != 'R' and
waveband != 'u' and waveband != 'i' and waveband != 'g'
and waveband != 'r' and waveband != 'z'):
print('Script does not calibrate for this waveband!')
sys.exit()
return directory,gain,searchrad,waveband,im_file,sigma,aperture
def im_phot(directory,gain,im_file,aperture):
""" Perform photometry on the image """
# Read in fits image file and create array with wcs coordinates
os.chdir(directory)
hdulist = fits.open(im_file)
w = WCS(im_file)
data = hdulist[0].data
data[np.isnan(data)] = 0
hdulist.close()
# Calculate center point of image (RA, Dec) if not input by user
targetra, targetdec = w.all_pix2world(len(data[:,0])/2,len(data[0,:])/2,0)
# Use SEP for background subtraction and source detection
datasw = data.byteswap().newbyteorder().astype('float64')
bkg = sep.Background(datasw)
data_bgs = data - bkg
data_bgs[data_bgs < 0] = 0
mean = np.mean(data_bgs)
median = np.median(data_bgs)
std = bkg.globalrms
objects = sep.extract(data_bgs,3,err=bkg.globalrms)
objra, objdec = w.all_pix2world(objects['x'],objects['y'],0)
# Find dummy magnitudes using aperture photometry and plot images
fig, ax = plt.subplots()
image = plt.imshow(data_bgs,cmap='gray',vmin=(mean-3*std),
vmax=(mean+3*std),origin='lower')
sepmag = []
sepmagerr = []
ra = []
dec = []
xpixel = []
ypixel = []
for i in range(len(objects)):
# Perform circular aperture photometry
flux,fluxerr,flag = sep.sum_circle(data_bgs,objects['x'][i],
objects['y'][i],aperture,err=std,gain=gain)
mag = -2.5*np.log10(flux)
maglimit1 = -2.5*np.log10((flux+fluxerr))
maglimit2 = -2.5* | np.log10((flux-fluxerr)) | numpy.log10 |
# -*- coding: utf-8 -*-
import numpy as np
from scipy.stats import norm
from sklearn_extra.cluster import KMedoids
from sklearn.metrics import silhouette_score
from .spectral import SpectralClustering
def dudahart2(X, clustering, alpha=0.001):
"""
Duda-Hart test for whether a data set should be split into two clusters. The
Based on the R implementation of the fpc package
Parameters
----------
x : Array-like
Data matrix
clustering : Array-like or list
Vector of integers. Clustering into two clusters
alpha : float, optional
Numeric betwwen 0 and 1. Significance level (recommended to be small if this is
used for estimating the number of clusters), by default 0.001
"""
assert isinstance(X, np.ndarray), \
"X must by a Numpy array of shape (n_samples, n_features)"
assert len(np.unique(clustering)) == 2, \
"clustering must have labels for 2 clusters"
n, p = X.shape
values, counts = np.unique(clustering, return_counts=True)
W = np.zeros((p, p))
for clus, cln in zip(values, counts):
clx = X[clustering == clus, :]
cclx = np.cov(clx.T)
if cln < 2:
cclx = 0
W += (cln - 1) * cclx
W1 = (n-1) * np.cov(X.T)
dh = np.sum(np.diag(W))/np.sum(np.diag(W1))
z = norm.ppf(1 - alpha)
compare = 1 - 2/(np.pi * p) - z*np.sqrt(2 * (1 - 8/(np.pi**2 * p)) / (n*p))
qz = (-dh + 1 - 2/(np.pi * p)) / \
np.sqrt(2 * (1 - 8/(np.pi**2 * p)) / (n*p))
p_value = 1 - norm.cdf(qz)
cluster1 = dh >= compare
out = {'p_value': p_value, 'dh': dh, 'compare': compare,
'cluster1': cluster1, 'alpha': alpha, 'z': z}
return out
def pamk(X, krange=np.arange(1, 11), method='pam', n_components=10,
alpha=0.001, random_state=None):
cluster1 = 1 in krange
avg_sw = np. zeros(len(krange))
pams = {1: None}
for i, k in enumerate(krange):
if k != 1:
if method == 'pam':
clust_method = KMedoids(n_clusters=k, init='k-medoids++', max_iter=300,
random_state=None, method='pam')
clust_method.maps_ = X
elif method == 'spectral_pam':
clust_method = SpectralClustering(n_clusters=k, n_components=n_components,
random_state=random_state,
assign_labels='kmedoids')
else:
raise ValueError('Method not implemented')
pams[k] = clust_method.fit(X)
avg_sw[i] = silhouette_score(
clust_method.maps_, clust_method.labels_)
k_best = krange[ | np.argmax(avg_sw) | numpy.argmax |
# helper.py
# Defines helper functions
import numpy as np # 1.13.3
from scipy.integrate import odeint # 1.0.0
import scipy.optimize as op
import scipy.stats as stats
import matplotlib.pyplot as plt # 2.1.1
from matplotlib.ticker import AutoMinorLocator
from matplotlib.ticker import MaxNLocator
import pandas as pd # 0.22.0
import corner # 2.0.1
import progressbar # 3.34.3
import seaborn as sns # 0.8.1
from cycler import cycler # 0.10.0
DIR_DATA = './data/'
DIR_PLOTS = './plots/'
DIR_OUT = './output/'
# This helper file defines plotting functions for the jupyter notebooks
######### 1. PLOT FORMATTING #########
def formatplot(ax,xlabel,ylabel,xlim,ylim,logx=False,logy=False,logxy=False,symlogx=False):
# Set titles and labels
#ax.set_title('Plot title')
if xlabel!=False:
ax.set_xlabel(xlabel, labelpad=12)
if ylabel!=False:
ax.set_ylabel(ylabel, labelpad=12)
# Set axis limits
if xlim!=False:
ax.set_xlim(xlim)
if ylim!=False:
ax.set_ylim(ylim)
# Set tick values
# ax.set_xticks([0,0.5,1])
# ax.set_yticks([0,2,4,6,8])
# Set line thicknesses
#ax.xaxis.set_major_formatter(mpl.ticker.FormatStrFormatter("%1.e"))
#ax.axhline(linewidth=2, color='k')
#ax.axvline(linewidth=2, color='k')
ax.spines['bottom'].set_linewidth(2)
ax.spines['top'].set_linewidth(2)
ax.spines['left'].set_linewidth(2)
ax.spines['right'].set_linewidth(2)
# Set ticks
if logx==True:
ax.set_xscale("log")
elif logy==True:
ax.set_yscale("log")
elif logxy==True:
ax.set_xscale("log")
ax.set_yscale("log")
elif symlogx==True:
ax.set_xscale("symlog",linthreshx=1e-4)
ax.set_yscale("log")
else:
minorLocatorx=AutoMinorLocator(2) # Number of minor intervals per major interval
minorLocatory=AutoMinorLocator(2)
ax.xaxis.set_minor_locator(minorLocatorx)
ax.yaxis.set_minor_locator(minorLocatory)
ax.tick_params(which='major', width=2, length=8, pad=9,direction='in',top='on',right='on')
ax.tick_params(which='minor', width=2, length=4, pad=9,direction='in',top='on',right='on')
######### 2. PLOT TRACES #########
def plottraces(y1,yerr1,y2,yerr2,y3,yerr3,y4,yerr4,
titration,name,model_single,model_dual,DIR_PLOTS,
numberofmodeltraces=50,samples=0,quant=None):
# Plot dose response traces (Figure 5)
plt.close("all")
my_dpi=150
figure_options={'figsize':(8,6)} #figure size in inches. A4=11.7x8.3. A5=8.27,5.83
font_options={'size':'28','family':'sans-serif','sans-serif':'Arial'}
plt.rc('figure', **figure_options)
plt.rc('font', **font_options)
current_palette=sns.color_palette("deep", 4)
plt.rc('axes',prop_cycle=(cycler('color',current_palette)))
f, axarr=plt.subplots()
plt.subplots_adjust(left=0.3,bottom=0.2,right=0.95,top=0.9)
# Plot data
axarr.errorbar(titration,y1,yerr=yerr1,fmt='o',ms=12,label='BCB(+)ADD',color='#C4122C')
axarr.errorbar(titration,y2,yerr=yerr2,fmt='^',ms=12,label='BCB(-)ADD',color='#228863')
if (y3.any()!=None and y4.any()!=None and yerr3.any()!=None and yerr4.any()!=None):
axarr.errorbar(titration/2,y3,yerr=yerr3,fmt='s',ms=12,label='BCB',color='#28A0A3')
axarr.errorbar(titration/2,y4,yerr=yerr4,fmt='D',ms=12,label='ADD',color='#0A719F')
else:
pass
modelscale=np.linspace(0,1,100)
# Plot model
if quant!=None:
quant1=quant[0]
quant2=quant[1]
quant3=quant[2]
quant4=quant[3]
axarr.fill_between(modelscale,quant1[0],quant1[2],color='#C4122C',alpha=0.1)
axarr.fill_between(modelscale,quant2[0],quant2[2],color='#228863',alpha=0.1)
axarr.fill_between(modelscale,quant3[0],quant3[2],color='#28A0A3',alpha=0.1)
axarr.fill_between(modelscale,quant4[0],quant4[2],color='#0A719F',alpha=0.1)
axarr.plot(modelscale,quant1[1],'-',color='#C4122C',alpha=1,lw=1.5)
axarr.plot(modelscale,quant2[1],'-',color='#228863',alpha=1,lw=1.5)
axarr.plot(modelscale,quant3[1],'-',color='#28A0A3',alpha=1,lw=1.5)
axarr.plot(modelscale,quant4[1],'-',color='#0A719F',alpha=1,lw=1.5)
axarr.set_yticks([0,2e3,4e3])
axarr.ticklabel_format(style='sci', axis='y', scilimits=(0,0),useMathText=True)
formatplot(axarr,'ZF DNA ratio','deGFP (RFU)', xlim=([-0.05,1.05]),ylim=[0,4600])
axarr.legend(loc='best', fontsize=18,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
elif samples.any()!=None:
for A,C0,K1,K2,Erp1,Erp2,Er1r2 in samples[np.random.randint(len(samples),
size=numberofmodeltraces)]:
ypred4=model_single(A,C0,K1,modelscale,Erp1)
ypred3=model_single(A,C0,K2,modelscale,Erp2)
ypred2=model_dual(A,C0,K1,K2,modelscale/2,modelscale/2,Erp1,Erp2,0)
ypred1=model_dual(A,C0,K1,K2,modelscale/2,modelscale/2,Erp1,Erp2,Er1r2)
axarr.plot(modelscale,ypred1,'-',color='#C4122C',alpha=0.05)
axarr.plot(modelscale,ypred2,'-',color='#228863',alpha=0.05)
axarr.plot(modelscale,ypred3,'-',color='#28A0A3',alpha=0.05)
axarr.plot(modelscale,ypred4,'-',color='#0A719F',alpha=0.05)
formatplot(axarr,'ZF DNA ratio','deGFP (RFU)', xlim=([-0.05,1.05]),ylim=[0,4600])
axarr.legend(loc='best', fontsize=15,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
def plottracesAA(y1,yerr1,y2,yerr2,titration,name,model_dual,
DIR_PLOTS,numberofmodeltraces=50,samples=0,quant=None):
plt.close("all")
my_dpi=150
figure_options={'figsize':(8,6)} #figure size in inches. A4=11.7x8.3. A5=8.27,5.83
font_options={'size':'28','family':'sans-serif','sans-serif':'Arial'}
plt.rc('figure', **figure_options)
plt.rc('font', **font_options)
current_palette=sns.color_palette("deep", 4)
plt.rc('axes',prop_cycle=(cycler('color',current_palette)))
f, axarr=plt.subplots()
plt.subplots_adjust(left=0.3,bottom=0.2,right=0.95,top=0.9)
# Plot data
axarr.errorbar(titration,y1,yerr=yerr1,fmt='o',ms=12,label='AA-LZ(+)',color='#C4122C')
axarr.errorbar(titration,y2,yerr=yerr2,fmt='^',ms=12,label='AA-LZ(-)',color='#228863')
modelscale=np.linspace(0,1,100)
# Plot model
if quant!=None:
quant1=quant[0]
quant2=quant[1]
axarr.fill_between(modelscale,quant1[0],quant1[2],color='#C4122C',alpha=0.1)
axarr.fill_between(modelscale,quant2[0],quant2[2],color='#228863',alpha=0.1)
axarr.plot(modelscale,quant1[1],'-',color='#C4122C',alpha=1,lw=1.5)
axarr.plot(modelscale,quant2[1],'-',color='#228863',alpha=1,lw=1.5)
axarr.set_yticks([0,2e3,4e3])
axarr.ticklabel_format(style='sci', axis='y', scilimits=(0,0),useMathText=True)
formatplot(axarr,'ZF DNA ratio','deGFP (RFU)', xlim=([-0.05,1.05]),ylim=[0,4600])
axarr.legend(loc='best', fontsize=18,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
elif samples.any()!=None:
for A,C0,K,Erp,Er1r2 in samples[np.random.randint(len(samples), size=numberofmodeltraces)]:
ypred2=model_dual(A,C0,K,K,modelscale/2,modelscale/2,Erp,Erp,0)
ypred1=model_dual(A,C0,K,K,modelscale/2,modelscale/2,Erp,Erp,Er1r2)
axarr.plot(modelscale,ypred1,'-',color='#C4122C',alpha=0.05)
axarr.plot(modelscale,ypred2,'-',color='#228863',alpha=0.05)
formatplot(axarr,'ZF DNA ratio','deGFP (RFU)', xlim=([-0.05,1.05]),ylim=[0,4600])
axarr.legend(loc='best', fontsize=15,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
def plottraces2(data,parameternames,nwalkers,niterations,ZFname,DIR_PLOTS):
numberofplots=data.shape[1]
plt.close("all")
my_dpi=150
figure_options={'figsize':(8.27,5.83)} #figure size in inches. A4=11.7x8.3.
font_options={'size':'18','family':'sans-serif','sans-serif':'Arial'}
plt.rc('figure', **figure_options)
plt.rc('font', **font_options)
# Call plots
if numberofplots>1:
f, axarr=plt.subplots(numberofplots)
for i in range(0,numberofplots):
for j in range(1,nwalkers+1):
axarr[i].plot(np.arange(niterations),data[niterations*j-niterations:niterations*j,i],'k-',lw=0.5)
formatplot(axarr[i],False,parameternames[i],xlim=False,ylim=False)
else:
f, axarr=plt.subplots()
for i in range(1,nwalkers+1):
axarr.plot(np.arange(niterations),data[niterations*i-niterations:niterations*i],'k-',lw=0.5)
formatplot(axarr,False,parameternames[0],xlim=False,ylim=False)
axarr[numberofplots-1].set_xlabel('Iterations', labelpad=12)
plt.savefig(DIR_PLOTS+ZFname+'trace.pdf',dpi=my_dpi,bbox_inches='tight')
def plottracesHill(y1,yerr1,y2,yerr2,y3,yerr3,y4,yerr4,
titration,name,Hill,DIR_PLOTS,
numberofmodeltraces=50,samples=0,quant=None):
plt.close("all")
my_dpi=150
figure_options={'figsize':(8.27,5.83)} #figure size in inches. A4=11.7x8.3. A5=8.27,5.83
font_options={'size':'28','family':'sans-serif','sans-serif':'Arial'}
plt.rc('figure', **figure_options)
plt.rc('font', **font_options)
current_palette=sns.color_palette("deep", 4)
plt.rc('axes',prop_cycle=(cycler('color',current_palette)))
f, axarr=plt.subplots()
plt.subplots_adjust(left=0.25,bottom=0.2,right=0.95,top=0.95)
# Plot data
axarr.errorbar(titration,y1,yerr=yerr1,fmt='o',ms=7,label='BCB+ADD coop',color='#C4122C')
axarr.errorbar(titration,y2,yerr=yerr2,fmt='^',ms=7,label='BCB+ADD non-coop',color='#228863')
if (y3.any()!=None and y4.any()!=None and yerr3.any()!=None and yerr4.any()!=None):
axarr.errorbar(titration/2,y3,yerr=yerr3,fmt='s',ms=7,label='BCB',color='#28A0A3')
axarr.errorbar(titration/2,y4,yerr=yerr4,fmt='D',ms=7,label='ADD',color='#0A719F')
else:
pass
modelscale=np.linspace(0,1,100)
# Plot model
if quant!=None:
quant1=quant[0]
axarr.fill_between(modelscale,quant1[0],quant1[2],color='k',alpha=0.1)
axarr.plot(modelscale,quant1[1],'-',color='k',alpha=1,lw=1.5)
formatplot(axarr,'ZF DNA ratio','deGFP (RFU)', xlim=([-0.05,1.05]),ylim=[0,4600])
axarr.legend(loc='best', fontsize=15,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
elif samples.any()!=None:
for y_0,y_1,K,n in samples[np.random.randint(len(samples), size=numberofmodeltraces)]:
ypred1=Hill(y_0,y_1,modelscale,K,n)
axarr.plot(modelscale,ypred1,'-',color='k',alpha=0.05)
formatplot(axarr,'ZF DNA ratio','deGFP (RFU)', xlim=([-0.05,1.05]),ylim=[0,4600])
axarr.legend(loc='best', fontsize=15,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
def plottraces3L(df3,x,y0,y1,yerr1,y2,yerr2,name,DIR_PLOTS,
helixdist,modelhelix,
numberofmodeltraces=50,samples=0,quant=None):
plt.close("all")
my_dpi=150
figure_options={'figsize':(8,6)} #figure size in inches. A4=11.7x8.3. A5=8.27,5.83
font_options={'size':'28','family':'sans-serif','sans-serif':'Arial'}
plt.rc('figure', **figure_options)
plt.rc('font', **font_options)
current_palette=sns.color_palette("deep", 4)
plt.rc('axes',prop_cycle=(cycler('color',current_palette)))
f, axarr=plt.subplots()
plt.subplots_adjust(left=0.3,bottom=0.2,right=0.95,top=0.9)
# Plot data
axarr.errorbar(df3['Spacing'],df3['Control'],yerr=df3['Cont_err'],fmt='s',ms=12,color='k',label='Unrepressed')
axarr.errorbar(df3['Spacing'],df3['Non-cognate'],yerr=df3['NC_err'],fmt='^',ms=12,color='#0A719F',label='Non-cooperative')
axarr.errorbar(df3['Spacing'],df3['Cognate'],yerr=df3['C_err'],fmt='o',ms=12,color='#C4122C',label='Cooperative')
# Plot model
if quant!=None:
quant4=quant[3]
quant5=quant[4]
axarr.fill_between(x,quant4[0],quant4[2],color='#C4122C',alpha=0.1,label='__nolegend__')
axarr.fill_between(x,quant5[0],quant5[2],color='#228863',alpha=0.1,label='__nolegend__')
axarr.plot(x,quant4[1],'-',color='#C4122C',alpha=1,lw=1.5,label='__nolegend__')
axarr.plot(x,quant5[1],'-',color='#228863',alpha=1,lw=1.5,label='__nolegend__')
formatplot(axarr,'spacing (bp)','deGFP (RFU)', xlim=([5,32]),ylim=False)
axarr.legend(loc='best', fontsize=15,numpoints=1)
plt.savefig('plots/'+name+'.pdf',dpi=my_dpi,transparent=True)
elif samples.any()!=None:
for lnlamb,phi,lnR0 in samples[np.random.randint(len(samples), size=numberofmodeltraces)]:
lamb=np.exp(lnlamb)
R0=np.exp(lnR0)
# Fixed parameters from dose response experiments
A=y0
C0=0.66070446353476231
r1=R0/0.16746036268850761
r2=R0/0.0082708295083317035
E10=1.4349132332094823
E2=1.3110190282670602
E120=-3.4804403863425248
xmod=x
E1,E12=helixdist(xmod,E10,E120,lamb,phi)
p_c,p_nc,p_0=modelhelix(y0,C0,r1,r2,E1,E2,E12)
axarr.plot(x,p_0,'-',color='k',alpha=0.05,label='__nolegend__')
axarr.plot(x,p_nc,'-',color='#228863',alpha=0.05,label='__nolegend__')
axarr.plot(x,p_c,'-',color='#C4122C',alpha=0.05,label='__nolegend__')
formatplot(axarr,'spacing (bp)','deGFP (RFU)', xlim=([5,32]),ylim=False)
axarr.legend(loc='best', fontsize=15,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
def plottraces3FR(x,y0,y1,yerr1,y2,yerr2,name,DIR_PLOTS,
helixdist,modelhelix,
numberofmodeltraces=50,samples=0,quant=None):
plt.close("all")
my_dpi=150
figure_options={'figsize':(8,6)} #figure size in inches. A4=11.7x8.3. A5=8.27,5.83
font_options={'size':'28','family':'sans-serif','sans-serif':'Arial'}
plt.rc('figure', **figure_options)
plt.rc('font', **font_options)
current_palette=sns.color_palette("deep", 4)
plt.rc('axes',prop_cycle=(cycler('color',current_palette)))
f, axarr=plt.subplots()
plt.subplots_adjust(left=0.3,bottom=0.2,right=0.95,top=0.9)
# Plot data
axarr.errorbar(x,y1,yerr=yerr1,fmt='o',ms=12,color='#C4122C',label='(+)')
axarr.errorbar(x,y2,yerr=yerr2,fmt='^',ms=12,color='#228863',label='(-)')
# Plot model
if quant!=None:
quant1=quant[0]
quant2=quant[1]
axarr.fill_between(x,quant1[0],quant1[2],color='#C4122C',alpha=0.1,label='__nolegend__')
axarr.fill_between(x,quant2[0],quant2[2],color='#228863',alpha=0.1,label='__nolegend__')
axarr.plot(x,quant1[1],'-',color='#C4122C',alpha=1,lw=1.5,label='__nolegend__')
axarr.plot(x,quant2[1],'-',color='#228863',alpha=1,lw=1.5,label='__nolegend__')
formatplot(axarr,'spacing (bp)','fold-repression', xlim=([5,32]),ylim=([0,15]))
axarr.legend(loc='best', fontsize=18,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
elif samples.any()!=None:
for lnlamb,phi,lnR0 in samples[np.random.randint(len(samples), size=numberofmodeltraces)]:
lamb=np.exp(lnlamb)
R0=np.exp(lnR0)
# Fixed parameters from dose response experiments
A=y0
C0=0.66070446353476231
r1=R0/0.16746036268850761
r2=R0/0.0082708295083317035
E10=1.4349132332094823
E2=1.3110190282670602
E120=-3.4804403863425248
xmod=x
E1,E12=helixdist(xmod,E10,E120,lamb,phi)
p_c,p_nc,p_0=modelhelix(y0,C0,r1,r2,E1,E2,E12)
axarr.plot(x,p_0/p_c,'-',color='#C4122C',alpha=0.05,label='__nolegend__')
axarr.plot(x,p_0/p_nc,'-',color='#228863',alpha=0.05,label='__nolegend__')
formatplot(axarr,'spacing (bp)','fold-repression', xlim=([5,32]),ylim=False)
axarr.legend(loc='best', fontsize=15,numpoints=1)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
def plottraces3CR(x,y0,y1,yerr1,y2,yerr2,name,DIR_PLOTS,
helixdist,modelhelix,
numberofmodeltraces=50,samples=0,quant=None):
plt.close("all")
my_dpi=150
figure_options={'figsize':(8,6)} #figure size in inches. A4=11.7x8.3. A5=8.27,5.83
font_options={'size':'28','family':'sans-serif','sans-serif':'Arial'}
plt.rc('figure', **figure_options)
plt.rc('font', **font_options)
current_palette=sns.color_palette("deep", 4)
plt.rc('axes',prop_cycle=(cycler('color',current_palette)))
f, axarr=plt.subplots()
plt.subplots_adjust(left=0.3,bottom=0.2,right=0.95,top=0.9)
# Plot data
axarr.errorbar(x,y1/y2,yerr=y1/y2*np.sqrt((yerr1/y1)**2+(yerr2/y2)**2),fmt='o',ms=12,color='k')
# Plot model
if quant!=None:
quant3=quant[2]
axarr.fill_between(x,quant3[0],quant3[2],color='k',alpha=0.1,label='__nolegend__')
axarr.plot(x,quant3[1],'-',color='k',alpha=1,lw=1.5,label='__nolegend__')
formatplot(axarr,'spacing (bp)','cooperativity ratio', xlim=([5,32]),ylim=False)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
elif samples.any()!=None:
for lnlamb,phi,lnR0 in samples[np.random.randint(len(samples), size=numberofmodeltraces)]:
lamb=np.exp(lnlamb)
R0=np.exp(lnR0)
# Fixed parameters from dose response experiments
A=y0
C0=0.66070446353476231
r1=R0/0.16746036268850761
r2=R0/0.0082708295083317035
E10=1.4349132332094823
E2=1.3110190282670602
E120=-3.4804403863425248
xmod=x
E1,E12=helixdist(xmod,E10,E120,lamb,phi)
p_c,p_nc,p_0=modelhelix(y0,C0,r1,r2,E1,E2,E12)
axarr.plot(x,p_nc/p_c,'-',color='k',alpha=0.05,label='__nolegend__')
formatplot(axarr,'spacing (bp)','cooperativity ratio', xlim=([5,32]),ylim=False)
plt.savefig(DIR_PLOTS+name+'.pdf',dpi=my_dpi,transparent=True)
######### 3. BOXPLOTS #########
def boxplots(ZFname,parameternames,nwalkers,iterations,tburn,DIR_PLOTS,DIR_OUT):
# Read data
df1=pd.read_csv(DIR_OUT+'samplesout_'+ZFname+'.csv',delimiter=',')
data=np.zeros(df1.shape[0]*(df1.shape[1]-1)).reshape(df1.shape[0],(df1.shape[1]-1))
for i in range(0,int(df1.shape[1]-1)):
data[:,i]=np.array(df1.iloc[:,i+1]) # Put dataframe into array. Dataframe has no. columns = no. parameters.
# Burn-in time correction
data2= | np.zeros((df1.shape[0]-tburn*nwalkers)*(df1.shape[1]-1)) | numpy.zeros |
import pandas as pd
import numpy as np
from scipy.interpolate import griddata
from scipy import ndimage
from typing import List, Tuple, Dict, Optional
from sklearn.neighbors import NearestNeighbors
from .data_helper import low_high_quantile
from matplotlib import pyplot as plt
from matplotlib import patches, patheffects
from mpl_toolkits.axes_grid1 import make_axes_locatable
from collections import OrderedDict
import statsmodels.api as sm
from numpy import ma
from matplotlib import cbook
from matplotlib.colors import Normalize
from matplotlib.colors import LinearSegmentedColormap
#colormap from SHAP packakge
red_blue = LinearSegmentedColormap('red_blue', { # #1E88E5 -> #ff0052
'red': ((0.0, 30./255, 30./255),
(1.0, 255./255, 255./255)),
'green': ((0.0, 136./255, 136./255),
(1.0, 13./255, 13./255)),
'blue': ((0.0, 229./255, 229./255),
(1.0, 87./255, 87./255)),
'alpha': ((0.0, 1, 1),
(0.5, 0.3, 0.3),
(1.0, 1, 1))
})
blue_green = LinearSegmentedColormap('blue_green', { # #1E88E5 -> #ff0052
'green': ((0.0, 30./255, 30./255),
(1.0, 255./255, 255./255)),
'red': ((0.0, 50./255, 50./255),
(1.0, 10./255, 10./255)),
'blue': ((0.0, 229./255, 229./255),
(1.0, 87./255, 87./255)),
'alpha': ((0.0, 1, 1),
(0.5, 0.3, 0.3),
(1.0, 1, 1))
})
blue_green_solid = LinearSegmentedColormap('blue_green_solid', { # #1E88E5 -> #ff0052
'green': ((0.0, 30./255, 30./255),
(1.0, 255./255, 255./255)),
'red': ((0.0, 50./255, 50./255),
(1.0, 10./255, 10./255)),
'blue': ((0.0, 229./255, 229./255),
(1.0, 87./255, 87./255)),
'alpha': ((0.0, 1, 1),
(0.5, 1, 1),
(1.0, 1, 1))
})
# setting midpoint for colorbar
# https://stackoverflow.com/questions/7404116/defining-the-midpoint-of-a-colormap-in-matplotlib
class MidPointNorm(Normalize):
def __init__(self, midpoint=0, vmin=None, vmax=None, clip=False):
Normalize.__init__(self,vmin, vmax, clip)
self.midpoint = midpoint
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
result, is_scalar = self.process_value(value)
self.autoscale_None(result)
vmin, vmax, midpoint = self.vmin, self.vmax, self.midpoint
if not (vmin < midpoint < vmax):
raise ValueError("midpoint must be between maxvalue and minvalue.")
elif vmin == vmax:
result.fill(0) # Or should it be all masked? Or 0.5?
elif vmin > vmax:
raise ValueError("maxvalue must be bigger than minvalue")
else:
vmin = float(vmin)
vmax = float(vmax)
if clip:
mask = ma.getmask(result)
result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
mask=mask)
# ma division is very slow; we can take a shortcut
resdat = result.data
#First scale to -1 to 1 range, than to from 0 to 1.
resdat -= midpoint
resdat[resdat>0] /= abs(vmax - midpoint)
resdat[resdat<0] /= abs(vmin - midpoint)
resdat /= 2.
resdat += 0.5
result = ma.array(resdat, mask=result.mask, copy=False)
if is_scalar:
result = result[0]
return result
def inverse(self, value):
if not self.scaled():
raise ValueError("Not invertible until scaled")
vmin, vmax, midpoint = self.vmin, self.vmax, self.midpoint
if cbook.iterable(value):
val = ma.asarray(value)
val = 2 * (val-0.5)
val[val>0] *= abs(vmax - midpoint)
val[val<0] *= abs(vmin - midpoint)
val += midpoint
return val
else:
val = 2 * (val - 0.5)
if val < 0:
return val*abs(vmin-midpoint) + midpoint
else:
return val*abs(vmax-midpoint) + midpoint
def plot_shap_dependence(shapVals_df, df, feature='ProppantIntensity_LBSPerFT',
feature_disp=None, cmap=plt.cm.coolwarm, s=10, title=None, color_bar=True, color_title=None):
feature_disp = feature if feature_disp is None else feature_disp
title = feature_disp if title is None else title
color_title = 'Feature Impact' if color_title is None else color_title
x = df[feature].values
y = shapVals_df[feature].values
cvals =y
clow = np.nanpercentile(cvals, 5)
chigh = np.nanpercentile(cvals, 95)
norm = MidPointNorm(midpoint=0) if color_bar else MidPointNorm(midpoint=0, vmin=clow, vmax=chigh) # setting vmin/vmax will clip cbar
# scalarm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
# scalarm._A = []
cvals_nans = np.isnan(cvals)
cval_notNan = np.invert(cvals_nans)
fig, ax = plt.subplots(figsize=(8,5))
ax.scatter(x[cvals_nans], y[cvals_nans], s=s, color="#777777", alpha=1, rasterized=len(x) > 500)
mapable = ax.scatter(x[cval_notNan], y[cval_notNan], s=s, c=cvals[cval_notNan], cmap=cmap, alpha=1,
norm=norm, rasterized=len(x) > 500)
if color_bar:
cb = colorbar(mapable, size=0.15)
cb.set_clim(clow, chigh) # setting vmin/vmaqx here will set even color beyond these numbers
# cb = colorbar(scalarm, size=0.15)
cb.set_label(color_title, size=13)
cb.outline.set_visible(False)
cb.set_alpha(1)
ax.set_xlabel(feature_disp, fontsize=14)
ax.set_ylabel('Feature Impact', fontsize=14)
ax.set_title(title, fontsize=14)
return ax
def nan_to_mean(arr:np.ndarray, axis:int=0)->np.ndarray:
'''fills nan with mean over axis .
uses masked array to apply mean to complete nan columns np.nanmean() can not do that
other option would be to set some kind of spline extrapolation '''
data_m = np.ma.masked_invalid(arr, copy=True)
return np.where(np.isnan(arr), data_m.mean(axis=axis), arr)
Type_mapout = Tuple[np.ndarray, np.ndarray, Dict[str, np.ndarray], Dict[str, np.ndarray]]
def map_grid(df:pd.DataFrame, nxny:Tuple[int]=(500,500),
lat_lon_names:List[str]=['Latitude_Mid','Longitude_Mid'])->Type_mapout:
'''generates linear interpolated maps
return: xi, yi, {col:interpolated}'''
zis = {}
cols = df.drop(columns=lat_lon_names).columns
lat, lon = lat_lon_names
y, x = df[lat], df[lon]
nx, ny = nxny
minx, maxx = x.min(), x.max()
miny, maxy = y.min(), y.max()
xi = np.linspace(minx, maxx, nx)
yi = np.linspace(miny, maxy, ny)
for col in cols:
zi = griddata((x, y), df[col], (xi[None,:], yi[:,None]), method='linear')
zis[col] = zi
return xi, yi, zis
def blured_map(zis, sigma:float=5.)->Type_mapout:
'''generates linear interpolated and blured maps
return: xi, yi, {col:interpolated}, {col:blured}'''
zibs = {}
for col, zi in zis.items():
zi_blurred = nan_to_mean(zi, axis=0) #need so blure not cut nan edges
zi_blurred = ndimage.gaussian_filter(zi_blurred, sigma=sigma)
zi_blurred[np.isnan(zi)] = np.nan
zibs[col] = zi_blurred
return zibs
def plot_contour_map(xi:np.ndarray, yi:np.ndarray, zi:np.ndarray, mask:Optional=None, n_conturs:int=15,
ax:Optional=None, fig:Optional=None, figsize=(10,10),
vminmax:Optional=None, addColorbar=True, colorbarLabel=None, args={}, argsf={}):
if ax is None: fig, ax = plt.subplots(figsize=figsize)
if mask is not None: zi = np.ma.masked_where(~mask, zi)
vmin, vmax = low_high_quantile(pd.Series(zi.flatten()),1/100) if vminmax is None else vminmax
cs = ax.contourf(xi ,yi, zi, n_conturs, vmin=vmin, vmax=vmax, antialiased=True, **argsf)
ax.contour(xi, yi, zi, n_conturs, linewidths=0.5, colors='k', antialiased=True, **args) #add vm
ax.set_aspect(1)
cbar =colorbar(cs, label=colorbarLabel) if addColorbar else None
return fig, ax, cbar
def mask_by_dist(df, col, xi, yi, radius=0.3, lon_lat_names:List[str]=['Longitude_Mid', 'Latitude_Mid']):
nx, ny = len(xi), len(yi)
xm, ym = np.meshgrid(xi, yi)
Xtrn = df[lon_lat_names]
Xtest = pd.DataFrame({'x':xm.flatten(), 'y':ym.flatten()})
nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(Xtrn, df[col])
rad, index = nbrs.radius_neighbors(Xtest, radius=radius, return_distance=True)
mask = np.array([(True if len(x)>0 else False) for x in rad]).reshape((ny,nx))
return mask
def fence_draw(gf, ax, latlon=['lat', 'lon'], **args):
''' takes fennce coord
E.G. geo_fence={'lon':(-98, -97.73), 'lat': (28.83, 29.19)}
adds patch to axes
'''
lat, lon = latlon
dlon = gf[lon][1]-gf[lon][0]
dlat = gf[lat][1]-gf[lat][0]
rect = patches.Rectangle((gf[lon][0],gf[lat][0]),dlon,dlat,linewidth=1,edgecolor='r',facecolor='none', **args)
ax.add_patch(rect)
def colorbar(mappable, ax=None, location='right', size="5%", pad=0.05, **args):
if ax is None:
try: ax = mappable.axes
except: ax = mappable.ax # for contour plots
fig = ax.figure
divider = make_axes_locatable(ax)
cax = divider.append_axes(location, size=size, pad=pad)
return fig.colorbar(mappable, cax=cax, **args)
def draw_outline(o, lw):
'''from fastai'''
o.set_path_effects([patheffects.Stroke(
linewidth=lw, foreground='black'), patheffects.Normal()])
def draw_text(ax, xy, txt, sz=14, outsz=2):
'''from fastai'''
#ax.annotate(txt, (df[lon].iloc[i], df[lat].iloc[i]))
text = ax.text(*xy, txt, verticalalignment='top', color='white',
fontsize=sz)#, weight='bold')
draw_outline(text, outsz)
def draw_rect(ax, b):
'''from fastai'''
patch = ax.add_patch(patches.Rectangle(b[:2], *b[-2:],
fill=False, edgecolor='white', lw=2))
draw_outline(patch, 4)
def plot_pdp_std(wells_ice, smooth=True, zero_start=False, frac=0.15, ax=None, xlabel=None,
ylabel='annual boe/1000ft', title='Completion Impact', quantile=True, addStd=True,
addLegend=True, argF={'alpha':0.2}, argPDP={}, figsize=(12,7)):
'''plot median line with 25, 75% quintiles [default] or mean with +-std'''
if ax is None: fig, ax = plt.subplots(figsize=figsize)
if smooth: lowess = sm.nonparametric.lowess
for api, ice in wells_ice.items():
if zero_start: ice = ice.sub(ice.iloc[:,0], axis=0)
describe = ice.describe() # gives mean std and quintile values
ice_pdp = describe.loc['50%'] if quantile else describe.loc['mean']
ice_upper = describe.loc['75%'] if quantile else describe.loc['mean'] + describe.loc['std']
ice_lower = describe.loc['25%'] if quantile else describe.loc['mean'] - describe.loc['std']
upper = ice_upper.values
lower = ice_lower.values
pdp = ice_pdp.values
if smooth:
pdp = lowess(ice_pdp.values, | np.array(ice.columns) | numpy.array |
"""
Segment song motifs by finding maxima in spectrogram cross correlations.
"""
__date__ = "April 2019 - November 2020"
from affinewarp import ShiftWarping
import h5py
from itertools import repeat
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
plt.switch_backend('agg')
try: # Numba >= 0.52
from numba.core.errors import NumbaPerformanceWarning
except ModuleNotFoundError:
try: # Numba <= 0.45
from numba.errors import NumbaPerformanceWarning
except (NameError, ModuleNotFoundError):
pass
import numpy as np
from scipy.io import wavfile
from scipy.io.wavfile import WavFileWarning
from scipy.signal import stft
from scipy.ndimage.filters import gaussian_filter
import os
import umap
import warnings
from ava.plotting.tooltip_plot import tooltip_plot
EPSILON = 1e-9
def get_template(feature_dir, p, smoothing_kernel=(0.5, 0.5), verbose=True):
"""
Create a linear feature template given exemplar spectrograms.
Parameters
----------
feature_dir : str
Directory containing multiple audio files to average together.
p : dict
Parameters. Must contain keys: ``'fs'``, ``'min_freq'``, ``'max_freq'``,
``'nperseg'``, ``'noverlap'``, ``'spec_min_val'``, ``'spec_max_val'``.
smoothing_kernel : tuple of floats, optional
Each spectrogram is blurred using a gaussian kernel with the following
bandwidths, in bins. Defaults to ``(0.5, 0.5)``.
verbose : bool, optional
Defaults to ``True``.
Returns
-------
template : np.ndarray
Spectrogram template.
"""
filenames = [os.path.join(feature_dir, i) for i in os.listdir(feature_dir) \
if _is_wav_file(i)]
specs = []
for i, filename in enumerate(filenames):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=WavFileWarning)
fs, audio = wavfile.read(filename)
assert fs == p['fs'], "Found samplerate="+str(fs)+\
", expected "+str(p['fs'])
spec, dt = _get_spec(fs, audio, p)
spec = gaussian_filter(spec, smoothing_kernel)
specs.append(spec)
min_time_bins = min(spec.shape[1] for spec in specs)
specs = np.array([i[:,:min_time_bins] for i in specs])
# Average over all the templates.
template = np.mean(specs, axis=0)
# Normalize to unit norm.
template -= np.mean(template)
template /= np.sum(np.power(template, 2)) + EPSILON
if verbose:
duration = min_time_bins * dt
print("Made template from", len(filenames), "files. Duration:", duration)
return template
def segment_files(audio_dirs, segment_dirs, template, p, num_mad=2.0, \
min_dt=0.05, n_jobs=1, verbose=True):
"""
Write segments to text files.
Parameters
----------
audio_dirs : list of str
Audio directories.
segment_dirs : list of str
Corresponding directories containing segmenting decisions.
template : numpy.ndarray
Spectrogram template.
p : dict
Parameters. Must contain keys: ``'fs'``, ``'min_freq'``, ``'max_freq'``,
``'nperseg'``, ``'noverlap'``, ``'spec_min_val'``, ``'spec_max_val'``.
num_mad : float, optional
Number of median absolute deviations for cross-correlation threshold.
Defaults to ``2.0``.
min_dt : float, optional
Minimum duration between cross correlation maxima. Defaults to ``0.05``.
n_jobs : int, optional
Number of jobs for parallelization. Defaults to ``1``.
verbose : bool, optional
Defaults to ``True``.
Returns
-------
result : dict
Maps audio filenames to segments (numpy.ndarrays).
"""
# Collect all the filenames we need to parallelize.
all_audio_fns = []
all_seg_dirs = []
for audio_dir, segment_dir in zip(audio_dirs, segment_dirs):
if not os.path.exists(segment_dir):
os.makedirs(segment_dir)
audio_fns = [os.path.join(audio_dir, i) for i in os.listdir(audio_dir) \
if _is_wav_file(i)]
all_audio_fns = all_audio_fns + audio_fns
all_seg_dirs = all_seg_dirs + [segment_dir]*len(audio_fns)
# Segment.
if verbose:
print("Segmenting files. n =",len(all_audio_fns))
gen = zip(all_seg_dirs, all_audio_fns, repeat(template), repeat(p), \
repeat(num_mad), repeat(min_dt))
res = Parallel(n_jobs=n_jobs)(delayed(_segment_file)(*args) for args in gen)
# Write results.
result = {}
num_segments = 0
for segment_dir, audio_fn, segments in res:
result[audio_fn] = segments
segment_fn = os.path.split(audio_fn)[-1][:-4] + '.txt'
segment_fn = os.path.join(segment_dir, segment_fn)
np.savetxt(segment_fn, segments, fmt='%.5f')
num_segments += len(segments)
if verbose:
print("\tFound", num_segments, "segments.")
print("\tDone.")
# Return a dictionary mapping audio filenames to segments.
return result
def read_segment_decisions(audio_dirs, segment_dirs, verbose=True):
"""
Returns the same data as ``segment_files``.
Parameters
----------
audio_dirs : list of str
Audio directories.
segment_dirs : list of str
Segment directories.
verbose : bool, optional
Defaults to ``True``.
Returns
-------
result : dict
Maps audio filenames to segments.
"""
if verbose:
print("Reading segments...")
result = {}
n_segs = 0
for audio_dir, segment_dir in zip(audio_dirs, segment_dirs):
audio_fns = [os.path.join(audio_dir, i) for i in os.listdir(audio_dir) \
if _is_wav_file(i)]
for audio_fn in audio_fns:
segment_fn = os.path.split(audio_fn)[-1][:-4] + '.txt'
segment_fn = os.path.join(segment_dir, segment_fn)
segments = np.loadtxt(segment_fn).reshape(-1,2)
result[audio_fn] = segments
n_segs += len(segments)
if verbose:
print("\tFound", n_segs, "segments.")
print("\tDone.")
return result
def _segment_file(segment_dir, filename, template, p, num_mad=2.0, min_dt=0.05,\
min_extra_time_bins=5):
"""
Match linear spetrogram features and extract times where features align.
Parameters
----------
segment_dir : str
Segment directory.
filename : str
Audio filename.
template : numpy.ndarray
Spectrogram template.
p : dict
Parameters. Must contain keys: ``'fs'``, ``'min_freq'``, ``'max_freq'``,
``'nperseg'``, ``'noverlap'``, ``'spec_min_val'``, ``'spec_max_val'``.
num_mad : float, optional
Number of median absolute deviations for cross-correlation threshold.
Defaults to ``2.0``.
min_dt : float, optional
...
min_extra_time_bins : int, optional
...
Returns
-------
segment_dir : str
Copied from input parameters.
filename : str
Copied from input parameters.
segments : numpy.ndarray
Onsets and offsets.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=WavFileWarning)
fs, audio = wavfile.read(filename)
assert fs == p['fs'], "Found samplerate="+str(fs)+", expected "+str(p['fs'])
if len(audio) < p['nperseg']:
warnings.warn(
"Found an audio file that is too short to make a spectrogram: "+\
filename + "\nSamples: "+str(len(audio))+"\np[\'nperseg\']: "+\
str(p['nperseg']),
UserWarning
)
return segment_dir, filename, np.zeros((0, 2))
big_spec, dt = _get_spec(fs, audio, p)
spec_len = template.shape[1]
template = template.flatten()
if big_spec.shape[1] - spec_len < min_extra_time_bins:
d1, d2 = dt*spec_len, dt*big_spec.shape[1]
warnings.warn(
"Found an audio file that is too short to extract segments from: "+\
filename + "\nTemplate duration: "+str(d1)+"\nFile duration: "+\
str(d2)+"\nConsider reducing the template duration.",
UserWarning
)
return segment_dir, filename, np.zeros((0, 2))
# Compute normalized cross-correlation.
result = np.zeros(big_spec.shape[1] - spec_len)
for i in range(len(result)):
temp = big_spec[:,i:i+spec_len].flatten()
temp -= np.mean(temp)
temp /= np.sum(np.power(temp, 2)) + EPSILON
result[i] = np.dot(template, temp)
median = np.median(result)
abs_devs = np.abs(result - median)
mad = np.median(abs_devs) + EPSILON
# Get maxima.
times = dt * np.arange(len(result))
indices = np.argwhere(result>median + num_mad*mad).flatten()[1:-1]
max_indices = []
for i in range(2,len(indices)-1):
if max(result[indices[i]-1], result[indices[i]+1]) < result[indices[i]]:
max_indices.append(indices[i])
max_indices = np.array(max_indices, dtype='int')
max_indices = _clean_max_indices(max_indices, times, result, min_dt=min_dt)
# Define onsets/offsets.
segments = np.zeros((len(max_indices), 2))
segments[:,0] = dt * max_indices # onsets
segments[:,1] = segments[:,0] + spec_len * dt
return segment_dir, filename, segments
def clean_collected_data(result, audio_dirs, segment_dirs, p, \
max_num_specs=10000, verbose=True, img_fn='temp.pdf', \
tooltip_plot_dir='html'):
"""Deprecated. See ``clean_collected_segments``."""
warnings.warn(
"ava.segmenting.template_segmentation.clean_collected_data has been" + \
" renamed to clean_collected_segments in v0.3.0.",
UserWarning
)
clean_collected_segments(result, audio_dirs, segment_dirs, p, \
max_num_specs=max_num_specs, verbose=verbose, img_fn=img_fn, \
tooltip_plot_dir=tooltip_plot_dir)
def clean_collected_segments(result, audio_dirs, segment_dirs, p, \
max_num_specs=10000, verbose=True, img_fn='temp.pdf', \
tooltip_plot_dir='html'):
"""
Take a look at the collected segments and discard false positives.
Parameters
----------
result : dict
Output of ``segment_files`` or `read_segment_decisions``.
audio_dirs : list of str
Directories containing audio.
segment_dirs : list of str
Directories containing segmenting decisions.
p : dict
Parameters. Must contain keys: ``'fs'``, ``'min_freq'``, ``'max_freq'``,
``'nperseg'``, ``'noverlap'``, ``'spec_min_val'``, ``'spec_max_val'``.
max_num_specs : int, optional
Maximum number of spectrograms to feed to UMAP. Deafults to ``10000``.
verbose : bool, optional
Defaults to ``True``.
img_fn : str, optional
Image filename. Defaults to ``'temp.pdf'``.
tooltip_plot_dir : str, optional
Directory to save tooltip plot to. Defaults to ``'html'``.
"""
# Collect spectrograms.
if verbose:
print("Collecting spectrograms...")
specs = []
for filename in result.keys():
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=WavFileWarning)
fs, audio = wavfile.read(filename)
assert fs == p['fs'], "Found samplerate=" + str(fs) + \
", expected " + str(p['fs'])
for segment in result[filename]:
i1 = int(round(segment[0] * fs))
i2 = int(round(segment[1] * fs))
spec, dt = _get_spec(fs, audio[i1:i2], p)
specs.append(spec)
if len(specs) == 0:
warnings.warn(
"Found no spectrograms in " + \
"ava.segmenting.template_segmentation.clean_collected_segments.\n" \
+ "Consider reducing the `num_mad` parameter in `segment_files`.",
UserWarning
)
return
max_t = max(spec.shape[1] for spec in specs)
temp_specs = np.zeros((len(specs), specs[0].shape[0], max_t))
for i, spec in enumerate(specs):
temp_specs[i,:,:spec.shape[1]] = spec
specs = temp_specs
if len(specs) > max_num_specs:
warnings.warn(
"Found more spectrograms than `max_num_specs` (" + \
str(max_num_specs) + "). Consider increasing `max_num_specs` or" + \
" `num_mad`.",
UserWarning
)
if verbose:
print("\tCollected",len(specs),"spectrograms.")
print("\tSpectrogram shape:", specs.shape[1:])
if len(specs) > max_num_specs:
print("\tRandomly sampling", max_num_specs, "spectrograms.")
print("\tDone.")
np.random.seed(42)
specs = specs[np.random.permutation(len(specs))[:max_num_specs]]
np.random.seed(None)
# UMAP the spectrograms.
if verbose:
print("Running UMAP. n =", len(specs))
transform = umap.UMAP(random_state=42, metric='correlation')
# https://github.com/lmcinnes/umap/issues/252
with warnings.catch_warnings():
try:
warnings.filterwarnings("ignore", \
category=NumbaPerformanceWarning)
except NameError:
pass
embedding = transform.fit_transform(specs.reshape(len(specs), -1))
if verbose:
print("\tDone.")
# Plot and ask for user input.
bounds = {
'x1s':[],
'x2s':[],
'y1s':[],
'y2s':[],
}
bounds_keys = ['x1s', 'x2s', 'y1s', 'y2s']
queries = ['x1: ', 'x2: ', 'y1: ', 'y2: ']
X, Y = embedding[:,0], embedding[:,1]
i = 0
while True:
colors = ['b' if _in_region(embed, bounds) else 'r' for \
embed in embedding]
print("Selected", \
len([c for c in colors if c=='b']), "out of", len(colors))
plt.scatter(X, Y, c=colors, s=0.9, alpha=0.5)
for x_tick in np.arange(np.floor(np.min(X)), np.ceil(np.max(X))):
plt.axvline(x=x_tick, c='k', alpha=0.1, lw=0.5)
for y_tick in np.arange(np.floor(np.min(Y)), np.ceil(np.max(Y))):
plt.axhline(y=y_tick, c='k', alpha=0.1, lw=0.5)
title = "Find relevant song"
plt.title(title)
plt.savefig(img_fn)
plt.close('all')
# Plot the tooltip plot.
if i == 0:
if verbose:
print("Writing tooltip plot...")
tooltip_plot(embedding, specs, output_dir=tooltip_plot_dir, \
num_imgs=1000, title=title, grid=True)
if verbose:
print("\tDone.")
# Get input from user.
for key, query in zip(bounds_keys, queries):
answer = 'initial input'
while not _is_number(answer):
answer = input(query)
bounds[key].append(float(answer))
# Continue?
temp = input('[Enter] to select more regions, [c] to continue: ')
if temp == 'c':
break
i += 1
# Save only the good segments.
if verbose:
print("Saving segments...")
num_deleted, num_total = 0, 0
for audio_dir, seg_dir in zip(audio_dirs, segment_dirs):
audio_fns = [os.path.join(audio_dir, i) for i in os.listdir(audio_dir) \
if _is_wav_file(i)]
for audio_fn in audio_fns:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=WavFileWarning)
fs, audio = wavfile.read(audio_fn)
assert fs == p['fs'], "Found samplerate=" + str(fs) + \
", expected " + str(p['fs'])
segment_fn = os.path.split(audio_fn)[-1][:-4] + '.txt'
segment_fn = os.path.join(seg_dir, segment_fn)
segments = np.loadtxt(segment_fn).reshape(-1,2)
if len(segments) == 0:
continue
new_segments = np.zeros(segments.shape)
i = 0
specs = []
for segment in segments:
i1 = int(round(segment[0] * fs))
i2 = int(round(segment[1] * fs))
spec, dt = _get_spec(fs, audio[i1:i2], p)
temp_spec = np.zeros((spec.shape[0], max_t))
temp_spec[:, :spec.shape[1]] = spec
spec = temp_spec
specs.append(spec)
specs = np.stack(specs)
embed = transform.transform(specs.reshape(specs.shape[0],-1))
for j, segment in enumerate(segments):
if _in_region(embed[j], bounds):
new_segments[i] = segment[:]
i += 1
num_total += 1
else:
num_deleted += 1
new_segments = new_segments[:i]
np.savetxt(segment_fn, new_segments, fmt='%.5f')
if verbose:
print("\tdeleted:", num_deleted, "remaining:", num_total)
print("\tDone.")
def segment_sylls_from_songs(audio_dirs, song_seg_dirs, syll_seg_dirs, p, \
shoulder=0.05, img_fn='temp.pdf', verbose=True):
"""
Split song renditions into syllables, write segments.
Enter quantiles to determine where to split the song motif. Entering the
same quantile twice will remove it.
Note
----
* All the song segments must be the same duration!
Parameters
----------
audio_dirs : list of str
Audio directories.
song_seg_dirs : list of str
Directories containing song segments.
syll_seg_dirs : list of str
Directories where syllable segments are written.
p : dict
Segmenting parameters.
shoulder : float, optional
Duration of padding on either side of song segments, in seconds.
img_fn : str, optional
Image filename. Defaults to ``'temp.pdf'``.
verbose : bool, optional
Defaults to `True`.
"""
# Read segments.
song_segs = read_segment_decisions(audio_dirs, song_seg_dirs)
# Collect spectrograms.
empty_audio_files = []
specs, fns, song_onsets = [], [], []
for audio_fn in song_segs:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=WavFileWarning)
fs, audio = wavfile.read(audio_fn)
for seg in song_segs[audio_fn].reshape(-1,2):
# Make spectrogram.
onset, offset = seg[0] - shoulder, seg[1] + shoulder
i1, i2 = int(fs*onset), int(fs*offset)
spec, dt = _get_spec(fs, audio[max(i1,0):i2], p)
# Pad spectrogram if it's near the edge of the file.
if i1 < 0 or i2 > len(audio):
pre_bins = max(0, int(np.round(-i1/fs/dt)))
post_bins = max(0, int(np.round((i2 - len(audio))/fs/dt)))
new_spec = np.mean(spec) * \
np.ones((spec.shape[0], spec.shape[1]+pre_bins+post_bins))
if post_bins == 0:
post_bins = -new_spec.shape[1]
new_spec[pre_bins:-post_bins]
spec = new_spec
specs.append(spec)
fns.append(audio_fn)
song_onsets.append(onset)
if len(song_segs[audio_fn]) == 0:
empty_audio_files.append(audio_fn)
assert len(specs) > 0, "Found no spectrograms!"
# Calculate and smooth amplitude traces.
amp_traces = []
for spec in specs:
amps = np.sum(spec, axis=0)
amps -= np.mean(amps)
amps /= np.std(amps) + EPSILON
amp_traces.append(amps)
# Truncate the amplitude traces if they aren't exactly the same length.
min_time_bins = min(len(amp_trace) for amp_trace in amp_traces)
max_time_bins = max(len(amp_trace) for amp_trace in amp_traces)
if verbose and (min_time_bins != max_time_bins):
print("Found different numbers of time bins in segments!")
print("\tmin:" + str(min_time_bins) + ", max:", max_time_bins)
print("\tTruncating to minimum number of time bins.")
if min_time_bins != max_time_bins:
amp_traces = [amp_trace[:min_time_bins] for amp_trace in amp_traces]
amp_traces = np.array(amp_traces)
# Warp the amplitude traces.
max_t = amp_traces.shape[1]*dt*1e3
num_time_bins = amp_traces.shape[1]
model = ShiftWarping(maxlag=0.2, smoothness_reg_scale=10.0)
model.fit(amp_traces[:,:,np.newaxis], iterations=50)
aligned = model.predict().squeeze()
max_raw_val = np.max(amp_traces)
max_aligned_val = np.max(aligned)
shifts = model.shifts
quantiles = []
break_flag = False
while True:
# Plot.
_, axarr = plt.subplots(3,1, sharex=True)
axarr[0].imshow(specs[np.random.randint(len(specs))], origin='lower', \
aspect='auto', extent=[0,max_t,p['min_freq']/1e3, \
p['max_freq']/1e3])
temp = np.copy(amp_traces)
for q in quantiles:
for i in range(len(temp)):
try:
temp[i,int(round(q*num_time_bins))+shifts[i]] = max_raw_val
except IndexError:
pass
axarr[1].imshow(temp, origin='lower', aspect='auto', \
extent=[0,max_t,0,len(amp_traces)])
temp = np.copy(aligned)
for q in quantiles:
for i in range(len(temp)):
temp[i,int(round(q*num_time_bins))] = max_aligned_val
axarr[2].imshow(temp, origin='lower', aspect='auto', \
extent=[0,max_t,0,len(amp_traces)])
axarr[0].set_ylabel("Frequency (kHz)")
axarr[1].set_ylabel('Amplitude')
axarr[2].set_ylabel('Shifted')
axarr[0].set_title('Enter segmenting quantiles:')
axarr[2].set_xlabel('Time (ms)')
plt.savefig(img_fn)
plt.close('all')
# Ask for segmenting decisions.
while True:
temp = input("Add or delete quantile or [s]top: ")
if temp == 's':
break_flag = True
break
try:
temp = float(temp)
assert 0.0 < temp and temp < 1.0
if temp in quantiles:
quantiles.remove(temp)
else:
quantiles.append(temp)
break
except:
print("Invalid input!")
print("Must be \'s\' or a float between 0 and 1.")
continue
if break_flag:
break
# Write syllable segments.
if verbose:
print("Writing syllable segments...")
duration = num_time_bins * dt
quantiles = | np.array(quantiles) | numpy.array |
import matplotlib.pyplot as plots
import numpy as np
from scipy.stats import norm
def plot_function(D,input_node, mu, sigma, batch_size, sess):
figure,axis=plots.subplots(1)
xaxis=np.linspace(-6,6,1000)
axis.plot(xaxis, norm.pdf(xaxis,loc=mu,scale=sigma), label='p_distribution')
r=1000
xaxis=np.linspace(-6,6,r)
decisor_beginning=np.zeros((r,1))
for i in range(int(r/batch_size)):
x=np.reshape(xaxis[batch_size*i:batch_size*(i+1)],(batch_size,1))
decisor_beginning[batch_size*i:batch_size*(i+1)]=sess.run(D,{input_node: x})
axis.plot(xaxis, decisor_beginning, label='decision boundary', color ='black')
axis.set_ylim(0,1.1)
plots.legend()
def plot_function2(dis, gen, sigma, mu, batch_size, sess, x_input_node, z_input_node):
figure,axis=plots.subplots(1)
xaxis=np.linspace(-6,6,1000)
axis.plot(xaxis, norm.pdf(xaxis,loc=mu,scale=sigma), label='p_original_distribution')
r=1000
xaxis=np.linspace(-6,6,r)
decisor=np.zeros((r,1))
for i in range(int(r/batch_size)):
x=np.reshape(xaxis[batch_size*i:batch_size*(i+1)],(batch_size,1))
decisor[batch_size*i:batch_size*(i+1)]=sess.run(dis,{x_input_node: x})
axis.plot(xaxis, decisor, label='decision boundary',color='black')
zs=np.linspace(-6,6,r)
generated=np.zeros((r,1))
for i in range(int(r/batch_size)):
z= | np.reshape(zs[batch_size*i:batch_size*(i+1)],(batch_size,1)) | numpy.reshape |
from __future__ import absolute_import, division, print_function
import numpy as np
def compute_rhog(psi1r, psi2r, ft, rho1g=None, rho2g=None):
"""Compute rho(G, -G) for two electrons occupying two (KS) orbitals.
rho(G, -G) is defined as f1(G) * f2(-G) - |f3(G)|^2,
which is equal to f1(G) * conj(f2(G)) - f3(G) * conj(f3(G))
f1, f2 and f3 are defined following PRB 77, 035119 (2008):
f1(r) = |psi1(r)|^2
f2(r) = |psi2(r)|^2
f3(r) = conj(psi1(r)) * psi2(r)
f1(G), f2(G) and f3(G) are obtained by Fourier Transform of f1(r), f2(r) and f3(r)
rho(r) is computed for debug purpose as inverse FT of rho(G, -G) and returned as well
Args:
psi1r, psi2r (np.ndarray): R space wavefunction for electron 1 and 2.
ft (..common.ft.FourierTransform): FT which defines grid size.
rho1g, rho2g (np.ndarray): R space charge density for electron 1 and 2.
If not provided, will be computed from psi1r and psi2r.
Returns:
rho(G, -G) as a np.ndarray of shape (ft.N, ft.N).
"""
if rho1g is not None:
assert rho1g.shape == psi1r.shape
f1g = rho1g
else:
f1r = psi1r * np.conj(psi1r)
f1g = ft.forward(f1r)
if rho2g is not None:
assert rho2g.shape == psi2r.shape
f2g = rho2g
else:
f2r = psi2r * np.conj(psi2r)
f2g = ft.forward(f2r)
f3r = psi1r * np.conj(psi2r)
f3g = ft.forward(f3r)
#rhoj = f1g * np.conj(f2g)
#rhok = f3g * np.conj(f3g)
rhog = f1g * np.conj(f2g) - f3g * np.conj(f3g)
#rhor = ft.backward(rhog)
return rhog #, rhor, rhoj, rhok
def compute_delta_model_rhog(cell, ft, d1, d2, d3, s=1):
"""Compute rho(G, -G) for two point dipoles.
Two spin dipoles are approximated homogeneious dipole gas in small boxes
Args:
cell (..common.cell.Cell): Cell on which to compute ddig.
ft (..common.ft.FourierTransform): FT which defines grid size.
d1, d2, d3 (float): distance between two dipoles in 3 dimensions
s (float): box size
Returns:
rho(G, -G) as a np.ndarray of shape (ft.N, ft.N)
"""
n1, n2, n3, N = ft.n1, ft.n2, ft.n3, ft.N
R1, R2, R3 = cell.R1, cell.R2, cell.R3
omega = cell.omega
ns1 = int(n1 * s / R1[0])
ns2 = int(n2 * s / R2[1])
ns3 = int(n3 * s / R3[2])
nd1 = int(n1 * d1 / R1[0])
nd2 = int(n2 * d2 / R2[1])
nd3 = int(n3 * d3 / R3[2])
print(ns1, ns2, ns3)
print(nd1, nd2, nd3)
print("effective d1, d2, d3: ", nd1 * R1[0] / n1, nd2 * R2[1] / n2, nd3 * R3[2] / n3)
psi1r = | np.zeros([n1, n2, n3]) | numpy.zeros |
from typing import List, Set, Tuple, Dict
import numpy
from stog.utils.checks import ConfigurationError
def decode_mst(energy: numpy.ndarray,
length: int,
has_labels: bool = True) -> Tuple[numpy.ndarray, numpy.ndarray]:
"""
Note: Counter to typical intuition, this function decodes the _maximum_
spanning tree.
Decode the optimal MST tree with the Chu-Liu-Edmonds algorithm for
maximum spanning arboresences on graphs.
Parameters
----------
energy : ``numpy.ndarray``, required.
A tensor with shape (num_labels, timesteps, timesteps)
containing the energy of each edge. If has_labels is ``False``,
the tensor should have shape (timesteps, timesteps) instead.
length : ``int``, required.
The length of this sequence, as the energy may have come
from a padded batch.
has_labels : ``bool``, optional, (default = True)
Whether the graph has labels or not.
"""
if has_labels and energy.ndim != 3:
raise ConfigurationError("The dimension of the energy array is not equal to 3.")
elif not has_labels and energy.ndim != 2:
raise ConfigurationError("The dimension of the energy array is not equal to 2.")
input_shape = energy.shape
max_length = input_shape[-1]
# Our energy matrix might have been batched -
# here we clip it to contain only non padded tokens.
if has_labels:
energy = energy[:, :length, :length]
# get best label for each edge.
label_id_matrix = energy.argmax(axis=0)
energy = energy.max(axis=0)
else:
energy = energy[:length, :length]
label_id_matrix = None
# get original score matrix
original_score_matrix = energy
# initialize score matrix to original score matrix
score_matrix = numpy.array(original_score_matrix, copy=True)
old_input = numpy.zeros([length, length], dtype=numpy.int32)
old_output = numpy.zeros([length, length], dtype=numpy.int32)
current_nodes = [True for _ in range(length)]
representatives: List[Set[int]] = []
for node1 in range(length):
original_score_matrix[node1, node1] = 0.0
score_matrix[node1, node1] = 0.0
representatives.append({node1})
for node2 in range(node1 + 1, length):
old_input[node1, node2] = node1
old_output[node1, node2] = node2
old_input[node2, node1] = node2
old_output[node2, node1] = node1
final_edges: Dict[int, int] = {}
# The main algorithm operates inplace.
chu_liu_edmonds(length, score_matrix, current_nodes,
final_edges, old_input, old_output, representatives)
heads = numpy.zeros([max_length], numpy.int32)
if has_labels:
head_type = numpy.ones([max_length], numpy.int32)
else:
head_type = None
for child, parent in final_edges.items():
heads[child] = parent
if has_labels:
head_type[child] = label_id_matrix[parent, child]
return heads, head_type
def chu_liu_edmonds(length: int,
score_matrix: numpy.ndarray,
current_nodes: List[bool],
final_edges: Dict[int, int],
old_input: numpy.ndarray,
old_output: numpy.ndarray,
representatives: List[Set[int]]):
"""
Applies the chu-liu-edmonds algorithm recursively
to a graph with edge weights defined by score_matrix.
Note that this function operates in place, so variables
will be modified.
Parameters
----------
length : ``int``, required.
The number of nodes.
score_matrix : ``numpy.ndarray``, required.
The score matrix representing the scores for pairs
of nodes.
current_nodes : ``List[bool]``, required.
The nodes which are representatives in the graph.
A representative at it's most basic represents a node,
but as the algorithm progresses, individual nodes will
represent collapsed cycles in the graph.
final_edges: ``Dict[int, int]``, required.
An empty dictionary which will be populated with the
nodes which are connected in the maximum spanning tree.
old_input: ``numpy.ndarray``, required.
a map from an edge to its head node.
Key: The edge is a tuple, and elements in a tuple
could be a node or a representative of a cycle.
old_output: ``numpy.ndarray``, required.
representatives : ``List[Set[int]]``, required.
A list containing the nodes that a particular node
is representing at this iteration in the graph.
Returns
-------
Nothing - all variables are modified in place.
"""
# Set the initial graph to be the greedy best one.
# Node '0' is always the root node.
parents = [-1]
for node1 in range(1, length):
# Init the parent of each node to be the root node.
parents.append(0)
if current_nodes[node1]:
# If the node is a representative,
# find the max outgoing edge to other non-root representative,
# and update its parent.
max_score = score_matrix[0, node1]
for node2 in range(1, length):
if node2 == node1 or not current_nodes[node2]:
continue
new_score = score_matrix[node2, node1]
if new_score > max_score:
max_score = new_score
parents[node1] = node2
# Check if this solution has a cycle.
has_cycle, cycle = _find_cycle(parents, length, current_nodes)
# If there are no cycles, find all edges and return.
if not has_cycle:
final_edges[0] = -1
for node in range(1, length):
if not current_nodes[node]:
continue
parent = old_input[parents[node], node]
child = old_output[parents[node], node]
final_edges[child] = parent
return
# Otherwise, we have a cycle so we need to remove an edge.
# From here until the recursive call is the contraction stage of the algorithm.
cycle_weight = 0.0
# Find the weight of the cycle.
index = 0
for node in cycle:
index += 1
cycle_weight += score_matrix[parents[node], node]
# For each node in the graph, find the maximum weight incoming
# and outgoing edge into the cycle.
cycle_representative = cycle[0]
for node in range(length):
# Nodes not in the cycle.
if not current_nodes[node] or node in cycle:
continue
in_edge_weight = float("-inf")
in_edge = -1
out_edge_weight = float("-inf")
out_edge = -1
for node_in_cycle in cycle:
if score_matrix[node_in_cycle, node] > in_edge_weight:
in_edge_weight = score_matrix[node_in_cycle, node]
in_edge = node_in_cycle
# Add the new edge score to the cycle weight
# and subtract the edge we're considering removing.
score = (cycle_weight +
score_matrix[node, node_in_cycle] -
score_matrix[parents[node_in_cycle], node_in_cycle])
if score > out_edge_weight:
out_edge_weight = score
out_edge = node_in_cycle
score_matrix[cycle_representative, node] = in_edge_weight
old_input[cycle_representative, node] = old_input[in_edge, node]
old_output[cycle_representative, node] = old_output[in_edge, node]
score_matrix[node, cycle_representative] = out_edge_weight
old_output[node, cycle_representative] = old_output[node, out_edge]
old_input[node, cycle_representative] = old_input[node, out_edge]
# For the next recursive iteration, we want to consider the cycle as a
# single node. Here we collapse the cycle into the first node in the
# cycle (first node is arbitrary), set all the other nodes not be
# considered in the next iteration. We also keep track of which
# representatives we are considering this iteration because we need
# them below to check if we're done.
considered_representatives: List[Set[int]] = []
for i, node_in_cycle in enumerate(cycle):
considered_representatives.append(set())
if i > 0:
# We need to consider at least one
# node in the cycle, arbitrarily choose
# the first.
current_nodes[node_in_cycle] = False
for node in representatives[node_in_cycle]:
considered_representatives[i].add(node)
if i > 0:
representatives[cycle_representative].add(node)
chu_liu_edmonds(length, score_matrix, current_nodes, final_edges, old_input, old_output, representatives)
# Expansion stage.
# check each node in cycle, if one of its representatives
# is a key in the final_edges, it is the one we need.
# The node we are looking for is the node which is the child
# of the incoming edge to the cycle.
found = False
key_node = -1
for i, node in enumerate(cycle):
for cycle_rep in considered_representatives[i]:
if cycle_rep in final_edges:
key_node = node
found = True
break
if found:
break
# break the cycle.
previous = parents[key_node]
while previous != key_node:
child = old_output[parents[previous], previous]
parent = old_input[parents[previous], previous]
final_edges[child] = parent
previous = parents[previous]
def _find_cycle(parents: List[int],
length: int,
current_nodes: List[bool]) -> Tuple[bool, List[int]]:
"""
:return:
has_cycle: whether the graph has at least a cycle.
cycle: a list of nodes which form a cycle in the graph.
"""
# 'added' means that the node has been visited.
added = [False for _ in range(length)]
added[0] = True
cycle = set()
has_cycle = False
for i in range(1, length):
if has_cycle:
break
# don't redo nodes we've already
# visited or aren't considering.
if added[i] or not current_nodes[i]:
continue
# Initialize a new possible cycle.
this_cycle = set()
this_cycle.add(i)
added[i] = True
has_cycle = True
next_node = i
while parents[next_node] not in this_cycle:
next_node = parents[next_node]
# If we see a node we've already processed,
# we can stop, because the node we are
# processing would have been in that cycle.
# Note that in the first pass of the for loop,
# every node except that the root has been assigned
# a head, if there's no cycle, the while loop
# will finally arrive at the root
if added[next_node]:
has_cycle = False
break
added[next_node] = True
this_cycle.add(next_node)
if has_cycle:
original = next_node
cycle.add(original)
next_node = parents[original]
while next_node != original:
cycle.add(next_node)
next_node = parents[next_node]
break
return has_cycle, list(cycle)
def decode_mst_with_coreference(
energy: numpy.ndarray,
coreference: List[int],
length: int,
has_labels: bool = True) -> Tuple[numpy.ndarray, numpy.ndarray]:
"""
Note: Counter to typical intuition, this function decodes the _maximum_
spanning tree.
Decode the optimal MST tree with the Chu-Liu-Edmonds algorithm for
maximum spanning arboresences on graphs.
Parameters
----------
energy : ``numpy.ndarray``, required.
A tensor with shape (num_labels, timesteps, timesteps)
containing the energy of each edge. If has_labels is ``False``,
the tensor should have shape (timesteps, timesteps) instead.
coreference: ``List[int]``, required.
A list which maps a node to its first precedent.
length : ``int``, required.
The length of this sequence, as the energy may have come
from a padded batch.
has_labels : ``bool``, optional, (default = True)
Whether the graph has labels or not.
"""
if has_labels and energy.ndim != 3:
raise ConfigurationError("The dimension of the energy array is not equal to 3.")
elif not has_labels and energy.ndim != 2:
raise ConfigurationError("The dimension of the energy array is not equal to 2.")
input_shape = energy.shape
max_length = input_shape[-1]
# Our energy matrix might have been batched -
# here we clip it to contain only non padded tokens.
if has_labels:
energy = energy[:, :length, :length]
# get best label for each edge.
label_id_matrix = energy.argmax(axis=0)
energy = energy.max(axis=0)
else:
energy = energy[:length, :length]
label_id_matrix = None
# get original score matrix
original_score_matrix = energy
# initialize score matrix to original score matrix
score_matrix = numpy.array(original_score_matrix, copy=True)
old_input = numpy.zeros([length, length], dtype=numpy.int32)
old_output = numpy.zeros([length, length], dtype=numpy.int32)
current_nodes = [True for _ in range(length)]
representatives: List[Set[int]] = []
for node1 in range(length):
original_score_matrix[node1, node1] = 0.0
score_matrix[node1, node1] = 0.0
representatives.append({node1})
for node2 in range(node1 + 1, length):
old_input[node1, node2] = node1
old_output[node1, node2] = node2
old_input[node2, node1] = node2
old_output[node2, node1] = node1
final_edges: Dict[int, int] = {}
# The main algorithm operates inplace.
adapted_chu_liu_edmonds(
length, score_matrix, coreference, current_nodes,
final_edges, old_input, old_output, representatives)
# Modify edges which are invalid according to coreference.
_validate(final_edges, length, original_score_matrix, coreference)
heads = numpy.zeros([max_length], numpy.int32)
if has_labels:
head_type = numpy.ones([max_length], numpy.int32)
else:
head_type = None
for child, parent in final_edges.items():
heads[child] = parent
if has_labels:
head_type[child] = label_id_matrix[parent, child]
return heads, head_type
def adapted_chu_liu_edmonds(length: int,
score_matrix: numpy.ndarray,
coreference: List[int],
current_nodes: List[bool],
final_edges: Dict[int, int],
old_input: numpy.ndarray,
old_output: numpy.ndarray,
representatives: List[Set[int]]):
"""
Applies the chu-liu-edmonds algorithm recursively
to a graph with edge weights defined by score_matrix.
Note that this function operates in place, so variables
will be modified.
Parameters
----------
length : ``int``, required.
The number of nodes.
score_matrix : ``numpy.ndarray``, required.
The score matrix representing the scores for pairs
of nodes.
coreference: ``List[int]``, required.
A list which maps a node to its first precedent.
current_nodes : ``List[bool]``, required.
The nodes which are representatives in the graph.
A representative at it's most basic represents a node,
but as the algorithm progresses, individual nodes will
represent collapsed cycles in the graph.
final_edges: ``Dict[int, int]``, required.
An empty dictionary which will be populated with the
nodes which are connected in the maximum spanning tree.
old_input: ``numpy.ndarray``, required.
a map from an edge to its head node.
Key: The edge is a tuple, and elements in a tuple
could be a node or a representative of a cycle.
old_output: ``numpy.ndarray``, required.
representatives : ``List[Set[int]]``, required.
A list containing the nodes that a particular node
is representing at this iteration in the graph.
Returns
-------
Nothing - all variables are modified in place.
"""
# Set the initial graph to be the greedy best one.
# Node '0' is always the root node.
parents = [-1]
for node1 in range(1, length):
# Init the parent of each node to be the root node.
parents.append(0)
if current_nodes[node1]:
# If the node is a representative,
# find the max outgoing edge to other non-root representative,
# and update its parent.
max_score = score_matrix[0, node1]
for node2 in range(1, length):
if node2 == node1 or not current_nodes[node2]:
continue
# Exclude edges formed by two coreferred nodes
_parent = old_input[node1, node2]
_child = old_output[node1, node2]
if coreference[_parent] == coreference[_child]:
continue
new_score = score_matrix[node2, node1]
if new_score > max_score:
max_score = new_score
parents[node1] = node2
# Check if this solution has a cycle.
has_cycle, cycle = _find_cycle(parents, length, current_nodes)
# If there are no cycles, find all edges and return.
if not has_cycle:
final_edges[0] = -1
for node in range(1, length):
if not current_nodes[node]:
continue
parent = old_input[parents[node], node]
child = old_output[parents[node], node]
final_edges[child] = parent
return
# Otherwise, we have a cycle so we need to remove an edge.
# From here until the recursive call is the contraction stage of the algorithm.
cycle_weight = 0.0
# Find the weight of the cycle.
index = 0
for node in cycle:
index += 1
cycle_weight += score_matrix[parents[node], node]
# For each node in the graph, find the maximum weight incoming
# and outgoing edge into the cycle.
cycle_representative = cycle[0]
for node in range(length):
# Nodes not in the cycle.
if not current_nodes[node] or node in cycle:
continue
in_edge_weight = float("-inf")
in_edge = -1
out_edge_weight = float("-inf")
out_edge = -1
for node_in_cycle in cycle:
# Exclude edges formed by two coreferred nodes.
_parent = old_input[node_in_cycle, node]
_child = old_output[node_in_cycle, node]
if coreference[_parent] != coreference[_child]:
if score_matrix[node_in_cycle, node] > in_edge_weight:
in_edge_weight = score_matrix[node_in_cycle, node]
in_edge = node_in_cycle
# Exclude edges formed by two coreferred nodes.
_parent = old_input[node, node_in_cycle]
_child = old_output[node, node_in_cycle]
if coreference[_parent] != coreference[_child]:
# Add the new edge score to the cycle weight
# and subtract the edge we're considering removing.
score = (cycle_weight +
score_matrix[node, node_in_cycle] -
score_matrix[parents[node_in_cycle], node_in_cycle])
if score > out_edge_weight:
out_edge_weight = score
out_edge = node_in_cycle
score_matrix[cycle_representative, node] = in_edge_weight
old_input[cycle_representative, node] = old_input[in_edge, node]
old_output[cycle_representative, node] = old_output[in_edge, node]
score_matrix[node, cycle_representative] = out_edge_weight
old_output[node, cycle_representative] = old_output[node, out_edge]
old_input[node, cycle_representative] = old_input[node, out_edge]
# For the next recursive iteration, we want to consider the cycle as a
# single node. Here we collapse the cycle into the first node in the
# cycle (first node is arbitrary), set all the other nodes not be
# considered in the next iteration. We also keep track of which
# representatives we are considering this iteration because we need
# them below to check if we're done.
considered_representatives: List[Set[int]] = []
for i, node_in_cycle in enumerate(cycle):
considered_representatives.append(set())
if i > 0:
# We need to consider at least one
# node in the cycle, arbitrarily choose
# the first.
current_nodes[node_in_cycle] = False
for node in representatives[node_in_cycle]:
considered_representatives[i].add(node)
if i > 0:
representatives[cycle_representative].add(node)
adapted_chu_liu_edmonds(length, score_matrix, coreference, current_nodes, final_edges, old_input, old_output, representatives)
# Expansion stage.
# check each node in cycle, if one of its representatives
# is a key in the final_edges, it is the one we need.
# The node we are looking for is the node which is the child
# of the incoming edge to the cycle.
found = False
key_node = -1
for i, node in enumerate(cycle):
for cycle_rep in considered_representatives[i]:
if cycle_rep in final_edges:
key_node = node
found = True
break
if found:
break
# break the cycle.
previous = parents[key_node]
while previous != key_node:
child = old_output[parents[previous], previous]
parent = old_input[parents[previous], previous]
final_edges[child] = parent
previous = parents[previous]
def _validate(final_edges, length, original_score_matrix, coreference):
# Count how many edges have been modified by this function.
modified = 0
# Make a constant used by _find_cycle.
current_nodes = [True for _ in range(length)]
# Group nodes by coreference.
group_by_precedent = {}
for node, precedent in enumerate(coreference):
if precedent not in group_by_precedent:
group_by_precedent[precedent] = []
group_by_precedent[precedent].append(node)
# Validate parents of nodes in each group.
for group in group_by_precedent.values():
# Skip if only one node in the group.
if len(group) == 1:
continue
# Group conflicting nodes by parent.
conflicts_by_parent = {}
for child in group:
parent = final_edges[child]
if parent not in conflicts_by_parent:
conflicts_by_parent[parent] = []
conflicts_by_parent[parent].append(child)
# Keep the parents which have already been taken.
reserved_parents = set(conflicts_by_parent.keys())
for parent, conflicts in conflicts_by_parent.items():
# Skip if no conflict.
if len(conflicts) == 1:
continue
# Find the node that has the maximum edge with the parent.
winner = max(conflicts, key=lambda _child: original_score_matrix[parent, _child])
# Modify other nodes' parents.
for child in conflicts:
# Skip the winner.
if child == winner:
continue
# Sort its candidate parents by score.
parent_scores = original_score_matrix[:, child]
for _parent in | numpy.argsort(parent_scores) | numpy.argsort |
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 5 01:34:00 2021
@author: yrc2
"""
import biosteam as bst
import biorefineries.oilcane as oc
from biosteam.utils import CABBI_colors, colors
from thermosteam.utils import set_figure_size, set_font, roundsigfigs
from thermosteam.units_of_measure import format_units
from colorpalette import Palette
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from warnings import warn
import numpy as np
import pandas as pd
from matplotlib.gridspec import GridSpec
from . import _variable_mockups as variables
from ._variable_mockups import (
tea_monte_carlo_metric_mockups,
tea_monte_carlo_derivative_metric_mockups,
lca_monte_carlo_metric_mockups,
lca_monte_carlo_derivative_metric_mockups,
MFPP, TCI, electricity_production, natural_gas_consumption,
ethanol_production, biodiesel_production,
GWP_ethanol, GWP_biodiesel, GWP_electricity,
GWP_ethanol_allocation, GWP_biodiesel_allocation,
GWP_economic, MFPP_derivative,
TCI_derivative,
ethanol_production_derivative,
biodiesel_production_derivative,
electricity_production_derivative,
natural_gas_consumption_derivative,
GWP_ethanol_derivative,
)
from ._load_data import (
images_folder,
get_monte_carlo,
spearman_file,
)
import os
from._parse_configuration import format_name
__all__ = (
'plot_all',
'plot_montecarlo_main_manuscript',
'plot_breakdowns',
'plot_montecarlo_feedstock_comparison',
'plot_montecarlo_configuration_comparison',
'plot_montecarlo_agile_comparison',
'plot_montecarlo_derivative',
'plot_montecarlo_absolute',
'plot_spearman_tea',
'plot_spearman_lca',
'plot_spearman_tea_short',
'plot_spearman_lca_short',
'plot_monte_carlo_across_coordinate',
'monte_carlo_box_plot',
'plot_monte_carlo',
'plot_spearman',
'plot_configuration_breakdown',
'plot_TCI_areas_across_oil_content',
'plot_heatmap_comparison',
'plot_feedstock_conventional_comparison_kde',
'plot_feedstock_cellulosic_comparison_kde',
'plot_configuration_comparison_kde',
'plot_open_comparison_kde',
'plot_feedstock_comparison_kde',
'plot_crude_configuration_comparison_kde',
'plot_agile_comparison_kde',
'plot_separated_configuration_comparison_kde',
'area_colors',
'area_hatches',
)
area_colors = {
'Feedstock handling': CABBI_colors.teal,
'Juicing': CABBI_colors.green_dirty,
'EtOH prod.': CABBI_colors.blue,
'Ethanol production': CABBI_colors.blue,
'Oil ext.': CABBI_colors.brown,
'Oil extraction': CABBI_colors.brown,
'Biod. prod.': CABBI_colors.orange,
'Biodiesel production': CABBI_colors.orange,
'Pretreatment': CABBI_colors.green,
'Wastewater treatment': colors.purple,
'CH&P': CABBI_colors.yellow,
'Co-Heat and Power': CABBI_colors.yellow,
'Utilities': colors.red,
'Storage': CABBI_colors.grey,
'HXN': colors.orange,
'Heat exchanger network': colors.orange,
}
area_hatches = {
'Feedstock handling': 'x',
'Juicing': '-',
'EtOH prod.': '/',
'Ethanol production': '/',
'Oil ext.': '\\',
'Oil extraction': '\\',
'Biod. prod.': '/|',
'Biodiesel production': '/|',
'Pretreatment': '//',
'Wastewater treatment': r'\\',
'CH&P': '',
'Co-Heat and Power': '',
'Utilities': '\\|',
'Storage': '',
'HXN': '+',
'Heat exchanger network': '+',
}
for i in area_colors: area_colors[i] = area_colors[i].tint(20)
palette = Palette(**area_colors)
letter_color = colors.neutral.shade(25).RGBn
GWP_units_L = '$\\mathrm{kg} \\cdot \\mathrm{CO}_{2}\\mathrm{eq} \\cdot \\mathrm{L}^{-1}$'
GWP_units_L_small = GWP_units_L.replace('kg', 'g')
CABBI_colors.orange_hatch = CABBI_colors.orange.copy(hatch='////')
ethanol_over_biodiesel = bst.MockVariable('Ethanol over biodiesel', 'L/MT', 'Biorefinery')
GWP_ethanol_displacement = variables.GWP_ethanol_displacement
production = (ethanol_production, biodiesel_production)
mc_metric_settings = {
'MFPP': (MFPP, f"MFPP\n[{format_units('USD/MT')}]", None),
'TCI': (TCI, f"TCI\n[{format_units('10^6*USD')}]", None),
'production': (production, f"Production\n[{format_units('L/MT')}]", None),
'electricity_production': (electricity_production, f"Elec. prod.\n[{format_units('kWhr/MT')}]", None),
'natural_gas_consumption': (natural_gas_consumption, f"NG cons.\n[{format_units('m^3/MT')}]", None),
'GWP_ethanol_displacement': (GWP_ethanol_displacement, "GWP$_{\\mathrm{displacement}}$" f"\n[{GWP_units_L}]", None),
'GWP_economic': ((GWP_ethanol, GWP_biodiesel), "GWP$_{\\mathrm{economic}}$" f"\n[{GWP_units_L}]", None),
'GWP_energy': ((GWP_ethanol_allocation, GWP_biodiesel_allocation), "GWP$_{\\mathrm{energy}}$" f"\n[{GWP_units_L}]", None),
}
mc_comparison_settings = {
'MFPP': (MFPP, r"$\Delta$" + f"MFPP\n[{format_units('USD/MT')}]", None),
'TCI': (TCI, r"$\Delta$" + f"TCI\n[{format_units('10^6*USD')}]", None),
'production': (production, r"$\Delta$" + f"Production\n[{format_units('L/MT')}]", None),
'electricity_production': (electricity_production, r"$\Delta$" + f"Elec. prod.\n[{format_units('kWhr/MT')}]", None),
'natural_gas_consumption': (natural_gas_consumption, r"$\Delta$" + f"NG cons.\n[{format_units('m^3/MT')}]", None),
'GWP_ethanol_displacement': (GWP_ethanol_displacement, r"$\Delta$" + "GWP$_{\\mathrm{displacement}}$" f"\n[{GWP_units_L}]", None),
'GWP_economic': (GWP_ethanol, r"$\Delta$" + "GWP$_{\\mathrm{economic}}$" f"\n[{GWP_units_L}]", None),
'GWP_energy': (GWP_ethanol_allocation, r"$\Delta$" + "GWP$_{\\mathrm{energy}}$" f"\n[{GWP_units_L}]", None),
'GWP_property_allocation': ((GWP_ethanol, GWP_ethanol_allocation), r"$\Delta$" + f"GWP\n[{GWP_units_L}]", None),
}
mc_derivative_metric_settings = {
'MFPP': (MFPP_derivative, r"$\Delta$" + format_units(r"MFPP/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('USD/MT')}]", None),
'TCI': (TCI_derivative, r"$\Delta$" + format_units(r"TCI/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('10^6*USD')}]", None),
'production': ((ethanol_production_derivative, biodiesel_production_derivative), r"$\Delta$" + format_units(r"Prod./OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('L/MT')}]", None),
'electricity_production': (electricity_production_derivative, r"$\Delta$" + format_units(r"EP/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('kWhr/MT')}]", None),
'natural_gas_consumption': (natural_gas_consumption_derivative, r"$\Delta$" + format_units(r"NGC/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('m^3/MT')}]", None),
'GWP_economic': (GWP_ethanol_derivative, r"$\Delta$" + r"GWP $\cdot \Delta \mathrm{OC}^{-1}$" f"\n[{GWP_units_L_small}]", 1000),
}
kde_metric_settings = {j[0]: j for j in mc_metric_settings.values()}
kde_comparison_settings = {j[0]: j for j in mc_comparison_settings.values()}
kde_derivative_settings = {j[0]: j for j in mc_derivative_metric_settings.values()}
# %% Plots for publication
def plot_all():
# plot_montecarlo_main_manuscript()
plot_montecarlo_absolute()
plot_spearman_tea()
plot_spearman_lca()
plot_breakdowns()
def plot_montecarlo_main_manuscript():
set_font(size=8)
set_figure_size(aspect_ratio=0.85)
fig = plt.figure()
everything = GridSpec(4, 3, fig, hspace=1.5, wspace=0.7,
top=0.90, bottom=0.05,
left=0.11, right=0.97)
def spec2axes(spec, x, y, hspace=0, wspace=0.7, **kwargs):
subspec = spec.subgridspec(x, y, hspace=hspace, wspace=wspace, **kwargs)
return np.array([[fig.add_subplot(subspec[i, j]) for j in range(y)] for i in range(x)], object)
gs_feedstock_comparison = everything[:2, :]
gs_configuration_comparison = everything[2:, :2]
gs_agile_comparison = everything[2:, 2]
axes_feedstock_comparison = spec2axes(gs_feedstock_comparison, 2, 3)
axes_configuration_comparison = spec2axes(gs_configuration_comparison, 2, 2)
axes_agile_comparison = spec2axes(gs_agile_comparison, 2, 1)
plot_montecarlo_feedstock_comparison(axes_feedstock_comparison, letters='ABCDEFG')
plot_montecarlo_configuration_comparison(axes_configuration_comparison, letters='ABCDEFG')
plot_montecarlo_agile_comparison(axes_agile_comparison, letters='ABCDEFG')
def add_title(gs, title):
ax = fig.add_subplot(gs)
ax._frameon = False
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.set_title(
title, color=letter_color,
horizontalalignment='center',verticalalignment='center',
fontsize=12, fontweight='bold', y=1.1
)
add_title(gs_feedstock_comparison, '(I) Impact of opting to process oilcane over sugarcane')
add_title(gs_configuration_comparison, '(II) Impact of cellulosic ethanol integration')
add_title(gs_agile_comparison, '(III) Impact of\noilsorghum\nintegration')
plt.show()
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'montecarlo_main_manuscript.{i}')
plt.savefig(file, transparent=True)
def plot_montecarlo_feedstock_comparison(axes_box=None, letters=None,
single_column=True):
if single_column:
width = 'half'
aspect_ratio = 2.25
ncols = 1
left = 0.255
bottom = 0.05
else:
width = None
aspect_ratio = 0.75
left = 0.105
bottom = 0.12
ncols = 3
if axes_box is None:
set_font(size=8)
set_figure_size(width=width, aspect_ratio=aspect_ratio)
fig, axes = plot_monte_carlo(
derivative=False, absolute=False, comparison=True,
tickmarks=None, agile=False, ncols=ncols, axes_box=axes_box,
labels=[
'Direct Cogeneration',
'Integrated Co-Fermentation',
# 'Direct Cogeneration',
# 'Integrated Co-Fermentation',
],
comparison_names=['O1 - S1', 'O2 - S2'],
metrics = ['MFPP', 'TCI', 'production', 'GWP_property_allocation',
'natural_gas_consumption', 'electricity_production'],
color_wheel = CABBI_colors.wheel([
'blue_light', 'green_dirty', 'orange', 'green',
'orange', 'orange_hatch', 'grey', 'brown',
])
)
for ax, letter in zip(axes, 'ABCDEFGH' if letters is None else letters):
plt.sca(ax)
ylb, yub = plt.ylim()
plt.text(1.65, ylb + (yub - ylb) * 0.90, letter, color=letter_color,
horizontalalignment='center',verticalalignment='center',
fontsize=12, fontweight='bold')
# if axes_box is None and letter in 'DH':
# x = 0.5
# plt.text(x, ylb - (yub - ylb) * 0.3,
# 'Impact of processing\noilcane over sugarcane',
# horizontalalignment='center',verticalalignment='center',
# fontsize=8)
if axes_box is None:
plt.subplots_adjust(right=0.96, left=left, wspace=0.38, top=0.98, bottom=bottom)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'montecarlo_feedstock_comparison.{i}')
plt.savefig(file, transparent=True)
def plot_montecarlo_configuration_comparison(axes_box=None, letters=None,
single_column=True):
if single_column:
width = 'half'
aspect_ratio = 2.25
ncols = 1
left = 0.255
bottom = 0.05
x = 1.65
metrics= ['MFPP', 'TCI', 'production', 'GWP_property_allocation',
'natural_gas_consumption', 'electricity_production']
else:
width = None
aspect_ratio = 0.75
left = 0.105
bottom = 0.12
ncols = 2
x = 0.58
metrics= ['MFPP', 'TCI', 'production', 'GWP_property_allocation']
if axes_box is None:
set_font(size=8)
set_figure_size(width=width, aspect_ratio=aspect_ratio)
fig, axes = plot_monte_carlo(
derivative=False, absolute=False, comparison=True,
tickmarks=None, agile=False, ncols=ncols, axes_box=axes_box,
labels=[
'Oilcane',
# 'Sugarcane',
],
comparison_names=[
'O2 - O1',
# 'S2 - S1'
],
metrics=metrics,
color_wheel = CABBI_colors.wheel([
'blue_light', 'green_dirty', 'orange', 'green',
'orange', 'orange_hatch',
])
)
for ax, letter in zip(axes, 'ABCDEF' if letters is None else letters):
plt.sca(ax)
ylb, yub = plt.ylim()
plt.text(x, ylb + (yub - ylb) * 0.90, letter, color=letter_color,
horizontalalignment='center',verticalalignment='center',
fontsize=12, fontweight='bold')
if axes_box is None:
plt.subplots_adjust(right=0.96, left=left, wspace=0.38, top=0.98, bottom=bottom)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'montecarlo_configuration_comparison.{i}')
plt.savefig(file, transparent=True)
def plot_montecarlo_agile_comparison(axes_box=None, letters=None):
if axes_box is None:
set_font(size=8)
set_figure_size(width=3.3071, aspect_ratio=1.0)
fig, axes = plot_monte_carlo(
derivative=False, absolute=False, comparison=True,
tickmarks=None, agile_only=True, ncols=1,
labels=[
'Direct Cogeneration',
'Integrated Co-Fermentation'
],
metrics=['MFPP', 'TCI'],
axes_box=axes_box,
)
for ax, letter in zip(axes, 'AB' if letters is None else letters):
plt.sca(ax)
ylb, yub = plt.ylim()
plt.text(1.65, ylb + (yub - ylb) * 0.90, letter, color=letter_color,
horizontalalignment='center',verticalalignment='center',
fontsize=12, fontweight='bold')
if axes_box is None and letter == 'B':
plt.text(0.5, ylb - (yub - ylb) * 0.25,
'Impact of integrating oilsorghum\nat an agile oilcane biorefinery',
horizontalalignment='center',verticalalignment='center',
fontsize=8)
if axes_box is None:
plt.subplots_adjust(right=0.9, left=0.2, wspace=0.5, top=0.98, bottom=0.15)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'montecarlo_agile_comparison.{i}')
plt.savefig(file, transparent=True)
def plot_montecarlo_derivative():
set_font(size=8)
set_figure_size(
aspect_ratio=0.5,
# width=3.3071, aspect_ratio=1.85
)
fig, axes = plot_monte_carlo(
derivative=True, absolute=True,
comparison=False, agile=False,
ncols=3,
# tickmarks=np.array([
# [-3, -2, -1, 0, 1, 2, 3, 4, 5],
# [-9, -6, -3, 0, 3, 6, 9, 12, 15],
# [-2.0, -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5, 2],
# [-16, -8, 0, 8, 16, 24, 32, 40, 48],
# [-400, -300, -200, -100, 0, 100, 200, 300, 400],
# [-300, -225, -150, -75, 0, 75, 150, 225, 300]
# ], dtype=object),
labels=['DC', 'ICF'],
color_wheel = CABBI_colors.wheel([
'blue_light', 'green_dirty', 'orange', 'green', 'grey', 'brown',
'orange',
])
)
for ax, letter in zip(axes, 'ABCDEFGH'):
plt.sca(ax)
ylb, yub = plt.ylim()
plt.text(1.65, ylb + (yub - ylb) * 0.90, letter, color=letter_color,
horizontalalignment='center',verticalalignment='center',
fontsize=12, fontweight='bold')
plt.subplots_adjust(
hspace=0, wspace=0.7,
top=0.95, bottom=0.1,
left=0.12, right=0.96
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'montecarlo_derivative.{i}')
plt.savefig(file, transparent=True)
def plot_montecarlo_absolute():
set_font(size=8)
set_figure_size(aspect_ratio=1.05)
fig, axes = plot_monte_carlo(
absolute=True, comparison=False, ncols=2,
expand=0.1,
labels=['Sugarcane\nDC', 'Oilcane\nDC',
'Sugarcane\nICF', 'Oilcane\nICF',
'Sugarcane &\nSorghum DC', 'Oilcane &\nOil-sorghum DC',
'Sugarcane &\nSorghum ICF', 'Oilcane &\nOil-sorghum ICF'],
xrot=90,
color_wheel = CABBI_colors.wheel([
'blue_light', 'green_dirty', 'orange', 'green', 'grey', 'brown',
'orange', 'orange', 'green', 'orange', 'green',
])
)
for ax, letter in zip(axes, 'ABCDEFGHIJ'):
plt.sca(ax)
ylb, yub = plt.ylim()
plt.text(7.8, ylb + (yub - ylb) * 0.92, letter, color=letter_color,
horizontalalignment='center',verticalalignment='center',
fontsize=12, fontweight='bold')
plt.subplots_adjust(left=0.12, right=0.95, wspace=0.40, top=0.98, bottom=0.2)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'montecarlo_absolute.{i}')
plt.savefig(file, transparent=True)
def plot_spearman_tea(with_units=None, aspect_ratio=0.8, **kwargs):
set_font(size=8)
set_figure_size(aspect_ratio=aspect_ratio)
plot_spearman(
configurations=[
'O1', 'O1*',
'O2', 'O2*',
],
labels=[
'DC', 'Oil-sorghum int., DC',
'ICF', 'Oil-sorghum int., ICF',
],
kind='TEA',
with_units=with_units,
cutoff=0.03,
**kwargs
)
plt.subplots_adjust(left=0.45, right=0.975, top=0.98, bottom=0.08)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'spearman_tea.{i}')
plt.savefig(file, transparent=True)
def plot_spearman_tea_short(**kwargs):
set_font(size=8)
set_figure_size(aspect_ratio=0.65, width=6.6142 * 2/3)
plot_spearman(
configurations=[
'O1',
'O2',
],
labels=[
'DC',
'ICF',
],
kind='TEA',
with_units=False,
cutoff=0.03,
top=5,
legend=True,
legend_kwargs={'loc': 'upper left'},
**kwargs
)
plt.subplots_adjust(left=0.35, right=0.975, top=0.98, bottom=0.15)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'spearman_tea.{i}')
plt.savefig(file, transparent=True)
def plot_spearman_lca_short(with_units=False, aspect_ratio=0.65, **kwargs):
set_font(size=8)
set_figure_size(aspect_ratio=aspect_ratio, width=6.6142 * 2/3)
plot_spearman(
configurations=[
'O1',
'O2',
],
labels=[
'DC',
'ICF',
],
kind='LCA',
with_units=with_units,
cutoff=0.03,
top=5,
legend=False,
**kwargs
)
plt.subplots_adjust(left=0.35, right=0.975, top=0.98, bottom=0.15)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'spearman_lca.{i}')
plt.savefig(file, transparent=True)
def plot_spearman_lca(with_units=None, aspect_ratio=0.65, **kwargs):
set_font(size=8)
set_figure_size(aspect_ratio=aspect_ratio)
plot_spearman(
configurations=[
'O1', 'O1*',
'O2', 'O2*',
],
labels=[
'DC', 'Oil-sorghum int., DC',
'ICF', 'Oil-sorghum int., ICF',
],
kind='LCA',
with_units=with_units,
cutoff=0.03,
**kwargs
)
plt.subplots_adjust(left=0.45, right=0.975, top=0.98, bottom=0.10)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'spearman_lca.{i}')
plt.savefig(file, transparent=True)
def plot_breakdowns():
set_font(size=8)
set_figure_size(aspect_ratio=0.68)
fig, axes = plt.subplots(nrows=1, ncols=2)
plt.sca(axes[0])
plot_configuration_breakdown('O1', ax=axes[0], legend=False)
plt.sca(axes[1])
plot_configuration_breakdown('O2', ax=axes[1], legend=True)
yticks = axes[1].get_yticks()
plt.yticks(yticks, ['']*len(yticks))
plt.ylabel('')
plt.subplots_adjust(left=0.09, right=0.96, wspace=0., top=0.84, bottom=0.31)
for ax, letter in zip(axes, ['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation']):
plt.sca(ax)
ylb, yub = plt.ylim()
xlb, xub = plt.xlim()
plt.text((xlb + xub) * 0.5, ylb + (yub - ylb) * 1.2, letter, color=letter_color,
horizontalalignment='center',verticalalignment='center',
fontsize=12, fontweight='bold')
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'breakdowns.{i}')
plt.savefig(file, transparent=True)
# %% Heatmap
def get_fraction_in_same_direction(data, direction):
return (direction * data >= 0.).sum(axis=0) / data.size
def get_median(data):
return roundsigfigs(np.percentile(data, 50, axis=0))
def plot_heatmap_comparison(comparison_names=None, xlabels=None):
if comparison_names is None: comparison_names = oc.comparison_names
columns = comparison_names
if xlabels is None: xlabels = [format_name(i).replace(' ', '') for i in comparison_names]
def get_data(metric, name):
df = get_monte_carlo(name, metric)
values = df.values
return values
GWP_economic, GWP_ethanol, GWP_biodiesel, GWP_electricity, GWP_crude_glycerol, = lca_monte_carlo_metric_mockups
MFPP, TCI, ethanol_production, biodiesel_production, electricity_production, natural_gas_consumption = tea_monte_carlo_metric_mockups
GWP_ethanol_displacement = variables.GWP_ethanol_displacement
GWP_ethanol_allocation = variables.GWP_ethanol_allocation
rows = [
MFPP,
TCI,
ethanol_production,
biodiesel_production,
electricity_production,
natural_gas_consumption,
GWP_ethanol_displacement,
GWP_ethanol_allocation,
GWP_ethanol, # economic
]
ylabels = [
f"MFPP\n[{format_units('USD/MT')}]",
f"TCI\n[{format_units('10^6*USD')}]",
f"Ethanol production\n[{format_units('L/MT')}]",
f"Biodiesel production\n[{format_units('L/MT')}]",
f"Elec. prod.\n[{format_units('kWhr/MT')}]",
f"NG cons.\n[{format_units('m^3/MT')}]",
"GWP$_{\\mathrm{displacement}}$" f"\n[{GWP_units_L}]",
"GWP$_{\\mathrm{energy}}$" f"\n[{GWP_units_L}]",
"GWP$_{\\mathrm{economic}}$" f"\n[{GWP_units_L}]",
]
N_rows = len(rows)
N_cols = len(comparison_names)
data = np.zeros([N_rows, N_cols], dtype=object)
data[:] = [[get_data(i, j) for j in columns] for i in rows]
medians = np.zeros_like(data, dtype=float)
fractions = medians.copy()
for i in range(N_rows):
for j in range(N_cols):
medians[i, j] = x = get_median(data[i, j])
fractions[i, j] = get_fraction_in_same_direction(data[i, j], 1 if x > 0 else -1)
fig, ax = plt.subplots()
mbar = bst.plots.MetricBar(
'Fraction in the same direction [%]', ticks=[-100, -75, -50, -25, 0, 25, 50, 75, 100],
cmap=plt.cm.get_cmap('RdYlGn')
)
im, cbar = bst.plots.plot_heatmap(
100 * fractions, vmin=0, vmax=100, ax=ax, cell_labels=medians,
metric_bar=mbar, xlabels=xlabels, ylabels=ylabels,
)
cbar.ax.set_ylabel(mbar.title, rotation=-90, va="bottom")
plt.sca(ax)
ax.spines[:].set_visible(False)
plt.grid(True, 'major', 'both', lw=1, color='w', ls='-')
# %% KDE
def plot_kde(name, metrics=(GWP_ethanol, MFPP), xticks=None, yticks=None,
xbox_kwargs=None, ybox_kwargs=None, top_left='',
top_right='Tradeoff', bottom_left='Tradeoff',
bottom_right=''):
set_font(size=8)
set_figure_size(width='half', aspect_ratio=1.20)
Xi, Yi = [i.index for i in metrics]
df = oc.get_monte_carlo(name, metrics)
y = df[Yi].values
x = df[Xi].values
sX, sY = [kde_comparison_settings[i] for i in metrics]
_, xlabel, fx = sX
_, ylabel, fy = sY
if fx: x *= fx
if fy: y *= fy
ax = bst.plots.plot_kde(
y=y, x=x, xticks=xticks, yticks=yticks,
xticklabels=True, yticklabels=True,
xbox_kwargs=xbox_kwargs or dict(light=CABBI_colors.orange.RGBn, dark=CABBI_colors.orange.shade(60).RGBn),
ybox_kwargs=ybox_kwargs or dict(light=CABBI_colors.blue.RGBn, dark=CABBI_colors.blue.shade(60).RGBn),
)
plt.sca(ax)
plt.xlabel(xlabel.replace('\n', ' '))
plt.ylabel(ylabel.replace('\n', ' '))
bst.plots.plot_quadrants()
xlb, xub = plt.xlim()
ylb, yub = plt.ylim()
xpos = lambda x: xlb + (xub - xlb) * x
# xlpos = lambda x: xlb * (1 - x)
ypos = lambda y: ylb + (yub - ylb) * y
y_mt_0 = y > 0
y_lt_0 = y < 0
x_mt_0 = x > 0
x_lt_0 = x < 0
xleft = 0.02
xright = 0.98
ytop = 0.94
ybottom = 0.02
if yub > 0. and xlb < 0.:
if top_left.endswith('()'):
p = (y_mt_0 & x_lt_0).sum() / y.size
top_left = f"{p:.0%} {top_left.strip('()')}"
plt.text(xpos(xleft), ypos(ytop), top_left, color=CABBI_colors.teal.shade(50).RGBn,
horizontalalignment='left', verticalalignment='top',
fontsize=10, fontweight='bold', zorder=10)
if ylb < 0. and xlb < 0.:
if bottom_left.endswith('()'):
p = (y_lt_0 & x_lt_0).sum() / y.size
bottom_left = f"{p:.0%} {bottom_left.strip('()')}"
plt.text(xpos(xleft), ypos(ybottom), bottom_left, color=CABBI_colors.grey.shade(75).RGBn,
horizontalalignment='left', verticalalignment='bottom',
fontsize=10, fontweight='bold', zorder=10)
if yub > 0. and xub > 0.:
if top_right.endswith('()'):
p = (y_mt_0 & x_mt_0).sum() / y.size
top_right = f"{p:.0%} {top_right.strip('()')}"
plt.text(xpos(xright), ypos(ytop), top_right, color=CABBI_colors.grey.shade(75).RGBn,
horizontalalignment='right', verticalalignment='top',
fontsize=10, fontweight='bold', zorder=10)
if ylb < 0. and xub > 0.:
if bottom_right.endswith('()'):
p = (y_lt_0 & x_mt_0).sum() / y.size
bottom_right = f"{p:.0%} {bottom_right.strip('()')}"
plt.text(xpos(xright), ypos(ybottom), bottom_right, color=colors.red.shade(50).RGBn,
horizontalalignment='right', verticalalignment='bottom',
fontsize=10, fontweight='bold', zorder=10)
plt.subplots_adjust(
hspace=0.05, wspace=0.05,
top=0.98, bottom=0.15,
left=0.15, right=0.98,
)
def plot_kde_2d(name, metrics=(GWP_ethanol, MFPP), xticks=None, yticks=None,
top_left='', top_right='Tradeoff', bottom_left='Tradeoff',
bottom_right='', xbox_kwargs=None, ybox_kwargs=None, titles=None):
set_font(size=8)
set_figure_size(aspect_ratio=0.65)
if isinstance(name, str): name = (name,)
Xi, Yi = [i.index for i in metrics]
dfs = [oc.get_monte_carlo(i, metrics) for i in name]
sX, sY = [kde_comparison_settings[i] for i in metrics]
_, xlabel, fx = sX
_, ylabel, fy = sY
xs = np.array([[df[Xi] for df in dfs]])
ys = np.array([[df[Yi] for df in dfs]])
if fx: xs *= fx
if fy: ys *= fy
axes = bst.plots.plot_kde_2d(
xs=xs, ys=ys,
xticks=xticks, yticks=yticks,
xticklabels=[True, True], yticklabels=[True, True],
xbox_kwargs=2*[xbox_kwargs or dict(light=CABBI_colors.orange.RGBn, dark=CABBI_colors.orange.shade(60).RGBn)],
ybox_kwargs=[ybox_kwargs or dict(light=CABBI_colors.blue.RGBn, dark=CABBI_colors.blue.shade(60).RGBn)],
)
M, N = axes.shape
xleft = 0.02
xright = 0.98
ytop = 0.94
ybottom = 0.02
for i in range(M):
for j in range(N):
ax = axes[i, j]
plt.sca(ax)
if i == M - 1: plt.xlabel(xlabel.replace('\n', ' '))
if j == 0: plt.ylabel(ylabel.replace('\n', ' '))
bst.plots.plot_quadrants()
xlb, xub = plt.xlim()
ylb, yub = plt.ylim()
xpos = lambda x: xlb + (xub - xlb) * x
# xlpos = lambda x: xlb * (1 - x)
ypos = lambda y: ylb + (yub - ylb) * y
df = dfs[j]
x = df[Xi]
y = df[Yi]
y_mt_0 = y > 0
y_lt_0 = y < 0
x_mt_0 = x > 0
x_lt_0 = x < 0
if yub > 0. and xlb < 0. and top_left:
if top_left.endswith('()'):
p = (y_mt_0 & x_lt_0).sum() / y.size
top_left = f"{p:.0%} {top_left.strip('()')}"
replacement = '()'
else:
replacement = None
plt.text(xpos(xleft), ypos(ytop), top_left, color=CABBI_colors.teal.shade(50).RGBn,
horizontalalignment='left', verticalalignment='top',
fontsize=10, fontweight='bold', zorder=10)
top_left = replacement
if ylb < 0. and xlb < 0. and bottom_left:
if bottom_left.endswith('()'):
p = (y_lt_0 & x_lt_0).sum() / y.size
bottom_left = f"{p:.0%} {bottom_left.strip('()')}"
replacement = '()'
else:
replacement = None
plt.text(xpos(xleft), ypos(ybottom), bottom_left, color=CABBI_colors.grey.shade(75).RGBn,
horizontalalignment='left', verticalalignment='bottom',
fontsize=10, fontweight='bold', zorder=10)
bottom_left = replacement
if yub > 0. and xub > 0. and top_right:
if top_right.endswith('()'):
p = (y_mt_0 & x_mt_0).sum() / y.size
top_right = f"{p:.0%} {top_right.strip('()')}"
replacement = '()'
else:
replacement = None
plt.text(xpos(xright), ypos(ytop), top_right, color=CABBI_colors.grey.shade(75).RGBn,
horizontalalignment='right', verticalalignment='top',
fontsize=10, fontweight='bold', zorder=10)
top_right = replacement
if ylb < 0. and xub > 0. and bottom_right:
if bottom_right.endswith('()'):
p = (y_lt_0 & x_mt_0).sum() / y.size
bottom_right = f"{p:.0%} {bottom_right.strip('()')}"
replacement = '()'
else:
replacement = None
plt.text(xpos(xright), ypos(ybottom), bottom_right, color=colors.red.shade(50).RGBn,
horizontalalignment='right', verticalalignment='bottom',
fontsize=10, fontweight='bold', zorder=10)
bottom_right = replacement
plt.subplots_adjust(
hspace=0, wspace=0,
top=0.98, bottom=0.15,
left=0.1, right=0.98,
)
if titles:
plt.subplots_adjust(
top=0.90,
)
for ax, letter in zip(axes[0, :], titles):
plt.sca(ax)
ylb, yub = plt.ylim()
xlb, xub = plt.xlim()
plt.text((xlb + xub) * 0.5, ylb + (yub - ylb) * 1.17, letter, color=letter_color,
horizontalalignment='center', verticalalignment='center',
fontsize=12, fontweight='bold')
def plot_feedstock_conventional_comparison_kde():
plot_kde(
'O1 - S1',
yticks=[-20, -10, 0, 10, 20, 30, 40],
xticks=[-0.12, -0.09, -0.06, -0.03, 0, 0.03, 0.06],
top_left='Oilcane Favored',
bottom_right='Sugarcane\nFavored',
top_right='GWP\nTradeoff()',
bottom_left='MFPP\nTradeoff()',
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'feedstock_conventional_comparison_kde.{i}')
plt.savefig(file, transparent=True)
def plot_feedstock_cellulosic_comparison_kde():
plot_kde(
'O2 - S2',
yticks=[-40, -20, 0, 20, 40, 60, 80],
xticks=[-5, -4, -3, -2, -1, 0],
top_left='Oilcane Favored',
bottom_right='Sugarcane Favored',
top_right='GWP\nTradeoff()',
bottom_left='MFPP\nTradeoff()',
fx=1000.,
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'feedstock_cellulosic_comparison_kde.{i}')
plt.savefig(file, transparent=True)
def plot_feedstock_comparison_kde():
plot_kde_2d(
('O1 - S1', 'O2 - S2'),
yticks=[[-10, 0, 10, 20, 30, 40, 50, 60]],
xticks=[[-0.12, -0.09, -0.06, -0.03, 0, 0.03, 0.06],
[-2.0, -1.5, -1, -0.5, 0., 0.5, 1.0]],
top_right='GWP\nTradeoff()',
bottom_left='MFPP\nTradeoff()',
top_left='Oilcane\nFavored()',
bottom_right='\nSugarcane\nFavored()',
titles=['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation'],
)
plt.subplots_adjust(
wspace=0,
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'feedstock_comparison_kde.{i}')
plt.savefig(file, transparent=True)
def plot_configuration_comparison_kde():
plot_kde(
'O1 - O2',
yticks=[-20, 0, 20, 40, 60],
xticks=[-2, -1.5, -1, -0.5, 0, 0.5, 1],
top_right='GWP\nTradeoff()',
bottom_left='MFPP\nTradeoff()',
top_left='DC Favored()',
bottom_right='ICF\nFavored()',
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'configuration_comparison_kde.{i}')
plt.savefig(file, transparent=True)
def plot_separated_configuration_comparison_kde():
plot_kde_2d(
('O1', 'O2'),
yticks=[[-20, 0, 20, 40, 60]],
xticks=[
[0, 0.5, 1, 1.5],
[0, 2, 4, 6, 8, 10]
],
top_right='GWP\nTradeoff()',
bottom_left='MFPP\nTradeoff()',
top_left='DC Favored()',
bottom_right='ICF\nFavored()',
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'separated_configuration_comparison_kde.{i}')
plt.savefig(file, transparent=True)
def plot_crude_configuration_comparison_kde():
plot_kde_2d(
('O1 - O3', 'O2 - O4'),
yticks=[[-12, 0, 12, 24, 36, 48]],
xticks=[
[-0.5, -0.4, -0.3, -0.2, -0.1, 0],
[-1, -0.8, -0.6, -0.4, -0.2, 0]
],
top_right='GWP\nTradeoff()',
bottom_left='MFPP\nTradeoff()',
top_left='Biodiesel\nProduction Favored()',
bottom_right='Crude Oil\nProduction Favored()',
titles=['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation'],
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'crude_configuration_comparison_kde.{i}')
plt.savefig(file, transparent=True)
def plot_agile_comparison_kde():
plot_kde_2d(
('O1* - O1', 'O2* - O2'),
metrics=[TCI, MFPP],
yticks=[[0, 3, 6, 9, 12, 15]],
xticks=2*[[-150, -125, -100, -75, -50, -25, 0]],
top_right='TCI-Tradeoff()',
bottom_left='MFPP\nTradeoff()',
top_left='Sorghum\nIntegration Favored()',
bottom_right='Cane-only\nFavored()',
xbox_kwargs=dict(light=CABBI_colors.green_dirty.RGBn,
dark=CABBI_colors.green_dirty.shade(60).RGBn),
titles=['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation'],
)
for i in ('svg', 'png'):
file = os.path.join(images_folder, f'agile_conventional_comparison_kde.{i}')
plt.savefig(file, transparent=True)
def plot_open_comparison_kde(overlap=False):
metrics = [MFPP, TCI, GWP_ethanol, biodiesel_production]
df_conventional_oc = oc.get_monte_carlo('O1', metrics)
df_cellulosic_oc = oc.get_monte_carlo('O2', metrics)
df_conventional_sc = oc.get_monte_carlo('S1', metrics)
df_cellulosic_sc = oc.get_monte_carlo('S2', metrics)
MFPPi = MFPP.index
TCIi = TCI.index
if overlap:
ys = np.zeros([1, 2], dtype=object)
xs = np.zeros([1, 2], dtype=object)
ys[0, 0] = (df_conventional_oc[MFPPi], df_cellulosic_oc[MFPPi])
ys[0, 1] = (df_conventional_sc[MFPPi], df_cellulosic_sc[MFPPi])
xs[0, 0] = (df_conventional_oc[TCIi], df_cellulosic_oc[TCIi])
xs[0, 1] = (df_conventional_sc[TCIi], df_cellulosic_sc[TCIi])
yticks = [[-30, -15, 0, 15, 30, 45, 60, 75]]
xticks = 2*[[200, 300, 400, 500, 600]]
else:
ys = np.array([
[df_conventional_oc[MFPPi], df_conventional_sc[MFPPi]],
[df_cellulosic_oc[MFPPi], df_cellulosic_sc[MFPPi]]
])
xs = np.array([
[df_conventional_oc[TCIi], df_conventional_sc[TCIi]],
[df_cellulosic_oc[TCIi], df_cellulosic_sc[TCIi]]
])
yticks = 2*[[-30, -15, 0, 15, 30, 45, 60, 75]]
xticks = 2*[[200, 300, 400, 500, 600]]
bst.plots.plot_kde_2d(
ys=ys, xs=xs, xticks=xticks, yticks=yticks,
xbox_kwargs=[dict(position=1), dict(position=1)],
ybox_kwargs=[dict(position=0), dict(position=0)],
)
#%% General Monte Carlo box plots
def plot_monte_carlo_across_coordinate(coordinate, data, color_wheel):
if isinstance(data, list):
return [plot_monte_carlo_across_coordinate(coordinate, i, color_wheel) for i in data]
else:
color = color_wheel.next()
return bst.plots.plot_montecarlo_across_coordinate(
coordinate, data,
light_color=color.tint(50).RGBn,
dark_color=color.shade(50).RGBn,
)
def monte_carlo_box_plot(data, positions, light_color, dark_color, width=None,
hatch=None, outliers=False, **kwargs):
if width is None: width = 0.8
if outliers:
flierprops = {'marker':'D',
'markerfacecolor': light_color,
'markeredgecolor': dark_color,
'markersize':3}
else:
flierprops = {'marker':''}
bp = plt.boxplot(
x=data, positions=positions, patch_artist=True,
widths=width, whis=[5, 95],
boxprops={'facecolor':light_color,
'edgecolor':dark_color},
medianprops={'color':dark_color,
'linewidth':1.5},
flierprops=flierprops,
**kwargs
)
if hatch:
for box in bp['boxes']:
box.set(hatch = hatch)
def plot_monte_carlo(derivative=False, absolute=True, comparison=True,
configuration_names=None, comparison_names=None,
metrics=None, labels=None, tickmarks=None, agile=True,
ncols=1, expand=None, step_min=None,
agile_only=False, xrot=None,
color_wheel=None, axes_box=None):
if derivative:
default_configuration_names = ['O1', 'O2']
default_comparison_names = ['O2 - O1']
metric_info = mc_derivative_metric_settings
default_metrics = list(metric_info)
else:
default_configuration_names = oc.configuration_names[:-2]
default_comparison_names = oc.comparison_names
if comparison:
metric_info = mc_comparison_settings
else:
metric_info = mc_metric_settings
if agile_only:
default_configuration_names = [i for i in default_configuration_names if '*' in i]
default_comparison_names = [i for i in default_comparison_names if '*' in i]
default_metrics = ['MFPP', 'TCI', 'production']
else:
default_metrics = list(metric_info)
if configuration_names is None: configuration_names = default_configuration_names
if comparison_names is None: comparison_names = default_comparison_names
if metrics is None: metrics = default_metrics
combined = absolute and comparison
if agile_only:
configuration_names = [i for i in configuration_names if '*' in i]
comparison_names = [i for i in comparison_names if '*' in i]
elif not agile:
configuration_names = [i for i in configuration_names if '*' not in i]
comparison_names = [i for i in comparison_names if '*' not in i]
if combined:
columns = configurations = configuration_names + comparison_names
elif absolute:
columns = configurations = configuration_names
elif comparison:
columns = configurations = comparison_names
else:
columns = configurations = []
rows, ylabels, factors = zip(*[metric_info[i] for i in metrics])
factors = [(i, j) for i, j in enumerate(factors) if j is not None]
if color_wheel is None: color_wheel = CABBI_colors.wheel()
N_rows = len(rows)
if axes_box is None:
fig, axes_box = plt.subplots(ncols=ncols, nrows=int(round(N_rows / ncols)))
plt.subplots_adjust(wspace=0.45)
else:
fig = None
axes = axes_box.transpose()
axes = axes.flatten()
N_cols = len(columns)
xtext = labels or [format_name(i).replace(' ', '') for i in configurations]
N_marks = len(xtext)
xticks = tuple(range(N_marks))
def get_data(metric, name):
try:
df = get_monte_carlo(name, metric)
except:
return np.zeros([1, 1])
else:
values = df.values
return values
def plot(arr, position):
if arr.ndim == 2:
N = arr.shape[1]
width = 0.618 / N
boxwidth = 0.618 / (N + 1/N)
plots = []
for i in range(N):
color = color_wheel.next()
boxplot = monte_carlo_box_plot(
data=arr[:, i], positions=[position + (i-(N-1)/2)*width],
light_color=color.RGBn,
dark_color=color.shade(60).RGBn,
width=boxwidth,
hatch=getattr(color, 'hatch', None),
)
plots.append(boxplot)
return plots
else:
color = color_wheel.next()
return monte_carlo_box_plot(
data=arr, positions=[position],
light_color=color.RGBn,
dark_color=color.shade(60).RGBn,
width=0.618,
)
data = np.zeros([N_rows, N_cols], dtype=object)
data[:] = [[get_data(i, j) for j in columns] for i in rows]
for i, j in factors: data[i, :] *= j
if tickmarks is None:
tickmarks = [
bst.plots.rounded_tickmarks_from_data(
i, step_min=step_min, N_ticks=8, lb_max=0, center=0,
f=roundsigfigs, expand=expand,
f_min=lambda x: np.percentile(x, 5),
f_max=lambda x: np.percentile(x, 95),
)
for i in data
]
x0 = len(configuration_names) - 0.5
xf = len(columns) - 0.5
for i in range(N_rows):
ax = axes[i]
plt.sca(ax)
if combined:
bst.plots.plot_vertical_line(x0)
ax.axvspan(x0, xf, color=colors.purple_tint.tint(60).RGBn)
plt.xlim(-0.5, xf)
for j in range(N_cols):
color_wheel.restart()
for i in range(N_rows):
ax = axes[i]
plt.sca(ax)
plot(data[i, j], j)
plt.ylabel(ylabels[i])
for i in range(N_rows):
ax = axes[i]
plt.sca(ax)
yticks = tickmarks[i]
plt.ylim([yticks[0], yticks[1]])
if yticks[0] < 0.:
bst.plots.plot_horizontal_line(0, color=CABBI_colors.black.RGBn, lw=0.8, linestyle='--')
try:
xticklabels = xtext if ax in axes_box[-1] else []
except:
xticklabels = xtext if i == N_rows - 1 else []
bst.plots.style_axis(ax,
xticks = xticks,
yticks = yticks,
xticklabels= xticklabels,
ytick0=False,
ytickf=False,
offset_xticks=True,
xrot=xrot,
)
if fig is None:
fig = plt.gcf()
else:
plt.subplots_adjust(hspace=0)
fig.align_ylabels(axes)
return fig, axes
#%% Spearman
def plot_spearman(configurations, labels=None, metric=None,
kind=None, with_units=None, legend=None, legend_kwargs=None, **kwargs):
if kind is None: kind = 'TEA'
if with_units is None: with_units = True
if legend is None: legend = True
if metric is None:
if kind == 'TEA':
metric = MFPP
metric_name = metric.name
elif kind == 'LCA':
metric = GWP_economic
metric_name = r'GWP$_{\mathrm{economic}}$'
else:
raise ValueError(f"invalid kind '{kind}'")
else:
if metric == 'MFPP':
metric = MFPP
elif metric == 'GWP':
metric = GWP_economic
metric_name = metric.name
stream_price = format_units('USD/L')
USD_MT = format_units('USD/MT')
ng_price = format_units('USD/m^3')
electricity_price = format_units('USD/kWhr')
operating_days = format_units('day/yr')
capacity = format_units('10^6 MT/yr')
titer = format_units('g/L')
productivity = format_units('g/L/hr')
material_GWP = '$\\mathrm{kg} \\cdot \\mathrm{CO}_{2}\\mathrm{eq} \\cdot \\mathrm{kg}^{-1}$'
feedstock_GWP = '$\\mathrm{g} \\cdot \\mathrm{CO}_{2}\\mathrm{eq} \\cdot \\mathrm{kg}^{-1}$'
index, ignored_list = zip(*[
('Crushing mill oil recovery [60 $-$ 95 %]', ['S2', 'S1', 'S2*', 'S1*']),
('Saccharification oil recovery [70 $-$ 95 %]', ['S2', 'S1', 'S2*', 'S1*', 'O1', 'O1*']),
(f'Cane operating days [120 $-$ 180 {operating_days}]', []),
(f'Sorghum operating days [30 $-$ 60 {operating_days}]', ['S2', 'S1', 'O1', 'O2']),
(f'Crushing capacity [1.2 $-$ 2.0 {capacity}]', []),
(f'Ethanol price [0.269, 0.476, 0.758 {stream_price}]', []),
(f'Relative biodiesel price [0.0819, 0.786, 1.09 {stream_price}]', []),
(f'Natural gas price [0.105, 0.122, 0.175 {ng_price}]', ['S1', 'O1', 'S1*', 'O1*']),
(f'Electricity price [0.0583, 0.065, 0.069 {electricity_price}]', ['S2', 'O2', 'S2*', 'O2*']),
('IRR [10 $-$ 15 %]', []),
(f'Crude glycerol price [100 $-$ 220 {USD_MT}]', ['S2', 'S1', 'S2*', 'S1*']),
(f'Pure glycerol price [488 $-$ 812 {USD_MT}]', ['S2', 'S1', 'S2*', 'S1*']),
('Saccharification reaction time [54 $-$ 90 hr]', ['S1', 'O1', 'S1*', 'O1*']),
(f'Cellulase price [159 $-$ 265 {USD_MT}]', ['S1', 'O1', 'S1*', 'O1*']),
('Cellulase loading [1.5 $-$ 2.5 wt. % cellulose]', ['S1', 'O1', 'S1*', 'O1*']),
('PTRS base cost [14.9 $-$ 24.7 MMUSD]', ['S1', 'O1', 'S1*', 'O1*']),
# ('Pretreatment reactor system base cost [14.9 $-$ 24.7 MMUSD]', ['S1', 'O1', 'S1*', 'O1*']),
('Cane glucose yield [85 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']),
('Sorghum glucose yield [85 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']),
('Cane xylose yield [65 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']),
('Sorghum xylose yield [65 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']),
('Glucose to ethanol yield [90 $-$ 95 %]', ['S1', 'O1', 'S1*', 'O1*']),
('Xylose to ethanol yield [50 $-$ 95 %]', ['S1', 'O1', 'S1*', 'O1*']),
(f'Titer [65 $-$ 130 {titer}]', ['S1', 'O1', 'S1*', 'O1*']),
(f'Productivity [1.0 $-$ 2.0 {productivity}]', ['S1', 'O1', 'S1*', 'O1*']),
('Cane PL content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']),
('Sorghum PL content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']),
('Cane FFA content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']),
('Sorghum FFA content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']),
('Cane oil content [5 $-$ 15 dry wt. %]', ['S2', 'S1', 'S2*', 'S1*']),
('Relative sorghum oil content [-3 $-$ 0 dry wt. %]', ['S2', 'S1', 'S2*', 'S1*', 'O2', 'O1']),
('TAG to FFA conversion [17.25 $-$ 28.75 % theoretical]', ['S1', 'O1', 'S1*', 'O1*']),
# TODO: change lower upper values to baseline +- 10%
(f'Feedstock GWPCF [26.3 $-$ 44.0 {feedstock_GWP}]', ['S1', 'S2', 'S1*', 'S2*']),
(f'Methanol GWPCF [0.338 $-$ 0.563 {material_GWP}]', ['S1', 'S2', 'S1*', 'S2*']),
(f'Pure glycerine GWPCF [1.25 $-$ 2.08 {material_GWP}]', ['S1', 'S2', 'S1*', 'S2*']),
(f'Cellulase GWPCF [6.05 $-$ 10.1 {material_GWP}]', ['S1', 'O1', 'S1*', 'O1*']),
(f'Natural gas GWPCF [0.297 $-$ 0.363 {material_GWP}]', ['S1', 'O1', 'S1*', 'O1*']),
])
if not with_units: index = [i.split(' [')[0] for i in index]
ignored_dct = {
'S1': [],
'O1': [],
'S2': [],
'O2': [],
'S1*': [],
'O1*': [],
'S2*': [],
'O2*': [],
}
for i, ignored in enumerate(ignored_list):
for name in ignored: ignored_dct[name].append(i)
index_name = index[i]
if kind == 'LCA':
for term in ('cost', 'price', 'IRR', 'time', 'capacity'):
if term in index_name:
for name in ignored_dct: ignored_dct[name].append(i)
break
elif kind == 'TEA':
if 'GWP' in index_name:
for name in ignored_dct: ignored_dct[name].append(i)
else:
raise ValueError(f"invalid kind '{kind}'")
rhos = []
for name in configurations:
file = spearman_file(name)
try:
df = pd.read_excel(file, header=[0, 1], index_col=[0, 1])
except:
warning = RuntimeWarning(f"file '{file}' not found")
warn(warning)
continue
s = df[metric.index]
s.iloc[ignored_dct[name]] = 0.
rhos.append(s)
color_wheel = [CABBI_colors.orange, CABBI_colors.green_soft, CABBI_colors.blue, CABBI_colors.brown]
fig, ax = bst.plots.plot_spearman_2d(rhos, index=index,
color_wheel=color_wheel,
name=metric_name,
**kwargs)
if legend:
if legend_kwargs is None:
legend_kwargs = {'loc': 'lower left'}
plt.legend(
handles=[
mpatches.Patch(
color=color_wheel[i].RGBn,
label=labels[i] if labels else format_name(configurations[i])
)
for i in range(len(configurations))
],
**legend_kwargs,
)
return fig, ax
# %% Other
def plot_configuration_breakdown(name, across_coordinate=False, **kwargs):
oc.load(name)
if across_coordinate:
return bst.plots.plot_unit_groups_across_coordinate(
oc.set_cane_oil_content,
[5, 7.5, 10, 12.5],
'Feedstock oil content [dry wt. %]',
oc.unit_groups,
colors=[area_colors[i.name].RGBn for i in oc.unit_groups],
hatches=[area_hatches[i.name] for i in oc.unit_groups],
**kwargs,
)
else:
def format_total(x):
if x < 1e3:
return format(x, '.3g')
else:
x = int(x)
n = 10 ** (len(str(x)) - 3)
value = int(round(x / n) * n)
return format(value, ',')
for i in oc.unit_groups:
if i.name == 'EtOH prod.':
i.name = 'Ethanol production'
elif i.name == 'Oil ext.':
i.name = 'Oil extraction'
elif i.name == 'Biod. prod.':
i.name = 'Biodiesel production'
i.metrics[0].name = 'Inst. eq.\ncost'
i.metrics[3].name = 'Elec.\ncons.'
i.metrics[4].name = 'Mat.\ncost'
return bst.plots.plot_unit_groups(
oc.unit_groups,
colors=[area_colors[i.name].RGBn for i in oc.unit_groups],
hatches=[area_hatches[i.name] for i in oc.unit_groups],
format_total=format_total,
fraction=True,
legend_kwargs=dict(
loc='lower center',
ncol=4,
bbox_to_anchor=(0, -0.52),
labelspacing=1.5, handlelength=2.8,
handleheight=1, scale=0.8,
),
**kwargs,
)
def plot_TCI_areas_across_oil_content(configuration='O2'):
oc.load(configuration)
data = {i.name: [] for i in oc.unit_groups}
increasing_areas = []
decreasing_areas = []
oil_contents = np.linspace(5, 15, 10)
for i in oil_contents:
oc.set_cane_oil_content(i)
oc.sys.simulate()
for i in oc.unit_groups: data[i.name].append(i.get_installed_cost())
for name, group_data in data.items():
lb, *_, ub = group_data
if ub > lb:
increasing_areas.append(group_data)
else:
decreasing_areas.append(group_data)
increasing_values = | np.sum(increasing_areas, axis=0) | numpy.sum |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 8 13:37:56 2020
@author: karliskanders
Last updated on 01/04/2020
"""
import leidenalg as la
import pandas as pd
import numpy as np
from sklearn.metrics.cluster import adjusted_mutual_info_score as ami_score
from sklearn.metrics import confusion_matrix
from matplotlib import pyplot as plt
import seaborn as sns
import igraph as ig
from time import time
import os
class ConsensusClustering:
"""
Class for determining stable clustering of data by using a 3-step process.
First, an ensemble of clustering results is generated by repeatedly applying
a clustering algorithm many times (step 1).
Then, the ensemble is used to define new edge weights between the graph nodes
based on the data point co-clustering occurrences. These weights are then used
to generate another "consensus ensemble", which in practice is very stable and
exhibits only minor variations between different clustering runs (step 2).
To decide which one of the partitions among the "consensus ensemble" should
be designated as the final consensus partition, we use adjusted mutual information
to compare all partitions within the consensus ensemble, and choose the one
which agrees the best with all of the other partitions (step 3).
Presently, we use the Leiden community detection algorithm for clustering the
graph into communities. However, this class can be easily adapted to use other
graph-based clustering algorithms.
The consensus clustering approach used here is an adapted version of the
intuitively simple but well-performing "Ensemble Clustering for Graphs" method
by <NAME> (see https://arxiv.org/abs/1809.05578).
"""
def __init__(
self, graph, N=20, N_consensus=10, verbose=True, seed=None, edge_bootstrap=False
):
"""
Parameters
----------
graph (igraph.Graph):
Graph object that will be used for finding graph communities.
N (int):
Ensemble size for the first clustering step (normally use 500-1000).
N_consensus (int):
Ensemble size for the consensus clustering step.
verbose (boolean):
Determines whether user is informed about the progress regarding the
intermediate steps of the clustering procedure.
seed (int):
Seed for the random number generator; useful for reproducing the exact
same clustering result. This seed is then used to generate all other
random seeds for each repeated clustering run.
edge_bootstrap (boolean):
Determines whether edge bootstrapping is used for generating the
clustering ensemble.
"""
self.graph = graph
self.directed = graph.is_directed()
self.N = N
self.N_consensus = N_consensus
self.v = verbose
self.edge_bootstrap = edge_bootstrap
self.w_min = 0.05
# Hard-coded parameter for consensus clustering (step 2) from Poulin &
# Theberge publication
self._ensemble = None
# List of lists containing the ensemble of step 1 clustering results
self._consensus_ensemble = None
# List of lists containing the ensemble of step 2 clustering results
self._COOC = None
# Clustering co-occurrence matrix
self._consensus_partition = None
# Final consensus clustering partition
# Manage random seeds
if type(seed) != type(None):
print("Setting random seeds...")
np.random.seed(seed)
self.ensemble_seeds = np.random.randint(100000000, size=N)
self.consensus_ensemble_seed = np.random.randint(100000000)
else:
self.ensemble_seeds = None
self.consensus_ensemble_seed = None
@property
def ensemble(self):
"""
List of clustering results (pertaining to step 1 of the clustering
procedure), where each clustering result is a list of integers. These
integers correspond to cluster labels.
"""
if self._ensemble is None:
# Generate ensemble of self.N partitions
self._ensemble = self.create_ensemble(self.N, weights="weight")
# self.clustering_AMI, _ = self.ensemble_AMI(self.ensemble, v=self.v)
return self._ensemble
@property
def COOC(self):
"""
Co-clustering occurrence matrix: element (i,j) of this matrix indicates
how many times nodes i and j were clustered together.
"""
if self._COOC is None:
# Calculate the co-occurrence matrix from the ensemble
self._COOC = self.cooccurrence_matrix(self.ensemble)
return self._COOC
@property
def consensus_ensemble(self):
"""
List of consensus clustering results (pertaining to step 2 of the clustering
procedure) where each clustering result is a list of integers. These
integers correspond to cluster labels.
"""
if self._consensus_ensemble is None:
# Use the co-occurrence matrix values for consensus clustering weights
A = (self.COOC != 0).astype(int)
if self.v:
print("Using co-occurrence matrix to do consensus clustering...")
# Create a new graph and find communities in this new graph
g_cooc = build_graph(self.COOC / self.N, kNN=A)
clust_cooc = ConsensusClustering(
g_cooc, N=self.N_consensus, seed=self.consensus_ensemble_seed
)
self._consensus_ensemble = clust_cooc.create_ensemble()
return self._consensus_ensemble
def load_ensemble(self, ensemble, consensus=False):
"""
This method can be used to load an external ensemble. For example,
you might have stored an ensemble of clustering results from a previous
analysis and would now like to recalculate the consensus partition.
Parameters
----------
ensemble (list of lists of int):
List of clustering results, where each clustering result is a list
of integers. These integers correspond to cluster labels.
consensus (boolean):
Determines whether the ensemble should be treated as the initial
ensemble (from step 1) or the consensus ensemble (from step 2).
"""
if not consensus:
self._ensemble = ensemble
else:
self._consensus_ensemble = ensemble
def create_ensemble(self, N=None, weights="weight"):
"""
Generates ensemble of clustering partitions by repeatedly applying
a clustering algorithm many times.
Parameters
----------
N (int OR None):
Ensemble size for the first clustering step. If N==None, use the
class property self.N
weights (string OR None):
Edge property to use for the community detection
Returns
-------
ensemble (list of lists of int):
List of clustering results, where each clustering result is a list
of integers. These integers correspond to cluster labels.
"""
if N is None:
N = self.N
ensemble = []
if self.v:
print(f"Generating an ensemble with {N} partitions...")
for i in range(N):
# Choose random seed for the clustering
if self.ensemble_seeds is not None:
ensemble_seed = self.ensemble_seeds[i]
else:
ensemble_seed = None
# Bootstrapping by removing edges
if self.edge_bootstrap == True:
graph_ = self.graph.copy()
rand_numbers = np.random.rand(len(graph_.es))
edge_weights = graph_.es[weights]
# Normalise the edge weights between 0 and 1
edge_weights = np.array(edge_weights) / np.max(edge_weights)
# Remove edges based on a probability that is proportional to their weight
# (one might want to parameterise this further to tweak the edge removal)
id_to_delete = np.where(rand_numbers > edge_weights)[0]
graph_.delete_edges(list(id_to_delete))
else:
graph_ = self.graph
# Community detection
p = la.find_partition(
graph_,
weights=weights,
partition_type=la.ModularityVertexPartition,
seed=ensemble_seed,
)
ensemble.append(p.membership)
if self.v:
print("x", end="")
if self.v:
print("")
return ensemble
@staticmethod
def cooccurrence_matrix(ensemble):
"""
Create the co-clustering occurrence matrix (also called 'cooccurrence matrix');
This can be quite slow for large graphs with ~10K nodes and probably could
be optimized, e.g., with numba.
Parameters
----------
ensemble (list of lists of int):
List of clustering results, where each clustering result is a list
of integers. These integers correspond to cluster labels.
"""
n = len(ensemble[0])
COOC = np.zeros((n, n))
# For each clustering result in the ensemble
for i, p in enumerate(ensemble):
membership = p
# Use pandas to find node pairs with the same cluster labels
membership_df = pd.DataFrame(
data={"id": list(range(len(membership))), "cluster": membership}
)
cooc = membership_df.merge(right=membership_df, on="cluster")
cooc = cooc[cooc.id_x < cooc.id_y]
# For each node pair with the same cluster labels, add 1 to the
# co-clustering occurrence matrix
COOC[cooc.id_x.values, cooc.id_y.values] += 1
COOC = COOC + np.triu(COOC).T
return COOC
@property
def consensus_partition(self):
"""
Final consensus partition of the clustering procedure
"""
if self._consensus_partition is None:
self.consensus_communities()
return self._consensus_partition
def consensus_communities(self):
"""
Method for finding the consensus clustering partition, i.e.,
for the steps 2-3 of the clustering procedure.
"""
# Measure the stability of the consensus ensemble. If the consensus ensemble
# has not been generated yet, it will be by calling the self.consensus_ensemble
self.consensus_AMI, AMI_matrix = self.ensemble_AMI(
self.consensus_ensemble, v=self.v
)
# Take "the most agreeable" partition as the final consensus clustering
# partition (i.e., step 3)
mean_ami = np.mean(AMI_matrix, axis=1)
most_agreeable = np.argsort(mean_ami)[-1]
self._consensus_partition = self.consensus_ensemble[most_agreeable]
# Describe the final consensus clustering partition
char = self.describe_partition(self._consensus_partition, self.v)
self.n = char["n"]
self.sizes = char["sizes"]
@staticmethod
def describe_partition(partition, verbose=True):
"""
Describes the number of clusters and the number of nodes in each cluster
"""
partition = np.array(partition)
clusters = np.unique(partition)
n = len(clusters)
sizes = [0] * n
for c in range(n):
sizes[c] = np.sum(partition == c)
if verbose:
print(f"Clustering with {len(partition)} nodes and {n} clusters.")
return {"n": n, "sizes": sizes}
@staticmethod
def ensemble_AMI(P, v=True):
"""
Calculates pairwise adjusted mutual information (AMI) scores across
the clustering ensemble.
Parameters
----------
P (list of lists of int):
Clustering ensemble, i.e., a list of clustering results, where each
clustering result is a list of integers. These integers correspond
to cluster labels.
v (boolean):
Determines whether information about the results is printed.
Returns
-------
ami_avg (float):
Average adjusted mutual information across the ensemble
ami_matrix (numpy.ndarray):
The complete matrix with adjusted mutual information scores between
all pairs of clustering results
"""
# If P is not a list of lists but a partition module instead, extract the lists of memberships
if type(P[0]) == la.VertexPartition.ModularityVertexPartition:
P = [e.membership for e in P]
ami_matrix = np.zeros((len(P), len(P)))
for i in range(0, len(P)):
for j in range(i, len(P)):
ami_matrix[i][j] = ami_score(P[i], P[j], average_method="arithmetic")
ami_matrix += np.triu(ami_matrix).T
| np.fill_diagonal(ami_matrix, 1) | numpy.fill_diagonal |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = | N.array([1,0,0,0,1,0,0,0,-1]) | numpy.array |
def example(Simulator):
from csdl import Model
import csdl
import numpy as np
class ExampleSimple(Model):
def define(self):
# add_input
nx = 3
ny = 4
mesh = np.zeros((nx, ny, 3))
mesh[:, :, 0] = np.outer( | np.arange(nx) | numpy.arange |
# test point in polygon functions
import os
# import math as maths
import numpy as np
import resqpy.olio.point_inclusion as pip
# from numpy.testing import assert_array_almost_equal
def test_pip_cn_and_wn():
# unit square polygon
poly = np.array([(0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0)])
p_in = np.array([(0.00001, 0.00001), (0.00001, 0.99999), (0.99999, 0.00001), (0.99999, 0.99999)])
p_out = np.array([(1.1, 0.1), (-0.1, 0.2), (0.5, 1.00001), (0.4, -0.0001), (1.00001, 1.00001), (1.00001, -0.00001)])
for pip_fn in [pip.pip_cn, pip.pip_wn]:
assert pip_fn((0.5, 0.5), poly)
for p in p_in:
assert pip_fn(p, poly)
for p in p_out:
assert not pip_fn(p, poly)
assert np.all(pip.pip_array_cn(p_in, poly))
assert not np.any(pip.pip_array_cn(p_out, poly))
def test_figure_of_eight():
fig_8 = np.array([(-100.0, -200.0), (100.0, 200.0), (-100.0, 200.0), (100.0, -200, 0)])
p_in = np.array([(-99.0, -199.0), (0.0, -1.0), (99.0, 199.0), (0.0, 1.0), (49.9, -100.0)])
p_out = np.array([(1000.0, -23.0), (1.0, 0.0), (-0.001, 0.0), (-50.1, 100.0)])
for pip_fn in (pip.pip_cn, pip.pip_wn):
for p in p_in:
assert pip_fn(p, fig_8)
for p in p_out:
assert not pip_fn(p, fig_8)
assert np.all(pip.pip_array_cn(p_in, fig_8))
assert not np.any(pip.pip_array_cn(p_out, fig_8))
def test_points_in_polygon(tmp_path):
# create an ascii file holding vertices of a polygon
poly_file = os.path.join(tmp_path, 'diamond.txt')
diamond = np.array([(0.0, 3.0, 0.0), (3.0, 6.0, -1.3), (6.0, 3.0, 12.5), (3.0, 0.0, 0.0)])
with open(poly_file, 'w') as fp:
for xyz in diamond:
fp.write(f'{xyz[0]} {xyz[1]} {xyz[2]}\n')
fp.write('999.0 999.0 999.0\n')
# test some points with no multiplier applied to polygon geometry
p_in = np.array([(3.0, 3.0), (0.1, 3.0), (1.55, 1.55), (4.49, 4.49), (5.99, 3.0), (3.1, 0.11)])
p_out = | np.array([(-3.0, -3.0), (2.0, 0.99), (4.51, 4.51), (6.01, 3.0)]) | numpy.array |
#!/usr/bin/env python
import os,sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import argparse
from multiagent.environment import MultiAgentEnv
import multiagent.scenarios as scenarios
import numpy as np
import keras.backend.tensorflow_backend as backend
from keras.models import Sequential
from keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Activation, Flatten
from keras.optimizers import Adam
from keras.callbacks import TensorBoard
import tensorflow as tf
from collections import deque
import time
import random
from tqdm import tqdm
from PIL import Image
if __name__ == '__main__':
# parse arguments
parser = argparse.ArgumentParser(description=None)
parser.add_argument('-s', '--scenario', default='simple.py', help='Path of the scenario Python script.')
args = parser.parse_args()
# load scenario from script
scenario = scenarios.load(args.scenario).Scenario()
# create world
world = scenario.make_world()
# create multiagent environment
env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation, info_callback=None, shared_viewer = False)
# render call to create viewer window (necessary only for interactive policies)
env.render()
# execution loop
obs_n = env.reset()
DISCOUNT = 0.99
REPLAY_MEMORY_SIZE = 50_000 # How many last steps to keep for model training
MIN_REPLAY_MEMORY_SIZE = 1_000 # Minimum number of steps in a memory to start training
MINIBATCH_SIZE = 64 # How many steps (samples) to use for training
UPDATE_TARGET_EVERY = 5 # Terminal states (end of episodes)
MODEL_NAME = '2x256'
MIN_REWARD = 20 # For model save
MEMORY_FRACTION = 0.20
# Environment settings
EPISODES = 200
# Exploration settings
epsilon = 1 # not a constant, going to be decayed
EPSILON_DECAY = 0.99975
MIN_EPSILON = 0.001
# Stats settings
AGGREGATE_STATS_EVERY = 50 # episodes
SHOW_PREVIEW = False
# For stats
ep_rewards = [[-200],[-200],[-200]]
# For more repetitive results
random.seed(1)
np.random.seed(1)
tf.set_random_seed(1)
# Memory fraction, used mostly when trai8ning multiple agents
#gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=MEMORY_FRACTION)
#backend.set_session(tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)))
# Create models folder
if not os.path.isdir('models'):
os.makedirs('models')
# Own Tensorboard class
class ModifiedTensorBoard(TensorBoard):
# Overriding init to set initial step and writer (we want one log file for all .fit() calls)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.step = 1
self.writer = tf.summary.FileWriter(self.log_dir)
# Overriding this method to stop creating default log writer
def set_model(self, model):
pass
# Overrided, saves logs with our step number
# (otherwise every .fit() will start writing from 0th step)
def on_epoch_end(self, epoch, logs=None):
self.update_stats(**logs)
# Overrided
# We train for one batch only, no need to save anything at epoch end
def on_batch_end(self, batch, logs=None):
pass
# Overrided, so won't close writer
def on_train_end(self, _):
pass
# Custom method for saving own metrics
# Creates writer, writes custom metrics and closes writer
def update_stats(self, **stats):
self._write_logs(stats, self.step)
# Agent class
class DQNAgent:
def __init__(self,i):
self.index=i
# Main model
self.model = self.create_model()
# Target network
self.target_model = self.create_model()
self.target_model.set_weights(self.model.get_weights())
# An array with last n steps for training
self.replay_memory = deque(maxlen=REPLAY_MEMORY_SIZE)
# Custom tensorboard object
self.tensorboard = ModifiedTensorBoard(log_dir="logs/{}-{}-{}".format(MODEL_NAME, self.index,int(time.time())))
# Used to count when to update target network with main network's weights
self.target_update_counter = 0
def create_model(self):
model = Sequential()
model.add(Conv2D(256, (3, 3), input_shape=(10, 10, 3))) # OBSERVATION_SPACE_VALUES = (10, 10, 3) a 10x10 RGB image.
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(256, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Dense(5, activation='linear')) # ACTION_SPACE_SIZE = how many choices (9)
model.compile(loss="mse", optimizer=Adam(lr=0.001), metrics=['accuracy'])
return model
# Adds step's data to a memory replay array
# (observation space, action, reward, new observation space, done)
def update_replay_memory(self, transition):
self.replay_memory.append(transition)
# Trains main network every step during episode
def train(self, terminal_state, step):
# Start training only if certain number of samples is already saved
if len(self.replay_memory) < MIN_REPLAY_MEMORY_SIZE:
return
# Get a minibatch of random samples from memory replay table
minibatch = random.sample(self.replay_memory, MINIBATCH_SIZE)
# Get current states from minibatch, then query NN model for Q values
current_states = np.array([transition[0] for transition in minibatch])/255
current_qs_list = self.model.predict(current_states)
# Get future states from minibatch, then query NN model for Q values
# When using target network, query it, otherwise main network should be queried
new_current_states = np.array([transition[3] for transition in minibatch])/255
future_qs_list = self.target_model.predict(new_current_states)
X = []
y = []
# Now we need to enumerate our batches
for index, (current_state, action, reward, new_current_state, done) in enumerate(minibatch):
# If not a terminal state, get new q from future states, otherwise set it to 0
# almost like with Q Learning, but we use just part of equation here
if not done:
max_future_q = np.max(future_qs_list[index])
new_q = reward + DISCOUNT * max_future_q
else:
new_q = reward
# Update Q value for given state
current_qs = current_qs_list[index]
current_qs[action] = new_q
# And append to our training data
X.append(current_state)
y.append(current_qs)
# Fit on all samples as one batch, log only on terminal state
self.model.fit( | np.array(X) | numpy.array |
import pickle
import time
from distil.utils.utils import LabeledToUnlabeledDataset
from distil.utils.config_helper import read_config_file
from distil.utils.train_helper import data_train
from distil.utils.models.simple_net import TwoLayerNet
from distil.active_learning_strategies import GLISTER, BADGE, EntropySampling, RandomSampling, LeastConfidenceSampling, \
MarginSampling, CoreSet, AdversarialBIM, AdversarialDeepFool, KMeansSampling, \
BALDDropout, FASS
from distil.utils.models.resnet import ResNet18
from torchvision import datasets, transforms
from torch.utils.data import Subset, TensorDataset, ConcatDataset
import torch
import numpy as np
import sys
from sklearn.preprocessing import StandardScaler
import argparse
sys.path.append('./')
class TrainClassifier:
def __init__(self, config_file):
self.config_file = config_file
self.config = read_config_file(config_file)
def getModel(self, model_config):
if model_config['architecture'] == 'resnet18':
if ('target_classes' in model_config) and ('channel' in model_config):
net = ResNet18(
num_classes=model_config['target_classes'], channels=model_config['channel'])
elif 'target_classes' in model_config:
net = ResNet18(num_classes=model_config['target_classes'])
else:
net = ResNet18()
elif model_config['architecture'] == 'two_layer_net':
net = TwoLayerNet(
model_config['input_dim'], model_config['target_classes'], model_config['hidden_units_1'])
return net
def libsvm_file_load(self, path, dim, save_data=False):
data = []
target = []
with open(path) as fp:
line = fp.readline()
while line:
temp = [i for i in line.strip().split(" ")]
# Class Number. # Not assumed to be in (0, K-1)
target.append(int(float(temp[0])))
temp_data = [0]*dim
for i in temp[1:]:
ind, val = i.split(':')
temp_data[int(ind)-1] = float(val)
data.append(temp_data)
line = fp.readline()
X_data = np.array(data, dtype=np.float32)
Y_label = | np.array(target) | numpy.array |
import numpy as np
from scipy.io import wavfile
import SignalUtils as su
from os import listdir
import random
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping
from keras.models import Sequential
from keras.layers import Dense
from keras import optimizers
from config import get_mapping_paths as paths
paths_mapping = paths()# [("D:/dataset/combine/", 1), ("D:/dataset/other/", 0), ("D:/dataset/voice/", 1)]
files_mapping = []
for path_mapping in paths_mapping:
files_mapping.extend([(path_mapping[0] + file, path_mapping[1]) for file in listdir(path_mapping[0])])
random.shuffle(files_mapping)
test_index = int(0.6 * len(files_mapping))
train_samples = files_mapping[0:test_index]
test_samples = files_mapping[test_index:len(files_mapping)]
batch_size=32
look_back = 5
epochs = 200
model_file = "d:/dataset/simple_model.h5"
callback = [EarlyStopping(monitor='val_loss', patience=5, mode='auto')]
model = Sequential()
model.add(Dense(100, input_dim=look_back*161))
model.add(Dense(60, activation='sigmoid'))
model.add(Dense(60, activation='sigmoid'))
model.add(Dense(120, activation='sigmoid'))
model.add(Dense(1, activation='step'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.load_weights(model_file)
min = -40
max = 40
predictions = []
for sample in test_samples:
X = su.spectrogram_from_file(filename=sample[0], max_freq=8000)
if X is None:
continue;
X = su.prepare_simple_feedforward_data(X, look_back=look_back)[0].reshape(1, look_back*161)
X = np.asarray([(sample-min)/(max-min) for sample in X]).reshape(1, look_back*161)
y = sample[1]
prediction = model.predict(X, batch_size=1, verbose=2)
if prediction > 0.5:
prediction = 1
else:
prediction = 0
predictions.append(prediction == y)
#train_sample = random.choice(test_samples)
# X_test = su.spectrogram_from_file(filename=train_sample[0], max_freq=8000)
# if X is None:
# continue;
# X_test = nn.prepare_feedforward_data(X_test, look_back=look_back)
#y_test = np.ones(X_test.shape[0]) * sample[1]
#print("prediction after batch train ", nn.model.predict(X_test, batch_size=1, verbose=2))
#print('evaluation after batch: ', nn.evaluate(X, y))
#print('evaluation of test after batch: ', nn.evaluate(X_test, y_test))
train_sample = random.choice(test_samples)
X_test = su.spectrogram_from_file(filename=train_sample[0], max_freq=8000)
X_test = su.prepare_feedforward_data(X_test, look_back = 5)
y_test = np.ones(X_test.shape[0]) * sample[1]
weights = nn.model.get_weights()
predict_nn = NN(tsteps=look_back * 23, batch_size=1, epochs=1)
predict_nn.create_feed_forward()
predict_nn.model.set_weights(weights)
print("prediction ", nn.model.predict(X_test, batch_size=1, verbose=2))
scores = []
for sample in test_samples:
X = su.spectrogram_from_file(filename=sample[0], max_freq=8000)
if X is None:
continue;
X = nn.prepare_feedforward_data(X, look_back = 5)
for i in range(nn.epochs):
y = | np.ones(X.shape[0]) | numpy.ones |
# coding=utf-8
"""Fiducial Registration Educational Demonstration tests"""
import math
import numpy as np
from sksurgeryfredbe.algorithms.errors import expected_absolute_value
import sksurgeryfredbe.algorithms.point_based_reg as pbreg
def _make_circle_fiducials(no_fids, centre, radius,
fixed_stddevs, moving_stddevs):
fixed_fids = np.zeros(shape=(no_fids, 3), dtype=np.float64)
moving_fids = np.zeros(shape=(no_fids, 3), dtype=np.float64)
angle_inc = math.pi * 2.0 / float(no_fids)
for fid in range(no_fids):
fixed_fids[fid] = ([radius * math.cos(angle_inc*fid),
radius * math.sin(angle_inc*fid),
0.0] +
np.random.normal(scale=fixed_stddevs) +
centre)
moving_fids[fid] = ([radius * math.cos(angle_inc*fid),
radius * math.sin(angle_inc*fid),
0.0] +
np.random.normal(scale=moving_stddevs) +
centre)
return fixed_fids, moving_fids
def test_pbr_3_fids():
"""
Tests for tre_from_fle_2d
"""
fixed_fle_std_dev = np.array([1.0, 1.0, 1.0], dtype=np.float64)
moving_fle_std_dev = np.array([0.0, 0.0, 0.0], dtype=np.float64)
fixed_fle_easv = expected_absolute_value(fixed_fle_std_dev)
moving_fle_easv = expected_absolute_value(moving_fle_std_dev)
target = np.array([[0.0, 0.0, 0.0]], dtype=np.float64)
pbr = pbreg.PointBasedRegistration(target, fixed_fle_easv, moving_fle_easv)
centre = np.array([0.0, 0.0, 0.0], dtype=np.float64)
radius = 20.0
tresq_sum = 0
fresq_sum = 0
expected_tre_squared = 0
expected_fre = 0
repeats = 100
np.random.seed(0)
for _ in range(repeats):
fixed_fids, moving_fids = _make_circle_fiducials(3, centre, radius,
fixed_fle_std_dev,
moving_fle_std_dev)
[_success, fre, _mean_fle, expected_tre_squared, expected_fre,
_transformed_target_2d, actual_tre, _no_fids] = pbr.register(
fixed_fids, moving_fids)
tresq_sum += actual_tre*actual_tre
fresq_sum += fre*fre
ave_tresq = tresq_sum/repeats
ave_fresq = fresq_sum/repeats
assert np.isclose(ave_tresq, expected_tre_squared, atol=0.0, rtol=0.10)
assert np.isclose(ave_fresq, expected_fre, atol=0.0, rtol=0.05)
def test_pbr_10_fids():
"""
Tests for tre_from_fle_2d
"""
fixed_fle_std_dev = | np.array([1.0, 1.0, 1.0], dtype=np.float64) | numpy.array |
from keras.preprocessing import image
from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.applications.vgg19 import VGG19
from keras.applications.vgg19 import preprocess_input as vgg_preprocess_input
from keras.models import Model, load_model
from keras.layers import Input
import numpy as np
from moviepy.video.io.VideoFileClip import VideoFileClip
from PIL import Image
import getopt
import sys
sample_fold = './SampleVidImg'
class Extractor():
def __init__(self, weights=None, layer='avg_pool'):
"""Either load pretrained from imagenet, or load our saved
weights from our own training."""
self.weights = weights # so we can check elsewhere which model
if weights is None:
# Get model with pretrained weights.
input_tensor = Input(shape=(299, 299, 3))
base_model = InceptionV3(
input_shape=(299, 299, 3),
weights='imagenet',
include_top=True
)
# We'll extract features at the final pool layer.
self.model = Model(
input=base_model.input,
output=base_model.get_layer(layer).output
)
else:
# Load the model first.
self.model = load_model(weights)
# Then remove the top so we get features not predictions.
# From: https://github.com/fchollet/keras/issues/2371
self.model.layers.pop()
self.model.layers.pop() # two pops to get to pool layer
self.model.outputs = [self.model.layers[-1].output]
self.model.output_layers = [self.model.layers[-1]]
self.model.layers[-1].outbound_nodes = []
def extract(self, image_path):
img = image.load_img(image_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# Get the prediction.
features = self.model.predict(x)
if self.weights is None:
# For imagenet/default network:
features = features[0]
else:
# For loaded network:
features = features[0]
return features
def extract_PIL(self, img):
img = img.resize((299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# Get the prediction.
features = self.model.predict(x)
if self.weights is None:
# For imagenet/default network:
features = features[0]
else:
# For loaded network:
features = features[0]
return features
class VGGExtractor():
def __init__(self, weights=None):
"""Either load pretrained from imagenet, or load our saved
weights from our own training."""
self.weights = weights # so we can check elsewhere which model
if weights is None:
# Get model with pretrained weights.
input_tensor = Input(shape=(224, 224, 3))
base_model = VGG19(weights='imagenet', include_top=True)
# We'll extract features at the final pool layer.
self.model = Model(
input=base_model.input,
output=base_model.layers[-3].output
)
else:
# Load the model first.
self.model = load_model(weights)
# Then remove the top so we get features not predictions.
# From: https://github.com/fchollet/keras/issues/2371
self.model.layers.pop()
self.model.layers.pop()
self.model.layers.pop() # two pops to get to pool layer
self.model.outputs = [self.model.layers[-1].output]
self.model.output_layers = [self.model.layers[-1]]
self.model.layers[-1].outbound_nodes = []
def extract(self, image_path):
img = image.load_img(image_path, target_size=(224, 224))
x = image.img_to_array(img)
x = | np.expand_dims(x, axis=0) | numpy.expand_dims |
from pandas import read_csv
import os
import numpy as np
import csv
basePath = "results/ARIMA/"
datasateBaseName = "ukdale_def"
def save_accuracy_to_csv(values,path,day,seriesName):
if not os.path.isdir(path):
try:
os.mkdir(path)
except OSError:
print("Creation of the directory %s failed" % path)
with open(path + "/" + "accuracy.csv", mode="a+") as csv_file:
lines = csv_file.readlines()
fieldnames = ['mape', 'corr', 'rmse', 'minmax', 'seriesName', 'days']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
if os.stat(path + "/" + "accuracy.csv").st_size == 0:
writer.writerow({'mape':values.get("mape"),'corr':values.get("corr"),'rmse':values.get("rmse"),'minmax':values.get("minmax"), 'seriesName':seriesName, 'days':str(int(day))})
else:
writer.writerow({'mape':values.get("mape"),'corr':values.get("corr"),'rmse':values.get("rmse"),'minmax':values.get("minmax"), 'seriesName':seriesName, 'days':str(int(day))})
# Accuracy metrics
def forecast_accuracy(forecast, actual):
mape = np.mean(np.abs(forecast - actual)/np.abs(actual)) # MAPE
corr = np.corrcoef(forecast, actual)[0,1] # corr
rmse = | np.mean((forecast - actual)**2) | numpy.mean |
# -*- coding: utf-8 -*-
import os
import math
import numpy as np
np.set_printoptions(suppress=True)
import scipy
import scipy.stats
from scipy.fftpack import fft, ifft
from scipy import optimize as opti
from scipy.signal import convolve
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from mpl_axes_aligner import align
import numba
from JPwaptool import JPwaptool
import h5py
from scipy.interpolate import interp1d
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['figure.dpi'] = 300
plt.rcParams['font.size'] = 8
plt.rcParams['lines.markersize'] = 4.0
plt.rcParams['lines.linewidth'] = 1.0
plt.rcParams['mathtext.fontset'] = 'cm'
def xiaopeip(wave, spe_pre, eta=0):
l = len(wave)
flag = 1
lowp = np.argwhere(wave > spe_pre['thres']).flatten()
# lowp = rm_frag(lowp)
if len(lowp) != 0:
fitp = np.arange(lowp.min() - spe_pre['mar_l'], lowp.max() + spe_pre['mar_r'])
fitp = np.unique(np.clip(fitp, 0, len(wave)-1))
pet = lowp - spe_pre['peak_c']
pet = np.unique(np.clip(pet, 0, len(wave)-1))
if len(pet) != 0:
# pwe, ped = xiaopeip_core(wave, spe_pre['spe'], fitp, pet, eta=eta)
pwe = xiaopeip_core(wave, spe_pre['spe'], fitp, pet, eta=eta)
else:
flag = 0
else:
flag = 0
if flag == 0:
pet = np.array([np.argmax(wave[spe_pre['peak_c']:])])
pwe = np.array([1])
# return pet, pwe, ped
return pet, pwe
# def xiaopeip_core(wave, spe, fitp, possible, eta=0):
# l = len(wave)
# spe = np.concatenate([spe, np.zeros(l - spe.shape[0])])
# ans0 = np.zeros(len(possible)+1).astype(np.float64)
# ans0[-1] = wave.min()
# b = np.zeros((len(possible)+1, 2)).astype(np.float64)
# b[-1, 0] = -np.inf
# b[:, 1] = np.inf
# mne = spe[np.mod(fitp.reshape(fitp.shape[0], 1) - possible.reshape(1, possible.shape[0]), l)]
# ans = opti.fmin_l_bfgs_b(norm_fit, ans0, args=(mne, wave[fitp], eta), approx_grad=True, bounds=b, maxfun=500000)
# # ans = opti.fmin_slsqp(norm_fit, ans0, args=(mne, wave[fitp]), bounds=b, iprint=-1, iter=500000)
# # ans = opti.fmin_tnc(norm_fit, ans0, args=(mne, wave[fitp]), approx_grad=True, bounds=b, messages=0, maxfun=500000)
# pf = ans[0]
# return pf[:-1], pf[-1]
# def norm_fit(x, M, y, eta=0):
# return np.power(y - x[-1] - np.matmul(M, x[:-1]), 2).sum() + eta * x.sum()
def xiaopeip_core(wave, spe, fitp, possible, eta=0):
l = len(wave)
spe = np.concatenate([spe, np.zeros(l - spe.shape[0])])
ans0 = np.zeros(len(possible)).astype(np.float64)
b = np.zeros((len(possible), 2)).astype(np.float64)
b[:, 1] = np.inf
mne = spe[np.mod(fitp.reshape(fitp.shape[0], 1) - possible.reshape(1, possible.shape[0]), l)]
try:
ans = opti.fmin_l_bfgs_b(norm_fit, ans0, args=(mne, wave[fitp], eta), approx_grad=True, bounds=b, maxfun=500000)
except ValueError:
ans = [np.ones(len(possible)) * 0.2]
# ans = opti.fmin_slsqp(norm_fit, ans0, args=(mne, wave[fitp]), bounds=b, iprint=-1, iter=500000)
# ans = opti.fmin_tnc(norm_fit, ans0, args=(mne, wave[fitp]), approx_grad=True, bounds=b, messages=0, maxfun=500000)
return ans[0]
def norm_fit(x, M, y, eta=0):
return np.power(y - np.matmul(M, x), 2).sum() + eta * x.sum()
def rm_frag(lowp):
t = np.argwhere(np.diff(lowp) > 1).flatten()
ind = np.vstack((np.insert(t + 1, 0, 0), np.append(t, len(lowp)))).T
slices = [lowp[ind[i][0] : ind[i][1]] for i in range(len(ind))]
t = [slices[i] for i in range(len(slices)) if len(slices[i]) > 1]
if len(t) == 0:
lowp = np.array([])
else:
lowp = np.concatenate((t), axis=0)
return lowp
def lucyddm(waveform, spe_pre, iterations=100):
'''Lucy deconvolution
Parameters
----------
waveform : 1d array
spe : 1d array
point spread function; single photon electron response
iterations : int
Returns
-------
signal : 1d array
References
----------
.. [1] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution
.. [2] https://github.com/scikit-image/scikit-image/blob/master/skimage/restoration/deconvolution.py#L329
'''
moveDelta = 9
spe = np.append(np.zeros(len(spe_pre['spe']) - 2 * moveDelta - 1), np.abs(spe_pre['spe']))
waveform = np.where(waveform < 0, 0.0001, waveform)
waveform = waveform.astype(np.float)
spe = spe.astype(np.float)
waveform = waveform / np.sum(spe)
wave_deconv = np.array(waveform)
spe_mirror = spe[::-1]
for _ in range(iterations):
relative_blur = waveform / convolve(wave_deconv, spe, mode='same')
wave_deconv *= convolve(relative_blur, spe_mirror, mode='same')
# there is no need to set the bound if the spe and the wave are all none negative
return np.arange(0, len(waveform)-moveDelta), wave_deconv[moveDelta:]
def waveformfft(wave, spe_pre):
length = len(wave)
spefft = fft(spe_pre['spe'], 2*length)
wavef = fft(wave, 2*length)
wavef[(length-int(length*0.7)):(length+int(length*0.7))] = 0
signalf = np.true_divide(wavef, spefft)
recon = np.real(ifft(signalf, 2*length))
return np.arange(length), recon[:length]
def threshold(wave, spe_pre):
pet = np.argwhere(wave[spe_pre['peak_c']:] > spe_pre['thres'] * 2).flatten()
pwe = wave[spe_pre['peak_c']:][pet]
pwe = pwe / pwe.sum() * np.abs(wave.sum()) / spe_pre['spe'].sum()
if len(pet) == 0:
pet = np.array([np.argmax(wave[spe_pre['peak_c']:])])
pwe = np.array([1])
return pet, pwe
def read_model(spe_path):
with h5py.File(spe_path, 'r', libver='latest', swmr=True) as speFile:
cid = speFile['SinglePE'].attrs['ChannelID']
epulse = speFile['SinglePE'].attrs['Epulse']
spe = speFile['SinglePE'].attrs['SpePositive']
thres = speFile['SinglePE'].attrs['Thres']
spe_pre = {}
fig = plt.figure()
fig.tight_layout()
ax = fig.add_subplot(111)
for i in range(len(spe)):
peak_c = np.argmax(spe[i]); t = np.argwhere(spe[i][peak_c:] < 0.1).flatten()[0] + peak_c
mar_l = np.sum(spe[i][:peak_c] < thres[i])
mar_r = np.sum(spe[i][peak_c:t] < thres[i])
spe_pre_i = {'spe':spe[i], 'epulse':epulse, 'peak_c':peak_c, 'mar_l':mar_l, 'mar_r':mar_r, 'thres':thres[i]}
spe_pre.update({cid[i]:spe_pre_i})
ax.plot(spe_pre[cid[i]]['spe'])
ax.grid()
ax.set_xlabel('$Time/\mathrm{ns}$')
ax.set_ylabel('$Voltage/\mathrm{mV}$')
fig.savefig('img/spe.png', bbox_inches='tight')
plt.close()
return spe_pre
def clip(pet, pwe, thres):
if len(pet[pwe > thres]) == 0:
pet = np.array([pet[np.argmax(pwe)]])
pwe = np.array([1])
else:
pet = pet[pwe > thres]
pwe = pwe[pwe > thres]
return pet, pwe
def snip_baseline(waveform, itera=20):
wm = np.min(waveform)
waveform = waveform - wm
v = np.log(np.log(np.sqrt(waveform+1)+1)+1)
N = waveform.shape[0]
for i in range(itera):
v[i:N-i] = np.minimum(v[i:N-i], (v[:N-2*i] + v[2*i:])/2)
w = np.power(np.exp(np.exp(v) - 1) - 1, 2) - 1 + wm
return w
def demo(pet, pwe, tth, spe_pre, leng, wave, cid, mode, full=False):
penum = len(tth)
print('PEnum is {}'.format(penum))
pf0 = np.zeros(leng); pf1 = np.zeros(leng)
if mode == 'Weight':
tru_pet = tth['RiseTime']
t, c = np.unique(tru_pet, return_counts=True)
pf0[t] = c
pf1[pet] = pwe
xlabel = '$PEnum/\mathrm{1}$'
distd = '(W/ns,P/1)'; distl = 'pdist'
Q = penum; q = np.sum(pwe)
edist = np.abs(Q - q) * scipy.stats.poisson.pmf(Q, Q)
elif mode == 'Charge':
t = tth['RiseTime']; w = tth[mode]
t = np.unique(t)
c = np.array([ | np.sum(w[tth['RiseTime'] == i]) | numpy.sum |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from sklearn import datasets
import flash
from flash.core.classification import Labels
from flash.template import TemplateData, TemplateSKLearnClassifier
# 1. Download the data
data_bunch = datasets.load_iris()
# 2. Load the data
datamodule = TemplateData.from_sklearn(
train_bunch=data_bunch,
val_split=0.8,
)
# 3. Build the model
model = TemplateSKLearnClassifier(
num_features=datamodule.num_features,
num_classes=datamodule.num_classes,
serializer=Labels(),
)
# 4. Create the trainer.
trainer = flash.Trainer(max_epochs=1, limit_train_batches=1, limit_val_batches=1)
# 5. Train the model
trainer.fit(model, datamodule=datamodule)
# 6. Save it!
trainer.save_checkpoint("template_model.pt")
# 7. Classify a few examples
predictions = model.predict([
np.array([4.9, 3.0, 1.4, 0.2]),
| np.array([6.9, 3.2, 5.7, 2.3]) | numpy.array |
from numba import njit
import numpy as np
from .utils import (
_choice,
_logsumexp,
_check_array_sums_to_1,
_check_random_state,
_argmax,
check_sequences,
)
__all__ = ["HMM"]
class HMM:
"""Discrete Hidden Markov Model.
The number of hidden and observable states are determined by the shapes
of the probability matrices passed as parameters.
Parameters
----------
init_probas : array-like of shape (n_hidden_states,)
The initial probabilities.
transitions : array-like of shape (n_hidden_states, n_hidden_states)
The transition probabilities. ``transitions[i, j] = P(st+1 = j / st = i)``.
emissions : array-like of shape (n_hidden_states, n_observable_states)
The probabilities of symbol emission. ``emissions[i, o] = P(Ot = o /
st = i)``.
n_iter : int, default=10
Number of iterations to run for the EM algorithm (in ``fit()``).
"""
def __init__(self, init_probas, transitions, emissions, n_iter=10):
self.init_probas = np.array(init_probas, dtype=np.float64)
self.transitions = np.array(transitions, dtype=np.float64)
self.emissions = np.array(emissions, dtype=np.float64)
self.n_iter = n_iter
self.n_hidden_states = self.A.shape[0]
self.n_observable_states = self.B.shape[1]
if not (
self.A.shape[0] == self.A.shape[1] == self.pi.shape[0] == self.B.shape[0]
):
raise ValueError("inconsistent number of hidden states.")
self._check_matrices_conditioning()
def log_likelihood(self, sequences):
"""Compute log-likelihood of sequences.
Parameters
----------
sequences : array-like of shape (n_seq, n_obs) or list (or numba typed list) \
of iterables of variable length
The sequences of observable states
Returns
-------
log_likelihood : array of shape (n_seq,)
"""
total_log_likelihood = 0
sequences, n_obs_max = check_sequences(sequences, return_longest_length=True)
log_alpha = np.empty(shape=(self.n_hidden_states, n_obs_max), dtype=np.float32)
for seq in sequences:
total_log_likelihood += self._forward(seq, log_alpha)
return total_log_likelihood
def decode(self, sequences, return_log_probas=False):
"""Decode sequences with Viterbi algorithm.
Given a sequence of observable states, return the sequence of hidden
states that most-likely generated the input.
Parameters
----------
sequences : array-like of shape (n_seq, n_obs) or list (or numba typed list) \
of iterables of variable length
The sequences of observable states
return_log_probas : bool, default=False
If True, log-probabilities of the joint sequences of observable and
hidden states are returned
Returns
-------
best_paths : ndarray of shape (n_seq, n_obs) or list of ndarray of \
variable length
The most likely sequences of hidden states.
log_probabilities : ndarray of shape (n_seq,)
log-probabilities of the joint sequences of observable and hidden
states. Only present if ``return_log_probas`` is True.
"""
sequences, n_obs_max = check_sequences(sequences, return_longest_length=True)
hidden_states_sequences = []
log_probas = []
log_V = np.empty(shape=(self.n_hidden_states, n_obs_max), dtype=np.float32)
back_path = np.empty(shape=(self.n_hidden_states, n_obs_max), dtype=np.int32)
for seq in sequences:
n_obs = seq.shape[0]
self._viterbi(seq, log_V, back_path)
best_path = np.empty(n_obs, dtype=np.int32)
log_proba = _get_best_path(log_V, back_path, best_path)
hidden_states_sequences.append(best_path)
if return_log_probas:
log_probas.append(log_proba)
if isinstance(sequences, np.ndarray):
# All sequences have the same length
hidden_states_sequences = np.array(hidden_states_sequences)
if return_log_probas:
return hidden_states_sequences, np.array(log_probas)
else:
return hidden_states_sequences
def sample(self, n_seq=10, n_obs=10, random_state=None):
"""Sample sequences of hidden and observable states.
Parameters
----------
n_seq : int, default=10
Number of sequences to sample
n_obs : int, default=10
Number of observations per sequence
random_state: int or np.random.RandomState instance, default=None
Controls the RNG, see `scikt-learn glossary
<https://scikit-learn.org/stable/glossary.html#term-random-state>`_
for details.
Returns
-------
hidden_states_sequences : ndarray of shape (n_seq, n_obs)
observable_states_sequences : ndarray of shape (n_seq, n_obs)
"""
# TODO: allow n_obs_max
rng = _check_random_state(random_state)
sequences = np.array(
[
_sample_one(n_obs, self.pi, self.A, self.B, seed=rng.tomaxint())
for _ in range(n_seq)
]
)
# Unzip array of (hidden_states, observation) into tuple of arrays
sequences = sequences.swapaxes(0, 1)
return sequences[0], sequences[1]
def fit(self, sequences):
"""Fit model to sequences.
The probabilities matrices ``init_probas``, ``transitions`` and
``emissions`` are estimated with the EM algorithm.
Parameters
----------
sequences : array-like of shape (n_seq, n_obs) or list (or numba typed list) \
of iterables of variable length
The sequences of observable states
Returns
-------
self : HMM instance
"""
sequences, n_obs_max = check_sequences(sequences, return_longest_length=True)
log_alpha = np.empty(shape=(self.n_hidden_states, n_obs_max))
log_beta = np.empty(shape=(self.n_hidden_states, n_obs_max))
# E[i, j, t] = P(st = i, st+1 = j / O, lambda)
log_E = np.empty(
shape=(self.n_hidden_states, self.n_hidden_states, n_obs_max - 1)
)
# g[i, t] = P(st = i / O, lambda)
log_gamma = np.empty(shape=(self.n_hidden_states, n_obs_max))
for _ in range(self.n_iter):
self.pi, self.A, self.B = _do_EM_step(
sequences,
self._log_pi,
self._log_A,
self._log_B,
log_alpha,
log_beta,
log_E,
log_gamma,
)
self._check_matrices_conditioning()
return self
def _viterbi(self, seq, log_V, back_path):
# dummy wrapper for conveniency
_viterbi(seq, self._log_pi, self._log_A, self._log_B, log_V, back_path)
def _forward(self, seq, log_alpha):
# dummy wrapper for conveniency
return _forward(seq, self._log_pi, self._log_A, self._log_B, log_alpha)
def _backward(self, seq, log_beta):
# dummy wrapper for conveniency
return _backward(seq, self._log_pi, self._log_A, self._log_B, log_beta)
def _check_matrices_conditioning(self):
_check_array_sums_to_1(self.pi, "init_probas")
for s in range(self.n_hidden_states):
_check_array_sums_to_1(self.A[s], f"Row {s} of A")
_check_array_sums_to_1(self.B[s], f"Row {s} of B")
# pi, A and B are respectively init_probas, transitions and emissions
# matrices. _log_pi, _log_A and _log_B are updated each time pi, A, or B
# are updated, respectively. Consider these private (and bug-prone :)),
# Updating transitions would not update _log_A.
@property
def pi(self):
return self.init_probas
@pi.setter
def pi(self, value):
self.init_probas = value
self._recompute_log_pi = True
@property
def _log_pi(self):
if getattr(self, "_recompute_log_pi", True):
self.__log_pi = np.log(self.pi)
self._recompute_log_pi = False
return self.__log_pi
@property
def A(self):
return self.transitions
@A.setter
def A(self, value):
self.transitions = value
self._recompute_log_A = True
@property
def _log_A(self):
if getattr(self, "_recompute_log_A", True):
self.__log_A = np.log(self.A)
self._recompute_log_A = False
return self.__log_A
@property
def B(self):
return self.emissions
@B.setter
def B(self, value):
self.emissions = value
self._recompute_log_B = True
@property
def _log_B(self):
if getattr(self, "_recompute_log_B", True):
self.__log_B = np.log(self.B)
self._recompute_log_B = False
return self.__log_B
@njit(cache=True)
def _sample_one(n_obs, pi, A, B, seed):
"""Return (observations, hidden_states) sample"""
np.random.seed(seed) # local to this numba function, not global numpy
observations = []
hidden_states = []
s = _choice(pi)
for _ in range(n_obs):
hidden_states.append(s)
obs = _choice(B[s])
observations.append(obs)
s = _choice(A[s])
return hidden_states, observations
@njit(cache=True)
def _forward(seq, log_pi, log_A, log_B, log_alpha):
"""Fill log_alpha array with log probabilities, return log-likelihood"""
# alpha[i, t] = P(O1, ... Ot, st = i / lambda)
# reccursion is alpha[i, t] = B[i, Ot] * sumj(alpha[j, t - 1] * A[i, j])
# which becomes (when applying log)
# log_alpha[i, t] = log(B[i, Ot]) +
# logsum_jexp(log_alpha[j, t - 1] + _log_A[i, j])
# since log(sum(ai . bj)) =
# log(sum(exp(log_ai + log_bi)))
n_obs = len(seq)
n_hidden_states = log_pi.shape[0]
log_alpha[:, 0] = log_pi + log_B[:, seq[0]]
buffer = | np.empty(shape=n_hidden_states) | numpy.empty |
import numpy as np
import torch
from torch.autograd import Variable
from stats.tensor import tensor
def fit(pdfs, parameters, observations, iter, lr):
"""Estimates the parameters of a mixture model via maximum likelihood maximization.
Uses gradient descent for optimization.
Parameters
----------
pdfs : List of callable pdfs
Callable probability density functions (likelihood function)
expecting an array of observations as the only argument.
parameters : List of list
List of list of parameters that are subject to optimization.
e.g. for a bimodal gaussian mixture: [[mu_1, sigma_1], [mu_2, sigma_2]]
observations : ndarray
Observations from an unknown pdf which parameters are subject to be estimated
iter : float
Maximum number of iterations
lr : float
Gradient descent learning rate
Returns
-------
"""
# number of models/classes in mixture
K = len(parameters)
# initialize mixing coefficients with random values
mixcoeffs = np.random.rand(K)
mixcoeffs /= np.sum(mixcoeffs)
# make the coefficients visible to the update step
for k in range(K):
mixcoeff = Variable(tensor(mixcoeffs[k]), requires_grad=True)
parameters[k].append(mixcoeff)
for i in range(iter):
likelihood = 0
for k in range(K):
# multiply the likelihood with the mixing coefficients
# mixing coefficient: p(z_k = 1)
p_z = parameters[k][-1].expand(observations.size())
likelihood += pdfs[k](observations) * p_z
expectation = torch.mean(torch.log(likelihood))
# add constraint sum(mixcoeffs) = 1 via lagrange multiplier
for k in range(K):
expectation -= 1.0 * parameters[k][-1]
expectation += 1.0 # c = 1
if np.isnan(expectation.data[0]):
raise RuntimeError('Singular state. Try different initial parameters')
# Determine gradients
expectation.backward()
# Update parameters with gradient descent
for k in range(K):
for param in parameters[k]:
param.data.add_(lr * param.grad.data)
param.grad.data.zero_()
return expectation.data[0]
if __name__ == '__main__':
from stats.distributions import Normal
"""
Estimate mean and std of a gaussian mixture model via MixtureModel-MLE on Kx10000 observations
"""
| np.random.seed(0) | numpy.random.seed |
import random
#from skimage import io
import numpy as np
from glob import glob
import SimpleITK as sitk
from keras.utils import np_utils
class Pipeline(object):
def __init__(self, list_train ,Normalize=True):
self.scans_train = list_train
self.train_im=self.read_scans(Normalize)
def read_scans(self,Normalize):
train_im=[]
for i in range(len( self.scans_train)):
#if i%10==0:
# print('iteration [{}]'.format(i))
#print(len(self.scans_train[i]))
flair = glob( self.scans_train[i] + '/*_flair.nii.gz')
t2 = glob( self.scans_train[i] + '/*_t2.nii.gz')
gt = glob( self.scans_train[i] + '/*_seg.nii.gz')
t1 = glob( self.scans_train[i] + '/*_t1.nii.gz')
t1c = glob( self.scans_train[i] + '/*_t1ce.nii.gz')
t1s=[scan for scan in t1 if scan not in t1c]
#print(len(flair)+len(t2)+len(gt)+len(t1s)+len(t1c))
if (len(flair)+len(t2)+len(gt)+len(t1s)+len(t1c))<5:
print("there is a problem here!!! the problem lies in this patient :", self.scans_train[i])
continue
scans = [flair[0], t1s[0], t1c[0], t2[0], gt[0]]
#read a volume composed of 4 modalities
tmp = [sitk.GetArrayFromImage(sitk.ReadImage(scans[k])) for k in range(len(scans))]
#crop each volume to have a size of (146,192,152) to discard some unwanted background and thus save some computational power ;)
z0=1
y0=29
x0=42
z1=147
y1=221
x1=194
tmp=np.array(tmp)
tmp=tmp[:,z0:z1,y0:y1,x0:x1]
#normalize each slice
if Normalize==True:
tmp=self.norm_slices(tmp)
train_im.append(tmp)
del tmp
#print(np.array(train_im).shape)
return np.array(train_im)
def sample_patches_randomly(self, num_patches, d , h , w ):
'''
INPUT:
num_patches : the total number of samled patches
d : this correspnds to the number of channels which is ,in our case, 4 MRI modalities
h : height of the patch
w : width of the patch
OUTPUT:
patches : np array containing the randomly sampled patches
labels : np array containing the corresping target patches
'''
patches, labels = [], []
count = 0
#swap axes to make axis 0 represents the modality and axis 1 represents the slice. take the ground truth
gt_im = np.swapaxes(self.train_im, 0, 1)[4]
#print(gt_im.shape)
#take flair image as mask
msk = np.swapaxes(self.train_im, 0, 1)[0]
#save the shape of the grounf truth to use it afterwards
tmp_shp = gt_im.shape
#reshape the mask and the ground truth to 1D array
gt_im = gt_im.reshape(-1).astype(np.uint8)
msk = msk.reshape(-1).astype(np.float32)
# maintain list of 1D indices while discarding 0 intensities
indices = np.squeeze(np.argwhere((msk!=-9.0) & (msk!=0.0)))
del msk
# shuffle the list of indices of the class
np.random.shuffle(indices)
#reshape gt_im
gt_im = gt_im.reshape(tmp_shp)
#a loop to sample the patches from the images
i = 0
pix = len(indices)
while (count<num_patches) and (pix>i):
#randomly choose an index
ind = indices[i]
i+= 1
#reshape ind to 3D index
ind = np.unravel_index(ind, tmp_shp)
# get the patient and the slice id
patient_id = ind[0]
slice_idx=ind[1]
p = ind[2:]
#construct the patch by defining the coordinates
p_y = (p[0] - (h)/2, p[0] + (h)/2)
p_x = (p[1] - (w)/2, p[1] + (w)/2)
p_x=list(map(int,p_x))
p_y=list(map(int,p_y))
#take patches from all modalities and group them together
tmp = self.train_im[patient_id][0:4, slice_idx,p_y[0]:p_y[1], p_x[0]:p_x[1]]
#take the coresponding label patch
lbl=gt_im[patient_id,slice_idx,p_y[0]:p_y[1], p_x[0]:p_x[1]]
#keep only paches that have the desired size
if tmp.shape != (d, h, w) :
continue
patches.append(tmp)
labels.append(lbl)
count+=1
patches = np.array(patches)
labels=np.array(labels)
return patches, labels
def norm_slices(self,slice_not):
'''
normalizes each slice , excluding gt
subtracts mean and div by std dev for each slice
clips top and bottom one percent of pixel intensities
'''
normed_slices = np.zeros((5, 146, 192, 152)).astype(np.float32)
for slice_ix in range(4):
normed_slices[slice_ix] = slice_not[slice_ix]
for mode_ix in range(146):
normed_slices[slice_ix][mode_ix] = self._normalize(slice_not[slice_ix][mode_ix])
normed_slices[-1]=slice_not[-1]
return normed_slices
def _normalize(self,slice):
'''
input: unnormalized slice
OUTPUT: normalized clipped slice
'''
b = np.percentile(slice, 99)
t = np.percentile(slice, 1)
slice = np.clip(slice, t, b)
image_nonzero = slice[np.nonzero(slice)]
if np.std(slice)==0 or np.std(image_nonzero) == 0:
return slice
else:
tmp= (slice - np.mean(image_nonzero)) / np.std(image_nonzero)
#since the range of intensities is between 0 and 5000 ,the min in the normalized slice corresponds to 0 intensity in unnormalized slice
#the min is replaced with -9 just to keep track of 0 intensities so that we can discard those intensities afterwards when sampling random patches
tmp[tmp==tmp.min()]=-9
return tmp
'''
def save_image_png (img,output_file="img.png"):
"""
save 2d image to disk in a png format
"""
img=np.array(img).astype(np.float32)
if np.max(img) != 0:
img /= np.max(img) # set values < 1
if np.min(img) <= -1: # set values > -1
img /= abs(np.min(img))
io.imsave(output_file, img)
'''
'''
def concatenate ():
concatenate two parts into one dataset
this can be avoided if there is enough RAM as we can directly from the whole dataset
Y_labels_2=np.load("y_dataset_second_part.npy").astype(np.uint8)
X_patches_2=np.load("x_dataset_second_part.npy").astype(np.float32)
Y_labels_1=np.load("y_dataset_first_part.npy").astype(np.uint8)
X_patches_1=np.load("x_dataset_first_part.npy").astype(np.float32)
#concatenate both parts
X_patches=np.concatenate((X_patches_1, X_patches_2), axis=0)
Y_labels=np.concatenate((Y_labels_1, Y_labels_2), axis=0)
del Y_labels_2,X_patches_2,Y_labels_1,X_patches_1
#shuffle the whole dataset
shuffle = list(zip(X_patches, Y_labels))
np.random.seed(138)
np.random.shuffle(shuffle)
X_patches = np.array([shuffle[i][0] for i in range(len(shuffle))])
Y_labels = np.array([shuffle[i][1] for i in range(len(shuffle))])
del shuffle
np.save( "x_training.npy",X_patches.astype(np.float32) )
np.save( "y_training.npy",Y_labels.astype(np.uint8))
#np.save( "x_valid",X_patches_valid.astype(np.float32) )
#np.save( "y_valid",Y_labels_valid.astype(np.uint8))
'''
def whole_return(val = False):
while True:
try:
if val == True:
path_all = glob('/home/parth/Interpretable_ML/BraTS_2018/val/**')
else:
path_all = glob('/home/parth/Interpretable_ML/BraTS_2018/train/**')
index = random.randint(0, len(path_all)+1)
#print(path_all[index])
| np.random.shuffle(path_all) | numpy.random.shuffle |
"""Test suite for lusmu.vector
Copyright 2013 Eniram Ltd. See the LICENSE file at the top-level directory of
this distribution and at https://github.com/akaihola/lusmu/blob/master/LICENSE
"""
import tempfile
from unittest import TestCase
from mock import patch
import joblib
from nose.tools import assert_raises, eq_
import numpy as np
import pandas as pd
from lusmu.core import DIRTY
from lusmu.tests.test_core import (NoOutputTypeAction,
NoneOutputTypeAction,
IntOutputTypeAction)
from lusmu.vector import Input
from lusmu import vector
from lusmu.tests.tools import parameterize
def sum(*args):
return sum(args)
class VectorEq(vector.VectorEquality):
"""Mock node class implementing the vector equality test"""
def __init__(self, value):
self._value = value
def test_scalar_equality():
"""Test cases for lusmu.vector.VectorEq._value_eq() with Python scalars"""
@parameterize
def check(value, other_value, expected):
"""Scalar node value {0} == {1}: {2}"""
# pylint: disable=W0212
# Access to a protected member of a client class
vector = VectorEq(value)
assert expected == vector._value_eq(other_value)
yield check(DIRTY, DIRTY, True)
yield check(DIRTY, 0, False)
yield check(0, 0, True)
yield check(0, 1, False)
yield check(0, 0.0, False)
yield check(0, 1.0, False)
yield check(0.0, 0.0, True)
yield check(0.0, 1.0, False)
yield check('a', 'a', True)
yield check('a', 'b', False)
def test_numpy_vector_equality():
"""Test cases for lusmu.vector.VectorEq._value_eq() with numpy arrays"""
@parameterize
def check(value, other_value, expected):
"""Vector node value {0} == {1}: {2}"""
# pylint: disable=W0212
# Access to a protected member of a client class
vector = VectorEq( | np.array(value) | numpy.array |
import numpy as np
from meshparty import utils
from scipy import spatial, sparse
from dataclasses import dataclass, fields, asdict, make_dataclass
try:
from pykdtree.kdtree import KDTree as pyKDTree
except:
pyKDTree = spatial.cKDTree
from meshparty import skeleton_io
from collections.abc import Iterable
from .skeleton_utils import resample_path
def _metadata_from_dict(
meta_dict,
dataclass_name="MetaMetadata",
):
meta = make_dataclass(dataclass_name, fields=meta_dict.keys())
return meta(**meta_dict)
@dataclass
class SkeletonMetadata:
root_id: int = None
soma_pt_x: float = None
soma_pt_y: float = None
soma_pt_z: float = None
soma_radius: float = None
collapse_soma: bool = None
collapse_function: str = None
invalidation_d: float = None
smooth_vertices: bool = None
compute_radius: bool = None
shape_function: str = None
smooth_iterations: int = None
smooth_neighborhood: int = None
smooth_r: float = None
cc_vertex_thresh: int = None
remove_zero_length_edges: bool = None
collapse_params: dict = None
timestamp: float = None
skeleton_type: str = None
meta: object = None
# Fields used for skeletonization
_skeletonize_fields = [
"soma_pt",
"soma_radius",
"collapse_soma",
"collapse_function",
"invalidation_d",
"smooth_vertices",
"compute_radius",
"shape_function",
"smooth_iterations",
"smooth_neighborhood",
"smooth_r",
"cc_vertex_thresh",
"remove_zero_length_edges",
"collapse_params",
]
def __init__(self, **kwargs):
names = [f.name for f in fields(self)]
if kwargs.get("meta") is not None:
setattr(
self, "meta", _metadata_from_dict(kwargs.pop("meta"), "MetaMetadata")
)
for k, v in kwargs.items():
if k in names:
if isinstance(v, np.ndarray):
v = v.tolist()
setattr(self, k, v)
def skeletonize_kwargs(self):
params = asdict(self)
# reassemble soma point into list
soma_pt = [
params.pop("soma_pt_x"),
params.pop("soma_pt_y"),
params.pop("soma_pt_z"),
]
if soma_pt[0] is not None:
params["soma_pt"] = soma_pt
else:
params["soma_pt"] = None
for k in list(params.keys()):
if k not in self._skeletonize_fields:
params.pop(k)
return params
def update_metameta(self, metameta):
if self.meta is not None:
meta_dict = asdict(self.meta)
else:
meta_dict = {}
meta_dict.update(metameta)
setattr(self, "meta", _metadata_from_dict(meta_dict, "MetaMetadata"))
pass
class StaticSkeleton:
def __init__(
self,
vertices,
edges,
root=None,
radius=None,
mesh_to_skel_map=None,
mesh_index=None,
vertex_properties=None,
voxel_scaling=None,
):
self._vertices = vertices
self._edges = edges
self._root = None
self._radius = radius
self._mesh_to_skel_map = mesh_to_skel_map
self._mesh_index = mesh_index
self._parent_node_array = None
self._distance_to_root = None
self._csgraph = None
self._csgraph_binary = None
self._voxel_scaling = voxel_scaling
if root is None:
self._create_default_root()
else:
self.reroot(root, reset_other_components=True)
self._reset_derived_properties()
self.vertex_properties = vertex_properties
@property
def vertices(self):
return self._vertices
@property
def edges(self):
return self._edges
@property
def mesh_to_skel_map(self):
return self._mesh_to_skel_map
@property
def voxel_scaling(self):
if self._voxel_scaling is None:
return None
else:
return np.array(self._voxel_scaling)
@voxel_scaling.setter
def voxel_scaling(self, new_scaling):
self._vertices = self._vertices * self.inverse_voxel_scaling
if new_scaling is not None:
self._vertices = self._vertices * np.array(new_scaling).reshape(3)
self._voxel_scaling = new_scaling
self._reset_derived_properties()
@property
def inverse_voxel_scaling(self):
if self.voxel_scaling is None:
return np.array([1, 1, 1])
else:
return 1 / self.voxel_scaling
@property
def n_vertices(self):
""" int : Number of vertices in the skeleton """
return len(self.vertices)
@property
def root(self):
""" int : Index of the skeleton root """
if self._root is None:
self._create_default_root()
return self._root
@property
def radius(self):
if self._radius is None:
return None
else:
return self._radius
@radius.setter
def radius(self, new_values):
if len(new_values) == self.n_vertices:
self._radius = np.array(new_values).reshape(self.n_vertices)
@property
def mesh_index(self):
return self._mesh_index
def _create_default_root(self):
temp_graph = utils.create_csgraph(
self.vertices, self.edges, euclidean_weight=True, directed=False
)
r = utils.find_far_points_graph(temp_graph)
self.reroot(int(r[0]), reset_other_components=True)
def reroot(self, new_root, reset_other_components=False):
"""Change the skeleton root index.
Parameters
----------
new_root : Int
Skeleton vertex index to be the new root.
reset_other_components : Bool
Orders non-root components accoring to a local default "root".
Should not often be set to True by a user.
"""
if new_root > self.n_vertices:
raise ValueError("New root must correspond to a skeleton vertex index")
self._root = int(new_root)
self._parent_node_array = np.full(self.n_vertices, None)
_, lbls = sparse.csgraph.connected_components(self.csgraph_binary)
root_comp = lbls[new_root]
if reset_other_components:
comps_to_reroot = np.unique(lbls)
else:
comps_to_reroot = [root_comp]
# The edge list has to be treated like an undirected graph
for comp in comps_to_reroot:
if comp == root_comp:
comp_root = new_root
else:
comp_root = utils.find_far_points_graph(
self.csgraph_binary,
start_ind=np.flatnonzero(lbls == comp)[0],
multicomponent=True,
)[0]
d = sparse.csgraph.dijkstra(
self.csgraph_binary, directed=False, indices=comp_root
)
# Make edges in edge list orient as [child, parent]
# Where each child only has one parent
# And the root has no parent. (Thus parent is closer than child)
edge_slice = np.any(
np.isin(self.edges, np.flatnonzero(lbls == comp)), axis=1
)
edges = self.edges[edge_slice]
is_ordered = d[edges[:, 0]] > d[edges[:, 1]]
e1 = np.where(is_ordered, edges[:, 0], edges[:, 1])
e2 = np.where(is_ordered, edges[:, 1], edges[:, 0])
self._edges[edge_slice] = np.stack((e1, e2)).T
self._parent_node_array[e1] = e2
self._reset_derived_properties()
######################
# Derived properties #
######################
def _reset_derived_properties(self):
self._csgraph = None
self._csgraph_binary = None
self._distance_to_root = None
@property
def csgraph(self):
if self._csgraph is None:
self._csgraph = utils.create_csgraph(
self.vertices, self.edges, euclidean_weight=True, directed=True
)
return self._csgraph
@property
def csgraph_binary(self):
if self._csgraph_binary is None:
self._csgraph_binary = utils.create_csgraph(
self.vertices, self.edges, euclidean_weight=False, directed=True
)
return self._csgraph_binary
@property
def csgraph_undirected(self):
return self.csgraph + self.csgraph.T
@property
def csgraph_binary_undirected(self):
return self.csgraph_binary + self.csgraph_binary.T
def parent_nodes(self, vinds):
"""Get a list of parent nodes for specified vertices
Parameters
----------
vinds : Collection of ints
Collection of vertex indices
Returns
-------
numpy.array
The parent node of each vertex index in vinds.
"""
if isinstance(vinds, list):
vinds = np.array(vinds)
return self._parent_node_array[vinds]
@property
def distance_to_root(self):
"""np.array : N length array with the distance to the root node along the skeleton."""
if self._distance_to_root is None:
self._distance_to_root = sparse.csgraph.dijkstra(
self.csgraph, directed=False, indices=self.root
)
return self._distance_to_root
def path_to_root(self, v_ind):
"""
Gives the path to root from a specified vertex.
Parameters
----------
v_ind : int
Vertex index
Returns
-------
numpy.array : Ordered set of indices from v_ind to root, inclusive of both.
"""
path = [v_ind]
ind = v_ind
ind = self._parent_node_array[ind]
while ind is not None:
path.append(ind)
ind = self._parent_node_array[ind]
return np.array(path)
class Skeleton:
def __init__(
self,
vertices,
edges,
root=None,
radius=None,
mesh_to_skel_map=None,
mesh_index=None,
vertex_properties={},
node_mask=None,
voxel_scaling=None,
remove_zero_length_edges=True,
skeleton_index=None,
meta={},
):
if remove_zero_length_edges:
zlsk = utils.collapse_zero_length_edges(
vertices,
edges,
root,
radius,
mesh_to_skel_map,
mesh_index,
node_mask,
vertex_properties,
)
(
vertices,
edges,
root,
radius,
mesh_to_skel_map,
mesh_index,
node_mask,
vertex_properties,
) = zlsk
self._rooted = StaticSkeleton(
vertices,
edges,
radius=radius,
mesh_to_skel_map=mesh_to_skel_map,
mesh_index=mesh_index,
vertex_properties=vertex_properties,
root=root,
voxel_scaling=voxel_scaling,
)
self._node_mask = np.full(self._rooted.n_vertices, True)
self._edges = None
self._SkeletonIndex = skeleton_index
# Derived properties of the filtered graph
self._csgraph_filtered = None
self._cover_paths = None
self._segments = None
self._segment_map = None
self._kdtree = None
self._pykdtree = None
self._reset_derived_properties_filtered()
self.vertex_properties = vertex_properties
if isinstance(meta, SkeletonMetadata):
self._meta = meta
else:
self._meta = SkeletonMetadata(**meta)
if node_mask is not None:
self.apply_mask(node_mask, in_place=True)
@property
def meta(self):
return self._meta
###################
# Mask properties #
###################
@property
def SkeletonIndex(self):
if self._SkeletonIndex is None:
self._SkeletonIndex = np.array
return self._SkeletonIndex
def _register_skeleton_index(self, NewSkeletonIndex):
self._SkeletonIndex = NewSkeletonIndex
@property
def node_mask(self):
return self._node_mask
def copy(self):
return Skeleton(
self._rooted.vertices,
self._rooted.edges,
mesh_to_skel_map=self._rooted.mesh_to_skel_map,
vertex_properties=self._rooted.vertex_properties,
root=self._rooted.root,
node_mask=self.node_mask,
radius=self._rooted.radius,
voxel_scaling=self.voxel_scaling,
skeleton_index=self._SkeletonIndex,
mesh_index=self._rooted.mesh_index,
remove_zero_length_edges=False,
meta=self.meta,
)
def apply_mask(self, new_mask, in_place=False):
if in_place:
sk = self
else:
sk = self.copy()
if len(new_mask) == len(sk.vertices):
all_false = np.full(len(sk.node_mask), False)
all_false[sk.node_mask] = new_mask
new_mask = all_false
sk._node_mask = new_mask
sk._reset_derived_properties_filtered()
if in_place is False:
return sk
def reset_mask(self, in_place=False):
true_mask = np.full(self.unmasked_size, True)
out = self.apply_mask(true_mask, in_place=in_place)
if in_place is False:
return out
def mask_from_indices(self, mask_indices):
new_mask = np.full(self._rooted.n_vertices, False)
new_mask[self.map_indices_to_unmasked(mask_indices)] = True
return new_mask
@property
def indices_unmasked(self):
"""
np.array: Gets the indices of nodes in the filtered mesh in the unmasked index array
"""
return np.flatnonzero(self.node_mask)
@property
def unmasked_size(self):
return len(self._rooted.vertices)
def map_indices_to_unmasked(self, unmapped_indices):
"""
For a set of masked indices, returns the corresponding unmasked indices
Parameters
----------
unmapped_indices: np.array
a set of indices in the masked index space
Returns
-------
np.array
the indices mapped back to the original mesh index space
"""
return utils.map_indices_to_unmasked(self.indices_unmasked, unmapped_indices)
def map_boolean_to_unmasked(self, unmapped_boolean):
"""
For a boolean index in the masked indices, returns the corresponding unmasked boolean index
Parameters
----------
unmapped_boolean : np.array
a bool array in the masked index space
Returns
-------
np.array
a bool array in the original index space. Is True if the unmapped_boolean suggests it should be.
"""
return utils.map_boolean_to_unmasked(
self.unmasked_size, self.node_mask, unmapped_boolean
)
def filter_unmasked_boolean(self, unmasked_boolean):
"""
For an unmasked boolean slice, returns a boolean slice filtered to the masked mesh
Parameters
----------
unmasked_boolean : np.array
a bool array in the original mesh index space
Returns
-------
np.array
returns the elements of unmasked_boolean that are still relevant in the masked index space
"""
return utils.filter_unmasked_boolean(self.node_mask, unmasked_boolean)
def filter_unmasked_indices(self, unmasked_shape, mask=None):
"""
filters a set of indices in the original mesh space
and returns it in the masked space
Parameters
----------
unmasked_shape: np.array
a set of indices into vertices in the unmasked index space
mask: np.array or None
the mask to apply. default None will use this Mesh node_mask
Returns
-------
np.array
the unmasked_shape indices mapped into the masked index space
"""
if mask is None:
mask = self.node_mask
return utils.filter_unmasked_indices(mask, unmasked_shape)
def filter_unmasked_indices_padded(self, unmasked_shape, mask=None):
"""
filters a set of indices in the original mesh space
and returns it in the masked space
Parameters
----------
unmasked_shape: np.array
a set of indices into vertices in the unmasked index space
mask: np.array or None
the mask to apply. default None will use this Mesh node_mask
Returns
-------
np.array
the unmasked_shape indices mapped into the masked index space,
with -1 where the original index did not map into the masked mesh.
"""
if mask is None:
mask = self.node_mask
return utils.filter_unmasked_indices_padded(mask, unmasked_shape)
####################
# Basic properties #
####################
@property
def vertices(self):
if self._vertices is None:
self._vertices = self._rooted.vertices[self.node_mask]
return self._vertices
@vertices.setter
def vertices(self, new_vertices):
new_vertices = np.atleast_2d(new_vertices)
if new_vertices.shape[1] != 3:
raise ValueError("New vertices must be 3 dimensional")
if len(new_vertices) == self._rooted.n_vertices:
self._rooted._vertices = new_vertices
elif len(new_vertices) == self.n_vertices:
self._rooted._vertices[self.node_mask] = new_vertices
else:
raise ValueError("New vertices must be the same size as existing vertices")
self._reset_derived_properties_rooted()
self._reset_derived_properties_filtered(index_changed=False)
@property
def edges(self):
if self._edges is None:
self._edges = self.filter_unmasked_indices(self._rooted.edges)
return self._edges
@property
def n_vertices(self):
""" int : Number of vertices in the skeleton """
return len(self.vertices)
@property
def mesh_to_skel_map(self):
"""numpy.array : N_mesh length array giving the associated skeleton
vertex for each mesh vertex"""
if self._rooted.mesh_to_skel_map is None:
return None
else:
return self.filter_unmasked_indices_padded(self._rooted.mesh_to_skel_map)
@property
def mesh_to_skel_map_base(self):
"""numpy.array : N_mesh length array giving the associated skeleton
vertex for each mesh vertex"""
if self._rooted.mesh_to_skel_map is None:
return None
else:
return self._rooted.mesh_to_skel_map
@property
def radius(self):
if self._rooted.radius is None:
return None
return self._rooted.radius[self.node_mask]
@property
def mesh_index(self):
if self._rooted.mesh_index is None:
return None
return self._rooted.mesh_index[self.node_mask]
@property
def csgraph(self):
return self._rooted.csgraph[:, self.node_mask][self.node_mask]
@property
def csgraph_binary(self):
return self._rooted.csgraph_binary[:, self.node_mask][self.node_mask]
@property
def csgraph_undirected(self):
return self._rooted.csgraph_undirected[:, self.node_mask][self.node_mask]
@property
def csgraph_binary_undirected(self):
return self._rooted.csgraph_binary_undirected[:, self.node_mask][self.node_mask]
##################
# Voxel scalings #
##################
@property
def voxel_scaling(self):
return self._rooted.voxel_scaling
@voxel_scaling.setter
def voxel_scaling(self, new_scaling):
self._rooted.voxel_scaling = new_scaling
self._reset_derived_properties_filtered(index_changed=False)
#####################
# Rooted properties #
#####################
def _reset_derived_properties_rooted(self):
self._rooted._reset_derived_properties()
def _create_default_root(self):
temp_graph = utils.create_csgraph(
self._rooted.vertices,
self._rooted.edges,
euclidean_weight=True,
directed=False,
)
r = utils.find_far_points_graph(temp_graph)
self._rooted.reroot(int(r[0]))
@property
def root(self):
return self.SkeletonIndex(
self.filter_unmasked_indices_padded(self._rooted.root)
)
@property
def root_position(self):
return self._rooted.vertices[self._rooted.root]
def reroot(self, new_root):
self._rooted.reroot(self.map_indices_to_unmasked(new_root))
self._reset_derived_properties_filtered()
@property
def distance_to_root(self):
"Distance to root (even if root is not in the mask)"
return self._rooted.distance_to_root[self.node_mask]
def path_to_root(self, v_ind):
"Path stops if it leaves masked region"
path_b = self._rooted.path_to_root(self.map_indices_to_unmasked(v_ind))
path_filt = self.filter_unmasked_indices_padded(path_b)
if np.any(path_filt == -1):
last_ind = np.flatnonzero(path_filt == -1)[0]
else:
last_ind = len(path_filt)
return self.SkeletonIndex(path_filt[:last_ind])
#######################
# Filtered properties #
#######################
def _reset_derived_properties_filtered(self, index_changed=True):
self._vertices = None
self._edges = None
self._kdtree = None
self._pykdtree = None
if index_changed:
self._branch_points = None
self._end_points = None
self._segment_map = None
self._SkeletonIndex = None
self._cover_paths = None
#########################
# Geometric quantitites #
#########################
@property
def kdtree(self):
""" scipy.spatial.kdtree : k-D tree from scipy.spatial. """
if self._kdtree is None:
self._kdtree = spatial.cKDTree(self.vertices)
return self._kdtree
@property
def pykdtree(self):
if self._pykdtree is None:
self._pykdtree = pyKDTree(self.vertices)
return self._pykdtree
def _single_path_length(self, path):
"""Compute the length of a single path (assumed to be correct)"""
path = np.unique(path)
return np.sum(self.csgraph[:, path][path])
def path_length(self, paths=None):
"""Returns the length of a path (described as an ordered collection of connected indices)
Parameters
----------
path : Path or collection of paths, a path being an ordered list of linked vertex indices.
Returns
-------
Float or list of floats : The length of each path.
"""
if paths is None:
paths = np.arange(self.n_vertices)
if len(paths) == 0:
return 0
if isinstance(paths[0], Iterable):
Ls = []
for path in paths:
Ls.append(self._single_path_length(path))
else:
Ls = self._single_path_length(paths)
return Ls
################################
# Topological split properties #
################################
def _create_branch_and_end_points(self):
"""Pre-compute branch and end points from the graph"""
n_children = np.sum(self.csgraph_binary > 0, axis=0).squeeze()
self._branch_points = np.flatnonzero(n_children > 1)
self._end_points = np.flatnonzero(n_children == 0)
@property
def branch_points(self):
""" numpy.array : Indices of branch points on the skeleton (pottentially including root)"""
if self._branch_points is None:
self._create_branch_and_end_points()
return self.SkeletonIndex(self._branch_points)
@property
def end_points(self):
""" numpy.array : Indices of end points on the skeleton (pottentially including root)"""
if self._end_points is None:
self._create_branch_and_end_points()
return self.SkeletonIndex(self._end_points)
@property
def topo_points(self):
return self.SkeletonIndex(
| np.concatenate([self.end_points, self.branch_points, [self.root]]) | numpy.concatenate |
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""Random vibration theory (RVT) based motions."""
import numpy as np
from scipy.stats import linregress
from scipy.interpolate import interp1d
from . import peak_calculators
DEFAULT_CALC = 'V75'
def sort_increasing(*args):
"""Sort arrays such that they are increasing.
Check if the first array is is increasing, if not reverse the order. Same
operation is applied to additional arrays.
Parameters
----------
args : array_like
arrays to be re-ordered.
Returns
-------
tuple
tuple containing sorted :class:`numpy.ndarray`'s.
Raises
------
:class:`NotImplementedError`
If first array is not monotonic.
"""
diffs = np.diff(args[0])
if np.all(diffs >= 0):
# All increasing, do nothing
pass
elif np.all(diffs <= 0):
# All decreasing, reverse
args = [a[::-1] for a in args]
else:
raise NotImplementedError('Values are not regularly ordered.')
return args
def log_spaced_values(lower, upper, per_decade=512):
"""Generate values with constant log-spacing.
Parameters
----------
lower : float
lower end of the range.
upper : float
upper end of the range.
per_decade : int, optional
number of points per decade. Default is 512 points per decade.
Returns
-------
values : :class:`numpy.ndarray`
Log-spaced values.
"""
lower = np.log10(lower)
upper = np.log10(upper)
count = np.ceil(per_decade * (upper - lower))
return np.logspace(lower, upper, count)
def calc_sdof_tf(freqs, osc_freq, osc_damping):
"""Single-degree-of-freedom transfer function.
When applied on the acceleration Fourier amplitude spectrum, it provides
the pseudo-spectral acceleration.
Parameters
----------
freqs : array_like
Frequencies at which the transfer function should be calculated (Hz).
osc_freq : float
Frequency of the oscillator (Hz).
osc_damping : float
Fractional damping of the oscillator (decimal).
Returns
-------
:class:`numpy.ndarray`
Complex valued transfer function.
"""
freqs = np.asarray(freqs)
return (
-osc_freq ** 2. /
(freqs ** 2 - osc_freq ** 2 - 2.j * osc_damping * osc_freq * freqs))
def calc_stress_drop(magnitude):
"""Stress drop using Atkinson & Boore (2011, :cite:`atkinson11`) model.
Parameters
----------
magnitude : float
Moment magnitude of the stress drop.
Returns
-------
stress_drop : float
Stress drop (bars).
"""
return 10 ** (3.45 - 0.2 * max(magnitude, 5.))
def calc_geometric_spreading(dist, params):
"""Geometric spreading defined by piece-wise linear model.
Parameters
----------
dist : float
Closest distance to the rupture surface (km).
params : List[(float,Optional[float])]
List of (slope, limit) tuples that define the attenuation. For an
infinite distance use `None`. For example, [(1, `None`)] would provide
for 1/R geometric spreading to an infinite distance.
Returns
-------
coeff : float
Geometric spreading coefficient.
"""
initial = 1
coeff = 1
for slope, limit in params:
# Compute the distance limited by the maximum distance of the slope.
_dist = min(dist, limit) if limit else dist
coeff *= (initial / _dist) ** slope
if _dist < dist:
initial = _dist
else:
break
return coeff
class RvtMotion(object):
"""Random vibration theory motion.
Parameters
----------
freqs : array_like, optional
Frequency array (Hz).
fourier_amps : array_like, optional
Absolute value of acceleration Fourier amplitudes.
duration : float, optional
Ground motion duration (sec).
peak_calculator : :class:`~.peak_calculators.Calculator`, optional
Peak calculator to use. If `None`, then the default peak
calculator is used. The peak calculator may either be specified
by a :class:`~.peak_calculators.Calculator` object, or by the
initials of the calculator using
:func:`~.peak_calculators.peak_calculator`.
calc_kwds : dict, optional
Keywords to be passed during the creation the peak calculator.
These keywords are only required for some peak calculators.
"""
def __init__(self,
freqs=None,
fourier_amps=None,
duration=None,
peak_calculator=None,
calc_kwds=None):
"""Initialize the class."""
self._freqs = freqs
self._fourier_amps = fourier_amps
self._duration = duration
if self._freqs is not None:
self._freqs, self._fourier_amps = sort_increasing(
self._freqs, self._fourier_amps)
if isinstance(peak_calculator, peak_calculators.Calculator):
self.peak_calculator = peak_calculator
else:
self.peak_calculator = peak_calculators.get_peak_calculator(
peak_calculator or DEFAULT_CALC, calc_kwds)
@property
def freqs(self):
"""Frequency values (Hz)."""
return self._freqs
@property
def fourier_amps(self):
"""Acceleration Fourier amplitude values (g-sec)."""
return self._fourier_amps
@property
def duration(self):
"""Duration of the ground motion for RVT analysis."""
return self._duration
def calc_osc_accels(self, osc_freqs, osc_damping=0.05, trans_func=None):
"""Pseudo-acceleration spectral response of an oscillator.
Parameters
----------
osc_freq : float
Frequency of the oscillator (Hz).
osc_damping : float
Fractional damping of the oscillator (dec). For example, 0.05 for a
damping ratio of 5%.
trans_func : array_like, optional
Transfer function to be applied to motion prior calculation of the
oscillator response.
Returns
-------
spec_accels : :class:`numpy.ndarray`
Peak pseudo-spectral acceleration of the oscillator
"""
if trans_func is None:
trans_func = np.ones_like(self.freqs)
else:
trans_func = np.asarray(trans_func)
resp = np.array([
self.calc_peak(trans_func *
calc_sdof_tf(self.freqs, of, osc_damping), of,
osc_damping) for of in osc_freqs
])
return resp
def calc_peak(self, transfer_func=None, osc_freq=None, osc_damping=None):
"""Compute the peak response.
Parameters
----------
transfer_func : array_like, optional
Transfer function to apply to the motion. If ``None``, then no
transfer function is applied.
osc_freq : float
Frequency of the oscillator (Hz).
osc_damping : float
Fractional damping of the oscillator (dec). For example, 0.05 for a
damping ratio of 5%.
Returns
-------
peak : float
Calculated peak
"""
if transfer_func is None:
fourier_amps = self._fourier_amps
else:
fourier_amps = np.abs(transfer_func) * self._fourier_amps
return self.peak_calculator(
self._duration,
self._freqs,
fourier_amps,
osc_freq=osc_freq,
osc_damping=osc_damping)[0]
def calc_attenuation(self, min_freq, max_freq=None):
r"""Compute the site attenuation (κ) based on a log-linear fit.
Parameters
----------
min_freq : float
minimum frequency of the fit (Hz).
max_freq : float, optional
maximum frequency of the fit. If ``None``, then the maximum
frequency range is used.
Returns
-------
atten : float
attenuation parameter.
r_sqr : float
squared correlation coefficient of the fit (R²). See
:func:`scipy.stats.linregress`.
freqs : :class:`numpy.ndarray`
selected frequencies
fitted : :class:`numpy.ndarray`
fitted values
Notes
-----
This function computes the site attenuation defined by Anderson &
Hough (1984, :cite:`anderson84`) as:
.. math:: a(f) = A_0 \exp(-\pi \kappa f) \text( for ) f > f_E
for a single Fourier amplitude spectrum
"""
max_freq = max_freq or self.freqs[-1]
mask = (min_freq <= self.freqs) & (self.freqs <= max_freq)
slope, intercept, r_value, p_value, stderr = linregress(
self.freqs[mask], np.log(self.fourier_amps[mask]))
atten = slope / -np.pi
freqs = self.freqs[mask]
fitted = np.exp(intercept + slope * freqs)
return atten, r_value ** 2, freqs, fitted
class SourceTheoryMotion(RvtMotion):
"""Single-corner source theory model.
The single-corner source theory model uses default parameters from Campbell
(2003, :cite:`campbell03`).
"""
def __init__(self,
magnitude,
distance,
region,
stress_drop=None,
depth=8,
peak_calculator=None,
calc_kwds=None):
"""Initialize the motion.
Parameters
----------
magnitude : float
Moment magnitude of the event.
distance : float
Epicentral distance (km).
region : str
Region for the parameters. Either 'cena' for
Central and Eastern North America, or 'wna' for Western North
America.
stress_drop : float, optional
Stress drop of the event (bars). If `None`, then the default value
is used. For `region` is 'cena', the default value is computed by
the :cite:`atkinson11` model, while for `region` is 'wna' the
default value is 100 bars.
depth : float, optional
Hypocenter depth (km). The `depth` is combined with the `distance`
to compute the hypocentral distance.
peak_calculator : :class:`~.peak_calculators.Calculator`, optional
Peak calculator to use. If `None`, then the default peak calculator
is used. The peak calculator may either be specified by a
:class:`~.peak_calculators.Calculator` object, or by the initials
of the calculator using :func:`~.peak_calculators.peak_calculator`.
calc_kwds : dict, optional
Keywords to be passed during the creation the peak calculator.
These keywords are only required for some peak calculators.
"""
super().__init__(peak_calculator=peak_calculator, calc_kwds=calc_kwds)
self.magnitude = magnitude
self.distance = distance
self.region = peak_calculators.get_region(region)
if self.region == 'wna':
# Default parameters for the WUS from Campbell (2003)
self.shear_velocity = 3.5
self.path_atten_coeff = 180.
self.path_atten_power = 0.45
self.density = 2.8
self.site_atten = 0.04
self.geometric_spreading = [(1, 40), (0.5, None)]
if stress_drop:
self.stress_drop = stress_drop
else:
self.stress_drop = 100.
# Crustal amplification from Campbell (2003) using the
# log-frequency and the amplification based on a quarter-wave
# length approximation
self.site_amp = interp1d(
np.log([
0.01, 0.09, 0.16, 0.51, 0.84, 1.25, 2.26, 3.17, 6.05,
16.60, 61.20, 100.00
]), [
1.00, 1.10, 1.18, 1.42, 1.58, 1.74, 2.06, 2.25, 2.58, 3.13,
4.00, 4.40
],
bounds_error=False)
elif self.region == 'cena':
# Default parameters for the CEUS from Campbell (2003)
self.shear_velocity = 3.6
self.density = 2.8
self.path_atten_coeff = 680.
self.path_atten_power = 0.36
self.site_atten = 0.006
self.geometric_spreading = [(1, 70), (0, 130), (0.5, None)]
if stress_drop:
self.stress_drop = stress_drop
else:
self.stress_drop = calc_stress_drop(magnitude)
# Crustal amplification from Campbell (2003) using the
# log-frequency and the amplification based on a quarter-wave
# length approximation
self.site_amp = interp1d(
np.log([
0.01, 0.10, 0.20, 0.30, 0.50, 0.90, 1.25, 1.80, 3.00, 5.30,
8.00, 14.00, 30.00, 60.00, 100.00
]), [
1.00, 1.02, 1.03, 1.05, 1.07, 1.09, 1.11, 1.12, 1.13, 1.14,
1.15, 1.15, 1.15, 1.15, 1.15
],
bounds_error=False)
else:
raise NotImplementedError
# Depth to rupture
self.depth = depth
self.hypo_distance = np.sqrt(self.distance ** 2. + self.depth ** 2.)
# Constants
self.seismic_moment = 10. ** (1.5 * (self.magnitude + 10.7))
self.corner_freq = (4.9e6 * self.shear_velocity *
(self.stress_drop / self.seismic_moment)
** (1. / 3.))
def calc_duration(self):
"""Compute the duration by combination of source and path.
Returns
-------
duration : float
Computed duration
"""
# Source component
duration_source = 1. / self.corner_freq
# Path component
if self.region == 'wna':
duration_path = 0.05 * self.hypo_distance
elif self.region == 'cena':
duration_path = 0.
if self.hypo_distance > 10:
# 10 < R <= 70 km
duration_path += 0.16 * (min(self.hypo_distance, 70) - 10.)
if self.hypo_distance > 70:
# 70 < R <= 130 km
duration_path += -0.03 * (min(self.hypo_distance, 130) - 70.)
if self.hypo_distance > 130:
# 130 km < R
duration_path += 0.04 * (self.hypo_distance - 130.)
else:
raise NotImplementedError
return duration_source + duration_path
def calc_fourier_amps(self, freqs=None):
"""Compute the acceleration Fourier amplitudes for a frequency range.
Parameters
----------
freqs : array_like, optional
Frequency range. If no frequency range is specified then
:func:`log_spaced_values(0.05, 200.)` is used.
Returns
-------
fourier_amps : :class:`np.ndarray`
acceleration Fourier amplitudes
"""
if freqs is None:
self._freqs = log_spaced_values(0.05, 200.)
else:
self._freqs, = sort_increasing(np.asarray(freqs))
self._duration = self.calc_duration()
# Model component
const = (0.55 * 2.) / (np.sqrt(2.) * 4. * np.pi * self.density *
self.shear_velocity ** 3.)
source_comp = (const * self.seismic_moment /
(1. + (self._freqs / self.corner_freq) ** 2.))
# Path component
path_atten = (self.path_atten_coeff * self._freqs
** self.path_atten_power)
geo_atten = calc_geometric_spreading(self.hypo_distance,
self.geometric_spreading)
path_comp = geo_atten * np.exp(
(-np.pi * self._freqs * self.hypo_distance) /
(path_atten * self.shear_velocity))
# Site component
site_dim = np.exp(-np.pi * self.site_atten * self._freqs)
ln_freqs = np.log(self._freqs)
site_amp = self.site_amp(ln_freqs)
if np.any(np.isnan(site_amp)):
# Need to extrapolate
mask = ln_freqs < self.site_amp.x[0]
site_amp[mask] = self.site_amp.y[0]
mask = self.site_amp.x[-1] < ln_freqs
site_amp[mask] = self.site_amp.y[-1]
site_comp = site_amp * site_dim
# Conversion factor to convert from dyne-cm into gravity-sec
conv = 1.e-20 / 980.7
# Combine the three components and convert from displacement to
# acceleration
self._fourier_amps = (conv * (2. * np.pi * self._freqs)
** 2. * source_comp * path_comp * site_comp)
class CompatibleRvtMotion(RvtMotion):
"""Response spectrum compatible RVT motion.
A :class:`~.motions.CompatibleRvtMotion` object is used to compute a
Fourier amplitude spectrum that is compatible with a target response
spectrum.
"""
def __init__(self,
osc_freqs,
osc_accels_target,
duration=None,
osc_damping=0.05,
event_kwds=None,
window_len=None,
peak_calculator=None,
calc_kwds=None):
"""Initialize the motion.
Parameters
----------
osc_freqs : array_like
Frequencies of the oscillator response (Hz).
osc_accels_target : :class:`numpy.ndarray`
Spectral acceleration of the oscillator at the specified
frequencies (g).
duration : float, optional
Duration of the ground motion (sec). If `None`, then the duration
is computed using the `event_kwds`.
osc_damping : float, optional
Fractional damping of the oscillator (dec). Default value is 0.05
for a damping ratio of 5%.
event_kwds : Dict, optional
Keywords passed to :class:`~.motions.SourceTheoryMotion` and used
to compute the duration of the motion. Either `duration` or
`event_kwds` should be specified.
window_len : int, optional
Window length used for smoothing the computed Fourier amplitude
spectrum. If `None`, then no smoothing is applied. The smoothing
is applied as a moving average with a width of `window_len`.
peak_calculator : :class:`~.peak_calculators.Calculator`, optional
Peak calculator to use. If `None`, then the default peak
calculator is used. The peak calculator may either be specified by
a :class:`~.peak_calculators.Calculator` object, or by the
initials of the calculator using
:func:`~.peak_calculators.peak_calculator`.
calc_kwds : dict, optional
Keywords to be passed during the creation the peak calculator.
These keywords are only required for some peak calculators.
"""
super().__init__(peak_calculator=peak_calculator)
osc_freqs, osc_accels_target = sort_increasing(
np.asarray(osc_freqs), np.asarray(osc_accels_target))
if duration:
self._duration = duration
else:
stm = SourceTheoryMotion(**event_kwds)
self._duration = stm.calc_duration()
fourier_amps = self._estimate_fourier_amps(
osc_freqs, osc_accels_target, osc_damping)
# The frequency needs to be extended to account for the fact that the
# oscillator transfer function has a width. The number of frequencies
# depends on the range of frequencies provided.
self._freqs = log_spaced_values(osc_freqs[0] / 2., 2. * osc_freqs[-1])
self._fourier_amps = np.empty_like(self._freqs)
# Indices of the first and last point with the range of the provided
# response spectra
indices = np.argwhere((osc_freqs[0] < self._freqs) & (self._freqs <
osc_freqs[-1]))
first = indices[0, 0]
# last is extend one past the usable range to allow use of first:last
# notation
last = indices[-1, 0] + 1
log_freqs = np.log(self._freqs)
log_osc_freqs = np.log(osc_freqs)
self._fourier_amps[first:last] = np.exp(
np.interp(log_freqs[first:last], log_osc_freqs,
np.log(fourier_amps)))
def extrapolate():
"""Extrapolate the first and last value of FAS."""
def _extrap(freq, freqs, fourier_amps, max_slope=None):
# Extrapolation is performed in log-space using the first and
# last two points
xi = np.log(freq)
x = np.log(freqs)
y = np.log(fourier_amps)
slope = (y[1] - y[0]) / (x[1] - x[0])
if max_slope:
slope = min(slope, max_slope)
return np.exp(slope * (xi - x[0]) + y[0])
# Update the first point using the second and third points
self._fourier_amps[0:first] = _extrap(
self._freqs[0:first], self._freqs[first:first + 2],
self._fourier_amps[first:first + 2], None)
# Update the last point using the third- and second-to-last points
self._fourier_amps[last:] = _extrap(
self._freqs[last:], self._freqs[last - 2:last],
self._fourier_amps[last - 2:last], None)
extrapolate()
# Apply a ratio correction between the computed at target response
# spectra
self.iterations = 0
self.rmse = 1.
max_iterations = 30
tolerance = 5e-6
osc_accels = self.calc_osc_accels(osc_freqs, osc_damping)
# Smoothing operator
if window_len:
window = | np.ones(window_len, 'd') | numpy.ones |
import argparse
import os
from importlib import import_module
from abp.configs import NetworkConfig, ReinforceConfig, EvaluationConfig
from abp.examples.pysc2.tug_of_war.device_handler import get_default_device, to_device, DeviceDataLoader
import torch
import numpy as np
import torch.nn as nn
from abp.adaptives import TransAdaptive
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data.dataloader import DataLoader
from torch.optim import Adam
def pre_process(data, output_indexes, output_shape):
np_data = np.array(data)
data_input = | np.stack(np_data[:,0]) | numpy.stack |
"""General-purpose training script for image-to-image translation.
This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and
different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization).
You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model').
It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--continue_train' to resume your previous training.
Example:
Train a CycleGAN model:
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
Train a pix2pix model:
python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
See options/base_options.py and options/train_options.py for more training options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
import util.util
import numpy as np
import shutil
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
import os
from help_rename import *
if __name__ == '__main__':
x_epoch = []
y_fid = []
y_kid_mean = []
y_kid_std = []
y_is_mean = []
y_is_std = []
opt = TrainOptions().parse() # get training options
dir_tensorboard = './tensorboard/' + opt.name
os.makedirs(dir_tensorboard, exist_ok=True)
writer = SummaryWriter('./tensorboard/' + opt.name)
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
# Gilli & Rotem are having FUN
if opt.model == 'cycle_gan':
dir_img_train = f'./results/train_img_F/{epoch}'
os.makedirs(dir_img_train, exist_ok=True)
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
model.update_learning_rate() # update learning rates in the beginning of every epoch.
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
for item in losses:
writer.add_scalar(item, losses[item], total_iters)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
# Gilli & Rotem are having FUN
# save images to the disk
if opt.model == 'cycle_gan' and epoch_iter % 10 == 0:
for label, image in model.get_current_visuals().items():
if label == 'fake_B':
image_numpy = util.util.tensor2im(image)
img_path = os.path.join(dir_img_train, 'epoch%.3d_iter%.4d_%s.png' % (epoch, epoch_iter, label))
util.util.save_image(image_numpy, img_path)
# Gilli & Rotem are having FUN
# Metric calcs
if opt.model == 'cycle_gan':
metric_dict = calculate_metrics(dir_img_train, './datasets/XR2DRR/trainB', cuda=True, isc=True, fid=True,
kid=True, verbose=False, kid_subset_size=250)
print(metric_dict)
x_epoch.append(epoch)
y_fid.append(metric_dict['frechet_inception_distance'])
writer.add_scalar('fid', metric_dict['frechet_inception_distance'], epoch)
y_kid_mean.append(metric_dict['kernel_inception_distance_mean'])
writer.add_scalar('kid_mean', metric_dict['kernel_inception_distance_mean'], epoch)
y_kid_std.append(metric_dict['kernel_inception_distance_std'])
writer.add_scalar('kid_std', metric_dict['kernel_inception_distance_std'], epoch)
y_is_std.append(metric_dict['inception_score_std'])
writer.add_scalar('is_std', metric_dict['inception_score_std'], epoch)
y_is_mean.append(metric_dict['inception_score_mean'])
writer.add_scalar('is_mean', metric_dict['inception_score_mean'], epoch)
shutil.rmtree(dir_img_train)
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
# Gilli & Rotem are having FUN
# Metric save
if opt.model=='cycle_gan':
x_epoch_np = | np.array(x_epoch) | numpy.array |
import tensorflow as tf
from tensorflow.python.saved_model import tag_constants
from PIL import ImageGrab
import cv2
import numpy as np
from scipy.spatial import distance
# Set option
threshold = 0.7
input_size = 416
left_top_x = 200
left_top_y = 200
detect_width = 1280
detect_height = 720
# Set path
model_path = 'models/'
# Set file name
class_info = 'obj.names'
model = 'yolov4-0613' # 사용할 모델 'yolov4-first', 'yolov4-0613'
# Variables
weights = model_path + model
saved_model_loaded = tf.saved_model.load(weights, tags=[tag_constants.SERVING])
infer = saved_model_loaded.signatures['serving_default']
Five = False
def find_nearest(tables, point):
nearest_index = distance.cdist([point], tables).argmin()
return nearest_index # 인덱스 반환
def read_class_names(class_file_name):
names = {}
with open(class_file_name, 'r') as data:
for ID, name in enumerate(data):
names[ID] = name.strip('\n')
return names
def draw_bbox(s_image, bboxes, classes_name=None, show_label=True, five=False):
if classes_name is None:
classes_name = read_class_names(class_info)
num_classes = len(classes_name)
image_h, image_w, _ = s_image.shape
colors = [[255, 128, 0], [128, 255, 128]]
people_coords = []
table_coords = []
out_boxes, out_scores, out_classes, num_boxes = bboxes
classes_cnt = [0] * num_classes
table_cnt = 1
for i in range(num_boxes[0]):
if int(out_classes[0][i]) < 0 or int(out_classes[0][i]) > num_classes: continue
coor = out_boxes[0][i]
coor[0] = int(coor[0] * image_h)
coor[2] = int(coor[2] * image_h)
coor[1] = int(coor[1] * image_w)
coor[3] = int(coor[3] * image_w)
fontScale = 0.5
score = out_scores[0][i]
class_ind = int(out_classes[0][i])
bbox_color = colors[class_ind]
bbox_thick = int(0.6 * (image_h + image_w) / 600)
c1, c2 = (coor[1], coor[0]), (coor[3], coor[2])
# 클래스별로 카운팅을 위함
print(classes_name[class_ind])
classes_cnt[class_ind] += 1
# print("left_top : ", c1, ", right_bottom: ", c2)
# 박스 중앙 점 x, y 좌표 계산
center_x = int((c1[0] + c2[0]) / 2)
center_y = int((c1[1] + c2[1]) / 2)
print("x: ", center_x, ", y: ", center_y)
# 클래스별 좌표 저장
if classes_name[class_ind] == "Person":
people_coords.append([center_x, center_y])
elif classes_name[class_ind] == "Table":
table_coords.append([center_x, center_y])
print()
# boxing object
cv2.rectangle(s_image, c1, c2, bbox_color, bbox_thick)
if show_label:
if classes_name[class_ind] == 'Table':
bbox_mess = '%s_%d: %.2f' % (classes_name[class_ind], table_cnt, score)
table_cnt += 1
else:
bbox_mess = '%s: %.2f' % (classes_name[class_ind], score)
t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick // 2)[0]
c3 = (c1[0] + t_size[0], c1[1] - t_size[1] - 3)
cv2.rectangle(s_image, c1, ( | np.float32(c3[0]) | numpy.float32 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Copyright 2021 InferStat Ltd
# Created by: <NAME>
# Created date: 11/03/2021
"""
Allocation algorithms are functions used to compute allocations - % of your portfolio or maximum investment size to
invest in a market or asset.
"""
# External packages
import numpy as np
import pandas as pd
import inspect
import os
from typing import List, Callable, Dict
# InferStat packages
from infertrade.PandasEnum import PandasEnum
import infertrade.utilities.operations as operations
import infertrade.algos.community.signals as signals
from infertrade.algos.community.permalinks import data_dictionary
def fifty_fifty(dataframe) -> pd.DataFrame:
"""Allocates 50% of strategy budget to asset, 50% to cash."""
dataframe["allocation"] = 0.5
return dataframe
def buy_and_hold(dataframe: pd.DataFrame) -> pd.DataFrame:
"""Allocates 100% of strategy budget to asset, holding to end of period (or security bankruptcy)."""
dataframe[PandasEnum.ALLOCATION.value] = 1.0
return dataframe
def chande_kroll_crossover_strategy(dataframe: pd.DataFrame,) -> pd.DataFrame:
"""
This simple all-or-nothing rule:
(1) allocates 100% of the portofolio to a long position on the asset when the price of the asset is above both the
Chande Kroll stop long line and Chande Kroll stop short line, and
(2) according to the value set for the allow_short_selling parameter, either allocates 0% of the portofiolio to
the asset or allocates 100% of the portfolio to a short position on the asset when the price of the asset is below
both the Chande Kroll stop long line and the Chande Kroll stop short line.
"""
# Calculate the Chande Kroll lines, which will be added to the DataFrame as columns named "chande_kroll_long" and
# "chande_kroll_short".
dataframe = signals.chande_kroll(dataframe)
# Allocate positions according to the Chande Kroll lines
is_price_above_lines = (dataframe["price"] > dataframe["chande_kroll_long"]) & (
dataframe["price"] > dataframe["chande_kroll_short"]
)
is_price_below_lines = (dataframe["price"] < dataframe["chande_kroll_long"]) & (
dataframe["price"] < dataframe["chande_kroll_short"]
)
dataframe.loc[is_price_above_lines, PandasEnum.ALLOCATION.value] = 1.0
dataframe.loc[is_price_below_lines, PandasEnum.ALLOCATION.value] = -1.0
# Delete the columns with the Chande Kroll indicators before returning
dataframe.drop(columns=["chande_kroll_long", "chande_kroll_short"], inplace=True)
return dataframe
def change_relationship(dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Calculates a change relationship, which compares the asset's future price change to the last change in the signal
series.
Notes:
- Does not fill NaNs in input, so full data needs to be supplied.
- Error estimation uses same window as used for calibrating regression coefficients
"""
df = dataframe.copy()
regression_period = 120
minimum_length_to_calculate = regression_period + 1
if len(df[PandasEnum.MID.value]) < minimum_length_to_calculate:
df[PandasEnum.ALLOCATION.value] = 0.0
return df
df = calculate_change_relationship(df, regression_period)
return df
def calculate_change_relationship(
df: pd.DataFrame, regression_period: int = 120, kelly_fraction: float = 1.0
) -> pd.DataFrame:
"""Calculates allocations for change relationship."""
dataframe = df.copy()
dataframe[PandasEnum.SIGNAL.value] = dataframe["research"]
forecast_period = 100
signal_lagged = operations.lag(
np.reshape(dataframe[PandasEnum.SIGNAL.value].append(pd.Series([0])).values, (-1, 1)), shift=1
)
signal_lagged_pct_change = operations.pct_chg(signal_lagged)
signal_lagged_pct_change[0] = [0.0]
signal_lagged_pct_change[1] = [0.0]
last_feature_row = signal_lagged_pct_change[-1:]
signal_lagged_pct_change = signal_lagged_pct_change[:-1]
price_pct_chg = operations.pct_chg(dataframe[PandasEnum.MID.value])
price_pct_chg[0] = [0.0]
dataframe = operations.calculate_regression_with_kelly_optimum(
dataframe,
feature_matrix=signal_lagged_pct_change,
last_feature_row=last_feature_row,
target_array=price_pct_chg,
regression_period=regression_period,
forecast_period=forecast_period,
kelly_fraction=kelly_fraction,
)
return dataframe
def combination_relationship(dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Calculates a combination relationship, which compares the asset's future price change to the multivariate
regression of the level of the signal, the last change in the signal and the difference between the signal and the
price.
Notes:
- Does not fill NaNs in input, so full data needs to be supplied.
- Error estimation uses same window as used for calibrating regression coefficients
"""
df = dataframe.copy()
regression_period = 120
minimum_length_to_calculate = regression_period + 1
if len(df[PandasEnum.MID.value]) < minimum_length_to_calculate:
df[PandasEnum.ALLOCATION.value] = 0.0
return df
df = calculate_combination_relationship(df, regression_period)
return df
def calculate_combination_relationship(df: pd.DataFrame, regression_period: int = 120, kelly_fraction: float = 1.0):
"""Calculates allocations for combination relationship."""
dataframe = df.copy()
dataframe[PandasEnum.SIGNAL.value] = dataframe.loc[:, "research"]
forecast_period = 100
signal_lagged = operations.lag(
np.reshape(dataframe[PandasEnum.SIGNAL.value].append(pd.Series([0])).values, (-1, 1)), shift=1
)
signal_lagged[0] = [0.0]
signal_lagged_pct_change = operations.pct_chg(signal_lagged)
signal_lagged_pct_change[0] = [0.0]
signal_lagged_pct_change[1] = [0.0]
signal_differenced = operations.research_over_price_minus_one(
np.column_stack(
(
dataframe[PandasEnum.MID.value].append(pd.Series([0])).values,
dataframe[PandasEnum.SIGNAL.value].append(pd.Series([0])).values,
)
),
shift=1,
)
signal_differenced[0] = [0.0]
intermediate_matrix = np.column_stack((signal_lagged, signal_lagged_pct_change, signal_differenced))
last_feature_row = intermediate_matrix[-1:]
intermediate_matrix = intermediate_matrix[:-1]
price_pct_chg = operations.pct_chg(dataframe[PandasEnum.MID.value])
price_pct_chg[0] = [0.0]
dataframe = operations.calculate_regression_with_kelly_optimum(
dataframe,
feature_matrix=intermediate_matrix,
last_feature_row=last_feature_row,
target_array=price_pct_chg,
regression_period=regression_period,
forecast_period=forecast_period,
kelly_fraction=kelly_fraction,
)
return dataframe
def constant_allocation_size(dataframe: pd.DataFrame, fixed_allocation_size: float = 1.0) -> pd.DataFrame:
"""
Returns a constant allocation, controlled by the fixed_allocation_size parameter.
parameters:
fixed_allocation_size: determines allocation size.
"""
dataframe[PandasEnum.ALLOCATION.value] = fixed_allocation_size
return dataframe
def difference_relationship(dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Calculates a difference relationship, which compares the asset's future price change to the last difference between the signal series and asset price.
Notes:
- Does not fill NaNs in input, so full data needs to be supplied.
- Error estimation uses same window as used for calibrating regression coefficients
"""
df = dataframe.copy()
regression_period = 120
minimum_length_to_calculate = regression_period + 1
if len(df[PandasEnum.MID.value]) < minimum_length_to_calculate:
df[PandasEnum.ALLOCATION.value] = 0.0
return df
df = calculate_difference_relationship(df, regression_period)
return df
def calculate_difference_relationship(df: pd.DataFrame, regression_period: int = 120, kelly_fraction: float = 1.0):
"""Calculates allocations for difference relationship."""
dataframe = df.copy()
dataframe[PandasEnum.SIGNAL.value] = dataframe["research"]
forecast_period = 100
signal_differenced = operations.research_over_price_minus_one(
np.column_stack(
(
dataframe[PandasEnum.MID.value].append(pd.Series([0])).values,
dataframe[PandasEnum.SIGNAL.value].append(pd.Series([0])).values,
)
),
shift=1,
)
signal_differenced[0] = [0.0]
last_feature_row = signal_differenced[-1:]
signal_differenced = signal_differenced[:-1]
price_pct_chg = operations.pct_chg(dataframe[PandasEnum.MID.value])
price_pct_chg[0] = [0.0]
dataframe = operations.calculate_regression_with_kelly_optimum(
dataframe,
feature_matrix=signal_differenced,
last_feature_row=last_feature_row,
target_array=price_pct_chg,
regression_period=regression_period,
forecast_period=forecast_period,
kelly_fraction=kelly_fraction,
)
return dataframe
def high_low_difference(dataframe: pd.DataFrame, scale: float = 1.0, constant: float = 0.0) -> pd.DataFrame:
"""
Returns an allocation based on the difference in high and low values. This has been added as an
example with multiple series and parameters.
parameters:
scale: determines amplitude factor.
constant: scalar value added to the allocation size.
"""
dataframe[PandasEnum.ALLOCATION.value] = (dataframe["high"] - dataframe["low"]) * scale + constant
return dataframe
def level_relationship(dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Calculates a level relationship, which compares the asset's future price change to the last value of the signal series.
Notes:
- Does not fill NaNs in input, so full data needs to be supplied.
- Error estimation uses same window as used for calibrating regression coefficients
"""
df = dataframe.copy()
regression_period = 120
minimum_length_to_calculate = regression_period + 1
if len(df[PandasEnum.MID.value]) < minimum_length_to_calculate:
df[PandasEnum.ALLOCATION.value] = 0.0
return df
df = calculate_level_relationship(df, regression_period)
return df
def calculate_level_relationship(df: pd.DataFrame, regression_period: int = 120, kelly_fraction: float = 1.0):
"""Calculates allocations for level relationship."""
dataframe = df.copy()
dataframe[PandasEnum.SIGNAL.value] = dataframe.loc[:, "research"]
forecast_period = 100
signal_lagged = operations.lag(
np.reshape(dataframe[PandasEnum.SIGNAL.value].append(pd.Series([0])).values, (-1, 1)), shift=1
) # revert back to manually calculating last row? doing it manually seems awkward, doing it this way seems
# wasteful, altering the the lag (or other) function seems hacky
signal_lagged[0] = [0.0]
last_feature_row = signal_lagged[-1:]
signal_lagged = signal_lagged[:-1]
price_pct_chg = operations.pct_chg(dataframe[PandasEnum.MID.value])
price_pct_chg[0] = [0.0]
dataframe = operations.calculate_regression_with_kelly_optimum(
dataframe,
feature_matrix=signal_lagged,
last_feature_row=last_feature_row,
target_array=price_pct_chg,
regression_period=regression_period,
forecast_period=forecast_period,
kelly_fraction=kelly_fraction,
)
return dataframe
def sma_crossover_strategy(dataframe: pd.DataFrame, fast: int = 0, slow: int = 0) -> pd.DataFrame:
"""
A Simple Moving Average crossover strategy, buys when short-term SMA crosses over a long-term SMA.
parameters:
fast: determines the number of periods to be included in the short-term SMA.
slow: determines the number of periods to be included in the long-term SMA.
"""
# Set price to dataframe price column
price = dataframe["price"]
# Compute Fast and Slow SMA
fast_sma = price.rolling(window=fast, min_periods=fast).mean()
slow_sma = price.rolling(window=slow, min_periods=slow).mean()
position = | np.where(fast_sma > slow_sma, 1.0, 0.0) | numpy.where |
# Automatically adapted for numpy.oldnumeric Aug 01, 2007 by
#!/usr/bin/env python
import cdms2
import numpy
import os
import sys
import basetest
class TestGenericGrids(basetest.CDMSBaseTest):
def testGenGrids2(self):
latb = [62.47686472, 69.70600048]
lonb = [102.87075526, 105.51598035]
fn = self.getDataFile('sampleCurveGrid4.nc')
s = fn("sample")
g = s.getGrid()
lat = g.getLatitude()
lon = g.getLongitude()
g2 = cdms2.createGenericGrid(lat, lon)
datalat = g2.getLatitude().getBounds()[22, 25]
datalon = g2.getLongitude().getBounds()[22, 25]
self.assertTrue(numpy.ma.allclose(datalat, latb))
self.assertTrue(numpy.ma.allclose(datalon, lonb))
def testGenGrids(self):
datb = numpy.array([693., 694., ])
latb = numpy.array([-26.67690036, -30.99890917, ])
lonb = numpy.array([92.41822415, 94.4512163, ])
f = self.getDataFile('sampleGenGrid3.nc')
# Slice a file variable on a curvilinear grid: by coordinates ...
samp = f['sample']
x = samp(lat=(-32, -25), lon=(90, 95))
self.assertFalse(not numpy.ma.allequal(x.data, datb))
grid = x.getGrid()
self.assertFalse(grid.shape != (2,))
lat = grid.getLatitude()
self.assertFalse(not | numpy.ma.allclose(lat.data, latb, atol=1.e-5) | numpy.ma.allclose |
from ccdproc import combine, CCDData, ccd_process, subtract_bias, subtract_dark, flat_correct
import astropy.io.fits as fits, astropy.units as units
#import astroscrappy
import numpy as np
import argparse, os, re, copy
#import tensorflow as tf
parser = argparse.ArgumentParser()
parser.add_argument('--bias')
parser.add_argument('--masterbias')
parser.add_argument('--bias_method', default='average')
parser.add_argument('--bias_sigmaclip', default=1, type=int)
parser.add_argument('--dark')
parser.add_argument('--masterdark')
parser.add_argument('--dark_method', default='average')
parser.add_argument('--dark_exptime', default=300.0, type=float)
parser.add_argument('--dark_sigmaclip', default=1, type=int)
parser.add_argument('--flat')
parser.add_argument('--masterflat')
parser.add_argument('--flat_method', default='average')
parser.add_argument('--flat_sigmaclip', default=1, type=int)
parser.add_argument('--light')
parser.add_argument('--light_method', default='average')
parser.add_argument('--light_sigmaclip', default=1, type=int)
parser.add_argument('--output', default='light_combined')
parser.add_argument('--crrejection', default='0')
parser.add_argument('--fits_header_exptime', default='EXPTIME')
parser.add_argument('--fits_header_ccdtemp', default='CCD-TEMP')
parser.add_argument('--fits_header_filter', default='FILTER')
parser.add_argument('--filter_threshold')
parser.add_argument('--header_from', default=None)
parser.add_argument('--pedestal', default=1024, type=int)
parser.add_argument('--offset', default=None)
args = parser.parse_args()
def error(description):
print("Error: " + description)
exit()
def warning(description):
print("Warning: " + description)
def log(description):
print(description)
biascal = False
darkcal = False
flatcal = False
bias = None
dark = None
flat = None
darkexp = 1.0
if args.masterbias == None and args.bias != None:
biascal = True
#Creating master bias
try:
biaslist_f = open(args.bias, 'r')
except:
error("Bias file list not found: " + args.bias)
biaslist = biaslist_f.read()
biaslist = biaslist.replace('\r\n', '\n')
biaslist = biaslist.replace('\r', '\n')
biaslist = biaslist.split('\n')
log("Loading bias file(s)...")
biascnt = 0
temperature = False
biaslist_real = copy.copy(biaslist)
for i in biaslist:
if os.path.isfile(i) == False:
warning("Bias file not found: " + i)
biaslist_real.remove(i)
else:
try:
hdulist = fits.open(i)
biascnt = biascnt + 1
log("Using bias file: " + i)
headers = dict(hdulist[0].header)
if temperature == False:
temperature = headers[args.fits_header_ccdtemp]
log("Temperature: " + str(temperature) + "°C")
else:
if temperature != headers[args.fits_header_ccdtemp]:
warning("Temperature mismatch: " + i + " (" + str(headers[args.fits_header_ccdtemp]) + "°C)")
exptime = headers[args.fits_header_exptime]
if exptime != 0.0:
warning("Exposure time is not 0 second: " + i + " (" + str(exptime) + " second(s))")
except OSError:
warning("Not proper FITS format: " + i)
biaslist_real.remove(i)
if biascnt == 0:
error("No proper bias file loaded.")
biasindex = 0
mbias = 'masterbias_' + str(temperature) + '.fits'
while True:
if os.path.isfile(mbias) == False:
break
mbias = 'masterbias_' + str(temperature) + '_' + str(biasindex) + '.fits'
biasindex = biasindex + 1
log("Combining " + str(biascnt) + " bias frame(s) to " + mbias + ", 3-sigma clipping")
if args.bias_sigmaclip == 1:
bias_sigmaclip = True
else:
bias_sigmaclip = False
bias = combine(biaslist_real, output_file=mbias, method=args.bias_method, unit='adu', sigma_clip=bias_sigmaclip)
hdulist = fits.open(mbias, mode='update')
hdulist[0].header.set(args.fits_header_exptime, 0.0)
hdulist[0].header.set(args.fits_header_ccdtemp, temperature)
hdulist.flush()
hdulist.close()
elif args.masterbias != None:
biascal = True
mbias = args.masterbias
if os.path.isfile(mbias) == False:
error("Master bias file not found: " + mbias)
try:
hdulist = fits.open(mbias)
except OSError:
error("Not proper FITS format: " + mbias)
log("Using master bias file: " + mbias)
headers = dict(hdulist[0].header)
log("Master bias temperature: " + str(headers[args.fits_header_ccdtemp]) + "°C")
exptime = headers[args.fits_header_exptime]
if exptime != 0.0:
warning("Exposure time is not 0 second: " + str(exptime) + " second(s)")
bias = CCDData.read(mbias, unit='adu')
if args.masterdark == None and args.dark != None:
if bias == None:
#error("Master bias needed to create master dark frame.")
warning("No master bias provided. Stacking without bias calibration.")
darkcal = True
#Creating master dark
try:
darklist_f = open(args.dark, 'r')
except:
error("Dark file list not found: " + args.dark)
darklist = darklist_f.read()
darklist = darklist.replace('\r\n', '\n')
darklist = darklist.replace('\r', '\n')
darklist = darklist.split('\n')
log("Loading dark file(s)...")
darkcnt = 0
temperature = False
darklist_real = copy.copy(darklist)
darkscales = []
for i in darklist:
if os.path.isfile(i) == False:
warning("Dark file not found: " + i)
darklist_real.remove(i)
else:
try:
hdulist = fits.open(i)
darkcnt = darkcnt + 1
log("Using dark file: " + i)
headers = dict(hdulist[0].header)
if temperature == False:
temperature = headers[args.fits_header_ccdtemp]
log("Temperature: " + str(temperature) + "°C")
else:
if temperature != headers[args.fits_header_ccdtemp]:
warning("Temperature mismatch: " + i + " (" + str(headers[args.fits_header_ccdtemp]) + "°C)")
exptime = headers[args.fits_header_exptime]
if bias != None:
darkscales.append(args.dark_exptime/exptime)
log("Scaling dark by " + str(args.dark_exptime/exptime))
else:
darkscales.append(1)
log("No bias provided: not scaling dark")
except OSError:
warning("Not proper FITS format: " + i)
darklist_real.remove(i)
if darkcnt == 0:
error("No proper dark file loaded.")
darkindex = 0
mdark = 'masterdark_' + str(args.dark_exptime) + '_' + str(temperature) + '.fits'
while True:
if os.path.isfile(mdark) == False:
break
mdark = 'masterdark_' + str(args.dark_exptime) + '_' + str(temperature) + '_' + str(darkindex) + '.fits'
darkindex = darkindex + 1
log("Combining " + str(darkcnt) + " dark frame(s) to " + mdark + ", 3-sigma clipping")
if args.dark_sigmaclip == 1:
dark_sigmaclip = True
else:
dark_sigmaclip = False
darkscales = np.array(darkscales)
#print(darkscales)
dark = combine(darklist_real, method=args.dark_method, unit='adu', sigma_clip=dark_sigmaclip, scale=darkscales)
if bias != None:
dark = ccd_process(dark, master_bias=bias)
dark.write(mdark)
hdulist = fits.open(mdark, mode='update')
hdulist[0].header.set(args.fits_header_exptime, args.dark_exptime)
hdulist[0].header.set(args.fits_header_ccdtemp, temperature)
darkexp = args.dark_exptime
hdulist.flush()
hdulist.close()
elif args.masterdark != None:
darkcal = True
mdark = args.masterdark
if os.path.isfile(mdark) == False:
error("Master dark file not found: " + mdark)
try:
hdulist = fits.open(mdark)
except OSError:
error("Not proper FITS format: " + mdark)
log("Using master dark file: " + mdark)
headers = dict(hdulist[0].header)
log("Master dark temperature: " + str(headers[args.fits_header_ccdtemp]) + "°C")
log("Master dark exposure: " + str(headers[args.fits_header_exptime]) + " second(s)")
darkexp = headers[args.fits_header_exptime]
dark = CCDData.read(mdark, unit='adu')
if args.masterflat == None and args.flat != None:
if dark == None:
error("Master dark needed to create master flat frame.")
if bias == None:
warning("No master bias provided. Stacking without bias calibration.")
flatcal = True
#Creating master flat
try:
flatlist_f = open(args.flat, 'r')
except:
error("Flat file list not found: " + args.flat)
flatlist = flatlist_f.read()
flatlist = flatlist.replace('\r\n', '\n')
flatlist = flatlist.replace('\r', '\n')
flatlist = flatlist.split('\n')
log("Loading flat file(s)...")
flatcnt = 0
temperature = False
flatfilter = False
flats = []
flatlist_real = copy.copy(flatlist)
for i in flatlist:
if os.path.isfile(i) == False:
warning("Flat file not found: " + i)
flatlist_real.remove(i)
else:
try:
hdulist = fits.open(i)
log("Using flat file: " + i)
headers = dict(hdulist[0].header)
if temperature == False:
temperature = headers[args.fits_header_ccdtemp]
log("Temperature: " + str(temperature) + "°C")
else:
if temperature != headers[args.fits_header_ccdtemp]:
warning("Temperature mismatch: " + i + " (" + str(headers[args.fits_header_ccdtemp]) + "°C)")
exptime = headers[args.fits_header_exptime]
if flatfilter == False:
flatfilter = headers[args.fits_header_filter].strip()
else:
if flatfilter != headers[args.fits_header_filter].strip():
warning("Filter mismatch: " + i + " (" + headers[args.fits_header_filter].strip() + " filter)")
log("Subtracting dark and/or bias...")
flats.append(CCDData.read(i, unit='adu'))
if bias != None:
flats[flatcnt] = ccd_process(flats[flatcnt], master_bias=bias, dark_frame=dark, dark_exposure=darkexp * units.s, data_exposure=exptime * units.s, dark_scale=True)
else:
flats[flatcnt] = ccd_process(flats[flatcnt], dark_frame=dark, dark_exposure=darkexp * units.s, data_exposure=exptime * units.s, dark_scale=True)
avg = | np.mean(flats[flatcnt]) | numpy.mean |
import cv2
import numpy as np
import matplotlib.pylab as plt
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
# channel_count = img.shape[2]
match_mask_color = 255
cv2.fillPoly(mask, vertices, match_mask_color)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def draw_the_lines(img, lines):
img = np.copy(img)
blank_image = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(blank_image, (x1, y1), (x2, y2), (0, 255, 0), thickness=3)
img = cv2.addWeighted(img, 0.8, blank_image, 1, 0.0)
return img
# image = cv2.imread("Resources/road.jpg")
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def process(image):
print(image.shape)
height = image.shape[0]
width = image.shape[1]
region_of_interest_vertices = [
(0, height),
(0, height-70),
(width*0.47, height*0.6),
(width -280, height)
]
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
canny_image = cv2.Canny(gray_image, 100, 200)
cropped_image = region_of_interest(canny_image,
| np.array([region_of_interest_vertices], np.int32) | numpy.array |
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 14 15:07:16 2021
@author: <NAME>
"""
import unittest
import numpy as np
import ase
import sys
sys.path.append("../pyTEMlib/")
import pyTEMlib.kinematic_scattering as ks
import pyTEMlib.crystal_tools as cs
class TestUtilityFunctions(unittest.TestCase):
def test_Zuo_fig_3_18(self):
atoms = ks.Zuo_fig_3_18(verbose=True)
self.assertIsInstance(atoms.info, dict)
self.assertEqual(atoms.symbols[0], 'Si')
self.assertEqual(atoms.cell[0, 0], 5.14)
self.assertEqual(atoms.info['experimental']['acceleration_voltage_V'], 99.2*1000.0)
self.assertEqual(atoms.info['experimental']['convergence_angle_mrad'], 7.15)
np.testing.assert_allclose(atoms.info['experimental']['zone_hkl'], np.array([-2, 2, 1]))
def test_example(self):
atoms = ks.example(verbose=False)
self.assertEqual(atoms.info['output']['plot_HOLZ'], 1)
def test_zone_mistilt(self):
rotated_zone_axis = ks.zone_mistilt([1, 0, 0], [45, 0, 0])
| np.testing.assert_allclose(rotated_zone_axis, [1, 0, 0]) | numpy.testing.assert_allclose |
import numpy as np
import dynesty
from scipy.special import erf
from utils import get_rstate, get_printing
nlive = 100
printing = get_printing()
win = 100
def loglike(x):
return -0.5 * x[1]**2
def prior_transform(x):
return (2 * x - 1) * win
def test_periodic():
# hard test of dynamic sampler with high dlogz_init and small number
# of live points
logz_true = np.log( | np.sqrt(2 * np.pi) | numpy.sqrt |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import glob
import os
from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio', 'Takao', 'IPAexGothic', 'IPAPGothic', 'VL PGothic', 'Noto Sans CJK JP']
# In[2]:
# Make directory
#
# df_hospital_beds = pd.read_csv('data_Koro/hospital_beds.csv',index_col=0)
# dirnames = (df_hospital_beds['japan_prefecture_code']+df_hospital_beds['都道府県名']).values
# for i in range(len(dirnames)):
# path = 'resultD_transport_strategy_hospital/' + dirnames[i]
# os.makedirs(path, exist_ok=True)
# In[3]:
# MODE = 'all'
MODE = 'normal'
filenames = glob.glob('data_hospital/x_*')
filenames.sort()
forecast_dates = [filename.split('_')[-1].split('.')[0] for filename in filenames]
# In[ ]:
# In[18]:
def visualization(gamma,x_type,forecast_date):
print("forcasted date ={0}".format(f_date))
# 重みの入力
df_w = pd.read_csv('data_Kokudo/w_distance.csv',index_col=0)
W= df_w.values
w_pulp = W.T.reshape(-1)
# x, x_q0025も計算
df_x0975 = pd.read_csv('data_hospital/x0975_{0}.csv'.format(forecast_date),index_col=0 )
df_x0025 = pd.read_csv('data_hospital/x0025_{0}.csv'.format(forecast_date),index_col=0 )
df_xmean = pd.read_csv('data_hospital/x_{0}.csv'.format(forecast_date),index_col=0 )
gammas = np.load('data_hospital_transport/gammas_{0}_{1:03}_{2}.npy'.format(x_type,int(gamma*100),forecast_date))
x_mean = df_xmean.values
x_q0975 = df_x0975.values
x_q0025 = df_x0025.values
N = x_mean.shape[1]
T = x_mean.shape[0]
L = np.kron(np.ones((1,N)),np.eye(N)) - np.kron(np.eye(N),np.ones((1,N)))
uv = np.load('data_hospital_transport/u_{0}_{1:03}_{2}.npy'.format(x_type,int(gamma*100),forecast_date))
y_mean = np.zeros(x_mean.shape)
y_q0975 = np.zeros(x_mean.shape)
y_q0025 = np.zeros(x_mean.shape)
y_mean[0] = x_mean[0]
y_q0975[0] = x_q0975[0]
y_q0025[0] = x_q0025[0]
sum_u = np.zeros(T)
sum_cost = np.zeros(T)
for k in range(T-1):
y_mean[k+1] = y_mean[k] + x_mean[k+1] - x_mean[k] + L.dot(uv[k])
y_q0975[k+1] = y_q0975[k] + x_q0975[k+1] - x_q0975[k] + L.dot(uv[k])
y_q0025[k+1] = y_q0025[k] + x_q0025[k+1] - x_q0025[k] + L.dot(uv[k])
sum_u[k+1] = np.sum(uv[k])
sum_cost[k+1] = np.sum(w_pulp*uv[k])
# ベット数の入力
df_hospital_beds = pd.read_csv('data_Koro/hospital_beds.csv',index_col=0)
dirnames = (df_hospital_beds['japan_prefecture_code']+df_hospital_beds['都道府県名']).values
names = df_hospital_beds['都道府県名'].values
weeks = df_hospital_beds.columns[2:].values
new_week = max(weeks)
M = df_hospital_beds[new_week].values
times = pd.to_datetime(df_xmean.index)
date_s = min(times)
date_e = max(times)
# 全国の入院者数の予測値
plt.figure(figsize = (6,4))
plt.fill_between(times,x_q0025.sum(axis=1),x_q0975.sum(axis=1),facecolor = 'lime',alpha = 0.3,label = '95%信頼区間')
plt.plot(times,x_mean.sum(axis=1),'*-',color = 'lime',label = '平均値')
plt.plot([date_s,date_e],np.ones(2)*0.8*M.sum(),"--",label = '病床使用率 80%',color = 'red',linewidth = 2.0)
plt.plot([date_s,date_e],np.ones(2)*M.sum(),"--",label = '病床使用率 100%',color = 'purple',linewidth = 2.0)
plt.gca().tick_params(axis='x', rotation= -60)
plt.title('全国の入院者数の予測値, 予測日={0}'.format(forecast_date),fontsize = 15)
plt.xlim([date_s,date_e])
plt.ylim([0, 1.5* M.sum(),])
plt.ylabel('入院者数 [人]')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
plt.grid()
plt.savefig('resultB_google_prediction/all_hospital_{0}.png'.format(forecast_date),bbox_inches='tight',dpi = 100)
if MODE == 'normal':
plt.savefig('resultB_google_prediction/all_hospital.png',bbox_inches='tight',dpi = 100)
plt.close()
# 県ごとの入院者数
plt.figure(figsize = (50,25))
plt.subplots_adjust(wspace=0.1, hspace=0.5)
for i in range(47):
plt.subplot(10,5,i+1)
plt.fill_between(times,x_q0025[:,i],x_q0975[:,i],facecolor = 'lime',alpha = 0.3,label = '95%信頼区間')
plt.plot(times,x_mean[:,i],'*-',color = 'lime',label = '平均値')
plt.plot([date_s,date_e],np.ones(2)*0.8*M[i],"--",label = '病床使用率 80%',color = 'red',linewidth = 2.0)
plt.plot([date_s,date_e],np.ones(2)*M[i],"--",label = '病床使用率 100%',color = 'purple',linewidth = 2.0)
plt.gca().tick_params(axis='x', rotation= -60)
plt.title(names[i],fontsize = 20)
plt.xlim([date_s,date_e])
plt.ylim([0, 1.5* M[i]])
plt.grid()
if i < 42:
plt.tick_params(labelbottom=False)
if i == 0:
plt.legend()
plt.savefig('resultB_google_prediction/each_hospital_{0}.png'.format(forecast_date),bbox_inches='tight',dpi = 100)
if MODE == 'normal':
plt.savefig('resultB_google_prediction/each_hospital.png',bbox_inches='tight',dpi = 100)
plt.close()
# 県ごとの感染者数の予測結果
plt.figure(figsize = (50,25))
plt.subplots_adjust(wspace=0.1, hspace=0.5)
for i in range(47):
plt.subplot(10,5,i+1)
max_beds = M[i]
# ベットの限界
plt.plot([date_s,date_e],[0.8*max_beds,0.8*max_beds],'--',label = '病床使用率80%',color = 'red',linewidth = 2.0)
plt.plot([date_s,date_e],[max_beds,max_beds],'--',label = '病床使用率100%',color = 'purple',linewidth = 2.0)
# 輸送なし
plt.fill_between(times,x_q0025[:,i],x_q0975[:,i],facecolor = 'lime',alpha = 0.5,label = '医療シェアリングなし',)
plt.plot(times,x_mean[:,i],"*-",linewidth = 2,color= 'lime')
# 輸送あり
plt.fill_between(times,y_q0025[:,i],y_q0975[:,i],facecolor = 'orange',alpha = 0.5,label = '医療シェアリングあり',)
plt.plot(times,y_mean[:,i],"*-",linewidth = 2,color = 'orange')
plt.xlim([date_s,date_e])
plt.ylim([0,1.5*max_beds])
plt.grid()
plt.gca().tick_params(axis='x', rotation= -60)
plt.title(names[i],fontsize = 20)
if i < 42:
plt.tick_params(labelbottom=False)
if i == 0:
plt.legend()
if MODE == 'normal':
plt.savefig('resultD_transport_strategy_hospital/main/each_severe_{0}_{1:03}.png'.format(x_type,int(gamma*100)),bbox_inches='tight',dpi = 100)
plt.savefig('resultD_transport_strategy_hospital/main/each_severe_{0}_{1:03}_{2}.png'.format(x_type,int(gamma*100),forecast_date),bbox_inches='tight',dpi = 100)
plt.close()
# コスト評価
times = pd.to_datetime(df_xmean.index)[:-1]
date_s = min(times)
date_e = max(times)
max_beds = M.sum()
# 輸送人数
plt.plot(times,sum_u[:-1],"*-",linewidth = 2,color= 'black',label = '入院者数')
plt.xlim([date_s,date_e])
plt.gca().tick_params(axis='x', rotation= -60)
# plt.title('',fontsize = 20)
plt.ylabel('毎日の医療シェアが必要な入院者の合計 [人]')
plt.legend()
if MODE == 'normal':
plt.savefig('resultD_transport_strategy_hospital/cost/num_{0}_{1:03}.png'.format(x_type,int(gamma*100)),bbox_inches='tight',dpi = 100)
plt.savefig('resultD_transport_strategy_hospital/cost/num_{0}_{1:03}_{2}.png'.format(x_type,int(gamma*100),forecast_date),bbox_inches='tight',dpi = 100)
plt.close()
times = pd.to_datetime(df_xmean.index)[:-1]
date_s = min(times)
date_e = max(times)
max_beds = M.sum()
# 輸送コスト
plt.plot(times,sum_cost[:-1],"*-",linewidth = 2,color= 'black',label = '医療シェアリングのコスト')
plt.xlim([date_s,date_e])
plt.gca().tick_params(axis='x', rotation= -60)
plt.legend()
plt.ylabel('毎日のコスト [km]')
if MODE == 'normal':
plt.savefig('resultD_transport_strategy_hospital/cost/cost_{0}_{1:03}.png'.format(x_type,int(gamma*100)),bbox_inches='tight',dpi = 100)
plt.savefig('resultD_transport_strategy_hospital/cost/cost_{0}_{1:03}_{2}.png'.format(x_type,int(gamma*100),forecast_date),bbox_inches='tight',dpi = 100)
plt.close()
times = pd.to_datetime(df_xmean.index)[:-1]
date_s = min(times)
date_e = max(times)
max_beds = M.sum()
# 輸送コスト
plt.plot(times,sum_cost[:-1]/sum_u[:-1],"*-",linewidth = 2,color= 'black',label = '入院者ごとの依頼コスト')
plt.xlim([date_s,date_e])
plt.gca().tick_params(axis='x', rotation= -60)
plt.legend()
plt.ylabel('入院者ごとの依頼コスト [km/人]')
if MODE == 'normal':
plt.savefig('resultD_transport_strategy_hospital/cost/performance_{0}_{1:03}.png'.format(x_type,int(gamma*100)),bbox_inches='tight',dpi = 100)
plt.savefig('resultD_transport_strategy_hospital/cost/performance_{0}_{1:03}_{2}.png'.format(x_type,int(gamma*100),forecast_date),bbox_inches='tight',dpi = 100)
plt.close()
times = pd.to_datetime(df_xmean.index)
plt.plot(times,gammas*100)
plt.gca().tick_params(axis='x', rotation= -60)
plt.ylabel('病床利用率の上限 [%]')
if MODE == 'normal':
plt.savefig('resultD_transport_strategy_hospital/cost/gammas_{0}_{1:03}.png'.format(x_type,int(gamma*100)),bbox_inches='tight',dpi = 300)
plt.savefig('resultD_transport_strategy_hospital/cost/gammas_{0}_{1:03}_{2}.png'.format(x_type,int(gamma*100),forecast_date),bbox_inches='tight',dpi = 300)
plt.close()
# 各県の搬送数
U = uv.reshape(T,N,N)
U_sum = np.zeros(U.shape)
U_sum[0] = U[0]
for i in range(U_sum.shape[0]-1):
U_sum[i+1] = U_sum[i] + U[i+1]
times_U = np.sum(U_sum>0,axis=0)
for target in range(N):
# if sum(U[:,target,:].sum(0)>0) >0:
plt.figure(figsize = (10,6))
times = pd.to_datetime(df_xmean.index)[:-1]
num_U= | np.sum(times_U[target] !=0) | numpy.sum |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.