prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np from scipy import linalg as ln def chained_integrator_dynamics(dt=0.1, n=2, decay=1, amplification = 1, fullB=False): ''' forward euler discretization of dx_i/dt = x_{i+1}; dx_n/dt = u with added decay of states or amplification of integration terms ''' if hasattr(decay, "__len__"): assert len(decay) == n, 'incorrect number of decay coefficients' else: decay = decay * np.ones(n) if hasattr(amplification, "__len__"): assert len(amplification) == n, 'incorrect number of amplification coefficients' else: amplification = amplification *
np.ones(n)
numpy.ones
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function, absolute_import, division import glob import sys import os import json import logging import warnings import datetime import io from string import Template from shutil import copyfile warnings.filterwarnings("ignore") import numpy as np import skimage import skimage.io import skimage.exposure from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.colors as color import sct_utils as sct from spinalcordtoolbox.image import Image import spinalcordtoolbox.reports.slice as qcslice from spinalcordtoolbox import __sct_dir__ logger = logging.getLogger(__name__) class QcImage(object): """ Class used to create a .png file from a 2d image produced by the class "Slice" """ _labels_regions = {'PONS': 50, 'MO': 51, 'C1': 1, 'C2': 2, 'C3': 3, 'C4': 4, 'C5': 5, 'C6': 6, 'C7': 7, 'T1': 8, 'T2': 9, 'T3': 10, 'T4': 11, 'T5': 12, 'T6': 13, 'T7': 14, 'T8': 15, 'T9': 16, 'T10': 17, 'T11': 18, 'T12': 19, 'L1': 20, 'L2': 21, 'L3': 22, 'L4': 23, 'L5': 24, 'S1': 25, 'S2': 26, 'S3': 27, 'S4': 28, 'S5': 29, 'Co': 30} _color_bin_green = ["#ffffff", "#00ff00"] _color_bin_red = ["#ffffff", "#ff0000"] _labels_color = ["#04663c", "#ff0000", "#50ff30", "#ed1339", "#ffffff", "#e002e8", "#ffee00", "#00c7ff", "#199f26", "#563691", "#848545", "#ce2fe1", "#2142a6", "#3edd76", "#c4c253", "#e8618a", "#3128a3", "#1a41db", "#939e41", "#3bec02", "#1c2c79", "#18584e", "#b49992", "#e9e73a", "#3b0e6e", "#6e856f", "#637394", "#36e05b", "#530a1f", "#8179c4", "#e1320c", "#52a4df", "#000ab5", "#4a4242", "#0b53a5", "#b49c19", "#50e7a9", "#bf5a42", "#fa8d8e", "#83839a", "#320fef", "#82ffbf", "#360ee7", "#551960", "#11371e", "#e900c3", "#a21360", "#58a601", "#811c90", "#235acf", "#49395d", "#9f89b0", "#e08e08", "#3d2b54", "#7d0434", "#fb1849", "#14aab4", "#a22abd", "#d58240", "#ac2aff"] # _seg_colormap = plt.cm.autumn def __init__(self, qc_report, interpolation, action_list, stretch_contrast=True, stretch_contrast_method='contrast_stretching', angle_line=None): """ Parameters ---------- qc_report : QcReport The QC report object interpolation : str Type of interpolation used in matplotlib action_list : list of functions List of functions that generates a specific type of images stretch_contrast : adjust image so as to improve contrast stretch_contrast_method: {'contrast_stretching', 'equalized'}: Method for stretching contrast angle_line: [float]: See generate_qc() """ self.qc_report = qc_report self.interpolation = interpolation self.action_list = action_list self._stretch_contrast = stretch_contrast self._stretch_contrast_method = stretch_contrast_method self._angle_line = angle_line self._centermass = None # center of mass returned by slice.Axial.get_center() """ action_list contain the list of images that has to be generated. It can be seen as "figures" of matplotlib to be shown Ex: if 'colorbar' is in the list, the process will generate a color bar in the "img" folder """ def line_angle(self, mask, ax): """Create figure with line superposed over each mosaic square. The line has an angle encoded in the argument self._angle_line""" angles = np.full_like(np.zeros(len(self._centermass)), np.nan) angles[0:len(self._angle_line)] = self._angle_line img = np.full_like(mask, np.nan) ax.imshow(img, cmap='gray', alpha=0, aspect=float(self.aspect_mask)) for nslice, center_mosaic in enumerate(self._centermass): if np.isnan(angles[nslice]): pass else: x0, y0 = center_mosaic[0], center_mosaic[1] angle = angles[nslice] if not (-np.pi <= angle <= np.pi): raise Exception("angle prompted for angle_line not in the range [-pi pi]") x_min, y_min = x0 - 10, y0 - 10 x_max, y_max = x0 + 10, y0 + 10 if -np.pi/4 < angle <= np.pi/4 or -np.pi <= angle <= -3*np.pi/4 or 3*np.pi/4 < angle <= np.pi: y1 = y_min y2 = y_max x1 = (y_min - y0) * np.tan(angle) + x0 x2 = (y_max - y0) * np.tan(angle) + x0 else: x1 = x_min x2 = x_max y1 = y0 + (x_min - x0) / np.tan(angle) y2 = y0 + (x_max - x0) / np.tan(angle) ax.plot([x1, x2], [y1, y2], '-', color='red', linewidth=0.7) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) def listed_seg(self, mask, ax): """Create figure with red segmentation. Common scenario.""" img = np.rint(np.ma.masked_where(mask < 1, mask)) ax.imshow(img, cmap=color.ListedColormap(self._color_bin_red), norm=color.Normalize(vmin=0, vmax=1), interpolation=self.interpolation, alpha=1, aspect=float(self.aspect_mask)) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) def template(self, mask, ax): """Show template statistical atlas""" values = mask values[values < 0.5] = 0 color_white = color.colorConverter.to_rgba('white', alpha=0.0) color_blue = color.colorConverter.to_rgba('blue', alpha=0.7) color_cyan = color.colorConverter.to_rgba('cyan', alpha=0.8) cmap = color.LinearSegmentedColormap.from_list('cmap_atlas', [color_white, color_blue, color_cyan], N=256) ax.imshow(values, cmap=cmap, interpolation=self.interpolation, aspect=self.aspect_mask) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) def no_seg_seg(self, mask, ax): """Create figure with image overlay. Notably used by sct_registration_to_template""" ax.imshow(mask, cmap='gray', interpolation=self.interpolation, aspect=self.aspect_mask) self._add_orientation_label(ax) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) def sequential_seg(self, mask, ax): values = np.ma.masked_equal(np.rint(mask), 0) ax.imshow(values, cmap=self._seg_colormap, interpolation=self.interpolation, aspect=self.aspect_mask) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) def label_vertebrae(self, mask, ax): """Draw vertebrae areas, then add text showing the vertebrae names""" from matplotlib import colors import scipy.ndimage img = np.rint(np.ma.masked_where(mask < 1, mask)) ax.imshow(img, cmap=colors.ListedColormap(self._labels_color), norm=colors.Normalize(vmin=0, vmax=len(self._labels_color)), interpolation=self.interpolation, alpha=1, aspect=float(self.aspect_mask)) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) a = [0.0] data = mask for index, val in np.ndenumerate(data): if val not in a: a.append(val) index = int(val) if index in self._labels_regions.values(): color = self._labels_color[index] y, x = scipy.ndimage.measurements.center_of_mass(np.where(data == val, data, 0)) # Draw text with a shadow x += 10 label = list(self._labels_regions.keys())[list(self._labels_regions.values()).index(index)] ax.text(x, y, label, color='black', clip_on=True) x -= 0.5 y -= 0.5 ax.text(x, y, label, color=color, clip_on=True) def highlight_pmj(self, mask, ax): """Hook to show a rectangle where PMJ is on the slice""" y, x =
np.where(mask == 50)
numpy.where
import os, sys from math import sqrt, copysign import pandas as pd import numpy as np import helpers as nhp from helpers import rotmat_dict, rotmats from LatticeModel import LatticeModel from cached_property import cached_property import random from itertools import combinations import plotly as py import plotly.graph_objs as go from Bio.PDB import PDBParser from Bio.PDB.QCPSuperimposer import QCPSuperimposer pdb_parser = PDBParser() imposer = QCPSuperimposer() neighbor_mods = np.array([ [2, 2, 2],[-2, -2, -2], [-2, 2, 2],[2, -2, 2],[2, 2, -2], [-2, -2, 2],[-2, 2, -2],[2, -2, -2] ]) cubic_neighbor_mods = np.array([ [0,0,4], [0,4,0], [4,0,0], [0,0,-4],[0,-4,0], [-4,0,0], ]) neighbor_mods_d2 = np.unique(np.vstack([nm + neighbor_mods for nm in neighbor_mods]), axis=0) neighbor_mods2 = np.vstack((neighbor_mods, neighbor_mods_d2)) mod2mod_dict = {nmi: np.argwhere(nhp.inNd(neighbor_mods2, nm1 * 2))[0,0] for nmi, nm1 in enumerate(neighbor_mods)} tag_mods_single = [np.cumsum(np.tile(mod, (10,1)), axis=0) for mod in neighbor_mods] # test: allow cubic paths for tags cubic_tag_mods_single = [np.cumsum(np.tile(mod, (10,1)), axis=0) for mod in cubic_neighbor_mods] tag_mods_single.extend(cubic_tag_mods_single) tag_mods_bulk = [] for tm in tag_mods_single: tmb = np.unique(np.vstack([tms + neighbor_mods2 for tmi, tms in enumerate(tm) if tmi > 1]), axis=0) tmb = tmb[np.invert(nhp.inNd(tmb, tm))] tag_mods_bulk.append(tmb) tag_mods = list(zip(tag_mods_single, tag_mods_bulk)) quad_neighbor_mods_abs = np.array([ [0, 0, 4], [0, 4, 0], [4, 0, 0] ]) helix_array = np.array([[0, 0, 0], [2, -2, 2], [4, 0, 4], [2, 2, 6], [0, 0, 8]]) rotated_helix_array_list = [np.matmul(helix_array, rot) for rot in rotmats] # mirror_dims = list(combinations([0,1,2], 2)) + [tuple([i]) for i in range(3)] + [(0, 1, 2)] # mirrored_rotated_helix_array_list = [rhm for rhm in rotated_helix_array_list] # helix_mod = np.array([[2, -2, 2], # [2, 2, 2], # [-2, 2, 2], # [-2, -2, 2]]) # helix with equidistant neighbors helix_v_truth = np.array([[6, 2, -2, 2], [-6, -2, 2, -2]]) helix_h_truth = np.array([0, 0, 8]) # helix with 1 quad face transition # helix_h_truth = np.array([0, 0, 6]) # # helix_v_truth = np.array([[6, 0, -2, 2], # [-6, 0, 2, -2]]) def rotation_matrix_from_vectors(vec1, vec2): """ Find the rotation matrix that aligns vec1 to vec2 :param vec1: A 3d "source" vector :param vec2: A 3d "destination" vector :return mat: A transform matrix (3x3) which when applied to vec1, aligns it with vec2. from: https://stackoverflow.com/questions/45142959/calculate-rotation-matrix-to-align-two-vectors-in-3d-space """ a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3) v = np.cross(a, b) c = np.dot(a, b) s = np.linalg.norm(v) kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2)) return rotation_matrix __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) class Lattice(LatticeModel): """Class containing all that pertains to a particular type of lattice (initialization, allowed moves etc.) lattice type: body-centered cubic (bcc) """ def __init__(self, **kwargs): super().__init__(**kwargs) self.pdb_id = kwargs.get('pdb_id', 'unknown') self.experimental_mode = kwargs['experimental_mode'] self.no_regularization = kwargs.get('no_regularization', False) self.ca_dist = 3.8 # actual CA distance self.lat_dist = sqrt((0.5 * self.ca_dist) ** 2 / 3) # distance of lattice edge self.linker_dist = 21 # Distance tagged CA to dye self.linker_dist_lat = sqrt(self.linker_dist ** 2 / 3) self.n1_dist = 1.48 # estimate of distance N to CA self.pairs_mat = kwargs['pairs_mat'] self.ss_df = kwargs['secondary_structure'] # self.sheet_series = nhp.list_sheet_series(self.ss_sequence) self.coords = kwargs.get('coords', None) self.prev_coords = self.coords.copy() self.branch_rotation_idx_list = list(range(len(rotmats))) self.cm_coords = kwargs.get('cm_coords', None) self.finetune_structure = kwargs.get('finetune_structure', False) def coords_are_valid(self): """ For testing purposes! """ for i, c in enumerate(self.coords[:-1]): if not np.all(np.abs(self.coords[i+1] - c) == 2): return False return True @property def cm_coords(self): return self._cm_coords @cm_coords.setter def cm_coords(self, coords): """ Translate cm coords to unit lattice """ if coords is None: self._cm_coords = None return self._cm_coords = (coords - coords[0]) / self.lat_dist @cached_property def sheet_block_dict(self): out_dict = {} cur_block_idx = 0 in_block = False for si, ss in enumerate(self.ss_sequence): if ss == 'S': if not in_block: cur_block_idx += 1 in_block = True out_dict[si] = cur_block_idx else: in_block = False return out_dict @property def ss_df(self): return self._ss_df @ss_df.setter def ss_df(self, df): df.loc[self.tagged_resi, :] = 00, 4, 4 df.loc[:, 'L'] = 0 df[df > 0] = 0 self._ss_df = df # --- mutations --- def apply_n_steps(self, n): global_fun_list = [ # self.apply_crankshaft_move, self.apply_branch_rotation, self.apply_corner_flip, # self.apply_pull_move # screws up helices, can't get it right ] for _ in range(n): random.shuffle(global_fun_list) if global_fun_list[0](): pass elif global_fun_list[1](): pass # elif global_fun_list[2](): pass # elif global_fun_list[3](): pass else: return False self.set_hash_list() self.__dict__.pop('e_matrix', None) return True def check_helicity(self): # test: see if helices are still in place for ci, ss in self.ss_df.iterrows(): if ss.H >= 0: continue helix_candidate = self.coords[ci:ci + 5] - self.coords[ci] hel_dists = [np.linalg.norm(helix_candidate - hel) for hel in rotated_helix_array_list] if not np.any(np.array(hel_dists) == 0): return ci @property def branch_rotation_idx_list(self): random.shuffle(self._branch_rotation_idx_list) return self._branch_rotation_idx_list @branch_rotation_idx_list.setter def branch_rotation_idx_list(self, bri_list): self._branch_rotation_idx_list = bri_list def apply_branch_rotation(self): mutations = list(range(-3, 4)) mutations.remove(0) random.shuffle(mutations) idx_list = list(range(self.seq_length - 1)) idx_list = np.array(idx_list)[self.ss_sequence[:-1] != 'H'] random.shuffle(idx_list) # randomize positions to check for ci in idx_list: # omit last position, where rotation does not make sense for mi in self.branch_rotation_idx_list: candidate = self.branch_rotation(self._coords[ci + 1:, :], self._coords[ci, :], mi) if not np.any(nhp.inNd(candidate, self.coords[:ci, :])): self._coords[ci + 1:, :] = candidate return True # candidate[ci + 1:, :] = self.branch_rotation(self._coords[ci + 1:, :], self._coords[ci, :], mut) # if self.is_valid_candidate(candidate): # self.coords = candidate # return True return False def apply_pull_move(self): direction = [-1, 1] random.shuffle(direction) idx_list = list(range(2, self.seq_length - 2)) idx_list = np.array(idx_list)[self.ss_sequence[2:-2] != 'H'] random.shuffle(idx_list) # randomize positions to check candidate_found = False for ri in idx_list: for dir in direction: if self.ss_sequence[ri + dir] == 'H' or self.ss_sequence[ri + dir * 2] == 'H': continue # Candidates for first moved atom should be l0_candidates = self.coords[ri + dir] + neighbor_mods_d2 # reachable from their old pos by 2 steps l0_candidates = l0_candidates[nhp.inNd(l0_candidates, self.coords[ri] + neighbor_mods)] # adjacent to non-moved atom l0_candidates = l0_candidates[np.invert(nhp.inNd(l0_candidates, self.coords))] # unoccupied if not len(l0_candidates): continue np.random.shuffle(l0_candidates) for l0 in l0_candidates: # Candidates for second moved atom should be... l1_candidates = self.coords[ri + dir * 2] + neighbor_mods_d2 # reachable from their old pos by 2 steps l1_candidates = l1_candidates[nhp.inNd(l1_candidates, l0 + neighbor_mods)] # adjacent to new l0 coord if not len(l1_candidates): continue l1_candidates = l1_candidates[np.invert(self.inNd(l1_candidates))] # unoccupied if not len(l1_candidates): continue l0_idx = ri + dir d2_pos = l1_candidates[np.random.randint(len(l1_candidates))] # Get position for third moved atom: between new d2 position and old d2 position d1_candidates = d2_pos + neighbor_mods d1_pos = d1_candidates[nhp.inNd(d1_candidates, self.coords[ri + dir * 2] + neighbor_mods)][0] if self.inNd(d1_pos)[0]: continue self._coords[ri + dir] = l0 change_idx = np.arange(ri + 2, self.seq_length) if dir == 1 else np.arange(ri-1)[::-1] candidate_found = True break if candidate_found: break if candidate_found: break if not candidate_found: return False # Fill in positions prev_c = l0_idx first_H = True for c in change_idx: if self.ss_sequence[c] != 'H' and np.all(np.abs(self.coords[c] - self.coords[prev_c]) == 2): break if self.ss_sequence[c] == 'H': if first_H: helix_transl = self.coords[c] - d2_pos self.coords[c] = d2_pos first_H = False else: d2_pos = d1_pos d1_pos = self.coords[c-1] self.coords[c] = self.coords[c] + helix_transl continue else: first_H = True old_coord = self.coords[c].copy() self.coords[c] = d2_pos d2_pos = d1_pos d1_pos = old_coord prev_c = c return True def apply_corner_flip(self): # Find idx of corners diff1 = self.coords[1:] - self.coords[:-1] corner_bool = np.invert(np.all(np.equal(diff1[:-1], diff1[1:]), axis=1)) # corner_bool = np.count_nonzero((self._coords[2:, :] - self._coords[:-2, :]), axis=1) == 1 corner_bool[self.ss_sequence[1:-1] == 'H'] = False if not np.any(corner_bool): return False corner_idx = np.squeeze(np.argwhere(corner_bool), axis=1) + 1 # +1 as idx was of left neighbor np.random.shuffle(corner_idx) # Generate & check candidates for ci in corner_idx: candidate = self.corner_flip(self._coords[ci - 1, :3], self._coords[ci, :3], self._coords[ci + 1, :3]) if not self.inNd(candidate)[0]: # if not nhp.inNd(candidate, self.coords)[0]: self._coords[ci, :] = candidate return True return False def apply_crankshaft_move(self): # temporarily shutdown: not sure how this contributes for BCC diff_4pos = self._coords[3:, :] - self._coords[:-3, :] # Diff res with two spaces crank_bool = np.all(np.absolute(diff_4pos) == 2, axis=1) # crank_bool = np.sum(np.absolute(diff_4pos), axis=1) == 2 # if diff is 2 for that postion, it must be a u-loop if not np.any(crank_bool): return False crank_idx = np.squeeze(np.argwhere(crank_bool), axis=1) # index of left-most position of the four points! np.random.shuffle(crank_idx) # Generate & check candidates for ci in crank_idx: crank_idx, crank_dir = abs(ci), copysign(1, ci) c0, c1, c2, c3 = self.coords[ci:ci + 4, :] c1_candidates = c0 + neighbor_mods c2_candidates = c3 + neighbor_mods c1_candidates = c1_candidates[np.invert(self.inNd(c1_candidates)), :] c2_candidates = c2_candidates[np.invert(self.inNd(c2_candidates)), :] if not len(c1_candidates) or not len(c2_candidates): continue np.random.shuffle(c1_candidates) for c1_candidate in c1_candidates: c2_idx = nhp.inNd(c2_candidates, c1_candidate + neighbor_mods) if np.any(c2_idx): c2_candidates = c2_candidates[c2_idx] np.random.shuffle(c2_candidates) self._coords[ci + 1:ci + 3, :] = np.vstack((c1_candidate, c2_candidates[0])) return True return False def set_hash_list(self): self.hash_list = set([hash(cc.tostring()) for cc in self.coords]) def inNd(self, c): if c.ndim == 1: c = np.expand_dims(c, 0) c_hash_list = [hash(cc.tostring()) for cc in c] return [ch in self.hash_list for ch in c_hash_list] @staticmethod def branch_rotation(c, pivot, dim): """ :param c: coordinates to change :param pivot: point around which to rotate :param dim: signed dimension in which to perform rotation (1, 2 or 3), pos for fwd, neg for rev :return: mutated coords """ return np.dot(rotmats[dim], (c - pivot).T).T + pivot @staticmethod def corner_flip(c1, c2, c3): return c2 + ((c1 + c3) - 2 * c2) # --- stats and derived properties ---- def get_pdb_coords(self, intermediate=False, conect_only=False): """ Return coordinates in pdb format, as string :param intermediate: return without CONECT cards, required to create pdbs with multiple models :param conect_only: only return the CONECT cards :return: """ coords_ca = self.coords - self.coords[0] # translate to 0,0,0 coords_ca = coords_ca * self.lat_dist # unit distances to real distances cn = (self.coords[1] - self.coords[0]) * -1 * sqrt(self.n1_dist ** 2 / 3) # stick on N1 in opposite direction of chain cn_str = nhp.pdb_coord(cn) # resn = nhp.aa_dict[self.aa_sequence[0]] resn = nhp.aa_dict.get(self.aa_sequence[0], self.aa_sequence[0]) txt = f'HETATM 1 N {resn} A 1 {cn_str} 1.00 1.00 N\n' # Add CA coordinates an = 2 # atom number, start at 2 for first N an_alpha = 1 # tracker of alpha carbon atom number, just for CONECT record resi = 1 conect = "" tag_coord_dict = {0: []} # Fill in tag at pos 0, in case no other residues are tagged for ci in self.tagged_resi: if ci == 0: continue tag_coord_dict[ci], tag_coord_dict[0] = self.get_dye_coords(ci, 0) for ci, ca in enumerate(coords_ca): # --- add alpha carbon CA --- # resn_str = nhp.aa_dict[self.aa_sequence[ci]] resn_str = nhp.aa_dict.get(self.aa_sequence[ci], self.aa_sequence[ci]) resi_str = str(resi).rjust(4) ca_str = nhp.pdb_coord(ca) txt += f'HETATM{str(an).rjust(5)} CA {resn_str} A{resi_str} {ca_str} 1.00 1.00 C\n' conect += f"CONECT{str(an_alpha).rjust(5)}{str(an).rjust(5)}\n" an_alpha = an an += 1 if ci in self.tagged_resi: # Add tag residue if not len(tag_coord_dict[ci]): continue dye_coord = tag_coord_dict[ci] tc_str = nhp.pdb_coord(dye_coord[0]) txt += f'HETATM{str(an).rjust(5)} CB {resn_str} A{resi_str} {tc_str} 1.00 1.00 C\n' conect += f"CONECT{str(an_alpha).rjust(5)}{str(an).rjust(5)}\n" an += 1 resi += 1 # Add terminus an_str = str(an).rjust(5) resn_str = nhp.aa_dict.get(self.aa_sequence[-1], self.aa_sequence[-1]) resi_str = str(resi - 1).rjust(4) # - 1: still on same residue as last CA txt += f'TER {an_str} {resn_str} A{resi_str}\n' if conect_only: return conect elif intermediate: return txt return txt + conect def plot_structure(self, fn=None, auto_open=True): cols = [nhp.aa_to_hp_dict[aa] if resi not in self.tagged_resi else 'purple' for resi, aa in enumerate(self.aa_sequence)] trace_bb = go.Scatter3d(x=self.coords[:, 0], y=self.coords[:, 1], z=self.coords[:, 2], line=dict(color=cols, width=20), # marker=dict(size=5) ) trace_list = [trace_bb] pmin = np.min(self.coords) pmax = np.max(self.coords) layout = go.Layout(scene=dict( xaxis=dict(range=[pmin, pmax]), yaxis=dict(range=[pmin, pmax]), zaxis=dict(range=[pmin, pmax]), aspectmode='cube' ) ) fig = go.Figure(data=trace_list, layout=layout) if fn is None: py.offline.plot(fig, auto_open=auto_open) else: py.offline.plot(fig, filename=fn, auto_open=auto_open) def get_neighbors(self, c): return neighbor_mods + c # --- setters & properties --- def get_dye_coords(self, ci, partner_idx, expected_value=None): tag_obstructions_list = self.get_tag_obstructions(ci) unobstructed_tag_mods = [tm[0] / np.linalg.norm(tm[0]) for ti, tm in enumerate(tag_mods_single) if tag_obstructions_list[ti] == 0] if not len(unobstructed_tag_mods): return [], [] ptc = (self.coords[partner_idx] - self.coords[ci]) ptc = ptc / np.linalg.norm(ptc) tag_ca_dist = np.linalg.norm(self.coords[partner_idx] - self.coords[ci]) * self.lat_dist # Filter tag positions on angle angle_limit = 70 if tag_ca_dist <= 20 else 0 angles = [nhp.get_angle(ptc, ut) for ut in unobstructed_tag_mods] ptc_angles_idx = [it for it, ut in enumerate(unobstructed_tag_mods) if angles[it] > angle_limit] if not len(ptc_angles_idx): ptc_angles_idx = [np.argmax(angles)] # Filter tag positions on dihedral # dist_best = np.Inf largest_dh = (-np.Inf, ()) tuple_list = [] tag0_obstructions_list = self.get_tag_obstructions(partner_idx) unobstructed_tag0_mods = [tm[0] / np.linalg.norm(tm[0]) for ti, tm in enumerate(tag_mods_single) if tag0_obstructions_list[ti] == 0] if not len(unobstructed_tag0_mods): return [], [] for ti in ptc_angles_idx: for t0 in unobstructed_tag0_mods: dihedral = nhp.get_abs_dihedral(self.coords[ci], self.coords[0], self.coords[ci] + unobstructed_tag_mods[ti], self.coords[0] + t0) if dihedral > angle_limit: tuple_list.append((unobstructed_tag_mods[ti], t0)) if dihedral > largest_dh[0]: largest_dh = (dihedral, (unobstructed_tag_mods[ti], t0)) # dist = np.abs(dihedral - angles[ti]) # if dist < dist_best: # tuple_best = [unobstructed_tag_mods[ti], t0] # dist_best = dist # if dist_best > 3: return [], [] if len(tuple_list): tuple_best = random.choice(tuple_list) else: tuple_best = largest_dh[1] return [(self.coords[ci] - self.coords[0]) * self.lat_dist + tuple_best[0] * self.linker_dist], \ [tuple_best[1] * self.linker_dist] @property def dist_fingerprint(self): if len(self.tagged_resi) < 2: return [] fp = {} for fi in self.tagged_resi: if fi == 0: continue dye_coords, dye_coords_0 = self.get_dye_coords(fi, 0) if not len(dye_coords): continue cur_fp = [] for d0 in dye_coords_0: cur_fp.extend([np.linalg.norm(d0 - dc) for dc in dye_coords]) tt = self.tagged_resi_dict[fi] # tag type if tt in fp: fp[tt].append(np.mean(cur_fp)) else: fp[tt] = [np.mean(cur_fp)] # fp.append(np.mean(cur_fp)) return fp @property def base_energy(self): return np.sum(self.individual_energies) @property def individual_energies(self): """ Energy cost function """ emat, e_wat, e_dsb, e_tag, e_reg = self.e_matrix e_aa = emat[:-4, :].sum().sum() / 2 e_ss = emat[-4:-1, :].sum().sum() return e_aa, e_ss, e_wat, e_dsb, e_tag, e_reg def beta_sheet_bend_rule(self, c): # return np.sum(np.abs(c[2] - c[0]) == 4) > 1 # true if angles of 109.5 or 180 deg # return np.sum(np.abs(c[2] - c[0]) == 4) == 3 # true if angles 180 deg if len(c) == 2: return True return np.sum(np.abs(c[2] - c[0]) == 4) == 2 # true if angles 109.5 deg def beta_sheet_parallel_rule(self, neighbors, adjacents): parallel_dist = neighbors - adjacents inverse_dist = neighbors[::-1] - adjacents parallel_check = nhp.inNd(np.abs(parallel_dist[0]), quad_neighbor_mods_abs)[0] and len(np.unique(parallel_dist, axis=0)) == 1 inverse_check = nhp.inNd(np.abs(inverse_dist[0]), quad_neighbor_mods_abs)[0] and len(np.unique(inverse_dist, axis=0)) == 1 # parallel_check = np.all(nhp.inNd(np.abs(neighbors - adjacents), quad_neighbor_mods_abs)) # inverse_check = np.all(nhp.inNd(np.abs(neighbors[::-1] - adjacents), quad_neighbor_mods_abs)) if parallel_check or inverse_check: return True def get_tag_obstructions(self, ci): tag_obstructions_list = [] for tm_bb, tm_bulk in tag_mods: bb_clashes = np.array(self.inNd(self.coords[ci] + tm_bb)) bulk_coords = self.coords[ci] + tm_bulk bulk_clashes = np.array(self.inNd(bulk_coords)) bulk_clashes[nhp.inNd(bulk_coords, self.coords[max(0, ci - 1):min(ci + 2, self.seq_length)])] = False tag_obstructions_list.append(np.sum(bb_clashes) + np.sum(bulk_clashes)) # clash_bool = np.array(self.inNd(cur_coords)) # clash_bool[nhp.inNd(cur_coords, self.coords[max(0, ci-1):min(ci+2, self.seq_length)])] = False # tag_obstructions_list.append(np.sum(clash_bool)) # if ci == 0 or ci == self.seq_length - 1: # tag_obstructions_list = [to - 2 for to in tag_obstructions_list] # else: # tag_obstructions_list = [to - 3 for to in tag_obstructions_list] return tag_obstructions_list def get_contacts(self, ci): """ Find contacting indices: - maximum 6 - not including direct neighbors and self - First counting direct adjacents, then lv2 adjacents - not counting lv2 adjacents, obscured by lv1 adjacents """ # Find which lv1 adajacents are matched contact_idx1 = np.argwhere(self.inNd(self.coords[ci] + neighbor_mods)).squeeze(-1) # remove lv2 adjacents behind occupied lv1 adjacent vertices idx_to_remove = [mod2mod_dict[cidx1] for cidx1 in contact_idx1] nm2_bool = np.ones(len(neighbor_mods2), dtype=bool) nm2_bool[idx_to_remove] = False contact_idx2 = np.argwhere(nhp.inNd(self.coords, self.coords[ci] + neighbor_mods2[nm2_bool])).squeeze(-1) # exclude indices of residue itself and up to 2 neighbors contact_idx2 = contact_idx2[np.logical_or(contact_idx2 > ci + 2, contact_idx2 < ci - 2)] # ensure no more than 6 contacts if len(contact_idx2) > 6: # Pick 6 closest (automatically ensures lv1 adjacents are picked) contact_idx2 = contact_idx2[np.argsort([np.linalg.norm(self.coords[ci] - self.coords[ci2]) for ci2 in contact_idx2])][:6] return contact_idx2 @cached_property def e_matrix(self): """ Energy cost function """ # if self.experimental_mode == 13: # only attempt to minimize difference expected and modeled tag distance # tag0_coord = self.get_dye_coords(0) # tag_coord = self.get_dye_coords(self.tagged_resi[1]) # if not len(tag0_coord) or not len(tag_coord): # return np.zeros((self.seq_length+3, self.seq_length)), 0, 0, 1E10 # tag_dist = np.linalg.norm(tag0_coord[0] - tag_coord[0]) # e_tag = np.abs(exp_df.loc[self.pdb_id, 'distance'] - tag_dist) * 100 # return np.zeros((self.seq_length+3, self.seq_length)), 0, 0, e_tag seqi_list = np.arange(self.seq_length) e_wat = 0 e_dsb = 0 ss_multiplier = 25 double_s_idx = [] e_aa_array = np.zeros((len(seqi_list), len(seqi_list)), dtype=float) ss_array = np.tile('L', len(seqi_list)) tag_array = np.zeros(len(seqi_list), dtype=float) outer_limits = np.vstack((self.coords.max(axis=0), self.coords.min(axis=0))) for ci, c in enumerate(self.coords): # If tagged, residue can't contribute to other terms and must be on outer border (heavy penalty) if ci in self.tagged_resi: tag_obstructions_list = self.get_tag_obstructions(ci) tag_array[ci] += 100 * min(tag_obstructions_list) continue # alpha helix h-bond contribution if ci < self.seq_length - 4: helix_candidate = self.coords[ci:ci + 5] - self.coords[ci] hel_dists = [np.linalg.norm(helix_candidate - hel) for hel in rotated_helix_array_list] if np.any(np.array(hel_dists) == 0): ss_array[ci] = 'H' c_resn = self.aa_sequence[ci] contact_idx = self.get_contacts(ci) for cci in contact_idx: # res-res contribution e_aa_array[ci, cci] = self.pairs_mat.loc[c_resn, self.aa_sequence[cci]] if c_resn == 'C' and self.aa_sequence[cci] == 'C': e_dsb -= 50 # disulfide bridge bonus # water contribution e_wat += (6 - len(contact_idx)) * self.pairs_mat.loc[c_resn, 'HOH'] # beta-strand H-bonds if self.ss_sequence[ci] != 'S': continue # Cannot form sheet with non-sheet residue nb_sheet_hbonds = 0 confirmed_sheet_neighbor = None for idx in contact_idx: if self.ss_sequence[idx] != 'S': continue # Cannot form sheet with non-sheet residue if idx in self.sheet_block_dict and ci in self.sheet_block_dict: if self.sheet_block_dict[idx] == self.sheet_block_dict[ci]: continue # Cannot form sheet with residues from same contiguous strand if confirmed_sheet_neighbor is not None: if confirmed_sheet_neighbor not in (ci-1, ci+1): continue # cannot form sheet with neighbors of previously confirmed sheet bond ss_array[idx] = 'S' ss_array[ci] = 'S' confirmed_sheet_neighbor = idx nb_sheet_hbonds += 1 if nb_sheet_hbonds == 2: double_s_idx.append(ci) break e_ss_array = np.zeros((3, len(seqi_list)), dtype=float) for ssi, ssc in enumerate(('H', 'S', 'L')): e_ss_array[ssi, ss_array == ssc] = self.ss_df.loc[ss_array == ssc, ssc] * ss_multiplier e_ss_array[1, double_s_idx] = e_ss_array[1, double_s_idx] * 2 e_aa_array[np.tril_indices(len(seqi_list), -1)] = e_aa_array.T[np.tril_indices(len(seqi_list), -1)] if self.finetune_structure: imposer.set(self.coords, self.cm_coords) # superimpose on center-of-mass coords imposer.run() e_tag = imposer.get_rms() e_ss_array[1, :] = 0 # set sheet modifier to 0 e_out = np.row_stack((np.zeros((self.seq_length, self.seq_length)), e_ss_array,
np.zeros(self.seq_length)
numpy.zeros
#!/usr/bin/env python3 ''' This script reads in data from stdin and plots the distribution of the times of an item. The data is plotted on a log scale and in the command line using ASCII characters. Example data: [ {"id":9,"start":"20211009T214645Z","end":"20211009T215503Z","tags":["Plane Aktivitaet mit Leuten","leute","obj","obj2","obj3","scheduled_today_custom"]}, {"id":8,"start":"20211009T215510Z","end":"20211009T220416Z","tags":["Clarify Bucket Items","clarify","obj","scheduled_today_custom"]}, {"id":7,"start":"20211009T220610Z","end":"20211009T221339Z","tags":["obj"]}, {"id":6,"start":"20211009T221340Z","end":"20211009T221946Z","tags":["obj","obj2","obj3","task"]}, {"id":5,"start":"20211009T222213Z","end":"20211009T223056Z","tags":["obj","obj2","obj3","task"]}, {"id":4,"start":"20211009T223056Z","end":"20211009T223417Z","tags":["Wiege dich","scheduled_today_custom"]} ] ''' import sys import datetime import json import matplotlib.pyplot as plt import numpy as np import time import termplotlib as tpl # Disable warning WARNING: CPU random generator seem to be failing, disable hardware random number generation # Read in the data data_raw = '' after_empty_line = False for line in sys.stdin: if after_empty_line: # data.append(json.loads(line)) data_raw += line if line == '\n': after_empty_line = True data = json.loads(data_raw) # Check if last argument is a number. # try: # number_to_show_in_plot = int(sys.argv[-1]) # end_argument = len(sys.argv) - 1 # except: # number_to_show_in_plot = None # end_argument = len(sys.argv) # print("sys.argv:", sys.argv) # tags_for_filtering = sys.argv[1:end_argument] # print("tags_for_filtering:", tags_for_filtering) tags_for_filtering = sys.argv[1:] # Filter the data filtered_data = [] for entry in data: if len(tags_for_filtering) > 0: tags_match = False for tag in tags_for_filtering: tags_match = True if tag not in entry['tags']: tags_match = False if not tags_match: continue filtered_data.append(entry) data = filtered_data # Plot the data x_range = [] for entry in data: # print("entry:", entry) if 'end' not in entry: # timestamp in %Y%m%dT%H%M%SZ format date_now = datetime.datetime.utcnow() entry['end'] = date_now.strftime('%Y%m%dT%H%M%SZ') x_range.append((entry['start'], entry['end'])) x_range_start = [] x_range_end = [] for start, end in x_range: x_range_start.append(datetime.datetime.strptime(start, '%Y%m%dT%H%M%SZ')) x_range_end.append(datetime.datetime.strptime(end, '%Y%m%dT%H%M%SZ')) x_range_start = np.array(x_range_start) x_range_end = np.array(x_range_end) durations = x_range_end - x_range_start # Convert to seconds. durations = np.array(durations.astype('timedelta64[s]').astype(int)) # Filter out inf values. # Plot in the command line using termplotlib. # Example usage for termplotlib # import termplotlib as tpl # import numpy as np # rng = np.random.default_rng(123) # sample = rng.standard_normal(size=1000) # counts, bin_edges = np.histogram(sample, bins=40) # fig = tpl.figure() # fig.hist(counts, bin_edges, grid=[15, 25], force_ascii=False) # fig.show() # Plot the seconds in the command line using termplotlib. # Example usage for termplotlib NUM_BINS = 40 durations_for_log = [x for x in durations if x > 0] durations_log_base_10 = np.log10(durations_for_log) durations_log_base_10 = np.array([x for x in durations_log_base_10 if -np.inf < x < np.inf]) counts, bin_edges =
np.histogram(durations_log_base_10, bins=NUM_BINS)
numpy.histogram
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 26 23:08:32 2021 @author: jimlee """ import csv import numpy as np import math # open the csv file rawData = np.genfromtxt('train.csv', delimiter=',') data = rawData[1:,3:] # data is ready, but need to be reorganized # Test NR print(data[10,0]) ''' Here change the NaN term to 0''' for i in range(data.shape[0]): for j in range(data.shape[1]): if(math.isnan(data[i,j])): data[i,j] = 0 ''' Here change the NaN term to 0''' # Check if NR changed to 0.0 print(data[10,0]) ''' Now We Need To Change The Data To Some Form Like This: Let x be the feature vector(dim = 18x1) And x1_1_0 means that the feature vector on 1/1 0:00 and so on [ x1_1_0 ... x1_1_23 x1_2_0 ... x1_2_23 ... x12_20_0 ... x12_20_23] The dimension of the matrix must be 18x5760 ''' reorganizedData = np.zeros((18,5760)) startRowIndex = 0 startColumnIndex = 0 counter = 1 for i in range(data.shape[0]): if counter % 18 == 0: reorganizedData[:,startColumnIndex:startColumnIndex + 24] = data[startRowIndex:i + 1, :] startRowIndex = i + 1 startColumnIndex = startColumnIndex + 24 counter += 1 '''Now We Have The ReorganizedData, We Have To Seperate the Train_x, Train_y from it''' X = np.zeros((5652, 162)) # Train x y_head = np.zeros((5652,1)) # Train y for month in range(12): for hour in range(471): xi = [] for i in range(hour,hour + 9): xi = np.append(xi,np.transpose(reorganizedData[:, month * 480 + i])) y_head[month * 471 + hour, 0] = reorganizedData[9, month * 480 + hour + 9] X[month * 471 + hour,:] = xi ''' The training data need to be normalized''' for column in range(X.shape[1]): X[:,column] = (X[:,column] - X[:,column].mean()) / math.sqrt(X[:,column].var()) ''' Now we have successfully sample 5652 sets of training data. It's time to do the iteration''' ''' Define the way of training method''' method = "ADAM_CUBIC_MODEL" if method == "ADAGRAD": print("ADAGRAD") X = np.concatenate((np.ones((X.shape[0], 1 )), X) , axis = 1).astype(float) lr = 0.01 w = np.zeros((163,1)) prevGrad = np.zeros((163,1)) eipsilon = 1E-8 # this is for numerical stability for i in range(1, 100000): y = np.dot(X,w) grad = 2 * (np.dot(np.transpose(X),y-y_head)) prevGrad += grad**2 #w = w - lr * grad / (np.sqrt(prevGrad / n)) w -= lr * grad / (np.sqrt(prevGrad) + 1E-8) # 1E-8 is for numerical stable #w -= lr * grad ''' Calculate the error''' if i % 1000 == 0: print("Loss:",np.power(np.sum(np.power(y - y_head, 2 ))/ X.shape[0],0.5)) print(np.dot(np.transpose(y-y_head), (y-y_head))) elif method == "ADAM": print("ADAM") X = np.concatenate((np.ones((X.shape[0], 1 )), X) , axis = 1).astype(float) lr = 0.1 w = np.zeros((163,1)) beta1 = 0.9 beta2 = 0.999 eipsilon = 1E-8 # this is for numerical stability v = np.zeros([163,1]) s = np.zeros([163,1]) for i in range(1, 100000): y = np.dot(X,w) grad = 2 * (np.dot(np.transpose(X),y-y_head)) v = beta1 * v + (1 - beta1) * grad s = beta2 * s + (1 - beta2) * grad ** 2 v_correction = v / (1 - beta1 ** i) s_correction = s / (1 - beta2 ** i) w -= lr * v_correction / (np.sqrt(s_correction) + eipsilon) ''' Calculate the error''' if i % 1000 == 0: print("Loss:",np.power(np.sum(np.power(y - y_head, 2 ))/ X.shape[0],0.5)) print(np.dot(np.transpose(y-y_head), (y-y_head))) elif method == "ADAM_QUAGRATIC_MODEL": X_2 = np.power(X,2) X = np.concatenate((np.ones((X.shape[0], 1 )), X) , axis = 1).astype(float) X = np.hstack((X,X_2)) print("ADAM_QUAGRATIC_MODEL") lr = 0.01 w = np.zeros((X.shape[1], 1)) v = np.zeros([X.shape[1],1]) s = np.zeros([X.shape[1],1]) beta1 = 0.9 beta2 = 0.999 eipsilon = 1E-8 # this is for numerical stability for i in range(1, 100000): #print(i,"th iteration") #y = np.dot(X, w1) + np.dot(X_2, w2) #print(y) y = np.dot(X, w) grad = 2 * (np.dot(np.transpose(X),y-y_head)) v = beta1 * v + (1 - beta1) * grad s = beta2 * s + (1 - beta2) * grad ** 2 v_correction = v / (1 - beta1 ** i) s_correction = s / (1 - beta2 ** i) w -= lr * v_correction / (np.sqrt(s_correction) + eipsilon) ''' Calculate the error''' if i % 1000 == 0: print("Loss:",np.power(np.sum(np.power(y - y_head, 2 ))/ X.shape[0],0.5)) print(np.dot(np.transpose(y-y_head), (y-y_head))) elif method == "ADAM_CUBIC_MODEL": X_2 = np.power(X,2) X_3= np.power(X,3) X = np.concatenate((np.ones((X.shape[0], 1 )), X) , axis = 1).astype(float) X = np.hstack((X,X_2)) X = np.hstack((X,X_3)) print("ADAM_QUAGRATIC_MODEL") lr = 0.1 w = np.zeros((X.shape[1], 1)) v = np.zeros([X.shape[1],1]) s = np.zeros([X.shape[1],1]) beta1 = 0.9 beta2 = 0.999 eipsilon = 1E-8 # this is for numerical stability for i in range(1, 100000): #print(i,"th iteration") #y = np.dot(X, w1) + np.dot(X_2, w2) #print(y) y = np.dot(X, w) grad = 2 * (np.dot(np.transpose(X),y-y_head)) v = beta1 * v + (1 - beta1) * grad s = beta2 * s + (1 - beta2) * grad ** 2 v_correction = v / (1 - beta1 ** i) s_correction = s / (1 - beta2 ** i) w -= lr * v_correction / (np.sqrt(s_correction) + eipsilon) ''' Calculate the error''' if i % 1000 == 0: print("Loss:",np.power(np.sum(np.power(y - y_head, 2 ))/ X.shape[0],0.5)) print(np.dot(np.transpose(y-y_head), (y-y_head))) elif method == "ADAGRAD_CUBIC_MODEL": X_2 = np.power(X,2) X_3= np.power(X,3) X = np.concatenate((np.ones((X.shape[0], 1 )), X) , axis = 1).astype(float) X = np.hstack((X,X_2)) X = np.hstack((X,X_3)) w =
np.zeros([X.shape[1],1])
numpy.zeros
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import datetime as dt from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import csv import os.path from download import download import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd def define_model(info: dict, level: str = "stock"): """ Define and return graphical model. Parameters ---------- info: dict Data information. level: str Level of the model; possible candidates are "stock", "industry", "sector" and "market". """ tt = info['tt'] order_scale = info['order_scale'] order = len(order_scale) - 1 num_sectors = info['num_sectors'] sec2ind_id = info['sector_industries_id'] ind_id = info['industries_id'] available_levels = ["market", "sector", "industry", "stock"] if level not in available_levels: raise Exception("Selected level is unknown. Please provide one of the following levels: {}.".format(available_levels)) m = [tfd.Normal(loc=tf.zeros([1, order + 1]), scale=4 * order_scale), # phi_m tfd.Normal(loc=0, scale=4)] # psi_m if level != "market": m += [lambda psi_m, phi_m: tfd.Normal(loc=tf.repeat(phi_m, num_sectors, axis=0), scale=2 * order_scale), # phi_s lambda phi_s, psi_m: tfd.Normal(loc=psi_m, scale=2 * tf.ones([num_sectors, 1]))] # psi_s if level != "sector": sec2ind_id = info['sector_industries_id'] m += [lambda psi_s, phi_s: tfd.Normal(loc=tf.gather(phi_s, sec2ind_id, axis=0), scale=order_scale), # phi_i lambda phi_i, psi_s: tfd.Normal(loc=tf.gather(psi_s, sec2ind_id, axis=0), scale=1)] # psi_ii if level != "industry": ind_id = info['industries_id'] m += [lambda psi_i, phi_i: tfd.Normal(loc=tf.gather(phi_i, ind_id, axis=0), scale=0.5 * order_scale), # phi lambda phi, psi_i: tfd.Normal(loc=tf.gather(psi_i, ind_id, axis=0), scale=0.5)] # psi if level == "market": m += [lambda psi_m, phi_m: tfd.Normal(loc=tf.tensordot(phi_m, tt, axes=1), scale=tf.math.softplus(psi_m))] # y if level == "sector": m += [lambda psi_s, phi_s: tfd.Normal(loc=tf.tensordot(phi_s, tt, axes=1), scale=tf.math.softplus(psi_s))] # y if level == "industry": m += [lambda psi_i, phi_i: tfd.Normal(loc=tf.tensordot(phi_i, tt, axes=1), scale=tf.math.softplus(psi_i))] # y if level == "stock": m += [lambda psi, phi: tfd.Normal(loc=tf.tensordot(phi, tt, axes=1), scale=tf.math.softplus(psi))] # y return tfd.JointDistributionSequentialAutoBatched(m) def training(logp: np.array, info: dict, learning_rate: float = 0.01, num_steps: int = 20000, plot_losses: bool = False): """ It performs sequential optimization over the model parameters via Adam optimizer, training at different levels to provide sensible initial solutions at finer levels. Parameters ---------- logp: np.array Log-price at stock-level. info: dict Data information. learning_rate: float Adam's fixed learning rate. num_steps: int Adam's fixed number of iterations. plot_losses: bool If True, a losses decay plot is saved in the current directory. Returns ------- It returns trained parameters. """ optimizer = tf.optimizers.Adam(learning_rate=learning_rate) num_steps_l = int(np.ceil(num_steps // 4)) # market model = define_model(info, "market") phi_m, psi_m = (tf.Variable(tf.zeros_like(model.sample()[:2][i])) for i in range(2)) loss_m = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, logp.mean(0, keepdims=1)]), optimizer=optimizer, num_steps=num_steps_l) # sector model = define_model(info, "sector") phi_m, psi_m = tf.constant(phi_m), tf.constant(psi_m) phi_s, psi_s = (tf.Variable(tf.zeros_like(model.sample()[2:4][i])) for i in range(2)) logp_s = np.array([logp[np.where(np.array(info['sectors_id']) == k)[0]].mean(0) for k in range(info['num_sectors'])]) loss_s = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, logp_s]), optimizer=optimizer, num_steps=num_steps_l) # industry model = define_model(info, "industry") phi_s, psi_s = tf.constant(phi_s), tf.constant(psi_s) phi_i, psi_i = (tf.Variable(tf.zeros_like(model.sample()[4:6][i])) for i in range(2)) logp_i = np.array([logp[np.where(np.array(info['industries_id']) == k)[0]].mean(0) for k in range(info['num_industries'])]) loss_i = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, logp_i]), optimizer=optimizer, num_steps=num_steps_l) # stock model = define_model(info, "stock") phi_i, psi_i = tf.constant(phi_i), tf.constant(psi_i) phi, psi = (tf.Variable(tf.zeros_like(model.sample()[6:8][i])) for i in range(2)) loss = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi, logp]), optimizer=optimizer, num_steps=num_steps_l) if plot_losses: fig_name = 'losses_decay.png' fig = plt.figure(figsize=(20, 3)) plt.subplot(141) plt.title("market-level", fontsize=12) plt.plot(loss_m) plt.subplot(142) plt.title("sector-level", fontsize=12) plt.plot(loss_s) plt.subplot(143) plt.title("industry-level", fontsize=12) plt.plot(loss_i) plt.subplot(144) plt.title("stock-level", fontsize=12) plt.plot(loss) plt.legend(["loss decay"], fontsize=12, loc="upper right") plt.xlabel("iteration", fontsize=12) fig.savefig(fig_name, dpi=fig.dpi) print('Losses decay plot has been saved in this directory as {}.'.format(fig_name)) return phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi def softplus(x: np.array): """ It is a function from real to positive numbers Parameters ---------- x: np.array Real value. """ return np.log(1 + np.exp(x)) def order_selection(logp: np.array, info: dict, orders: np.array = np.arange(1, 14), horizon: int = 5): """ It is a function from real to positive numbers Parameters ---------- logp: np.array Log-prices at stock-level. info: dict Data information. orders: np.array Array of candidate orders. horizon: int Number of days to evaluate prediction. """ print("\nModel selection in progress. This can take a few minutes...") t = logp[:, :-horizon].shape[1] min_loss = np.inf count = 0 for i, order in enumerate(orders): info['tt'] = (np.linspace(1 / t, 1, t) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') info['order_scale'] = np.linspace(1 / (order + 1), 1, order + 1)[::-1].astype('float32')[None, :] # training the model phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi = training(logp[:, :-horizon], info) # construct loss tt_pred = ((1 + (np.arange(1, 1 + horizon) / t)) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') logp_pred = np.dot(phi.numpy(), tt_pred) std_logp_pred = softplus(psi.numpy()) scores = (logp_pred - logp[:, -horizon:]) / std_logp_pred loss = np.abs(np.mean(scores ** 2) - 1) print("Loss value for backtested polynomial model of order {}: {}.".format(order, loss)) if i > 0 and loss > min_loss: count += 1 else: min_loss = loss min_order = order count = 0 if count == 3: break print("Model selection completed. Volatile will use a polynomial model of degree {}.".format(min_order)) return min_order if __name__ == '__main__': cli = ArgumentParser('Volatile: your day-to-day trading companion.', formatter_class=ArgumentDefaultsHelpFormatter) cli.add_argument('-s', '--symbols', type=str, nargs='+', help='List of symbols.') cli.add_argument('--save-table', action='store_true', help='Save prediction table in csv format.') cli.add_argument('--no-plots', action='store_true', help='Plot estimates with their uncertainty over time.') cli.add_argument('--plot-losses', action='store_true', help='Plot loss function decay over training iterations.') args = cli.parse_args() today = dt.date.today().strftime("%Y-%m-%d") print('\nDownloading all available closing prices in the last year...') if args.symbols is None: with open("symbols_list.txt", "r") as my_file: args.symbols = my_file.readlines()[0].split(" ") data = download(args.symbols) tickers = data["tickers"] num_stocks, t = data['logp'].shape # find unique names of sectors usectors = np.unique(data['sectors']) num_sectors = len(usectors) # provide sector IDs at stock-level sectors_id = [np.where(usectors == sector)[0][0] for sector in data['sectors']] # find unique names of industries and store indices uindustries, industries_idx = np.unique(data['industries'], return_index=True) num_industries = len(uindustries) # provide industry IDs at stock-level industries_id = [np.where(uindustries == industry)[0][0] for industry in data['industries']] # provide sector IDs at industry-level sector_industries_id = np.array(sectors_id)[industries_idx].tolist() # place relevant information in dictionary info = dict(num_sectors=num_sectors, num_industries=num_industries, sector_industries_id=sector_industries_id, industries_id=industries_id, sectors_id=sectors_id) # how many days to look ahead when comparing the current price against a prediction horizon = 5 # order of the polynomial order = order_selection(data['logp'], info) print("\nTraining the model...") # times corresponding to trading dates in the data info['tt'] = (np.linspace(1 / t, 1, t) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') # reweighing factors for parameters corresponding to different orders of the polynomial info['order_scale'] = np.linspace(1 / (order + 1), 1, order + 1)[::-1].astype('float32')[None, :] # training the model phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi = training(data['logp'], info, plot_losses=args.plot_losses) # calculate stock-level estimators of log-prices logp_est = np.dot(phi.numpy(), info['tt']) std_logp_est = softplus(psi.numpy()) # calculate stock-level estimators of prices p_est = np.exp(logp_est + std_logp_est ** 2 / 2) std_p_est = np.sqrt(np.exp(2 * logp_est + std_logp_est ** 2) * (np.exp(std_logp_est ** 2) - 1)) # calculate stock-level predictions of log-prices tt_pred = ((1 + (np.arange(1 + horizon) / t)) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') logp_pred = np.dot(phi.numpy(), tt_pred) std_logp_pred = softplus(psi.numpy()) # calculate stock-level prediction of prices p_pred = np.exp(logp_pred + std_logp_pred ** 2 / 2) std_p_pred = np.sqrt(np.exp(2 * logp_pred + std_logp_pred ** 2) * (np.exp(std_logp_pred ** 2) - 1)) # calculate industry-level estimators of log-prices logp_ind_est = np.dot(phi_i.numpy(), info['tt']) std_logp_ind_est = softplus(psi_i.numpy()) # calculate industry-level estimators of prices p_ind_est = np.exp(logp_ind_est + std_logp_ind_est ** 2 / 2) std_p_ind_est = np.sqrt(np.exp(2 * logp_ind_est + std_logp_ind_est ** 2) * (
np.exp(std_logp_ind_est ** 2)
numpy.exp
# This routine computes the first-order # transit timing variations in Agol & Deck (2015). Please # cite the paper if you make use of this code in your research. import numpy as np import matplotlib.pyplot as plt class Planet(object): def __init__(self, mass_ratio=None, trans0=None, period=None, ecos=None, esin=None): self.mass_ratio = mass_ratio self.trans0 = trans0 self.period = period self.ecos = ecos self.esin = esin def call_ttv(jmax): """ This routine gives an example of a call of compute_ttv.py which computes the first-order eccentricity TTVs, from Agol & Deck (2015). It uses parameters appropriate for the outer two planets of Kepler-62e/f. Parameters ---------- jmax: maximum j to evaluate """ data =
np.loadtxt('kepler62ef_planets.txt', delimiter=',')
numpy.loadtxt
"""Utility functions for computing useful statistics.""" import numpy as np def pearson_residuals(y, pred): """Compute Pearson residuals. Reference: https://web.as.uky.edu/statistics/users/pbreheny/760/S11/notes/4-12.pdf :param array-like[int] y: target labels. 1 is positive label, 0 is negative label :param array-like[float] pred: predicted labels. :returns: pearson residual. :rtype: array-like[float] """ y, pred = np.array(y),
np.array(pred)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-08-21 at 12:28 @author: cook """ from astropy.table import Table from astropy import constants as cc from astropy import units as uu import numpy as np import os from scipy.optimize import curve_fit import warnings from apero import core from apero import lang from apero.core import constants from apero.core import math as mp from apero.core.core import drs_log from apero.core.core import drs_file from apero.io import drs_data # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'science.rv.general.py' __INSTRUMENT__ = 'None' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # get param dict ParamDict = constants.ParamDict DrsFitsFile = drs_file.DrsFitsFile # Get function string display_func = drs_log.display_func # Get Logging function WLOG = drs_log.wlog # Get the text types TextEntry = lang.drs_text.TextEntry TextDict = lang.drs_text.TextDict # alias pcheck pcheck = core.pcheck # Speed of light # noinspection PyUnresolvedReferences speed_of_light_ms = cc.c.to(uu.m / uu.s).value # noinspection PyUnresolvedReferences speed_of_light = cc.c.to(uu.km / uu.s).value # ============================================================================= # Define functions # ============================================================================= def measure_fp_peaks(params, props, limit, normpercent): """ Measure the positions of the FP peaks Returns the pixels positions and Nth order of each FP peak :param p: parameter dictionary, ParamDict containing constants Must contain at least: drift_peak_border_size: int, the border size (edges in x-direction) for the FP fitting algorithm drift_peak_fpbox_size: int, the box half-size (in pixels) to fit an individual FP peak to - a gaussian will be fit to +/- this size from the center of the FP peak drift_peak_peak_sig_lim: dictionary, the sigma above the median that a peak must have to be recognised as a valid peak (before fitting a gaussian) dictionary must have keys equal to the lamp types (hc, fp) drift_peak_inter_peak_spacing: int, the minimum spacing between peaks in order to be recognised as a valid peak (before fitting a gaussian) log_opt: string, log option, normally the program name :param loc: parameter dictionary, ParamDict containing data Must contain at least: speref: numpy array (2D), the reference spectrum wave: numpy array (2D), the wave solution image lamp: string, the lamp type (either 'hc' or 'fp') :return loc: parameter dictionary, the updated parameter dictionary Adds/updates the following: ordpeak: numpy array (1D), the order number for each valid FP peak xpeak: numpy array (1D), the central position each gaussain fit to valid FP peak ewpeak: numpy array (1D), the FWHM of each gaussain fit to valid FP peak vrpeak: numpy array (1D), the radial velocity drift for each valid FP peak llpeak: numpy array (1D), the delta wavelength for each valid FP peak amppeak: numpy array (1D), the amplitude for each valid FP peak """ func_name = __NAME__ + '.create_drift_file()' # get the reference data and the wave data speref = np.array(props['SPEREF']) wave = props['WAVE'] # storage for order of peaks allpeaksize = [] allordpeak = [] allxpeak = [] allewpeak = [] allvrpeak = [] allllpeak = [] allamppeak = [] alldcpeak = [] allshapepeak = [] # loop through the orders for order_num in range(speref.shape[0]): # storage for order of peaks ordpeak = [] xpeak = [] ewpeak = [] vrpeak = [] llpeak = [] amppeak = [] dcpeak = [] shapepeak = [] # storage of warnings warn_dict = dict() # set number of peaks rejected to zero nreject = 0 # set a counter for total number of peaks ipeak = 0 # get the pixels for this order tmp = np.array(speref[order_num, :]) # define indices index = np.arange(len(tmp)) # ------------------------------------------------------------------ # normalize the spectrum tmp = tmp / np.nanpercentile(tmp, normpercent) # ------------------------------------------------------------------ # find the peaks with warnings.catch_warnings(record=True) as w: peakmask = (tmp[1:-1] > tmp[2:]) & (tmp[1:-1] > tmp[:-2]) peakpos = np.where(peakmask)[0] # work out the FP width for this order size = int(np.nanmedian(peakpos[1:] - peakpos[:-1])) # ------------------------------------------------------------------ # mask for finding maximum peak mask = np.ones_like(tmp) # mask out the edges mask[:size + 1] = 0 mask[-(size + 1):] = 0 # ------------------------------------------------------------------ # loop for peaks that are above a value of limit while mp.nanmax(mask * tmp) > limit: # -------------------------------------------------------------- # find peak along the order maxpos = np.nanargmax(mask * tmp) maxtmp = tmp[maxpos] # -------------------------------------------------------------- # get the values around the max position index_peak = index[maxpos - size: maxpos + size] tmp_peak = tmp[maxpos - size: maxpos + size] # -------------------------------------------------------------- # mask out this peak for next iteration of while loop mask[maxpos - (size // 2):maxpos + (size // 2) + 1] = 0 # -------------------------------------------------------------- # return the initial guess and the best fit p0, gg, _, warns = fit_fp_peaks(index_peak, tmp_peak, size) # -------------------------------------------------------------- # only keep peaks within +/- 1 pixel of original peak # (gaussian fit is to find sub-pixel value) cond = np.abs(maxpos - gg[1]) < 1 if cond: # work out the radial velocity of the peak lambefore = wave[order_num, maxpos - 1] lamafter = wave[order_num, maxpos + 1] deltalam = lamafter - lambefore # get the radial velocity waveomax = wave[order_num, maxpos] radvel = speed_of_light_ms * deltalam / (2.0 * waveomax) # add to storage ordpeak.append(order_num) xpeak.append(gg[1]) ewpeak.append(gg[2]) vrpeak.append(radvel) llpeak.append(deltalam) amppeak.append(maxtmp) shapepeak.append(gg[3]) dcpeak.append(gg[4]) else: # add to rejected nreject += 1 # iterator ipeak += 1 # -------------------------------------------------------------- # deal with warnings if warns is not None: if warns in warn_dict: warn_dict[warns] += 1 else: warn_dict[warns] = 1 # -------------------------------------------------------------- # log how many FPs were found and how many rejected wargs = [order_num, ipeak, nreject] WLOG(params, '', TextEntry('40-018-00001', args=wargs)) # ------------------------------------------------------------------ # print warnings for key in list(warn_dict.keys()): wargs = [warn_dict[key], key] WLOG(params, 'warning', TextEntry('00-018-00001', args=wargs)) # ------------------------------------------------------------------ # add values to all storage (and sort by xpeak) indsort = np.argsort(xpeak) allordpeak.append(np.array(ordpeak)[indsort]) allxpeak.append(np.array(xpeak)[indsort]) allewpeak.append(np.array(ewpeak)[indsort]) allvrpeak.append(np.array(vrpeak)[indsort]) allllpeak.append(np.array(llpeak)[indsort]) allamppeak.append(np.array(amppeak)[indsort]) allshapepeak.append(np.array(shapepeak)[indsort]) alldcpeak.append(np.array(dcpeak)[indsort]) allpeaksize.append(size) # store values in loc props['ORDPEAK'] = np.concatenate(allordpeak).astype(int) props['XPEAK'] = np.concatenate(allxpeak) props['PEAK2PEAK'] = np.concatenate(allewpeak) props['VRPEAK'] = np.concatenate(allvrpeak) props['LLPEAK'] = np.concatenate(allllpeak) props['AMPPEAK'] = np.concatenate(allamppeak) props['DCPEAK'] = np.concatenate(alldcpeak) props['SHAPEPEAK'] = np.concatenate(allshapepeak) props['PEAKSIZE'] = np.array(allpeaksize) # set source keys = ['ORDPEAK', 'XPEAK', 'PEAK2PEAK', 'VRPEAK', 'LLPEAK', 'AMPPEAK', 'DCPEAK', 'SHAPEPEAK', 'PEAKSIZE'] props.set_sources(keys, func_name) # Log the total number of FP lines found wargs = [len(props['XPEAK'])] WLOG(params, 'info', TextEntry('40-018-00002', args=wargs)) # return the property parameter dictionary return props def fit_fp_peaks(x, y, size, return_model=False): # storage of warnings warns = None # get gauss function ea_airy = mp.ea_airy_function # set up initial guess pnames = ['amp', 'pos', 'period', 'shape', 'dc'] # [amp, position, period, exponent, zero point] p0 = [np.max(y) - np.min(y), np.median(x), size, 1.5, np.max([0, np.min(y)])] # set up the bounds lowerbounds = [0.5 * p0[0], p0[1] - 2, 0.7 * p0[2], 1.0, 0.0] upperbounds = [2.0 * p0[0], p0[1] + 2, 1.3 * p0[2], 10.0, 0.5 * p0[0]] bounds = [lowerbounds, upperbounds] # test bounds make sense for p_it in range(len(lowerbounds)): if lowerbounds[p_it] >= upperbounds[p_it]: if warns is None: warns = '' warns += ('\nBoundError: Lower bound {0} incorrect (lower={1} ' 'upper={2})'.format(pnames[p_it], lowerbounds[p_it], upperbounds[p_it])) if p0[p_it] < lowerbounds[p_it] or p0[p_it] > upperbounds[p_it]: if warns is None: warns = '' warns += ('\nBoundError: Inital guess for {0} out of bounds ' '(guess={1} lower={2} upper={3})' ''.format(pnames[p_it], p0[p_it], lowerbounds[p_it], upperbounds[p_it])) # deal with bad bounds if warns is not None: popt = [np.nan, np.nan, np.nan, np.nan, np.nan] pcov = None model = np.repeat([np.nan], len(x)) else: # try to fit etiennes airy function try: with warnings.catch_warnings(record=True) as _: popt, pcov = curve_fit(ea_airy, x, y, p0=p0, bounds=bounds) model = ea_airy(x, *popt) except ValueError as e: # log that ydata or xdata contains NaNs popt = [np.nan, np.nan, np.nan, np.nan, np.nan] pcov = None warns = '{0}: {1}'.format(type(e), e) model = np.repeat([np.nan], len(x)) except RuntimeError as e: popt = [np.nan, np.nan, np.nan, np.nan, np.nan] pcov = None warns = '{0}: {1}'.format(type(e), e) model = np.repeat([np.nan], len(x)) # deal with returning model if return_model: return p0, popt, pcov, warns, model else: # return the guess and the best fit return p0, popt, pcov, warns def remove_wide_peaks(params, props, cutwidth): """ Remove peaks that are too wide :param p: parameter dictionary, ParamDict containing constants :param loc: parameter dictionary, ParamDict containing data Must contain at least: ordpeak: numpy array (1D), the order number for each valid FP peak xpeak: numpy array (1D), the central position each gaussain fit to valid FP peak ewpeak: numpy array (1D), the FWHM of each gaussain fit to valid FP peak vrpeak: numpy array (1D), the radial velocity drift for each valid FP peak llpeak: numpy array (1D), the delta wavelength for each valid FP peak amppeak: numpy array (1D), the amplitude for each valid FP peak :param expwidth: float or None, the expected width of FP peaks - used to "normalise" peaks (which are then subsequently removed if > "cutwidth") if expwidth is None taken from p['DRIFT_PEAK_EXP_WIDTH'] :param cutwidth: float or None, the normalised width of FP peaks thatis too large normalised width FP FWHM - expwidth cut is essentially: FP FWHM < (expwidth + cutwidth), if cutwidth is None taken from p['DRIFT_PEAK_NORM_WIDTH_CUT'] :return loc: parameter dictionary, the updated parameter dictionary Adds/updates the following: ordpeak: numpy array (1D), the order number for each valid FP peak (masked to remove wide peaks) xpeak: numpy array (1D), the central position each gaussain fit to valid FP peak (masked to remove wide peaks) ewpeak: numpy array (1D), the FWHM of each gaussain fit to valid FP peak (masked to remove wide peaks) vrpeak: numpy array (1D), the radial velocity drift for each valid FP peak (masked to remove wide peaks) llpeak: numpy array (1D), the delta wavelength for each valid FP peak (masked to remove wide peaks) amppeak: numpy array (1D), the amplitude for each valid FP peak (masked to remove wide peaks) """ func_name = __NAME__ + '.remove_wide_peaks()' # define a mask to cut out wide peaks mask = np.array(props['PEAK2PEAK']) < cutwidth # apply mask props['ORDPEAK'] = props['ORDPEAK'][mask] props['XPEAK'] = props['XPEAK'][mask] props['PEAK2PEAK'] = props['PEAK2PEAK'][mask] props['VRPEAK'] = props['VRPEAK'][mask] props['LLPEAK'] = props['LLPEAK'][mask] props['AMPPEAK'] = props['AMPPEAK'][mask] # check for and remove double-fitted lines # save old position props['XPEAK_OLD'] = np.copy(props['XPEAK']) props['ORDPEAK_OLD'] = np.copy(props['ORDPEAK']) # set up storage for good lines ordpeak_k, xpeak_k, ewpeak_k, vrpeak_k = [], [], [], [] llpeak_k, amppeak_k = [], [] # loop through the orders for order_num in range(np.shape(props['SPEREF'])[0]): # set up mask for the order gg = props['ORDPEAK'] == order_num # get the xvalues xpeak = props['XPEAK'][gg] # get the amplitudes amppeak = props['AMPPEAK'][gg] # get peak spacing peak_spacing = props['PEAKSIZE'][order_num] / 2 # get the points where two peaks are spaced by < peak_spacing ind = np.argwhere(xpeak[1:] - xpeak[:-1] < peak_spacing) # get the indices of the second peak of each pair ind2 = ind + 1 # initialize mask with the same size as xpeak xmask = np.ones(len(xpeak), dtype=bool) # mask the peak with the lower amplitude of the two for i in range(len(ind)): if amppeak[ind[i]] < amppeak[ind2[i]]: xmask[ind[i]] = False else: xmask[ind2[i]] = False # save good lines ordpeak_k += list(props['ORDPEAK'][gg][xmask]) xpeak_k += list(props['XPEAK'][gg][xmask]) ewpeak_k += list(props['PEAK2PEAK'][gg][xmask]) vrpeak_k += list(props['VRPEAK'][gg][xmask]) llpeak_k += list(props['LLPEAK'][gg][xmask]) amppeak_k += list(props['AMPPEAK'][gg][xmask]) # replace FP peak arrays in loc props['ORDPEAK'] = np.array(ordpeak_k) props['XPEAK'] = np.array(xpeak_k) props['PEAK2PEAK'] = np.array(ewpeak_k) props['VRPEAK'] = np.array(vrpeak_k) props['LLPEAK'] = np.array(llpeak_k) props['AMPPEAK'] = np.array(amppeak_k) # append this function to sources keys = ['ordpeak', 'xpeak', 'PEAK2PEAK', 'vrpeak', 'llpeak', 'amppeak'] props.append_sources(keys, func_name) # log number of lines removed for suspicious width wargs = [mp.nansum(~mask)] WLOG(params, 'info', TextEntry('40-018-00003', args=wargs)) # log number of lines removed as double-fitted wargs = [len(props['XPEAK_OLD']) - len(props['XPEAK'])] WLOG(params, 'info', TextEntry('40-018-00004', args=wargs)) # return props return props def get_ccf_mask(params, filename, mask_width, mask_units='nm'): func_name = __NAME__ + '.get_ccf_mask()' # load table table, absfilename = drs_data.load_ccf_mask(params, filename=filename) # convert to floats ll_mask_e = np.array(table['ll_mask_e']).astype(float) ll_mask_s = np.array(table['ll_mask_s']).astype(float) # calculate the difference in mask_e and mask_s ll_mask_d = ll_mask_e - ll_mask_s ll_mask_ctr = ll_mask_s + ll_mask_d * 0.5 # if mask_width > 0 ll_mask_d is multiplied by mask_width/c if mask_width > 0: ll_mask_d = mask_width * ll_mask_s / speed_of_light # make w_mask an array w_mask = np.array(table['w_mask']).astype(float) # ---------------------------------------------------------------------- # deal with the units of ll_mask_d and ll_mask_ctr # must be returned in nanometers # ---------------------------------------------------------------------- # get unit object from mask units string try: unit = getattr(uu, mask_units) except Exception as e: # log error eargs = [mask_units, type(e), e, func_name] WLOG(params, 'error', TextEntry('09-020-00002', args=eargs)) return None, None, None # add units ll_mask_d = ll_mask_d * unit ll_mask_ctr = ll_mask_ctr * unit # convert to nanometers ll_mask_d = ll_mask_d.to(uu.nm).value ll_mask_ctr = ll_mask_ctr.to(uu.nm).value # ---------------------------------------------------------------------- # return the size of each pixel, the central point of each pixel # and the weight mask return ll_mask_d, ll_mask_ctr, w_mask def delta_v_rms_2d(spe, wave, sigdet, threshold, size): """ Compute the photon noise uncertainty for all orders (for the 2D image) :param spe: numpy array (2D), the extracted spectrum size = (number of orders by number of columns (x-axis)) :param wave: numpy array (2D), the wave solution for each pixel :param sigdet: float, the read noise (sigdet) for calculating the noise array :param threshold: float, upper limit for pixel values, above this limit pixels are regarded as saturated :param size: int, size (in pixels) around saturated pixels to also regard as bad pixels :return dvrms2: numpy array (1D), the photon noise for each pixel (squared) :return weightedmean: float, weighted mean photon noise across all orders """ # flag (saturated) fluxes above threshold as "bad pixels" with warnings.catch_warnings(record=True) as _: flag = spe < threshold # flag all fluxes around "bad pixels" (inside +/- size of the bad pixel) for i_it in range(1, 2 * size, 1): flag[:, size:-size] *= flag[:, i_it: i_it - 2 * size] # get the wavelength normalised to the wavelength spacing nwave = wave[:, 1:-1] / (wave[:, 2:] - wave[:, :-2]) # get the flux + noise array sxn = (spe[:, 1:-1] + sigdet ** 2) # get the flux difference normalised to the flux + noise nspe = (spe[:, 2:] - spe[:, :-2]) / sxn # get the mask value maskv = flag[:, 2:] * flag[:, 1:-1] * flag[:, :-2] # get the total per order tot = mp.nansum(sxn * ((nwave * nspe) ** 2) * maskv, axis=1) # convert to dvrms2 with warnings.catch_warnings(record=True) as _: dvrms2 = (speed_of_light_ms ** 2) / abs(tot) # weighted mean of dvrms2 values weightedmean = 1. / np.sqrt(mp.nansum(1.0 / dvrms2)) # per order value weightedmeanorder = np.sqrt(dvrms2) # return dv rms and weighted mean return dvrms2, weightedmean, weightedmeanorder def remove_telluric_domain(params, recipe, infile, fiber, **kwargs): func_name = __NAME__ + '.remove_telluric_domain()' # get parameters from params/kwargs ccf_tellu_thres = pcheck(params, 'CCF_TELLU_THRES', 'ccf_tellu_thres', kwargs, func_name) # get the image image = np.array(infile.data) # get extraction type from the header ext_type = infile.get_key('KW_EXT_TYPE', dtype=str) # get the input file (assumed to be the first file from header e2dsfiles = infile.read_header_key_1d_list('KW_INFILE1', dim1=None, dtype=str) e2dsfilename = e2dsfiles[0] # construct absolute path for the e2ds file e2dsabsfilename = os.path.join(infile.path, e2dsfilename) # check that e2ds file exists if not os.path.exists(e2dsabsfilename): eargs = [infile.filename, ext_type, e2dsabsfilename] WLOG(params, 'error', TextEntry('09-020-00003', args=eargs)) # get infile e2dsinst = core.get_file_definition(ext_type, params['INSTRUMENT'], kind='red') # construct e2ds file e2dsfile = e2dsinst.newcopy(recipe=recipe, fiber=fiber) e2dsfile.set_filename(e2dsfilename) # get recon file reconinst = core.get_file_definition('TELLU_RECON', params['INSTRUMENT'], kind='red') # construct recon file reconfile = reconinst.newcopy(recipe=recipe, fiber=fiber) reconfile.construct_filename(params, infile=e2dsfile) # check recon file exists if not os.path.exists(reconfile.filename): eargs = [infile.filename, reconfile.name, e2dsfile.filename] WLOG(params, 'error', TextEntry('09-020-00003', args=eargs)) # read recon file reconfile.read_file() # find all places below threshold with warnings.catch_warnings(record=True) as _: keep = reconfile.data > ccf_tellu_thres # set all bad data to NaNs image[~keep] = np.nan # return in file return image def fill_e2ds_nans(params, image, **kwargs): func_name = __NAME__ + '.fill_e2ds_nans()' # get parameters from params/kwargs kernel_size = pcheck(params, 'CCF_FILL_NAN_KERN_SIZE', 'kernel_size', kwargs, func_name) kernel_res = pcheck(params, 'CCF_FILL_NAN_KERN_RES', 'kernel_res', kwargs, func_name) # check whether we have NaNs if np.sum(np.isnan(image)) == 0: return image # create a kernel to fill in the NaN gaps xker = np.arange(-kernel_size, kernel_size + kernel_res, kernel_res) kernel = np.exp(-0.5 * (xker ** 2)) kernel /= np.sum(kernel) # log that NaNs were found WLOG(params, 'warning', TextEntry('10-020-00002')) # copy original image image2 = np.array(image) # loop around orders for order_num in np.arange(image.shape[0]): # get the vector for this order oimage = np.array(image2[order_num]) # find all the nan pixels in this order nanmask = np.isnan(oimage) # convert the nanmask to floats (for convolution) floatmask = (~nanmask).astype(float) # set the NaN values in image to zero oimage[nanmask] = 0.0 # convolve the NaN mask with the kernel smooth_mask = np.convolve(floatmask, kernel, mode='same') smooth_data = np.convolve(oimage, kernel, mode='same') # calculate the smooth data (this is what is replaced) smooth = smooth_data / smooth_mask # set the NaN values to the smooth value image2[order_num][nanmask] = smooth[nanmask] # return the filled e2ds return image2 def locate_reference_file(params, recipe, infile): # set function name func_name = display_func(params, 'locate_reference_file', __NAME__) # get pp file name # TODO: fix how we get pp file pp_filename = infile.filename.split('_pp')[0] + '_pp.fits' # get pseudo const pconst = constants.pload(params['INSTRUMENT']) # get reference fiber _, reffiber = pconst.FIBER_KINDS() # deal with infile being telluric file (we do not have reference file # for telluric files) --> must use the telluric files "intype file" if infile.name == 'TELLU_OBJ': instance = infile.intype else: instance = infile # get pp file ppfile = instance.intype.newcopy(recipe=recipe) ppfile.set_filename(pp_filename) # check that ppfile is a ppfile if ppfile.suffix != '_pp': # log that we could not locate reference file for file eargs = [infile.name, ppfile.name, infile.filename, func_name] WLOG(params, 'error', TextEntry('00-020-00003', args=eargs)) # make a new copy of this instance outfile = instance.newcopy(recipe=recipe, fiber=reffiber) # construct filename outfile.construct_filename(params, infile=ppfile) # read outfile outfile.read_file() # return outfile return outfile # ============================================================================= # Define CCF calculation functions # ============================================================================= def compute_ccf_science(params, recipe, infile, image, blaze, wavemap, bprops, fiber, **kwargs): func_name = __NAME__ + '.compute_ccf()' # get parameters from params/kwargs noise_sigdet = pcheck(params, 'CCF_NOISE_SIGDET', 'noise_sigdet', kwargs, func_name) noise_size = pcheck(params, 'CCF_NOISE_BOXSIZE', 'noise_size', kwargs, func_name) noise_thres = pcheck(params, 'CCF_NOISE_THRES', 'noise_thres', kwargs, func_name) # TODO: Remove this (not used any more) mask_min = pcheck(params, 'CCF_MASK_MIN_WEIGHT', 'mask_min', kwargs, func_name) mask_width = pcheck(params, 'CCF_MASK_WIDTH', 'mask_width', kwargs, func_name) mask_units = pcheck(params, 'CCF_MASK_UNITS', 'mask_units', kwargs, func_name) fit_type = pcheck(params, 'CCF_FIT_TYPE', 'fit_type', kwargs, func_name) ccfnmax = pcheck(params, 'CCF_N_ORD_MAX', 'ccfnmax', kwargs, func_name) image_pixel_size = pcheck(params, 'IMAGE_PIXEL_SIZE', 'image_pixel_size', kwargs, func_name) null_targetrv = pcheck(params, 'CCF_OBJRV_NULL_VAL', 'null_targetrv', kwargs, func_name) maxwsr = pcheck(params, 'CCF_MAX_CCF_WID_STEP_RATIO', 'maxwsr', kwargs, func_name) # get image size nbo, nbpix = image.shape # get parameters from inputs ccfstep = params['INPUTS']['STEP'] ccfwidth = params['INPUTS']['WIDTH'] targetrv = params['INPUTS']['RV'] # ---------------------------------------------------------------------- # TODO: eventually this should come from object database (so that each # TODO: object has a constant target rv # need to deal with no target rv step if np.isnan(targetrv): targetrv = infile.get_key('KW_INPUTRV', required=False, dtype=float) # set target rv to zero if we don't have a value if targetrv is None: wargs = [params['KW_INPUTRV'][0], infile.filename] WLOG(params, 'warning', TextEntry('09-020-00006', args=wargs)) targetrv = 0.0 elif np.abs(targetrv) > null_targetrv: wargs = [params['KW_INPUTRV'][0], null_targetrv, infile.filename] WLOG(params, 'warning', TextEntry('09-020-00007', args=wargs)) targetrv = 0.0 # ---------------------------------------------------------------------- # need to deal with mask coming from inputs if isinstance(params['INPUTS']['MASK'], list): ccfmask = params['INPUTS']['MASK'][0][0] # else mask has come from constants else: ccfmask = params['INPUTS']['MASK'] # get the berv berv = bprops['USE_BERV'] # ---------------------------------------------------------------------- # Need some sanity checking on width and step # ---------------------------------------------------------------------- if ccfstep > (ccfwidth / maxwsr): eargs = [ccfwidth, ccfstep, maxwsr, func_name] WLOG(params, 'error', TextEntry('09-020-00005', args=eargs)) # ---------------------------------------------------------------------- # Check we are using correct fiber # ---------------------------------------------------------------------- pconst = constants.pload(params['INSTRUMENT']) sfiber, rfiber = pconst.FIBER_CCF() if fiber != sfiber: # log that the science fiber was not correct eargs = [fiber, sfiber, infile.name, infile.filename] WLOG(params, 'error', TextEntry('09-020-00001', args=eargs)) # ---------------------------------------------------------------------- # Compute photon noise uncertainty for reference file # ---------------------------------------------------------------------- # set up the arguments for DeltaVrms2D dkwargs = dict(spe=image, wave=wavemap, sigdet=noise_sigdet, size=noise_size, threshold=noise_thres) # run DeltaVrms2D dvrmsref, wmeanref, wmeanrefo = delta_v_rms_2d(**dkwargs) # log the estimated RV uncertainty wargs = [fiber, wmeanref] WLOG(params, 'info', TextEntry('40-020-00003', args=wargs)) # ---------------------------------------------------------------------- # Do the CCF calculations # ---------------------------------------------------------------------- # get the mask parameters mkwargs = dict(filename=ccfmask, mask_width=mask_width, mask_units=mask_units) ll_mask_d, ll_mask_ctr, w_mask = get_ccf_mask(params, **mkwargs) # calculate the CCF props = ccf_calculation(params, image, blaze, wavemap, berv, targetrv, ccfwidth, ccfstep, ll_mask_ctr, w_mask, fit_type, fiber) # ---------------------------------------------------------------------- # Reference plots # ---------------------------------------------------------------------- # the image vs wavelength for an order recipe.plot('CCF_SWAVE_REF', wavemap=wavemap, image=image, fiber=fiber, nbo=nbo) # the photon noise uncertainty plot recipe.plot('CCF_PHOTON_UNCERT', x=np.arange(nbo), y_sp=wmeanrefo, y_cc=props['CCF_NOISE']) # as a summary plot recipe.plot('SUM_CCF_PHOTON_UNCERT', x=np.arange(nbo), y_sp=wmeanrefo, y_cc=props['CCF_NOISE']) # ---------------------------------------------------------------------- # Calculate the mean CCF # ---------------------------------------------------------------------- # get the average ccf mean_ccf = mp.nanmean(props['CCF'][: ccfnmax], axis=0) # get the fit for the normalized average ccf mean_ccf_coeffs, mean_ccf_fit = fit_ccf(params, 'mean', props['RV_CCF'], mean_ccf, fit_type=fit_type) # get the max cpp # TODO: How do we calculate max_cpp and what is it? Do we need it? # max_cpp = mp.nansum(props['CCF_MAX']) / mp.nansum(props['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location ccf_rv = float(mean_ccf_coeffs[1]) # get the contrast (ccf fit amplitude) ccf_contrast = np.abs(100 * mean_ccf_coeffs[0]) # get the FWHM value ccf_fwhm = mean_ccf_coeffs[2] * mp.fwhm() # ---------------------------------------------------------------------- # combined CCF_NOISE uncertainty rv_noise = 1.0 / np.sqrt(mp.nansum(1.0 / props['CCF_NOISE'] ** 2)) # ---------------------------------------------------------------------- # log the stats wargs = [ccf_contrast, float(mean_ccf_coeffs[1]), rv_noise, ccf_fwhm] WLOG(params, 'info', TextEntry('40-020-00004', args=wargs)) # ---------------------------------------------------------------------- # add to output array props['TOT_SPEC_RMS'] = wmeanref props['ORD_SPEC_RMS'] = wmeanrefo props['MEAN_CCF'] = mean_ccf props['MEAN_RV'] = ccf_rv props['MEAN_CONTRAST'] = ccf_contrast props['MEAN_FWHM'] = ccf_fwhm props['MEAN_CCF_RES'] = mean_ccf_coeffs props['MEAN_CCF_FIT'] = mean_ccf_fit props['MEAN_RV_NOISE'] = rv_noise # set the source keys = ['TOT_SPEC_RMS', 'ORD_SPEC_RMS', 'MEAN_CCF', 'MEAN_RV', 'MEAN_CONTRAST', 'MEAN_FWHM', 'MEAN_CCF_RES', 'MEAN_CCF_FIT', 'MEAN_RV_NOISE'] props.set_sources(keys, func_name) # add constants to props props['CCF_MASK'] = ccfmask props['CCF_STEP'] = ccfstep props['CCF_WIDTH'] = ccfwidth props['TARGET_RV'] = targetrv props['CCF_SIGDET'] = noise_sigdet props['CCF_BOXSIZE'] = noise_size props['CCF_MAXFLUX'] = noise_thres props['CCF_NMAX'] = ccfnmax props['MASK_MIN'] = mask_min props['MASK_WIDTH'] = mask_width props['MASK_UNITS'] = mask_units # set source keys = ['CCF_MASK', 'CCF_STEP', 'CCF_WIDTH', 'TARGET_RV', 'CCF_SIGDET', 'CCF_BOXSIZE', 'CCF_MAXFLUX', 'CCF_NMAX', 'MASK_MIN', 'MASK_WIDTH', 'MASK_UNITS'] props.set_sources(keys, func_name) # ------------------------------------------------------------------ # rv ccf plot # ------------------------------------------------------------------ # loop around every order recipe.plot('CCF_RV_FIT_LOOP', params=params, x=props['RV_CCF'], y=props['CCF'], yfit=props['CCF_FIT'], kind='SCIENCE', rv=props['CCF_FIT_COEFFS'][:, 1], ccfmask=ccfmask, orders=np.arange(len(props['CCF'])), order=None) # the mean ccf recipe.plot('CCF_RV_FIT', params=params, x=props['RV_CCF'], y=mean_ccf, yfit=mean_ccf_fit, kind='MEAN SCIENCE', rv=ccf_rv, ccfmask=ccfmask, orders=None, order=None) # the mean ccf for summary recipe.plot('SUM_CCF_RV_FIT', params=params, x=props['RV_CCF'], y=mean_ccf, yfit=mean_ccf_fit, kind='MEAN SCIENCE', rv=ccf_rv, ccfmask=ccfmask, orders=None, order=None) # ------------------------------------------------------------------ # return property dictionary return props def compute_ccf_fp(params, recipe, infile, image, blaze, wavemap, fiber, sum_plot=True, **kwargs): func_name = __NAME__ + '.compute_ccf_fp()' # get constants from params/kwargs noise_sigdet = pcheck(params, 'WAVE_CCF_NOISE_SIGDET', 'sigdet', kwargs, func_name) noise_size = pcheck(params, 'WAVE_CCF_NOISE_BOXSIZE', 'boxsize', kwargs, func_name) noise_thres = pcheck(params, 'WAVE_CCF_NOISE_THRES', 'maxflux', kwargs, func_name) ccfstep = pcheck(params, 'WAVE_CCF_STEP', 'ccfstep', kwargs, func_name) ccfwidth = pcheck(params, 'WAVE_CCF_WIDTH', 'ccfwidth', kwargs, func_name) targetrv = pcheck(params, 'WAVE_CCF_TARGET_RV', 'targetrv', kwargs, func_name) ccfmask = pcheck(params, 'WAVE_CCF_MASK', 'ccfmask', kwargs, func_name) ccfnmax = pcheck(params, 'WAVE_CCF_N_ORD_MAX', 'ccfnmax', kwargs, func_name) mask_min = pcheck(params, 'WAVE_CCF_MASK_MIN_WEIGHT', 'mask_min', kwargs, func_name) mask_width = pcheck(params, 'WAVE_CCF_MASK_WIDTH', 'mask_width', kwargs, func_name) mask_units = pcheck(params, 'WAVE_CCF_MASK_UNITS', 'mask_units', kwargs, func_name) image_pixel_size = pcheck(params, 'IMAGE_PIXEL_SIZE', 'image_pixel_size', kwargs, func_name) # set the berv to zero (fp have no berv) berv = 0 # the fit type must be set to 1 (for emission lines) fit_type = 1 # ------------------------------------------------------------------ # Compute photon noise uncertainty for FP # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dkwargs = dict(spe=image, wave=wavemap, sigdet=noise_sigdet, size=noise_size, threshold=noise_thres) # run DeltaVrms2D dvrmsref, wmeanref, wmeanrefo = delta_v_rms_2d(**dkwargs) # log the estimated RV uncertainty wargs = [fiber, wmeanref] WLOG(params, 'info', TextEntry('40-017-00028', args=wargs)) # ---------------------------------------------------------------------- # Do the CCF calculations # ---------------------------------------------------------------------- # get the mask parameters mkwargs = dict(filename=ccfmask, mask_width=mask_width, mask_units=mask_units) ll_mask_d, ll_mask_ctr, w_mask = get_ccf_mask(params, **mkwargs) # calculate the CCF props = ccf_calculation(params, image, blaze, wavemap, berv, targetrv, ccfwidth, ccfstep, ll_mask_ctr, w_mask, fit_type, fiber) # ---------------------------------------------------------------------- # Calculate the mean CCF # ---------------------------------------------------------------------- # get the average ccf mean_ccf = mp.nanmean(props['CCF'][: ccfnmax], axis=0) # get the fit for the normalized average ccf mean_ccf_coeffs, mean_ccf_fit = fit_ccf(params, 'mean', props['RV_CCF'], mean_ccf, fit_type=fit_type) # get the max cpp # TODO: How do we calculate max_cpp and what is it? Do we need it? # max_cpp = mp.nansum(props['CCF_MAX']) / mp.nansum(props['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location ccf_rv = float(mean_ccf_coeffs[1]) # get the contrast (ccf fit amplitude) ccf_contrast = np.abs(100 * mean_ccf_coeffs[0]) # get the FWHM value ccf_fwhm = mean_ccf_coeffs[2] * mp.fwhm() # ---------------------------------------------------------------------- # combined CCF_NOISE uncertainty rv_noise = 1.0 / np.sqrt(mp.nansum(1.0 / props['CCF_NOISE'] ** 2)) # ---------------------------------------------------------------------- # log the stats wargs = [ccf_contrast, float(mean_ccf_coeffs[1]), rv_noise, ccf_fwhm] WLOG(params, 'info', TextEntry('40-020-00004', args=wargs)) # ---------------------------------------------------------------------- # add to output array props['TOT_SPEC_RMS'] = wmeanref props['ORD_SPEC_RMS'] = wmeanrefo props['MEAN_CCF'] = mean_ccf props['MEAN_RV'] = ccf_rv props['MEAN_CONTRAST'] = ccf_contrast props['MEAN_FWHM'] = ccf_fwhm props['MEAN_CCF_COEFFS'] = mean_ccf_coeffs props['MEAN_CCF_FIT'] = mean_ccf_fit props['MEAN_RV_NOISE'] = rv_noise # set the source keys = ['TOT_SPEC_RMS', 'ORD_SPEC_RMS', 'MEAN_CCF', 'MEAN_RV', 'MEAN_CONTRAST', 'MEAN_FWHM', 'MEAN_CCF_COEFFS', 'MEAN_CCF_FIT', 'MEAN_RV_NOISE'] props.set_sources(keys, func_name) # add constants to props props['CCF_MASK'] = ccfmask props['CCF_STEP'] = ccfstep props['CCF_WIDTH'] = ccfwidth props['TARGET_RV'] = targetrv props['CCF_SIGDET'] = noise_sigdet props['CCF_BOXSIZE'] = noise_size props['CCF_MAXFLUX'] = noise_thres props['CCF_NMAX'] = ccfnmax props['MASK_MIN'] = mask_min props['MASK_WIDTH'] = mask_width props['MASK_UNITS'] = mask_units # set source keys = ['CCF_MASK', 'CCF_STEP', 'CCF_WIDTH', 'TARGET_RV', 'CCF_SIGDET', 'CCF_BOXSIZE', 'CCF_MAXFLUX', 'CCF_NMAX', 'MASK_MIN', 'MASK_WIDTH', 'MASK_UNITS'] props.set_sources(keys, func_name) # ---------------------------------------------------------------------- # rv ccf plot # ---------------------------------------------------------------------- # loop around every order recipe.plot('CCF_RV_FIT_LOOP', params=params, x=props['RV_CCF'], y=props['CCF'], yfit=props['CCF_FIT'], kind='FP fiber={0}'.format(fiber), rv=props['CCF_FIT_COEFFS'][:, 1], ccfmask=ccfmask, orders=np.arange(len(props['CCF'])), order=None) # the mean ccf recipe.plot('CCF_RV_FIT', params=params, x=props['RV_CCF'], y=mean_ccf, yfit=mean_ccf_fit, kind='MEAN FP fiber={0}'.format(fiber), rv=props['MEAN_CCF_COEFFS'][1], ccfmask=ccfmask, orders=None, order=None) # the mean ccf for summary if sum_plot: recipe.plot('SUM_CCF_RV_FIT', params=params, x=props['RV_CCF'], y=mean_ccf, yfit=mean_ccf_fit, kind='MEAN FP fiber={0}'.format(fiber), rv=ccf_rv, ccfmask=ccfmask, orders=None, order=None) # TODO : Add QC of the FP CCF once they are defined # return the rv props return props def ccf_calculation(params, image, blaze, wavemap, berv, targetrv, ccfwidth, ccfstep, mask_centers, mask_weights, fit_type, fiber, **kwargs): # set function name func_name = display_func(params, 'calculate_ccf', __NAME__) # get properties from params blaze_norm_percentile = pcheck(params, 'CCF_BLAZE_NORM_PERCENTILE', 'blaze_norm_percentile', kwargs, func_name) blaze_threshold = pcheck(params, 'WAVE_FP_BLAZE_THRES', 'blaze_threshold', kwargs, func_name) # get rvmin and rvmax rvmin = targetrv - ccfwidth rvmin = pcheck(params, 'RVMIN', 'rvmin', kwargs, func_name, default=rvmin) rvmax = targetrv + ccfwidth + ccfstep rvmax = pcheck(params, 'RVMAX', 'rvmax', kwargs, func_name, default=rvmax) # get the dimensions nbo, nbpix = image.shape # create a rv ccf range rv_ccf = np.arange(rvmin, rvmax, ccfstep) # storage of the ccf ccf_all = [] ccf_noise_all = [] ccf_all_fit = [] ccf_all_results = [] ccf_lines = [] ccf_all_snr = [] ccf_norm_all = [] # ---------------------------------------------------------------------- # loop around the orders for order_num in range(nbo): # log the process WLOG(params, '', TextEntry('40-020-00005', args=[fiber, order_num])) # ------------------------------------------------------------------ # get this orders values wa_ord = np.array(wavemap[order_num]) sp_ord = np.array(image[order_num]) bl_ord = np.array(blaze[order_num]) # we express sp_ord as a flux in photons per km/s grad = speed_of_light * np.gradient(wa_ord)/wa_ord sp_ord = sp_ord / grad # normalize per-ord blaze to its peak value # this gets rid of the calibration lamp SED bl_ord /= np.nanpercentile(bl_ord, blaze_norm_percentile) # change NaNs in blaze to zeros bl_ord[~np.isfinite(bl_ord)] = 0.0 # mask on the blaze with warnings.catch_warnings(record=True) as _: blazemask = bl_ord > blaze_threshold # get order mask centers and mask weights min_ord_wav = mp.nanmin(wa_ord[blazemask]) max_ord_wav = mp.nanmax(wa_ord[blazemask]) # adjust for rv shifts # min_ord_wav = min_ord_wav * (1 - rvmin / speed_of_light) # max_ord_wav = max_ord_wav * (1 - rvmax / speed_of_light) # mask the ccf mask by the order length mask_wave_mask = (mask_centers > min_ord_wav) mask_wave_mask &= (mask_centers < max_ord_wav) omask_centers = mask_centers[mask_wave_mask] omask_weights = mask_weights[mask_wave_mask] # ------------------------------------------------------------------ # find any places in spectrum or blaze where pixel is NaN nanmask = np.isnan(sp_ord) | np.isnan(bl_ord) # ------------------------------------------------------------------ # deal with no valid lines if np.sum(mask_wave_mask) == 0: # log all NaN wargs = [order_num, min_ord_wav, max_ord_wav] WLOG(params, 'warning', TextEntry('10-020-00006', args=wargs)) # set all values to NaN ccf_all.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_fit.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_results.append(np.repeat(np.nan, 4)) ccf_noise_all.append(np.nan) ccf_lines.append(0) ccf_all_snr.append(np.nan) ccf_norm_all.append(np.nan) continue # ------------------------------------------------------------------ # deal with all nan if np.sum(nanmask) == nbpix: # log all NaN wargs = [order_num] WLOG(params, 'warning', TextEntry('10-020-00004', args=wargs)) # set all values to NaN ccf_all.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_fit.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_results.append(np.repeat(np.nan, 4)) ccf_noise_all.append(np.nan) ccf_lines.append(0) ccf_all_snr.append(np.nan) ccf_norm_all.append(np.nan) continue # ------------------------------------------------------------------ # set the spectrum or blaze NaN pixels to zero (dealt with by divide) sp_ord[nanmask] = 0 bl_ord[nanmask] = 0 # now every value that is zero is masked (we don't want to spline these) good = (sp_ord != 0) & (bl_ord != 0) weight_ord = np.array(good, dtype=float) # ------------------------------------------------------------------ # spline the spectrum and the blaze spline_sp = mp.iuv_spline(wa_ord[good], sp_ord[good], k=5, ext=1) spline_bl = mp.iuv_spline(wa_ord[good], bl_ord[good], k=5, ext=1) spline_weight = mp.iuv_spline(wa_ord, weight_ord, k=1, ext=1) # ------------------------------------------------------------------ # set up the ccf for this order ccf_ord = np.zeros_like(rv_ccf) # ------------------------------------------------------------------ # get the wavelength shift (dv) in relativistic way wave_shifts = mp.relativistic_waveshift(rv_ccf - berv) # ------------------------------------------------------------------ # propagating the extreme wave shifts to see if any lines fall off # the domain that is considered valid for the spline # find the wave grid for the first shift wave_tmp_start = omask_centers * wave_shifts[0] # find the wave grid for the last shift wave_tmp_end = omask_centers * wave_shifts[-1] # find the valid lines within these limits # (ext=1 puts 0 when point is beyond domain) valid_lines_start = spline_bl(wave_tmp_start) != 0 valid_lines_end = spline_bl(wave_tmp_end) != 0 # combine the valid masks for start and end keep = valid_lines_start & valid_lines_end # ------------------------------------------------------------------ # deal with no valid lines if np.sum(keep) == 0: # log all NaN wargs = [order_num] WLOG(params, 'warning', TextEntry('10-020-00007', args=wargs)) # set all values to NaN ccf_all.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_fit.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_results.append(np.repeat(np.nan, 4)) ccf_noise_all.append(np.nan) ccf_lines.append(0) ccf_all_snr.append(np.nan) ccf_norm_all.append(np.nan) continue # ------------------------------------------------------------------ # apply masks to centers and weights omask_centers = omask_centers[keep] omask_weights = omask_weights[keep] # normalise omask weights by omask_weights = omask_weights / np.nanmean(omask_weights) # Number of photons at line centers for 1 CCF step sweights = spline_weight(omask_centers) nphot = spline_sp(omask_centers) * sweights / ccfstep # Poisson noise is a bit bigger because of weights wsum = np.sum(nphot*omask_weights) wsum2 = np.sum(nphot*omask_weights**2) # we can't calculate wnoise for negative values --> set to inf if (wsum <= 0) or (wsum2 <= 0): wargs = [order_num] WLOG(params, 'warning', TextEntry('10-020-00008', args=wargs)) wsum, wnoise = 0.0, np.inf else: wnoise = np.sqrt(wsum2) # ------------------------------------------------------------------ # set number of valid lines used to zero numlines = 0 # loop around the rvs and calculate the CCF at this point part3 = spline_bl(omask_centers) for rv_element in range(len(rv_ccf)): wave_tmp = omask_centers * wave_shifts[rv_element] part1 = spline_sp(wave_tmp) part2 = spline_bl(wave_tmp) part4 = spline_weight(wave_tmp) numlines = np.sum(spline_bl(wave_tmp) != 0) # CCF is the division of the sums with warnings.catch_warnings(record=True) as _: ccf_element = ((part1 * part3) / part2) * omask_weights * part4 ccf_ord[rv_element] = mp.nansum(ccf_element) # ------------------------------------------------------------------ # deal with NaNs in ccf if np.sum(np.isnan(ccf_ord)) > 0: # log all NaN wargs = [order_num] WLOG(params, 'warning', TextEntry('10-020-00005', args=wargs)) # set all values to NaN ccf_all.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_fit.append(np.repeat(np.nan, len(rv_ccf))) ccf_all_results.append(np.repeat(np.nan, 4)) ccf_noise_all.append(np.nan) ccf_lines.append(0) ccf_all_snr.append(np.nan) ccf_norm_all.append(np.nan) continue # ------------------------------------------------------------------ # TODO -- check that its ok to remove the normalization # TODO -- this should preserve the stellar flux weighting # normalise each orders CCF to median # TODO -- keep track of the norm factor, write a look-up table # TODO -- with reasonable mid-M values and use these values for # TODO -- all stars. At some point, have a temperature-dependent # TODO -- LUT of weights. ccf_norm = mp.nanmedian(ccf_ord) # ccf_ord = ccf_ord / ccf_norm # ------------------------------------------------------------------ # fit the CCF with a gaussian fargs = [order_num, rv_ccf, ccf_ord, fit_type] ccf_coeffs_ord, ccf_fit_ord = fit_ccf(params, *fargs) # ------------------------------------------------------------------ # get the RV accuracy from Bouchy 2001 equation dv_pix = (np.gradient(ccf_ord)/np.gradient(rv_ccf))/wnoise # set the bad values for ccf noise and ccf snr --> NaN value is bad if wsum == 0: ccf_noise = np.nan ccf_snr = np.nan else: ccf_noise = 1 / np.sqrt(np.nansum(dv_pix ** 2)) # ge the snr ccf_snr = wsum / wnoise # ------------------------------------------------------------------ # append ccf to storage ccf_all.append(ccf_ord) ccf_all_fit.append(ccf_fit_ord) ccf_all_results.append(ccf_coeffs_ord) ccf_noise_all.append(ccf_noise) ccf_lines.append(numlines) ccf_all_snr.append(ccf_snr) ccf_norm_all.append(ccf_norm) # store outputs in param dict props = ParamDict() props['RV_CCF'] = rv_ccf props['CCF'] = np.array(ccf_all) props['CCF_LINES'] = np.array(ccf_lines) props['TOT_LINE'] = np.sum(ccf_lines) props['CCF_NOISE'] = np.array(ccf_noise_all) * 1000 # [m/s] props['CCF_SNR'] = np.array(ccf_all_snr) props['CCF_FIT'] = np.array(ccf_all_fit) props['CCF_FIT_COEFFS'] =
np.array(ccf_all_results)
numpy.array
import unittest import numpy as np import time import torch from potts_deepflow import Potts_MAP1d,Potts_MAP2d,Potts_MAP3d from potts_deepflow import Potts_Mean1d,Potts_Mean2d,Potts_Mean3d b=1 c=3 x=2**12 epsilon = 0.01 def get_size_into(d): x_used = int(x**(1/d)+0.001) return tuple( [b,c]+[x_used for i in range(d)] ), tuple( [1,c]+[x_used for i in range(d)] ), tuple([i+2 for i in range(d)]) def test_no_smoothness(d,device,asserter): print("Testing (no smoothness) \t Dim: " +str(d)+ " \t Dev: " + device) size_info, size_red_info, axes = get_size_into(d) data_t = np.random.normal(0,1,size=size_info).astype(np.float32) data_w = np.random.normal(0,1,size=size_info).astype(np.float32) data_rx = np.zeros(shape=size_info).astype(np.float32) if d > 1: data_ry = np.zeros(shape=size_info).astype(np.float32) if d > 2: data_rz = np.zeros(shape=size_info).astype(np.float32) t = torch.tensor(data_t, device=torch.device(device)) t.requires_grad = True w = torch.tensor(data_w, device=torch.device(device)) rx = torch.tensor(data_rx, device=torch.device(device)) rx.requires_grad = True if d > 1: ry = torch.tensor(data_ry, device=torch.device(device)) ry.requires_grad = True if d > 2: rz = torch.tensor(data_rz, device=torch.device(device)) rz.requires_grad = True if d == 1: oa = torch.exp(Potts_MAP1d.apply(t,rx)) om = Potts_Mean1d.apply(t,rx) elif d == 2: oa = torch.exp(Potts_MAP2d.apply(t,rx,ry)) om = Potts_Mean2d.apply(t,rx,ry) elif d == 3: oa = torch.exp(Potts_MAP3d.apply(t,rx,ry,rz)) om = Potts_Mean3d.apply(t,rx,ry,rz) loss = torch.sum(w*om) loss.backward() oa_np = oa.detach().cpu().numpy() om_np = om.detach().cpu().numpy() ot_np = t.grad.detach().cpu().numpy() #make sure not nan asserter.assertFalse(np.any(np.isnan(oa_np))) asserter.assertFalse(np.any(np.isnan(om_np))) asserter.assertFalse(np.any(np.isnan(ot_np))) #resize into more usable form dt_np_l = [data_t[0,i,...].flatten() for i in range(c)] dw_np_l = [data_w[0,i,...].flatten() for i in range(c)] oa_np_l = [oa_np[0,i,...].flatten() for i in range(c)] om_np_l = [om_np[0,i,...].flatten() for i in range(c)] ot_np_l = [ot_np[0,i,...].flatten() for i in range(c)] x_space = len(dt_np_l[0]) #ensure MAP assigns 1 to highest term and 0 to everything else for i in range(x_space): highest = max([o[i] for o in dt_np_l]) for ic in range(c): if(dt_np_l[ic][i] == highest and oa_np_l[ic][i] < 0.5): raise Exception(str(dt_np_l[ic][i])+"\t"+str([o[i] for o in dt_np_l])+"\t"+str(highest)+"\t"+str(oa_np_l[ic][i])+"\t"+str([o[i] for o in oa_np_l])) if(dt_np_l[ic][i] < highest - epsilon and oa_np_l[ic][i] > 0.5): raise Exception(str(dt_np_l[ic][i])+"\t"+str([o[i] for o in dt_np_l])+"\t"+str(highest)+"\t"+str(oa_np_l[ic][i])+"\t"+str([o[i] for o in oa_np_l])) #ensure mean pass is equivalent to the data terms only for i in range(c): for val_df, val_d in zip(om_np_l[i],dt_np_l[i]): if(abs(val_df-val_d) > epsilon): raise Exception(str(val_df) + "\t" + str(val_d)) #ensure gradient wrt data terms are passed immediately through for i in range(c): for val_df, val_d in zip(ot_np_l[i],dw_np_l[i]): if(abs(val_df-val_d) > epsilon): raise Exception(str(val_df) + "\t" + str(val_d)) def test_smoothness_dom(d,device,asserter): print("Testing (smoothness dom.) \t Dim: " +str(d)+ " \t Dev: " + device) size_info, size_red_info, axes = get_size_into(d) winner = int(np.random.uniform()*c) data_t = 1*np.random.uniform(0,1,size=size_info).astype(np.float32) data_t[:,winner,...] = 0.75 data_r = 100+0*np.random.uniform(size=size_info).astype(np.float32) t = torch.tensor(data_t, device=torch.device(device)) r = torch.tensor(data_r, device=torch.device(device)) if d == 1: oa = torch.exp(Potts_MAP1d.apply(t,r)) om = Potts_Mean1d.apply(t,r) elif d == 2: oa = torch.exp(Potts_MAP2d.apply(t,r,r)) om = Potts_Mean2d.apply(t,r,r) elif d == 3: oa = torch.exp(Potts_MAP3d.apply(t,r,r,r)) om = Potts_Mean3d.apply(t,r,r,r) oa_np = oa.detach().cpu().numpy() om_np = om.detach().cpu().numpy() #make sure not nan asserter.assertFalse(np.any(
np.isnan(oa_np)
numpy.isnan
#! /usr/bin/env python """ WFIRST Infrared Nearby Galaxies Test Image Product Simulator Produces input files for the WFIRST STIPS simulator """ import time import subprocess import resource import gc import numpy as np from astropy import wcs from astropy.io import fits, ascii from astropy.table import Table import dask.dataframe as dd import wpipe as wp try: this_job = wp.ThisJob specialprint = this_job.logprint except AttributeError: specialprint = print class WingTips: """ Initialize WingTips object """ def __init__(self, infile=[], center=[0, 0], **kwargs): gc.collect() specialprint("Starting WingTips __init__ %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) if len(infile) == 0: self.tab = np.array([]) else: if isinstance(infile, str): infile = [infile] specialprint("Attempting read stips...") self.tab = WingTips.read_stips(infile[0], **kwargs) specialprint("After read_stips %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) if len(infile) > 1: for i in range(1, len(infile)): _tab = WingTips.read_stips(infile[i], **kwargs) self.tab = np.vstack((self.tab, _tab)) center = WingTips.get_center(self.tab[:, 0], self.tab[:, 1]) self.center = center self.n = self.tab.shape[0] self.infile = infile gc.collect() ''' Strip coordinates from WingTips object ''' def strip_radec(self, hasID=False): _i = int(hasID) self.tab = np.delete(self.tab, [_i, _i + 1], 1) return None ''' Attach given RA-DEC to WingTips object''' def attach_radec(self, radec, hasID=False): if self.n != radec.shape[0]: raise ValueError('Number of RA-DEC does not match sources') _i = int(hasID) self.tab = np.insert(self.tab, _i, radec.T, 1) self.center = WingTips.get_center(radec[:, 0 + _i], radec[:, 1 + _i]) return None ''' Replace RA-DEC of WingTips object ''' def replace_radec(self, radec, hasID=False): self.strip_radec(hasID) self.attach_radec(radec, hasID) return None ''' Return random RA-DEC for given image or WingTips object Optionally, specify center and image size desired ''' def random_radec_for(self, other, shape=(4096, 4096), sample=False, n=0, hasID=False): _i = int(hasID) # try: # if other.endswith('.fits'): # return WingTips.random_radec(self.n,imfile=other) # except AttributeError: if not sample: return WingTips.random_radec(self.n, center=other.center, shape=shape) elif not bool(n): return WingTips.sample_radec(n=self.n, radec1=False, radec2=other.tab[:, _i:_i + 1]) else: return WingTips.sample_radec(n=n, radec1=self.tab[:, _i:_i + 1], radec2=other.tab[:, _i:_i + 1]) ''' Merge two WingTips objects ''' def merge_with(self, other, hasRADEC=True, hasID=False): if self.tab.shape[1] != other.tab.shape[1]: raise ValueError('Number of columns does not match', self.tab.shape[1], other.tab.shape[1]) self.tab = np.vstack((self.tab, other.tab)) self.n = self.tab.shape[0] self.infile.append(other.infile) _i = int(hasID) if hasRADEC: self.center = WingTips.get_center(self.tab[:, 0 + _i], self.tab[:, 1 + _i]) return None ''' Convert flux to surface brightness for sersic profile galaxies ''' def flux_to_Sb(self, hasRADEC=True, hasID=False): _i = int(hasID) if hasRADEC: _i = _i + 2 _f = self.tab[:, _i].astype(float) _r = self.tab[:, _i + 3].astype(float) _a = self.tab[:, _i + 5].astype(float) _s = (0.5 * _f) / (np.pi * _r ** 2 * _a) self.tab = np.delete(self.tab, _i, 1) self.tab = np.insert(self.tab, _i, _s.T, 1) return None def write_stips(self, outfile='temp.txt', hasID=False, hasCmnt=False, saveID=False, ipac=False, max_writing_packet=np.inf): """ Write out a STIPS input file """ gc.collect() _tab = WingTips.get_tabular(self.tab, hasID, hasCmnt, saveID) specialprint("After get_tabular %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) _nms = ('id', 'ra', 'dec', 'flux', 'type', 'n', 're', 'phi', 'ratio', 'notes') _fmt = ('%10d', '%15.7f', '%15.7f', '%15.7f', '%8s', '%10.3f', '%15.7f', '%15.7f', '%15.7f', '%8s') _t = Table(_tab, names=_nms) del _tab gc.collect() specialprint("After astropy.Table %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) _length = len(_t) _max = min(max_writing_packet, _length) outfile = open(outfile, 'w') for i in range(int(np.ceil(_length / _max))): ascii.write(_t[i * _max:(i + 1) * _max], outfile, format=['fixed_width_no_header', ['fixed_width', 'ipac'][ipac]][i == 0], formats=dict(zip(_nms, _fmt)), **[{'delimiter': ' ', 'delimiter_pad': ''}, {}][(ipac and i == 0)]) outfile.close() del _t gc.collect() specialprint("After ascii.write %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) return specialprint('Wrote out %s \n' % outfile) def append_stips(self, outfile='temp.txt', hasID=False, hasCmnt=False, saveID=False, startID=1, ipac=False, max_writing_packet=np.inf): """ Append a STIPS input file """ gc.collect() _tab = WingTips.get_tabular(self.tab, hasID, hasCmnt, saveID, startID) specialprint("After get_tabular %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) #_nms = ('id', 'ra', 'dec', 'flux', 'type', 'n', 're', 'phi', 'ratio', 'notes') _nms = ('0', '0.0', '0.00', '0.000', 'point', '1.000', '1.0000', '1.00000', '1.0000000', 'comment') _fmt = ('%10d', '%15.7f', '%15.7f', '%15.7f', '%8s', '%10.3f', '%15.7f', '%15.7f', '%15.7f', '%8s') _t = Table(_tab, names=_nms) del _tab gc.collect() specialprint("After astropy.Table in append %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) _length = len(_t) _max = min(max_writing_packet, _length) outname = str(outfile) outfile = open(outfile, 'a') for i in range(int(np.ceil(_length / _max))): ascii.write(_t[i * _max:(i + 1) * _max], outfile, format=['fixed_width_no_header', ['fixed_width', 'ipac'][ipac]][i == 0], formats=dict(zip(_nms, _fmt)), **[{'delimiter': ' ', 'delimiter_pad': ''}, {}][(ipac and i == 0)]) outfile.close() del _t gc.collect() specialprint("After ascii.write in append %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) rmline = str(startID+1) specialprint(rmline) command = "sed -i \'"+rmline+"d\' "+outname _p=subprocess.run(command,shell=True) return specialprint('Appended %s \n' % outfile) @staticmethod def from_scratch(flux, ra=[], dec=[], center=[], ID=[], Type=[], n=[], re=[], phi=[], ratio=[], notes=[], outfile=None, max_writing_packet=np.inf): """ Build a WingTips class object from scratch """ gc.collect() specialprint("Starting memory %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) _temp = WingTips() _temp.n = len(flux) _temp.infile = ['fromScratch'] # if len(center) > 0: _temp.center = center if len(ra) == 0: radec = _temp.random_radec_for(_temp) ra, dec = radec[:, 0], radec[:, 1] elif (len(ra) == len(dec)) & (len(ra) > 0): _temp.center = WingTips.get_center(np.array(ra), np.array(dec)) else: raise ValueError('Provide valid coordinate or center') # if (len(Type) == 0) | (Type is 'point') | (Type is 'sersic'): if (len(Type) == 0) | (Type is 'point'): Type = np.repeat(np.array(['point']), len(flux)) _ones = np.ones_like(flux) n, re, phi, ratio = _ones, _ones, _ones, _ones elif Type == 'sersic': Type = np.repeat(np.array(['sersic']), len(flux)) elif len(Type) == _temp.n: Type = np.array(Type) specialprint("After defining Type %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) check = len(flux) if len(ID) == _temp.n: _tab = np.hstack((np.array(ID, ndmin=2).T, _tab)) del ID if len(notes) == _temp.n: _tab = np.hstack((_tab, np.array(notes, ndmin=2).T)) del notes if outfile is None: return _temp elif check < 10000000: _tab = np.array([ra, dec, flux, Type, n, re, phi, ratio], dtype='object').T _temp.tab = np.array(_tab) del _tab gc.collect() specialprint("After defining _temp.tab %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) _temp.write_stips(outfile, hasID=bool(ID), hasCmnt=bool(notes), saveID=bool(ID), max_writing_packet=max_writing_packet) elif check >= 10000000: runs = np.int(np.floor(check/10000000)+1) _tab = np.array([ra[0:10000000], dec[0:10000000], flux[0:10000000], Type[0:10000000], n[0:10000000], re[0:10000000], phi[0:10000000], ratio[0:10000000]], dtype='object').T _temp.tab = np.array(_tab) del _tab gc.collect() _temp.write_stips(outfile, hasID=bool(ID), hasCmnt=bool(notes), saveID=bool(ID), max_writing_packet=max_writing_packet) for i in range(runs-1): index1 = (i+1)*10000000 index2 = (i+2)*10000000 if index1 > check-1: continue if index2 > check-1: index2 = check-1 specialprint("INDEXES %i %i" % (index1,index2)) _tab = np.array([ra[index1:index2], dec[index1:index2], flux[index1:index2], Type[index1:index2], n[index1:index2], re[index1:index2], phi[index1:index2], ratio[index1:index2]], dtype='object').T #print(ra[index1:index2]) #print(_tab) _temp.tab = np.array(_tab) del _tab gc.collect() _temp.append_stips(outfile, hasID=bool(ID), hasCmnt=bool(notes), saveID=bool(ID), startID=index1+1, max_writing_packet=max_writing_packet) del _temp gc.collect() specialprint("OUT OF LOOP") @staticmethod def read_stips(infile, getRADEC=True, getID=False, getCmnt=False, **kwargs): """ Read in a STIPS input file in ascii format and return corresponding NumPy array """ gc.collect() include_names = getID * ['id'] + \ getRADEC * ['ra', 'dec'] + \ ['flux', 'type', 'n', 're', 'phi', 'ratio'] + \ getCmnt * ['comment'] kwargs['usecols'] = include_names _temp = dd.read_table(infile, sep='\s+', **kwargs).to_dask_array().compute() specialprint("After dd.read_table > to_array > compute %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) return _temp @staticmethod def get_tabular(_tab, hasID=False, hasCmnt=False, saveID=False, startID=1): """ Return tabular lists for STIPS input file columns """ _i = int(hasID) if ~saveID: _n = _tab.shape[0] #_ID = np.array(np.linspace(1, _n, _n), ndmin=2).T _ID = np.array(np.linspace(startID, startID-1+_n, _n), ndmin=2).T _tab = np.hstack((_ID, _tab[:, _i:])) del _ID specialprint("After ~saveID %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) if ~hasCmnt: _cmnt = np.array(np.repeat(np.array(['comment']), _tab.shape[0], ), ndmin=2).T _tab = np.hstack((_tab, _cmnt)) del _cmnt specialprint("After ~hasCmnt %f MB" % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)) gc.collect() return [_tab[:, 0].astype(float), _tab[:, 1].astype(float), _tab[:, 2].astype(float), _tab[:, 3].astype(float), _tab[:, 4], _tab[:, 5].astype(float), _tab[:, 6].astype(float), _tab[:, 7].astype(float), _tab[:, 8].astype(float), _tab[:, 9]] ''' Build WCS coordinate system from scratch ''' @staticmethod def create_wcs(centers=[0, 0], crpix=[2048, 2048], cdelt=[-0.11 / 3600, 0.11 / 3600], cunit=['deg', 'deg'], \ ctype=['RA---TAN', 'DEC--TAN'], lonpole=180, latpole=24.333335, \ equinox=2000.0, radesys='ICRS'): _w = wcs.WCS() _w.wcs.cdelt = cdelt _w.wcs.crpix = crpix _w.wcs.crval = centers _w.wcs.cunit = cunit _w.wcs.ctype = ctype _w.wcs.lonpole = lonpole _w.wcs.latpole = latpole _w.wcs.radesys = radesys _w.wcs.equinox = equinox return _w ''' Return coordinate system for given image file''' @staticmethod def read_wcs(imfile): specialprint('Getting coordinates from %s \n' % imfile) return wcs.WCS(fits.open(imfile)[1].header) ''' Return 'n' random radec for given image file or coordinate list ''' @staticmethod def random_radec(n=10, center=[0, 0], shape=(4096, 4096), imfile=''): _xy =
np.random.rand(n, 2)
numpy.random.rand
import numpy as np import random from svg.file import SVGFileV2 from svg.basic import clip_float, draw_path, random_color, random_color_hsv from svg.geo_transformation import translation_pts_xy, reflection_points from common import gImageOutputPath # plot function to svg # from scipy.special import perm,comb from itertools import combinations def funcIdentity(x): return x # y=x def funcQuadratic(x): return x**2 def funcSin(x): return np.sin(x) def funcCos(x): return np.cos(x) def normalDistribution(x): return 1 / np.sqrt(2 * np.pi) * np.exp(-0.5 * x**2) def softmaxFuc(x): softmax = np.exp(x) / np.sum(np.exp(x)) # print(softmax) # print(np.sum(softmax)) return softmax def heartFuc(x, r=1, up=True): # heart equation: x**2+ (5*y/4 - sqrt(abs(x)))**2 = r**2 if up: a = np.sqrt(r**2 - x**2) * 1 + np.sqrt(abs(x)) else: a = np.sqrt(r**2 - x**2) * (-1) + np.sqrt(abs(x)) return a * 4 / 5 def circleFuc(x, r=1, up=True): # circle equation: x**2+ y**2 = r**2 if up: a = np.sqrt(r**2 - x**2) * 1 else: a = np.sqrt(r**2 - x**2) * (-1) return a def sigmoid(x): return 1 / (1 + np.exp(-x)) def getCirclePoints(r=1, N=10, func=heartFuc): x = np.linspace(-r, r, N) y = func(x, r=r) # Up part points of curve, set sqrt value positive xDown = np.flip(x) # Down part points of curve, set sqrt value negative yDown = func(xDown, r=r, up=False) # connect from start x = np.concatenate((x, xDown), axis=0) y = np.concatenate((y, yDown), axis=0) if 0: # connect from random rand = np.random.randint(1, len(x), size=1)[0] x = np.concatenate((x[rand:], x[:rand]), axis=0) y = np.concatenate((y[rand:], y[:rand]), axis=0) # print('x=',x) # print('y=',y) return x, y def getRectanglePoints(x0=0, y0=0, N=10, w=10, h=10): x1 = np.linspace(x0, x0 + w, N) y1 = np.zeros_like(x1) + y0 y2 = np.linspace(y0, y0 + h, N) x2 = np.zeros_like(y2) + x0 + w x3 = np.flip(x1) y3 = np.zeros_like(x3) + y0 + h y4 = np.flip(y2) x4 = np.zeros_like(y4) + x0 # connect from start x = np.concatenate((x1, x2), axis=0) x = np.concatenate((x, x3), axis=0) x = np.concatenate((x, x4), axis=0) y = np.concatenate((y1, y2), axis=0) y = np.concatenate((y, y3), axis=0) y = np.concatenate((y, y4), axis=0) center = ((x0 + w) / 2, (y0 + h) / 2) return x, y, center def getRandomProper3Points(min=0, max=5): """get random point from 0,1,2,3 quadrants, pt(x,y) = (min ~ max) """ c = list(combinations(range(4), 3)) # [(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)] # print(c) qds = random.choice(c) # print('qds=',qds) center = (max - min) / 2.0 pts = None for qd in qds: if qd == 0: x = np.random.random() * (center - min) + min y = np.random.random() * (center - min) + min elif qd == 1: x = np.random.random() * (max - center) + center y = np.random.random() * (center - min) + min elif qd == 2: x = np.random.random() * (center - min) + min y = np.random.random() * (max - center) + center elif qd == 3: x = np.random.random() * (max - center) + center y = np.random.random() * (max - center) + center pt = np.array([[x, y]]) pts = np.concatenate((pts, pt), axis=0) if pts is not None else pt return pts def drawFuncSVG(svg, offsetX=0, offsetY=0, color=None): N = 500 x = np.linspace(-100, 100, N) fOffsetX = 50 fOffsetY = 100 ptX = x + offsetX + offsetX ptY = funcIdentity(x) * -1 + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) fOffsetX = 50 fOffsetY = 50 ptX = x + offsetX + fOffsetX ptY = funcQuadratic(x) * -1 + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) fOffsetX = 50 fOffsetY = 50 ptX = x + offsetX + fOffsetX ptY = funcSin(x) * -1 + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) ptX = x + offsetX + fOffsetX ptY = funcCos(x) * -1 + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) ptX = x + offsetX + fOffsetX ptY = normalDistribution(x) * -1 + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) ptX = x + offsetX + fOffsetX ptY = softmaxFuc(x) * -1 + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) ptX = x + offsetX + fOffsetX ptY = sigmoid(x) * -1 + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) ptX, ptY = getCirclePoints(r=10, N=10, func=circleFuc) ptX = ptX + offsetX + fOffsetX ptY = ptY + offsetY + fOffsetY drawOneFuncSVG(svg, ptX, ptY, N=N, color=color) def drawOneFuncSVG(svg, ptX, ptY, N=10, color=None): x = ptX[0] y = ptY[0] path = 'M %.1f %.1f L ' % (x, y) for x, y in zip(ptX, ptY): path = path + ' ' + str(clip_float(x)) + ' ' + str(clip_float(y)) svg.draw(draw_path(path, stroke_width=0.5, color=color or random_color())) def reflect_xy(ptX, ptY): """Cartesian(math) coordinate to svg coordiantes Args: ptX (array): (N, ) ptY (array): (N, ) Returns: tuple: (ptX', ptY') """ ptX = ptX.reshape((ptX.shape[0], 1)) ptY = ptY.reshape((ptY.shape[0], 1)) pts = np.hstack(([ptX, ptY])) # print('pts=', pts, pts.shape) return reflection_points(pts, False) def drawFuncSVG2(svg): W, H = svg.get_size() cx, cy = W // 2, H // 2 N = 100 ptX, ptY = getCirclePoints(r=45, N=N, func=heartFuc) ptX, ptY = reflect_xy(ptX, ptY) ptX, ptY = translation_pts_xy(ptX, ptY, (cx, cy)) drawOneFuncSVG(svg, ptX, ptY, N=N, color=random_color_hsv()) ptX = np.linspace(-50, 50, num=200) ptY = funcQuadratic(ptX) ptX, ptY = reflect_xy(ptX, ptY) ptX, ptY = translation_pts_xy(ptX, ptY, (cx, cy+40)) drawOneFuncSVG(svg, ptX, ptY, N=N, color=random_color_hsv()) ptX = np.linspace(-50, 50, num=200) ptY = funcSin(ptX)*20 ptX, ptY = reflect_xy(ptX, ptY) ptX, ptY = translation_pts_xy(ptX, ptY, (cx, cy)) drawOneFuncSVG(svg, ptX, ptY, N=N, color=random_color_hsv()) ptX =
np.linspace(-50, 50, num=200)
numpy.linspace
""" From <NAME>'s odysseus project. """ """Functions that approach several polylogarithms by polynomials. Precision is on the order of 1e-7 or better. For working with fermions, the polylog functions Li(x) are usually used in the form -Li(-exp(x)). We therefore define functions fermi_poly as: fermi_poly_s(x) :math:`=-Li_s(-e^x)`, with :math:`Li_s(z)=\sum_{k=1}^{\infty}\frac{z^k}{k^s}`. This is useful if you are only dealing with Fermi statistics. For working with bose statistics we define g-functions in a similar way. There is a more accurate and general algorithm in lerch.py for Li_s(x), that works for all s>0, the polynomial approximations in this file are much faster however. """ import numpy as np def fermi_poly3(x): """fermi_poly3(x), equal to -Li_3(-e^x)""" def f0(x): return np.exp(x) def f1(x): ex = np.exp(x) return (1 + (-0.125 + (0.037037037037037035 + (-0.015625 + (0.008 - 0.004629629629629629*ex)*ex)*ex)*ex)*ex)*ex def f2(x): x2 = x**2 return 0.9015426773696955 + (0.8224670334241131 + (0.34657359027997264 + (0.08333333333333333 + (0.010416666666666666 +(-0.00017361111111111112 + (6.200396825396825e-6 +(-2.927965167548501e-7 + (1.6179486665597777e-8 + (-9.90785651003905e-10 + (6.525181428041877e-11 +(-4.5372283133067906e-12 + 3.290608283068484e-13*x2)*x2)*x2)*x2)*x2)*x2)*x2)*x2)*x)*x)*x)*x def f3(x): invex = np.exp(-x) return (((((0.008*invex - 0.015625)*invex + 0.037037037037037035)*invex) - 0.125)*invex + 1)*invex + 1.6449340668482262*x + 0.16666666666666666*x**3 def f4(x): return 1.6449340668482262*x + 0.16666666666666666*x**3 # fix for bug in piecewise, fixed in more recent numpy if np.isscalar(x): x = np.array([x], dtype=float) # define piecewise function and evaluate ans = np.piecewise(x, [x<=-20, np.logical_and(x>-20, x<=-2), \ np.logical_and(x>-2, x<=2), np.logical_and(x>2, x<=20)],\ [f0, f1, f2, f3, f4]) return ans def fermi_poly5half(x): """fermi_poly5half(x), equal to -Li_{5/2}(-e^x) FAILS TESTS (COMPARING TO LERCH), DO NOT USE WITHOUT INVESTIGATING MORE """ def f0(x): return np.exp(x) def f1(x): ex = np.exp(x) return (1 + (-0.17677669529663687 + (0.06415002990995843 - (0.03125 + (0.01788854381999832 - (0.011340230290662863 + (0.007713560673657698 - (0.005524271728019902 + (0.00411522633744856 - 0.0031622776601683794*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex def f2(x): res = (7.999472242952045e-8 + (2.015789875039643e-8 + (-5.182488893752819e-9 + (-1.3550552937770878e-9 + (3.5944104666022113e-10 + (9.653703483078106e-11 + (-2.6209625544677692e-11 + (-7.185930974961928e-12 + (1.9812061650792594e-12 + 5.447084984800099e-13*x)*x)*x)*x)*x)*x)*x)*x)*x)*x return 0.8671998890121841+(0.7651470246254081+(0.30244932171081546+(0.06335080210161399+(0.0049450362799933825+(-0.0007320093393446121+(-0.00013339945006254949 + (0.000027147085179903566+(5.930588304137955e-6+(-1.3626304577484817e-6 + (-3.252451788607287e-7 + res*x)*x)*x)*x)*x)*x)*x)*x)*x)*x)*x def f3(x): res = 5.992860912139351e-7 + (-6.083668666935579e-8 + (5.041252634789406e-9 + (-3.386896134140133e-10 + (1.8196669171414837e-11 + (-7.642990316874879e-13 + (2.4202106712129105e-14 + (-5.437364923509245e-16 + (7.72925401611516e-18 -5.228771407811986e-20*x)*x)*x)*x)*x)*x)*x)*x)*x return 0.869416215427492 + (0.7603408345815055 + (0.30606614629176887 + (0.06361411550944529 + (0.002145410757189772 + (0.002020072416997651 + (-0.0017045762862650151 + (0.0006382881546811445 + (- 0.00016246851298525836 + (0.00003140383144730955 + (-4.819813947314412e-6+res*x)*x)*x)*x)*x)*x)*x)*x)*x)*x)*x def f4(x): x2 = x**2 invex = np.sqrt(x) return (-2.0851412241155116/x/x - 0.5343060576801043)/x/invex + 1.8561093322772355*invex + 0.30090111122547003*x2*invex def f5(x): x2 = x**2 invex = np.sqrt(x) return 1.8561093322772355*invex + 0.30090111122547003*x2*invex # fix for bug in piecewise, fixed in more recent numpy if np.isscalar(x): x = np.array([x], dtype=float) # define piecewise function and evaluate ans = np.piecewise(x, [x<=-20, np.logical_and(x>-20, x<=-2), \ np.logical_and(x>-2, x<=2), np.logical_and(x>2, x<=12), \ np.logical_and(x>12, x<=20)], [f0, f1, f2, f3, f4, f5]) return ans def fermi_poly2(x): """fermi_poly2(x), equal to -Li_2(-e^x)""" def f0(x): return np.exp(x) def f1(x): ex = np.exp(x) return (1.+( -0.25+( 0.111111+( -0.0625+( 0.04+( -0.0277778+( 0.0204082+( -0.015625+( 0.0123457+( -0.01+( 0.00826446+( -0.00694444+( 0.00591716+( -0.00510204+( 0.00444444+( -0.00390625+( 0.00346021+( -0.00308642+( 0.00277008+ -0.0025*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex def f2(x): ex = x**2 return 0.822467+(0.6931471805599453+( 0.25+( 0.04166666666666666+( -0.0010416666666666534+( 0.00004960317460316857+( -2.927965167558005e-6+(1.9415383998507108e-7+( -1.3870999148454729e-8+(1.0440288911003276e-9+(-8.167040926799743e-11+6.5806618711692295e-12*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*x)*x)*x def f3(x): ex = np.exp(-x) return 1.6449340668482262 + 0.5*x**2 - (1.+( -0.25+( 0.111111+( -0.0625+( 0.04+( -0.0277778+( 0.0204082+( -0.015625+( 0.0123457+( -0.01+( 0.00826446+( -0.00694444+( 0.00591716+( -0.00510204+( 0.00444444+( -0.00390625+( 0.00346021+( -0.00308642+( 0.00277008 -0.0025*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex)*ex def f4(x): return 1.6449340668482262 + 0.5*x**2 # fix for bug in piecewise, fixed in more recent numpy if np.isscalar(x): x = np.array([x], dtype=float) # define piecewise function and evaluate ans = np.piecewise(x, [x<=-20, np.logical_and(x>-20, x<=-1), \ np.logical_and(x>-1, x<=1), np.logical_and(x>1, x<=20)],\ [f0, f1, f2, f3, f4]) return ans def dilog(z): """Dilog(x), equal to Li_2(x) d = dilog(z) = Li_2(z) = -Int From t=0 To t=z log(1-t) dt/t for all z. = Sum From n=1 To n=Inf z**n/n**2 for |z|<=1. INPUT z: real or complex, scalar, vector or matrix. OUTPUT d: component-wise dilogarithm of z. References: [1] <NAME>. 1958. Dilogarithms and associated functions. Macdonald. [2] <NAME>. 1992. Technical Report 15-92. University of Kent computing laboratory. [3] http://en.wikipedia.org/wiki/Polylog <NAME>, February 28th, 2006. """ if isinstance(z, float) or isinstance(z, int): z =
np.array([z])
numpy.array
#!/usr/bin/env python # coding=utf-8 import io import os import logging import tempfile import unittest import simplejson as json from copy import deepcopy from pathlib import Path import numpy as np import numpy.testing as npt from ruamel.yaml import YAML from ioos_qc.config import QcConfig from ioos_qc.qartod import ClimatologyConfig L = logging.getLogger('ioos_qc') L.setLevel(logging.INFO) L.handlers = [logging.StreamHandler()] yaml = YAML(typ='safe') class ConfigLoadTest(unittest.TestCase): def setUp(self): template = """ qartod: gross_range_test: suspect_span: [1, 11] fail_span: - 0 - 12 goober: foo: [1, null] """ self.handle, self.yamlfile = tempfile.mkstemp(suffix='.yaml') with open(self.yamlfile, 'w') as f: f.write(template) self.expected_dict = { 'qartod': { 'gross_range_test': { 'suspect_span': [1, 11], 'fail_span': [0, 12], }, 'goober': { 'foo': [1, None] } } } def tearDown(self): os.close(self.handle) os.remove(self.yamlfile) def test_load_yaml_dict_object(self): with open(self.yamlfile) as f: y = yaml.load(f.read()) qc = QcConfig(y) assert qc.config == self.expected_dict def test_load_yaml_str(self): with open(self.yamlfile) as f: qc = QcConfig(f.read()) assert qc.config == self.expected_dict def test_load_json_str(self): with open(self.yamlfile) as f: js = json.dumps(yaml.load(f.read())) qc = QcConfig(js) assert qc.config == self.expected_dict def test_load_yaml_file_path(self): qc = QcConfig(self.yamlfile) assert qc.config == self.expected_dict def test_load_yaml_path_object(self): qc = QcConfig(Path(self.yamlfile)) assert qc.config == self.expected_dict def test_load_json_stringio(self): st = io.StringIO() qc = QcConfig(self.yamlfile) with open(self.yamlfile, 'rt') as f: js = json.dumps(yaml.load(f.read())) st.write(js) qc = QcConfig(st) st.close() assert qc.config == self.expected_dict def test_load_yaml_stringio(self): st = io.StringIO() with open(self.yamlfile, 'rt') as f: st.write(f.read()) qc = QcConfig(st) st.close() assert qc.config == self.expected_dict class ConfigRunTest(unittest.TestCase): def setUp(self): self.config = { 'qartod': { 'gross_range_test': { 'suspect_span': [1, 11], 'fail_span': [0, 12], } } } def test_run(self): qc = QcConfig(self.config) r = qc.run( inp=list(range(13)) ) expected = np.array([3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3]) npt.assert_array_equal( r['qartod']['gross_range_test'], expected ) assert 'aggregate' not in r['qartod'] def test_run_with_agg(self): qc = QcConfig({'qartod': { 'gross_range_test': { 'fail_span': [0, 12], }, 'spike_test': { 'suspect_threshold': 3, 'fail_threshold': 10, } }}) inp = [-1, 0, 1, 2, 10, 3] expected_gross_range =
np.array([4, 1, 1, 1, 1, 1])
numpy.array
import os import glob import pickle import pcl import torch import torch.utils.data import torch.nn as nn import numpy as np # global configurations: from autolab_core import YamlConfig from dexnet.grasping import GpgGraspSampler from dexnet.grasping import RobotGripper home_dir = os.environ['HOME'] yaml_config = YamlConfig(home_dir + "/Projects/PointNetGPD/dex-net/test/config.yaml") gripper_name = 'robotiq_85' gripper = RobotGripper.load(gripper_name, home_dir + "/Projects/PointNetGPD/dex-net/data/grippers") ags = GpgGraspSampler(gripper, yaml_config) class PointGraspDataset(torch.utils.data.Dataset): def __init__(self, obj_points_num, grasp_points_num, pc_file_used_num, grasp_amount_per_file, thresh_good, thresh_bad, path, tag, with_obj=False, projection=False, project_chann=3, project_size=60): self.obj_points_num = obj_points_num self.grasp_points_num = grasp_points_num self.pc_file_used_num = pc_file_used_num self.grasp_amount_per_file = grasp_amount_per_file self.path = path self.tag = tag self.thresh_good = thresh_good self.thresh_bad = thresh_bad self.with_obj = with_obj self.min_point_limit = 50 # projection related self.projection = projection self.project_chann = project_chann if self.project_chann not in [3, 12]: raise NotImplementedError self.project_size = project_size if self.project_size != 60: raise NotImplementedError self.normal_K = 10 self.voxel_point_num = 50 self.projection_margin = 1 self.transform = pickle.load(open(os.path.join(self.path, 'google2cloud.pkl'), 'rb')) fl_grasp = glob.glob(os.path.join(path, 'ycb_grasp', self.tag, '*.npy')) fl_pc = glob.glob(os.path.join(path, 'ycb_rgbd', '*', 'clouds', '*.npy')) self.d_pc, self.d_grasp = {}, {} for i in fl_pc: k = i.split('/')[-3] if k in self.d_pc.keys(): self.d_pc[k].append(i) else: self.d_pc[k] = [i] for i in fl_grasp: k = i.split('/')[-1].split('.')[0] self.d_grasp[k] = i object1 = set(self.d_grasp.keys()) object2 = set(self.transform.keys()) self.object = list(object1.intersection(object2)) self.amount = len(self.object) * self.grasp_amount_per_file def collect_pc(self, grasp, pc, transform): center = grasp[0:3] axis = grasp[3:6] # binormal width = grasp[6] angle = grasp[7] axis = axis/np.linalg.norm(axis) binormal = axis # cal approach cos_t = np.cos(angle) sin_t = np.sin(angle) R1 = np.c_[[cos_t, 0, sin_t],[0, 1, 0],[-sin_t, 0, cos_t]] axis_y = axis axis_x = np.array([axis_y[1], -axis_y[0], 0]) if np.linalg.norm(axis_x) == 0: axis_x = np.array([1, 0, 0]) axis_x = axis_x / np.linalg.norm(axis_x) axis_y = axis_y / np.linalg.norm(axis_y) axis_z = np.cross(axis_x, axis_y) R2 = np.c_[axis_x, np.c_[axis_y, axis_z]] approach = R2.dot(R1)[:, 0] approach = approach / np.linalg.norm(approach) minor_normal = np.cross(axis, approach) left = center - width*axis/2 right = center + width*axis/2 # bottom = center - width*approach left = (np.dot(transform, np.array([left[0], left[1], left[2], 1])))[:3] right = (np.dot(transform, np.array([right[0], right[1], right[2], 1])))[:3] # bottom = (transform @ np.array([bottom[0], bottom[1], bottom[2], 1]))[:3] center = (np.dot(transform, np.array([center[0], center[1], center[2], 1])))[:3] binormal = (np.dot(transform, np.array([binormal[0], binormal[1], binormal[2], 1])))[:3].reshape(3, 1) approach = (np.dot(transform, np.array([approach[0], approach[1], approach[2], 1])))[:3].reshape(3, 1) minor_normal = (np.dot(transform, np.array([minor_normal[0], minor_normal[1], minor_normal[2], 1])))[:3].reshape(3, 1) matrix = np.hstack([approach, binormal, minor_normal]).T # pc_p2c/left_t/right_t is in local coordinate(with center as origin) # other(include pc) are in pc coordinate pc_p2c = (np.dot(matrix, (pc-center).T)).T left_t = (-width * np.array([0,1,0]) / 2).squeeze() right_t = (width * np.array([0,1,0]) / 2).squeeze() x_limit = width/4 z_limit = width/4 y_limit = width/2 x1 = pc_p2c[:, 0] > -x_limit x2 = pc_p2c[:, 0] < x_limit y1 = pc_p2c[:, 1] > -y_limit y2 = pc_p2c[:, 1] < y_limit z1 = pc_p2c[:, 2] > -z_limit z2 = pc_p2c[:, 2] < z_limit a = np.vstack([x1, x2, y1, y2, z1, z2]) self.in_ind = np.where(np.sum(a, axis=0) == len(a))[0] if len(self.in_ind) < self.min_point_limit: return None if self.projection: return self.project_pc(pc_p2c, width) else: return pc_p2c[self.in_ind] def check_square(self, point, points_g): dirs = np.array([[-1, 1, 1], [1, 1, 1], [-1, -1, 1], [1, -1, 1], [-1, 1, -1], [1, 1, -1], [-1, -1, -1], [1, -1, -1]]) p = dirs * 0.5 + point # here res * 0.5 means get half of a pixel width a1 = p[2][1] < points_g[:, 1] a2 = p[0][1] > points_g[:, 1] a3 = p[0][2] > points_g[:, 2] a4 = p[4][2] < points_g[:, 2] a5 = p[1][0] > points_g[:, 0] a6 = p[0][0] < points_g[:, 0] a = np.vstack([a1, a2, a3, a4, a5, a6]) points_in_area = np.where(np.sum(a, axis=0) == len(a))[0] if len(points_in_area) == 0: has_p = False else: has_p = True return points_in_area def cal_projection(self, point_cloud_voxel, m_width_of_pic, margin, surface_normal, order, gripper_width): occupy_pic = np.zeros([m_width_of_pic, m_width_of_pic, 1]) norm_pic = np.zeros([m_width_of_pic, m_width_of_pic, 3]) norm_pic_num = np.zeros([m_width_of_pic, m_width_of_pic, 1]) max_x = point_cloud_voxel[:, order[0]].max() min_x = point_cloud_voxel[:, order[0]].min() max_y = point_cloud_voxel[:, order[1]].max() min_y = point_cloud_voxel[:, order[1]].min() min_z = point_cloud_voxel[:, order[2]].min() tmp = max((max_x - min_x), (max_y - min_y)) if tmp == 0: print("WARNING : the num of input points seems only have one, no possilbe to do learning on" "such data, please throw it away. -- Hongzhuo") return occupy_pic, norm_pic # Here, we use the gripper width to cal the res: res = gripper_width / (m_width_of_pic-margin) voxel_points_square_norm = [] x_coord_r = ((point_cloud_voxel[:, order[0]]) / res + m_width_of_pic / 2) y_coord_r = ((point_cloud_voxel[:, order[1]]) / res + m_width_of_pic / 2) z_coord_r = ((point_cloud_voxel[:, order[2]]) / res + m_width_of_pic / 2) x_coord_r = np.floor(x_coord_r).astype(int) y_coord_r = np.floor(y_coord_r).astype(int) z_coord_r = np.floor(z_coord_r).astype(int) voxel_index = np.array([x_coord_r, y_coord_r, z_coord_r]).T # all point in grid coordinate_buffer = np.unique(voxel_index, axis=0) # get a list of points without duplication K = len(coordinate_buffer) # [K, 1] store number of points in each voxel grid number_buffer = np.zeros(shape=K, dtype=np.int64) feature_buffer = np.zeros(shape=(K, self.voxel_point_num, 6), dtype=np.float32) index_buffer = {} for i in range(K): index_buffer[tuple(coordinate_buffer[i])] = i # got index of coordinate for voxel, point, normal in zip(voxel_index, point_cloud_voxel, surface_normal): index = index_buffer[tuple(voxel)] number = number_buffer[index] if number < self.voxel_point_num: feature_buffer[index, number, :3] = point feature_buffer[index, number, 3:6] = normal number_buffer[index] += 1 voxel_points_square_norm = np.sum(feature_buffer[..., -3:], axis=1)/number_buffer[:, np.newaxis] voxel_points_square = coordinate_buffer if len(voxel_points_square) == 0: return occupy_pic, norm_pic x_coord_square = voxel_points_square[:, 0] y_coord_square = voxel_points_square[:, 1] norm_pic[x_coord_square, y_coord_square, :] = voxel_points_square_norm occupy_pic[x_coord_square, y_coord_square] = number_buffer[:, np.newaxis] occupy_max = occupy_pic.max() assert(occupy_max > 0) occupy_pic = occupy_pic / occupy_max return occupy_pic, norm_pic def project_pc(self, pc, gripper_width): """ for gpd baseline, only support input_chann == [3, 12] """ pc = pc.astype(np.float32) pc = pcl.PointCloud(pc) norm = pc.make_NormalEstimation() norm.set_KSearch(self.normal_K) normals = norm.compute() surface_normal = normals.to_array() surface_normal = surface_normal[:, 0:3] pc = pc.to_array() grasp_pc = pc[self.in_ind] grasp_pc_norm = surface_normal[self.in_ind] bad_check = (grasp_pc_norm != grasp_pc_norm) if np.sum(bad_check)!=0: bad_ind = np.where(bad_check == True) grasp_pc = np.delete(grasp_pc, bad_ind[0], axis=0) grasp_pc_norm = np.delete(grasp_pc_norm, bad_ind[0], axis=0) assert(np.sum(grasp_pc_norm != grasp_pc_norm) == 0) m_width_of_pic = self.project_size margin = self.projection_margin order = np.array([0, 1, 2]) occupy_pic1, norm_pic1 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, order, gripper_width) if self.project_chann == 3: output = norm_pic1 elif self.project_chann == 12: order = np.array([1, 2, 0]) occupy_pic2, norm_pic2 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, order, gripper_width) order = np.array([0, 2, 1]) occupy_pic3, norm_pic3 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, order, gripper_width) output = np.dstack([occupy_pic1, norm_pic1, occupy_pic2, norm_pic2, occupy_pic3, norm_pic3]) else: raise NotImplementedError return output def __getitem__(self, index): # try: obj_ind, grasp_ind = np.unravel_index(index, (len(self.object), self.grasp_amount_per_file)) obj_grasp = self.object[obj_ind] obj_pc = self.transform[obj_grasp][0] f_grasp = self.d_grasp[obj_grasp] fl_pc = np.array(self.d_pc[obj_pc]) fl_pc = fl_pc[np.random.choice(len(fl_pc), size=self.pc_file_used_num)] grasp = np.load(f_grasp)[grasp_ind] pc = np.vstack([np.load(i) for i in fl_pc]) pc = pc[np.random.choice(len(pc), size=self.obj_points_num)] t = self.transform[obj_grasp][1] grasp_pc = self.collect_pc(grasp, pc, t) if grasp_pc is None: return None level_score, refine_score = grasp[-2:] if not self.projection: if len(grasp_pc) > self.grasp_points_num: grasp_pc = grasp_pc[np.random.choice(len(grasp_pc), size=self.grasp_points_num, replace=False)].T else: grasp_pc = grasp_pc[np.random.choice(len(grasp_pc), size=self.grasp_points_num, replace=True)].T else: grasp_pc = grasp_pc.transpose((2, 1, 0)) score = level_score + refine_score*0.01 if score >= self.thresh_bad: label = 0 elif score <= self.thresh_good: label = 1 else: return None if self.with_obj: return grasp_pc, label, obj_grasp else: return grasp_pc, label def __len__(self): return self.amount class PointGraspMultiClassDataset(torch.utils.data.Dataset): def __init__(self, obj_points_num, grasp_points_num, pc_file_used_num, grasp_amount_per_file, thresh_good, thresh_bad, path, tag, with_obj=False, projection=False, project_chann=3, project_size=60): self.obj_points_num = obj_points_num self.grasp_points_num = grasp_points_num self.pc_file_used_num = pc_file_used_num self.grasp_amount_per_file = grasp_amount_per_file self.path = path self.tag = tag self.thresh_good = thresh_good self.thresh_bad = thresh_bad self.with_obj = with_obj self.min_point_limit = 50 # projection related self.projection = projection self.project_chann = project_chann if self.project_chann not in [3, 12]: raise NotImplementedError self.project_size = project_size if self.project_size != 60: raise NotImplementedError self.normal_K = 10 self.voxel_point_num = 50 self.projection_margin = 1 self.transform = pickle.load(open(os.path.join(self.path, 'google2cloud.pkl'), 'rb')) fl_grasp = glob.glob(os.path.join(path, 'ycb_grasp', self.tag, '*.npy')) fl_pc = glob.glob(os.path.join(path, 'ycb_rgbd', '*', 'clouds', '*.npy')) self.d_pc, self.d_grasp = {}, {} for i in fl_pc: k = i.split('/')[-3] if k in self.d_pc.keys(): self.d_pc[k].append(i) else: self.d_pc[k] = [i] for i in fl_grasp: k = i.split('/')[-1].split('.')[0] self.d_grasp[k] = i object1 = set(self.d_grasp.keys()) object2 = set(self.transform.keys()) self.object = list(object1.intersection(object2)) self.amount = len(self.object) * self.grasp_amount_per_file def collect_pc(self, grasp, pc, transform): center = grasp[0:3] axis = grasp[3:6] # binormal width = grasp[6] angle = grasp[7] axis = axis/np.linalg.norm(axis) binormal = axis # cal approach cos_t = np.cos(angle) sin_t = np.sin(angle) R1 = np.c_[[cos_t, 0, sin_t],[0, 1, 0],[-sin_t, 0, cos_t]] axis_y = axis axis_x = np.array([axis_y[1], -axis_y[0], 0]) if np.linalg.norm(axis_x) == 0: axis_x = np.array([1, 0, 0]) axis_x = axis_x / np.linalg.norm(axis_x) axis_y = axis_y / np.linalg.norm(axis_y) axis_z = np.cross(axis_x, axis_y) R2 = np.c_[axis_x, np.c_[axis_y, axis_z]] approach = R2.dot(R1)[:, 0] approach = approach / np.linalg.norm(approach) minor_normal = np.cross(axis, approach) left = center - width*axis/2 right = center + width*axis/2 # bottom = center - width*approach left = (np.dot(transform, np.array([left[0], left[1], left[2], 1])))[:3] right = (np.dot(transform, np.array([right[0], right[1], right[2], 1])))[:3] # bottom = (transform @ np.array([bottom[0], bottom[1], bottom[2], 1]))[:3] center = (np.dot(transform, np.array([center[0], center[1], center[2], 1])))[:3] binormal = (np.dot(transform, np.array([binormal[0], binormal[1], binormal[2], 1])))[:3].reshape(3, 1) approach = (np.dot(transform, np.array([approach[0], approach[1], approach[2], 1])))[:3].reshape(3, 1) minor_normal = (np.dot(transform, np.array([minor_normal[0], minor_normal[1], minor_normal[2], 1])))[:3].reshape(3, 1) matrix = np.hstack([approach, binormal, minor_normal]).T # pc_p2c/left_t/right_t is in local coordinate(with center as origin) # other(include pc) are in pc coordinate pc_p2c = (np.dot(matrix, (pc-center).T)).T left_t = (-width * np.array([0,1,0]) / 2).squeeze() right_t = (width * np.array([0,1,0]) / 2).squeeze() x_limit = width/4 z_limit = width/4 y_limit = width/2 x1 = pc_p2c[:, 0] > -x_limit x2 = pc_p2c[:, 0] < x_limit y1 = pc_p2c[:, 1] > -y_limit y2 = pc_p2c[:, 1] < y_limit z1 = pc_p2c[:, 2] > -z_limit z2 = pc_p2c[:, 2] < z_limit a = np.vstack([x1, x2, y1, y2, z1, z2]) self.in_ind = np.where(np.sum(a, axis=0) == len(a))[0] if len(self.in_ind) < self.min_point_limit: return None if self.projection: return self.project_pc(pc_p2c, width) else: return pc_p2c[self.in_ind] def check_square(self, point, points_g): dirs = np.array([[-1, 1, 1], [1, 1, 1], [-1, -1, 1], [1, -1, 1], [-1, 1, -1], [1, 1, -1], [-1, -1, -1], [1, -1, -1]]) p = dirs * 0.5 + point # here res * 0.5 means get half of a pixel width a1 = p[2][1] < points_g[:, 1] a2 = p[0][1] > points_g[:, 1] a3 = p[0][2] > points_g[:, 2] a4 = p[4][2] < points_g[:, 2] a5 = p[1][0] > points_g[:, 0] a6 = p[0][0] < points_g[:, 0] a = np.vstack([a1, a2, a3, a4, a5, a6]) points_in_area = np.where(np.sum(a, axis=0) == len(a))[0] if len(points_in_area) == 0: has_p = False else: has_p = True return points_in_area def cal_projection(self, point_cloud_voxel, m_width_of_pic, margin, surface_normal, order, gripper_width): occupy_pic = np.zeros([m_width_of_pic, m_width_of_pic, 1]) norm_pic = np.zeros([m_width_of_pic, m_width_of_pic, 3]) norm_pic_num = np.zeros([m_width_of_pic, m_width_of_pic, 1]) max_x = point_cloud_voxel[:, order[0]].max() min_x = point_cloud_voxel[:, order[0]].min() max_y = point_cloud_voxel[:, order[1]].max() min_y = point_cloud_voxel[:, order[1]].min() min_z = point_cloud_voxel[:, order[2]].min() tmp = max((max_x - min_x), (max_y - min_y)) if tmp == 0: print("WARNING : the num of input points seems only have one, no possilbe to do learning on" "such data, please throw it away. -- Hongzhuo") return occupy_pic, norm_pic # Here, we use the gripper width to cal the res: res = gripper_width / (m_width_of_pic-margin) voxel_points_square_norm = [] x_coord_r = ((point_cloud_voxel[:, order[0]]) / res + m_width_of_pic / 2) y_coord_r = ((point_cloud_voxel[:, order[1]]) / res + m_width_of_pic / 2) z_coord_r = ((point_cloud_voxel[:, order[2]]) / res + m_width_of_pic / 2) x_coord_r = np.floor(x_coord_r).astype(int) y_coord_r = np.floor(y_coord_r).astype(int) z_coord_r = np.floor(z_coord_r).astype(int) voxel_index = np.array([x_coord_r, y_coord_r, z_coord_r]).T # all point in grid coordinate_buffer = np.unique(voxel_index, axis=0) # get a list of points without duplication K = len(coordinate_buffer) # [K, 1] store number of points in each voxel grid number_buffer = np.zeros(shape=K, dtype=np.int64) feature_buffer = np.zeros(shape=(K, self.voxel_point_num, 6), dtype=np.float32) index_buffer = {} for i in range(K): index_buffer[tuple(coordinate_buffer[i])] = i # got index of coordinate for voxel, point, normal in zip(voxel_index, point_cloud_voxel, surface_normal): index = index_buffer[tuple(voxel)] number = number_buffer[index] if number < self.voxel_point_num: feature_buffer[index, number, :3] = point feature_buffer[index, number, 3:6] = normal number_buffer[index] += 1 voxel_points_square_norm = np.sum(feature_buffer[..., -3:], axis=1)/number_buffer[:, np.newaxis] voxel_points_square = coordinate_buffer if len(voxel_points_square) == 0: return occupy_pic, norm_pic x_coord_square = voxel_points_square[:, 0] y_coord_square = voxel_points_square[:, 1] norm_pic[x_coord_square, y_coord_square, :] = voxel_points_square_norm occupy_pic[x_coord_square, y_coord_square] = number_buffer[:, np.newaxis] occupy_max = occupy_pic.max() assert(occupy_max > 0) occupy_pic = occupy_pic / occupy_max return occupy_pic, norm_pic def project_pc(self, pc, gripper_width): """ for gpd baseline, only support input_chann == [3, 12] """ pc = pc.astype(np.float32) pc = pcl.PointCloud(pc) norm = pc.make_NormalEstimation() norm.set_KSearch(self.normal_K) normals = norm.compute() surface_normal = normals.to_array() surface_normal = surface_normal[:, 0:3] pc = pc.to_array() grasp_pc = pc[self.in_ind] grasp_pc_norm = surface_normal[self.in_ind] bad_check = (grasp_pc_norm != grasp_pc_norm) if np.sum(bad_check)!=0: bad_ind = np.where(bad_check == True) grasp_pc = np.delete(grasp_pc, bad_ind[0], axis=0) grasp_pc_norm = np.delete(grasp_pc_norm, bad_ind[0], axis=0) assert(np.sum(grasp_pc_norm != grasp_pc_norm) == 0) m_width_of_pic = self.project_size margin = self.projection_margin order = np.array([0, 1, 2]) occupy_pic1, norm_pic1 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, order, gripper_width) if self.project_chann == 3: output = norm_pic1 elif self.project_chann == 12: order = np.array([1, 2, 0]) occupy_pic2, norm_pic2 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, order, gripper_width) order = np.array([0, 2, 1]) occupy_pic3, norm_pic3 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, order, gripper_width) output = np.dstack([occupy_pic1, norm_pic1, occupy_pic2, norm_pic2, occupy_pic3, norm_pic3]) else: raise NotImplementedError return output def __getitem__(self, index): # try: obj_ind, grasp_ind = np.unravel_index(index, (len(self.object), self.grasp_amount_per_file)) obj_grasp = self.object[obj_ind] obj_pc = self.transform[obj_grasp][0] f_grasp = self.d_grasp[obj_grasp] fl_pc = np.array(self.d_pc[obj_pc]) fl_pc = fl_pc[np.random.choice(len(fl_pc), size=self.pc_file_used_num)] grasp = np.load(f_grasp)[grasp_ind] pc = np.vstack([np.load(i) for i in fl_pc]) pc = pc[np.random.choice(len(pc), size=self.obj_points_num)] t = self.transform[obj_grasp][1] grasp_pc = self.collect_pc(grasp, pc, t) if grasp_pc is None: return None level_score, refine_score = grasp[-2:] if not self.projection: if len(grasp_pc) > self.grasp_points_num: grasp_pc = grasp_pc[np.random.choice(len(grasp_pc), size=self.grasp_points_num, replace=False)].T else: grasp_pc = grasp_pc[np.random.choice(len(grasp_pc), size=self.grasp_points_num, replace=True)].T else: grasp_pc = grasp_pc.transpose((2, 1, 0)) score = level_score + refine_score*0.01 if score >= self.thresh_bad: label = 0 elif score <= self.thresh_good: label = 2 else: label = 1 if self.with_obj: return grasp_pc, label, obj_grasp else: return grasp_pc, label def __len__(self): return self.amount class PointGraspOneViewDataset(torch.utils.data.Dataset): def __init__(self, grasp_points_num, grasp_amount_per_file, thresh_good, thresh_bad, path, tag, with_obj=False, projection=False, project_chann=3, project_size=60): self.grasp_points_num = grasp_points_num self.grasp_amount_per_file = grasp_amount_per_file self.path = path self.tag = tag self.thresh_good = thresh_good self.thresh_bad = thresh_bad self.with_obj = with_obj self.min_point_limit = 150 # 最低点数限制 # projection related 投影相关参数 self.projection = projection self.project_chann = project_chann if self.project_chann not in [3, 12]: raise NotImplementedError self.project_size = project_size if self.project_size != 60: raise NotImplementedError self.normal_K = 10 self.voxel_point_num = 50 self.projection_margin = 1 self.minimum_point_amount = 150 # google扫描仪到点云的转换矩阵 self.transform = pickle.load(open(os.path.join(self.path, 'google2cloud.pkl'), 'rb')) fl_grasp = glob.glob(os.path.join(path, 'ycb_grasp', self.tag, '*.npy')) # grasp pose file # 仅获取相机NP3采集的点云 fl_pc = glob.glob(os.path.join(path, 'ycb_rgbd', '*', 'clouds', 'pc_NP3_NP5*.npy')) # point cloud file self.d_pc, self.d_grasp = {}, {} for i in fl_pc: # 获取点云文件列表 k = i.split('/')[-3] if k in self.d_pc.keys(): self.d_pc[k].append(i) else: self.d_pc[k] = [i] for k in self.d_pc.keys(): self.d_pc[k].sort() for i in fl_grasp: # 获取已生成的抓取姿态列表 grasp_fl_name = i.split('/')[-1].split('.')[0] # grasp文件名 cnt = grasp_fl_name.split('_')[-1] # grasp文件尾 head = grasp_fl_name.split('_')[0] # grasp文件头 k = grasp_fl_name[len(head)+1:-(len(cnt)+1)] # 标准物品名称 self.d_grasp[k] = i object1 = set(self.d_grasp.keys()) # objects to deal with # print("object1", object1) object2 = set(self.transform.keys()) # all ycb objects name # print("object2", object2) self.object = list(object1) # self.object = list(object1.intersection(object2)) # 取交集 print("objects to deal with", self.object) self.amount = len(self.object) * self.grasp_amount_per_file def collect_pc(self, grasp, pc, transform): """ 获取手抓闭合区域中的点云 :param grasp: 扫描仪获取的mesh坐标系下抓取姿态 (grasp_center, grasp_axis, grasp_angle, grasp_width, jaw_width) :param pc: 点云 :param transform: 扫描仪mesh到点云的转换矩阵 :param vis: 可视化选项 :return: 手抓闭合区域中的点云, 或其投影 """ # 轴角表示 center = grasp[0:3] # 抓取姿态中心点 axis = grasp[3:6] # binormal 副法线 width = grasp[6] # 抓取姿态宽度 angle = grasp[7] # 旋转角 axis = axis/np.linalg.norm(axis) # (3,) binormal = axis # cal approach cos_t = np.cos(angle) sin_t = np.sin(angle) R1 = np.c_[[cos_t, 0, sin_t], [0, 1, 0], [-sin_t, 0, cos_t]] # 旋转矩阵 axis_y = axis axis_x = np.array([axis_y[1], -axis_y[0], 0]) if np.linalg.norm(axis_x) == 0: axis_x = np.array([1, 0, 0]) # 各轴单位方向向量 axis_x = axis_x / np.linalg.norm(axis_x) axis_y = axis_y / np.linalg.norm(axis_y) axis_z = np.cross(axis_x, axis_y) R2 = np.c_[axis_x, np.c_[axis_y, axis_z]] # 旋转矩阵 approach = R2.dot(R1)[:, 0] approach = approach / np.linalg.norm(approach) # 手抓朝向 minor_normal = -np.cross(axis, approach) # 次曲率方向 NOTE: 添加了负号调整为右手坐标系 # 碰撞检测 # grasp_bottom_center = -ags.gripper.hand_depth * approach + center # hand_points = ags.get_hand_points(grasp_bottom_center, approach, binormal) # local_hand_points = ags.get_hand_points(np.array([0, 0, 0]), np.array([1, 0, 0]), np.array([0, 1, 0])) # if_collide = ags.check_collide(grasp_bottom_center, approach, # binormal, minor_normal, graspable, local_hand_points) vis = False if vis: # NOTE:此处获得的抓取姿态可能与点云存在碰撞(影响不是很大)!!! TODO:碰撞检查 mlab.figure(bgcolor=(1, 1, 1), size=(1000, 800)) mlab.pipeline.surface(mlab.pipeline.open("/home/sdhm/Projects/PointNetGPD/PointNetGPD/data/" "ycb_meshes_google/003_cracker_box/google_512k/nontextured.ply")) # ---扫描仪坐标系下---: # 世界坐标系 show_line([0, 0, 0], [0.1, 0, 0], color='r', scale_factor=.0015) show_line([0, 0, 0], [0, 0.1, 0], color='g', scale_factor=.0015) show_line([0, 0, 0], [0, 0, 0.1], color='b', scale_factor=.0015) show_points(pc, color='b', scale_factor=.002) # 原始点云 show_points(center, color='r', scale_factor=.008) # 显示手抓坐标系 show_line(center, (center + binormal * 0.05).reshape(3), color='g', scale_factor=.0015) show_line(center, (center + approach * 0.05).reshape(3), color='r', scale_factor=.0015) show_line(center, (center + minor_normal * 0.05).reshape(3), color='b', scale_factor=.0015) grasp_bottom_center = -ags.gripper.hand_depth * approach + center hand_points = ags.get_hand_points(grasp_bottom_center, approach, binormal) ags.show_grasp_3d(hand_points, color=(0.4, 0.6, 0.0)) mlab.title("google", size=0.3, color=(0, 0, 0)) mlab.show() left = center - width*axis/2 # 手抓最左侧点 right = center + width*axis/2 # 手抓最右侧点 # bottom = center - width*approach left = (np.dot(transform, np.array([left[0], left[1], left[2], 1])))[:3] right = (np.dot(transform, np.array([right[0], right[1], right[2], 1])))[:3] # bottom = (transform @ np.array([bottom[0], bottom[1], bottom[2], 1]))[:3] # NOTE: m:mesh c:center p:point cloud matrix_m2c = np.array([approach, binormal, minor_normal]) # 旋转矩阵: 扫描仪坐标系->中心点坐标系 matrix_p2m = transform[:3, :3] # 旋转矩阵: 点云坐标系->扫描仪坐标系 trans_p2m = transform[:, 3:][:3].reshape(3,) # 平移矩阵: 点云坐标系->扫描仪坐标系 trans_p2m = np.array([trans_p2m[0], trans_p2m[1], trans_p2m[2] + 0.02]) # 微调 pc_p2m = np.dot(matrix_p2m.T, (pc - trans_p2m).T).T # 配准到扫描仪坐标系下的点云 pc_m2c = (np.dot(matrix_m2c, (pc_p2m-center).T)).T # 扫描仪坐标系下点云转换到中心点坐标系下 # pc_c2m = (np.dot(matrix_m2c.T, pc_m2c.T)).T + center # 中心点坐标系下点云转换到扫描仪坐标系下 left_t = (-width * np.array([0, 1, 0]) / 2).squeeze() right_t = (width * np.array([0, 1, 0]) / 2).squeeze() # 获取手抓闭合区域中的点 x_limit = ags.gripper.hand_depth z_limit = ags.gripper.hand_height y_limit = width x1 = pc_m2c[:, 0] > -x_limit x2 = pc_m2c[:, 0] < 0 y1 = pc_m2c[:, 1] > -y_limit/2 y2 = pc_m2c[:, 1] < y_limit/2 z1 = pc_m2c[:, 2] > -z_limit/2 z2 = pc_m2c[:, 2] < z_limit/2 a = np.vstack([x1, x2, y1, y2, z1, z2]) self.in_ind = np.where(np.sum(a, axis=0) == len(a))[0] # 手抓闭合区域中点的索引 if len(self.in_ind) < self.min_point_limit: # 手抓闭合区域内点数太少 # print("\033[0;32m%s\033[0m" % "[INFO] points num", len(self.in_ind)) return None vis = False if vis: # 显示手抓闭合区域内点云 mlab.figure(bgcolor=(1, 1, 1), size=(1000, 800)) mlab.pipeline.surface(mlab.pipeline.open("/home/sdhm/Projects/PointNetGPD/PointNetGPD/data/" "ycb_meshes_google/003_cracker_box/google_512k/nontextured.ply")) # 世界坐标系 show_line([0, 0, 0], [0.1, 0, 0], color='r', scale_factor=.0015) show_line([0, 0, 0], [0, 0.1, 0], color='g', scale_factor=.0015) show_line([0, 0, 0], [0, 0, 0.1], color='b', scale_factor=.0015) # show_points(pc, color='b', scale_factor=.002) # 原始点云 show_points(pc_p2m, color='g', scale_factor=.002) # 配准到扫描仪坐标系下点云 show_points(pc_m2c, color='b', scale_factor=.002) # 手抓中心坐标系下点云 # show_points(pc_c2m, color='r', scale_factor=.002) # 手抓中心坐标系转换到扫描仪坐标系下点云 # 显示扫描仪坐标系下手抓 grasp_bottom_center = -ags.gripper.hand_depth * approach + center hand_points = ags.get_hand_points(grasp_bottom_center, approach, binormal) ags.show_grasp_3d(hand_points, color=(0.0, 1.0, 0.0)) # 中心点坐标系下手抓(应在世界坐标系原点) hand_points = (np.dot(matrix_m2c, (hand_points - center).T)).T # 手抓关键点转换到中心点坐标系 ags.show_grasp_3d(hand_points, color=(0.5, 0.5, 0.5)) # 显示手抓 # 扫描仪坐标系下抓取坐标系 show_points(center, color='r', scale_factor=.008) # 扫描仪坐标系下中心点 show_line(center, (center + binormal * 0.05).reshape(3), color='g', scale_factor=.0015) show_line(center, (center + approach * 0.05).reshape(3), color='r', scale_factor=.0015) show_line(center, (center + minor_normal * 0.05).reshape(3), color='b', scale_factor=.0015) show_points(pc_m2c, color='c', scale_factor=.002) # 手抓中心坐标系下点云 show_points(pc_m2c[self.in_ind], color='b', scale_factor=.002) # 中心点坐标系下手抓闭合区域中的点云 pc_c2m_region = (np.dot(matrix_m2c.T, pc_m2c[self.in_ind].T)).T + center # 扫描仪坐标系下手抓闭合区域中的点云 show_points(pc_c2m_region, color='r', scale_factor=.002) # 显示手抓闭合区域 # x = (np.array([[-1, 1, 1, -1, -1], [-1, 1, 1, -1, -1]]) - 1) * x_limit/2 # y = np.array([[-1, -1, -1, -1, -1], [1, 1, 1, 1, 1]]) * y_limit # z = np.array([[1, 1, -1, -1, 1], [1, 1, -1, -1, 1]]) * z_limit # mlab.mesh(x, y, z, color=(1, 0, 0), opacity=0.4) # 体积为1的正方体的八个顶点 x_arr = np.array([-1, 1, 1, -1, -1, 1, 1, -1])/2 y_arr = np.array([-1, -1, 1, 1, -1, -1, 1, 1])/2 z_arr = np.array([-1, -1, -1, -1, 1, 1, 1, 1])/2 x = (x_arr - 0.5) * ags.gripper.hand_depth # 平移半个单位 y = y_arr * (ags.gripper.hand_outer_diameter-2*ags.gripper.finger_width) z = z_arr * ags.gripper.hand_height triangles = [(0, 1, 2), (0, 2, 3), (4, 5, 6), (4, 6, 7), (1, 5, 6), (1, 2, 6), (0, 4, 7), (0, 3, 7), (2, 3, 6), (3, 6, 7), (0, 1, 5), (0, 4, 5)] mlab.triangular_mesh(x, y, z, triangles, color=(1, 0, 1), opacity=0.2) mlab.title("cloud", size=0.3, color=(0, 0, 0)) mlab.show() if self.projection: return self.project_pc(pc_m2c, width) # 返回投影后的点云 else: return pc_m2c[self.in_ind] # 返回手抓闭合区域中的点云 def check_square(self, point, points_g): dirs = np.array([[-1, 1, 1], [1, 1, 1], [-1, -1, 1], [1, -1, 1], [-1, 1, -1], [1, 1, -1], [-1, -1, -1], [1, -1, -1]]) p = dirs * 0.5 + point # here res * 0.5 means get half of a pixel width a1 = p[2][1] < points_g[:, 1] a2 = p[0][1] > points_g[:, 1] a3 = p[0][2] > points_g[:, 2] a4 = p[4][2] < points_g[:, 2] a5 = p[1][0] > points_g[:, 0] a6 = p[0][0] < points_g[:, 0] a = np.vstack([a1, a2, a3, a4, a5, a6]) points_in_area = np.where(np.sum(a, axis=0) == len(a))[0] if len(points_in_area) == 0: has_p = False else: has_p = True return points_in_area def cal_projection(self, point_cloud_voxel, m_width_of_pic, margin, surface_normal, order, gripper_width): """ 计算点云投影 :param point_cloud_voxel: :param m_width_of_pic: :param margin: :param surface_normal: :param order: :param gripper_width: :return: """ occupy_pic = np.zeros([m_width_of_pic, m_width_of_pic, 1]) norm_pic = np.zeros([m_width_of_pic, m_width_of_pic, 3]) norm_pic_num = np.zeros([m_width_of_pic, m_width_of_pic, 1]) max_x = point_cloud_voxel[:, order[0]].max() min_x = point_cloud_voxel[:, order[0]].min() max_y = point_cloud_voxel[:, order[1]].max() min_y = point_cloud_voxel[:, order[1]].min() min_z = point_cloud_voxel[:, order[2]].min() tmp = max((max_x - min_x), (max_y - min_y)) if tmp == 0: print("WARNING : the num of input points seems only have one, no possilbe to do learning on" "such data, please throw it away. -- Hongzhuo") return occupy_pic, norm_pic # Here, we use the gripper width to cal the res: res = gripper_width / (m_width_of_pic-margin) voxel_points_square_norm = [] x_coord_r = ((point_cloud_voxel[:, order[0]]) / res + m_width_of_pic / 2) y_coord_r = ((point_cloud_voxel[:, order[1]]) / res + m_width_of_pic / 2) z_coord_r = ((point_cloud_voxel[:, order[2]]) / res + m_width_of_pic / 2) x_coord_r = np.floor(x_coord_r).astype(int) y_coord_r = np.floor(y_coord_r).astype(int) z_coord_r = np.floor(z_coord_r).astype(int) voxel_index = np.array([x_coord_r, y_coord_r, z_coord_r]).T # all point in grid coordinate_buffer = np.unique(voxel_index, axis=0) # get a list of points without duplication K = len(coordinate_buffer) # [K, 1] store number of points in each voxel grid number_buffer = np.zeros(shape=K, dtype=np.int64) feature_buffer = np.zeros(shape=(K, self.voxel_point_num, 6), dtype=np.float32) index_buffer = {} for i in range(K): index_buffer[tuple(coordinate_buffer[i])] = i # got index of coordinate for voxel, point, normal in zip(voxel_index, point_cloud_voxel, surface_normal): index = index_buffer[tuple(voxel)] number = number_buffer[index] if number < self.voxel_point_num: feature_buffer[index, number, :3] = point feature_buffer[index, number, 3:6] = normal number_buffer[index] += 1 voxel_points_square_norm = np.sum(feature_buffer[..., -3:], axis=1)/number_buffer[:, np.newaxis] voxel_points_square = coordinate_buffer if len(voxel_points_square) == 0: return occupy_pic, norm_pic x_coord_square = voxel_points_square[:, 0] y_coord_square = voxel_points_square[:, 1] norm_pic[x_coord_square, y_coord_square, :] = voxel_points_square_norm occupy_pic[x_coord_square, y_coord_square] = number_buffer[:, np.newaxis] occupy_max = occupy_pic.max() assert(occupy_max > 0) occupy_pic = occupy_pic / occupy_max return occupy_pic, norm_pic def project_pc(self, pc, gripper_width): """ 获取手抓闭合区域中点云的投影 for gpd baseline, only support input_chann == [3, 12] """ pc = pc.astype(np.float32) pc = pcl.PointCloud(pc) norm = pc.make_NormalEstimation() norm.set_KSearch(self.normal_K) normals = norm.compute() surface_normal = normals.to_array() surface_normal = surface_normal[:, 0:3] pc = pc.to_array() grasp_pc = pc[self.in_ind] grasp_pc_norm = surface_normal[self.in_ind] bad_check = (grasp_pc_norm != grasp_pc_norm) if np.sum(bad_check) != 0: bad_ind = np.where(bad_check == True) grasp_pc = np.delete(grasp_pc, bad_ind[0], axis=0) grasp_pc_norm = np.delete(grasp_pc_norm, bad_ind[0], axis=0) assert(np.sum(grasp_pc_norm != grasp_pc_norm) == 0) m_width_of_pic = self.project_size margin = self.projection_margin order = np.array([0, 1, 2]) occupy_pic1, norm_pic1 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, # 计算点云投影 order, gripper_width) if self.project_chann == 3: output = norm_pic1 elif self.project_chann == 12: order = np.array([1, 2, 0]) occupy_pic2, norm_pic2 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, # 计算点云投影 order, gripper_width) order = np.array([0, 2, 1]) occupy_pic3, norm_pic3 = self.cal_projection(grasp_pc, m_width_of_pic, margin, grasp_pc_norm, # 计算点云投影 order, gripper_width) output = np.dstack([occupy_pic1, norm_pic1, occupy_pic2, norm_pic2, occupy_pic3, norm_pic3]) else: raise NotImplementedError return output def __getitem__(self, index): # 获取物体和抓取姿态索引 obj_ind, grasp_ind = np.unravel_index(index, (len(self.object), self.grasp_amount_per_file)) obj_grasp = self.object[obj_ind] # 物体名称, 用于获取抓取姿态 obj_pc = self.transform[obj_grasp][0] # 物体名称, 用于获取点云 f_grasp = self.d_grasp[obj_grasp] # 抓取姿态文件名 fl_pc = np.array(self.d_pc[obj_pc]) # 各视角点云文件名 np.random.shuffle(fl_pc) # 打乱文件 grasp = np.load(f_grasp)[grasp_ind] # 获取抓取姿态 pc = np.load(fl_pc[-1]) # 随机获取点云 t = self.transform[obj_grasp][1] # 获取扫描仪到点云的转换矩阵, 抓取姿态在扫描仪采集的mesh文件上获取, 须转换到 # debug # level_score_, refine_score_ = grasp[-2:] # score_ = level_score_ + refine_score_ * 0.01 # if score_ >= self.thresh_bad: # print("label: 0") # elif score_ <= self.thresh_good: # print("label: 1") grasp_pc = self.collect_pc(grasp, pc, t) # 获取手抓闭合区域中的点云 if grasp_pc is None: return None level_score, refine_score = grasp[-2:] if not self.projection: # 点数不够则有放回采样, 点数太多则随机采样 if len(grasp_pc) > self.grasp_points_num: grasp_pc = grasp_pc[np.random.choice(len(grasp_pc), size=self.grasp_points_num, replace=False)].T else: grasp_pc = grasp_pc[np.random.choice(len(grasp_pc), size=self.grasp_points_num, replace=True)].T else: grasp_pc = grasp_pc.transpose((2, 1, 0)) # 调整通道顺序 # 根据score分类 score = level_score + refine_score*0.01 if score >= self.thresh_bad: label = 0 elif score <= self.thresh_good: label = 1 else: return None if self.with_obj: return grasp_pc, label, obj_grasp else: # print("grasp_pc", grasp_pc, grasp_pc.shape, label) # (3, 750) return grasp_pc, label def __len__(self): return self.amount class PointGraspOneViewMultiClassDataset(torch.utils.data.Dataset): def __init__(self, grasp_points_num, grasp_amount_per_file, thresh_good, thresh_bad, path, tag, with_obj=False, projection=False, project_chann=3, project_size=60): self.grasp_points_num = grasp_points_num self.grasp_amount_per_file = grasp_amount_per_file self.path = path self.tag = tag self.thresh_good = thresh_good self.thresh_bad = thresh_bad self.with_obj = with_obj self.min_point_limit = 50 # projection related self.projection = projection self.project_chann = project_chann if self.project_chann not in [3, 12]: raise NotImplementedError self.project_size = project_size if self.project_size != 60: raise NotImplementedError self.normal_K = 10 self.voxel_point_num = 50 self.projection_margin = 1 self.minimum_point_amount = 150 self.transform = pickle.load(open(os.path.join(self.path, 'google2cloud.pkl'), 'rb')) fl_grasp = glob.glob(os.path.join(path, 'ycb_grasp', self.tag, '*.npy')) fl_pc = glob.glob(os.path.join(path, 'ycb_rgbd', '*', 'clouds', 'pc_NP3_NP5*.npy')) self.d_pc, self.d_grasp = {}, {} for i in fl_pc: k = i.split('/')[-3] if k in self.d_pc.keys(): self.d_pc[k].append(i) else: self.d_pc[k] = [i] for k in self.d_pc.keys(): self.d_pc[k].sort() for i in fl_grasp: k = i.split('/')[-1].split('.')[0] self.d_grasp[k] = i object1 = set(self.d_grasp.keys()) object2 = set(self.transform.keys()) self.object = list(object1.intersection(object2)) self.amount = len(self.object) * self.grasp_amount_per_file def collect_pc(self, grasp, pc, transform): center = grasp[0:3] axis = grasp[3:6] # binormal width = grasp[6] angle = grasp[7] axis = axis/np.linalg.norm(axis) binormal = axis # cal approach cos_t = np.cos(angle) sin_t = np.sin(angle) R1 = np.c_[[cos_t, 0, sin_t],[0, 1, 0],[-sin_t, 0, cos_t]] axis_y = axis axis_x = np.array([axis_y[1], -axis_y[0], 0]) if np.linalg.norm(axis_x) == 0: axis_x = np.array([1, 0, 0]) axis_x = axis_x / np.linalg.norm(axis_x) axis_y = axis_y / np.linalg.norm(axis_y) axis_z = np.cross(axis_x, axis_y) R2 = np.c_[axis_x, np.c_[axis_y, axis_z]] approach = R2.dot(R1)[:, 0] approach = approach / np.linalg.norm(approach) minor_normal = np.cross(axis, approach) left = center - width*axis/2 right = center + width*axis/2 left = (np.dot(transform, np.array([left[0], left[1], left[2], 1])))[:3] right = (np.dot(transform, np.array([right[0], right[1], right[2], 1])))[:3] center = (np.dot(transform, np.array([center[0], center[1], center[2], 1])))[:3] binormal = (np.dot(transform, np.array([binormal[0], binormal[1], binormal[2], 1])))[:3].reshape(3, 1) approach = (np.dot(transform, np.array([approach[0], approach[1], approach[2], 1])))[:3].reshape(3, 1) minor_normal = (np.dot(transform, np.array([minor_normal[0], minor_normal[1], minor_normal[2], 1])))[:3].reshape(3, 1) matrix = np.hstack([approach, binormal, minor_normal]).T pc_p2c = (np.dot(matrix, (pc-center).T)).T left_t = (-width * np.array([0,1,0]) / 2).squeeze() right_t = (width * np.array([0,1,0]) / 2).squeeze() x_limit = width/4 z_limit = width/4 y_limit = width/2 x1 = pc_p2c[:, 0] > -x_limit x2 = pc_p2c[:, 0] < x_limit y1 = pc_p2c[:, 1] > -y_limit y2 = pc_p2c[:, 1] < y_limit z1 = pc_p2c[:, 2] > -z_limit z2 = pc_p2c[:, 2] < z_limit a = np.vstack([x1, x2, y1, y2, z1, z2]) self.in_ind = np.where(np.sum(a, axis=0) == len(a))[0] if len(self.in_ind) < self.min_point_limit: return None if self.projection: return self.project_pc(pc_p2c, width) else: return pc_p2c[self.in_ind] def check_square(self, point, points_g): dirs = np.array([[-1, 1, 1], [1, 1, 1], [-1, -1, 1], [1, -1, 1], [-1, 1, -1], [1, 1, -1], [-1, -1, -1], [1, -1, -1]]) p = dirs * 0.5 + point # here res * 0.5 means get half of a pixel width a1 = p[2][1] < points_g[:, 1] a2 = p[0][1] > points_g[:, 1] a3 = p[0][2] > points_g[:, 2] a4 = p[4][2] < points_g[:, 2] a5 = p[1][0] > points_g[:, 0] a6 = p[0][0] < points_g[:, 0] a = np.vstack([a1, a2, a3, a4, a5, a6]) points_in_area = np.where(np.sum(a, axis=0) == len(a))[0] if len(points_in_area) == 0: has_p = False else: has_p = True return points_in_area def cal_projection(self, point_cloud_voxel, m_width_of_pic, margin, surface_normal, order, gripper_width): occupy_pic = np.zeros([m_width_of_pic, m_width_of_pic, 1]) norm_pic = np.zeros([m_width_of_pic, m_width_of_pic, 3]) norm_pic_num = np.zeros([m_width_of_pic, m_width_of_pic, 1]) max_x = point_cloud_voxel[:, order[0]].max() min_x = point_cloud_voxel[:, order[0]].min() max_y = point_cloud_voxel[:, order[1]].max() min_y = point_cloud_voxel[:, order[1]].min() min_z = point_cloud_voxel[:, order[2]].min() tmp = max((max_x - min_x), (max_y - min_y)) if tmp == 0: print("WARNING : the num of input points seems only have one, no possilbe to do learning on" "such data, please throw it away. -- Hongzhuo") return occupy_pic, norm_pic # Here, we use the gripper width to cal the res: res = gripper_width / (m_width_of_pic-margin) voxel_points_square_norm = [] x_coord_r = ((point_cloud_voxel[:, order[0]]) / res + m_width_of_pic / 2) y_coord_r = ((point_cloud_voxel[:, order[1]]) / res + m_width_of_pic / 2) z_coord_r = ((point_cloud_voxel[:, order[2]]) / res + m_width_of_pic / 2) x_coord_r = np.floor(x_coord_r).astype(int) y_coord_r = np.floor(y_coord_r).astype(int) z_coord_r = np.floor(z_coord_r).astype(int) voxel_index =
np.array([x_coord_r, y_coord_r, z_coord_r])
numpy.array
import numpy as np import pandas as pd from scipy.stats import norm, percentileofscore from tqdm.notebook import tqdm def rv_cc_estimator(sample,n=22): """ Realized volatility close to close calculation. Returns a time series of the realized volatility. sample: series or dataframe of closing prices indexed by date n: sample size period for the volatility """ sample_clean = sample.dropna() returns = np.divide(sample_clean, sample_clean.shift(1)) log_returns = np.log(returns) ann_log_returns = 252*np.power(log_returns,2)/n return 100 * np.sqrt(ann_log_returns.rolling(window=n,min_periods=n).sum()) def cc_estimator(sample,n=22,days=1): combined_rv = pd.Series() sample_clean = sample.dropna() for i in range(days): staggered_samples = sample_clean[i::days] returns = np.divide(staggered_samples, staggered_samples.shift(1)) log_returns = np.log(returns) ann_log_returns = 252*np.power(log_returns,2)/n/days sample_rv = 100 * np.sqrt(ann_log_returns.rolling(window=n,min_periods=n).sum()) combined_rv = pd.concat([combined_rv, sample_rv]) return combined_rv.sort_index() def calc_period_var(sample, return_period=22, lookback=66): """ A period return's move normalized. Calculated as the squared move (variance) scaled by the period sample: series or dataframe of closing prices indexed by date """ sample_clean = sample.dropna() lookback_ret = sample_clean.pct_change(periods=return_period) return (lookback_ret**2).rolling(window=lookback).mean() * 250 / return_period def calc_var_ratio(sample, return_period=22, period_min=3, day_min=66): """ The variance ratio based on the normalized historical returns over a given rolling return period ratioed to the daily historical returns sample: series or dataframe of closing prices indexed by date return period: """ lookback = max(return_period * period_min, day_min) period_var = calc_period_var(sample, return_period=return_period, lookback=lookback) daily_var = calc_period_var(sample, return_period=1, lookback=lookback) return period_var / daily_var def calc_lfev(sample, return_period=22, period_min=3, day_min=66): lookback = max(return_period * period_min, day_min) period_var = calc_period_var(sample, return_period=return_period, lookback=lookback) daily_var = calc_period_var(sample, return_period=1, lookback=lookback) return (np.sqrt(period_var) - np.sqrt(daily_var)) * 100 def move_volatility(prices, days=66): abs_move = (prices / prices.shift(days) - 1) high_low = (prices.rolling(days+1).max() - prices.rolling(days+1).min()) / prices.shift(days) return abs_move / high_low * np.abs(abs_move) * 100 def move_volatility_range(prices, days=66): abs_move = (prices / prices.shift(days) - 1) high_prices = prices.rolling(days+1).max() low_prices = prices.rolling(days+1).min() close_dist_high_low = ((high_prices - prices.shift(days)) + (low_prices - prices.shift(days))) / prices.shift(days) high_low = (high_prices - low_prices) / prices.shift(days) return close_dist_high_low * (0.5 * (np.abs(abs_move) + high_low)) / high_low * 100 def generate_returns_dict(prices, undl_list, return_days): returns = {} for u in undl_list: returns[u] = pd.DataFrame() for i in return_days: close_prices = prices[u, 'Close'].dropna() returns[u][i] = (close_prices / close_prices.shift(i) - 1) * 100 return returns def rolling_trend(prices, undl_list, return_days, smoothing=5): '''Determines the trend by blending the returns across different periods and smooths the results.''' avg_returns_dict = {} returns_summary = {} returns_dict = generate_returns_dict(prices, undl_list, return_days) for u in undl_list: avg_returns_dict[u] = pd.DataFrame() for i in return_days: avg_returns_dict[u]['{}D Trend'.format(i)] = returns_dict[u][i].dropna().rolling(smoothing).mean() / np.sqrt(i) avg_returns_dict[u]['Average Trend'] = avg_returns_dict[u].dropna().mean(axis=1) if len(avg_returns_dict[u].dropna()) > 0: returns_summary[u] = avg_returns_dict[u]['Average Trend'].dropna()[-1] returns_summary = pd.Series(returns_summary) return returns_summary, avg_returns_dict def spot_stats(sample, n=260): """ Simple spot statistics returning the distance in % terms from the last spot to the max spot in the period, distance to min spot, and current percentile in min to max. sample: series or dataframe of closing prices n: historical lookback period. """ spot_window = sample.dropna()[-n:] percentile = percentileofscore(spot_window, spot_window[-1]) high = spot_window.max() low = spot_window.min() max_pct = (high / spot_window[-1] - 1) * 100 min_pct = (low / spot_window[-1] - 1) * 100 return max_pct, min_pct, percentile def past_spot_ranges(sample, n=22, haircut=0.2, intraday=True): '''Finds Returns the past n spot range based on max/min of the period''' if intraday: sample_max = (sample['High'].rolling(n).max() / sample['Close'].shift(n) - 1) * 100 sample_min = (sample['Low'].rolling(n).min() / sample['Close'].shift(n) - 1) * 100 else: sample_max = (sample['Close'].rolling(n).max() / sample['Close'].shift(n) - 1) * 100 sample_min = (sample['Close'].rolling(n).min() / sample['Close'].shift(n) - 1) * 100 delta_scale = 1 - haircut # Set a more conservative estimate of the range. return pd.concat([abs(sample_max) * delta_scale, abs(sample_min) * delta_scale], axis=1).max(axis=1) def past_abs_returns(sample, n=5): return np.abs((1 - sample['Close'].shift(n) / sample['Close']) * 100) def varvolbreakeven(var, vol): b = -1 a = 1 / (2 * var) c = vol - var / 2 breakeven1 = (-b + np.sqrt(b**2 - 4 * a * c)) / (2 * a) breakeven2 = (-b - np.sqrt(b**2 - 4 * a * c)) / (2 * a) return breakeven1, breakeven2 def zscore_calc(hist_data, live_data): return (live_data - hist_data.mean()) / hist_data.std() def var_payout(realized,strike): return 0.5 * (realized**2 / strike - strike) def vol_payout(realized, strike): return realized - strike class BlackScholes: def __init__(self, s, k, r, q, vol, t, payoff): """vol is expressed in %. eg enter 16v as 16, not 0.16""" self.s = s self.k = k self.r = r self.q = q self.vol = vol / 100 self.t = t self.payoff = payoff def d1(self): return (
np.log(self.s / self.k)
numpy.log
import paddle import paddle.nn as nn import paddle.nn.functional as F import numpy as np from .layers.contrastive import ContrastiveLoss from .layers.utils import l1norm, l2norm from .layers.img_enc import EncoderImage from .layers.txt_enc import EncoderText class VisualSA(nn.Layer): """ Build global image representations by self-attention. Args: - local: local region embeddings, shape: (batch_size, 36, 1024) - raw_global: raw image by averaging regions, shape: (batch_size, 1024) Returns: - new_global: final image by self-attention, shape: (batch_size, 1024). """ def __init__(self, embed_dim, dropout_rate, num_region): super(VisualSA, self).__init__() self.embedding_local = nn.Sequential(nn.Linear(embed_dim, embed_dim), nn.BatchNorm1D(num_region), nn.Tanh(), nn.Dropout(dropout_rate)) self.embedding_global = nn.Sequential(nn.Linear(embed_dim, embed_dim), nn.BatchNorm1D(embed_dim), nn.Tanh(), nn.Dropout(dropout_rate)) self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1)) self.init_weights() def init_weights(self): for embeddings in self.children(): for m in embeddings: if isinstance(m, nn.Linear): r = np.sqrt(6.) / np.sqrt(m.weight.shape[0] + m.weight.shape[1]) v = np.random.uniform(-r, r, size=(m.weight.shape[0], m.weight.shape[1])).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(v) m.bias.set_value(b) elif isinstance(m, nn.BatchNorm1D): a = np.ones(m.weight.shape).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(a) m.bias.set_value(b) def forward(self, local, raw_global): # compute embedding of local regions and raw global image l_emb = self.embedding_local(local) g_emb = self.embedding_global(raw_global) # compute the normalized weights, shape: (batch_size, 36) g_emb = paddle.concat([g_emb.unsqueeze(1) for _ in range(l_emb.shape[1])], axis=1) common = paddle.multiply(l_emb, g_emb) weights = self.embedding_common(common).squeeze(2) weights = F.softmax(weights, axis=1) # compute final image, shape: (batch_size, 1024) new_global = (weights.unsqueeze(2) * local).sum(axis=1) new_global = l2norm(new_global, dim=-1) return new_global class TextSA(nn.Layer): """ Build global text representations by self-attention. Args: - local: local word embeddings, shape: (batch_size, L, 1024) - raw_global: raw text by averaging words, shape: (batch_size, 1024) Returns: - new_global: final text by self-attention, shape: (batch_size, 1024). """ def __init__(self, embed_dim, dropout_rate): super(TextSA, self).__init__() self.embedding_local = nn.Sequential(nn.Linear(embed_dim, embed_dim), nn.Tanh(), nn.Dropout(dropout_rate)) self.embedding_global = nn.Sequential(nn.Linear(embed_dim, embed_dim), nn.Tanh(), nn.Dropout(dropout_rate)) self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1)) self.init_weights() def init_weights(self): for embeddings in self.children(): for m in embeddings: if isinstance(m, nn.Linear): r = np.sqrt(6.) / np.sqrt(m.weight.shape[0] + m.weight.shape[1]) v = np.random.uniform(-r, r, size=(m.weight.shape[0], m.weight.shape[1])).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(v) m.bias.set_value(b) elif isinstance(m, nn.BatchNorm1D): a = np.ones(m.weight.shape).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(a) m.bias.set_value(b) def forward(self, local, raw_global): # compute embedding of local words and raw global text l_emb = self.embedding_local(local) g_emb = self.embedding_global(raw_global) # compute the normalized weights, shape: (batch_size, L) g_emb = paddle.concat([g_emb.unsqueeze(1) for _ in range(l_emb.shape[1])], axis=1) common = paddle.multiply(l_emb, g_emb) weights = self.embedding_common(common).squeeze(2) weights = F.softmax(weights, axis=1) # compute final text, shape: (batch_size, 1024) new_global = (weights.unsqueeze(2) * local).sum(axis=1) new_global = l2norm(new_global, dim=-1) return new_global class GraphReasoning(nn.Layer): """ Perform the similarity graph reasoning with a full-connected graph Args: - sim_emb: global and local alignments, shape: (batch_size, L+1, 256) Returns; - sim_sgr: reasoned graph nodes after several steps, shape: (batch_size, L+1, 256) """ def __init__(self, sim_dim): super(GraphReasoning, self).__init__() self.graph_query_w = nn.Linear(sim_dim, sim_dim) self.graph_key_w = nn.Linear(sim_dim, sim_dim) self.sim_graph_w = nn.Linear(sim_dim, sim_dim) self.relu = nn.ReLU() self.softmax = nn.Softmax(axis=-1) self.init_weights() def init_weights(self): for m in self.children(): if isinstance(m, nn.Linear): r = np.sqrt(6.) / np.sqrt(m.weight.shape[0] + m.weight.shape[1]) v = np.random.uniform(-r, r, size=(m.weight.shape[0], m.weight.shape[1])).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(v) m.bias.set_value(b) elif isinstance(m, nn.BatchNorm1D): a = np.ones(m.weight.shape).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(a) m.bias.set_value(b) def forward(self, sim_emb): sim_query = self.graph_query_w(sim_emb) sim_key = self.graph_key_w(sim_emb) sim_edge = self.softmax(paddle.bmm(sim_query, paddle.transpose(sim_key, (0, 2, 1)))) sim_sgr = paddle.bmm(sim_edge, sim_emb) sim_sgr = self.relu(self.sim_graph_w(sim_sgr)) return sim_sgr class AttentionFiltration(nn.Layer): """ Perform the similarity Attention Filtration with a gate-based attention Args: - sim_emb: global and local alignments, shape: (batch_size, L+1, 256) Returns; - sim_saf: aggregated alignment after attention filtration, shape: (batch_size, 256) """ def __init__(self, sim_dim): super(AttentionFiltration, self).__init__() self.attn_sim_w = nn.Linear(sim_dim, 1) self.bn = nn.BatchNorm1D(1) self.sigmoid = nn.Sigmoid() self.init_weights() def init_weights(self): for m in self.children(): if isinstance(m, nn.Linear): r = np.sqrt(6.) / np.sqrt(m.weight.shape[0] + m.weight.shape[1]) v = np.random.uniform(-r, r, size=(m.weight.shape[0], m.weight.shape[1])).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(v) m.bias.set_value(b) elif isinstance(m, nn.BatchNorm1D): a = np.ones(m.weight.shape).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(a) m.bias.set_value(b) def forward(self, sim_emb): sim_attn = self.attn_sim_w(sim_emb) sim_attn = paddle.transpose(sim_attn, (0, 2, 1)) sim_attn = l1norm(self.sigmoid(self.bn(sim_attn)), dim=-1) sim_saf = paddle.matmul(sim_attn, sim_emb) sim_saf = l2norm(sim_saf.squeeze(1), dim=-1) return sim_saf class EncoderSimilarity(nn.Layer): """ Compute the image-text similarity by SGR, SAF, AVE Args: - img_emb: local region embeddings, shape: (batch_size, 36, 1024) - cap_emb: local word embeddings, shape: (batch_size, L, 1024) Returns: - sim_all: final image-text similarities, shape: (batch_size, batch_size). """ def __init__(self, embed_size, sim_dim, module_name='AVE', sgr_step=3): super(EncoderSimilarity, self).__init__() self.module_name = module_name self.v_global_w = VisualSA(embed_size, 0.4, 36) self.t_global_w = TextSA(embed_size, 0.4) self.sim_tranloc_w = nn.Linear(embed_size, sim_dim) self.sim_tranglo_w = nn.Linear(embed_size, sim_dim) self.sim_eval_w = nn.Linear(sim_dim, 1) self.sigmoid = nn.Sigmoid() if module_name == 'SGR': self.SGR_module = nn.Sequential() for i in range(sgr_step): self.SGR_module.add_sublayer(f'SGR_{i}', GraphReasoning(sim_dim)) # self.SGR_module = nn.Sequential((GraphReasoning(sim_dim) for i in range(sgr_step))).append() elif module_name == 'SAF': self.SAF_module = AttentionFiltration(sim_dim) else: raise ValueError('Invalid input of module_name') self.init_weights() def init_weights(self): for m in self.children(): if isinstance(m, nn.Linear): r = np.sqrt(6.) / np.sqrt(m.weight.shape[0] + m.weight.shape[1]) v = np.random.uniform(-r, r, size=(m.weight.shape[0], m.weight.shape[1])).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(v) m.bias.set_value(b) elif isinstance(m, nn.BatchNorm1D): a = np.ones(m.weight.shape).astype('float32') b = np.zeros(m.bias.shape).astype('float32') m.weight.set_value(a) m.bias.set_value(b) def forward(self, img_emb, cap_emb, cap_lens): sim_all = [] n_image = img_emb.shape[0] n_caption = cap_emb.shape[0] # get enhanced global images by self-attention img_ave = paddle.mean(img_emb, 1) img_glo = self.v_global_w(img_emb, img_ave) for i in range(n_caption): # get the i-th sentence n_word = cap_lens[i] cap_i = cap_emb[i, :n_word, :].unsqueeze(0) cap_i_expand = paddle.concat([cap_i for _ in range(n_image)], axis=0) # get enhanced global i-th text by self-attention cap_ave_i = paddle.mean(cap_i, 1) cap_glo_i = self.t_global_w(cap_i, cap_ave_i) # local-global alignment construction Context_img = SCAN_attention(cap_i_expand, img_emb, smooth=9.0) sim_loc = paddle.pow(paddle.subtract(Context_img, cap_i_expand), 2) sim_loc = l2norm(self.sim_tranloc_w(sim_loc), dim=-1) sim_glo = paddle.pow(paddle.subtract(img_glo, cap_glo_i), 2) sim_glo = l2norm(self.sim_tranglo_w(sim_glo), dim=-1) # concat the global and local alignments sim_emb = paddle.concat([sim_glo.unsqueeze(1), sim_loc], 1) # compute the final similarity vector if self.module_name == 'SGR': for i in range(len(self.SGR_module)): sim_emb = self.SGR_module[f'SGR_{i}'](sim_emb) sim_vec = sim_emb[:, 0, :] else: sim_vec = self.SAF_module(sim_emb) # compute the final similarity score sim_i = self.sigmoid(self.sim_eval_w(sim_vec)) sim_all.append(sim_i) # (n_image, n_caption) sim_all = paddle.concat(sim_all, 1) return sim_all def SCAN_attention(query, context, smooth, eps=1e-8): """ query: (n_context, queryL, d) context: (n_context, sourceL, d) """ # --> (batch, d, queryL) queryT = paddle.transpose(query, (0, 2, 1)) # (batch, sourceL, d)(batch, d, queryL) # --> (batch, sourceL, queryL) attn = paddle.bmm(context, queryT) attn = nn.LeakyReLU(0.1)(attn) attn = l2norm(attn, 2) # --> (batch, queryL, sourceL) attn = paddle.transpose(attn, (0, 2, 1)) # --> (batch, queryL, sourceL attn = F.softmax(attn*smooth, axis=2) # --> (batch, sourceL, queryL) attnT = paddle.transpose(attn, (0, 2, 1)) # --> (batch, d, sourceL) contextT = paddle.transpose(context, (0, 2, 1)) # (batch x d x sourceL)(batch x sourceL x queryL) # --> (batch, d, queryL) weightedContext = paddle.bmm(contextT, attnT) # --> (batch, queryL, d) weightedContext = paddle.transpose(weightedContext, (0, 2, 1)) weightedContext = l2norm(weightedContext, dim=-1) return weightedContext class SGRAF(nn.Layer): """ Similarity Reasoning and Filtration (SGRAF) Network """ def __init__(self, model_name, module_name, sgr_step, embed_size, sim_dim, vocab_size, word_dim, num_layers, image_dim, margin, max_violation, use_bi_gru=True, image_norm=True, text_norm=True, **kwargs): super(SGRAF, self).__init__() self.img_enc = EncoderImage(model_name, image_dim, embed_size, image_norm) self.txt_enc = EncoderText(model_name, vocab_size, word_dim, embed_size, num_layers, use_bi_gru=use_bi_gru, text_norm=text_norm) self.sim_enc = EncoderSimilarity(embed_size, sim_dim, module_name, sgr_step) self.criterion = ContrastiveLoss(margin=margin, max_violation=max_violation) def forward_emb(self, batch): images = batch['image_feat'] captions = batch['text_token'] lengths = batch['text_len'] img_embs = self.img_enc(images) cap_embs = self.txt_enc(captions, lengths) return img_embs, cap_embs, lengths def forward_sim(self, batch): img_embs, cap_embs, cap_lens = batch sims = self.sim_enc(img_embs, cap_embs, cap_lens) return sims def forward(self, batch): images = batch['image_feat'] captions = batch['text_token'] lengths = batch['text_len'] img_embs = self.img_enc(images) cap_embs = self.txt_enc(captions, lengths) sims = self.sim_enc(img_embs, cap_embs, lengths) loss = self.criterion(sims) return loss @staticmethod def cal_sim(model, img_embs, cap_embs, cap_lens, **kwargs): shard_size = kwargs.get('shard_size', 100) n_im_shard = (len(img_embs) - 1) // shard_size + 1 n_cap_shard = (len(cap_embs) - 1) // shard_size + 1 sims = np.zeros((len(img_embs), len(cap_embs))) for i in range(n_im_shard): im_start, im_end = shard_size * i, min(shard_size * (i + 1), len(img_embs)) for j in range(n_cap_shard): ca_start, ca_end = shard_size * j, min(shard_size * (j + 1), len(cap_embs)) with paddle.no_grad(): im = paddle.to_tensor(img_embs[im_start:im_end], dtype='float32') ca = paddle.to_tensor(cap_embs[ca_start:ca_end], dtype='float32') l = paddle.to_tensor(cap_lens[ca_start:ca_end], dtype='int64') sim = model.forward_sim((im, ca, l)) sims[im_start:im_end, ca_start:ca_end] =
np.array(sim)
numpy.array
#!/usr/bin/env python ## Copyright (c) 2009, <NAME> ## Original Matlab version of GC2D, <NAME> ## GC2D first converted to Python/NumPy in 2009 by <NAME> ################################################################ # NOTE: TopoFlow can provide "mass balance" for GC2D, but # the timescales are very different. TopoFlow should # pass some kind of "net" or cumulative "mass balance" # to GC2D at its large timestep. # # NOTE: There is no "load_mask()" function yet, but it is # called in a "try" block. # # NOTE: THERMAL_TOGGLE option does not work yet. # See notes below regarding undefined vars. # # NOTE: Should carefully test update_vars() due to # a bug fix and other changes to the code. # Compare to update_vars_OLD(). # # NOTE: Check that all "numpy" function calls include "numpy.". # Fixed calls to "mean()", "nonzero()", "ravel()", # abs() vs. absolute(), max(A,B) vs. maximum(A,B), etc. # ################################################################ import numpy import time import sys import logging # import getopt import scipy # scipy.signal.convolve, scipy.io.loadmat from scipy import interpolate from scipy import signal # SDP. 10/24/11. No longer available. Deprecated? # from scipy.io.numpyio import fwrite # used by print_watch_point() #-------------------------------------------------------------------------------------------------- # run_model() # (for testing) # ------------------------------ # Classes (used as structures) # ------------------------------ # MassBalance # BoundaryCond # Parameters # InputParams # OutputParams # Toggles # # ----------- # Functions # ----------- # compress_grid() # filter2d() # add_halo() # set_bc() # difference_grid() # basal_shear_stress() # iceflow() # ice_sliding() # sum_ice_motion() # avalanche() # calve() # mass_balance() # mass_conservation() # load_dem() # load_dem_var() # load_mask() ###### Not written, but called. ##### # get_timestep() # update_vars() # print_watch_point() # update() # init_valley_glacier() # init_ice_sheet() # resample_dem() # init_ice_surface() # load_state() # #### load_state_old() # #### run_for() #-------------------------------------------------------------------------------------------------- def run_model(t_max=10.0, DEM_file='Animas_200.mat', SILENT=False): Toggles.VARIABLE_DT_TOGGLE = 0 # (or change to 1) ################################### print('Starting GC2D test run...') print('Reading input file...') ( H, Zb, Zi, dx, dy ) = load_state(DEM_file=DEM_file, RESTART_TOGGLE = 0, INIT_COND_TOGGLE=1 ) ny, nx = Zb.shape #------------------ # Initialize vars #------------------ t = numpy.float64(0) conserveIce = numpy.float64(0) # (total ice mass ??) meltrate = numpy.zeros( (ny, nx), dtype='float64' ) ## fd_watch = {} ## fd_watch['thick'] = open( 'thickness_py.bin' , 'wb' ) ## counter = 0 while (t < t_max): (dt, t, H, Zi, meltrate, conserveIce) = update( t, H, Zb, dx, dy, meltrate, conserveIce, SILENT=SILENT) ## COMPRESS_TOGGLE = Toggles.COMPRESS_TOGGLE, ## ICEFLOW_TOGGLE = Toggles.ICEFLOW_TOGGLE, ## ICESLIDE_TOGGLE = Toggles.ICESLIDE_TOGGLE, ## VARIABLE_DT_TOGGLE = Toggles.VARIABLE_DT_TOGGLE, ## dtDefault=Parameters.dtDefault, ## dtMax=Parameters.dtMax) #----------------------- # Print a short report #----------------------- print(' ') print('(nx, ny) =', nx, ny) print('(dx, dy) =', dx, dy) print('(Hmin, Hmax) =', H.min(), H.max()) print('(Zbmin, Zbmax) =', Zb.min(), Zb.max()) print('(Zimin, Zimax) =', Zi.min(), Zi.max()) print('(MRmin, MRmax) =', meltrate.min(), meltrate.max()) print('conserveIce =', conserveIce) print('Finished.') print(' ') # run_model() #-------------------------------------------------------------------------------------------------- class MassBalance: # (enumeration) ( BAD_VAL , ZERO_BALANCE , CONSTANT_ELA , ELA_LOWERING , ELA_TIME_SERIES , EXTERNAL_FUNC , ELA_LOWERING2 , BALANCE_FILE , D180_TIME_SERIES ) = list(range( 9)) # class MassBalance #-------------------------------------------------------------------------------------------------- class BoundaryCond: # (enumeration) ( BAD_VAL , ICE_FREE_BOUND , ZERO_FLUX_BOUND , CONST_FLUX_BOUND , SURF_ELEV_BOUND , SURF_SLOPE_BOUND ) = list(range( 6)) # class BoundaryCond #-------------------------------------------------------------------------------------------------- class Parameters: # (structure) # Constants g = numpy.float64(9.81) # gravitional acceleration [m/s**2] rhoI = numpy.float64(917) # density of ice [kg/m**3] rhoW = numpy.float64(1000) # density of water [kg/m**3] day = numpy.float64(0.00274) # length of a day in years [years] # Time t = numpy.float64(0) # set time to zero tMax = numpy.float64(100000) # maximum simulation time in years dtMax = numpy.float64(0.4 * 365*day) # maximum timestep in years dtDefault = dtMax # timestep if VARIABLE_DT_TOGGLE==0 sec_per_year = numpy.float64(3600) * 24 * 365 # (SDP, 9/30/09) # Glacier Properties MinGlacThick = numpy.float64(1) # Ice Deformation glensA = numpy.float64( (6.8e-15)*3.15e7/(1e9) ) # Patterson, 1994; MacGregor, 2000 ## glensA = numpy.float64( 6.8 * 3.15 * 1e-17) # Attractor Sliding -- only if ICESLIDE_TOGGLE==1 (generally used) UsChar = numpy.float64(10) taubChar = numpy.float64(100000) # Standard Sliding -- used if ICESLIDE_TOGGLE==2 (generally not used) B = numpy.float64(0.0012) # m/(Pa*yr) -- MacGregor, 2000 DepthToWaterTable = numpy.float64(20) # distance from ice surface to water table MaxFloatFraction = numpy.float64(80) # limits water level in ice Hpeff = numpy.float64(20) # effective pressure (meters of water) # Mass Balance initELA = numpy.float64(3350) # (valley glaciers, try 3500 ice sheets) ELAStepSize = numpy.float64(-50) ELAStepInterval = numpy.float64(500) gradBz = numpy.float64(0.01) maxBz = numpy.float64(2) tmin = numpy.float64(200) # Years, spin-up time # Avalanching angleOfRepose = numpy.float64(30) avalanchFreq = numpy.float64(3) # average number per year # Calving seaLevel = numpy.float64(-100) # meters calvingCoef = numpy.float64(2) # year^-1 # Thermal c = numpy.float64(2060) # specific heat capacity (J/(kg*K)) Qg = numpy.float64(0.05 * 3.15e7) # Geothermal heat flux (W/m^2)*seconds/year = (J/year)/(m^2) gradTz = numpy.float64(-0.0255) # Geothermal Gradient # Only for Ice Sheets ??? Hbound = numpy.float64(2000) Elev0 = numpy.float64(0) # reference elevation To = numpy.float64(2.6) # temperature at Elev0 lapseRate = numpy.float64(-0.0065) # degrees per meter # class Parameters #-------------------------------------------------------------------------------------------------- class InputParams: # (structure) CLEAR_FIGURE = 1 CONTOUR_INTERVAL = 50. DEBUG_TOGGLE = 0 DT_LIMIT = 0 ELA_CONTOUR = 1. ICE_CONTOUR = 1. NEW_FIGURE = 0 QUIVER_VECS = 0 RECONSTRUCT = 0 SUBFIGURE = 0 THERMAL_CONTOUR = 0 # class InputParams #-------------------------------------------------------------------------------------------------- class OutputParams: # (structure) plotInterval = 60 * 120 # seconds saveInterval = 100 # whole years reportInterval = 30 # seconds nextPlot = 0 # initialize to plot on first timestep nextSave = 0 # initialize to save on first timestep nextReport = 0 # initialize to report on first timestep outputFile = 'savetmp' # class OutputParams #-------------------------------------------------------------------------------------------------- class Toggles: # (structure) #------------------------ # Code behavior toggles #----------------------------------------------------------- # Toggle or turn on/off segments of the code or select # between multiple possibilities for a given process. # Values can be reset in INIT_COND segment. # Note that many of these are unused in current version. #----------------------------------------------------------- GUISTART_TOGGLE = 0 # started simulation with the gui (off|on) SAVE_TOGGLE = 1 # saving (off|on) PLOT_TOGGLE = 1 # plotting (off|on) REPORT_TOGGLE = 1 # reporting (off|on) COMPRESS_TOGGLE = 0 # only simulate area with ice (off|on) VARIABLE_DT_TOGGLE = 0 # state dependent time step (off|on) INIT_COND_TOGGLE = 1 # load DEM and climate (synth|valley|sheet) GENERIC_ICE_TOGGLE = 0 # start with generic ice surface (off|on) ICEFLOW_TOGGLE = 1 # ice motion by deformation (off|on) ICESLIDE_TOGGLE = 0 # ice motion by sliding (off|on|select) THERMAL_TOGGLE = 0 # temp dependance of flow (off|on) FREEZEON_TOGGLE = 0 # basal ice freeze to bed (off|on) AVALANCHE_TOGGLE = 0 # avalanche off steep surfaces (off|on) CALVING_TOGGLE = 0 # calving front (off|on) ERODE_TOGGLE = 0 # erode the bed (off|on|select) ## CRN_TOGGLE = 0 # CRN accumulation (off|on) # MASS_BALANCE_TOGGLE = MassBalance.ELA_LOWERING # select climate scenerio (off|on|select) MASS_BALANCE_TOGGLE = MassBalance.CONSTANT_ELA # select climate scenerio (off|on|select) WEST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) EAST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) SOUTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) NORTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) # class Toggles #-------------------------------------------------------------------------------------------------- #-------------------------------------------------------------------------------------------------- def compress_grid( H , Zb , COMPRESS_TOGGLE=False , RESTART_TOGGLE=0, THERMAL_TOGGLE=False ): # COMPRESS - ONLY SIMULATE SUB-RECTANGLE THAT CONTAINS ICE if (COMPRESS_TOGGLE) and (H.max() > 1) and (RESTART_TOGGLE != 2): H_FullSpace = H.copy() Zb_FullSpace = Zb.copy() if (THERMAL_TOGGLE): Ts_FullSpace = Ts.copy() Tb_FullSpace = Tb.copy() Tm_FullSpace = Tm.copy() #[indrw,indcl] = find(H ~= 0); indrw, indcl = numpy.where( H != 0 ) mxrw, mxcl = Zb.shape mnrw = max( 0 , min(indrw) - 2 ) mxrw = min( mxrw , max(indrw) + 2 ) mncl = max( 0 , min(indcl) - 2 ) mxcl = min( mxcl , max(indcl) + 2 ) H = H [ mnrw:mxrw , mncl:mxcl ] Zb = Zb[ mnrw:mxrw , mncl:mxcl ] ## Zi = Zb + max( H, 0 ) ## Zi = Zb + numpy.choose( H<0 , (H,0) ) Zi = Zb + numpy.maximum(H, 0) if (THERMAL_TOGGLE): Ts = Ts[ mnrw:mxrw , mncl:mxcl ] Tb = Tb[ mnrw:mxrw , mncl:mxcl ] Tm = Tm[ mnrw:mxrw , mncl:mxcl ] ny, nx = H.shape mx_ny, mx_nx = Zb_FullSpace.shape ny, nx = Zb.shape compression_ratio = (mx_nx * mx_ny) / (nx * ny) COMPRESSED_FLAG = 1 else: ## Zi = Zb + max( H, 0 ) # included for restarts ## Zi = Zb + numpy.choose( H<0 , (H,0) ) Zi = Zb + numpy.maximum(H, 0) compression_ratio = 1. COMPRESSED_FLAG = 0 return ( Zi , compression_ratio , COMPRESSED_FLAG ) # compress_grid() #-------------------------------------------------------------------------------------------------- def filter2d( b , x , shape='same' ): return scipy.signal.convolve( b , x , mode=shape ) # filter2d() #-------------------------------------------------------------------------------------------------- def add_halo( x ): x_ext = numpy.concatenate( ( x[:,0,numpy.newaxis] , x , x[:,-1,numpy.newaxis] ) , axis=1 ) x_ext = numpy.concatenate( ( [x_ext[0,:]] , x_ext , [x_ext[-1,:]] ) ) return x_ext # add_halo() #-------------------------------------------------------------------------------------------------- def set_bc( H , Zb , Zi , THERMAL_TOGGLE = Toggles.THERMAL_TOGGLE, WEST_BC_TOGGLE = Toggles.WEST_BC_TOGGLE, EAST_BC_TOGGLE = Toggles.EAST_BC_TOGGLE, SOUTH_BC_TOGGLE = Toggles.SOUTH_BC_TOGGLE, NORTH_BC_TOGGLE = Toggles.NORTH_BC_TOGGLE ): ## WEST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND , ## EAST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND , ## SOUTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND , ## NORTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND ): #------------------------------------------------------- # MODIFY BOUNDARY CELLS TO ENFORCE BOUNDARY CONDITIONS #------------------------------------------------------- # DEFAULT BOUNDARY CONDITION IS ZERO FLUX #------------------------------------------------------- H_ext = add_halo( H ) Zb_ext = add_halo( Zb ) Zi_ext = add_halo( Zi ) if (THERMAL_TOGGLE): Ts_ext = add_halo( Ts ) Tb_ext = add_halo( Tb ) Tm_ext = add_halo( Tm ) # WESTERN BOUNDARY CONDITION if WEST_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[:,0]) + Hbound H_ext[:,0] = ZiBound - Zb_ext[:,0] elif WEST_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif WEST_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[:,0] = 2*Zi_ext[:,1] - Zi_ext[:,2] H_ext [:,0] = Zi_ext[:,0] - Zb_ext[:,0] H_ext [:,0] = numpy.maximum( H_ext[:,0], 0 ) elif WEST_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[:,0] = 0 # EASTERN BOUNDARY CONDITION if EAST_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[:,-1]) + Hbound H_ext[:,-1] = ZiBound - Zb_ext[:,-1] elif EAST_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif EAST_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[:,-1] = 2*Zi_ext[:,-2] - Zi_ext[:,-3] H_ext [:,-1] = Zi_ext[:,-1] - Zb_ext[:,-1] H_ext [:,-1] = numpy.maximum( H_ext[:,-1], 0) elif EAST_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[:,-1] = 0 # SOUTHERN BOUNDARY CONDITION if SOUTH_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[0,:]) + Hbound H_ext[0,:] = ZiBound - Zb_ext[0,:] elif SOUTH_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif SOUTH_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[0,:] = 2*Zi_ext[1,:] - Zi_ext[2,:] H_ext [0,:] = Zi_ext[0,:] - Zb_ext[0,:] H_ext [0,:] = numpy.maximum( H_ext[0,:], 0 ) elif SOUTH_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[0,:] = 0 # NORTHERN BOUNDARY CONDITION if NORTH_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[-1,:]) + Hbound H_ext[-1,:] = ZiBound - Zb_ext[-1,:] elif NORTH_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif NORTH_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[-1,:] = 2*Zi_ext[-2,:] - Zi_ext[-3,:] H_ext [-1,:] = Zi_ext[-1,:] - Zb_ext[-1,:] H_ext [-1,:] = numpy.maximum( H_ext[-1,:], 0 ) elif NORTH_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[-1,:] = 0 Zi_ext = Zb_ext + H_ext return ( H_ext , Zb_ext , Zi_ext ) # set_bc() #-------------------------------------------------------------------------------------------------- def difference_grid( A , dx , dy ): dAdx_ext = ( A[:,1:] - A[:,:-1] ) / dx dAdy_ext = ( A[1:,:] - A[:-1,:] ) / dy dAdx = dAdx_ext[1:-1,:] dAdy = dAdy_ext[:,1:-1] return ( dAdx , dAdy ) # difference_grid() #-------------------------------------------------------------------------------------------------- #-------------------------------------------------------------------------------------------------- def basal_shear_stress( H_ext , Zi_ext , dx=1. , dy=1. , g=Parameters.g , rhoI=Parameters.rhoI ): #------------------------------------ # CALCULATE THE BASAL SHEAR STRESS #------------------------------------ # forward differences (could use difference_grid()) dZidxX_ext = ( Zi_ext[:,1:] - Zi_ext[:,:-1] ) / dx dZidyY_ext = ( Zi_ext[1:,:] - Zi_ext[:-1,:] ) / dy dZidxX = dZidxX_ext[1:-1,:] dZidyY = dZidyY_ext[:,1:-1] HX_ext = ( H_ext[:,1:] + H_ext[:,:-1] ) / 2. HY_ext = ( H_ext[1:,:] + H_ext[:-1,:] ) / 2. HX = HX_ext[1:-1,:] HY = HY_ext[:,1:-1] taubxX_ext = -rhoI * g * HX_ext * dZidxX_ext taubyY_ext = -rhoI * g * HY_ext * dZidyY_ext taubxX = taubxX_ext[1:-1,:] taubyY = taubyY_ext[:,1:-1] taubxY = ( taubxX_ext[:-1,:-1] + taubxX_ext[:-1,1:] + taubxX_ext[1: ,:-1] + taubxX_ext[1: ,1:] ) / 4. taubyX = ( taubyY_ext[:-1,:-1] + taubyY_ext[:-1,1:] + taubyY_ext[1: ,:-1] + taubyY_ext[1: ,1:] ) / 4. taubX = numpy.sqrt( taubxX**2 + taubyX**2 ) taubY = numpy.sqrt( taubxY**2 + taubyY**2 ) taubX = numpy.choose( HX>0 , (0,taubX) ) taubY = numpy.choose( HY>0 , (0,taubY) ) # Fill in zero values with 1 for use in division xcmpnt = numpy.choose( numpy.abs(taubX)<1e-5 , ( taubxX / taubX , 0. ) ) ycmpnt = numpy.choose( numpy.abs(taubY)<1e-5 , ( taubyY / taubY , 0. ) ) return ( ( xcmpnt , ycmpnt ) , ( taubX , taubY ) , ( HX , HY ) ) # basal_shear_stress() #-------------------------------------------------------------------------------------------------- def iceflow( taubX , taubY , HX , HY , xcmpnt , ycmpnt , THERMAL_TOGGLE = Toggles.THERMAL_TOGGLE, ## THERMAL_TOGGLE=False, glensA = Parameters.glensA, #---------------------------------------------- # Remaining values for THERMAL_TOGGLE = True #---------------------------------------------- MinGlacThick = Parameters.MinGlacThick, lapseRate = Parameters.lapseRate ): # (value for ice sheets ???) ## MinGlacThick = 1.0, ## lapseRate = numpy.float64(-0.0065)): # (value for ice sheets ???) #-------------------------------------------- # CALCULATE ICE VELOCITY DUE TO DEFORMATION #-------------------------------------------- if (THERMAL_TOGGLE): ################################################################## # NOTE! Many of the vars needed by this segment are undefined, # such as: lapseRate (added above), eHs, eTs, eTm, To, # H_ext, Ts_ext and Tm_ext. (SDP, 9/21/09) ################################################################## A_ext = numpy.zeros(H_ext.shape , dtype='float64' ) ind = numpy.nonzero( numpy.ravel(H_ext) >= MinGlacThick ) Ts_ext = To + lapseRate*( Zi_ext - Elev0 ) #A_ext(ind) = interp3( eHs, eTs, eTm, eA, H_ext(ind), Ts_ext(ind), Tm_ext(ind) ) ; try: numpy.put( A_ext , ind , interpolate.interp3d( eHs , eTs , eTm )( numpy.take(H_ext,ind) , numpy.take(Ts_ext,ind) , numpy.take(Tm_ext,ind) ) ) except: logging.error( "NaN in A, likely H_node exceeds H_glens limits" ) return -1 AX = ( A_ext[1:-1, :-1] + A_ext[1:-1,1: ] ) / 2. AY = ( A_ext[ :-1,1:-1] + A_ext[1: ,1:-1] ) / 2. else: AX = glensA AY = glensA # Here's the guts of calculating the depth averaged velocity UdxX = numpy.abs( .4 * AX * taubX*taubX*taubX * HX ) * xcmpnt UdyY = numpy.abs( .4 * AY * taubY*taubY*taubY * HY ) * ycmpnt #UdxX = numpy.fix(UdxX*1e6)*1e-6 #UdyY = numpy.fix(UdyY*1e6)*1e-6 return ( UdxX , UdyY ) # iceflow() #-------------------------------------------------------------------------------------------------- def ice_sliding( taubX , taubY , xcmpnt , ycmpnt , THERMAL_TOGGLE=False, FREEZEON_TOGGLE=False, UsChar=Parameters.UsChar, taubChar=Parameters.taubChar ): #------------------------------ # CALCULATE SLIDING VELOCITY #------------------------------ # Here's the guts of calculating the sliding velocity UsxX = numpy.choose( numpy.abs(taubX)<1e-5 , ( UsChar * numpy.exp(1 - taubChar / taubX) * xcmpnt , UsChar * numpy.exp(1 - taubChar ) * xcmpnt ) ) UsyY = numpy.choose( numpy.abs(taubY)<1e-5 , ( UsChar * numpy.exp(1 - taubChar / taubY) * ycmpnt , UsChar * numpy.exp(1 - taubChar ) * ycmpnt ) ) if (THERMAL_TOGGLE and FREEZEON_TOGGLE): ################################################################## # NOTE! Many of the vars needed by this segment are undefined, # such as: Tb_ext, Zb_ext, seaLevel. (SDP, 9/21/09) ################################################################## ## notFrozen = (Tb_ext > -.5) or (Zb_ext < seaLevel) notFrozen = numpy.logical_or( Tb_ext > -0.5, Zb_ext < seaLevel ) notFrozenX = ( notFrozen[1:-1, :-1] + notFrozen[1:-1,1: ] ) / 2. notFrozenY = ( notFrozen[ :-1,1:-1] + notFrozen[1: ,1:-1] ) / 2. UsxX *= notFrozenX UsyY *= notFrozenY return ( UsxX , UsyY ) # ice_sliding() #-------------------------------------------------------------------------------------------------- def sum_ice_motion( UdxX , UdyY , UsxX , UsyY ): UxX = (UdxX + UsxX) UyY = (UdyY + UsyY) return ( UxX , UyY ) # sum_ice_motion() #-------------------------------------------------------------------------------------------------- def avalanche( H , angleOfRepose=Parameters.angleOfRepose ): #--------------------------------------- # AVALANCHE SNOW OFF OF STEEP SURFACES #--------------------------------------------------------- # move ice downslope until the ice surface is everywhere # less then or near the angle of repose #--------------------------------------------------------- ny, nx = Zb.shape dHRepose = dx *
numpy.tan(angleOfRepose * numpy.pi / 180.)
numpy.tan
from typing import List, Any import numpy as np from monai.data import NibabelReader import matplotlib.pyplot as plt from numpy import ndarray from pathlib import Path import seaborn as sns from monai.transforms import apply_transform from utils.transforms import get_modality_img_transforms plt.rcParams["figure.figsize"] = (8.0, 12.0) PATH = Path("/home/jq/Desktop/rUnet/data/BraTS") def plot_slices( processed_preds: List[ndarray], processed_targets: List[ndarray], clip_min: float, clip_max: float, ) -> Any: fig: plt.Figure axes: plt.Axes fig, axes = plt.subplots(nrows=len(processed_preds), ncols=2) maes, maes_255, masked_maes, masked_255_maes = [], [], [], [] max_value = 0 min_value = 255 for i, (pred, targ) in enumerate(zip(processed_preds, processed_targets)): mask = targ == 0 pred_255 = np.clip(pred, -clip_min, clip_max) targ_255 = np.clip(targ, -clip_min, clip_max) min_pred = min(-clip_min, np.min(pred)) min_targ = min(-clip_min, np.min(targ)) pred_255 = np.floor(255 * ((pred_255 - min_pred) / (clip_max - min_pred))) targ_255 = np.floor(255 * ((targ_255 - min_targ) / (clip_max - min_targ))) max_value = max(max(max_value, np.max(pred_255)), np.max(targ_255)) min_value = min(min(min_value, np.min(pred_255)), np.min(targ_255)) pred_255[mask] = 0 targ_255[mask] = 0 mae_255 = np.mean(np.abs(pred_255.ravel() - targ_255.ravel())) mae = np.mean(np.abs(pred.ravel() - targ.ravel())) masked_mae = np.mean(np.abs(pred[~mask].ravel() - targ[~mask].ravel())) masked_255_mae = np.mean(np.abs(pred_255[~mask].ravel() - targ_255[~mask].ravel())) maes.append(mae) maes_255.append(mae_255) masked_maes.append(masked_mae) masked_255_maes.append(masked_255_mae) mae_str = "{:1.2f}".format(float(np.round(mae, 2))) mae_255_str = "{:1.2f}".format(float(np.round(mae_255, 2))) mask_str = "{:1.2f}".format(float(np.round(masked_mae, 2))) mask_255_str = "{:1.2f}".format(float(np.round(masked_255_mae, 2))) axes[i][0].imshow(pred_255, cmap="Greys") axes[i][0].set_title( f"Predicted (MAE={mae_str}, MAE_255={mae_255_str}\n masked: (MAE={mask_str}, MAE_255={mask_255_str})" f"clip_max: {clip_max}, clip_min: {clip_min}", {"fontsize": 6}, ) axes[i][1].imshow(targ_255, cmap="Greys") axes[i][1].set_title("Target", {"fontsize": 8}) mae_clean = "{:1.2f}".format(float(np.round(np.mean(maes), 2))) mae_255_clean = "{:1.2f}".format(float(np.round(np.mean(maes_255), 2))) mask_clean = "{:1.2f}".format(float(np.round(np.mean(masked_maes), 2))) mask_255_clean = "{:1.2f}".format(float(np.round(
np.mean(masked_255_maes)
numpy.mean
#[2020]-"A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection" import numpy as np from numpy.random import rand from FS.functionHO import Fun def init_position(lb, ub, N, dim): X = np.zeros([N, dim], dtype='float') for i in range(N): for d in range(dim): X[i,d] = lb[0,d] + (ub[0,d] - lb[0,d]) * rand() return X def binary_conversion(X, thres, N, dim): Xbin = np.zeros([N, dim], dtype='int') for i in range(N): for d in range(dim): if X[i,d] > thres: Xbin[i,d] = 1 else: Xbin[i,d] = 0 return Xbin def boundary(x, lb, ub): if x < lb: x = lb if x > ub: x = ub return x #--- transfer function update binary position (4.3.2) def transfer_function(x): Xs = abs(np.tanh(x)) return Xs def jfs(xtrain, ytrain, opts): # Parameters ub = 1 lb = 0 thres = 0.5 Mp = 0.5 # mutation probability N = opts['N'] max_iter = opts['T'] if 'Mp' in opts: Mp = opts['Mp'] # Dimension dim = np.size(xtrain, 1) if np.size(lb) == 1: ub = ub * np.ones([1, dim], dtype='float') lb = lb * np.ones([1, dim], dtype='float') # Initialize position X = init_position(lb, ub, N, dim) #--- Binary conversion X = binary_conversion(X, thres, N, dim) # Fitness at first iteration fit = np.zeros([N, 1], dtype='float') Xalpha = np.zeros([1, dim], dtype='int') Xbeta = np.zeros([1, dim], dtype='int') Xdelta = np.zeros([1, dim], dtype='int') Falpha = float('inf') Fbeta = float('inf') Fdelta = float('inf') for i in range(N): fit[i,0] = Fun(xtrain, ytrain, X[i,:], opts) if fit[i,0] < Falpha: Xalpha[0,:] = X[i,:] Falpha = fit[i,0] if fit[i,0] < Fbeta and fit[i,0] > Falpha: Xbeta[0,:] = X[i,:] Fbeta = fit[i,0] if fit[i,0] < Fdelta and fit[i,0] > Fbeta and fit[i,0] > Falpha: Xdelta[0,:] = X[i,:] Fdelta = fit[i,0] # Pre curve = np.zeros([1, max_iter], dtype='float') t = 0 curve[0,t] = Falpha.copy() print("Iteration:", t + 1) print("Best (TMGWO):", curve[0,t]) t += 1 while t < max_iter: # Coefficient decreases linearly from 2 to 0 (3.5) a = 2 - t * (2 / max_iter) for i in range(N): for d in range(dim): # Parameter C (3.4) C1 = 2 * rand() C2 = 2 * rand() C3 = 2 * rand() # Compute Dalpha, Dbeta & Ddelta (3.7 - 3.9) Dalpha = abs(C1 * Xalpha[0,d] - X[i,d]) Dbeta = abs(C2 * Xbeta[0,d] - X[i,d]) Ddelta = abs(C3 * Xdelta[0,d] - X[i,d]) # Parameter A (3.3) A1 = 2 * a * rand() - a A2 = 2 * a * rand() - a A3 = 2 * a * rand() - a # Compute X1, X2 & X3 (3.7 -3.9) X1 = Xalpha[0,d] - A1 * Dalpha X2 = Xbeta[0,d] - A2 * Dbeta X3 = Xdelta[0,d] - A3 * Ddelta # Update wolf (3.6) Xn = (X1 + X2 + X3) / 3 #--- transfer function Xs = transfer_function(Xn) #--- update position (4.3.2) if rand() < Xs: X[i,d] = 0 else: X[i,d] = 1 # Fitness for i in range(N): fit[i,0] = Fun(xtrain, ytrain, X[i,:], opts) if fit[i,0] < Falpha: Xalpha[0,:] = X[i,:] Falpha = fit[i,0] if fit[i,0] < Fbeta and fit[i,0] > Falpha: Xbeta[0,:] = X[i,:] Fbeta = fit[i,0] if fit[i,0] < Fdelta and fit[i,0] > Fbeta and fit[i,0] > Falpha: Xdelta[0,:] = X[i,:] Fdelta = fit[i,0] curve[0,t] = Falpha.copy() print("Iteration:", t + 1) print("Best (TMGWO):", curve[0,t]) t += 1 #--- two phase mutation: first phase # find index of 1 idx = np.where(Xalpha == 1) idx1 = idx[1] Xmut1 =
np.zeros([1, dim], dtype='int')
numpy.zeros
#!/usr/bin/env python3 import numpy as np import argparse from scipy.integrate import odeint as integrate from matplotlib import pyplot as plot from numpy.linalg import norm from mpl_toolkits.mplot3d import Axes3D parser = argparse.ArgumentParser() # Ball parameters constants = parser.add_argument_group("Constants") constants.add_argument("-m", "--mass", default=0.04593, help="Mass of ball (kg)") constants.add_argument("-r", "--radius", default=0.04267/2, help="Radius of ball (m)") constants.add_argument("-i", "--inertia", type=float, default=9.145e-6, help="Inertia of golf ball") constants.add_argument("--clubmass", type=float, default=0.2, help="Mass of club head (kg)") constants.add_argument("-g", "--gravity", type=float, default=9.81, help="For when we get a Mars base (m/s/s)") constants.add_argument("-d", "--density", type=float, default=1.225, help="Density of air (kg m^-3)") constants.add_argument("--viscosity", type=float, default=1.46e-5, help="Kinematic viscosity of air") # Initial parameters initialparams = parser.add_argument_group("Initial parameters") initialparams.add_argument("-yi", "--height", type=float, default=0, help="Initial height (m)") initialparams.add_argument("--vclub", type=float, default=51.4, help="Club speed (m/s)") # Loft angle loftangleparams = parser.add_argument_group("Loft angle parameters") loftangleparams.add_argument("-li", "--loftinitial", type=float, default=10, help="Loft angle (initial)") loftangleparams.add_argument("-lf", "--loftfinal", type=float, default=35, help="Loft angle (final)") loftangleparams.add_argument("-st", "--step", type=float, default=5, help="Loft angle (step)") # Debugging parser.add_argument("-v", "--verbose", action="store_true") # Parse args args = parser.parse_args() # Input validation assert args.loftfinal > args.loftinitial, "Final loft angle must be gretaer than initial loft angle!" assert args.step != 0, "Step must be non-zero!" assert ((args.loftfinal - args.loftinitial) / args.step).is_integer(), "Step size must divide the change in loft angle!" assert args.mass != 0, "Mass must be non-zero." assert args.radius != 0, "Radius must be non-zero." assert args.viscosity != 0, "Kinematic viscosity must be non-zero." assert args.density != 0, "Density of air must be non-zero." g = args.gravity density = args.density # Ball speed from club speed and loft angle def ball_speed(theta): theta = np.radians(theta) e = 0.86 - 0.0029 * args.vclub * np.cos(theta) bfn = (1 + e) * args.vclub * np.cos(theta) / (1 + args.mass / args.clubmass) bfp = args.vclub * np.sin(theta) / (1 + args.mass / args.clubmass + (args.mass * args.radius**2 / args.inertia)) return np.sqrt(bfn**2 + bfp**2) # Spin def ball_spin(theta): theta =
np.radians(theta)
numpy.radians
# add LDDMM shooting code into path import sys sys.path.append('../vectormomentum/Code/Python'); sys.path.append('../library') from subprocess import call import argparse import os.path #Add deep learning related libraries from collections import Counter import torch import prediction_network import util import numpy as np from skimage import exposure #Add LDDMM registration related libraries # pyca modules import PyCA.Core as ca import PyCA.Common as common #import PyCA.Display as display # vector momentum modules # others import logging import copy import math import registration_methods #parse command line input parser = argparse.ArgumentParser(description='Deformation prediction given set of moving and target images.') requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument('--moving-image', nargs='+', required=True, metavar=('m1', 'm2, m3...'), help='List of moving images, seperated by space.') requiredNamed.add_argument('--target-image', nargs='+', required=True, metavar=('t1', 't2, t3...'), help='List of target images, seperated by space.') requiredNamed.add_argument('--output-prefix', nargs='+', required=True, metavar=('o1', 'o2, o3...'), help='List of registration output prefixes for every moving/target image pair, seperated by space. Preferred to be a directory (e.g. /some_path/output_dir/)') parser.add_argument('--samples', type=int, default=50, metavar='N', help='number of times to sample the network (default: 64)') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for prediction network (default: 64)') parser.add_argument('--n-GPU', type=int, default=1, metavar='N', help='number of GPUs used for prediction (default: 1). For maximum efficiency please set the batch size divisible by the number of GPUs.') parser.add_argument('--use-CPU-for-shooting', action='store_true', default=False, help='Use CPU for geodesic shooting. Slow, but saves GPU memory.') parser.add_argument('--shoot-steps', type=int, default=0, metavar='N', help='time steps for geodesic shooting. Ignore this option to use the default step size used by the registration model.') parser.add_argument('--affine-align', action='store_true', default=False, help='Perform affine registration to align moving and target images to ICBM152 atlas space. Require niftireg.') parser.add_argument('--histeq', action='store_true', default=False, help='Perform histogram equalization to the moving and target images.') parser.add_argument('--atlas', default="../data/atlas/icbm152.nii", help="Atlas to use for (affine) pre-registration") parser.add_argument('--prediction-parameter', default='../../network_configs/OASIS_predict_probabilistic.pth.tar', help="network parameters for the prediction network") args = parser.parse_args() # check validity of input arguments from command line def check_args(args): # number of input images/output prefix consistency check n_moving_images = len(args.moving_image) n_target_images = len(args.target_image) n_output_prefix = len(args.output_prefix) if (n_moving_images != n_target_images): print('The number of moving images is not consistent with the number of target images!') sys.exit(1) elif (n_moving_images != n_output_prefix ): print('The number of output prefix is not consistent with the number of input images!') sys.exit(1) # number of GPU check (positive integers) if (args.n_GPU <= 0): print('Number of GPUs must be positive!') sys.exit(1) # geodesic shooting step check (positive integers) if (args.shoot_steps < 0): print('Shooting steps (--shoot-steps) is negative. Using model default step.') # geodesic shooting step check (positive integers) if (args.samples < 1): print('Number of samples (--samples) is smaller than 1. Using model default step.') #enddef def create_net(args, network_config): net_single = prediction_network.net(network_config['network_feature']).cuda(); net_single.load_state_dict(network_config['state_dict']) if (args.n_GPU > 1) : device_ids=range(0, args.n_GPU) net = torch.nn.DataParallel(net_single, device_ids=device_ids).cuda() else: net = net_single net.train() return net; #enddef def preprocess_image(image_pyca, histeq): image_np = common.AsNPCopy(image_pyca) nan_mask = np.isnan(image_np) image_np[nan_mask] = 0 image_np /= np.amax(image_np) # perform histogram equalization if needed if histeq: image_np[image_np != 0] = exposure.equalize_hist(image_np[image_np != 0]) return image_np #perform deformation prediction def predict_image(args): if (args.use_CPU_for_shooting): mType = ca.MEM_HOST else: mType = ca.MEM_DEVICE # load the prediction network predict_network_config = torch.load(args.prediction_parameter) prediction_net = create_net(args, predict_network_config); batch_size = args.batch_size patch_size = predict_network_config['patch_size'] input_batch = torch.zeros(batch_size, 2, patch_size, patch_size, patch_size).cuda() # start prediction for i in range(0, len(args.moving_image)): common.Mkdir_p(os.path.dirname(args.output_prefix[i])) if (args.affine_align): # Perform affine registration to both moving and target image to the ICBM152 atlas space. # Registration is done using Niftireg. call(["reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas , "-flo", args.moving_image[i], "-res", args.output_prefix[i]+"moving_affine.nii", "-aff", args.output_prefix[i]+'moving_affine_transform.txt']) call(["reg_aladin", "-noSym", "-speeeeed" ,"-ref", args.atlas , "-flo", args.target_image[i], "-res", args.output_prefix[i]+"target_affine.nii", "-aff", args.output_prefix[i]+'target_affine_transform.txt']) moving_image = common.LoadITKImage(args.output_prefix[i]+"moving_affine.nii", mType) target_image = common.LoadITKImage(args.output_prefix[i]+"target_affine.nii", mType) else: moving_image = common.LoadITKImage(args.moving_image[i], mType) target_image = common.LoadITKImage(args.target_image[i], mType) #preprocessing of the image moving_image_np = preprocess_image(moving_image, args.histeq); target_image_np = preprocess_image(target_image, args.histeq); grid = moving_image.grid() moving_image_processed = common.ImFromNPArr(moving_image_np, mType) target_image_processed = common.ImFromNPArr(target_image_np, mType) moving_image.setGrid(grid) target_image.setGrid(grid) predict_transform_space = False if 'matlab_t7' in predict_network_config: predict_transform_space = True # run actual prediction prediction_result = util.predict_momentum(moving_image_np, target_image_np, input_batch, batch_size, patch_size, prediction_net, predict_transform_space); m0 = prediction_result['image_space'] m0_reg = common.FieldFromNPArr(prediction_result['image_space'], mType); registration_result = registration_methods.geodesic_shooting(moving_image_processed, target_image_processed, m0_reg, args.shoot_steps, mType, predict_network_config) phi = common.AsNPCopy(registration_result['phiinv']) phi_square = np.power(phi,2) for sample_iter in range(1, args.samples): print(sample_iter) prediction_result = util.predict_momentum(moving_image_np, target_image_np, input_batch, batch_size, patch_size, prediction_net, predict_transform_space); m0 += prediction_result['image_space'] m0_reg = common.FieldFromNPArr(prediction_result['image_space'], mType); registration_result = registration_methods.geodesic_shooting(moving_image_processed, target_image_processed, m0_reg, args.shoot_steps, mType, predict_network_config) phi += common.AsNPCopy(registration_result['phiinv']) phi_square += np.power(common.AsNPCopy(registration_result['phiinv']),2) m0_mean = np.divide(m0, args.samples); m0_reg = common.FieldFromNPArr(m0_mean, mType); registration_result = registration_methods.geodesic_shooting(moving_image_processed, target_image_processed, m0_reg, args.shoot_steps, mType, predict_network_config) phi_mean = registration_result['phiinv'] phi_var =
np.divide(phi_square, args.samples)
numpy.divide
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os, json import games import time import utils.miscellaneous from models.mlp import MLP from models.echo_state_network import EchoState from models.random import Random from models.learned_dqn import LearnedDQN from models.learned_ddpg import LearnedDDPG def bar_plot(values, evals, game): fig, ax = plt.subplots(figsize=(6, 7)) bar_width = 0.3 opacity = 0.5 for index, (name, value) in enumerate(values): rects = plt.bar(index, value, bar_width, alpha=opacity, color='b', label=name, align='center') autolabel(rects, ax) ylim = get_y_lim_for_game(game) plt.ylim([0, ylim]) plt.gca().axes.set_xticklabels([]) plt.ylabel('AVG fitness') plt.title('Model comparison - {} runs - {}'.format(evals, game)) x = np.arange(len(values)) ax.set_xticks(x) ax.set_xticklabels([name for (name, _) in values]) plt.tight_layout() plt.savefig('comparison.png') def get_y_lim_for_game(game): ylim = None if game == "alhambra": ylim = 200 if game == "torcs": ylim = 3000 if game == "mario": ylim = 1.2 if game == "2048": ylim = 5000 return ylim def autolabel(rects, ax): # attach some text labels for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '{}'.format(float(height)), ha='center', va='bottom') def eval(game, evals, model): parameters = [model, evals, np.random.randint(0, 2 ** 16)] values = [] game_instance = utils.miscellaneous.get_game_instance(game, parameters, test=True) results = game_instance.run(advanced_results=True) for i, r in enumerate(results): if i > 0: values.append(("original#{}".format(i), r)) else: values.append((model.get_name(), r)) return values def compare_models(game, evals, *args): print("Comparing models:") values = [] for model in args: print(model.get_name()) values += eval(game=game, evals=evals, model=model) bar_plot(values, evals, game) return values def eval_mario_winrate(model, evals, level, vis_on): """ Evaluates mario winrate on specified level. :param model: :param evals: :param level: gombas or spikes :param vis_on: :return: """ game_instance = games.mario.Mario(model, evals, np.random.randint(0, 2 ** 16), level=level, vis_on=vis_on, use_visualization_tool=True) results = game_instance.run(advanced_results=True) print("Mario winrate (avg dist): {}".format(results)) return results def run_torcs_vis_on(model, evals): game_instance = games.torcs.Torcs(model, evals, np.random.randint(0, 2 ** 16), vis_on=True) print("Torcs visualization started.") results = game_instance.run(advanced_results=True) def run_2048_extended(model, evals): print("Game 2048 with extended logs started.") game_instance = games.game2048.Game2048(model, evals, np.random.randint(0, 2 ** 16)) results = game_instance.run(advanced_results=True) return results def run_random_model(game, evals): print("Generating graph of 'random' model for game {}.".format(game)) results = [] t = time.time() for i in range(evals): if time.time() - t > 1 or i == evals - 1: print("{}/{}".format(i + 1, evals)) t = time.time() parameters = [Random(game), 1, np.random.randint(0, 2 ** 16)] game_instance = utils.miscellaneous.get_game_instance(game, parameters) result = game_instance.run() results.append(result) x = range(0, evals) # plt.plot(x, results, 'b', x, [np.mean(results) for _ in results], 'r--') plt.scatter(x, results, cmap='b') plt.plot([np.mean(results) for _ in results], 'r--') plt.title("Random - game: {} - Average score: {}".format(game, np.mean(results))) plt.ylim(0, get_y_lim_for_game(game)) plt.xlim(0, evals) plt.xlabel("Evals") plt.ylabel("Score") plt.savefig("random_model_{}.png".format(game)) def eval_alhambra_winrate(model, evals): print("Evaluating Alhambra winrate.") wins = [0, 0, 0] for i in range(evals): print("{}/{}".format(i + 1, evals)) game_instance = games.alhambra.Alhambra(model, 1, np.random.randint(0, 2 ** 16)) result = game_instance.run(advanced_results=True) wins[np.argmax(result)] += 1 print("Alhambra winrate: {}% | {}% | {}%".format(100 * wins[0] / evals, 100 * wins[1] / evals, 100 * wins[2] / evals, )) def eval_alhambra_avg_score(model, evals): game_instance = games.alhambra.Alhambra(model, evals, np.random.randint(0, 2 ** 16)) result = game_instance.run(advanced_results=True) return result # INFERENCE METHOD def run_model_evaluator(): """ Used for evaluating learned models, to benchmark them and get avg results. For example, to run 1000 games and plot results. Set file_name for example as "C:/Users/Jan/Documents/GitHub/general-ai/Experiments/ESN+EA/torcs/logs_2017-06-20_19-09-27/best/best_0.json" (the whole path) for evolutionary based experiments. For deep reinforcement (DQN or DDPG) based techniques use logdir, for example as: "C:/Users/Jan/Documents/GitHub/general-ai/Experiments/DQN/mario/logs_2017-04-19_16-26-07", where directory stores config files (model settings), model checkpoint etc. Then feel free to use some of the prepared "test functions". Result (if exists) is written to same directory as this file (e.q. /utils). """ np.random.seed(930615) # Before using game 2048, check it's encoding game = "2048" evals = 1000 # SELECT FILE (direct model for evolutionary or directory for reinforcement) file_name = "C:/Users/Jan/Documents/GitHub/general-ai/Experiments/MLP+ES/2048/logs_2017-02-21_17-24-07/best/best_0.json" # logdir = "C:/Users/Jan/Documents/GitHub/general-ai/Experiments/DDPG/torcs/logs_2017-04-29_11-39-44" # SELECT MODEL (trained, based on file selected) # esn = EchoState.load_from_file(file_name, game) mlp = MLP.load_from_file(file_name, game) # random = Random(game) # ddpg = LearnedDDPG(logdir) # dqn = LearnedDQN(logdir) # RUN MODEL TEST # eval_alhambra_winrate(mlp, evals) # run_random_model(game, evals) run_2048_extended(mlp, evals) # eval_mario_winrate(model=dqn, evals=evals, level="spikes", vis_on=False) # run_torcs_vis_on(model=ddpg, evals=evals) # general model comparison (graph of score) # compare_models(game, evals, ddpg) """ NOTE: Selected file source file, selected model (python object) and the game must be correct (must match). If you save model for game 2048 using ESN, you can't load this model as DDPG for TORCS of course. """ def run_avg_results(): """ Useful for generating average results for more experiments (logs). """ # List of logs to be measured (tested) items = ["logs_2017-06-23_14-16-00", "logs_2017-06-23_14-16-59", "logs_2017-06-23_14-17-58", "logs_2017-06-23_14-18-48", "logs_2017-06-23_14-19-39"] results = [] game = "2048" evals = 1000 for item in items: prefix = "C:/Users/Jan/Documents/GitHub/general-ai/Experiments/best_models_repeats/2048/MLP+ES/" postfix = "/best/best_0.json" file_name = prefix + item + postfix logdir = prefix + item # SELECT PROPER MODEL model = MLP.load_from_file(file_name, game) # model = EchoState.load_from_file(file_name, game) # RUN MODEL # 2048 result = run_2048_extended(model, evals) # MARIO # result = eval_mario_winrate(model=model, evals=evals, level="spikes", vis_on=False) # ALHAMBRA # First element is result of our model (rest are original models from previous work) # result = eval_alhambra_avg_score(model, evals)[0] # TORCS # For reinforcement learning, please run model separately (tensorflow needs to be restarted) results.append(result) results = np.array(results) file_name = "{}_stats_{}.txt".format(game, utils.miscellaneous.get_pretty_time()) with open(file_name, "w") as f: f.write("--GAME {} STATISTICS-- {} trainings of the same model".format(game.upper(), len(items))) f.write(os.linesep) f.write("Model: {}".format(model.get_name())) f.write(os.linesep) f.write("Total games: {} (for each model)".format(evals)) f.write(os.linesep) f.write("MAX TEST: {}".format(np.max(results))) f.write(os.linesep) f.write("AVG TEST: {}".format(np.mean(results))) f.write(os.linesep) f.write("MIN TEST: {}".format(
np.min(results)
numpy.min
# @Author: guanwanxian # @Date: 1970-01-01T08:00:00+08:00 # @Email: <EMAIL> # @Last modified by: guanwanxian # @Last modified time: 2017-02-25T20:57:35+08:00 """Draw2DTools, providing functions to generate 2d images """ import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.transforms as mtransforms import matplotlib.text as mtext from Utils import joinPath from PlotTools import createNewAxes from ImageUtils import ImgType, OpType import Draw2DTools as draw2d class MyLine(lines.Line2D): def __init__(self, *args, **kwargs): # we'll update the position when the line data is set self.text = mtext.Text(0, 0, '') lines.Line2D.__init__(self, *args, **kwargs) # we can't access the label attr until *after* the line is # inited self.text.set_text(self.get_label()) def set_figure(self, figure): self.text.set_figure(figure) lines.Line2D.set_figure(self, figure) def set_axes(self, axes): self.text.set_axes(axes) lines.Line2D.set_axes(self, axes) def set_transform(self, transform): # 2 pixel offset texttrans = transform + mtransforms.Affine2D().translate(2, 2) self.text.set_transform(texttrans) lines.Line2D.set_transform(self, transform) def set_data(self, x, y): if len(x): self.text.set_position((x[-1], y[-1])) lines.Line2D.set_data(self, x, y) def draw(self, renderer): # draw my label at the end of the line with 2 pixel offset lines.Line2D.draw(self, renderer) self.text.draw(renderer) def generateLines(img_type): if img_type==ImgType.NonBranch: neighbor_number = np.random.randint(1,3) # 1~2 else: neighbor_number = np.random.randint(3,5) # 3~4 lines_array = [] center_r = np.random.randint(0, 4) # 1~5 center_angle = np.random.randint(0, 360) x0 = int(center_r * np.cos(np.pi * center_angle/180)) y0 = int(center_r * np.sin(np.pi * center_angle/180)) for i in range(neighbor_number): neighbor_r = np.random.randint(6, 11) # 6~10 neighbor_angle = np.random.randint(0, 360) x1 = int(neighbor_r * np.cos(np.pi * neighbor_angle/180)) y1 = int(neighbor_r * np.sin(np.pi * neighbor_angle/180)) # print x0, y0, x1, y1, neighbor_angle lines_array.append(MyLine([x0, x1], [y0, y1], lw=20, c='k')) return lines_array def generateLines2(img_type): lines_array = [] x0 = int(1 * np.cos(np.pi * 0/180)) y0 = int(1 * np.sin(np.pi * 0/180)) x1 = int(5 * np.cos(np.pi * 180/180)) y1 = int(5 * np.sin(np.pi * 180/180)) lines_array.append(MyLine([x0, x1], [y0, y1], lw=5, c='k')) x1 = int(5 * np.cos(np.pi * 270/180)) y1 = int(5 * np.sin(np.pi * 270/180)) lines_array.append(MyLine([x0, x1], [y0, y1], lw=5, c='k')) x1 = int(5 * np.cos(np.pi * 45/180)) y1 = int(5 * np.sin(np.pi * 45/180)) lines_array.append(MyLine([x0, x1], [y0, y1], lw=5, c='k')) return lines_array def generateLines3(img_type): if img_type==ImgType.NonBranch: neighbor_number = np.random.randint(1,3) # 1~2 else: neighbor_number = np.random.randint(3,5) # 3~4 margin = int(360/neighbor_number) print('margin: ', margin) lines_array = [] center_r = np.random.randint(0, 4) # 1~5 center_angle = np.random.randint(0, 360) x0 = int(center_r * np.cos(np.pi * center_angle/180)) y0 = int(center_r * np.sin(np.pi * center_angle/180)) for i in range(neighbor_number): neighbor_r =
np.random.randint(6, 11)
numpy.random.randint
from warnings import warn import numpy as np __all__ = [ 'all_bounds', 'error_bounds', 'wasserstein_bounds', 'divergence_bound' ] def all_bounds(log_weights, samples=None, moment_bound_fn=None, q_var=None, p_var=None, log_norm_bound=None): """Compute all error and distance bounds. Compute error and distance bounds between distribution `p` and `q` using samples from `q`. The distributions need not be normalized. Parameters ---------- log_weights : array-like of integers, shape=(n_samples,) log weights `log p(x_i) - log q(x_i)`, where `x_i` is sampled from `q` and `p` may be an unnormalized distribution samples : array-like matrix, shape=(n_samples, n_dimensions) samples `x_i` associated with log weights moment_bound_fn : function `moment_bound_fn(p)` should return a bound on `min_y E[(x_i - y)^p]`. It must be provided if `samples` is `None` and it must support `p = 2` and `p = 4`. q_var : float or array-like matrix (Bound on) the (co)variance of `q`. p_var : float or array-like matrix (Bound on) the (co)variance of `p`. log_norm_bound : float Bound on the overall log normalization constant (the log marginal likelihood when `p` is the unnormalized log posterior) Returns ------- results : dict contains the following bounds: `mean_error`, `var_error`, `std_error`, `d2`, `W1`, `W2`.""" d2, log_norm_bound = divergence_bound(log_weights, log_norm_bound=log_norm_bound, return_log_norm_bound=True) results = wasserstein_bounds(d2, samples, moment_bound_fn) if q_var is None and samples is not None: q_var = np.cov(samples.T) results.update(error_bounds(q_var=q_var, p_var=p_var, **results)) results['d2'] = d2 results['log_norm_bound'] = log_norm_bound return results def _compute_norm_if_needed(var): if np.asarray(var).ndim == 2: return np.linalg.norm(var, ord=2) return var def error_bounds(W1=np.inf, W2=np.inf, q_var=np.inf, p_var=np.inf): """Compute error bounds. Compute bounds on differences in the means, standard deviations, and covariances of `p` and `q` using (bounds on) the 1- and 2-Wasserstein distance. Parameters ---------- W1 : float (Bound on) the 1-Wasserstein distance between `p` and `q`. W2 : float (Bound on) the 2-Wasserstein distance between `p` and `q`. q_var : float or array-like matrix (Bound on) the (co)variance of `q`. p_var : float or array-like matrix (Bound on) the (co)variance of `p`. Returns ------- results : dict contains the following bounds: `mean_error`, `var_error`, `std_error`.""" results = dict() results['mean_error'] = mean_bound(min(W1, W2)) results['std_error'] = std_bound(W2) results['cov_error'] = var_bound(W2, _compute_norm_if_needed(q_var), _compute_norm_if_needed(p_var)) return results def wasserstein_bounds(d2, samples=None, moment_bound_fn=None): """Compute all bounds. Compute 1- and 2-Wasserstein distance bounds between distribution `p` and `q` using a bound on the 2-divergence and moment bounds. Parameters ---------- d2 : float (Bound on) the 2-divergence between `p` and `q`. samples : array-like matrix, shape=(n_samples, n_dimensions) samples from `q`. moment_bound_fn : array-like matrix, shape=(n_variant_types, n_signatures) `moment_bound_fn(a)` should return a bound on `min_y E[(x_i - y)^a]`. It must be provided if `samples` is `None`. Must support `a = 2` and `a = 4`. Returns ------- results : dict contains the following bounds: `W1`, `W2`.""" results = dict() if moment_bound_fn is None: if samples is None: raise ValueError('must provides samples if moment_bound_fn not given') samples = np.asarray(samples) if samples.ndim == 1: samples = samples[:,np.newaxis] sample_mean = np.mean(samples, axis=0, keepdims=True) centered_samples = samples - sample_mean moment_bound_fn = lambda p: np.mean(np.sum(centered_samples**p, axis=1)) for p in [1, 2]: Cp = moment_bound_fn(2*p) results['W{}'.format(p)] = 2 * Cp**(.5/p) * np.expm1(d2)**(.5/p) return results def divergence_bound(log_weights, alpha=2., log_norm_bound=None, return_log_norm_bound=False): """Compute a bound on the alpha-divergence. Compute error and distance bounds between distribution `p` and `q` using samples from `q`. Parameters ---------- log_weights : array-like of integers, shape=(n_samples,) log weights `log p(x_i) - log q(x_i)`, where `x_i` is sampled from `q` and `p` may be an unnormalized distribution. alpha : float order of the Renyi divergence. Must be greater than 1 log_norm_bound : float Bound on the log normalization constant for `p` (the log marginal likelihood when `p` is the unnormalized log posterior). Returns ------- dalpha : float Bound on the alpha-divergence.""" if alpha <= 1: raise ValueError('alpha must be greater than 1') log_weights = np.asarray(log_weights) log_rescale = np.max(log_weights) rescaled_weights = np.exp(log_weights - log_rescale)**alpha mean_rescaled_weight = mean_and_check_mc_error(rescaled_weights, quantity_name='CUBO') cubo = np.log(mean_rescaled_weight)/alpha + log_rescale if log_norm_bound is None: log_norm_bound = mean_and_check_mc_error(log_weights, quantity_name='ELBO') dalpha = alpha / (alpha - 1) * (cubo - log_norm_bound) if return_log_norm_bound: return dalpha, log_norm_bound return dalpha def mean_and_check_mc_error(a, atol=0.01, rtol=0.0, quantity_name=None): m = np.mean(a) s = np.std(a)/np.sqrt(a.size) if s > rtol*
np.abs(m)
numpy.abs
import random, time, os, decoder from PIL import Image import numpy as np import tensorflow as tf import sys SMALL_DATA_SET = 0 # 0-large data set(for gpu), 1-small data set(for cpu debug) saved_models_dir = 'saved_models' summaries_dir = "summaries" idx_to_vocab = None vocab_to_idx = None def load_data(): global idx_to_vocab, vocab_to_idx vocab = open('data/latex_vocab.txt').read().split('\n') vocab_to_idx = dict([(vocab[i], i + 4) for i in range(len(vocab))]) idx_to_vocab = {value: key for key, value in vocab_to_idx.items()} for i in range(4): idx_to_vocab.update({i: i}) formulas = open('data/formulas.norm.lst').read().split('\n') # four meta keywords # 0: START # 1: END # 2: UNKNOWN # 3: PADDING def formula_to_indices(formula): formula = formula.split(' ') res = [0] for token in formula: if token in vocab_to_idx: res.append(vocab_to_idx[token]) else: res.append(2) res.append(1) return res formulas = map(formula_to_indices, formulas) train = open('data/train_filter.lst').read().split('\n')[:-1] val = open('data/validate_filter.lst').read().split('\n')[:-1] test = open('data/test_filter.lst').read().split('\n')[:-1] if SMALL_DATA_SET: print('use small data set') print('len train, val, test', len(train), len(val), len(test)) data_set_scale = 1.0 / 400 train = train[:int(len(train) * data_set_scale)] val = val[:int(len(val) * data_set_scale)] test = test[:int(len(test) * data_set_scale)] print('process len train, val, test', len(train), len(val), len(test)) else: print('use large data set') print('sample png file name: {}'.format(test[0].split(' ')[0])) def import_images(datum): datum = datum.split(' ') img = np.array(Image.open('data/images_processed/' + datum[0]).convert('L')) return (img, formulas[int(datum[1])]) train = map(import_images, train) val = map(import_images, val) test = map(import_images, test) return train, val, test def batchify(data, batch_size): # group by image size res = {} for datum in data: if datum[0].shape not in res: res[datum[0].shape] = [datum] else: res[datum[0].shape].append(datum) batches = [] for size in res: # batch by similar sequence length within each image-size group -- this keeps padding to a # minimum group = sorted(res[size], key=lambda x: len(x[1])) for i in range(0, len(group), batch_size): images = map(lambda x: np.expand_dims(np.expand_dims(x[0], 0), 3), group[i:i + batch_size]) batch_images = np.concatenate(images, 0) seq_len = max([len(x[1]) for x in group[i:i + batch_size]]) def preprocess(x): arr = np.array(x[1]) pad = np.pad(arr, (0, seq_len - arr.shape[0]), 'constant', constant_values=3) return np.expand_dims(pad, 0) labels = map(preprocess, group[i:i + batch_size]) batch_labels = np.concatenate(labels, 0) too_big = [(160, 400), (100, 500), (100, 360), (60, 360), (50, 400), \ (100, 800), (200, 500), (800, 800), (100, 600)] # these are only for the test set if batch_labels.shape[0] == batch_size \ and not (batch_images.shape[1], batch_images.shape[2]) in too_big: batches.append((batch_images, batch_labels)) # skip the last incomplete batch for now return batches def init_cnn(inp): def weight_variable(name, shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.get_variable(name + "_weights", initializer=initial) def bias_variable(name, shape): initial = tf.constant(0.1, shape=shape) return tf.get_variable(name + "_bias", initializer=initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') W_conv1 = weight_variable("conv1", [3, 3, 1, 512]) b_conv1 = bias_variable("conv1", [512]) h_conv1 = tf.nn.relu(conv2d(inp, W_conv1) + b_conv1) h_bn1 = tf.contrib.layers.batch_norm(h_conv1) W_conv2 = weight_variable("conv2", [3, 3, 512, 512]) b_conv2 = bias_variable("conv2", [512]) h_pad2 = tf.pad(h_bn1, [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT") h_conv2 = tf.nn.relu(conv2d(h_pad2, W_conv2) + b_conv2) h_bn2 = tf.contrib.layers.batch_norm(h_conv2) h_pool2 = tf.nn.max_pool(h_bn2, ksize=[1, 1, 2, 1], strides=[1, 1, 2, 1], padding='SAME') W_conv3 = weight_variable("conv3", [3, 3, 512, 256]) b_conv3 = bias_variable("conv3", [256]) h_pad3 = tf.pad(h_pool2, [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT") h_conv3 = tf.nn.relu(conv2d(h_pad3, W_conv3) + b_conv3) h_pool3 = tf.nn.max_pool(h_conv3, ksize=[1, 2, 1, 1], strides=[1, 2, 1, 1], padding='SAME') W_conv4 = weight_variable("conv4", [3, 3, 256, 256]) b_conv4 = bias_variable("conv4", [256]) h_pad4 = tf.pad(h_pool3, [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT") h_conv4 = tf.nn.relu(conv2d(h_pad4, W_conv4) + b_conv4) h_bn4 = tf.contrib.layers.batch_norm(h_conv4) W_conv5 = weight_variable("conv5", [3, 3, 256, 128]) b_conv5 = bias_variable("conv5", [128]) h_pad5 = tf.pad(h_bn4, [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT") h_conv5 = tf.nn.relu(conv2d(h_pad5, W_conv5) + b_conv5) h_pool5 = tf.nn.max_pool(h_conv5, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') W_conv6 = weight_variable("conv6", [3, 3, 128, 64]) b_conv6 = bias_variable("conv6", [64]) h_pad6 = tf.pad(h_pool5, [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT") h_conv6 = tf.nn.relu(conv2d(h_pad6, W_conv6) + b_conv6) h_pad6 = tf.pad(h_conv6, [[0, 0], [2, 2], [2, 2], [0, 0]], "CONSTANT") h_pool6 = tf.nn.max_pool(h_pad6, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') return h_pool6 def build_model(inp, batch_size, num_rows, num_columns, dec_seq_len): # constants enc_lstm_dim = 256 feat_size = 64 dec_lstm_dim = 512 vocab_size = 503 embedding_size = 80 cnn = init_cnn(inp) # function for map to apply the rnn to each row def fn(inp): enc_init_shape = [batch_size, enc_lstm_dim] with tf.variable_scope('encoder_rnn'): with tf.variable_scope('forward'): lstm_cell_fw = tf.nn.rnn_cell.LSTMCell(enc_lstm_dim) init_fw = tf.nn.rnn_cell.LSTMStateTuple( \ tf.get_variable("enc_fw_c", enc_init_shape), \ tf.get_variable("enc_fw_h", enc_init_shape) ) with tf.variable_scope('backward'): lstm_cell_bw = tf.nn.rnn_cell.LSTMCell(enc_lstm_dim) init_bw = tf.nn.rnn_cell.LSTMStateTuple( \ tf.get_variable("enc_bw_c", enc_init_shape), \ tf.get_variable("enc_bw_h", enc_init_shape) ) output, _ = tf.nn.bidirectional_dynamic_rnn(lstm_cell_fw, \ lstm_cell_bw, \ inp, \ sequence_length=tf.fill([batch_size], \ tf.shape(inp)[1]), \ initial_state_fw=init_fw, \ initial_state_bw=init_bw \ ) return tf.concat(2, output) fun = tf.make_template('fun', fn) # shape is (batch size, rows, columns, features) # swap axes so rows are first. map splits tensor on first axis, so fn will be applied to tensors # of shape (batch_size,time_steps,feat_size) rows_first = tf.transpose(cnn, [1, 0, 2, 3]) res = tf.map_fn(fun, rows_first, dtype=tf.float32) encoder_output = tf.transpose(res, [1, 0, 2, 3]) dec_lstm_cell = tf.nn.rnn_cell.LSTMCell(dec_lstm_dim) dec_init_shape = [batch_size, dec_lstm_dim] dec_init_state = tf.nn.rnn_cell.LSTMStateTuple(tf.truncated_normal(dec_init_shape), \ tf.truncated_normal(dec_init_shape)) init_words = np.zeros([batch_size, 1, vocab_size]) decoder_output = decoder.embedding_attention_decoder(dec_init_state, \ tf.reshape(encoder_output, \ [batch_size, -1, \ 2 * enc_lstm_dim]), \ dec_lstm_cell, \ vocab_size, \ dec_seq_len, \ batch_size, \ embedding_size, \ feed_previous=True) return (encoder_output, decoder_output) batch_size = 20 epochs = 100 lr = 0.1 min_lr = 0.001 start_time = time.time() print("Loading Data") train, val, test = load_data() train = batchify(train, batch_size) # train = sorted(train,key= lambda x: x[1].shape[1]) random.shuffle(train) val = batchify(val, batch_size) test_batch = batchify(test, batch_size) print("Building Model") learning_rate = tf.placeholder(tf.float32) inp = tf.placeholder(tf.float32) num_rows = tf.placeholder(tf.int32) num_columns = tf.placeholder(tf.int32) num_words = tf.placeholder(tf.int32) true_labels = tf.placeholder(tf.int32) train_accuracy = tf.placeholder(tf.float32) val_accuracy = tf.placeholder(tf.float32) _, (output, state) = build_model(inp, batch_size, num_rows, num_columns, num_words) cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(output, true_labels)) train_step = tf.train.AdadeltaOptimizer(learning_rate).minimize(cross_entropy) output_idx = tf.to_int32(tf.argmax(output, 2)) correct_prediction = tf.equal(output_idx, true_labels) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('cross_entropy', cross_entropy) tf.summary.scalar('train_accuracy', train_accuracy) tf.summary.scalar('val_accuracy', val_accuracy) def run_train(): global lr last_val_acc = 0 reduce_lr = 0 global_step = 0 train_accuracy_value = .0 val_accuracy_value = .0 with tf.Session() as sess: try: if tf.gfile.Exists(summaries_dir): tf.gfile.DeleteRecursively(summaries_dir) tf.gfile.MakeDirs(summaries_dir) if not tf.gfile.Exists(saved_models_dir): tf.gfile.MakeDirs(saved_models_dir) sess.run(tf.global_variables_initializer()) merged_op = tf.summary.merge_all() writer = tf.summary.FileWriter(summaries_dir, sess.graph) saver = tf.train.Saver() print("Training") for i in range(epochs): if reduce_lr == 5: lr = max(min_lr, lr - 0.005) reduce_lr = 0 print("\nEpoch %d learning rate %.4f" % (i, lr)) epoch_start_time = time.time() batch_50_start = epoch_start_time for j in range(len(train)): global_step += 1 images, labels = train[j] if j < 5 or j % 50 == 0: train_accuracy_value = accuracy.eval(feed_dict={inp: images, \ true_labels: labels, \ num_rows: images.shape[1], \ num_columns: images.shape[2], \ num_words: labels.shape[1]}) new_time = time.time() print("step %d/%d, training accuracy %g, val accuracy %g, took %f mins" % \ (j, len(train), train_accuracy_value, val_accuracy_value, (new_time - batch_50_start) / 60)) batch_50_start = new_time # about 3.5 minutes per 50 global_step when run in aws p2.xlarge if j > 5: print('saver.save, global_step =', global_step) saver.save(sess, os.path.join(saved_models_dir, 'im2latex.ckpt'), global_step=global_step) summary, loss, _= sess.run([merged_op, cross_entropy, train_step], \ feed_dict={learning_rate: lr, inp: images, \ true_labels: labels, \ num_rows: images.shape[1], \ num_columns: images.shape[2], \ num_words: labels.shape[1], train_accuracy: train_accuracy_value, val_accuracy: val_accuracy_value}) print('loss', loss) writer.add_summary(summary, global_step) print("Time for epoch:%f mins" % ((time.time() - epoch_start_time) / 60)) print("Running on Validation Set") accs = [] for j in range(len(val)): images, labels = val[j] acc = accuracy.eval(feed_dict={inp: images, \ true_labels: labels, \ num_rows: images.shape[1], \ num_columns: images.shape[2], \ num_words: labels.shape[1]}) accs.append(acc) val_acc = sess.run(tf.reduce_mean(accs)) val_accuracy_value = val_acc if (val_acc - last_val_acc) >= .01: reduce_lr = 0 else: reduce_lr += reduce_lr last_val_acc = val_acc print("val accuracy %g" % val_acc) finally: print('Finally saving model') saver.save(sess, os.path.join(saved_models_dir, 'im2latex.ckpt'), global_step=global_step) print('Running on Test Set') accs = [] for j in range(len(test_batch)): images, labels = test_batch[j] test_accuracy = accuracy.eval(feed_dict={inp: images, \ true_labels: labels, \ num_rows: images.shape[1], \ num_columns: images.shape[2], \ num_words: labels.shape[1]}) accs.append(test_accuracy) test_acc = sess.run(tf.reduce_mean(accs)) print("test accuracy %g" % test_acc) def run_sample(): saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.latest_checkpoint(saved_models_dir) print(ckpt) saver.restore(sess, ckpt) images, labels = test[0] images =
np.array([images] * batch_size)
numpy.array
from Anton import searchfiles import numpy as np import matplotlib.pyplot as plt import os from scipy.stats import linregress from itertools import cycle import seaborn as sns; sns.set() def get_files(): a = (r'Z:\2_Projekt__Permeabilitätsbeeinflussung\AP 4 - 90%\02_Löslichkeitsuntersuchungen\HS Microscope\Experiments\Final_results\data\2 - RIMR+MS300') p = searchfiles(a, '.npy') p.sort() files = dict() for i in p: path,name = os.path.split(i) if name[-6:-4] in files: files[name[-6:-4]].append(i) else: files[name[-6:-4]] = [i] return files def solureaction(g, files, number='all', ende=None, start=None,marker='o', cr='k'): p = files[g] if number == 'all': number = [os.path.split(i)[1][:-19] for i in p] else: number = number#['10','30','3','5'] slopes = np.array([]) inters = np.array([]) colors = cycle(i for i in ['b', 'g', 'r', 'c', 'm', 'y', 'k']) j = 0 for i in range(len(p)): check = os.path.split(p[i])[1][:-19] if check in number: data =
np.load(p[i])
numpy.load
import warnings import numpy as np from scipy.ndimage import map_coordinates from dipy.reconst.recspeed import le_to_odf, sum_on_blocks_1d from dipy.reconst.dsi import project_hemisph_bvecs from scipy.ndimage.filters import laplace,gaussian_laplace from scipy.ndimage import zoom,generic_laplace,correlate1d from dipy.core.geometry import sphere2cart,cart2sphere,vec2vec_rotmat from dipy.tracking.propspeed import map_coordinates_trilinear_iso from dipy.reconst.odf import OdfModel ############################################### # MODULE TEMPORARILY DISABLED FOR REFACTORING # ############################################### import nose class UnderConstruction(nose.SkipTest): pass raise UnderConstruction() ############################################### class DiffusionNablaModel(OdfModel): def __init__(self, bvals, gradients, odf_sphere='symmetric362', half_sphere_grads=False, fast=True): ''' Reconstruct the signal using Diffusion Nabla Imaging As described in E.Garyfallidis, "Towards an accurate brain tractograph"tractograph, PhD thesis, 2011. Parameters ----------- bvals : array, shape (N,) gradients : array, shape (N,3) also known as bvecs odf_sphere : str or tuple, optional If str, then load sphere of given name using ``get_sphere``. If tuple, gives (vertices, faces) for sphere. filter : array, shape(len(vertices),) default is None (using standard hanning filter for DSI) half_sphere_grads : boolean Default(False) in order to create the q-space we use the bvals and gradients. If the gradients are only one hemisphere then See also ---------- dipy.reconst.eit.EquatorialInversionModel, dipy.reconst.dti.TensorModel, dipy.reconst.dsi.DiffusionSpectrumModel ''' #check if bvectors are provided only on a hemisphere if half_sphere_grads==True: pass #bvals=np.append(bvals.copy(),bvals[1:].copy()) #gradients=np.append(gradients.copy(),-gradients[1:].copy(),axis=0) #data=np.append(data.copy(),data[...,1:].copy(),axis=-1) #load bvals and bvecs self.bvals=bvals gradients[np.isnan(gradients)] = 0. self.gradients=gradients #save number of total diffusion volumes self.dn=self.gradients.shape[0] #data.shape[-1] odf_vertices, odf_faces = sphere_vf_from(odf_sphere) self.set_odf_vertices(odf_vertices,None,odf_faces) self.odfn=odf_vertices.shape[0] #odf sampling radius self.radius=np.arange(0,5,.2) #self.radiusn=len(self.radius) #self.create_qspace(bvals,gradients,16,8) #peak threshold #self.peak_thr=.7 #equatorial zone self.zone=5. self.gaussian_weight=0.05 self.fast=fast if fast==True: self.evaluate_odf=self.fast_odf else: self.evaluate_odf=self.slow_odf self.precompute() def precompute(self): self.radiusn=len(self.radius) self.create_qspace(self.bvals,self.gradients,17,8) if self.fast==False: self.radon_params() self.precompute_interp_coords() if self.fast==True: self.precompute_fast_coords() self.precompute_equator_indices(self.zone) self.precompute_angular(self.gaussian_weight) def precompute_botox(self,smooth,level): self.botox_smooth=.05 self.botox_level=.3 def precompute_angular(self,smooth): if smooth==None: self.E=None return self.W=np.dot(self.odf_vertices,self.odf_vertices.T) self.W=self.W.astype('f8') E=np.exp(self.W/smooth) self.E=E/np.sum(E,axis=1)[:,None] def create_qspace(self,bvals,gradients,size,origin): bv=bvals bmin=np.sort(bv)[1] bv=np.sqrt(bv/bmin) qtable=np.vstack((bv,bv,bv)).T*gradients qtable=np.floor(qtable+.5) self.qtable=qtable self.q=qtable+origin self.q=self.q.astype('i8') self.origin=origin self.sz=size def radon_params(self,ang_res=64): #calculate radon integration parameters phis=np.linspace(0,2*np.pi,ang_res)[:-1] planars=[] for phi in phis: planars.append(sphere2cart(1,np.pi/2,phi)) planars=np.array(planars) planarsR=[] for v in self.odf_vertices: R=vec2vec_rotmat(np.array([0,0,1]),v) planarsR.append(
np.dot(R,planars.T)
numpy.dot
#!/usr/bin/python3 ''' Created on 6 Jan 2017 @author: <NAME> ''' import numpy as np from os import listdir, path from os.path import isdir, isfile, join, exists, dirname from sklearn.model_selection import train_test_split, GridSearchCV from sklearn import linear_model from sklearn.externals import joblib from urllib.request import urlopen from zipfile import ZipFile from io import BytesIO from featureExtractor import FeatureExtractor from imageLoader import batchGenerator # setup all the paths adn variables file_dir = dirname(__file__) dataPath = join(file_dir, "../Dataset/") stelePath = join(dataPath, "Manual/Preprocessed") intermediatePath = join(file_dir, "../intermediates") featurePath = join(intermediatePath, "features.npy") labelsPath = join(intermediatePath, "labels.npy") svmPath = join(intermediatePath, "svm.pkl") image_paths = [] labels = [] batch_size = 200 if not exists(dataPath): print("downloading dataset (57.5MB)") url = urlopen("http://iamai.nl/downloads/GlyphDataset.zip") with ZipFile(BytesIO(url.read())) as z: z.extractall(join(dataPath, "..")) # check if the feature file is present, if so; there is no need to recompute the features # The pre-computed features can also be downloaded from http://iamai.nl/downloads/features.npy if not isfile(featurePath): print("indexing images...") Steles = [ join(stelePath,f) for f in listdir(stelePath) if isdir(join(stelePath,f)) ] for stele in Steles: imagePaths = [ join(stele,f) for f in listdir(stele) if isfile(join(stele,f)) ] for path in imagePaths: image_paths.append(path) labels.append(path[(path.rfind("_") + 1): path.rfind(".")]) featureExtractor = FeatureExtractor() features = [] print("computing features...") for idx, (batch_images, _) in enumerate(batchGenerator(image_paths, labels, batch_size)): print("{}/{}".format((idx+1) * batch_size, len(labels))) features_ = featureExtractor.get_features(batch_images) features.append(features_) features = np.vstack(features) labels = np.asarray(labels) print("saving features...") np.save(featurePath, features)
np.save(labelsPath, labels)
numpy.save
import tensorflow as tf import numpy as np import tqdm __all__ = ('pad_ragged_2d', 'shuffle_ragged_2d', 'inputs_to_labels', 'get_pos_encoding', 'get_quant_time', 'softmax_with_temp', 'generate_midis') def pad_ragged_2d(ragged_tensor, pad_idx): # ragged_tensor -> RAGGED(batch_size, None) lens = ragged_tensor.row_lengths(axis=-1) maxlen = tf.math.reduce_max(lens) mask = tf.sequence_mask(lens, maxlen, tf.bool) zero_padded = ragged_tensor.to_tensor() # zero_padded -> (batch_size, maxlen) padding = tf.constant(pad_idx, dtype=zero_padded.dtype) padded_tensor = tf.where(mask, zero_padded, padding) # padded_tensor -> (batch_size, maxlen) return padded_tensor def shuffle_ragged_2d(ragged_tensors, pad_idx, lowest_idx=5): if not isinstance(ragged_tensors, (list, tuple)): ragged_tensors = [ragged_tensors] # ragged_tensor -> RAGGED(batch_size, None) lens = ragged_tensors[0].row_lengths(axis=-1) kth_lowest = -tf.nn.top_k(-lens, lowest_idx).values[-1] shuffled_tensors = [[] for _ in ragged_tensors] for len_, *rows in zip(lens, *ragged_tensors): assert all(row.shape[0] == len_ for row in rows) if len_ <= kth_lowest: new_rows = [tf.pad(row, paddings=[[0, kth_lowest - len_]], constant_values=pad_idx) for row in rows] else: start_idx = tf.random.uniform( (), minval=0, maxval=len_ - kth_lowest + 1, dtype=tf.int64) new_rows = [row[start_idx: start_idx + kth_lowest] for row in rows] for tensor, row in zip(shuffled_tensors, new_rows): tensor.append(row[tf.newaxis, :]) shuffled_tensors = [tf.concat(shuffled_tensor, axis=0) for shuffled_tensor in shuffled_tensors] return shuffled_tensors def inputs_to_labels(inputs, pad_idx): # inputs -> (batch_size, seq_len) inputs_padded = tf.pad(inputs[:, 1:], paddings=[ [0, 0], [0, 1]], constant_values=pad_idx) return inputs_padded def get_pos_encoding(seq_len, d_model): numerator = np.arange(seq_len, dtype=np.float32) numerator = numerator[:, np.newaxis] denominator = np.arange(0, d_model, 2, dtype=np.float32) denominator = denominator / d_model denominator = np.power(np.array(10000, dtype=np.float32), denominator) denominator = 1 / denominator denominator = np.repeat(denominator, 2) denominator = denominator[np.newaxis, :] encoding = np.matmul(numerator, denominator) encoding[:, ::2] = np.sin(encoding[:, ::2]) encoding[:, 1::2] = np.cos(encoding[:, 1::2]) #encoding = encoding[np.newaxis, ...] encoding = tf.cast(encoding, dtype=tf.float32) return encoding def get_quant_time(): step = 0.001 coef = 1.16 delta = 0 total_reps = 64 local_reps = 2 quant_time = [] for _ in range(total_reps // local_reps): for _ in range(local_reps): delta += step quant_time.append(delta) step *= coef quant_time = np.sort(quant_time + [5.0, 0.0]) return quant_time def softmax_with_temp(x, temp=1.0): assert isinstance(temp, float) assert temp > 0 assert all(map(lambda a: a > 0, x)) x = x / np.sum(x) / temp x = tf.nn.softmax(x).numpy() return x def generate_midis(model, seq_len, mem_len, max_len, parser, filenames, pad_idx, top_k=1, temp=1.0): assert isinstance(seq_len, int) assert seq_len > 0 assert isinstance(mem_len, int) assert mem_len >= 0 assert isinstance(max_len, int) assert max_len > 1 batch_size = len(filenames) sounds, deltas = zip(*[parser.load_features(filename) for filename in filenames]) min_len = min([len(s) for s in sounds]) orig_len = np.random.randint(1, min(2 * mem_len, min_len)) assert orig_len >= 1 sounds = np.array([sound[:orig_len] for sound in sounds]) deltas = np.array([delta[:orig_len] for delta in deltas]) # sounds -> (batch_size, orig_len) full_len = mem_len + seq_len - 1 inputs_sound = tf.constant(sounds[:, -seq_len:]) inputs_delta = tf.constant(deltas[:, -seq_len:]) outputs_sound, outputs_delta, next_mem_list, attention_weight_list, attention_loss_list = model( inputs=(inputs_sound, inputs_delta), mem_list=None, next_mem_len=mem_len, training=False ) for _ in tqdm.tqdm(range(max_len)): outputs_sound = outputs_sound[:, -1, :] probs_sound = tf.nn.softmax(outputs_sound, axis=-1).numpy() probs_sound[:, pad_idx] = 0 # probs_sound -> (batch_size, n_sounds) outputs_delta = outputs_delta[:, -1, :] probs_delta = tf.nn.softmax(outputs_delta, axis=-1).numpy() probs_delta[:, pad_idx] = 0 # probs_delta -> (batch_size, n_deltas) new_sounds = [] for batch_probs in probs_sound: best_idxs = batch_probs.argsort()[-top_k:][::-1] best_probs = softmax_with_temp(batch_probs[best_idxs], temp) new_sound = np.random.choice(best_idxs, p=best_probs) new_sounds.append(new_sound) new_sounds = np.array(new_sounds)[:, np.newaxis] # new_sounds -> (batch_size, 1) sounds = np.concatenate((sounds, new_sounds), axis=-1) new_deltas = [] for batch_probs in probs_delta: best_idxs = batch_probs.argsort()[-top_k:][::-1] best_probs = softmax_with_temp(batch_probs[best_idxs], temp) new_delta = np.random.choice(best_idxs, p=best_probs) new_deltas.append(new_delta) new_deltas = np.array(new_deltas)[:, np.newaxis] # new_deltas -> (batch_size, 1) deltas = np.concatenate((deltas, new_deltas), axis=-1) inputs_sound = tf.constant(new_sounds) inputs_delta = tf.constant(new_deltas) outputs_sound, outputs_delta, next_mem_list, attention_weight_list, attention_loss_list = model( inputs=(inputs_sound, inputs_delta), mem_list=next_mem_list, next_mem_len=mem_len, training=False ) sounds = sounds[:, orig_len:] deltas = deltas[:, orig_len:] midi_list = [parser.features_to_midi( sound, delta) for sound, delta in zip(sounds, deltas)] return midi_list, next_mem_list, attention_weight_list, attention_loss_list def generate_text(model, seq_len, mem_len, max_len, tokenizer, start_idx, end_idx, blocked_idxs, batch_size, beginning=None, top_k=3, temp=0.4): if isinstance(beginning, str): words = tokenizer.texts_to_sequences([beginning]) words =
np.repeat(words, batch_size, axis=0)
numpy.repeat
"""Non-negative matrix and tensor factorization basic functions """ # Author: <NAME> # License: MIT # Jan 4, '20 # Initialize progressbar import pandas as pd import math import numpy as np from scipy.sparse.linalg import svds from tqdm import tqdm from scipy.stats import hypergeom from scipy.optimize import nnls from .nmtf_core import * from .nmtf_utils import * import sys if not hasattr(sys, 'argv'): sys.argv = [''] EPSILON = np.finfo(np.float32).eps def NMFInit(M, Mmis, Mt0, Mw0, nc, tolerance, LogIter, myStatusBox): """Initialize NMF components using NNSVD Input: M: Input matrix Mmis: Define missing values (0 = missing cell, 1 = real cell) Mt0: Initial left hand matrix (may be empty) Mw0: Initial right hand matrix (may be empty) nc: NMF rank Output: Mt: Left hand matrix Mw: Right hand matrix Reference --------- <NAME>, <NAME> (2008) SVD based initialization: A head start for nonnegative matrix factorization Pattern Recognition Pattern Recognition Volume 41, Issue 4, April 2008, Pages 1350-1362 """ n, p = M.shape Mmis = Mmis.astype(np.int) n_Mmis = Mmis.shape[0] if n_Mmis == 0: ID = np.where(np.isnan(M) == True) n_Mmis = ID[0].size if n_Mmis > 0: Mmis = (np.isnan(M) == False) Mmis = Mmis.astype(np.int) M[Mmis == 0] = 0 nc = int(nc) Mt = np.copy(Mt0) Mw = np.copy(Mw0) if (Mt.shape[0] == 0) or (Mw.shape[0] == 0): if n_Mmis == 0: if nc >= min(n,p): # arpack does not accept to factorize at full rank -> need to duplicate in both dimensions to force it work t, d, w = svds(np.concatenate((np.concatenate((M, M), axis=1),np.concatenate((M, M), axis=1)), axis=0), k=nc) t *= np.sqrt(2) w *= np.sqrt(2) d /= 2 # svd causes mem allocation problem with large matrices # t, d, w = np.linalg.svd(M) # Mt = t # Mw = w.T else: t, d, w = svds(M, k=nc) Mt = t[:n,:] Mw = w[:,:p].T #svds returns singular vectors in reverse order Mt = Mt[:,::-1] Mw = Mw[:,::-1] d = d[::-1] else: Mt, d, Mw, Mmis, Mmsr, Mmsr2, AddMessage, ErrMessage, cancel_pressed = rSVDSolve( M, Mmis, nc, tolerance, LogIter, 0, "", 200, 1, 1, 1, myStatusBox) for k in range(0, nc): U1 = Mt[:, k] U2 = -Mt[:, k] U1[U1 < 0] = 0 U2[U2 < 0] = 0 V1 = Mw[:, k] V2 = -Mw[:, k] V1[V1 < 0] = 0 V2[V2 < 0] = 0 U1 = np.reshape(U1, (n, 1)) V1 = np.reshape(V1, (1, p)) U2 = np.reshape(U2, (n, 1)) V2 = np.reshape(V2, (1, p)) if np.linalg.norm(U1 @ V1) > np.linalg.norm(U2 @ V2): Mt[:, k] = np.reshape(U1, n) Mw[:, k] = np.reshape(V1, p) else: Mt[:, k] = np.reshape(U2, n) Mw[:, k] = np.reshape(V2, p) return [Mt, Mw] def rNMFSolve( M, Mmis, Mt0, Mw0, nc, tolerance, precision, LogIter, MaxIterations, NMFAlgo, NMFFixUserLHE, NMFFixUserRHE, NMFMaxInterm, NMFSparseLevel, NMFRobustResampleColumns, NMFRobustNRuns, NMFCalculateLeverage, NMFUseRobustLeverage, NMFFindParts, NMFFindCentroids, NMFKernel, NMFReweighColumns, NMFPriors, myStatusBox): """Estimate left and right hand matrices (robust version) Input: M: Input matrix Mmis: Define missing values (0 = missing cell, 1 = real cell) Mt0: Initial left hand matrix Mw0: Initial right hand matrix nc: NMF rank tolerance: Convergence threshold precision: Replace 0-values in multiplication rules LogIter: Log results through iterations MaxIterations: Max iterations NMFAlgo: =1,3: Divergence; =2,4: Least squares; NMFFixUserLHE: = 1 => fixed left hand matrix columns NMFFixUserRHE: = 1 => fixed right hand matrix columns NMFMaxInterm: Max iterations for warmup multiplication rules NMFSparseLevel: Requested sparsity in terms of relative number of rows with 0 values in right hand matrix NMFRobustResampleColumns: Resample columns during bootstrap NMFRobustNRuns: Number of bootstrap runs NMFCalculateLeverage: Calculate leverages NMFUseRobustLeverage: Calculate leverages based on robust max across factoring columns NMFFindParts: Enforce convexity on left hand matrix NMFFindCentroids: Enforce convexity on right hand matrix NMFKernel: Type of kernel used; 1: linear; 2: quadraitc; 3: radial NMFReweighColumns: Reweigh columns in 2nd step of parts-based NMF NMFPriors: Priors on right hand matrix Output: Mt: Left hand matrix Mw: Right hand matrix MtPct: Percent robust clustered rows MwPct: Percent robust clustered columns diff: Objective minimum achieved Mh: Convexity matrix flagNonconvex: Updated non-convexity flag on left hand matrix """ # Check parameter consistency (and correct if needed) AddMessage = [] ErrMessage ='' cancel_pressed = 0 nc = int(nc) if NMFFixUserLHE*NMFFixUserRHE == 1: return Mt0, Mw0, np.array([]), np.array([]), 0, np.array([]), 0, AddMessage, ErrMessage, cancel_pressed if (nc == 1) & (NMFAlgo > 2): NMFAlgo -= 2 if NMFAlgo <= 2: NMFRobustNRuns = 0 Mmis = Mmis.astype(np.int) n_Mmis = Mmis.shape[0] if n_Mmis == 0: ID = np.where(np.isnan(M) == True) n_Mmis = ID[0].size if n_Mmis > 0: Mmis = (np.isnan(M) == False) Mmis = Mmis.astype(np.int) M[Mmis == 0] = 0 else: M[Mmis == 0] = 0 if NMFRobustResampleColumns > 0: M = np.copy(M).T if n_Mmis > 0: Mmis = np.copy(Mmis).T Mtemp = np.copy(Mw0) Mw0 = np.copy(Mt0) Mt0 = Mtemp NMFFixUserLHEtemp = NMFFixUserLHE NMFFixUserLHE = NMFFixUserRHE NMFFixUserRHE = NMFFixUserLHEtemp n, p = M.shape try: n_NMFPriors, nc = NMFPriors.shape except: n_NMFPriors = 0 NMFRobustNRuns = int(NMFRobustNRuns) MtPct = np.nan MwPct = np.nan flagNonconvex = 0 # Step 1: NMF Status = "Step 1 - NMF Ncomp=" + str(nc) + ": " Mt, Mw, diffsup, Mhsup, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed = NMFSolve( M, Mmis, Mt0, Mw0, nc, tolerance, precision, LogIter, Status, MaxIterations, NMFAlgo, NMFFixUserLHE, NMFFixUserRHE, NMFMaxInterm, 100, NMFSparseLevel, NMFFindParts, NMFFindCentroids, NMFKernel, NMFReweighColumns, NMFPriors, flagNonconvex, AddMessage, myStatusBox) Mtsup = np.copy(Mt) Mwsup = np.copy(Mw) if (n_NMFPriors > 0) & (NMFReweighColumns > 0): # Run again with fixed LHE & no priors Status = "Step 1bis - NMF (fixed LHE) Ncomp=" + str(nc) + ": " Mw = np.ones((p, nc)) / math.sqrt(p) Mt, Mw, diffsup, Mh, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed = NMFSolve( M, Mmis, Mtsup, Mw, nc, tolerance, precision, LogIter, Status, MaxIterations, NMFAlgo, nc, 0, NMFMaxInterm, 100, NMFSparseLevel, NMFFindParts, NMFFindCentroids, NMFKernel, 0, NMFPriors, flagNonconvex, AddMessage, myStatusBox) Mtsup = np.copy(Mt) Mwsup = np.copy(Mw) # Bootstrap to assess robust clustering if NMFRobustNRuns > 1: # Update Mwsup MwPct = np.zeros((p, nc)) MwBlk = np.zeros((p, NMFRobustNRuns * nc)) for iBootstrap in range(0, NMFRobustNRuns): Boot = np.random.randint(n, size=n) Status = "Step 2 - " + \ "Boot " + str(iBootstrap + 1) + "/" + str(NMFRobustNRuns) + " NMF Ncomp=" + str(nc) + ": " if n_Mmis > 0: Mt, Mw, diff, Mh, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed = NMFSolve( M[Boot, :], Mmis[Boot, :], Mtsup[Boot, :], Mwsup, nc, 1.e-3, precision, LogIter, Status, MaxIterations, NMFAlgo, nc, 0, NMFMaxInterm, 20, NMFSparseLevel, NMFFindParts, NMFFindCentroids, NMFKernel, NMFReweighColumns, NMFPriors, flagNonconvex, AddMessage, myStatusBox) else: Mt, Mw, diff, Mh, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed = NMFSolve( M[Boot, :], Mmis, Mtsup[Boot, :], Mwsup, nc, 1.e-3, precision, LogIter, Status, MaxIterations, NMFAlgo, nc, 0, NMFMaxInterm, 20, NMFSparseLevel, NMFFindParts, NMFFindCentroids, NMFKernel, NMFReweighColumns, NMFPriors, flagNonconvex, AddMessage, myStatusBox) for k in range(0, nc): MwBlk[:, k * NMFRobustNRuns + iBootstrap] = Mw[:, k] Mwn = np.zeros((p, nc)) for k in range(0, nc): if (NMFAlgo == 2) | (NMFAlgo == 4): ScaleMw = np.linalg.norm(MwBlk[:, k * NMFRobustNRuns + iBootstrap]) else: ScaleMw = np.sum(MwBlk[:, k * NMFRobustNRuns + iBootstrap]) if ScaleMw > 0: MwBlk[:, k * NMFRobustNRuns + iBootstrap] = \ MwBlk[:, k * NMFRobustNRuns + iBootstrap] / ScaleMw Mwn[:, k] = MwBlk[:, k * NMFRobustNRuns + iBootstrap] ColClust = np.zeros(p, dtype=int) if NMFCalculateLeverage > 0: Mwn, AddMessage, ErrMessage, cancel_pressed = Leverage(Mwn, NMFUseRobustLeverage, AddMessage, myStatusBox) for j in range(0, p): ColClust[j] = np.argmax(np.array(Mwn[j, :])) MwPct[j, ColClust[j]] = MwPct[j, ColClust[j]] + 1 MwPct = MwPct / NMFRobustNRuns # Update Mtsup MtPct = np.zeros((n, nc)) for iBootstrap in range(0, NMFRobustNRuns): Status = "Step 3 - " + \ "Boot " + str(iBootstrap + 1) + "/" + str(NMFRobustNRuns) + " NMF Ncomp=" + str(nc) + ": " Mw = np.zeros((p, nc)) for k in range(0, nc): Mw[:, k] = MwBlk[:, k * NMFRobustNRuns + iBootstrap] Mt, Mw, diff, Mh, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed = NMFSolve( M, Mmis, Mtsup, Mw, nc, 1.e-3, precision, LogIter, Status, MaxIterations, NMFAlgo, 0, nc, NMFMaxInterm, 20, NMFSparseLevel, NMFFindParts, NMFFindCentroids, NMFKernel, NMFReweighColumns, NMFPriors, flagNonconvex, AddMessage, myStatusBox) RowClust = np.zeros(n, dtype=int) if NMFCalculateLeverage > 0: Mtn, AddMessage, ErrMessage, cancel_pressed = Leverage(Mt, NMFUseRobustLeverage, AddMessage, myStatusBox) else: Mtn = Mt for i in range(0, n): RowClust[i] = np.argmax(Mtn[i, :]) MtPct[i, RowClust[i]] = MtPct[i, RowClust[i]] + 1 MtPct = MtPct / NMFRobustNRuns Mt = Mtsup Mw = Mwsup Mh = Mhsup diff = diffsup if NMFRobustResampleColumns > 0: Mtemp = np.copy(Mt) Mt = np.copy(Mw) Mw = Mtemp Mtemp = np.copy(MtPct) MtPct = np.copy(MwPct) MwPct = Mtemp return Mt, Mw, MtPct, MwPct, diff, Mh, flagNonconvex, AddMessage, ErrMessage, cancel_pressed def NTFInit(M, Mmis, Mt_nmf, Mw_nmf, nc, tolerance, precision, LogIter, NTFUnimodal, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, init_type, myStatusBox): """Initialize NTF components for HALS Input: M: Input tensor Mmis: Define missing values (0 = missing cell, 1 = real cell) Mt_nmf: initialization of LHM in NMF(unstacked tensor), may be empty Mw_nmf: initialization of RHM of NMF(unstacked tensor), may be empty nc: NTF rank tolerance: Convergence threshold precision: Replace 0-values in multiplication rules LogIter: Log results through iterations NTFUnimodal: Apply Unimodal constraint on factoring vectors NTFLeftComponents: Apply Unimodal/Smooth constraint on left hand matrix NTFRightComponents: Apply Unimodal/Smooth constraint on right hand matrix NTFBlockComponents: Apply Unimodal/Smooth constraint on block hand matrix NBlocks: Number of NTF blocks init_type : integer, default 0 init_type = 0 : NMF initialization applied on the reshaped matrix [1st dim x vectorized (2nd & 3rd dim)] init_type = 1 : NMF initialization applied on the reshaped matrix [vectorized (1st & 2nd dim) x 3rd dim] Output: Mt: Left hand matrix Mw: Right hand matrix Mb: Block hand matrix """ AddMessage = [] n, p = M.shape Mmis = Mmis.astype(np.int) n_Mmis = Mmis.shape[0] if n_Mmis == 0: ID = np.where(np.isnan(M) == True) n_Mmis = ID[0].size if n_Mmis > 0: Mmis = (np.isnan(M) == False) Mmis = Mmis.astype(np.int) M[Mmis == 0] = 0 nc = int(nc) NBlocks = int(NBlocks) init_type = int(init_type) Status0 = "Step 1 - Quick NMF Ncomp=" + str(nc) + ": " if init_type == 1: #Init legacy Mstacked, Mmis_stacked = NTFStack(M, Mmis, NBlocks) nc2 = min(nc, NBlocks) # factorization rank can't be > number of blocks if (Mt_nmf.shape[0] == 0) or (Mw_nmf.shape[0] == 0): Mt_nmf, Mw_nmf = NMFInit(Mstacked, Mmis_stacked, np.array([]), np.array([]), nc2, tolerance, LogIter, myStatusBox) else: Mt_nmf, Mw_nmf = NMFInit(Mstacked, Mmis_stacked, Mt_nmf, Mw_nmf, nc2, tolerance, LogIter, myStatusBox) # Quick NMF Mt_nmf, Mw_nmf, diff, Mh, dummy1, dummy2, AddMessage, ErrMessage, cancel_pressed = NMFSolve( Mstacked, Mmis_stacked, Mt_nmf, Mw_nmf, nc2, tolerance, precision, LogIter, Status0, 10, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, np.array([]), 0, AddMessage, myStatusBox) # Factorize Left vectors and distribute multiple factors if nc2 < nc Mt = np.zeros((n, nc)) Mw = np.zeros((int(p / NBlocks), nc)) Mb = np.zeros((NBlocks, nc)) NFact = int(np.ceil(nc / NBlocks)) for k in range(0, nc2): myStatusBox.update_status(delay=1, status="Start SVD...") U, d, V = svds(np.reshape(Mt_nmf[:, k], (int(p / NBlocks), n)).T, k=NFact) V = V.T #svds returns singular vectors in reverse order U = U[:,::-1] V = V[:,::-1] d = d[::-1] myStatusBox.update_status(delay=1, status="SVD completed") for iFact in range(0, NFact): ind = iFact * NBlocks + k if ind < nc: U1 = U[:, iFact] U2 = -U[:, iFact] U1[U1 < 0] = 0 U2[U2 < 0] = 0 V1 = V[:, iFact] V2 = -V[:, iFact] V1[V1 < 0] = 0 V2[V2 < 0] = 0 U1 = np.reshape(U1, (n, 1)) V1 = np.reshape(V1, (1, int(p / NBlocks))) U2 = np.reshape(U2, (n, 1)) V2 = np.reshape(V2, ((1, int(p / NBlocks)))) if np.linalg.norm(U1 @ V1) > np.linalg.norm(U2 @ V2): Mt[:, ind] = np.reshape(U1, n) Mw[:, ind] = d[iFact] * np.reshape(V1, int(p / NBlocks)) else: Mt[:, ind] = np.reshape(U2, n) Mw[:, ind] = d[iFact] * np.reshape(V2, int(p / NBlocks)) Mb[:, ind] = Mw_nmf[:, k] else: #Init default if (Mt_nmf.shape[0] == 0) or (Mw_nmf.shape[0] == 0): Mt_nmf, Mw_nmf = NMFInit(M, Mmis, np.array([]), np.array([]), nc, tolerance, LogIter, myStatusBox) else: Mt_nmf, Mw_nmf = NMFInit(M, Mmis, Mt_nmf, Mw_nmf, nc, tolerance, LogIter, myStatusBox) # Quick NMF Mt_nmf, Mw_nmf, diff, Mh, dummy1, dummy2, AddMessage, ErrMessage, cancel_pressed = NMFSolve( M, Mmis, Mt_nmf, Mw_nmf, nc, tolerance, precision, LogIter, Status0, 10, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, np.array([]), 0, AddMessage, myStatusBox) #Factorize Left vectors Mt = np.zeros((n, nc)) Mw = np.zeros((int(p / NBlocks), nc)) Mb = np.zeros((NBlocks, nc)) for k in range(0, nc): myStatusBox.update_status(delay=1, status="Start SVD...") U, d, V = svds(np.reshape(Mw_nmf[:, k], (int(p / NBlocks), NBlocks)), k=1) V = V.T U = np.abs(U) V = np.abs(V) myStatusBox.update_status(delay=1, status="SVD completed") Mt[:, k] = Mt_nmf[:, k] Mw[:, k] = d[0] * np.reshape(U, int(p / NBlocks)) Mb[:, k] = np.reshape(V, NBlocks) for k in range(0, nc): if (NTFUnimodal > 0) & (NTFLeftComponents > 0): # Enforce unimodal distribution tmax = np.argmax(Mt[:, k]) for i in range(tmax + 1, n): Mt[i, k] = min(Mt[i - 1, k], Mt[i, k]) for i in range(tmax - 1, -1, -1): Mt[i, k] = min(Mt[i + 1, k], Mt[i, k]) if (NTFUnimodal > 0) & (NTFRightComponents > 0): # Enforce unimodal distribution wmax = np.argmax(Mw[:, k]) for j in range(wmax + 1, int(p / NBlocks)): Mw[j, k] = min(Mw[j - 1, k], Mw[j, k]) for j in range(wmax - 1, -1, -1): Mw[j, k] = min(Mw[j + 1, k], Mw[j, k]) if (NTFUnimodal > 0) & (NTFBlockComponents > 0): # Enforce unimodal distribution bmax = np.argmax(Mb[:, k]) for iBlock in range(bmax + 1, NBlocks): Mb[iBlock, k] = min(Mb[iBlock - 1, k], Mb[iBlock, k]) for iBlock in range(bmax - 1, -1, -1): Mb[iBlock, k] = min(Mb[iBlock + 1, k], Mb[iBlock, k]) return [Mt, Mw, Mb, AddMessage, ErrMessage, cancel_pressed] def rNTFSolve(M, Mmis, Mt0, Mw0, Mb0, nc, tolerance, precision, LogIter, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NMFAlgo, NMFRobustNRuns, NMFCalculateLeverage, NMFUseRobustLeverage, NTFFastHALS, NTFNIterations, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox): """Estimate NTF matrices (robust version) Input: M: Input matrix Mmis: Define missing values (0 = missing cell, 1 = real cell) Mt0: Initial left hand matrix Mw0: Initial right hand matrix Mb0: Initial block hand matrix nc: NTF rank tolerance: Convergence threshold precision: Replace 0-values in multiplication rules LogIter: Log results through iterations MaxIterations: Max iterations NMFFixUserLHE: fix left hand matrix columns: = 1, else = 0 NMFFixUserRHE: fix right hand matrix columns: = 1, else = 0 NMFFixUserBHE: fix block hand matrix columns: = 1, else = 0 NMFAlgo: =5: Non-robust version, =6: Robust version NMFRobustNRuns: Number of bootstrap runs NMFCalculateLeverage: Calculate leverages NMFUseRobustLeverage: Calculate leverages based on robust max across factoring columns NTFFastHALS: Use Fast HALS (does not accept handle missing values and convolution) NTFNIterations: Warmup iterations for fast HALS NMFSparseLevel : sparsity level (as defined by Hoyer); +/- = make RHE/LHe sparse NTFUnimodal: Apply Unimodal constraint on factoring vectors NTFSmooth: Apply Smooth constraint on factoring vectors NTFLeftComponents: Apply Unimodal/Smooth constraint on left hand matrix NTFRightComponents: Apply Unimodal/Smooth constraint on right hand matrix NTFBlockComponents: Apply Unimodal/Smooth constraint on block hand matrix NBlocks: Number of NTF blocks NTFNConv: Half-Size of the convolution window on 3rd-dimension of the tensor NMFPriors: Elements in Mw that should be updated (others remain 0) Output: Mt_conv: Convolutional Left hand matrix Mt: Left hand matrix Mw: Right hand matrix Mb: Block hand matrix MtPct: Percent robust clustered rows MwPct: Percent robust clustered columns diff : Objective minimum achieved """ AddMessage = [] ErrMessage = '' cancel_pressed = 0 n, p0 = M.shape nc = int(nc) NBlocks = int(NBlocks) p = int(p0 / NBlocks) NTFNConv = int(NTFNConv) if NMFFixUserLHE*NMFFixUserRHE*NMFFixUserBHE == 1: return np.zeros((n, nc*(2*NTFNConv+1))), Mt0, Mw0, Mb0, np.zeros((n, p0)), np.ones((n, nc)), np.ones((p, nc)), AddMessage, ErrMessage, cancel_pressed Mmis = Mmis.astype(np.int) n_Mmis = Mmis.shape[0] if n_Mmis == 0: ID = np.where(np.isnan(M) == True) n_Mmis = ID[0].size if n_Mmis > 0: Mmis = (np.isnan(M) == False) Mmis = Mmis.astype(np.int) M[Mmis == 0] = 0 else: M[Mmis == 0] = 0 NTFNIterations = int(NTFNIterations) NMFRobustNRuns = int(NMFRobustNRuns) Mt = np.copy(Mt0) Mw = np.copy(Mw0) Mb = np.copy(Mb0) Mt_conv = np.array([]) # Check parameter consistency (and correct if needed) if (nc == 1) | (NMFAlgo == 5): NMFRobustNRuns = 0 if NMFRobustNRuns == 0: MtPct = np.nan MwPct = np.nan if (n_Mmis > 0 or NTFNConv > 0 or NMFSparseLevel != 0) and NTFFastHALS > 0: NTFFastHALS = 0 reverse2HALS = 1 else: reverse2HALS = 0 # Step 1: NTF Status0 = "Step 1 - NTF Ncomp=" + str(nc) + ": " if NTFFastHALS > 0: if NTFNIterations > 0: Mt_conv, Mt, Mw, Mb, diff, cancel_pressed = NTFSolve( M, Mmis, Mt, Mw, Mb, nc, tolerance, LogIter, Status0, NTFNIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, 0, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox) Mt, Mw, Mb, diff, cancel_pressed = NTFSolveFast( M, Mmis, Mt, Mw, Mb, nc, tolerance, precision, LogIter, Status0, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, myStatusBox) else: Mt_conv, Mt, Mw, Mb, diff, cancel_pressed = NTFSolve( M, Mmis, Mt, Mw, Mb, nc, tolerance, LogIter, Status0, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox) Mtsup = np.copy(Mt) Mwsup = np.copy(Mw) Mbsup = np.copy(Mb) diff_sup = diff # Bootstrap to assess robust clustering if NMFRobustNRuns > 1: # Update Mwsup MwPct = np.zeros((p, nc)) MwBlk = np.zeros((p, NMFRobustNRuns * nc)) for iBootstrap in range(0, NMFRobustNRuns): Boot = np.random.randint(n, size=n) Status0 = "Step 2 - " + \ "Boot " + str(iBootstrap + 1) + "/" + str(NMFRobustNRuns) + " NTF Ncomp=" + str(nc) + ": " if NTFFastHALS > 0: if n_Mmis > 0: Mt, Mw, Mb, diff, cancel_pressed = NTFSolveFast( M[Boot, :], Mmis[Boot, :], Mtsup[Boot, :], Mwsup, Mb, nc, 1.e-3, precision, LogIter, Status0, MaxIterations, 1, 0, NMFFixUserBHE, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, myStatusBox) else: Mt, Mw, Mb, diff, cancel_pressed = NTFSolveFast( M[Boot, :], np.array([]), Mtsup[Boot, :], Mwsup, Mb, nc, 1.e-3, precision, LogIter, Status0, MaxIterations, 1, 0, NMFFixUserBHE, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, myStatusBox) else: if n_Mmis > 0: Mt_conv, Mt, Mw, Mb, diff, cancel_pressed = NTFSolve( M[Boot, :], Mmis[Boot, :], Mtsup[Boot, :], Mwsup, Mb, nc, 1.e-3, LogIter, Status0, MaxIterations, 1, 0, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox) else: Mt_conv, Mt, Mw, Mb, diff, cancel_pressed = NTFSolve( M[Boot, :], np.array([]), Mtsup[Boot, :], Mwsup, Mb, nc, 1.e-3, LogIter, Status0, MaxIterations, 1, 0, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox) for k in range(0, nc): MwBlk[:, k * NMFRobustNRuns + iBootstrap] = Mw[:, k] Mwn = np.zeros((p, nc)) for k in range(0, nc): ScaleMw = np.linalg.norm(MwBlk[:, k * NMFRobustNRuns + iBootstrap]) if ScaleMw > 0: MwBlk[:, k * NMFRobustNRuns + iBootstrap] = \ MwBlk[:, k * NMFRobustNRuns + iBootstrap] / ScaleMw Mwn[:, k] = MwBlk[:, k * NMFRobustNRuns + iBootstrap] ColClust = np.zeros(p, dtype=int) if NMFCalculateLeverage > 0: Mwn, AddMessage, ErrMessage, cancel_pressed = Leverage(Mwn, NMFUseRobustLeverage, AddMessage, myStatusBox) for j in range(0, p): ColClust[j] = np.argmax(np.array(Mwn[j, :])) MwPct[j, ColClust[j]] = MwPct[j, ColClust[j]] + 1 MwPct = MwPct / NMFRobustNRuns # Update Mtsup MtPct = np.zeros((n, nc)) for iBootstrap in range(0, NMFRobustNRuns): Status0 = "Step 3 - " + \ "Boot " + str(iBootstrap + 1) + "/" + str(NMFRobustNRuns) + " NTF Ncomp=" + str(nc) + ": " Mw = np.zeros((p, nc)) for k in range(0, nc): Mw[:, k] = MwBlk[:, k * NMFRobustNRuns + iBootstrap] if NTFFastHALS > 0: Mt, Mw, Mb, diff, cancel_pressed = NTFSolveFast( M, Mmis, Mtsup, Mw, Mb, nc, 1.e-3, precision, LogIter, Status0, MaxIterations, 0, 1, NMFFixUserBHE, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, myStatusBox) else: Mt_conv, Mt, Mw, Mb, diff, cancel_pressed = NTFSolve( M, Mmis, Mtsup, Mw, Mb, nc, 1.e-3, LogIter, Status0, MaxIterations, 0, 1, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox) RowClust = np.zeros(n, dtype=int) if NMFCalculateLeverage > 0: Mtn, AddMessage, ErrMessage, cancel_pressed = Leverage(Mt, NMFUseRobustLeverage, AddMessage, myStatusBox) else: Mtn = Mt for i in range(0, n): RowClust[i] = np.argmax(Mtn[i, :]) MtPct[i, RowClust[i]] = MtPct[i, RowClust[i]] + 1 MtPct = MtPct / NMFRobustNRuns Mt = Mtsup Mw = Mwsup Mb = Mbsup diff = diff_sup if reverse2HALS > 0: AddMessage.insert(len(AddMessage), 'Currently, Fast HALS cannot be applied with missing data or convolution window and was reversed to Simple HALS.') return Mt_conv, Mt, Mw, Mb, MtPct, MwPct, diff, AddMessage, ErrMessage, cancel_pressed def rSVDSolve(M, Mmis, nc, tolerance, LogIter, LogTrials, Status0, MaxIterations, SVDAlgo, SVDCoverage, SVDNTrials, myStatusBox): """Estimate SVD matrices (robust version) Input: M: Input matrix Mmis: Define missing values (0 = missing cell, 1 = real cell) nc: SVD rank tolerance: Convergence threshold LogIter: Log results through iterations LogTrials: Log results through trials Status0: Initial displayed status to be updated during iterations MaxIterations: Max iterations SVDAlgo: =1: Non-robust version, =2: Robust version SVDCoverage: Coverage non-outliers (robust version) SVDNTrials: Number of trials (robust version) Output: Mt: Left hand matrix Mev: Scaling factors Mw: Right hand matrix Mmis: Matrix of missing/flagged outliers Mmsr: Vector of Residual SSQ Mmsr2: Vector of Reidual variance Reference --------- L. Liu et al (2003) Robust singular value decomposition analysis of microarray data PNAS November 11, 2003 vol. 100 no. 23 13167–13172 """ AddMessage = [] ErrMessage = '' cancel_pressed = 0 # M0 is the running matrix (to be factorized, initialized from M) M0 = np.copy(M) n, p = M0.shape Mmis = Mmis.astype(np.bool_) n_Mmis = Mmis.shape[0] if n_Mmis > 0: M0[Mmis == False] = np.nan else: Mmis = (np.isnan(M0) == False) Mmis = Mmis.astype(np.bool_) n_Mmis = Mmis.shape[0] trace0 = np.sum(M0[Mmis] ** 2) nc = int(nc) SVDNTrials = int(SVDNTrials) nxp = n * p nxpcov = int(round(nxp * SVDCoverage, 0)) Mmsr = np.zeros(nc) Mmsr2 = np.zeros(nc) Mev = np.zeros(nc) if SVDAlgo == 2: MaxTrial = SVDNTrials else: MaxTrial = 1 Mw = np.zeros((p, nc)) Mt = np.zeros((n, nc)) Mdiff = np.zeros((n, p)) w = np.zeros(p) t = np.zeros(n) wTrial = np.zeros(p) tTrial = np.zeros(n) MmisTrial = np.zeros((n, p), dtype=np.bool) # Outer-reference M becomes local reference M, which is the running matrix within ALS/LTS loop. M = np.zeros((n, p)) wnorm = np.zeros((p, n)) tnorm = np.zeros((n, p)) denomw = np.zeros(n) denomt =
np.zeros(p)
numpy.zeros
import json import logging import os from typing import List, Dict import click import numpy as np import tensorflow as tf from sklearn.metrics import cohen_kappa_score, precision_recall_fscore_support, accuracy_score from tqdm import tqdm from discopy.components.component import Component from discopy.components.connective.base import get_connective_candidates from discopy.evaluate.conll import evaluate_docs, print_results from discopy.utils import init_logger from discopy_data.data.doc import Document from discopy_data.data.loaders.conll import load_bert_conll_dataset from discopy_data.data.relation import Relation logger = logging.getLogger('discopy') def get_conn_model(in_size, out_size, hidden_size, hidden_size2=256): x = y = tf.keras.layers.Input(shape=(in_size,), name='connective') y = tf.keras.layers.Dense(hidden_size, kernel_initializer='lecun_normal', activation='selu')(y) y = tf.keras.layers.Dropout(0.3)(y) y = tf.keras.layers.Dense(hidden_size2, kernel_initializer='lecun_normal', activation='selu')(y) y = tf.keras.layers.Dropout(0.3)(y) y = tf.keras.layers.Dense(out_size, activation='softmax')(y) model = tf.keras.models.Model(x, y) optimizer = tf.keras.optimizers.RMSprop() model.compile(optimizer, 'sparse_categorical_crossentropy', metrics=[ "accuracy", ]) return model def get_bert_features(idxs, doc_bert, used_context=0): idxs = list(idxs) pad =
np.zeros_like(doc_bert[0])
numpy.zeros_like
import numpy as np import random import time from matplotlib import pyplot as plt import pandas as pd from scipy.interpolate import interp1d from scipy.optimize import curve_fit from scipy.special import gammainc from itertools import islice # Initialize random number generator: np.random.seed(int(100*time.perf_counter())) ## ---------------------------------------------------------------------------- ## --------------------------- Plotting functions ----------------------------- ## ---------------------------------------------------------------------------- def KMG_analysis(events, times): """ Kaplan-Meier survivial funciton with greenwood's forumla to estimate variance. Args: ------- events: times: """ S = np.ones(len(times)+1) #survival probability S[0] = 1 V = np.ones(len(times)+1) #variance of S (Greenwood's formula) V_cumulative = np.zeros(len(times)+1) V[0] = 0 num_of_events = np.sum(events) for i, times in enumerate(times): S[i] = S[i-1] * (1 - events[i-1]/num_of_events) V_cumulative[i] = V_cumulative[i-1] + events[i-1]/(num_of_events*(num_of_events-events[i-1])) V[i] = S[i]**2 * V_cumulative[i] return S, V def distribution_alternatives(distribution, num_alter, overlap): """ include "new" error function for cumulative distributions Args: ------ distribution: list, array Original data to compare to. num_alter: int Number of alternative distributions to generate overlap: int, float What fraction to (randomly) draw from original one. """ if overlap < 1: # Assume that fraction between 0 and 1 was given overlap = int(np.ceil(overlap*len(distribution))) else: # Assume that overlap was given as number of desired elements (not percentage!) print("Overlap given will not be interpreted as percentage!") overlap = int(overlap) num_initial = len(distribution) distribution_alternatives = np.zeros((overlap, num_alter)) if distribution[0] == 0: #if (cumulative) distribution sorted and startins from 0 for i in range(0, num_alter): random_index = random.sample(range(1, num_initial), overlap-1) random_index = np.append(random_index, 0) random_index = np.sort(random_index) distribution_alternatives[:,i] = distribution[random_index] else: for i in range(0, num_alter): random_index = random.sample(range(0, num_initial), overlap) random_index = np.sort(random_index) distribution_alternatives[:,i] = distribution[random_index] return distribution_alternatives def distribution_compare(Cum_hist1, Cum_hist2, num_interpol=10000): """ Function to compare to input distributions. Args: -------- Cum_hist1: list, array #TODO: check! Cum_hist2: list, array #TODO: check! num_interpol: int, optional Number of interpolation bins. Default = 10000. """ y1 = 1/(len(Cum_hist1)-1) * np.arange(0, len(Cum_hist1) , 1) y2 = 1/(len(Cum_hist2)-1) * np.arange(0, len(Cum_hist2) , 1) fit1 = interp1d(Cum_hist1, y1, kind='nearest') fit2 = interp1d(Cum_hist2, y2, kind='nearest') xnew = np.linspace(0,min(max(Cum_hist1),max(Cum_hist2)), num=num_interpol) # only look at first 95% (ignore weird end) return (np.mean((fit1(xnew) - fit2(xnew))**2)) def valid_EB_runs(simPa, EB_comet_sum, barrier_contact_times = []): """ Function to select valid runs (runs longer than min_length_run). Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. EB_comet_sum: list List containing EB counts in comet. #TODO: check barrier_contact_times: list List containing barrier contact times. """ # Select valid runs b = [] if simPa.barrier: # if barrier present for a in range(0, len(EB_comet_sum)): b.append(len(EB_comet_sum[a]) * simPa.frame_rate_actual - barrier_contact_times[a]) else: for a in range(0, len(EB_comet_sum)): b.append(len(EB_comet_sum[a]) * simPa.frame_rate_actual) valid_runs = np.where(np.array(b) > simPa.min_length_run)[0] return valid_runs def analyse_EB_signal(simPa, EB_comet_sum, barrier_contact_times): """ Function to analyse EB signal Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. EB_comet_sum: list List containing EB counts in comet. #TODO: check barrier_contact_times: list List containing barrier contact times. """ # Select valid runs valid_runs = valid_EB_runs(simPa, EB_comet_sum, barrier_contact_times) max_barrier_contact_frames = int(round(np.max(barrier_contact_times/simPa.frame_rate_actual),0)) min_length_run_frames = int(simPa.min_length_run/simPa.frame_rate_actual) frame_window = min_length_run_frames + max_barrier_contact_frames EB_signal = np.zeros((len(valid_runs), frame_window+1)) #simPa.min_length_run+1+max_barrier_contact)) #put individual runs into one np.array normalize_EB_signal = np.zeros(frame_window+1) #simPa.min_length_run+1+max_barrier_contact) for a in range(0,len(valid_runs)): frame_barrier_contact = int(np.round(barrier_contact_times[valid_runs[a]]/simPa.frame_rate_actual,0)) EB_signal[a][(max_barrier_contact_frames-frame_barrier_contact):frame_window] \ = np.array(EB_comet_sum[valid_runs[a]])[0:(min_length_run_frames+frame_barrier_contact)] normalize_EB_signal[(max_barrier_contact_frames-frame_barrier_contact):frame_window] +=1 EB_signal_average = np.sum(EB_signal, axis=0) EB_signal_average = EB_signal_average/normalize_EB_signal return EB_signal, EB_signal_average, max_barrier_contact_frames, min_length_run_frames, frame_window def analyse_EB_profile(simPa, MT_length_full, EB_profiles, w_size): """ Calculate the mean GTP/GDP-Pi (or EB) profile at the microtubule end during steady-state growth. The resulting profile is not convolved wit a Gaussian and thus represents the theoretical profile. Args: ------ simPa: parameter set Simulation parameters in "ParameterSet" format. TODO: add documentation ... """ # Initialize arays v_mean = [] EB_mean = [] # Microscope parameters resolution = 0.25 #um # Number of dimers in PSF resolution_dimers = int(np.ceil(resolution/simPa.dL_dimer)) # Loop over number of simulated microtubules count = 0 for num_run in range(len(MT_length_full)): # Obtain the time and length arrays time = np.arange(0, len(MT_length_full[num_run]), 1) * simPa.frame_rate_actual MT_length = (np.asarray(MT_length_full[num_run]) - MT_length_full[num_run][0]) * simPa.dL_dimer *1000 # Calculate mean growth speed v = np.polyfit(time, MT_length, 1) v_mean.append(v[0]) if simPa.steady_state_analysis: # Find the local mean growth speeds in order to exclude pausing state from the profile analysis if len(MT_length) > w_size: di = 0 v_fit = np.zeros(len(MT_length) - w_size + 1) for i in window(MT_length, w_size): v_fit[di] = np.polyfit(np.linspace(0, simPa.frame_rate_actual*w_size-1, w_size), i, 1)[0] di = di + 1 else: v_fit = [] # Set velocity threshold v_thres = 0.6 # Identify steady-state growth events in the trace matches = [i for i, x in enumerate(v_fit) if x > v_thres*v_mean[-1]] matches = np.asarray(matches) + w_size//2 if matches.size > 0: for mm in matches: # Extend the EB profile array EB_new = np.append(EB_profiles[num_run][mm], np.zeros(resolution_dimers)) if count > 0: EB_mean = EB_mean*(count/(count+1)) + EB_new*(1/(count+1)) count += 1 else: EB_mean = EB_new count += 1 else: # Include the complete growth trajectory to calculate the mean profile for mm in range(len(EB_profiles[num_run])-1): # Extend the EB profile array EB_new = np.append(EB_profiles[num_run][mm], np.zeros(resolution_dimers)) if count > 0: EB_mean = EB_mean*(count/(count+1)) + EB_new*(1/(count+1)) count += 1 else: EB_mean = EB_new count += 1 return EB_mean, v_mean # ----------------------------------------------------------------------------- # -------------------------- Small helper functions --------------------------- # ----------------------------------------------------------------------------- def frange(start, stop, step): """ Function as alternative for "range, since "range" does not support floats. """ i = start while i < stop: yield i i += step def list_dim(lst): """ Function to return the dimension of a list (e.g. nested list). """ if not type(lst) == list: return 0 return len(lst) + list_dim(lst[0]) # Define Gaussian distribution def gaussian(x, mu, sig): return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))) def gamma_cdf(x, n, r): return gammainc(n, r*x) def exp_cdf(x, k): return 1 - np.exp(-k*x) # Define a sliding window def window(seq, n): """ Generater that returns a sliding window (of width n) over data from the iterable/ s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... """ it = iter(seq) result = tuple(islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + (elem,) yield result # ----------------------------------------------------------------------------- # ----------------------------- Figure functions ------------------------------ # ----------------------------------------------------------------------------- # Figure styles from matplotlib.font_manager import FontProperties font = FontProperties() font.set_family('sans-serif') font.set_style('normal') font.set_weight('light') def fig_sim_verification(simPa, file_figure, num_fig, MT_length_full, cap_end, d_steps=1): """ Compare the fixed parameter v_g and D_tip with the simulated results. d_steps = 2 # in time_steps Args: ------ simPa: parameter set Simulation parameters in "ParameterSet" format file_figure: str Folder for storing figures and data num_fig: int Figure number MT_length_full: numpy array ? #TODO:check ... cap_end ... d_steps: ... """ # Calculate the growth fluctuations v_fluc = [] c_fluc = [] # Remove cap=seed position L_seed = int(np.ceil(simPa.tip_window/simPa.dL_dimer)) for i in range(len(cap_end)): cap_temp = cap_end index = np.argmax(np.asarray(cap_end[i]) > L_seed) del cap_temp[i][:index] cap_end_ss = cap_temp for i in range(len(MT_length_full)): v_fluc.extend(np.diff(MT_length_full[i])) c_fluc.extend(np.diff(cap_end_ss[i])) sample_size = len(c_fluc) c_fluc = np.sort(c_fluc) index = np.argmax(np.asarray(c_fluc) > 0) c_fluc = c_fluc[int(index):] v_fluc = np.asarray(v_fluc)*(simPa.dL_dimer*1000) c_fluc = np.asarray(c_fluc)*(simPa.dL_dimer*1000) # Calculate the growth distribution based on the fixed parameters mu = simPa.growth_rate_one*simPa.frame_rate_actual # mean growth rate in dimers/frame sig = ((2*simPa.D_tip*(simPa.frame_rate_actual*d_steps))**0.5) x = np.arange(mu-5*sig, mu+5*sig, 1) G = gaussian(x, mu, sig) G = G / np.sum(G) # normalize gaussian # Plot the results fig , (ax1, ax2) = plt.subplots(1,2, figsize=(12, 7)) ax1.hist(v_fluc, bins = 60, density = True, color = "skyblue", label = "simulated data") ax1.plot(x, G, 'r', label = "theoretical distribution") ax2.hist(c_fluc, bins = 60, density = True, color = "skyblue", label = "simulated data") move = len(c_fluc)/sample_size pause = 1 - move step_mean = np.mean(c_fluc) step_std = np.std(c_fluc) if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename + '.eps', format='eps', dpi=1000) plt.savefig(filename + '.png', format='png', dpi=200) plt.show() print('Pausing probability: %.2f' %pause) print('Step probability: %.2f' %float(1-pause)) print('Mean step size: %.1f +- %.1f nm' %(step_mean, step_std)) print('Mean pausing duration: %.2f sec ' %float(step_mean/(simPa.growth_speed*1000/60))) def fig_cat_dist(simPa, file_figure, num_fig, catastrophe_times, Cum_dist_compare): """ Catastrophe distribution compared to data Args: ------ simPa: parameter set Simulation parameters in "ParameterSet" format file_figure: str Folder for storing figures and data num_fig: int Figure number catastrophe_times: numpy array Array of catastrophe times Cum_hist_compare: list, array #TODO: check Cumulative catastrophe time distribution for comparison """ if not isinstance(catastrophe_times, np.ndarray): print('Catastrophe times input format must be numpy array!') catastrophe_times = np.zeros(0) if catastrophe_times.shape[0] > 1: tau_c = np.mean(catastrophe_times) #i*dt/len(catastrophe_times) print('Mean catastrophe time: %.2f s' %tau_c) n_bins = int(np.ceil(len(catastrophe_times)/10)) fig = plt.figure(3) plt.clf() ## Compare to data bins=np.histogram(np.hstack((Cum_dist_compare,catastrophe_times)), bins=n_bins)[1] #get the bin edges Hist_exp, edges_exp = np.histogram(Cum_dist_compare, bins = bins) bin_width = edges_exp[1] plt.bar((edges_exp[:-1] + bin_width/2) , np.float_(Hist_exp)/(sum(Hist_exp)), bin_width, alpha=0.5, color='gray') Hist, edges = np.histogram(catastrophe_times, bins = bins) plt.plot((edges[1:] -edges[1]/2), np.float_(Hist)/(sum(Hist)),'r-', linewidth=1.0) #plt.title('Catastrophe distribution') plt.xlabel('time [s]') plt.ylabel('fraction of event') fig.suptitle('Catastrophe distribution', fontsize=14, fontweight='bold') plt.ax = fig.add_subplot(111) fig.subplots_adjust(top=0.9) #Add parameters to figure figtext = ['$v_{g} = %.2f \mu m/min$' %float(simPa.growth_rate_one*(60*simPa.dL_dimer))] figtext = ['$EB = %.2f \mu M$' %float(simPa.EB)] figtext.append('$D_{tip} = %.2f nm^2/s$)' %simPa.D_tip) figtext.append('Cap unstable when in state "C" ') figtext.append('in %r out of %r dimer layers.' %(int(simPa.unstable_cap_criteria-simPa.CAP_threshold),int(simPa.unstable_cap_criteria))) figtext.append('Tip states:B->C with the rates:' ) figtext.append('$k_{hyd} = %.3f s^{-1}$' %(simPa.kBC )) figtext.append('Results (n = %d) -------------------------------' %len(catastrophe_times)) figtext.append(r'$\tau_{C} = %.2f s$' %tau_c) figDX = 0.045 for m in range(len(figtext)): plt.ax.text(0.4, 0.9-m*figDX, figtext[m], fontproperties=font, verticalalignment='bottom', horizontalalignment='left', transform=plt.ax.transAxes, color='black', fontsize=8) if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() else: print('No proper input found.') def fig_cat_cumulative(simPa, file_figure, num_fig, Cum_dist, Cum_dist_compare = [0]): """ Plot cumulative catastrophe distribution (or barrier contact time distribution). Compare to (experimental) data if given. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. Cum_dist: list, array #TODO:check Cumulative catastrophe time distribution. Cum_hist_compare: list, array #TODO:check Cumulative catastrophe time distribution for comparison. """ fig = plt.figure(1, figsize=(12, 7)) plt.clf() # Check input cumulative distribution if isinstance(Cum_dist, list) and list_dim(Cum_dist) > 1 and list_dim(Cum_dist[0]) > 0: if isinstance(Cum_dist[0], np.ndarray): print(list_dim(Cum_dist), ' different cumulative distributions found. ') else: print('Error: Input cumulative distributions must be numpy arrays or lists of numpy arrays.' ) elif isinstance(Cum_dist, list) and list_dim(Cum_dist) == 1 and isinstance(Cum_dist[0], np.ndarray): pass; elif isinstance(Cum_dist, np.ndarray): Cum_dist = [Cum_dist] #put numpy array into list else: print('Error: Input cumulative distributions must be numpy arrays or lists of numpy arrays.' ) if len(Cum_dist_compare) > 1: # i.e.if comparison data is given if isinstance(Cum_dist_compare, list): if list_dim(Cum_dist_compare) == 1: comparing_index = np.zeros(list_dim(Cum_dist)) elif list_dim(Cum_dist_compare) == list_dim(Cum_dist): #Assume that one comparison distribution given for each Cum_dist + same ordering print('Function assumes same pairing of distributions: 1-1, 2-2, ... ') comparing_index = np.arange(0, list_dim(Cum_dist_compare)) else: print('Error: Dimension of comparison distribution(s) does not match.' ) comparing_index = [] elif isinstance(Cum_dist_compare, np.ndarray): Cum_dist_compare = [Cum_dist_compare] comparing_index = np.zeros(list_dim(Cum_dist)) else: print('Error: Input distributions must be numpy arrays or lists of numpy arrays.' ) comparing_index = [] if list_dim(Cum_dist) > 1: c_range = 1/(list_dim(Cum_dist)-1) else: c_range = 1 print(c_range) for i, Cum_dist in enumerate(Cum_dist): print((0.95*(i+1)*c_range, 0.1, 0.1)) plt.step(Cum_dist, 1/(len(Cum_dist)-1) * np.arange(0, len(Cum_dist) , 1), where='post', color=(0.95-0.7*(i)*c_range, 0.1, 0.1 + 0.8*(i)*c_range), linewidth=1.5, label='model results') if len(Cum_dist_compare) > 1: Cum_dist_compare_selected = Cum_dist_compare[int(comparing_index[i])] #generate and draw distributions of same length as experimental data print(Cum_dist_compare_selected.shape) print(comparing_index) overlap = Cum_dist_compare_selected.shape[0] print('overlap: ', overlap) num_distributions = 100 if overlap < len(Cum_dist): #needed: more simulation data points than experimental ones Cum_dist_variants = distribution_alternatives(Cum_dist, num_distributions, overlap) for m in range(0, num_distributions): plt.step(Cum_dist_variants[:,m], 1/(overlap-1) * np.arange(0, overlap , 1), where='post', color=(0.95-0.7*(i)*c_range, 0.3, 0.1 +0.8*(i)*c_range), alpha=0.25, linewidth=1.0) plt.step(Cum_dist_compare_selected, 1/(len(Cum_dist_compare_selected)-1) * np.arange(0, len(Cum_dist_compare_selected) , 1), where='post', color='black', linewidth=1.5, label='experimental data') if simPa.barrier: plt.title('Cumulative contact-time distribution') else: plt.title('Cumulative catastrophe time distribution') plt.xlabel('time [s]') plt.legend(fontsize=14) plt.ax = fig.add_subplot(111) fig.subplots_adjust(top=0.9) figtext = ['$v_{g} = %.2f \mu m/min$' %float(simPa.growth_rate_one*(60*simPa.dL_dimer))] figtext.append('$EB = %.2f \mu M$' %float(simPa.EB)) figtext.append('$D_{tip} = %.2f nm^2/s$)' %simPa.D_tip) figtext.append('Cap unstable when in state "C" ') figtext.append('in %r out of %r dimer layers.' %(int(simPa.unstable_cap_criteria-simPa.CAP_threshold),int(simPa.unstable_cap_criteria))) figtext.append('Tip states: B->C with the rates:' ) figtext.append('$k_{hyd} = %.3f s^{-1}$' %simPa.kBC) figtext.append('dt = %.2f s || V = %.2f um/s' %(simPa.dt, simPa.growth_rate_one*60*simPa.dL_dimer)) figtext.append('actual frame rate = %.2f /s' %simPa.frame_rate_actual) figDX = 0.045 for m in range(len(figtext)): plt.ax.text(0.6, 0.65-m*figDX, figtext[m], fontproperties=font, verticalalignment='bottom', horizontalalignment='left', transform=plt.ax.transAxes, color='black', fontsize=10) if simPa.record_data: file_figure = file_figure + '_fig' + str(int(num_fig)) plt.savefig(file_figure +'.pdf', format='pdf', dpi=1000) #, transparent=True) plt.savefig(file_figure +'.png', format='png', dpi=200) #, transparent=True ) file_csv = file_figure[:-10] + "EB" + str(simPa.EB*1000)[:-2] + "_" + str(simPa.kBC) + "_" + str(simPa.D_tip) + ".csv" Cum_dist_pd = pd.DataFrame(np.round(Cum_dist,2)) Cum_dist_pd.to_csv(file_csv, header=None, index=None) plt.show() def fig_EB_at_barrier(simPa, file_figure, num_fig, EB_comet_sum, barrier_contact_times): """ Plot EB intensity (here = elements in state "B") before and at barrier contact. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. EB_comet_sum: list, array #TODO:check Number of "B"s during a time window before catastophe. barrier_contact_times: list, array #TODO:check List/array containing barrier contact times. """ # Select valid runs valid_runs = valid_EB_runs(simPa, EB_comet_sum, barrier_contact_times) EB_signal, EB_signal_average, max_barrier_contact_frames, min_length_run_frames, frame_window = analyse_EB_signal(simPa, EB_comet_sum, barrier_contact_times) def func(x, a, b, c): return a * np.exp(-b * x) + c xdata = simPa.frame_rate_actual * np.arange(0,int(max_barrier_contact_frames/2.5)) ydata = EB_signal_average[(max_barrier_contact_frames-int(max_barrier_contact_frames/2.5)):max_barrier_contact_frames][::-1] # Make fit: popt, pcov = curve_fit(func, xdata, ydata, p0=(np.max(ydata), simPa.kBC, 1),maxfev=1000) norm = np.mean(EB_signal_average[-50:-2]) # Start plotting if num_fig != 0: plt.figure(num_fig) plt.clf() for a in range(0,len(valid_runs)): plt.plot(simPa.frame_rate_actual * np.arange(-min_length_run_frames+1,max_barrier_contact_frames+1), EB_signal[a][0:frame_window][::-1]/norm,color=plt.cm.Reds(0.3+0.7*a/len(valid_runs))) plt.plot(simPa.frame_rate_actual * np.arange(-min_length_run_frames+1,max_barrier_contact_frames+1), EB_signal_average[0:frame_window][::-1]/norm,'black', linewidth=3.0) plt.title("number of B's") plt.xlabel('time before barrier contact [s]'); plt.ylabel('EB comet intensity'); plt.xlim(-10, 20) print(popt) plt.plot(xdata, func(xdata, *popt)/norm, 'c--',) plt.text(8,1.5*max(ydata/norm),'decay rate (exp. fit): %.2f' %popt[1]) if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() return popt[1] def fig_EB_before_cat(simPa, file_figure, num_fig, EB_comet_sum, barrier_contact_times=[]): """ Plot EB intensity (here = elements in state "B") before catastrophe. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. EB_comet_sum: list, array #TODO:check Number of "B"s during a time window before catastophe. barrier_contact_times: list, array #TODO:check List/array containing barrier contact times. Needed if barrier not False """ EB_output = [] min_length_run_frames = int(simPa.min_length_run/simPa.frame_rate_actual) # Select valid runs valid_runs = valid_EB_runs(simPa, EB_comet_sum, barrier_contact_times) EB_signal_before_cat = np.zeros((len(valid_runs), min_length_run_frames+1)) # put individual runs into one np.array for a in range(0,len(valid_runs)): EB_signal_before_cat[a][0:min_length_run_frames] = \ np.array(EB_comet_sum[valid_runs[a]])[0:min_length_run_frames] EB_signal_mean = np.mean(EB_signal_before_cat, axis=0) EB_signal_std = np.std(EB_signal_before_cat, axis=0) # 95% confidence intervals CI_upper = EB_signal_mean + 1.96*(EB_signal_std/np.sqrt(len(valid_runs))) CI_lower = EB_signal_mean - 1.96*(EB_signal_std/np.sqrt(len(valid_runs))) # Normalize the EB signal norm = np.mean(EB_signal_mean[-50:]) # Combine time and mean EB value in single output array EB_output = np.vstack((CI_upper,CI_lower)) EB_output = np.vstack((EB_signal_mean, EB_output)) EB_output = np.flip(np.delete(EB_output,-1,1), 1)/norm EB_output = np.vstack((simPa.frame_rate_actual*np.arange(-min_length_run_frames,0),EB_output)).T # Start plotting if num_fig != 0: plt.figure(num_fig) plt.clf() plt.plot(simPa.frame_rate_actual * np.arange(-min_length_run_frames,0), EB_signal_mean[0:min_length_run_frames][::-1]/norm,'red', linewidth=2.0) for a in range(0,len(valid_runs)): plt.plot(simPa.frame_rate_actual * np.arange(-min_length_run_frames,0), EB_signal_before_cat[a][0:min_length_run_frames][::-1]/norm,color=plt.cm.Reds(0.3+0.7*a/len(valid_runs))) plt.plot(simPa.frame_rate_actual * np.arange(-min_length_run_frames,0), EB_signal_mean[0:min_length_run_frames][::-1]/norm,'black', linewidth=3.0) plt.title("Mean GTP/GDP-Pi prior to catastrophe") plt.xlabel('time before catastrophe [s]'); plt.ylabel('GTP/GDP-Pi'); if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() return EB_output def fig_MT_before_cat(simPa, file_figure, num_fig, MT_length_sum, cap_end_sum): """ Figure showing tip and cap position before catastrope. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. MT_length_sum: TODO cap_end_sum: TODO """ # Remove invalid growth events from dataset index = np.sum(MT_length_sum, axis=1) index = np.where(index == 0)[0] MT_length = np.delete(MT_length_sum, index, 0) C_length = np.delete(cap_end_sum, index, 0) # Normalize length to max position MT_length_norm = (MT_length.T - np.max(MT_length, axis=1)).T C_length_norm = (C_length.T - np.max(C_length, axis=1)).T # Calculate mean and error MT tip position MT_length_mean = np.mean(MT_length_norm, axis=0)*(simPa.dL_dimer*1000) MT_length_mean = MT_length_mean + abs(np.max(MT_length_mean)) MT_length_std = np.std(MT_length_norm, axis=0) # Calculate mean and error cap end position C_length_mean = np.mean(C_length_norm, axis=0)*(simPa.dL_dimer*1000) C_length_mean = C_length_mean + abs(np.max(C_length_mean)) C_length_std = np.std(C_length_norm, axis=0) # Ensure that tip and cap coincide at moment of catastrophe C_length_mean = C_length_mean + MT_length_mean[-1] # Calculate 95% confidence intervals of tip position MT_CI_upper = MT_length_mean + (1.96 * (MT_length_std/np.sqrt(MT_length.shape[0]))) MT_CI_lower = MT_length_mean - (1.96 * (MT_length_std/np.sqrt(MT_length.shape[0]))) # MT_CI_upper = MT_length_mean + MT_length_std # MT_CI_lower = MT_length_mean - MT_length_std # Calculate 95% confidence intervals of cap end position C_CI_upper = C_length_mean + (1.96 * (C_length_std/np.sqrt(C_length.shape[0]))) C_CI_lower = C_length_mean - (1.96 * (C_length_std/np.sqrt(C_length.shape[0]))) # C_CI_upper = C_length_mean + C_length_std # C_CI_lower = C_length_mean - C_length_std # Calculate pausing duration prior to catastrophe (def: < 10% mean growth speed) MT_length_diff = np.diff(MT_length_mean) / simPa.frame_rate_actual Pausing = np.where(MT_length_diff < 0.1*simPa.growth_speed*1000/60)[0][0] Pausing = (MT_length.shape[1] - Pausing)*simPa.frame_rate_actual # Tip position output MT_length_output = np.vstack((MT_CI_upper, MT_CI_lower)) MT_length_output = np.vstack((MT_length_mean, MT_length_output)) MT_length_output = np.vstack((simPa.frame_rate_actual * np.arange(-len(MT_length_mean),0), MT_length_output)).T # Cap position output C_length_output = np.vstack((C_CI_upper, C_CI_lower)) C_length_output = np.vstack((C_length_mean, C_length_output)) C_length_output = np.vstack((simPa.frame_rate_actual * np.arange(-len(C_length_mean),0), C_length_output)).T #Start plotting if num_fig != 0: plt.figure(num_fig) plt.clf() # Plot mean tip position plt.plot(simPa.frame_rate_actual * np.arange(-len(MT_length_mean),0), MT_length_mean,'k', linewidth=2.0) # Plot upper 95% confidence interval of tip position plt.plot(simPa.frame_rate_actual * np.arange(-len(MT_length_mean),0), MT_CI_upper,'k--', linewidth=1.0) # Plot lower 95% confidence interval of tip position plt.plot(simPa.frame_rate_actual * np.arange(-len(MT_length_mean),0), MT_CI_lower,'k--', linewidth=1.0) # Plot mean cap position plt.plot(simPa.frame_rate_actual * np.arange(-len(C_length_mean),0), C_length_mean,'r', linewidth=2.0) # Plot upper 95% confidence interval of cap position plt.plot(simPa.frame_rate_actual * np.arange(-len(C_length_mean),0), C_CI_upper,'r--', linewidth=1.0) # Plot lower 95% confidence interval of cap position plt.plot(simPa.frame_rate_actual * np.arange(-len(C_length_mean),0), C_CI_lower,'r--', linewidth=1.0) plt.title("MT length prior to catastrophe") plt.xlabel('time before catastrophe [s]'); plt.ylabel('Mean MT position [nm]'); #Add parameters to figure figtext = ['Shrinkage = %.2f nm' %abs(MT_length_mean[-1])] figtext.append('Pausing = %.2f s' %Pausing) ## Figure styles from matplotlib.font_manager import FontProperties font = FontProperties() font.set_family('sans-serif') font.set_style('normal') font.set_weight('light') figDX = 0.045 for m in range(len(figtext)): plt.ax.text(0.1,0.82-m*figDX, figtext[m], fontproperties=font, verticalalignment='bottom', horizontalalignment='left', transform=plt.ax.transAxes, color='black', fontsize=11) plt.xlim(-30, 2) if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() print('Mean shrinkage before catastrophe = %.2f nm' %abs(MT_length_mean[-1])) print('Mean pause duration before catastrophe = %.2f s' %Pausing) return MT_length_output, C_length_output def fig_EB_cat_hist(simPa, file_figure, num_fig, EB_comet_sum, barrier_contact_times, EB_average_frames = 2): """ Have a look at EB intensity at catastrophe... Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. EB_comet_sum: list, array #TODO:check Number of "B"s during a time window before catastophe. barrier_contact_times: list, array #TODO:check List/array containing barrier contact times. EB_average_frames: int Number of frames to average over. Default = 2. """ EB_intensity_before_cat = [] EB_intensity_at_barrier = [] EB_mean = [] # Select valid runs valid_runs = valid_EB_runs(simPa, EB_comet_sum, barrier_contact_times) EB_signal, EB_signal_average, max_barrier_contact_frames, min_length_run_frames, frame_window = analyse_EB_signal(simPa, EB_comet_sum, barrier_contact_times) for a in range(0,len(valid_runs)): EB_intensity_before_cat.append(np.mean(np.array(EB_comet_sum[a])[0:(EB_average_frames+1)])) # :-1])) barrier_contact_frame = int(round(barrier_contact_times[valid_runs[a]]/simPa.frame_rate_actual,0)) EB_intensity_at_barrier.append(np.mean(np.array(EB_comet_sum[a])[barrier_contact_frame:(barrier_contact_frame+EB_average_frames+1)])) EB_mean.append(np.mean(EB_signal[a][max_barrier_contact_frames:frame_window])) fig, ax = plt.subplots(figsize=(8, 8)) #figure(9, figsize=(8, 8)) plt.clf() map = plt.scatter(EB_intensity_before_cat/np.mean(EB_mean), EB_intensity_at_barrier/np.mean(EB_mean), c = barrier_contact_times[valid_runs], alpha=0.5, cmap='CMRmap') plt.xlim(xmax=1) fig.colorbar(map, ax = ax, label = 'barrier contact time [s]') plt.title('EB intensity before catastrophe (%.2f nM EB)' %(simPa.EB*1000)) plt.xlabel('EB intensity right before catastrophe (last %.0f frames), relative to mean' %EB_average_frames) plt.ylabel('EB intensity right before barrier contact, relative to mean') plt.legend(fontsize=14) if simPa.record_data: filename = file_figure + '_fig' + str(num_fig) + '_relative' plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() fig, ax = plt.subplots(figsize=(8, 8)) #figure(9, figsize=(8, 8)) plt.clf() hist_data, hist_bins = np.histogram(EB_intensity_before_cat/np.mean(EB_mean), np.arange(0,1.1,0.1)) bin_width = hist_bins[1] plt.bar((hist_bins[:-1] + bin_width/2) , np.float_(hist_data)/(np.sum(hist_data)), 0.9*bin_width, alpha=0.8) plt.title('Relative B-state intensity at catastrophe') plt.xlabel('Relative B-state intensity (#of elements in state "B" div. by mean)') plt.ylabel('Probability') if simPa.record_data: filename = file_figure + '_fig' + str(num_fig) + '_histogram' plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) #PROBLEM with plt.hist --> normed=1 and density=1 don't work properly #plt.hist(EB_intensity_before_cat/np.mean(EB_mean), np.arange(0,1.1,0.1), density=True, histtype='bar', rwidth=0.8) plt.show() return EB_intensity_before_cat/np.mean(EB_mean) def fig_display_examples(simPa, file_figure, num_fig, MT_length_sum, catastrophe_times, EB_comet_sum, barrier_contact_times=[]): """ Show selection of examples (tip position + EB intensity) Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. MT_length_sum: TODO catastrophe_times: TODO EB_comet_sum: list, array #TODO:check Number of "B"s during a time window before catastophe. barrier_contact_times: list, array #TODO:check List/array containing barrier contact times. """ min_length_run_frames = int(simPa.min_length_run/simPa.frame_rate_actual) # Select valid runs valid_runs = valid_EB_runs(simPa, EB_comet_sum, barrier_contact_times) EB_signal_before_cat = np.zeros((len(valid_runs), min_length_run_frames+1)) #put individual runs into one np.array for a in range(0,len(valid_runs)): EB_signal_before_cat[a][0:min_length_run_frames] = \ np.array(EB_comet_sum[valid_runs[a]])[0:min_length_run_frames] EB_signal_average = np.sum(EB_signal_before_cat, axis=0) EB_signal_average = EB_signal_average/len(valid_runs) show_fraction_frames = int(simPa.show_fraction/simPa.frame_rate_actual) valid_runs = np.where(catastrophe_times > simPa.show_fraction)[0] plt.figure(num_fig, figsize=(15, 10)) plt.clf() f, axarr = plt.subplots(nrows=5, ncols=5, sharey=True, sharex=True, figsize=(15, 10)) for m in range(0,5): for n in range(0,5): skip = 0 axarr[m, n].plot(simPa.frame_rate_actual * np.arange(-min_length_run_frames,0) ,MT_length_sum[valid_runs[skip+m+5*n]][0::], 'black') axarr[m, n].set_title('catastrophe %.0f' %(skip+m+5*n)) axarr[m, n] plt.plot(simPa.frame_rate_actual * np.arange(-min_length_run_frames,0) ,EB_signal_before_cat[skip+m+5*n][0:show_fraction_frames][::-1],'red') if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() def fig_EB_profile(simPa, file_figure, num_fig, EB_profiles, MT_length_full, w_size): """ Figure to display EB profile. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. EB_profiles: TODO MT_length_full: TODO w_size: TODO """ # Analyse the simulated EB profiles EB_mean, v_mean = analyse_EB_profile(simPa, MT_length_full, EB_profiles, w_size) # Calculate the mean EB profile # x = np.arange(0, len(EB_mean[0]), 1) * simPa.dL_dimer *1000 # y = np.mean(EB_mean, axis=0) x = np.arange(0, len(EB_mean), 1) * simPa.dL_dimer *1000 y = EB_mean #plt.plot(x, y) # Define exponential function def exponenial_func(x, a, b): return a*np.exp(b*x) # Calculate the maturation rate (Duellberg, 2016), i.e. the hydrolysis rate ind = np.argmax(y) popt, pcov = curve_fit(exponenial_func, x[0:ind], y[0:ind], p0=(1e-2, 1e-3)) xx= np.linspace(0, x[ind], 1000) yy = exponenial_func(xx, *popt) # Align profile from left to right and set tip position to zero x = -x x += np.round(np.argmax(y)*(simPa.dL_dimer*1000)) xx = -xx xx += np.round(np.argmax(y)*(simPa.dL_dimer*1000)) fig = plt.figure(1, figsize=(12, 7)) plt.clf() plt.plot(x,y,'k.', xx, yy, '--r') plt.title('Mean GTP/GDP-Pi profile', fontsize=14) plt.xlabel('Position [nm]', fontsize=12) plt.ylabel('Intensity [a.u.]', fontsize = 12) plt.ax = fig.add_subplot(111) fig.subplots_adjust(top=0.9) ## Figure styles from matplotlib.font_manager import FontProperties font = FontProperties() font.set_family('sans-serif') font.set_style('normal') font.set_weight('light') #Add parameters to figure figtext = ['Simulation parameters:'] figtext.append('$N_{sim} = %.0f$' %len(MT_length_full)) figtext.append('$v_{g} = %.2f$ $nm/s$' %float(simPa.growth_rate_one*(simPa.dL_dimer*1000))) figtext.append('$k_{hyd} = %.2f$ $s^{-1}$' %(simPa.kBC)) figtext.append('$D_{tip} = %.0f$ $nm^{2}/s$' %simPa.D_tip) figtext.append('') figtext.append('Measured values:') figtext.append('$N_{profiles} = %.0f$' %len(EB_mean)) figtext.append('$v_{g} = %.2f$ $nm/s$' %np.mean(v_mean)) figtext.append('$L_{comet} = %.0f$ $nm$' %float(1/popt[1])) figtext.append('$k_{m} = %.2f$ $s^{-1}$' %float(np.mean(v_mean)*popt[1])) figtext.append('$I_{max} = %.2f$ $a.u.$' %float(np.max(y))) figDX = 0.045 for m in range(len(figtext)): plt.ax.text(0.75, 0.9-m*figDX, figtext[m], fontproperties=font, verticalalignment='bottom', horizontalalignment='left', transform=plt.ax.transAxes, color='black', fontsize=12) if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() def fig_MT_ageing(simPa, file_figure, num_fig, c_times): """ Calculate the age-dependent microtubule catastrophe frequency Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. c_times: numpy.array Array of catastrophe times. """ X_dist = np.sort(c_times) Y_dist = np.cumsum(np.ones(len(c_times)))/len(c_times) f = (Y_dist/X_dist)/(1-Y_dist) C_freq = np.vstack((X_dist,Y_dist)).T plt.figure(1, figsize=(12, 7)) plt.clf() plt.plot(X_dist, f) plt.ylim(0, 0.02) plt.xlim(0, 400) plt.title('Microtubule ageing', fontsize=14) plt.xlabel('Microtubule age [s]', fontsize=12) plt.ylabel('Catastrophe frequency [$s^{-1}$]', fontsize = 12) if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() return C_freq def fig_dist_fit(simPa, file_figure, num_fig, Cum_dist): """ Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. Cum_dist: TODO """ fig, ax1 = plt.subplots(figsize=(12, 7)) plt.clf() if isinstance(Cum_dist, list) and list_dim(Cum_dist) > 1 and list_dim(Cum_dist[0]) > 0: if isinstance(Cum_dist[0], np.ndarray): print(list_dim(Cum_dist), ' different cumulative distributions found. ') else: print('Error: Input cumulative distributions must be numpy arrays or lists of numpy arrays.' ) elif isinstance(Cum_dist, list) and list_dim(Cum_dist) == 1 and isinstance(Cum_dist[0], np.ndarray): pass; elif isinstance(Cum_dist, np.ndarray): Cum_dist = [Cum_dist] #put numpy array into list else: print('Error: Input cumulative distributions must be numpy arrays or lists of numpy arrays.' ) x = Cum_dist[0] x_fit = np.linspace(0,x[-1],1000) y = np.linspace(0,1,len(x)) # Fit cumulative distribution to the Gamma function popt1, pcov1 = curve_fit(gamma_cdf,x, y, p0=(1, 1e-2)) y1 = gamma_cdf(x_fit, *popt1) print(popt1) print(pcov1) # Fit cumulative distribution to an exponential popt2, pcov2 = curve_fit(exp_cdf, x, y, p0=(1e-2)) y2 = exp_cdf(x_fit, *popt2) if list_dim(Cum_dist) > 1: c_range = 1/(list_dim(Cum_dist)-1) else: c_range = 1 for i, Cum_dist in enumerate(Cum_dist): plt.step(Cum_dist, 1/(len(Cum_dist)-1) * np.arange(0, len(Cum_dist) , 1), where='post', color=(0.95-0.7*(i)*c_range, 0.1, 0.1 + 0.8*(i)*c_range), linewidth=1.5, label='Simulation') plt.plot(x_fit, y1, 'k--', linewidth=1.5, label='Gamma fit') plt.plot(x_fit, y2, 'k:', linewidth=1.5, label='Exponential fit') plt.title('Microtubule lifetime distribution', fontsize=14) plt.xlabel('time [s]') plt.ylabel('Cumulative fraction') plt.ax = fig.add_subplot(111) figtext = ['Simulation parameters:'] figtext.append('$v_{g} = %.1f$ $nm/s$' %float(simPa.growth_rate_one*(simPa.dL_dimer*1000))) figtext.append('$k_{hyd} = %.2f$ $s^{-1}$' %(simPa.kBC)) if simPa.D_tip_time: figtext.append('$k_{ageing} = %.3f$ $s^{-1}$' %(simPa.D_tip_rate_T)) elif simPa.D_tip_length: figtext.append('$k_{ageing} = %.3f$ $s^{-1}$' %(simPa.D_tip_rate_L)) figtext.append('Gamma fit parameters:') figtext.append('$steps = %.2f$' %popt1[0]) figtext.append('$rate = %.3f$ $s^{-1}$' %popt1[1]) figDX = 0.045 for m in range(len(figtext)): plt.ax.text(0.7, 0.82-m*figDX, figtext[m], fontproperties=font, verticalalignment='bottom', horizontalalignment='left', transform=plt.ax.transAxes, color='black', fontsize=11) plt.legend(fontsize=12) # Plot insert with microtubule ageing parameters left, bottom, width, height = [0.6, 0.21, 0.25, 0.25] ax2 = fig.add_axes([left, bottom, width, height]) # Calculate the evolution of tip diffusion D_tip = [] if simPa.D_tip_time: for i in range(len(x_fit)): D_tip.append((simPa.D_tip_end - simPa.D_tip_start) * (1 - np.exp(-1*simPa.D_tip_rate_T*(x_fit[i]))) + simPa.D_tip_start) elif simPa.D_tip_length: x_fit = np.linspace(0,50000,50000)*simPa.dL_dimer for i in range(len(x_fit)): D_tip.append((simPa.D_tip_end - simPa.D_tip_start) * (1 - np.exp(-1*simPa.D_tip_rate_L*(x_fit[i]))) + simPa.D_tip_start) else: D_tip = np.ones(len(x_fit))*simPa.D_tip # Plot tip diffusion ax2.plot(x_fit, D_tip, 'k') ax2.set_ylim(0, 1.1*np.max(D_tip)) if simPa.D_tip_time: ax2.set_xlabel('time [s]') elif simPa.D_tip_length: ax2.set_xlabel('length [um]') ax2.set_ylabel('Tip diffusion [$nm^{2}s^{-1}$]') ax2.set_title('Microtubule ageing') if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) plt.show() def fig_nucleation(simPa, file_figure, num_fig, nucleation_times): """ Figure showing nucleation time histogram. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. nucleation_times: list, array List, array of nucleation times. """ plt.subplots(figsize=(12, 7)) plt.clf() plt.hist(nucleation_times, bins='auto') plt.xlabel('time [s]') plt.ylabel('Counts') plt.title('Nucleation time', fontsize=14) plt.show() def fig_washout(simPa, file_figure, num_fig, washout_times, catastrophe_washout, MT_length_sum): """ Figure showing MT behavior for washout experiment. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. washout_times: numpy.array, list List/array of washout time points. catastrophe_washout: TODO: Maurits --> add description """ # Plot the washout delay times fig, axs = plt.subplots(1,3, figsize=(14,7)) axs[0].hist(washout_times, bins='auto') axs[0].set_xlabel('delay time [s]') axs[0].set_ylabel('counts') axs[0].set_xlim(left=0) # Calculate the shrinkage length shrinkage_length = [] delay_steps = np.round(washout_times / simPa.dt) delay_steps = delay_steps.astype(np.int16) for i in range(len(catastrophe_washout)): shrinkage_length.append((MT_length_sum[catastrophe_washout[i],-delay_steps[i]] - MT_length_sum[catastrophe_washout[i],-1])*simPa.dL_dimer*1000) # Plot the shrinkage length axs[1].hist(shrinkage_length, bins='auto') axs[1].set_xlabel('shrinkage length [nm]') axs[1].set_ylabel('counts') axs[1].set_xlim(left=0) # Calculate the shrinkage speeds axs[2].hist(shrinkage_length/washout_times,bins='auto') # Plot the shrinkage speed axs[2].set_xlabel('shrinkage speed [nm/s]') axs[2].set_ylabel('counts') if simPa.record_data: filename = file_figure + '_fig' + str(int(num_fig)) plt.savefig(filename+'.eps', format='eps', dpi=1000) plt.savefig(filename+'.png', format='png', dpi=200) def fig_cap_size_before_cat(simPa, file_figure, num_fig, MT_length_full, cap_end): """ Figure showing cap size before catastrophe. Args: ------- simPa: parameter set Simulation parameters in "ParameterSet" format. file_figure: str Folder for storing figures and data. num_fig: int Figure number. MT_length_full: TODO cap_end: TODO """ min_length_run_frames = int(simPa.min_length_run/simPa.frame_rate_actual) MT_run_length = [] for i in range(len(cap_end)): MT_run_length.append(len(cap_end[i])) valid_runs = np.where(np.array(MT_run_length) > min_length_run_frames)[0] cap_before_cat = np.zeros((len(valid_runs), min_length_run_frames+1)) #put individual runs into one np.array for a in range(0,len(valid_runs)): cap_before_cat[a][0:min_length_run_frames] = \ np.array(MT_length_full[valid_runs[a]])[-min_length_run_frames:] -
np.array(cap_end[valid_runs[a]])
numpy.array
# -*- coding: utf-8 -*- """ # Copyright (c) 2016-2019 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. @author: <NAME> (sghosh) (started Feb 2018) @author: <NAME> (alepros), Technical University of Denmark """ from time import time import numpy as np from numpy import flatnonzero as find, pi, exp from pandapower import LoadflowNotConverged from pandapower.pypower.pfsoln import pfsoln from pandapower.pypower.idx_gen import PG, QG from pandapower.pd2ppc import _pd2ppc from pandapower.pypower.makeYbus import makeYbus from pandapower.pypower.idx_bus import GS, BS, PD , QD from pandapower.auxiliary import _sum_by_group, _check_if_numba_is_installed,\ _check_bus_index_and_print_warning_if_high,\ _check_gen_index_and_print_warning_if_high, \ _add_pf_options, _add_ppc_options, _clean_up, sequence_to_phase, \ phase_to_sequence, X012_to_X0, X012_to_X2, \ I1_from_V012, S_from_VI_elementwise, V1_from_ppc, V_from_I,\ combine_X012, I0_from_V012, I2_from_V012, ppException from pandapower.pf.run_newton_raphson_pf import _run_newton_raphson_pf from pandapower.build_bus import _add_ext_grid_sc_impedance from pandapower.pypower.bustypes import bustypes from pandapower.run import _passed_runpp_parameters from pandapower.pypower.idx_bus import VM, VA from pandapower.pypower.idx_gen import GEN_BUS, GEN_STATUS, VG from pandapower.results import _copy_results_ppci_to_ppc, _extract_results_3ph,\ init_results try: import pplog as logging except ImportError: import logging logger = logging.getLogger(__name__) class Not_implemented(ppException): """ Exception being raised in case loadflow did not converge. """ pass def _get_pf_variables_from_ppci(ppci): """ Used for getting values for pfsoln function in one convinient function """ # default arguments if ppci is None: ValueError('ppci is empty') # get data for calc base_mva, bus, gen, branch = \ ppci["baseMVA"], ppci["bus"], ppci["gen"], ppci["branch"] # get bus index lists of each type of bus ref, pv, pq = bustypes(bus, gen) # generator info on = find(gen[:, GEN_STATUS] > 0) # which generators are on? gbus = gen[on, GEN_BUS].astype(int) # what buses are they at? # initial state v0 = bus[:, VM] * exp(1j * pi / 180 * bus[:, VA]) v0[gbus] = gen[on, VG] / abs(v0[gbus]) * v0[gbus] ref_gens = ppci["internal"]["ref_gens"] return base_mva, bus, gen, branch, ref, pv, pq, on, gbus, v0, ref_gens def _store_results_from_pf_in_ppci(ppci, bus, gen, branch): ppci["bus"], ppci["gen"], ppci["branch"] = bus, gen, branch return ppci def _get_elements(params,net,element,phase,typ): sign = -1 if element.endswith("sgen") else 1 elm = net[element].values # # Trying to find the column no for using numpy filters for active loads scaling = net[element].columns.get_loc("scaling") typ_col = net[element].columns.get_loc("type") # Type = Delta or Wye load # active wye or active delta row selection active = (net["_is_elements"][element]) & (elm[:,typ_col] == typ) bus = [net[element].columns.get_loc("bus")] if len(elm): if element == 'load' or element == 'sgen': vl = elm[active,scaling].ravel() p_mw = [net[element].columns.get_loc("p_mw")] q_mvar = [net[element].columns.get_loc("q_mvar")] params['p'+phase+typ] = np.hstack([params['p'+phase+typ], elm[active,p_mw]/3 * vl * sign]) params['q'+phase+typ] = np.hstack([params['q'+phase+typ], (elm[active,q_mvar]/3) * vl * sign]) params['b'+typ] = np.hstack([params['b'+typ], elm[active,bus].astype(int)]) elif element.startswith('asymmetric'): vl = elm[active,scaling].ravel() p = {'a': net[element].columns.get_loc("p_a_mw") ,'b': net[element].columns.get_loc("p_b_mw") ,'c': net[element].columns.get_loc("p_c_mw") } q = {'a' : net[element].columns.get_loc("q_a_mvar") ,'b' : net[element].columns.get_loc("q_b_mvar") ,'c' : net[element].columns.get_loc("q_c_mvar") } params['p'+phase+typ] = np.hstack([params['p'+phase+typ], elm[active,p[phase]] * vl * sign]) params['q'+phase+typ] = np.hstack([params['q'+phase+typ], elm[active,q[phase]] * vl * sign]) params['b'+typ] = np.hstack([params['b'+typ], elm[active,bus].astype(int)]) return params def _load_mapping(net, ppci1): """ Takes three phase P, Q values from PQ elements sums them up for each bus maps them in ppc bus order and forms s_abc matrix """ bus_lookup = net["_pd2ppc_lookups"]["bus"] params = dict() phases = ['a', 'b', 'c'] load_types = ['wye', 'delta'] load_elements = ['load', 'asymmetric_load', 'sgen', 'asymmetric_sgen'] # ============================================================================= # Loop to initialize and feed s_abc wye and delta values # ============================================================================= for phase in phases: for typ in load_types: params['S'+phase+typ] = (ppci1["bus"][:, PD] + ppci1["bus"][:, QD]*1j)*0 params['p'+phase+typ] = np.array([]) # p values from loads/sgens params['q'+phase+typ] = np.array([]) # q values from loads/sgens params['P'+phase+typ] = np.array([]) # Aggregated Active Power params['Q'+phase+typ] = np.array([]) # Aggregated reactive Power params['b'+phase+typ] = np.array([], dtype=int) # bus map for phases params['b'+typ] = np.array([], dtype=int) # aggregated bus map(s_abc) for element in load_elements: _get_elements(params,net,element,phase,typ) # Mapping constant power loads to buses if params['b'+typ].size: params['b'+phase+typ] = bus_lookup[params['b'+typ]] params['b'+phase+typ], params['P'+phase+typ],\ params['Q'+phase+typ] = _sum_by_group(params['b'+phase+typ], params['p'+phase+typ], params['q'+phase+typ] * 1j) params['S'+phase+typ][params['b'+phase+typ]] = \ (params['P'+phase+typ] + params['Q'+phase+typ]) Sabc_del = np.vstack((params['Sadelta'],params['Sbdelta'],params['Scdelta'])) Sabc_wye = np.vstack((params['Sawye'],params['Sbwye'],params['Scwye'])) # last return varaible left for constant impedance loads return Sabc_del, Sabc_wye # ============================================================================= # 3 phase algorithm function # ============================================================================= def runpp_3ph(net, calculate_voltage_angles=True, init="auto", max_iteration="auto", tolerance_mva=1e-8, trafo_model='t', trafo_loading="current", enforce_q_lims=False, numba=True, recycle=None, check_connectivity=True, switch_rx_ratio=2.0, delta_q=0, v_debug=False, **kwargs): """ runpp_3ph: Performs Unbalanced/Asymmetric/Three Phase Load flow INPUT: **net** - The pandapower format network OPTIONAL: **algorithm** (str, "nr") - algorithm that is used to solve the power flow problem. The following algorithms are available: - "nr" Newton-Raphson (pypower implementation with numba accelerations) Used only for positive sequence network Zero and Negative sequence networks use Current Injection method Vnew = Y.inv * Ispecified ( from s_abc/v_abc old) Icalculated = Y * Vnew **calculate_voltage_angles** (bool, "auto") - consider voltage angles in loadflow calculation If True, voltage angles of ext_grids and transformer shifts are considered in the loadflow calculation. Considering the voltage angles is only necessary in meshed networks that are usually found in higher voltage levels. calculate_voltage_angles in "auto" mode defaults to: - True, if the network voltage level is above 70 kV - False otherwise The network voltage level is defined as the maximum rated voltage of any bus in the network that is connected to a line. **max_iteration** (int, "auto") - maximum number of iterations carried out in the power flow algorithm. In "auto" mode, the default value depends on the power flow solver: - 10 for "nr" For three phase calculations, its extended to 3 * max_iteration **tolerance_mva** (float, 1e-8) - loadflow termination condition referring to P / Q mismatch of node power in MVA **trafo_model** - transformer equivalent models - "t" - transformer is modeled as equivalent with the T-model. - "pi" - This is not recommended, since it is less exact than the T-model. So, for three phase load flow, its not implemented **trafo_loading** (str, "current") - mode of calculation for transformer loading Transformer loading can be calculated relative to the rated current or the rated power. In both cases the overall transformer loading is defined as the maximum loading on the two sides of the transformer. - "current"- transformer loading is given as ratio of current flow and rated current of the transformer. This is the recommended setting, since thermal as well as magnetic effects in the transformer depend on the current. - "power" - transformer loading is given as ratio of apparent power flow to the rated apparent power of the transformer. **enforce_q_lims** (bool, False) (Not tested with 3 Phase load flow) - respect generator reactive power limits If True, the reactive power limits in net.gen.max_q_mvar/min_q_mvar are respected in the loadflow. This is done by running a second loadflow if reactive power limits are violated at any generator, so that the runtime for the loadflow will increase if reactive power has to be curtailed. Note: enforce_q_lims only works if algorithm="nr"! **check_connectivity** (bool, True) - Perform an extra connectivity test after the conversion from pandapower to PYPOWER If True, an extra connectivity test based on SciPy Compressed Sparse Graph Routines is perfomed. If check finds unsupplied buses, they are set out of service in the ppc **voltage_depend_loads** (bool, True) (Not tested with 3 Phase load flow) - consideration of voltage-dependent loads. If False, net.load.const_z_percent and net.load.const_i_percent are not considered, i.e. net.load.p_mw and net.load.q_mvar are considered as constant-power loads. **consider_line_temperature** (bool, False) (Not tested with 3 Phase load flow) - adjustment of line impedance based on provided line temperature. If True, net.line must contain a column "temperature_degree_celsius". The temperature dependency coefficient alpha must be provided in the net.line.alpha column, otherwise the default value of 0.004 is used **KWARGS: **numba** (bool, True) - Activation of numba JIT compiler in the newton solver If set to True, the numba JIT compiler is used to generate matrices for the powerflow, which leads to significant speed improvements. **switch_rx_ratio** (float, 2) (Not tested with 3 Phase load flow) - rx_ratio of bus-bus-switches. If impedance is zero, buses connected by a closed bus-bus switch are fused to model an ideal bus. Otherwise, they are modelled as branches with resistance defined as z_ohm column in switch table and this parameter **delta_q** (Not tested with 3 Phase load flow) - Reactive power tolerance for option "enforce_q_lims" in kvar - helps convergence in some cases. **trafo3w_losses** (Not tested with 3 Phase load flow) - defines where open loop losses of three-winding transformers are considered. Valid options are "hv", "mv", "lv" for HV/MV/LV side or "star" for the star point. **v_debug** (bool, False) (Not tested with 3 Phase load flow) - if True, voltage values in each newton-raphson iteration are logged in the ppc **init_vm_pu** (string/float/array/Series, None) (Not tested with 3 Phase load flow) - Allows to define initialization specifically for voltage magnitudes. Only works with init == "auto"! - "auto": all buses are initialized with the mean value of all voltage controlled elements in the grid - "flat" for flat start from 1.0 - "results": voltage magnitude vector is taken from result table - a float with which all voltage magnitudes are initialized - an iterable with a voltage magnitude value for each bus (length and order has to match with the buses in net.bus) - a pandas Series with a voltage magnitude value for each bus (indexes have to match the indexes in net.bus) **init_va_degree** (string/float/array/Series, None) (Not tested with 3 Phase load flow)- Allows to define initialization specifically for voltage angles. Only works with init == "auto"! - "auto": voltage angles are initialized from DC power flow if angles are calculated or as 0 otherwise - "dc": voltage angles are initialized from DC power flow - "flat" for flat start from 0 - "results": voltage angle vector is taken from result table - a float with which all voltage angles are initialized - an iterable with a voltage angle value for each bus (length and order has to match with the buses in net.bus) - a pandas Series with a voltage angle value for each bus (indexes have to match the indexes in net.bus) **recycle** (dict, none) (Not tested with 3 Phase load flow) - Reuse of internal powerflow variables for time series calculation Contains a dict with the following parameters: _is_elements: If True in service elements are not filtered again and are taken from the last result in net["_is_elements"] ppc: If True the ppc is taken from net["_ppc"] and gets updated instead of reconstructed entirely Ybus: If True the admittance matrix (Ybus, Yf, Yt) is taken from ppc["internal"] and not reconstructed **neglect_open_switch_branches** (bool, False) (Not tested with 3 Phase load flow) - If True no auxiliary buses are created for branches when switches are opened at the branch. Instead branches are set out of service Return values: --------------- **count(int)** No of iterations taken to reach convergence **v_012_it(complex)** - Sequence voltages **i012_it(complex)** - Sequence currents See Also: ---------- pp.add_zero_impedance_parameters(net): To add zero sequence parameters into network from the standard type Examples: ---------- >>> from pandapower.pf.runpp_3ph import runpp_3ph >>> runpp_3ph(net) Notes: -------- - Three phase load flow uses Sequence Frame for power flow solution. - Three phase system is modelled with earth return. - PH-E load type is called as wye since Neutral and Earth are considered same - This solver has proved successful only for Earthed transformers (i.e Dyn,Yyn,YNyn & Yzn vector groups) """ # ============================================================================= # pandapower settings # ============================================================================= overrule_options = {} if "user_pf_options" in net.keys() and len(net.user_pf_options) > 0: passed_parameters = _passed_runpp_parameters(locals()) overrule_options = {key: val for key, val in net.user_pf_options.items() if key not in passed_parameters.keys()} if numba: numba = _check_if_numba_is_installed(numba) ac = True mode = "pf_3ph" # TODO: Make valid modes (pf, pf_3ph, se, etc.) available in seperate file (similar to idx_bus.py) # v_debug = kwargs.get("v_debug", False) copy_constraints_to_ppc = False if trafo_model == 'pi': raise Not_implemented("Three phase Power Flow doesnot support pi model\ because of lack of accuracy") # if calculate_voltage_angles == "auto": # calculate_voltage_angles = False # hv_buses = np.where(net.bus.vn_kv.values > 70)[0] # Todo: Where does that number come from? # if len(hv_buses) > 0: # line_buses = net.line[["from_bus", "to_bus"]].values.flatten() # if len(set(net.bus.index[hv_buses]) & set(line_buses)) > 0: # scipy spsolve options in NR power flow use_umfpack = kwargs.get("use_umfpack", True) permc_spec = kwargs.get("permc_spec", None) calculate_voltage_angles = True if init == "results" and len(net.res_bus) == 0: init = "auto" if init == "auto": init = "dc" if calculate_voltage_angles else "flat" default_max_iteration = {"nr": 10, "bfsw": 10, "gs": 10000, "fdxb": 30, "fdbx": 30} if max_iteration == "auto": max_iteration = default_max_iteration["nr"] neglect_open_switch_branches = kwargs.get("neglect_open_switch_branches", False) only_v_results = kwargs.get("only_v_results", False) if (recycle is not None and recycle is not False): raise ValueError("recycle is only available with Balanced Load Flow ") net._options = {} _add_ppc_options(net, calculate_voltage_angles=calculate_voltage_angles, trafo_model=trafo_model, check_connectivity=check_connectivity, mode=mode, switch_rx_ratio=switch_rx_ratio, init_vm_pu=init, init_va_degree=init, enforce_q_lims=enforce_q_lims, recycle=recycle, voltage_depend_loads=False, delta=delta_q,\ neglect_open_switch_branches=neglect_open_switch_branches ) _add_pf_options(net, tolerance_mva=tolerance_mva, trafo_loading=trafo_loading, numba=numba, ac=ac, algorithm="nr", max_iteration=max_iteration,\ only_v_results=only_v_results,v_debug=v_debug, use_umfpack=use_umfpack, permc_spec=permc_spec) net._options.update(overrule_options) _check_bus_index_and_print_warning_if_high(net) _check_gen_index_and_print_warning_if_high(net) init_results(net, "pf_3ph") # ========================================================================= # pd2ppc conversion # ========================================================================= net["_is_elements"] = None _, ppci1 = _pd2ppc(net, 1) _, ppci2 = _pd2ppc(net, 2) gs_eg, bs_eg = _add_ext_grid_sc_impedance(net, ppci2) _, ppci0 = _pd2ppc(net, 0) _, bus0, gen0, branch0, _, _, _, _, _,\ v00, ref_gens = _get_pf_variables_from_ppci(ppci0) base_mva, bus1, gen1, branch1, sl_bus, pv_bus, pq_bus, _, _, \ v01, ref_gens = _get_pf_variables_from_ppci(ppci1) _, bus2, gen2, branch2, _, _, _, _, _, \ v02, ref_gens = _get_pf_variables_from_ppci(ppci2) # ============================================================================= # P Q values aggragated and summed up for each bus to make s_abc matrix # s_abc for wye connections ; s_abc_delta for delta connection # ============================================================================= s_abc_delta, s_abc = _load_mapping(net, ppci1) # ========================================================================= # Construct Sequence Frame Bus admittance matrices Ybus # ========================================================================= ppci0, ppci1, ppci2, y_0_pu, y_1_pu, y_2_pu, y_0_f, y_1_f, y_2_f,\ y_0_t, y_1_t, y_2_t = _get_y_bus(ppci0, ppci1, ppci2, recycle) # ========================================================================= # Initial voltage values # ========================================================================= nb = ppci1["bus"].shape[0] v_012_it = np.concatenate( ( np.array(np.zeros((1, nb), dtype=np.complex128)), np.array(np.ones((1, nb), dtype=np.complex128)), np.array(np.zeros((1, nb), dtype=np.complex128)) ), axis=0) # For Delta transformation: # Voltage changed from line-earth to line-line using V_T # s_abc/v_abc will now give line-line currents. This is converted to line-earth # current using I-T v_del_xfmn = np.array([[1, -1, 0], [0, 1, -1], [-1, 0, 1]]) i_del_xfmn = np.array([[1, 0, -1], [-1, 1, 0], [0, -1, 1]]) v_abc_it = sequence_to_phase(v_012_it) # ========================================================================= # Iteration using Power mismatch criterion # ========================================================================= outer_tolerance_mva = 3e-8 count = 0 s_mismatch = np.array([[True], [True]], dtype=bool) t0 = time() while (s_mismatch > outer_tolerance_mva).any() and count < 30*max_iteration: # ===================================================================== # Voltages and Current transformation for PQ and Slack bus # ===================================================================== s_abc_pu = -np.divide(s_abc, ppci1["baseMVA"]) s_abc_delta_pu = -np.divide(s_abc_delta, ppci1["baseMVA"]) i_abc_it_wye = (np.divide(s_abc_pu, v_abc_it)).conjugate() i_abc_it_delta = np.matmul(i_del_xfmn, (np.divide(s_abc_delta_pu, np.matmul (v_del_xfmn, v_abc_it))).conjugate()) # For buses with both delta and wye loads we need to sum of their currents # to sum up the currents i_abc_it = i_abc_it_wye + i_abc_it_delta i012_it = phase_to_sequence(i_abc_it) v1_for_s1 = v_012_it[1, :] i1_for_s1 = -i012_it[1, :] v0_pu_it = X012_to_X0(v_012_it) v2_pu_it = X012_to_X2(v_012_it) i0_pu_it = X012_to_X0(i012_it) i2_pu_it = X012_to_X2(i012_it) s1 = np.multiply(v1_for_s1, i1_for_s1.conjugate()) # ============================================================================= # Current used to find S1 Positive sequence power # ============================================================================= ppci1["bus"][pq_bus, PD] = np.real(s1[pq_bus]) * ppci1["baseMVA"] ppci1["bus"][pq_bus, QD] =
np.imag(s1[pq_bus])
numpy.imag
import numpy as np import scipy.linalg class KalmanFilter(object): def __init__(self): ndim, dt = 2, 1. # Create Kalman filter model matrices. self._motion_mat = np.eye(2 * ndim, 2 * ndim) for i in range(ndim): self._motion_mat[i, ndim + i] = dt self._update_mat = np.eye(ndim, 2 * ndim) self._std_position = 0.200 self._std_velocity = 0.0350 def initiate(self, measurement): """Create track from unassociated measurement. Parameters ---------- measurement : ndarray world coordinates of a box (x,y) Returns ------- (ndarray, ndarray) Returns the mean vector (4 dimensional) and covariance matrix (4x4 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. """ mean_pos = measurement mean_vel = np.zeros_like(mean_pos) mean = np.r_[mean_pos, mean_vel] std = [ self._std_position, self._std_position, self._std_velocity, self._std_velocity ] covariance = np.diag(np.square(std)) return mean, covariance def predict(self, mean, covariance): """Run Kalman filter prediction step. Parameters ---------- mean : ndarray The 4 dimensional mean vector of the object state at the previous time step. covariance : ndarray The 4x4 dimensional covariance matrix of the object state at the previous time step. Returns ------- (ndarray, ndarray) Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. """ std_pos = [ self._std_position, self._std_position ] std_vel = [ self._std_velocity, self._std_velocity ] motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) mean = np.dot(self._motion_mat, mean) covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov return mean, covariance def project(self, mean, covariance): """Project state distribution to measurement space. Parameters ---------- mean : ndarray The state's mean vector (4 dimensional array). covariance : ndarray The state's covariance matrix (4x4 dimensional). Returns ------- (ndarray, ndarray) Returns the projected mean and covariance matrix of the given state estimate. """ std = [ self._std_position, self._std_position ] innovation_cov = np.diag(np.square(std)) mean = np.dot(self._update_mat, mean) covariance = np.linalg.multi_dot(( self._update_mat, covariance, self._update_mat.T)) return mean, covariance + innovation_cov def update(self, mean, covariance, measurement): """Run Kalman filter correction step. Parameters ---------- mean : ndarray The predicted state's mean vector (4 dimensional). covariance : ndarray The state's covariance matrix (4x4 dimensional). measurement : ndarray world coordinates of a box (x, y) Returns ------- (ndarray, ndarray) Returns the measurement-corrected state distribution. """ projected_mean, projected_cov = self.project(mean, covariance) chol_factor, lower = scipy.linalg.cho_factor( projected_cov, lower=True, check_finite=False) kalman_gain = scipy.linalg.cho_solve( (chol_factor, lower),
np.dot(covariance, self._update_mat.T)
numpy.dot
# -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["TimeSeries"] import numpy as np from itertools import izip from .frame import Frame from ._kpsf import solve, N_INT_TIME class TimeSeries(object): def __init__(self, time, flux_images, ferr_images, quality, **kwargs): # Initialize the frame images. self.time = time self.frames = [] for i, (f, fe) in enumerate(izip(flux_images, ferr_images)): frame = [] if quality[i] == 0: frame = Frame(f, fe, **kwargs) if not np.any(frame.mask): frame = [] self.frames.append(frame) # Save the frame shape. self.shape = self.frames[0].shape if any(f.shape != self.shape for f in self.frames if len(f)): raise ValueError("Frame shape mismatch") # Update the frames to have a coherent time series. self.initialize() def initialize(self): # Traverse the graph and construct the (greedy) best path. ns = min(map(len, filter(len, self.frames))) metric = np.array([1.0, 1.0, 1e-8]) current = None for t, node in enumerate(self.frames): if not len(node): continue if current is None: current = node.coords[:ns] node.coords = current continue # Compute the set of distances between this node and the current # position. r = sum([(node.coords[k][:, None] - current[k][None, :]) ** 2 * metric[i] for i, k in enumerate(("x", "y", "flux"))]) r0 = np.array(r) # Loop over the permutations and greedily choose the best update. rows, cols = np.arange(r.shape[0]), np.arange(r.shape[1]) update = np.nan + np.zeros(ns) while any(np.isnan(update)): row, col = np.unravel_index(np.argmin(r), r.shape) update[cols[col]] = rows[row] r = np.delete(r, row, axis=0) r = np.delete(r, col, axis=1) rows = np.delete(rows, row) cols = np.delete(cols, col) update = np.array(update, dtype=int) # Compute the total cost. MAGIC cost = np.sum(r0[(update, range(ns))]) if cost > 10.0: node.coords = None continue # Update the current locations. current = np.array([node.coords[j] for j in update]) self.frames[t].coords = current # Approximate the frame motion as the motion of the brightest star. self.origin = np.nan + np.zeros((len(self.frames), N_INT_TIME, 2)) for t, node in enumerate(self.frames): if not len(node): continue self.origin[t, None, :] = node.coords["x"][0], node.coords["y"][0] # Find the list of times that were acceptable. self.good_times = np.all(np.isfinite(self.origin), axis=(1, 2)) # Center the motion and compute the mean offsets. self.origin[self.good_times] -= np.mean(self.origin[self.good_times], axis=0) self.origin[np.isnan(self.origin)] = 0.0 self.offsets =
np.zeros((ns, 2))
numpy.zeros
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torchvision.models.vgg import vgg19 from models.backbones.residualconv import Residual_Conv from models.backbones.resnet import ResNet_Backbone from models.base_net import Base_of_Network from models.decoders.upsample import UpSample_Layers from models.decoders.upsample_v2 import UpSample_Layers_v2 from utils import platform_manager @platform_manager.MODELS.add_module class FAL_NetB(Base_of_Network): def _initialize_model( self, out_num=49, encoder='FALB', decoder='Upv2', num_ch_dec = [64, 128, 256, 256, 256], out_scales = [0], min_disp=2, max_disp=300, image_size=[192, 640], mom_module=False, raw_fal_arch=False, ): self.init_opts = locals() self.out_num = out_num self.encoder = encoder self.decoder = decoder self.num_ch_dec = num_ch_dec self.out_scales = out_scales self.min_disp = min_disp self.max_disp = max_disp self.image_size = image_size self.mom_module = mom_module self.raw_fal_arch = raw_fal_arch # Initialize architecture self.convblocks = {} if self.encoder == 'FALB': num_ch_enc = [32, 64, 128, 256, 256, 256, 512] self.convblocks['enc'] = Residual_Conv(num_ch_enc=num_ch_enc, input_flow=self.raw_fal_arch) elif 'Res' in self.encoder: encoder_layer = int(self.encoder[3:]) self.convblocks['enc'] = ResNet_Backbone(encoder_layer) if encoder_layer <= 34: num_ch_enc = [64, 64, 128, 256, 512] else: num_ch_enc = [64, 256, 512, 1024, 2048] if self.decoder == 'Upv2': assert self.encoder == 'FALB',\ 'Upv2 decoder must be used with FALB encoder' self.convblocks['dec'] = UpSample_Layers_v2( num_ch_enc, self.num_ch_dec, output_ch=out_num, raw_fal_arch=self.raw_fal_arch) elif self.decoder == 'Upv1': # When use Upv1 with FALB, please set # num_ch_dec = [64, 64, 128, 256, 256, 256] self.convblocks['dec'] = UpSample_Layers(num_ch_enc, self.num_ch_dec, output_ch=out_num, out_scales=[0]) self._networks = nn.ModuleList(list(self.convblocks.values())) # Initialize transformer disp_range = [] rel_disp = self.max_disp / self.min_disp for disp_idx in range(self.out_num): index_num = rel_disp**(disp_idx / (self.out_num - 1) - 1) disp = self.max_disp * index_num disp_range.append(disp) volume_dk = torch.tensor(disp_range).unsqueeze(1).unsqueeze(1) volume_dk = volume_dk.unsqueeze(0).unsqueeze(0) self.volume_dk = volume_dk.to(self.device) # side(s) transformer means warped to LEFT # other-side(o) transformer means warped to RIGHT self.transformer = {} self.transformer['o'] = DispTransformer(self.image_size, disp_range, self.device) self.transformer['s'] = DispTransformer(self.image_size, [-disp for disp in disp_range], self.device) self.feat_net = [] # load pretrained vgg19 module vgg = vgg19(pretrained=True, progress=False).features.to(self.device) vgg_feats = list(vgg.modules()) vgg_layer_num = [5, 5, 9] read_module_num = 0 for module_num in vgg_layer_num: self.feat_net.append(nn.Sequential()) for _ in range(module_num): self.feat_net[-1].add_module(str(read_module_num), vgg_feats[read_module_num + 1]) read_module_num += 1 self.train_sides = ['s'] if self.mom_module: self.train_sides.append('o') self.fix_network = {} self.fix_network['enc'] = Residual_Conv(num_ch_enc=num_ch_enc, input_flow=self.raw_fal_arch).to(self.device) self.fix_network['dec'] = UpSample_Layers_v2(num_ch_enc, num_ch_dec, output_ch=out_num, raw_fal_arch=self.raw_fal_arch).to(self.device) self.loaded_flag = False else: self.loaded_flag = True def forward(self, inputs, is_train=True): self.inputs = inputs outputs = {} if is_train: losses = {} losses['loss'] = 0 if not self.loaded_flag: self.fix_network['enc'].load_state_dict( self.convblocks['enc'].state_dict().copy()) self.fix_network['dec'].load_state_dict( self.convblocks['dec'].state_dict().copy()) self.loaded_flag = True directs = self.inputs['direct'] directs = directs.unsqueeze(1).unsqueeze(1).unsqueeze(1) for train_side in self.train_sides: # oside is used to select the disparity transformer oside = 'o' if train_side == 's' else 's' # process inputs t_img_aug = self.inputs['color_{}_aug'.format(train_side)] # generate the train side disparity raw_volume = self._get_dispvolume_from_img(train_side) d_volume = raw_volume.unsqueeze(1) p_volume = self._get_probvolume_from_dispvolume(d_volume) pred_disp = self._get_disp_from_probvolume(p_volume, directs) w_d_volume = self.transformer[oside]\ .get_warped_volume(d_volume, directs) w_p_volume = self._get_probvolume_from_dispvolume(w_d_volume) # biuld the outputs outputs['disp_{}'.format(train_side)] = pred_disp outputs['p_volume_{}'.format(train_side)] = p_volume.detach() outputs['w_p_volume_{}'.format( train_side)] = w_p_volume.detach() if self.mom_module: outputs['depth_{}'.format( train_side)] = self._get_depth_from_disp(pred_disp) with torch.no_grad(): if train_side == 's': t_img_aug_f = torch.flip(t_img_aug, [3]) else: t_img_aug_f = t_img_aug if self.raw_fal_arch: B, C, H, W = t_img_aug_f.shape flow = torch.ones(B, 1, H, W).type(t_img_aug_f.type()) flow[:, 0, :, :] = self.max_disp * flow[:, 0, :, :] / 100 x_f = t_img_aug_f else: x_f = t_img_aug_f / 0.225 flow = None features_f = self.fix_network['enc'](x_f, flow) raw_volume_f = self.fix_network['dec']( features_f, t_img_aug_f.shape) d_volume_f = raw_volume_f.unsqueeze(1) p_volume_f = self._get_probvolume_from_dispvolume( d_volume_f) pred_disp_f = self._get_disp_from_probvolume( p_volume_f, directs) pred_depth_f = self._get_depth_from_disp(pred_disp_f) if train_side == 's': pred_depth_ff = torch.flip(pred_depth_f, [3]) else: pred_depth_ff = pred_depth_f outputs['disp_f_{}'.format(train_side)] = pred_disp_f outputs['depth_ff_{}'.format( train_side)] = pred_depth_ff mask = torch.ones_like(pred_depth_ff) mask = mask / pred_depth_ff.max() outputs['ff_mask_{}'.format(oside)] = mask # generate the synthetic image in right side # named side but its synthesized the image of other side w_img = self.transformer[oside]\ .get_warped_frame(t_img_aug, directs) synth_img = (w_p_volume * w_img).sum(dim=2) outputs['synth_img_{}'.format(train_side)] = synth_img # compute the occlusion mask if self.mom_module: for train_side in self.train_sides: oside = 'o' if train_side == 's' else 's' p_volume = outputs['p_volume_{}'.format(train_side)] cyc_p_volume = self.transformer[oside]\ .get_warped_volume(p_volume, directs) occ_mask1 = cyc_p_volume.sum(dim=2) w_p_volume = outputs['w_p_volume_{}'.format(oside)] cyc_w_p_volume = self.transformer[oside]\ .get_warped_volume(w_p_volume, directs) occ_mask2 = cyc_w_p_volume.sum(dim=2) occ_mask = (occ_mask1 * occ_mask2).clamp(0, 1) outputs['mask_{}'.format(train_side)] = occ_mask outputs['inv_mask_{}'.format(train_side)] = (1 - occ_mask) outputs['ff_mask_{}'.format(oside)] = ( 1 - occ_mask) * outputs['ff_mask_{}'.format(train_side)] # extract features by vgg for train_side in self.train_sides: oside = 'o' if train_side == 's' else 's' raw_img = self.inputs['color_{}_aug'.format(oside)] synth_img = outputs['synth_img_{}'.format(train_side)] if self.mom_module: occ_mask = outputs['mask_{}'.format(train_side)] inv_occ_mask = outputs['inv_mask_{}'.format(train_side)] synth_img = synth_img * occ_mask + raw_img * inv_occ_mask outputs['synth_img_{}'.format(train_side)] = synth_img with torch.no_grad(): raw_feats = self._get_conv_feats_from_image(raw_img) synth_feats = self._get_conv_feats_from_image(synth_img) for feat_idx in range(3): rawf_name = 'raw_feats_{}_{}'.format(feat_idx, train_side) outputs[rawf_name] = raw_feats[feat_idx] synthf_name = 'synth_feats_{}_{}'.format( feat_idx, train_side) outputs[synthf_name] = synth_feats[feat_idx] # compute the losses for train_side in self.train_sides: self._compute_losses(outputs, train_side, losses, add_loss=False) self._add_final_losses(train_side, losses) return outputs, losses else: raw_volume = self._get_dispvolume_from_img('s', aug='') d_volume = raw_volume.unsqueeze(1) p_volume = self._get_probvolume_from_dispvolume(d_volume) pred_disp = self._get_disp_from_probvolume(p_volume) pred_depth = self._get_depth_from_disp(pred_disp) outputs[('depth', 's')] = pred_depth return outputs def _get_dispvolume_from_img(self, side, aug='_aug'): input_img = self.inputs['color_{}{}'.format(side, aug)].clone() if side == 'o': input_img = torch.flip(input_img, dims=[3]) if self.raw_fal_arch: B, C, H, W = input_img.shape flow = torch.ones(B, 1, H, W).type(input_img.type()) flow[:, 0, :, :] = self.max_disp * flow[:, 0, :, :] / 100 x = input_img features = self.convblocks['enc'](x, flow) else: x = input_img features = self.convblocks['enc'](x) out_volume = self.convblocks['dec'](features, input_img.shape) if side == 'o': out_volume = torch.flip(out_volume, dims=[3]) return out_volume def _upsample(self, x, shape): return F.interpolate(x, size=shape[2:], mode='nearest') def _get_probvolume_from_dispvolume(self, volume): return F.softmax(volume, dim=2) def _get_disp_from_probvolume(self, volume, directs=None): disp = (volume * self.volume_dk).sum(dim=2) if directs is not None: disp = disp * torch.abs(directs) return disp def _get_mask_from_probvolume(self, volume): raw_mask = volume.sum(dim=2) return raw_mask.clamp(0, 1) def _get_depth_from_disp(self, disp): if 'disp_k' in self.inputs: k = self.inputs['disp_k'].unsqueeze(1).unsqueeze(1).unsqueeze(1) else: k = torch.tensor([721.54 * 0.54], dtype=torch.float) k = k.unsqueeze(1).unsqueeze(1).unsqueeze(1).to(disp) depth = torch.abs(k) / disp return depth def _get_conv_feats_from_image(self, raw_img): feats = [] x = raw_img for block_idx in range(len(self.feat_net)): x = self.feat_net[block_idx](x) feats.append(x) return feats class Conv3x3(nn.Module): """Layer to pad and convolve input from https://github.com/nianticlabs/monodepth2.""" def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class ConvBlock(nn.Module): """Layer to perform a convolution followed by ELU from https://github.com/nianticlabs/monodepth2.""" def __init__(self, in_channels, out_channels, bn=False, nonlin=True): super(ConvBlock, self).__init__() self.conv = Conv3x3(in_channels, out_channels) if nonlin: self.nonlin = nn.ELU(inplace=True) else: self.nonlin = None if bn: self.bn = nn.BatchNorm2d(out_channels) else: self.bn = None def forward(self, x): out = self.conv(x) if self.bn is not None: out = self.bn(out) if self.nonlin is not None: out = self.nonlin(out) return out class AtrousConv(nn.Sequential): def __init__(self, in_channels, out_channels, dilation, apply_bn_first=True): super().__init__() self.atrous_conv = torch.nn.Sequential() if apply_bn_first: self.atrous_conv.add_module( 'first_bn', nn.BatchNorm2d(in_channels, momentum=0.01, affine=True, track_running_stats=True, eps=1.1e-5)) self.atrous_conv.add_module( 'aconv_sequence', nn.Sequential( nn.ReLU(), nn.Conv2d(in_channels=in_channels, out_channels=out_channels * 2, bias=False, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(out_channels * 2, momentum=0.01, affine=True, track_running_stats=True), nn.ReLU(), nn.Conv2d(in_channels=out_channels * 2, out_channels=out_channels, bias=False, kernel_size=3, stride=1, padding=(dilation, dilation), dilation=dilation))) def forward(self, x): return self.atrous_conv.forward(x) class DispTransformer(object): def __init__(self, image_size, disp_range, device='cuda'): i_tetha = torch.zeros(1, 2, 3) i_tetha[:, 0, 0] = 1 i_tetha[:, 1, 1] = 1 normal_coord = F.affine_grid(i_tetha, [1, 1, image_size[0], image_size[1]], align_corners=True) self.base_coord = normal_coord.to(device) # add disparity self.normal_disp_bunch = [] zeros = torch.zeros_like(self.base_coord) for disp in disp_range: disp_map = zeros.clone() disp_map[..., 0] = disp_map[..., 0] + disp normal_disp_map = self._get_normalize_coord(disp_map, image_size) normal_disp_map = normal_disp_map.to(torch.device(device)) self.normal_disp_bunch.append(normal_disp_map) self.ch_num = len(disp_range) def _get_normalize_coord(self, coord, image_size): """TODO.""" coord[..., 0] /= (image_size[1] / 2) coord[..., 1] /= (image_size[0] / 2) return coord def get_warped_volume(self, volume, directs): """Warp the volume by disparity range with zeros padding.""" bs = volume.shape[0] new_volume = torch.zeros_like(volume) for ch_idx in range(self.ch_num): normal_disp = self.normal_disp_bunch[ch_idx].repeat(bs, 1, 1, 1) # To adapt flip data augment grid_coord = normal_disp * directs + self.base_coord warped_frame = F.grid_sample(volume[:, :, ch_idx, ...], grid_coord, mode='bilinear', padding_mode='zeros', align_corners=True) new_volume[:, :, ch_idx, ...] = warped_frame return new_volume def get_warped_frame(self, x, directs, base_coord=None, coords_k=None): """Warp the images by disparity range with border padding.""" if base_coord is None: base_coord = self.base_coord bs, ch, h, w = x.shape else: bs, h, w, _ = base_coord.shape ch = x.shape[1] directs *= coords_k frame_volume = torch.zeros((bs, ch, self.ch_num, h, w)).to(x) for ch_idx in range(self.ch_num): normal_disp = self.normal_disp_bunch[ch_idx].repeat(bs, 1, 1, 1) # To adapt flip data augment grid_coord = normal_disp * directs + base_coord warped_frame = F.grid_sample(x, grid_coord, mode='bilinear', padding_mode='border', align_corners=True) frame_volume[:, :, ch_idx, ...] = warped_frame return frame_volume class DepthProjecter(nn.Module): def __init__(self, image_size): super().__init__() self.height = image_size[0] self.width = image_size[1] meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy') self.id_coords =
np.stack(meshgrid, axis=0)
numpy.stack
# -*- coding: utf-8 -*- import numpy class Dummy(): def __init__(self): '''nothing to do here''' def calc_pm1(self, exp_vars): return self.__sum_exp_vars(exp_vars) def calc_pm2(self, exp_vars): return self.__sum_exp_vars(exp_vars) * 2 def calc_pm10(self, exp_vars): return self.__sum_exp_vars(exp_vars) * 10 def calc_pm100(self, exp_vars): return self.__sum_exp_vars(exp_vars) * 100 def __sum_exp_vars(self,ev): return ev['exp_var 1'] + ev['exp_var 2'] def __call__(self, **kwargs): return dict( pm_1=self.calc_pm1(kwargs), pm_2=self.calc_pm2(kwargs), pm_10=self.calc_pm10(kwargs), pm_100=self.calc_pm100(kwargs), ) def NoisyDummy(**kwargs): lever1 = kwargs.get('lever1', 0) lever2 = kwargs.get('lever2', 0) uncertain1 = kwargs.get('uncertain1', 3) uncertain2 = numpy.exp(kwargs.get('uncertain2', -0.7)) uncertain3 = numpy.exp(kwargs.get('uncertain3', 0.7)) certain4 = kwargs.get('certain4', 3) noise_amplitude = kwargs.get('noise_amplitude', 2.0) noise_frequency = kwargs.get('noise_frequency', 5.0) pm_1 = ( - uncertain2 * lever1 * lever1 + (uncertain1 + certain4) * (lever1 + lever2) + noise_amplitude * numpy.sin(noise_frequency * lever1) ) pm_2 = numpy.minimum( 1.11e+111 * uncertain1, numpy.exp( uncertain3 * lever1 * (lever1 + lever2) + uncertain1 * lever1 + noise_amplitude * numpy.cos(noise_frequency * lever2) ) ) pm_3 = ( noise_amplitude * numpy.cos(noise_frequency * lever1) + noise_amplitude * numpy.sin(noise_frequency * lever2) + certain4 ) pm_4 = numpy.exp( uncertain1 + certain4 ) return {'pm_1':pm_1, 'pm_2': pm_2, 'pm_3': pm_3, 'pm_4':pm_4} def Road_Capacity_Investment( # constant free_flow_time=60, initial_capacity=100, # uncertainty alpha=0.15, beta=4.0, input_flow=100, value_of_time=0.01, unit_cost_expansion=1, interest_rate=0.03, yield_curve=0.01, # policy expand_capacity=10, amortization_period=30, interest_rate_lock=False, debt_type='GO Bond', lane_width=10, **kwargs, ): """ A fictitious example model for road capacity investment. This model simulates a capacity expansion investment on a single network link. The link volume-delay function is governed by the `BPR function <https://en.wikipedia.org/wiki/Route_assignment#Frank-Wolfe_algorithm>`_. This model is a bit contrived, because it is designed to explicitly demonstrate a wide variety of EMAT features in a transportation planning model that is as simple as possible. For example, the policy levers are structured so that there is one of each dtype (float, int, bool, and categorical). Args: free_flow_time (float, default 60): The free flow travel time on the link. initial_capacity (float, default 100): The pre-expansion capacity on the link. alpha (float, default 0.15): Alpha parameter to the BPR volume-delay function. beta (float, default 4.0): Beta parameter to the BPR volume-delay function. input_flow (float, default 100): The future input flow on the link. value_of_time (float, default 0.01): The value of a unit of travel time savings per unit of flow on the link. unit_cost_expansion (float, default 1): The present marginal cost of adding one unit of capacity to the link (assumes no economies of scale on expansion cost) interest_rate (float, default 0.03): The interest rate actually incurred for revenue bonds amortized over 15 years. The interest rate for general obligation bonds is assumed to be 0.0025 less than this value. yield_curve (float, default 0.01): The marginal increase in the interest_rate if the amortization period is 50 years instead of 15. The yield curve is assumed to be linearly projected to all other possible amortization periods expand_capacity (float, default 10): The amount of capacity expansion actually constructed. amortization_period (int, default 30): The time period over which the construction costs are amortized. interest_rate_lock (bool, default False): Whether interest rates are locked at the assumed current rate of 0.03 / 0.01 or allowed to float. debt_type ('GO Bond', 'Rev Bond', 'Paygo'): Type of financing. General obligation bonds are assumed to have a lower interest rate than revenue bonds, but may be politically less desirable. Pay-as-you-go financing incurs no actual interest costs, but requires actually having the funds available. lane_width (float, default 10): The width of lanes on the roadway. This parameter is intentionally wacky, causing massive congestion for any value other than 10, to demonstrate what might happen with broken model inputs. Returns: dict: no_build_travel_time The average travel time on the link if no capacity expansion was constructed. build_travel_time The average travel time on the link after expansion. time_savings The average travel time savings as a result of the expansion. value_of_time_savings The total value of the travel time savings, accounting for the time savings per traveler, the total flow, and the value of time. present_cost_expansion The present cost of building the expansion cost_of_capacity_expansion The annual payment to finance the expansion, when amortized. net_benefits The value of the time savings minus the annual payment. """ debt_type = debt_type.lower() assert debt_type in ('go bond', 'paygo', 'rev bond') average_travel_time0 = free_flow_time * (1 + alpha*(input_flow/initial_capacity)**beta) capacity = initial_capacity + expand_capacity average_travel_time1 = free_flow_time * (1 + alpha*(input_flow/capacity)**beta) average_travel_time1 += (numpy.absolute(lane_width-10)*1000)**0.5 travel_time_savings = average_travel_time0 - average_travel_time1 value_of_time_savings = value_of_time * travel_time_savings * input_flow present_cost_of_capacity_expansion = float(unit_cost_expansion * expand_capacity) if interest_rate_lock: interest_rate = 0.03 yield_curve = 0.01 if (debt_type == 'go bond'): interest_rate -= 0.0025 elif (debt_type == 'paygo'): interest_rate = 0 effective_interest_rate = interest_rate + yield_curve * (amortization_period-15) / 35 cost_of_capacity_expansion = numpy.pmt(effective_interest_rate, amortization_period, present_cost_of_capacity_expansion, ) return dict( no_build_travel_time=average_travel_time0, build_travel_time=average_travel_time1, time_savings=travel_time_savings, value_of_time_savings=value_of_time_savings, present_cost_expansion=present_cost_of_capacity_expansion, cost_of_capacity_expansion=-cost_of_capacity_expansion, net_benefits = value_of_time_savings + cost_of_capacity_expansion, ) def _Road_Capacity_Investment_CmdLine(): """ This is a demo for calling a core model function on the command line. """ import argparse, pandas, os, numpy, sys, warnings parser = argparse.ArgumentParser() parser.add_argument('--levers', type=str, default='levers.yml', help='Levers Yaml File') parser.add_argument('--uncs', type=str, default="uncs.yml", help='Uncertainties Yaml File') parser.add_argument('--no-random-crashes', action='store_true', help='disable random crashes') args = parser.parse_args() import logging logger = logging.getLogger('emat.RoadTest') file_handler = logging.FileHandler("emat-road-test.log") file_handler.setLevel(10) LOG_FORMAT = '[%(asctime)s] %(name)s.%(levelname)s: %(message)s' file_handler.setFormatter(logging.Formatter(LOG_FORMAT)) console_handler = logging.StreamHandler(stream=sys.stdout) console_handler.setLevel(20) console_handler.setFormatter(logging.Formatter(LOG_FORMAT)) logger.addHandler(console_handler) logger.addHandler(file_handler) logger.setLevel(10) logger.info("running emat-road-test-demo") logger.debug(str(args)) logger.debug(str(os.getcwd())) import yaml if os.path.exists(args.levers): with open(args.levers, 'rt') as f: levers = yaml.safe_load(f) else: levers = {'mandatory_unused_lever':42} if os.path.exists(args.uncs): with open(args.uncs, 'rt') as f: uncs = yaml.safe_load(f) else: uncs = {} if 'mandatory_unused_lever' not in levers: raise ValueError("missing 'mandatory_unused_lever'") if levers['mandatory_unused_lever'] != 42: raise ValueError("incorrect value for 'mandatory_unused_lever', must be 42") if 'unit_cost_expansion' in uncs: raise ValueError("cannot give 'unit_cost_expansion', use 'labor_unit_cost_expansion' and 'materials_unit_cost_expansion'") if uncs.get('labor_unit_cost_expansion', 0) <= uncs.get('materials_unit_cost_expansion', 0): raise ValueError("'labor_unit_cost_expansion' cannot be less than or equal 'materials_unit_cost_expansion'") if uncs.get('labor_unit_cost_expansion', 0) > uncs.get('materials_unit_cost_expansion', 0)*2: raise ValueError("'labor_unit_cost_expansion' cannot be more than double 'materials_unit_cost_expansion'") unit_cost_expansion = uncs.pop('labor_unit_cost_expansion', 0) + uncs.pop('materials_unit_cost_expansion', 0) uncs['unit_cost_expansion'] = unit_cost_expansion # (pseudo)random crash if not args.no_random_crashes: if 'expand_capacity' in levers and levers['expand_capacity'] > 90 and not os.path.exists('prevent_random_crash.txt'): with open('prevent_random_crash.txt', 'wt') as f: f.write("this file will prevent random crashes in `emat-road-test-demo`") logger.error("Random crash, ha ha!") sys.exit(-9) try: for k,v in levers.items(): logger.debug(f"lever: {k} = {v}") for k,v in uncs.items(): logger.debug(f"uncertainty: {k} = {v}") result = Road_Capacity_Investment(**levers, **uncs) for k,v in result.items(): logger.debug(f"result: {k} = {v}") result1 = {str(k):float(result[k]) for k in ['no_build_travel_time','build_travel_time','time_savings']} result2 = pandas.DataFrame({ 'value_of_time_savings': [
numpy.exp(result['value_of_time_savings']/1000)
numpy.exp
import numpy as np import pandas as pd from numpy.testing import assert_, assert_equal, assert_allclose, assert_raises from statsmodels.tsa.arima import specification, params def test_init(): # Test initialization of the params # Basic test, with 1 of each parameter exog = pd.DataFrame([[0]], columns=['a']) spec = specification.SARIMAXSpecification( exog=exog, order=(1, 1, 1), seasonal_order=(1, 1, 1, 4)) p = params.SARIMAXParams(spec=spec) # Test things copied over from spec assert_equal(p.spec, spec) assert_equal(p.exog_names, ['a']) assert_equal(p.ar_names, ['ar.L1']) assert_equal(p.ma_names, ['ma.L1']) assert_equal(p.seasonal_ar_names, ['ar.S.L4']) assert_equal(p.seasonal_ma_names, ['ma.S.L4']) assert_equal(p.param_names, ['a', 'ar.L1', 'ma.L1', 'ar.S.L4', 'ma.S.L4', 'sigma2']) assert_equal(p.k_exog_params, 1) assert_equal(p.k_ar_params, 1) assert_equal(p.k_ma_params, 1) assert_equal(p.k_seasonal_ar_params, 1) assert_equal(p.k_seasonal_ma_params, 1) assert_equal(p.k_params, 6) # Initial parameters should all be NaN assert_equal(p.params, np.nan) assert_equal(p.ar_params, [np.nan]) assert_equal(p.ma_params, [np.nan]) assert_equal(p.seasonal_ar_params, [np.nan]) assert_equal(p.seasonal_ma_params, [np.nan]) assert_equal(p.sigma2, np.nan) assert_equal(p.ar_poly.coef, np.r_[1, np.nan]) assert_equal(p.ma_poly.coef, np.r_[1, np.nan]) assert_equal(p.seasonal_ar_poly.coef, np.r_[1, 0, 0, 0, np.nan]) assert_equal(p.seasonal_ma_poly.coef, np.r_[1, 0, 0, 0, np.nan]) assert_equal(p.reduced_ar_poly.coef, np.r_[1, [np.nan] * 5]) assert_equal(p.reduced_ma_poly.coef, np.r_[1, [np.nan] * 5]) # Test other properties, methods assert_(not p.is_complete) assert_(not p.is_valid) assert_raises(ValueError, p.__getattribute__, 'is_stationary') assert_raises(ValueError, p.__getattribute__, 'is_invertible') desired = { 'exog_params': [np.nan], 'ar_params': [np.nan], 'ma_params': [np.nan], 'seasonal_ar_params': [np.nan], 'seasonal_ma_params': [np.nan], 'sigma2': np.nan} assert_equal(p.to_dict(), desired) desired = pd.Series([np.nan] * spec.k_params, index=spec.param_names) assert_allclose(p.to_pandas(), desired) # Test with different numbers of parameters for each exog = pd.DataFrame([[0, 0]], columns=['a', 'b']) spec = specification.SARIMAXSpecification( exog=exog, order=(3, 1, 2), seasonal_order=(5, 1, 6, 4)) p = params.SARIMAXParams(spec=spec) # No real need to test names here, since they are already tested above for # the 1-param case, and tested more extensively in test for # SARIMAXSpecification assert_equal(p.k_exog_params, 2) assert_equal(p.k_ar_params, 3) assert_equal(p.k_ma_params, 2) assert_equal(p.k_seasonal_ar_params, 5) assert_equal(p.k_seasonal_ma_params, 6) assert_equal(p.k_params, 2 + 3 + 2 + 5 + 6 + 1) def test_set_params_single(): # Test setting parameters directly (i.e. we test setting the AR/MA # parameters by setting the lag polynomials elsewhere) # Here each type has only a single parameters exog = pd.DataFrame([[0]], columns=['a']) spec = specification.SARIMAXSpecification( exog=exog, order=(1, 1, 1), seasonal_order=(1, 1, 1, 4)) p = params.SARIMAXParams(spec=spec) def check(is_stationary='raise', is_invertible='raise'): assert_(not p.is_complete) assert_(not p.is_valid) if is_stationary == 'raise': assert_raises(ValueError, p.__getattribute__, 'is_stationary') else: assert_equal(p.is_stationary, is_stationary) if is_invertible == 'raise': assert_raises(ValueError, p.__getattribute__, 'is_invertible') else: assert_equal(p.is_invertible, is_invertible) # Set params one at a time, as scalars p.exog_params = -6. check() p.ar_params = -5. check() p.ma_params = -4. check() p.seasonal_ar_params = -3. check(is_stationary=False) p.seasonal_ma_params = -2. check(is_stationary=False, is_invertible=False) p.sigma2 = -1. # Finally, we have a complete set. assert_(p.is_complete) # But still not valid assert_(not p.is_valid) assert_equal(p.params, [-6, -5, -4, -3, -2, -1]) assert_equal(p.exog_params, [-6]) assert_equal(p.ar_params, [-5]) assert_equal(p.ma_params, [-4]) assert_equal(p.seasonal_ar_params, [-3]) assert_equal(p.seasonal_ma_params, [-2]) assert_equal(p.sigma2, -1.) # Lag polynomials assert_equal(p.ar_poly.coef, np.r_[1, 5]) assert_equal(p.ma_poly.coef, np.r_[1, -4]) assert_equal(p.seasonal_ar_poly.coef, np.r_[1, 0, 0, 0, 3]) assert_equal(p.seasonal_ma_poly.coef, np.r_[1, 0, 0, 0, -2]) # (1 - a L) (1 - b L^4) = (1 - a L - b L^4 + a b L^5) assert_equal(p.reduced_ar_poly.coef, np.r_[1, 5, 0, 0, 3, 15]) # (1 + a L) (1 + b L^4) = (1 + a L + b L^4 + a b L^5) assert_equal(p.reduced_ma_poly.coef, np.r_[1, -4, 0, 0, -2, 8]) # Override again, one at a time, now using lists p.exog_params = [1.] p.ar_params = [2.] p.ma_params = [3.] p.seasonal_ar_params = [4.] p.seasonal_ma_params = [5.] p.sigma2 = [6.] p.params = [1, 2, 3, 4, 5, 6] assert_equal(p.params, [1, 2, 3, 4, 5, 6]) assert_equal(p.exog_params, [1]) assert_equal(p.ar_params, [2]) assert_equal(p.ma_params, [3]) assert_equal(p.seasonal_ar_params, [4]) assert_equal(p.seasonal_ma_params, [5]) assert_equal(p.sigma2, 6.) # Override again, one at a time, now using arrays p.exog_params = np.array(6.) p.ar_params = np.array(5.) p.ma_params = np.array(4.) p.seasonal_ar_params = np.array(3.) p.seasonal_ma_params = np.array(2.) p.sigma2 = np.array(1.) assert_equal(p.params, [6, 5, 4, 3, 2, 1]) assert_equal(p.exog_params, [6]) assert_equal(p.ar_params, [5]) assert_equal(p.ma_params, [4]) assert_equal(p.seasonal_ar_params, [3]) assert_equal(p.seasonal_ma_params, [2]) assert_equal(p.sigma2, 1.) # Override again, now setting params all at once p.params = [1, 2, 3, 4, 5, 6] assert_equal(p.params, [1, 2, 3, 4, 5, 6]) assert_equal(p.exog_params, [1]) assert_equal(p.ar_params, [2]) assert_equal(p.ma_params, [3]) assert_equal(p.seasonal_ar_params, [4]) assert_equal(p.seasonal_ma_params, [5]) assert_equal(p.sigma2, 6.) # Lag polynomials assert_equal(p.ar_poly.coef, np.r_[1, -2]) assert_equal(p.ma_poly.coef, np.r_[1, 3]) assert_equal(p.seasonal_ar_poly.coef, np.r_[1, 0, 0, 0, -4]) assert_equal(p.seasonal_ma_poly.coef, np.r_[1, 0, 0, 0, 5]) # (1 - a L) (1 - b L^4) = (1 - a L - b L^4 + a b L^5) assert_equal(p.reduced_ar_poly.coef, np.r_[1, -2, 0, 0, -4, 8]) # (1 + a L) (1 + b L^4) = (1 + a L + b L^4 + a b L^5) assert_equal(p.reduced_ma_poly.coef, np.r_[1, 3, 0, 0, 5, 15]) def test_set_params_single_nonconsecutive(): # Test setting parameters directly (i.e. we test setting the AR/MA # parameters by setting the lag polynomials elsewhere) # Here each type has only a single parameters but has non-consecutive # lag orders exog = pd.DataFrame([[0]], columns=['a']) spec = specification.SARIMAXSpecification( exog=exog, order=([0, 1], 1, [0, 1]), seasonal_order=([0, 1], 1, [0, 1], 4)) p = params.SARIMAXParams(spec=spec) def check(is_stationary='raise', is_invertible='raise'): assert_(not p.is_complete) assert_(not p.is_valid) if is_stationary == 'raise': assert_raises(ValueError, p.__getattribute__, 'is_stationary') else: assert_equal(p.is_stationary, is_stationary) if is_invertible == 'raise': assert_raises(ValueError, p.__getattribute__, 'is_invertible') else: assert_equal(p.is_invertible, is_invertible) # Set params one at a time, as scalars p.exog_params = -6. check() p.ar_params = -5. check() p.ma_params = -4. check() p.seasonal_ar_params = -3. check(is_stationary=False) p.seasonal_ma_params = -2. check(is_stationary=False, is_invertible=False) p.sigma2 = -1. # Finally, we have a complete set. assert_(p.is_complete) # But still not valid assert_(not p.is_valid) assert_equal(p.params, [-6, -5, -4, -3, -2, -1]) assert_equal(p.exog_params, [-6]) assert_equal(p.ar_params, [-5]) assert_equal(p.ma_params, [-4])
assert_equal(p.seasonal_ar_params, [-3])
numpy.testing.assert_equal
""" Functions implementing the WR and BR-tests in the SpatialCorr algorithm. Authors: <NAME> <<EMAIL>> """ import pandas as pd import numpy as np import math from collections import defaultdict from multiprocessing import Process, Manager from sklearn.metrics.pairwise import euclidean_distances from statsmodels.stats.multitest import multipletests def build_normal_log_pdf(mean, cov, cov_inv=None): """ A closure for creating a function that calculates the multivariate normal (MVN) density function. Parameters ---------- mean: ndarray N dimensional mean vector. cov: ndarray NxN dimensional covariance matrix. cov_inv: ndarray NxN dimensional precision matrix (the inverse of the covariance matrix). If not, provided, it will be calculated automatically. Returns ------- normal_log_pdf: function The MVN density function. """ if cov_inv is None: cov_inv = np.linalg.inv(cov) cov_det = np.abs(np.linalg.det(cov)) const = ((-len(mean)/2) * np.log(2*np.pi)) \ - (0.5 * np.log(cov_det)) def normal_log_pdf(x): cent = x - mean return const - (0.5 * np.dot(cent, np.dot(cov_inv, cent))) return normal_log_pdf def covariance_kernel_estimation(kernel_matrix, X): """ Compute the kernel estimate of the covariance matrix at each spatial location. Parameters ---------- kernel_matrix: ndarray NxN matrix representing the spatial kernel (i.e., pairwise weights between spatial locations) X: ndarray GxN expression matrix where G is number of genes and N is number of spots Returns ------- all_covs: ndarray NxGxG array storing the GxG covariance matrices at the N spots. """ # For simplicity K = kernel_matrix # Means will be a NxG matrix of the spot-wise # kernel-computed means means = (np.matmul(K, X.T).T / np.sum(K, axis=1)).T # Compute the difference of each spotwise expression # from its mean devs = X.T-means # For each spot, compute the outer product of the deviation # vector with itself. These correspond to each term in the # summation used to calculate kernel estimated covariance at # each spot. O = np.array([np.outer(d,d) for d in devs]) # This is a bit complicated. For a given spot i, to compute # its covariance matrix, we need to compute a weighted sum # of these matrices: # # \sum_j K_{ij} (X_j - mean_j)(X_j - mean_j)^T # # O is a list of matrices: # # (X_1 - mean_1)(X_1 - mean_1)^T ... (X_n - mean_n)(X_n - mean_n)^T # # For spot i, we can take this weighted sum via: # # np.einsum('i,ijk', K[i], O) # # To do this over all spots, we broadcast it via: # # np.einsum('...i,ijk', K, O) # all_covs = np.einsum('...i,ijk', K, O) all_covs = (all_covs.T / np.sum(K, axis=1)).T return all_covs def compute_kernel_matrix( df, bandwidth, region_key='cluster', condition_on_region=False, y_col='row', x_col='col', dist_matrix=None ): """ Compute the Gaussian kernel matrix between spots. Parameters ---------- df: DataFrame A pandas DataFrame storing the coordinates of each spot. bandwidth: float The Gaussian kernel bandwidth parameter. Higher values increase the size of the kernel. region_key: string, optional (default: 'cluster') The column in `df` storing the region annotations for ensuring that the kernel conditions on regions/clusters. Only used if `condition_on_region` is True. condition_on_region: boolean, optional (default: False) If True, compute the kernel conditioned on regions stored in `region_key`. y_col: string, optional (default: 'row') The column in `df` storing the y-coordinates for each spot. x_col: string, optional (default: 'col') The column in `df' storing the x-coordinates for each spot. dist_matrix: ndarray, optional (default: None) An NxN matrix storing the pairwise distances between spots to be used as input to the kernel. If `None`, Euclidean distances will be computed automatically. Returns ------- kernel_matrix: ndarray NxN array storing the pairwise weights between spots as computed by the Gaussian kernel. """ if dist_matrix is None: # Get pixel coordinates coords = np.array(df[[y_col, x_col]]) # Euclidean distance matrix dist_matrix = euclidean_distances(coords) # Compute matrix conditioning on cell type if not condition_on_region: eta = np.full(dist_matrix.shape, 1) else: eta = [] for ct1 in df[region_key]: r = [] for ct2 in df[region_key]: r.append(int(ct1 == ct2)) eta.append(r) eta = np.array(eta) # Gaussian kernel matrix kernel_matrix = np.exp(-1 * np.power(dist_matrix,2) / bandwidth**2) kernel_matrix = np.multiply(kernel_matrix, eta) return kernel_matrix def _permute_expression(expr_1, expr_2, n_perms): expr = np.array([expr_1, expr_2]).T perms = np.array([ np.random.permutation(expr) for i in range(n_perms) ]) return perms def _permute_expression_cond_cell_type(X, ct_to_indices, n_perms): """ parameters ---------- X GxN matrix of expression values where G is the number of genes and N is the number of spots. """ expr = X.T perms = np.zeros((n_perms, len(expr), len(X.T[0]))) for ct, indices in ct_to_indices.items(): ct_expr = expr[indices] ct_perms = np.array([ np.random.permutation(ct_expr) for i in range(n_perms) ]) perms[:,indices,:] = ct_perms return perms def _chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] def _bh_region_pvals(ct_to_pval): """ Adjust region-specific WR p-values using Benjamini Hochberg (BH) to correct for testing multiple regions. Parameters ---------- ct_to_pval: dictionary A dictionary mapping each region to its WR p-value Returns ------- ct_to_adj_pval: dictionary A dictioanry mapping each region to its BH-adjusted p-value. """ ct_pvals = [(k,v) for k,v in ct_to_pval.items()] cts = [x[0] for x in ct_pvals] pvals = [x[1] for x in ct_pvals] _, adj_pvals, _, _ = multipletests(pvals, alpha=0.05, method='fdr_bh') ct_to_adj_pval = { ct: adj for ct, adj in zip(cts, adj_pvals) } return ct_to_adj_pval def _worker_between( worker_id, global_t_nulls, spotwise_t_nulls, df_filt, perms, kernel_matrix, ct_to_indices, null_corrs_filt, keep_indices, verbose=10, compute_spotwise_pvals=False ): """ This function computes the test statistic on a chunk of permutations when run in parallel mode. """ if verbose > 1: print(f"Started worker {worker_id}...") for perm_i, perm in enumerate(perms): if verbose > 1 and perm_i % 25 == 0: print(f"Worker {worker_id}, running permutation {perm_i}/{len(perms)}") # Compute alternative likelihoods perm_ll, perm_spot_lls = compute_llrts_between( df_filt, perm.T, kernel_matrix, ct_to_indices, #alt_corrs_filt, null_corrs_filt, keep_indices ) # Record the test statistic for this null sample global_t_nulls.append(perm_ll) if compute_spotwise_pvals: spotwise_t_nulls.append(perm_spot_lls) def _worker_within( worker_id, global_t_nulls, spotwise_t_nulls, df_filt, perms, kernel_matrix, null_corrs_filt, keep_indices, verbose=10, compute_spotwise_pvals=False ): """ This function computes the test statistic on a chunk of permutations when run in parallel mode. """ if verbose > 1: print(f"Started worker {worker_id}...") for perm_i, perm in enumerate(perms): if verbose > 1 and perm_i % 25 == 0: print(f"Worker {worker_id}, running permutation {perm_i}/{len(perms)}") # Compute alternative likelihoods perm_ll, perm_spot_lls = compute_llrts_within( df_filt, perm.T, kernel_matrix, null_corrs_filt, keep_indices ) # Record the test statistic for this null sample global_t_nulls.append(perm_ll) if compute_spotwise_pvals: spotwise_t_nulls.append(perm_spot_lls) def _adjust_covs_from_corrs(covs, corrs): """ Given a list of covariance matrices and a list of correlation matrices, for each pair, compute the new covariances based on the based on the diagonal (i.e. variance) in to match the corresponding entries in the correlation matrix. Parameters ---------- corrs A sequence of Pearson correlation matrices covs A sequence of covariance matrices Returns ------- A sequence of adjusted covariance matrices """ new_covs = [] for cov, corr in zip(covs, corrs): varss = np.diag(cov) var_prods = np.sqrt(np.outer(varss, varss)) new_cov = corr * var_prods
np.fill_diagonal(new_cov, varss)
numpy.fill_diagonal
#!/usr/bin/env python3 from IPython.display import display, Markdown, Latex import numpy as np def vector2latex(vector, precision=5, pretext="", display_output=True): out_latex = "\n$$ " + pretext out_latex += "\\begin{bmatrix}\n" for amplitude in vector: amplitude = np.real_if_close(amplitude) amp_mod = np.mod(np.real(amplitude), 1) if (np.isclose(amp_mod, 0) or np.isclose(amp_mod, 1)) and type(amplitude) == np.ndarray: out_latex += str(int(np.round(amplitude))) + " \\\\\n" else: out_latex += '{:.{}f}'.format(amplitude, precision) + " \\\\\n" out_latex = out_latex[:-4] # remove trailing ampersands out_latex += "\end{bmatrix} $$" if display_output: display(Markdown(out_latex)) else: return out_latex def unitary2latex(unitary, precision=5, pretext="", display_output=True): out_latex = "\n$$ " + pretext out_latex += "\\begin{bmatrix}\n" for row in unitary: out_latex += "\t" # This makes the latex source more readable for amplitude in row: amplitude =
np.real_if_close(amplitude)
numpy.real_if_close
# -*- coding: utf-8 -*- """ Created on 6 May 2018 @author: <NAME> This module inplements the transfermatrix-method for calculating the transmission through a scattering region """ import numpy as np from numpy import exp, sinh, cosh, linalg import cmath from .constants import constants from ..model import Cell class TransferMatrix: """ transfermatrix object object for caclulating the transfermatrix and the transmission-koefficient of a scattering region """ def __init__(self): """Create object and initialize transfermatrix""" self._M = np.zeros((2, 2)) @property def M(self): """ndarray: transfermatrix of scattering region for the set energy""" return self._M @property def t(self): """float: transmission-koefficinet of scattering region for set energy""" m22 = self._M[1, 1] if m22 == 0: return 0 else: return 1 / abs(m22) ** 2 def null(self): """Set to an empty transfermatrix""" self._M = np.zeros((2, 2)) def barrier(self, e, v, d): """Configure the transfermatrix of a rectangular potential barrier Parameters ---------- e : float Energy of the particle v : float Potential strength of the barrier d : float Width of the barrier """ v_in = cmath.sqrt(2 * constants.m * (v - e)) / constants.hbar v_out = cmath.sqrt(2 * constants.m * e) / constants.hbar self._M = self._transfer_matrix_barrier(v_out, v_in, d) def cells(self, e, cells): """Configure the transfermatrix of multiple unitcells for energy e Parameters ---------- e : float Energy of the particle cells : array_like of Cell or Cell unitcell(s) of the scattering region """ if isinstance(cells, Cell): cells = [cells] v_out = cmath.sqrt(2 * constants.m * e) / constants.hbar self.multiple(v_out, e, cells) def single(self, v_out, v_in, cell): """Configure the transfermatrix of a single unitcell Parameters ---------- v_out : float Wavevector in free space v_in : float Wavevector in the potential barrier cell : Cell unitcell of scattering region """ self._M = self._transfer_matrix_unitcell(v_out, v_in, cell) def multiple(self, v_out, e, cells): """Configure the transfermatrix of multiple unitcells Parameters ---------- v_out : float Wavevector in free space e : float Energy of the particle cells : array_like of Cell unitcells of the scattering region """ m_total = 1 for cell in cells: v_in = cmath.sqrt(2 * constants.m * (cell.v - e)) / constants.hbar m = self._transfer_matrix_unitcell(v_out, v_in, cell) m_total = np.dot(m, m_total) self._M = m_total def diagonalize(self, base_matrix): """Represent the current transfermatrix in the base of the given matrix Parameters ---------- base_matrix : ndarray Base matrix """ q = linalg.eig(base_matrix)[1] m_diag = np.dot(linalg.inv(q), np.dot(self._M, q)) self._M = m_diag def transmission_curve(self, xlim, cells, steps=1000): """Calculate transmission values for energies in a given range Parameters ---------- xlim : array_like of float energy range for calculating transmission curve, consisting of the start and end value. cells : array_like of Cell unitcells of the scattering region steps : int number of energy levels to calculate Returns ------- data : array_like of ndarray e and t data of the transmission curve """ e_values = np.linspace(*xlim, steps) t_values = [] for e in e_values: self.cells(e, cells) t_values.append(self.t) return e_values, t_values def _transfer_matrix_unitcell(self, v_out, v_in, cell): """Calculate the transfer matrix for a unitcell Parameters ---------- v_out : float Wavevector in free space v_in : float Wavevector in the potential barrier cell : Cell unitcell Returns ------- M : ndarray """ if cell.fr == 0: m = self._transfer_matrix_barrier(v_out, v_in, cell.d) else: m_b = self._transfer_matrix_barrier(v_out, v_in, cell.d) m_f = self._transfer_matrix_free(v_out, cell.fr) m =
np.dot(m_f, m_b)
numpy.dot
import vtk import numpy as np from vtk.util.numpy_support import vtk_to_numpy from vedo import * import copy class MouseInteractorPlacePoint(vtk.vtkInteractorStyleTrackballCamera): ''' DOTO. ''' def __init__(self,_sphere1, _sphere2, _render1, _render2, _data1, _data2): self.AddObserver("LeftButtonPressEvent",self.leftButtonPressEvent) self.sphere1 = _sphere1 self.sphere2 = _sphere2 self.render1 = _render1 self.render2 = _render2 self.data1 = _data1 self.data2 = _data2 self.render2.SetActiveCamera( self.render1.GetActiveCamera()) self.NumberOfClicks = 0 self.ResetPixelDistance = 5 self.PreviousPosition = [0,0] return def nearestVertex(self,pt,data): d = np.linalg.norm(data-pt, axis = -1) ind =
np.argmin(d)
numpy.argmin
from __future__ import print_function import numpy as np from scipy.optimize import curve_fit import os, copy from openmdao.api import IndepVarComp, Component, Group, Problem from ccblade.ccblade_component import CCBladePower, CCBladeLoads, CCBladeGeometry from commonse import gravity, NFREQ from commonse.csystem import DirectionVector from commonse.utilities import trapz_deriv, interp_with_deriv from akima import Akima, akima_interp_with_derivs import _pBEAM import _bem # TODO: move to rotoraero from rotorse import RPM2RS, RS2RPM from rotorse.rotor_geometry import RotorGeometry, TURBULENCE_CLASS, TURBINE_CLASS, DRIVETRAIN_TYPE from rotorse.rotor_geometry_yaml import ReferenceBlade from rotorse.precomp import _precomp # --------------------- # Base Components # --------------------- class BeamPropertiesBase(Component): def __init__(self, NPTS): super(BeamPropertiesBase, self).__init__() self.add_output('beam:z', val=np.zeros(NPTS), units='m', desc='locations of properties along beam') self.add_output('beam:EA', val=np.zeros(NPTS), units='N', desc='axial stiffness') self.add_output('beam:EIxx', val=np.zeros(NPTS), units='N*m**2', desc='edgewise stiffness (bending about :ref:`x-direction of airfoil aligned coordinate system <blade_airfoil_coord>`)') self.add_output('beam:EIyy', val=np.zeros(NPTS), units='N*m**2', desc='flatwise stiffness (bending about y-direction of airfoil aligned coordinate system)') self.add_output('beam:EIxy', val=np.zeros(NPTS), units='N*m**2', desc='coupled flap-edge stiffness') self.add_output('beam:GJ', val=np.zeros(NPTS), units='N*m**2', desc='torsional stiffness (about axial z-direction of airfoil aligned coordinate system)') self.add_output('beam:rhoA', val=np.zeros(NPTS), units='kg/m', desc='mass per unit length') self.add_output('beam:rhoJ', val=np.zeros(NPTS), units='kg*m', desc='polar mass moment of inertia per unit length') self.add_output('beam:Tw_iner', val=np.zeros(NPTS), units='m', desc='y-distance to elastic center from point about which above structural properties are computed') self.add_output('beam:x_ec', val=np.zeros(NPTS), units='m', desc='x-distance to elastic center from point about which above structural properties are computed (airfoil aligned coordinate system)') self.add_output('beam:y_ec', val=np.zeros(NPTS), units='m', desc='y-distance to elastic center from point about which above structural properties are computed') self.add_output('beam:flap_iner', val=np.zeros(NPTS), units='kg/m', desc='Section flap inertia about the Y_G axis per unit length.') self.add_output('beam:edge_iner', val=np.zeros(NPTS), units='kg/m', desc='Section lag inertia about the X_G axis per unit length') class StrucBase(Component): def __init__(self, NPTS): super(StrucBase, self).__init__() # all inputs/outputs in airfoil coordinate system self.add_param('Px_defl', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil x-direction at max deflection condition') self.add_param('Py_defl', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil y-direction at max deflection condition') self.add_param('Pz_defl', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil z-direction at max deflection condition') self.add_param('Px_strain', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil x-direction at max strain condition') self.add_param('Py_strain', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil y-direction at max strain condition') self.add_param('Pz_strain', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil z-direction at max strain condition') self.add_param('Px_pc_defl', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil x-direction for deflection used in generated power curve') self.add_param('Py_pc_defl', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil y-direction for deflection used in generated power curve') self.add_param('Pz_pc_defl', val=np.zeros(NPTS), desc='distributed load (force per unit length) in airfoil z-direction for deflection used in generated power curve') self.add_param('xu_strain_spar', val=np.zeros(NPTS), desc='x-position of midpoint of spar cap on upper surface for strain calculation') self.add_param('xl_strain_spar', val=np.zeros(NPTS), desc='x-position of midpoint of spar cap on lower surface for strain calculation') self.add_param('yu_strain_spar', val=np.zeros(NPTS), desc='y-position of midpoint of spar cap on upper surface for strain calculation') self.add_param('yl_strain_spar', val=np.zeros(NPTS), desc='y-position of midpoint of spar cap on lower surface for strain calculation') self.add_param('xu_strain_te', val=np.zeros(NPTS), desc='x-position of midpoint of trailing-edge panel on upper surface for strain calculation') self.add_param('xl_strain_te', val=np.zeros(NPTS), desc='x-position of midpoint of trailing-edge panel on lower surface for strain calculation') self.add_param('yu_strain_te', val=np.zeros(NPTS), desc='y-position of midpoint of trailing-edge panel on upper surface for strain calculation') self.add_param('yl_strain_te', val=np.zeros(NPTS), desc='y-position of midpoint of trailing-edge panel on lower surface for strain calculation') self.add_param('Mx_damage', val=np.zeros(NPTS), units='N*m', desc='damage equivalent moments about airfoil x-direction') self.add_param('My_damage', val=np.zeros(NPTS), units='N*m', desc='damage equivalent moments about airfoil y-direction') self.add_param('strain_ult_spar', val=0.0, desc='ultimate strain in spar cap') self.add_param('strain_ult_te', val=0.0, desc='uptimate strain in trailing-edge panels') self.add_param('gamma_fatigue', val=0.0, desc='safety factor for fatigue') self.add_param('m_damage', val=0.0, desc='slope of S-N curve for fatigue analysis') self.add_param('lifetime', val=0.0, units='year', desc='number of years used in fatigue analysis') self.add_param('beam:z', val=np.zeros(NPTS), units='m', desc='locations of properties along beam') self.add_param('beam:EA', val=np.zeros(NPTS), units='N', desc='axial stiffness') self.add_param('beam:EIxx', val=np.zeros(NPTS), units='N*m**2', desc='edgewise stiffness (bending about :ref:`x-direction of airfoil aligned coordinate system <blade_airfoil_coord>`)') self.add_param('beam:EIyy', val=np.zeros(NPTS), units='N*m**2', desc='flatwise stiffness (bending about y-direction of airfoil aligned coordinate system)') self.add_param('beam:EIxy', val=np.zeros(NPTS), units='N*m**2', desc='coupled flap-edge stiffness') self.add_param('beam:GJ', val=np.zeros(NPTS), units='N*m**2', desc='torsional stiffness (about axial z-direction of airfoil aligned coordinate system)') self.add_param('beam:rhoA', val=np.zeros(NPTS), units='kg/m', desc='mass per unit length') self.add_param('beam:rhoJ', val=np.zeros(NPTS), units='kg*m', desc='polar mass moment of inertia per unit length') self.add_param('beam:x_ec', val=np.zeros(NPTS), units='m', desc='x-distance to elastic center from point about which above structural properties are computed (airfoil aligned coordinate system)') self.add_param('beam:y_ec', val=np.zeros(NPTS), units='m', desc='y-distance to elastic center from point about which above structural properties are computed') # outputs self.add_output('blade_mass', val=0.0, units='kg', desc='mass of one blades') self.add_output('blade_moment_of_inertia', val=0.0, units='kg*m**2', desc='out of plane moment of inertia of a blade') self.add_output('freq', val=np.zeros(NFREQ), units='Hz', desc='first nF natural frequencies of blade') self.add_output('dx_defl', val=np.zeros(NPTS), desc='deflection of blade section in airfoil x-direction under max deflection loading') self.add_output('dy_defl', val=np.zeros(NPTS), desc='deflection of blade section in airfoil y-direction under max deflection loading') self.add_output('dz_defl', val=np.zeros(NPTS), desc='deflection of blade section in airfoil z-direction under max deflection loading') self.add_output('dx_pc_defl', val=np.zeros(NPTS), desc='deflection of blade section in airfoil x-direction under power curve loading') self.add_output('dy_pc_defl', val=np.zeros(NPTS), desc='deflection of blade section in airfoil y-direction under power curve loading') self.add_output('dz_pc_defl', val=np.zeros(NPTS), desc='deflection of blade section in airfoil z-direction under power curve loading') self.add_output('strainU_spar', val=np.zeros(NPTS), desc='strain in spar cap on upper surface at location xu,yu_strain with loads P_strain') self.add_output('strainL_spar', val=np.zeros(NPTS), desc='strain in spar cap on lower surface at location xl,yl_strain with loads P_strain') self.add_output('strainU_te', val=np.zeros(NPTS), desc='strain in trailing-edge panels on upper surface at location xu,yu_te with loads P_te') self.add_output('strainL_te', val=np.zeros(NPTS), desc='strain in trailing-edge panels on lower surface at location xl,yl_te with loads P_te') self.add_output('damageU_spar', val=np.zeros(NPTS), desc='fatigue damage on upper surface in spar cap') self.add_output('damageL_spar', val=np.zeros(NPTS), desc='fatigue damage on lower surface in spar cap') self.add_output('damageU_te', val=np.zeros(NPTS), desc='fatigue damage on upper surface in trailing-edge panels') self.add_output('damageL_te', val=np.zeros(NPTS), desc='fatigue damage on lower surface in trailing-edge panels') ''' class aeroloads(Component): def __init__(self): super(aeroloads, self).__init__() self.add_param('r', val=0.0, units='m', desc='radial positions along blade going toward tip') self.add_param('Px', val=0.0, units='N/m', desc='distributed loads in blade-aligned x-direction') self.add_param('Py', val=0.0, units='N/m', desc='distributed loads in blade-aligned y-direction') self.add_param('Pz', val=0.0, units='N/m', desc='distributed loads in blade-aligned z-direction') self.add_param('V', val=0.0, units='m/s', desc='hub height wind speed') self.add_param('Omega', val=0.0, units='rpm', desc='rotor rotation speed') self.add_param('pitch', val=0.0, units='deg', desc='pitch angle') self.add_param('T', val=0.0, units='deg', desc='azimuthal angle') ''' # --------------------- # Components # --------------------- class ResizeCompositeSection(Component): def __init__(self, NPTS): super(ResizeCompositeSection, self).__init__() self.add_param('chord', val=np.zeros(NPTS), units='m', desc='structural chord distribution') self.add_param('sparT', val=np.zeros(NPTS), units='m', desc='structural spar cap thickness distribution') self.add_param('teT', val=np.zeros(NPTS), units='m', desc='structural trailing-edge panel thickness distribution') self.add_param('upperCS_in', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for upper surface', pass_by_obj=True) self.add_param('lowerCS_in', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for lower surface', pass_by_obj=True) self.add_param('websCS_in', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for shear webs', pass_by_obj=True) self.add_param('chord_ref', val=np.zeros(NPTS), desc='Chord distribution for reference section, thickness of structural layup scaled with reference thickness (fixed t/c)') self.add_param('sector_idx_strain_spar_ss', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for spar (PreComp definition of sector)', pass_by_obj=True) self.add_param('sector_idx_strain_spar_ps', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for spar (PreComp definition of sector)', pass_by_obj=True) self.add_param('sector_idx_strain_te_ss', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for trailing edge (PreComp definition of sector)', pass_by_obj=True) self.add_param('sector_idx_strain_te_ps', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for trailing edge (PreComp definition of sector)', pass_by_obj=True) # out self.add_output('upperCS', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for upper surface', pass_by_obj=True) self.add_output('lowerCS', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for lower surface', pass_by_obj=True) self.add_output('websCS', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for shear webs', pass_by_obj=True) self.deriv_options['type'] = 'fd' self.deriv_options['step_calc'] = 'relative' self.deriv_options['form'] = 'central' self.deriv_options['check_form'] = 'central' self.deriv_options['step_size'] = 1e-5 def solve_nonlinear(self, params, unknowns, resids): chord = params['chord'] sparT = params['sparT'] teT = params['teT'] upperCS = params['upperCS_in'] lowerCS = params['lowerCS_in'] websCS = params['websCS_in'] strain_idx_spar_ss = params['sector_idx_strain_spar_ss'] strain_idx_spar_ps = params['sector_idx_strain_spar_ps'] strain_idx_te_ss = params['sector_idx_strain_te_ss'] strain_idx_te_ps = params['sector_idx_strain_te_ps'] # scale all thicknesses with airfoil thickness # TODO: remove fixed t/c assumption # factor = t_str / tref factor = chord / params['chord_ref'] # same as thickness ratio for constant t/c for i in range(chord.size): upperCS[i].t = [m*factor[i] for m in upperCS[i].t] lowerCS[i].t = [m*factor[i] for m in lowerCS[i].t] websCS[i].t = [m*factor[i] for m in websCS[i].t] idx_spar_ss = strain_idx_spar_ss[i] idx_te_ss = strain_idx_te_ss[i] idx_spar_ps = strain_idx_spar_ps[i] idx_te_ps = strain_idx_te_ps[i] # upper and lower have same thickness for this design tspar_ss = np.sum(upperCS[i].t[idx_spar_ss]) tte_ss = np.sum(upperCS[i].t[idx_te_ss]) tspar_ps = np.sum(upperCS[i].t[idx_spar_ps]) tte_ps = np.sum(upperCS[i].t[idx_te_ps]) upperCS[i].t[idx_spar_ss] *= sparT[i]/tspar_ss lowerCS[i].t[idx_spar_ps] *= sparT[i]/tspar_ps upperCS[i].t[idx_te_ss] *= teT[i]/tte_ss lowerCS[i].t[idx_te_ps] *= teT[i]/tte_ps unknowns['upperCS'] = upperCS unknowns['lowerCS'] = lowerCS unknowns['websCS'] = websCS class PreCompSections(BeamPropertiesBase): def __init__(self, NPTS): super(PreCompSections, self).__init__(NPTS) self.add_param('r', val=np.zeros(NPTS), units='m', desc='radial positions. r[0] should be the hub location \ while r[-1] should be the blade tip. Any number \ of locations can be specified between these in ascending order.') self.add_param('chord', val=np.zeros(NPTS), units='m', desc='array of chord lengths at corresponding radial positions') self.add_param('theta', val=np.zeros(NPTS), units='deg', desc='array of twist angles at corresponding radial positions. \ (positive twist decreases angle of attack)') self.add_param('le_location', val=np.zeros(NPTS), desc='Leading-edge positions from a reference blade axis (usually blade pitch axis). Locations are normalized by the local chord length. Positive in -x direction for airfoil-aligned coordinate system') self.add_param('materials', val=np.zeros(NPTS), desc='material properties of composite materials', pass_by_obj=True) self.add_param('upperCS', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for upper surface', pass_by_obj=True) self.add_param('lowerCS', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for lower surface', pass_by_obj=True) self.add_param('websCS', val=np.zeros(NPTS), desc='list of CompositeSection objections defining the properties for shear webs', pass_by_obj=True) self.add_param('profile', val=np.zeros(NPTS), desc='list of CompositeSection profiles', pass_by_obj=True) self.add_param('sector_idx_strain_spar_ps', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for spar (PreComp definition of sector)', pass_by_obj=True) self.add_param('sector_idx_strain_spar_ss', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for spar (PreComp definition of sector)', pass_by_obj=True) self.add_param('sector_idx_strain_te_ps', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for trailing edge (PreComp definition of sector)', pass_by_obj=True) self.add_param('sector_idx_strain_te_ss', val=np.zeros(NPTS, dtype=np.int_), desc='Index of sector for trailing edge (PreComp definition of sector)', pass_by_obj=True) self.add_output('eps_crit_spar', val=np.zeros(NPTS), desc='critical strain in spar from panel buckling calculation') self.add_output('eps_crit_te', val=np.zeros(NPTS), desc='critical strain in trailing-edge panels from panel buckling calculation') self.add_output('xu_strain_spar', val=np.zeros(NPTS), desc='x-position of midpoint of spar cap on upper surface for strain calculation') self.add_output('xl_strain_spar', val=np.zeros(NPTS), desc='x-position of midpoint of spar cap on lower surface for strain calculation') self.add_output('yu_strain_spar', val=np.zeros(NPTS), desc='y-position of midpoint of spar cap on upper surface for strain calculation') self.add_output('yl_strain_spar', val=np.zeros(NPTS), desc='y-position of midpoint of spar cap on lower surface for strain calculation') self.add_output('xu_strain_te', val=np.zeros(NPTS), desc='x-position of midpoint of trailing-edge panel on upper surface for strain calculation') self.add_output('xl_strain_te', val=np.zeros(NPTS), desc='x-position of midpoint of trailing-edge panel on lower surface for strain calculation') self.add_output('yu_strain_te', val=np.zeros(NPTS), desc='y-position of midpoint of trailing-edge panel on upper surface for strain calculation') self.add_output('yl_strain_te', val=np.zeros(NPTS), desc='y-position of midpoint of trailing-edge panel on lower surface for strain calculation') self.deriv_options['type'] = 'fd' self.deriv_options['step_calc'] = 'relative' self.deriv_options['form'] = 'central' self.deriv_options['check_form'] = 'central' self.deriv_options['step_size'] = 1e-5 def criticalStrainLocations(self, params, sector_idx_strain_ss, sector_idx_strain_ps, x_ec_nose, y_ec_nose): chord = params['chord'] upperCS = params['upperCS'] lowerCS = params['lowerCS'] profile = params['profile'] NPTS = chord.size # find corresponding locations on airfoil at midpoint of sector xun = np.zeros(NPTS) xln = np.zeros(NPTS) yun = np.zeros(NPTS) yln = np.zeros(NPTS) for i in range(NPTS): csU = upperCS[i] csL = lowerCS[i] pf = profile[i] idx_ss = sector_idx_strain_ss[i] idx_ps = sector_idx_strain_ps[i] if idx_ss == None: xun[i] = 0. xln[i] = 0. yun[i] = 0. yln[i] = 0. else: xun[i] = 0.5*(csU.loc[idx_ss] + csU.loc[idx_ss+1]) xln[i] = 0.5*(csL.loc[idx_ps] + csL.loc[idx_ps+1]) yun[i] = np.interp(xun[i], pf.x, pf.yu) yln[i] = np.interp(xln[i], pf.x, pf.yl) # make dimensional and define relative to elastic center xu = xun*chord - x_ec_nose xl = xln*chord - x_ec_nose yu = yun*chord - y_ec_nose yl = yln*chord - y_ec_nose # switch to airfoil coordinate system xu, yu = yu, xu xl, yl = yl, xl return xu, xl, yu, yl def panelBucklingStrain(self, params, sector_idx_strain_ss): """ see chapter on Structural Component Design Techniques from <NAME> section 6.2: Design of composite panels assumes: large aspect ratio, simply supported, uniaxial compression, flat rectangular plate """ # rename chord = params['chord'] CS_list = params['upperCS'] # initialize nsec = len(chord) eps_crit = np.zeros(nsec) for i in range(nsec): cs = CS_list[i] sector_idx = sector_idx_strain_ss[i] if sector_idx == None: eps_crit[i] = 0. else: # chord-wise length of sector sector_length = chord[i] * (cs.loc[sector_idx+1] - cs.loc[sector_idx]) # get matrices A, B, D, totalHeight = cs.compositeMatrices(sector_idx) E = cs.effectiveEAxial(sector_idx) D1 = D[0, 0] D2 = D[1, 1] D3 = D[0, 1] + 2*D[2, 2] # use empirical formula Nxx = 2 * (np.pi/sector_length)**2 * (np.sqrt(D1*D2) + D3) eps_crit[i] = - Nxx / totalHeight / E return eps_crit def solve_nonlinear(self, params, unknowns, resids): r = params['r'] chord = params['chord'] mat = params['materials'] leLoc = params['le_location'] upperCS = params['upperCS'] lowerCS = params['lowerCS'] websCS = params['websCS'] profile = params['profile'] theta = params['theta'] strain_idx_spar_ss = params['sector_idx_strain_spar_ss'] strain_idx_spar_ps = params['sector_idx_strain_spar_ps'] strain_idx_te_ss = params['sector_idx_strain_te_ss'] strain_idx_te_ps = params['sector_idx_strain_te_ps'] # radial discretization nsec = len(r) # initialize variables beam_z = r beam_EA = np.zeros(nsec) beam_EIxx = np.zeros(nsec) beam_EIyy = np.zeros(nsec) beam_EIxy = np.zeros(nsec) beam_GJ = np.zeros(nsec) beam_rhoA = np.zeros(nsec) beam_rhoJ = np.zeros(nsec) beam_Tw_iner = np.zeros(nsec) beam_flap_iner = np.zeros(nsec) beam_edge_iner = np.zeros(nsec) # distance to elastic center from point about which structural properties are computed # using airfoil coordinate system beam_x_ec = np.zeros(nsec) beam_y_ec = np.zeros(nsec) # distance to elastic center from airfoil nose # using profile coordinate system x_ec_nose = np.zeros(nsec) y_ec_nose = np.zeros(nsec) csU = upperCS csL = lowerCS csW = websCS # twist rate th_prime = _precomp.tw_rate(r, theta) # arrange materials into list n = len(mat) E1 = [0]*n E2 = [0]*n G12 = [0]*n nu12 = [0]*n rho = [0]*n for i in range(n): E1[i] = mat[i].E1 E2[i] = mat[i].E2 G12[i] = mat[i].G12 nu12[i] = mat[i].nu12 rho[i] = mat[i].rho # for i in range(nsec): # print(csW[i], type(csW[i])) for i in range(nsec): xnode, ynode = profile[i]._preCompFormat() locU, n_laminaU, n_pliesU, tU, thetaU, mat_idxU = csU[i]._preCompFormat() locL, n_laminaL, n_pliesL, tL, thetaL, mat_idxL = csL[i]._preCompFormat() locW, n_laminaW, n_pliesW, tW, thetaW, mat_idxW = csW[i]._preCompFormat() nwebs = len(locW) # address a bug in f2py (need to pass in length 1 arrays even though they are not used) if nwebs == 0: locW = [0] n_laminaW = [0] n_pliesW = [0] tW = [0] thetaW = [0] mat_idxW = [0] try: results = _precomp.properties(chord[i], theta[i], th_prime[i], leLoc[i], xnode, ynode, E1, E2, G12, nu12, rho, locU, n_laminaU, n_pliesU, tU, thetaU, mat_idxU, locL, n_laminaL, n_pliesL, tL, thetaL, mat_idxL, nwebs, locW, n_laminaW, n_pliesW, tW, thetaW, mat_idxW) except: print(i) # print('chord[i]', chord[i]) # print('theta[i]', theta[i]) # print('th_prime[i]', th_prime[i]) # print('leLoc[i]', leLoc[i]) # print('xnode', xnode) # print('ynode', ynode) # print('E1', E1) # print('E2', E2) # print('G12', G12) # print('nu12', nu12) # print('rho', rho) # print('locU', locU) # print('n_laminaU', n_laminaU) # print('n_pliesU', n_pliesU) # print('tU', tU) # print('thetaU', thetaU) # print('mat_idxU', mat_idxU) # print('locL', locL) # print('n_laminaL', n_laminaL) # print('n_pliesL', n_pliesL) # print('tL', tL) # print('thetaL', thetaL) # print('mat_idxL', mat_idxL) # print('nwebs', nwebs) # print('locW', locW) # print('n_laminaW', n_laminaW) # print('n_pliesW', n_pliesW) # print('tW', tW) # print('thetaW', thetaW) # print('mat_idxW ', mat_idxW ) import matplotlib.pyplot as plt plt.plot(xnode,ynode) plt.axis('equal') plt.savefig('debugging_%d.png'%i) # plt.show() results = _precomp.properties(chord[i], theta[i], th_prime[i], leLoc[i], xnode, ynode, E1, E2, G12, nu12, rho, locU, n_laminaU, n_pliesU, tU, thetaU, mat_idxU, locL, n_laminaL, n_pliesL, tL, thetaL, mat_idxL, nwebs, locW, n_laminaW, n_pliesW, tW, thetaW, mat_idxW) beam_EIxx[i] = results[1] # EIedge beam_EIyy[i] = results[0] # EIflat beam_GJ[i] = results[2] beam_EA[i] = results[3] beam_EIxy[i] = results[4] # EIflapedge beam_x_ec[i] = results[12] - results[10] beam_y_ec[i] = results[13] - results[11] beam_rhoA[i] = results[14] beam_rhoJ[i] = results[15] + results[16] # perpindicular axis theorem beam_Tw_iner[i] = results[17] beam_flap_iner[i] = results[15] beam_edge_iner[i] = results[16] x_ec_nose[i] = results[13] + leLoc[i]*chord[i] y_ec_nose[i] = results[12] # switch b.c of coordinate system used # beam_EIxx[i] = None # EIedge # beam_EIyy[i] = None # EIflat # beam_GJ[i] = None # beam_EA[i] = None # beam_EIxy[i] = None # EIflapedge # beam_x_ec[i] = None - results[10] # beam_y_ec[i] = None - results[11] # beam_rhoA[i] = None # beam_rhoJ[i] = None + results[16] # perpindicular axis theorem # beam_Tw_iner[i] = None # beam_flap_iner[i] = None # beam_edge_iner[i] = None # x_ec_nose[i] = None + leLoc[i]*chord[i] # y_ec_nose[i] = None # switch b.c of coordinate system used unknowns['beam:z'] = beam_z unknowns['beam:EIxx'] = beam_EIxx unknowns['beam:EIyy'] = beam_EIyy unknowns['beam:GJ'] = beam_GJ unknowns['beam:EA'] = beam_EA unknowns['beam:EIxy'] = beam_EIxy unknowns['beam:x_ec'] = beam_x_ec unknowns['beam:y_ec'] = beam_y_ec unknowns['beam:rhoA'] = beam_rhoA unknowns['beam:rhoJ'] = beam_rhoJ unknowns['beam:Tw_iner'] = beam_Tw_iner unknowns['beam:flap_iner'] = beam_flap_iner unknowns['beam:edge_iner'] = beam_edge_iner unknowns['eps_crit_spar'] = self.panelBucklingStrain(params, strain_idx_spar_ss) unknowns['eps_crit_te'] = self.panelBucklingStrain(params, strain_idx_te_ss) xu_strain_spar, xl_strain_spar, yu_strain_spar, yl_strain_spar = self.criticalStrainLocations(params, strain_idx_spar_ss, strain_idx_spar_ps, x_ec_nose, y_ec_nose) xu_strain_te, xl_strain_te, yu_strain_te, yl_strain_te = self.criticalStrainLocations(params, strain_idx_te_ss, strain_idx_te_ps, x_ec_nose, y_ec_nose) unknowns['xu_strain_spar'] = xu_strain_spar unknowns['xl_strain_spar'] = xl_strain_spar unknowns['yu_strain_spar'] = yu_strain_spar unknowns['yl_strain_spar'] = yl_strain_spar unknowns['xu_strain_te'] = xu_strain_te unknowns['xl_strain_te'] = xl_strain_te unknowns['yu_strain_te'] = yu_strain_te unknowns['yl_strain_te'] = yl_strain_te class BladeCurvature(Component): def __init__(self, NPTS): super(BladeCurvature, self).__init__() self.add_param('r', val=np.zeros(NPTS), units='m', desc='location in blade z-coordinate') self.add_param('precurve', val=np.zeros(NPTS), units='m', desc='location in blade x-coordinate') self.add_param('presweep', val=np.zeros(NPTS), units='m', desc='location in blade y-coordinate') self.add_param('precone', val=0.0, units='deg', desc='precone angle') self.add_output('totalCone', val=np.zeros(NPTS), units='deg', desc='total cone angle from precone and curvature') self.add_output('x_az', val=np.zeros(NPTS), units='m', desc='location of blade in azimuth x-coordinate system') self.add_output('y_az', val=np.zeros(NPTS), units='m', desc='location of blade in azimuth y-coordinate system') self.add_output('z_az', val=np.zeros(NPTS), units='m', desc='location of blade in azimuth z-coordinate system') self.add_output('s', val=np.zeros(NPTS), units='m', desc='cumulative path length along blade') self.deriv_options['form'] = 'central' self.deriv_options['check_form'] = 'central' self.deriv_options['step_calc'] = 'relative' def solve_nonlinear(self, params, unknowns, resids): # self.x_az, self.y_az, self.z_az, cone, s = \ # _bem.definecurvature(self.r, self.precurve, self.presweep, 0.0) self.r = params['r'] self.precurve = params['precurve'] self.presweep = params['presweep'] self.precone = params['precone'] n = len(self.r) dx_dx = np.eye(3*n) self.x_az, x_azd, self.y_az, y_azd, self.z_az, z_azd, \ cone, coned, s, sd = _bem.definecurvature_dv2(self.r, dx_dx[:, :n], self.precurve, dx_dx[:, n:2*n], self.presweep, dx_dx[:, 2*n:], 0.0, np.zeros(3*n)) self.totalCone = self.precone + np.degrees(cone) self.s = self.r[0] + s unknowns['totalCone'] = self.totalCone unknowns['x_az'] = self.x_az unknowns['y_az'] = self.y_az unknowns['z_az'] = self.z_az unknowns['s'] = self.s dxaz_dr = x_azd[:n, :].T dxaz_dprecurve = x_azd[n:2*n, :].T dxaz_dpresweep = x_azd[2*n:, :].T dyaz_dr = y_azd[:n, :].T dyaz_dprecurve = y_azd[n:2*n, :].T dyaz_dpresweep = y_azd[2*n:, :].T dzaz_dr = z_azd[:n, :].T dzaz_dprecurve = z_azd[n:2*n, :].T dzaz_dpresweep = z_azd[2*n:, :].T dcone_dr = np.degrees(coned[:n, :]).T dcone_dprecurve = np.degrees(coned[n:2*n, :]).T dcone_dpresweep = np.degrees(coned[2*n:, :]).T ds_dr = sd[:n, :].T ds_dr[:, 0] += 1 ds_dprecurve = sd[n:2*n, :].T ds_dpresweep = sd[2*n:, :].T J = {} J['x_az', 'r'] = dxaz_dr J['x_az', 'precurve'] = dxaz_dprecurve J['x_az', 'presweep'] = dxaz_dpresweep J['x_az', 'precone'] = np.zeros(n) J['y_az', 'r'] = dyaz_dr J['y_az', 'precurve'] = dyaz_dprecurve J['y_az', 'presweep'] = dyaz_dpresweep J['y_az', 'precone'] = np.zeros(n) J['z_az', 'r'] = dzaz_dr J['z_az', 'precurve'] = dzaz_dprecurve J['z_az', 'presweep'] = dzaz_dpresweep J['z_az', 'precone'] = np.zeros(n) J['totalCone', 'r'] = dcone_dr J['totalCone', 'precurve'] = dcone_dprecurve J['totalCone', 'presweep'] = dcone_dpresweep J['totalCone', 'precone'] = np.ones(n) J['s', 'r'] = ds_dr J['s', 'precurve'] = ds_dprecurve J['s', 'presweep'] = ds_dpresweep J['s', 'precone'] = np.zeros(n) self.J = J def list_deriv_vars(self): inputs = ('r', 'precurve', 'presweep', 'precone') outputs = ('x_az', 'y_az', 'z_az', 'totalCone', 's') return inputs, outputs def linearize(self, params, unknowns, resids): return self.J class CurveFEM(Component): def __init__(self, NPTS): super(CurveFEM, self).__init__() """natural frequencies for curved blades""" self.add_param('Omega', val=0.0, units='rpm', desc='rotor rotation frequency') self.add_param('beam:z', val=np.zeros(NPTS), units='m', desc='locations of properties along beam') self.add_param('beam:EA', val=np.zeros(NPTS), units='N', desc='axial stiffness') self.add_param('beam:EIxx', val=np.zeros(NPTS), units='N*m**2', desc='edgewise stiffness (bending about :ref:`x-direction of airfoil aligned coordinate system <blade_airfoil_coord>`)') self.add_param('beam:EIyy', val=np.zeros(NPTS), units='N*m**2', desc='flatwise stiffness (bending about y-direction of airfoil aligned coordinate system)') self.add_param('beam:EIxy', val=np.zeros(NPTS), units='N*m**2', desc='coupled flap-edge stiffness') self.add_param('beam:GJ', val=np.zeros(NPTS), units='N*m**2', desc='torsional stiffness (about axial z-direction of airfoil aligned coordinate system)') self.add_param('beam:rhoA', val=np.zeros(NPTS), units='kg/m', desc='mass per unit length') self.add_param('beam:rhoJ', val=np.zeros(NPTS), units='kg*m', desc='polar mass moment of inertia per unit length') self.add_param('beam:x_ec', val=np.zeros(NPTS), units='m', desc='x-distance to elastic center from point about which above structural properties are computed (airfoil aligned coordinate system)') self.add_param('beam:y_ec', val=np.zeros(NPTS), units='m', desc='y-distance to elastic center from point about which above structural properties are computed') self.add_param('beam:Tw_iner', val=np.zeros(NPTS), units='m', desc='y-distance to elastic center from point about which above structural properties are computed') self.add_param('beam:flap_iner', val=np.zeros(NPTS), units='kg/m', desc='Section flap inertia about the Y_G axis per unit length.') self.add_param('beam:edge_iner', val=np.zeros(NPTS), units='kg/m', desc='Section lag inertia about the X_G axis per unit length') self.add_param('theta', val=np.zeros(NPTS), units='deg', desc='structural twist distribution') self.add_param('precurve', val=np.zeros(NPTS), units='m', desc='structural precuve (see FAST definition)') self.add_param('presweep', val=np.zeros(NPTS), units='m', desc='structural presweep (see FAST definition)') self.add_output('freq', val=np.zeros(NFREQ), units='Hz', desc='first nF natural frequencies') self.add_output('modes_coef', val=np.zeros((3, 5)), desc='mode shapes as 6th order polynomials, in the format accepted by ElastoDyn, [[c_x2, c_],..]') # self.add_output('') self.deriv_options['type'] = 'fd' self.deriv_options['step_calc'] = 'relative' self.deriv_options['form'] = 'central' self.deriv_options['check_form'] = 'central' self.deriv_options['step_size'] = 1e-5 def solve_nonlinear(self, params, unknowns, resids): mycurve = _pBEAM.CurveFEM(params['Omega'], params['beam:Tw_iner'], params['beam:z'], params['precurve'], params['presweep'], params['beam:rhoA'], True) # mycurve = _pBEAM.CurveFEM(params['Omega'], params['theta'], params['beam:z'], params['precurve'], params['presweep'], params['beam:rhoA'], True) n = len(params['beam:z']) freq, eig_vec = mycurve.frequencies(params['beam:EA'], params['beam:EIxx'], params['beam:EIyy'], params['beam:GJ'], params['beam:rhoJ'], n) unknowns['freq'] = freq[:NFREQ] # Parse eigen vectors R = params['beam:z'] R = np.asarray([(Ri-R[0])/(R[-1]-R[0]) for Ri in R]) ndof = 6 flap = np.zeros((NFREQ, n)) edge = np.zeros((NFREQ, n)) for i in range(NFREQ): eig_vec_i = eig_vec[:,i] for j in range(n): flap[i,j] = eig_vec_i[0+j*ndof] edge[i,j] = eig_vec_i[1+j*ndof] # Mode shape polynomial fit def mode_fit(x, a, b, c, d, e): return a*x**2. + b*x**3. + c*x**4. + d*x**5. + e*x**6. # First Flapwise coef, pcov = curve_fit(mode_fit, R, flap[0,:]) coef_norm = [c/sum(coef) for c in coef] unknowns['modes_coef'][0,:] = coef_norm # Second Flapwise coef, pcov = curve_fit(mode_fit, R, flap[1,:]) coef_norm = [c/sum(coef) for c in coef] unknowns['modes_coef'][1,:] = coef_norm # First Edgewise coef, pcov = curve_fit(mode_fit, R, edge[0,:]) coef_norm = [c/sum(coef) for c in coef] unknowns['modes_coef'][2,:] = coef_norm # # temp # from bmodes import BModes_tools # r = np.asarray([(ri-params['beam:z'][0])/(params['beam:z'][-1]-params['beam:z'][0]) for ri in params['beam:z']]) # prop = np.column_stack((r, params['theta'], params['beam:Tw_iner'], params['beam:rhoA'], params['beam:flap_iner'], params['beam:edge_iner'], params['beam:EIyy'], \ # params['beam:EIxx'], params['beam:GJ'], params['beam:EA'], np.zeros_like(r), np.zeros_like(r), np.zeros_like(r))) # bm = BModes_tools() # bm.setup.radius = params['beam:z'][-1] # bm.setup.hub_rad = params['beam:z'][0] # bm.setup.precone = -2.5 # bm.prop = prop # bm.exe_BModes = 'C:/Users/egaertne/WT_Codes/bModes/BModes.exe' # bm.execute() # print(bm.freq) # import matplotlib.pyplot as plt # fig, ax = plt.subplots(nrows=2, ncols=4, figsize=(12., 6.), sharex=True, sharey=True) # # fig.subplots_adjust(bottom=0.2, top=0.9) # fig.subplots_adjust(bottom=0.15, left=0.1, hspace=0, wspace=0) # i = 0 # k_flap = bm.flap_disp[i,-1]/flap[i,-1] # k_edge = bm.lag_disp[i,-1]/edge[i,-1] # ax[0,0].plot(R, flap[i,:]*k_flap ,'k',label='CurveFEM') # ax[0,0].plot(bm.r[i,:], bm.flap_disp[i,:],'bx',label='BModes') # ax[0,0].set_ylabel('Flapwise Disp.') # ax[0,0].set_title('1st Mode') # ax[1,0].plot(R, edge[i,:]*k_edge ,'k') # ax[1,0].plot(bm.r[i,:], bm.lag_disp[i,:],'bx') # ax[1,0].set_ylabel('Edgewise Disp.') # i = 1 # k_flap = bm.flap_disp[i,-1]/flap[i,-1] # k_edge = bm.lag_disp[i,-1]/edge[i,-1] # ax[0,1].plot(R, flap[i,:]*k_flap ,'k') # ax[0,1].plot(bm.r[i,:], bm.flap_disp[i,:],'bx') # ax[0,1].set_title('2nd Mode') # ax[1,1].plot(R, edge[i,:]*k_edge ,'k') # ax[1,1].plot(bm.r[i,:], bm.lag_disp[i,:],'bx') # i = 2 # k_flap = bm.flap_disp[i,-1]/flap[i,-1] # k_edge = bm.lag_disp[i,-1]/edge[i,-1] # ax[0,2].plot(R, flap[i,:]*k_flap ,'k') # ax[0,2].plot(bm.r[i,:], bm.flap_disp[i,:],'bx') # ax[0,2].set_title('3rd Mode') # ax[1,2].plot(R, edge[i,:]*k_edge ,'k') # ax[1,2].plot(bm.r[i,:], bm.lag_disp[i,:],'bx') # fig.legend(loc='lower center', ncol=2) # i = 3 # k_flap = bm.flap_disp[i,-1]/flap[i,-1] # k_edge = bm.lag_disp[i,-1]/edge[i,-1] # ax[0,3].plot(R, flap[i,:]*k_flap ,'k') # ax[0,3].plot(bm.r[i,:], bm.flap_disp[i,:],'bx') # ax[0,3].set_title('4th Mode') # ax[1,3].plot(R, edge[i,:]*k_edge ,'k') # ax[1,3].plot(bm.r[i,:], bm.lag_disp[i,:],'bx') # fig.legend(loc='lower center', ncol=2) # fig.text(0.5, 0.075, 'Blade Spanwise Position, $r/R$', ha='center') # (n,m)=np.shape(ax) # for i in range(n): # for j in range(m): # ax[i,j].tick_params(axis='both', which='major', labelsize=8) # ax[i,j].grid(True, linestyle=':') # plt.show() class RotorWithpBEAM(StrucBase): def __init__(self, NPTS): super(RotorWithpBEAM, self).__init__(NPTS) self.deriv_options['type'] = 'fd' self.deriv_options['step_calc'] = 'relative' self.deriv_options['form'] = 'central' self.deriv_options['check_form'] = 'central' self.deriv_options['step_size'] = 1e-5 self.EI11 = None self.EI22 = None self.EA = None self.ca = None self.sa = None def principalCS(self, EIyy, EIxx, y_ec, x_ec, EA, EIxy): # rename (with swap of x, y for profile c.s.) EIxx , EIyy = EIyy , EIxx x_ec , y_ec = y_ec , x_ec self.EA = EA EIxy = EIxy # translate to elastic center EIxx -= y_ec**2*EA EIyy -= x_ec**2*EA EIxy -= x_ec*y_ec*EA # get rotation angle alpha = 0.5*np.arctan2(2*EIxy, EIyy-EIxx) self.EI11 = EIxx - EIxy*np.tan(alpha) self.EI22 = EIyy + EIxy*np.tan(alpha) # get moments and positions in principal axes self.ca =
np.cos(alpha)
numpy.cos
from keras.utils.visualize_util import plot from matplotlib import pyplot import numpy as np import cv2 class Visualization: # members def __init__(self, output_path): self.output_path = output_path; def visualizeModelArchitecture(self, model): print("save model..."); plot(model, to_file=self.output_path + "modelVisualization.png", show_shapes=True); def plotOriginalImageset(self, dataset): print("plot 9 images..."); # plot 3 images #print(samples.shape); #print(samples[0, 0]); # create a grid of 3x3 images for i in range(0, 9): sample = (dataset.sample(i)); #sample = np.array(sample); pyplot.subplot(330 + 1 + i); pyplot.imshow(cv2.cvtColor(sample[0], cv2.COLOR_BGR2RGB)); # show the plot pyplot.show(); def plotZeroCenteredImageset(self, dataset): print("plot 9 images..."); # plot 3 images #print(samples.shape); #print(samples[0, 0]); # create a grid of 3x3 images for i in range(0, 9): sample = (dataset.sample(i)); #sample = np.array(sample); pyplot.subplot(330 + 1 + i); pyplot.imshow(sample[0]); # show the plot pyplot.show(); def plotNormalizedImageset(self, dataset): print("plot 9 images..."); # plot 3 images #print(samples.shape); #print(samples[0, 0]); # create a grid of 3x3 images for i in range(0, 9): sample = (dataset.sample(i)); maxValue = np.max(np.array(sample[0])); minValue = np.min(
np.array(sample[0])
numpy.array
import os import numpy as np import tensorflow as tf import cv2 import time import sys import pickle import ROLO_utils as util class YOLO_TF: fromfile = None tofile_img = 'test/output.jpg' tofile_txt = 'test/output.txt' imshow = True filewrite_img = False filewrite_txt = False disp_console = True weights_file = '/home/marc/ROLO/3rd\ party_upgrade/weights/YOLO_small.ckpt' alpha = 0.1 threshold = 0.08 iou_threshold = 0.5 num_class = 20 num_box = 2 grid_size = 7 classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] w_img, h_img = [352, 240] num_feat = 4096 num_predict = 6 # final output of LSTM 6 loc parameters num_heatmap = 1024 def __init__(self, argvs=[]): self.argv_parser(argvs) self.build_networks() if self.fromfile is not None: self.detect_from_file(self.fromfile) def argv_parser(self, argvs): for i in range(1, len(argvs), 2): if argvs[i] == '-fromfile': self.fromfile = argvs[i + 1] if argvs[i] == '-tofile_img': self.tofile_img = argvs[i + 1]; self.filewrite_img = True if argvs[i] == '-tofile_txt': self.tofile_txt = argvs[i + 1]; self.filewrite_txt = True if argvs[i] == '-imshow': if argvs[i + 1] == '1': self.imshow = True else: self.imshow = False if argvs[i] == '-disp_console': if argvs[i + 1] == '1': self.disp_console = True else: self.disp_console = False def build_networks(self): if self.disp_console: print("Building YOLO_small graph...") self.x = tf.placeholder('float32', [None, 448, 448, 3]) self.conv_1 = self.conv_layer(1, self.x, 64, 7, 2) self.pool_2 = self.pooling_layer(2, self.conv_1, 2, 2) self.conv_3 = self.conv_layer(3, self.pool_2, 192, 3, 1) self.pool_4 = self.pooling_layer(4, self.conv_3, 2, 2) self.conv_5 = self.conv_layer(5, self.pool_4, 128, 1, 1) self.conv_6 = self.conv_layer(6, self.conv_5, 256, 3, 1) self.conv_7 = self.conv_layer(7, self.conv_6, 256, 1, 1) self.conv_8 = self.conv_layer(8, self.conv_7, 512, 3, 1) self.pool_9 = self.pooling_layer(9, self.conv_8, 2, 2) self.conv_10 = self.conv_layer(10, self.pool_9, 256, 1, 1) self.conv_11 = self.conv_layer(11, self.conv_10, 512, 3, 1) self.conv_12 = self.conv_layer(12, self.conv_11, 256, 1, 1) self.conv_13 = self.conv_layer(13, self.conv_12, 512, 3, 1) self.conv_14 = self.conv_layer(14, self.conv_13, 256, 1, 1) self.conv_15 = self.conv_layer(15, self.conv_14, 512, 3, 1) self.conv_16 = self.conv_layer(16, self.conv_15, 256, 1, 1) self.conv_17 = self.conv_layer(17, self.conv_16, 512, 3, 1) self.conv_18 = self.conv_layer(18, self.conv_17, 512, 1, 1) self.conv_19 = self.conv_layer(19, self.conv_18, 1024, 3, 1) self.pool_20 = self.pooling_layer(20, self.conv_19, 2, 2) self.conv_21 = self.conv_layer(21, self.pool_20, 512, 1, 1) self.conv_22 = self.conv_layer(22, self.conv_21, 1024, 3, 1) self.conv_23 = self.conv_layer(23, self.conv_22, 512, 1, 1) self.conv_24 = self.conv_layer(24, self.conv_23, 1024, 3, 1) self.conv_25 = self.conv_layer(25, self.conv_24, 1024, 3, 1) self.conv_26 = self.conv_layer(26, self.conv_25, 1024, 3, 2) self.conv_27 = self.conv_layer(27, self.conv_26, 1024, 3, 1) self.conv_28 = self.conv_layer(28, self.conv_27, 1024, 3, 1) self.fc_29 = self.fc_layer(29, self.conv_28, 512, flat=True, linear=False) self.fc_30 = self.fc_layer(30, self.fc_29, 4096, flat=False, linear=False) # skip dropout_31 self.fc_32 = self.fc_layer(32, self.fc_30, 1470, flat=False, linear=True) self.sess = tf.Session() self.sess.run(tf.initialize_all_variables()) self.saver = tf.train.Saver() self.saver.restore(self.sess, self.weights_file) if self.disp_console: print("Loading complete!" + '\n') def conv_layer(self, idx, inputs, filters, size, stride): channels = inputs.get_shape()[3] weight = tf.Variable(tf.truncated_normal([size, size, int(channels), filters], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[filters])) pad_size = size // 2 pad_mat = np.array([[0, 0], [pad_size, pad_size], [pad_size, pad_size], [0, 0]]) inputs_pad = tf.pad(inputs, pad_mat) conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID', name=str(idx) + '_conv') conv_biased = tf.add(conv, biases, name=str(idx) + '_conv_biased') if self.disp_console: print( ' Layer %d : Type = Conv, Size = %d * %d, Stride = %d, Filters = %d, Input channels = %d' % ( idx, size, size, stride, filters, int(channels))) return tf.maximum(self.alpha * conv_biased, conv_biased, name=str(idx) + '_leaky_relu') def pooling_layer(self, idx, inputs, size, stride): if self.disp_console: print( ' Layer %d : Type = Pool, Size = %d * %d, Stride = %d' % (idx, size, size, stride)) return tf.nn.max_pool(inputs, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding='SAME', name=str(idx) + '_pool') def fc_layer(self, idx, inputs, hiddens, flat=False, linear=False): input_shape = inputs.get_shape().as_list() if flat: dim = input_shape[1] * input_shape[2] * input_shape[3] inputs_transposed = tf.transpose(inputs, (0, 3, 1, 2)) inputs_processed = tf.reshape(inputs_transposed, [-1, dim]) else: dim = input_shape[1] inputs_processed = inputs weight = tf.Variable(tf.truncated_normal([dim, hiddens], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[hiddens])) if self.disp_console: print( ' Layer %d : Type = Full, Hidden = %d, Input dimension = %d, Flat = %d, Activation = %d' % ( idx, hiddens, int(dim), int(flat), 1 - int(linear))) if linear: return tf.add(tf.matmul(inputs_processed, weight), biases, name=str(idx) + '_fc') ip = tf.add(tf.matmul(inputs_processed, weight), biases) return tf.maximum(self.alpha * ip, ip, name=str(idx) + '_fc') def detect_from_cvmat(self, img): s = time.time() self.h_img, self.w_img, _ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB) img_resized_np = np.asarray(img_RGB) inputs = np.zeros((1, 448, 448, 3), dtype='float32') inputs[0] = (img_resized_np / 255.0) * 2.0 - 1.0 in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32, feed_dict=in_dict) self.result = self.interpret_output(net_output[0]) self.show_results(img, self.result) strtime = str(time.time() - s) if self.disp_console: print('Elapsed time : ' + strtime + ' secs' + '\n') def detect_from_file(self, filename): if self.disp_console: print('Detect from ' + filename) img = cv2.imread(filename) # img = misc.imread(filename) self.detect_from_cvmat(img) def detect_from_crop_sample(self): self.w_img = 640 self.h_img = 420 f = np.array(open('person_crop.txt', 'r').readlines(), dtype='float32') inputs = np.zeros((1, 448, 448, 3), dtype='float32') for c in range(3): for y in range(448): for x in range(448): inputs[0, y, x, c] = f[c * 448 * 448 + y * 448 + x] in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32, feed_dict=in_dict) self.boxes, self.probs = self.interpret_output(net_output[0]) img = cv2.imread('person.jpg') self.show_results(self.boxes, img) def interpret_output(self, output): probs = np.zeros((7, 7, 2, 20)) class_probs = np.reshape(output[0:980], (7, 7, 20)) scales = np.reshape(output[980:1078], (7, 7, 2)) boxes = np.reshape(output[1078:], (7, 7, 2, 4)) offset = np.transpose(np.reshape(np.array([np.arange(7)] * 14), (2, 7, 7)), (1, 2, 0)) boxes[:, :, :, 0] += offset boxes[:, :, :, 1] += np.transpose(offset, (1, 0, 2)) boxes[:, :, :, 0:2] = boxes[:, :, :, 0:2] / 7.0 boxes[:, :, :, 2] = np.multiply(boxes[:, :, :, 2], boxes[:, :, :, 2]) boxes[:, :, :, 3] = np.multiply(boxes[:, :, :, 3], boxes[:, :, :, 3]) boxes[:, :, :, 0] *= self.w_img boxes[:, :, :, 1] *= self.h_img boxes[:, :, :, 2] *= self.w_img boxes[:, :, :, 3] *= self.h_img for i in range(2): for j in range(20): probs[:, :, i, j] = np.multiply(class_probs[:, :, j], scales[:, :, i]) filter_mat_probs = np.array(probs >= self.threshold, dtype='bool') filter_mat_boxes = np.nonzero(filter_mat_probs) boxes_filtered = boxes[filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]] probs_filtered = probs[filter_mat_probs] classes_num_filtered = np.argmax(filter_mat_probs, axis=3)[ filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]] argsort = np.array(np.argsort(probs_filtered))[::-1] boxes_filtered = boxes_filtered[argsort] probs_filtered = probs_filtered[argsort] classes_num_filtered = classes_num_filtered[argsort] for i in range(len(boxes_filtered)): if probs_filtered[i] == 0: continue for j in range(i + 1, len(boxes_filtered)): if self.iou(boxes_filtered[i], boxes_filtered[j]) > self.iou_threshold: probs_filtered[j] = 0.0 filter_iou = np.array(probs_filtered > 0.0, dtype='bool') boxes_filtered = boxes_filtered[filter_iou] probs_filtered = probs_filtered[filter_iou] classes_num_filtered = classes_num_filtered[filter_iou] result = [] for i in range(len(boxes_filtered)): result.append([self.classes[classes_num_filtered[i]], boxes_filtered[i][0], boxes_filtered[i][1], boxes_filtered[i][2], boxes_filtered[i][3], probs_filtered[i]]) return result def show_results(self, img, results): img_cp = img.copy() if self.filewrite_txt: ftxt = open(self.tofile_txt, 'w') for i in range(len(results)): x = int(results[i][1]) y = int(results[i][2]) w = int(results[i][3]) // 2 h = int(results[i][4]) // 2 if self.disp_console: print( ' class : ' + results[i][0] + ' , [x,y,w,h]=[' + str(x) + ',' + str(y) + ',' + str( int(results[i][3])) + ',' + str(int(results[i][4])) + '], Confidence = ' + str(results[i][5])) if self.filewrite_img or self.imshow: cv2.rectangle(img_cp, (x - w, y - h), (x + w, y + h), (0, 255, 0), 2) cv2.rectangle(img_cp, (x - w, y - h - 20), (x + w, y - h), (125, 125, 125), -1) cv2.putText(img_cp, results[i][0] + ' : %.2f' % results[i][5], (x - w + 5, y - h - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1) if self.filewrite_txt: ftxt.write(results[i][0] + ',' + str(x) + ',' + str(y) + ',' + str(w) + ',' + str(h) + ',' + str( results[i][5]) + '\n') if self.filewrite_img: if self.disp_console: print(' image file writed : ' + self.tofile_img) cv2.imwrite(self.tofile_img, img_cp) if self.imshow: cv2.imshow('YOLO_small detection', img_cp) cv2.waitKey(0) if self.filewrite_txt: if self.disp_console: print(' txt file writed : ' + self.tofile_txt) ftxt.close() def iou(self, box1, box2): tb = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - max(box1[0] - 0.5 * box1[2], box2[0] - 0.5 * box2[2]) lr = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - max(box1[1] - 0.5 * box1[3], box2[1] - 0.5 * box2[3]) if tb < 0 or lr < 0: intersection = 0 else: intersection = tb * lr return intersection / (box1[2] * box1[3] + box2[2] * box2[3] - intersection) # my addition def createFolder(self, path): if not os.path.exists(path): os.makedirs(path) def debug_location(self, img, location): img_cp = img.copy() x = int(location[1]) y = int(location[2]) w = int(location[3]) // 2 h = int(location[4]) // 2 cv2.rectangle(img_cp, (x - w, y - h), (x + w, y + h), (0, 255, 0), 2) cv2.rectangle(img_cp, (x - w, y - h - 20), (x + w, y - h), (125, 125, 125), -1) cv2.putText(img_cp, str(location[0]) + ' : %.2f' % location[5], (x - w + 5, y - h - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1) cv2.imshow('YOLO_small detection', img_cp) cv2.waitKey(1) def debug_locations(self, img, locations): img_cp = img.copy() for location in locations: x = int(location[1]) y = int(location[2]) w = int(location[3]) // 2 h = int(location[4]) // 2 cv2.rectangle(img_cp, (x - w, y - h), (x + w, y + h), (0, 255, 0), 2) cv2.rectangle(img_cp, (x - w, y - h - 20), (x + w, y - h), (125, 125, 125), -1) cv2.putText(img_cp, str(location[0]) + ' : %.2f' % location[5], (x - w + 5, y - h - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1) cv2.imshow('YOLO_small detection', img_cp) cv2.waitKey(1) def debug_gt_location(self, img, location): img_cp = img.copy() x = int(location[0]) y = int(location[1]) w = int(location[2]) h = int(location[3]) cv2.rectangle(img_cp, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow('gt', img_cp) cv2.waitKey(1) def file_to_img(self, filepath): img = cv2.imread(filepath) return img def file_to_video(self, filepath): try: video = cv2.VideoCapture(filepath) except IOError: print('cannot open video file: ' + filepath) else: print('unknown error reading video file') return video def iou(self, box1, box2): tb = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - max(box1[0] - 0.5 * box1[2], box2[0] - 0.5 * box2[2]) lr = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - max(box1[1] - 0.5 * box1[3], box2[1] - 0.5 * box2[3]) if tb < 0 or lr < 0: intersection = 0 else: intersection = tb * lr return intersection / (box1[2] * box1[3] + box2[2] * box2[3] - intersection) def find_iou_cost(self, pred_locs, gts): # for each element in the batch, find its iou. output a list of ious. cost = 0 batch_size = len(pred_locs) assert (len(gts) == batch_size) print("batch_size: ") ious = [] for i in range(batch_size): pred_loc = pred_locs[i] gt = gts[i] iou_ = self.iou(pred_loc, gt) ious.append(self, iou_) return ious def load_folder(self, path): paths = [os.path.join(path, fn) for fn in next(os.walk(path))[2]] # return paths return sorted(paths) def load_dataset_gt(self, gt_file): txtfile = open(gt_file, "r") lines = txtfile.read().split('\n') # '\r\n' return lines def find_gt_location(self, lines, id): line = lines[id] elems = line.split('\t') # for gt type 2 if len(elems) < 4: elems = line.split(',') # for gt type 1 x1 = elems[0] y1 = elems[1] w = elems[2] h = elems[3] gt_location = [int(x1), int(y1), int(w), int(h)] return gt_location def find_best_location(self, locations, gt_location): # locations (class, x, y, w, h, prob); (x, y) is the middle pt of the rect # gt_location (x1, y1, w, h) x1 = gt_location[0] y1 = gt_location[1] w = gt_location[2] h = gt_location[3] gt_location_revised = [x1 + w / 2, y1 + h / 2, w, h] max_ious = 0 for id, location in enumerate(locations): location_revised = location[1:5] print("location: ", location_revised) print("gt_location: ", gt_location_revised) ious = self.iou(location_revised, gt_location_revised) if ious >= max_ious: max_ious = ious index = id print("Max IOU: " + str(max_ious)) if max_ious != 0: best_location = locations[index] class_index = self.classes.index(best_location[0]) best_location[0] = class_index return best_location else: # it means the detection failed, no intersection with the ground truth return [0, 0, 0, 0, 0, 0] def save_yolo_output(self, out_fold, yolo_output, filename): name_no_ext = os.path.splitext(filename)[0] output_name = name_no_ext path = os.path.join(out_fold, output_name) np.save(path, yolo_output) def location_from_0_to_1(self, wid, ht, location): location[1] /= wid location[2] /= ht location[3] /= wid location[4] /= ht return location def gt_location_from_0_to_1(self, wid, ht, location): wid *= 1.0 ht *= 1.0 location[0] /= wid location[1] /= ht location[2] /= wid location[3] /= ht return location def locations_normal(self, wid, ht, locations): wid *= 1.0 ht *= 1.0 locations[1] *= wid locations[2] *= ht locations[3] *= wid locations[4] *= ht return locations def cal_yolo_loss(self, location, gt_location): # Translate yolo's box mid-point (x0, y0) to top-left point (x1, y1), in order to compare with gt location[0] = location[0] - location[2] / 2 location[1] = location[1] - location[3] / 2 loss = sum([(location[i] - gt_location[i]) ** 2 for i in range(4)]) * 100 / 4 return loss def cal_yolo_IOU(self, location, gt_location): # Translate yolo's box mid-point (x0, y0) to top-left point (x1, y1), in order to compare with gt location[0] = location[0] - location[2] / 2 location[1] = location[1] - location[3] / 2 loss = self.iou(location, gt_location) return loss def prepare_training_data(self, img_fold, gt_file, out_fold): # [or]prepare_training_data(self, list_file, gt_file, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image paths = self.load_folder(img_fold) gt_locations = self.load_dataset_gt(gt_file) avg_loss = 0 total = 0 total_time = 0 for id, path in enumerate(paths): filename = os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img, self.w_img, _ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB) img_resized_np = np.asarray(img_RGB) inputs = np.zeros((1, 448, 448, 3), dtype='float32') inputs[0] = (img_resized_np / 255.0) * 2.0 - 1.0 in_dict = {self.x: inputs} start_time = time.time() feature = self.sess.run(self.fc_30, feed_dict=in_dict) cycle_time = time.time() - start_time print('cycle time= ', cycle_time) total_time += cycle_time output = self.sess.run(self.fc_32, feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) gt_location = self.find_gt_location(gt_locations, id) location = self.find_best_location(locations, gt_location) # find the ROI that has the maximum IOU with the ground truth self.debug_location(img, location) self.debug_gt_location(img, gt_location) # change location into [0, 1] loss = self.cal_yolo_IOU(location[1:5], gt_location) location = self.location_from_0_to_1(self.w_img, self.h_img, location) avg_loss += loss total += 1 print("loss: ", loss) yolo_output = np.concatenate( (np.reshape(feature, [-1, self.num_feat]), np.reshape(location, [-1, self.num_predict])), axis=1) self.save_yolo_output(out_fold, yolo_output, filename) avg_loss = avg_loss / total print("YOLO avg_loss: ", avg_loss) print("Time Spent on Tracking: " + str(total_time)) print("fps: " + str(id / total_time)) return def loc_to_coordinates(self, loc): loc = [i * 32 for i in loc] x1 = int(loc[0] - loc[2] / 2) y1 = int(loc[1] - loc[3] / 2) x2 = int(loc[0] + loc[2] / 2) y2 = int(loc[1] + loc[3] / 2) return [x1, y1, x2, y2] def coordinates_to_heatmap_vec(self, coord): heatmap_vec = np.zeros(1024) print(coord) [classnum, x1, y1, x2, y2, prob] = coord [x1, y1, x2, y2] = self.loc_to_coordinates([x1, y1, x2, y2]) for y in range(y1, y2): for x in range(x1, x2): index = y * 32 + x heatmap_vec[index] = 1.0 return heatmap_vec def prepare_training_data_heatmap(self, img_fold, gt_file, out_fold): # [or]prepare_training_data(self, list_file, gt_file, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image paths = self.load_folder(img_fold) gt_locations = self.load_dataset_gt(gt_file) avg_loss = 0 total = 0 for id, path in enumerate(paths): filename = os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img, self.w_img, _ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB) img_resized_np = np.asarray(img_RGB) inputs = np.zeros((1, 448, 448, 3), dtype='float32') inputs[0] = (img_resized_np / 255.0) * 2.0 - 1.0 in_dict = {self.x: inputs} feature = self.sess.run(self.fc_30, feed_dict=in_dict) output = self.sess.run(self.fc_32, feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) gt_location = self.find_gt_location(gt_locations, id) location = self.find_best_location(locations, gt_location) # find the ROI that has the maximum IOU with the ground truth self.debug_location(img, location) self.debug_gt_location(img, gt_location) # change location into [0, 1] loss = self.cal_yolo_IOU(location[1:5], gt_location) location = self.location_from_0_to_1(self.w_img, self.h_img, location) heatmap_vec = self.coordinates_to_heatmap_vec(location) avg_loss += loss total += 1 print("loss: ", loss) yolo_output = np.concatenate( (np.reshape(feature, [-1, self.num_feat]), np.reshape(heatmap_vec, [-1, self.num_heatmap])), axis=1) self.save_yolo_output(out_fold, yolo_output, filename) avg_loss = avg_loss / total print("YOLO avg_loss: ", avg_loss) return def prepare_training_data_multiTarget(self, img_fold, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image print(img_fold) paths = self.load_folder(img_fold) avg_loss = 0 total = 0 for id, path in enumerate(paths): filename = os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img, self.w_img, _ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB) img_resized_np = np.asarray(img_RGB) inputs = np.zeros((1, 448, 448, 3), dtype='float32') inputs[0] = (img_resized_np / 255.0) * 2.0 - 1.0 in_dict = {self.x: inputs} feature = self.sess.run(self.fc_30, feed_dict=in_dict) output = self.sess.run(self.fc_32, feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) self.debug_locations(img, locations) # change location into [0, 1] for i in range(0, len(locations)): class_index = self.classes.index(locations[i][0]) locations[i][0] = class_index locations[i] = self.location_from_0_to_1(self.w_img, self.h_img, locations[i]) if len(locations) == 1: print('len(locations)= 1\n') yolo_output = [[np.reshape(feature, [-1, self.num_feat])], [
np.reshape(locations, [-1, self.num_predict])
numpy.reshape
#!/usr/bin/python3 #--- coding:utf-8 import time, sys, os from IPython import embed import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D class Kmeans(): def __init__(self, n_clusters, max_iter = 1000, tol = 0.00001): self.n_clusters = n_clusters self.max_iter = max_iter self.tol = tol def fit(self, data): shape,_ = data.shape index = np.random.randint(0,shape,size=self.n_clusters) k_points = data[index] k_points_last = None for a in range(self.max_iter): label = [] k_points_last = k_points.copy() for i in range(shape): dis = [] for j in range(self.n_clusters): dis.append(np.linalg.norm(data[i,:]-k_points[j,:])) label.append(dis.index(min(dis))) for i in range(self.n_clusters): index = np.argwhere(np.array(label)==i) if len(index) != 0: k_points[i,:] = data[index, :].mean(axis=0) if np.linalg.norm(k_points-k_points_last) < self.tol: break return np.array(label) class SOM(): def __init__(self, n_clusters, in_layer, s, knn=10, out_size=(3,3), m_iter=1000): self.n_clusters = n_clusters self.in_layer = in_layer.copy() self.m_iter = m_iter self.knn = knn a,b = np.min(self.in_layer), np.max(self.in_layer) self.w = (b-a)*np.random.rand(out_size[0], out_size[1], self.in_layer.shape[1])+a self.color = ['y', 'r', 'g', 'b', 'c', 'm', 'k', 'pink', 'dark', 'orange', 'tan', 'gold'] self.label = np.zeros(len(in_layer)) self.res =None self.neuron = {} self.l = 1.0 self.s = s self.som_r = int(self.w.shape[0]/2.5) self.som_r_square = self.som_r**2 self.D_list = [] def Init_W(self): for i in range(self.w.shape[0]): for j in range(self.w.shape[1]): k = np.random.randint(self.in_layer.shape[0]) self.w[i][j]=self.in_layer[k] def Normalize_Input(self, X): ''' for i in range(X.shape[0]): t = np.linalg.norm(X[i]) X[i] /= t #''' return X def Normalize_W(self, w): ''' for i in range(w.shape[0]): for j in range(w.shape[1]): t = np.linalg.norm(w[i,j]) w[i,j] /= t #''' return w def Get_Win_Neuron(self, x): max_dis=float('inf') min_dis=-float('inf') for i in range(self.w.shape[0]): for j in range(self.w.shape[1]): ''' dis = x.dot(self.w[i,j]) #余弦距离 if dis > min_dis: min_dis = dis win_index = (i,j,dis) ''' dis = np.linalg.norm(x-self.w[i,j])#欧式距离 if dis < max_dis: max_dis = dis win_index = (i,j,dis) #''' return win_index def Get_Neighborhood(self, win, radius): res = [] for i in range(max(0, win[0]-radius), min(self.w.shape[0], win[0]+radius+1)): for j in range(max(0, win[1]-radius), min(self.w.shape[1], win[1]+radius+1)): dis = (i-win[0])**2 + (j-win[1])**2 if dis <= self.som_r_square: res.append([i, j, dis]) return res def Update_W(self, index, X, r): for i in range(len(index)): self.w[index[i][0],index[i][1]] += self.l*self.h(index[i][2],r)*(X-self.w[index[i][0],index[i][1]]) def Radius(self, t): return (self.som_r*(4.5/(t+3)))**2 def alpha(self, t): if self.l <= 0.01: return 0.01 else: return 1./(2*t+1) def h(self, dis, r_square): return np.exp(-float(dis)/(2*r_square)) def Get_Result(self): self.w = self.Normalize_W(self.w) self.neuron={} for i in range(self.in_layer.shape[0]): win = self.Get_Win_Neuron(self.in_layer[i]) key = win[0]*self.w.shape[0] + win[1] if key in self.neuron.keys(): self.neuron[key].append(i) else: self.neuron.fromkeys([key]) self.neuron[key]=[i] def Train(self, fpath): self.in_layer = self.Normalize_Input(self.in_layer) for i in range(self.m_iter): p = int(46*i/self.m_iter)+1 print(' P|'+'*'*p+' '*(46-p)+'| '+str(i)+'/'+str(self.m_iter), end='\r') self.w = self.Normalize_W(self.w) r = self.Radius(i) self.l = self.alpha(i) D = 0 for k in range(self.in_layer.shape[0]): j = np.random.randint(self.in_layer.shape[0]) win = self.Get_Win_Neuron(self.in_layer[j]) index = self.Get_Neighborhood(win, self.som_r) self.Update_W(index, self.in_layer[j], r) D += win[2] self.D_list.append(D) self.Get_Result() print(' P|'+'*'*46+'| '+str(self.m_iter)+'/'+str(self.m_iter)) return self.w.reshape(self.w.shape[0]*self.w.shape[1], self.w.shape[2])[list(self.neuron.keys())], self.neuron def Preprocess(self): #filter outliers dev=[] key_l = list(self.neuron.keys()) for key in key_l: a, b=int(key/self.w.shape[0]), key%self.w.shape[0] mean_x = self.in_layer[self.neuron[key]].mean(axis=0) d=np.sum((self.w[a][b]-mean_x)**2) dev.append(d) mean_dev, std_dev=np.mean(dev), np.std(dev) for i in range(len(dev)): if dev[i] > mean_dev+std_dev: del self.neuron[key_l[i]] #embed(header='First time') #filter outliers and noises dev=[] key_l = list(self.neuron.keys()) for key in key_l: for v in self.neuron[key]: a, b=int(key/self.w.shape[0]), key%self.w.shape[0] d=np.sum((self.in_layer[v]-self.w[a][b])**2) dev.append(d) mean_dev, std_dev=np.mean(dev), np.std(dev) cnt=0 for key in key_l: for v in self.neuron[key]: if dev[cnt] > mean_dev+std_dev: self.neuron[key].remove(v) cnt+=1 if self.neuron[key] == '': del self.neuron[key] #filter noises dev=[] key_l = list(self.neuron.keys()) for key in key_l: a,b = int(key/self.w.shape[0]),key%self.w.shape[0] temp=[] radius=1 while len(temp)==0: for i in range(max(0, a-radius), min(self.w.shape[0], a+radius+1)): for j in range(max(0, b-radius), min(self.w.shape[1], b+radius+1)): #if i*self.w.shape[0]+j in key_l: temp.append(np.sum((self.w[a][b]-self.w[i][j])**2)) radius+=1 dev.append(np.mean(temp)) mean_dev,std_dev = np.mean(dev), np.std(dev) for i in range(len(dev)): if dev[i]>mean_dev+std_dev*3: del self.neuron[key_l[i]] t=np.arange(len(dev)) dev.sort() plt.plot(t, np.array(dev)) plt.axhline(mean_dev, color='r') plt.axhline(mean_dev+std_dev, color='g') plt.axhline(mean_dev+3*std_dev, color='b') plt.savefig('dev') #embed() ''' dev=[] key_l = list(self.neuron.keys()) for key in key_l: dev.append(len(self.neuron[key])) mean_dev, std_dev=np.mean(dev), np.std(dev) for key in key_l: if len(self.neuron[key])<mean_dev-std_dev: del self.neuron[key] ''' def Get_Dis(self, X): S = np.zeros((len(X), len(X))) for i in range(len(X)): a,b=int(X[i]/self.w.shape[0]), X[i]%self.w.shape[0] for j in range(i+1, len(X)): c,d=int(X[j]/self.w.shape[0]), X[j]%self.w.shape[0] #a,b=int(X[i]/self.w.shape[0])-int(X[j]/self.w.shape[0]), X[i]%self.w.shape[0]-X[j]%self.w.shape[0] #if abs(a-c)<self.knn and abs(b-d)<self.knn: if (a-c)**2+(b-d)**2<self.knn**2: S[i][j] = 1 S[j][i] = S[i][j] return S def Get_W_KNN(self, X, S): W = np.zeros((len(X), len(X))) for i in range(len(X)): #index = np.argpartition(S[i], self.knn)[:self.knn+1] index = np.argwhere(S[i]>0).flatten() a,b=int(X[i]/self.w.shape[0]), X[i]%self.w.shape[0] if len(index) < self.knn: dis=np.zeros(len(X)) for j in range(len(X)): c,d=int(X[j]/self.w.shape[0]), X[j]%self.w.shape[0] dis[j] = np.sum((self.w[a][b]-self.w[c][d])**2) index = np.argpartition(dis, self.knn)[:self.knn] W[i,index]=
np.exp(-dis[index]/self.sigma)
numpy.exp
#%% import cobra import optlang_enumerator.cobra_cnapy import optlang import optlang_enumerator.mcs_computation as mcs_computation import numpy import pickle from pathlib import Path results_cache_dir = None # do not cache preprocessing results # results_cache_dir = Path(r"E:\cnapy_tmp\results_cache") # cache preprocessing results in the given directory #%% from importlib import reload import optlang_enumerator reload(optlang_enumerator) import optlang_enumerator.mcs_computation as mcs_computation #%% ecc2 = optlang_enumerator.cobra_cnapy.CNApyModel.read_sbml_model("ECC2comp.sbml") # allow all reactions that are not boundary reactions as cuts (same as exclude_boundary_reactions_as_cuts option of compute_mcs) cuts =
numpy.array([not r.boundary for r in ecc2.reactions])
numpy.array
import pytest import numpy as np import numpy.testing as npt from lenstronomy.LensModel.QuadOptimizer.param_manager import PowerLawFixedShear, \ PowerLawFixedShearMultipole, PowerLawFreeShear, PowerLawFreeShearMultipole class TestParamClasses(object): def setup(self): self.zlens, self.zsource = 0.5, 1.5 epl_kwargs = {'theta_E': 1., 'center_x': 0., 'center_y': 0., 'e1': 0.2, 'e2': 0.1, 'gamma': 2.05} shear_kwargs = {'gamma1': 0.05, 'gamma2': -0.04} kwargs_macro = [epl_kwargs, shear_kwargs] self.x_image = np.array([0.65043538, -0.31109505, 0.78906059, -0.86222271]) self.y_image = np.array([-0.89067493, 0.94851787, 0.52882605, -0.25403778]) halo_list = ['SIS', 'SIS', 'SIS'] halo_z = [self.zlens - 0.1, self.zlens, self.zlens + 0.4] halo_kwargs = [{'theta_E': 0.1, 'center_x': 0.3, 'center_y': -0.9}, {'theta_E': 0.15, 'center_x': 1.3, 'center_y': -0.5}, {'theta_E': 0.06, 'center_x': -0.4, 'center_y': -0.4}] self.kwargs_epl = kwargs_macro + halo_kwargs self.zlist_epl = [self.zlens, self.zlens] + halo_z self.lens_model_list_epl = ['EPL', 'SHEAR'] + halo_list kwargs_multi = [{'m': 4, 'a_m': -0.04, 'phi_m': -0.2, 'center_x': 0.1, 'center_y': -0.1}] self.kwargs_multipole = kwargs_macro + kwargs_multi + halo_kwargs self.zlist_multipole = [self.zlens, self.zlens, self.zlens] + halo_z self.lens_model_list_multipole = ['EPL', 'SHEAR'] + ['MULTIPOLE'] + halo_list def test_param_penalty(self): param_class = PowerLawFreeShear(self.kwargs_epl) args = param_class.kwargs_to_args(self.kwargs_epl) param_penalty = param_class.param_chi_square_penalty(args) npt.assert_almost_equal(0, param_penalty) def test_plaw_free_shear(self): param_class = PowerLawFreeShear(self.kwargs_epl) npt.assert_(param_class.to_vary_index==2) kwargs_in = [{'theta_E': 1., 'center_x': 0., 'center_y': 0.3, 'e1': 0.25, 'e2': 0.1, 'gamma': 2.05}, {'gamma1': 0.05, 'gamma2': -0.01}, {'theta_E': -0.3, 'center_x': 0., 'center_y': 0.04}] args_epl = param_class.kwargs_to_args(kwargs_in) npt.assert_almost_equal(args_epl, [1, 0, 0.3, 0.25, 0.1, 0.05, -0.01]) kwargs_out = param_class.args_to_kwargs(args_epl) npt.assert_almost_equal(kwargs_out[0]['gamma'], 2.05) for key in kwargs_out[-1].keys(): npt.assert_almost_equal(kwargs_out[-1][key], self.kwargs_epl[-1][key]) def test_plaw_fixed_shear(self): param_class = PowerLawFixedShear(self.kwargs_epl, 0.12) npt.assert_(param_class.to_vary_index == 2) kwargs_in = [{'theta_E': 1., 'center_x': 0., 'center_y': 0.3, 'e1': 0.25, 'e2': 0.1, 'gamma': 2.05}, {'gamma1': 0.05, 'gamma2': -0.01}, {'theta_E': -0.3, 'center_x': 0., 'center_y': 0.04}] args_epl = param_class.kwargs_to_args(kwargs_in) npt.assert_almost_equal(args_epl[0:5], [1, 0, 0.3, 0.25, 0.1]) kwargs_out = param_class.args_to_kwargs(args_epl) npt.assert_almost_equal(kwargs_out[0]['gamma'], 2.05) npt.assert_almost_equal(kwargs_out[1]['gamma1'] ** 2 + kwargs_out[1]['gamma2']**2, 0.12 ** 2) for key in kwargs_out[-1].keys(): npt.assert_almost_equal(kwargs_out[-1][key], self.kwargs_epl[-1][key]) def test_plawboxydisky_fixed_shear(self): param_class = PowerLawFixedShearMultipole(self.kwargs_multipole, 0.12) npt.assert_(param_class.to_vary_index == 3) kwargs_in = [{'theta_E': 1., 'center_x': 0., 'center_y': 0.3, 'e1': 0.25, 'e2': 0.1, 'gamma': 2.05}, {'gamma1': 0.05, 'gamma2': -0.01}, {'theta_E': -0.3, 'center_x': 0., 'center_y': 0.04}] args_epl = param_class.kwargs_to_args(kwargs_in) npt.assert_almost_equal(args_epl[0:5], [1, 0, 0.3, 0.25, 0.1]) kwargs_out = param_class.args_to_kwargs(args_epl) npt.assert_almost_equal(kwargs_out[0]['gamma'], 2.05)
npt.assert_almost_equal(kwargs_out[1]['gamma1'] ** 2 + kwargs_out[1]['gamma2']**2, 0.12 ** 2)
numpy.testing.assert_almost_equal
# CODING-STYLE CHECKS: # pycodestyle test_decorators.py import os import sys import pytest import importlib import numpy as np from pandas import DataFrame from pandas.util.testing import assert_frame_equal import taxcalc from taxcalc.decorators import * def test_create_apply_function_string(): ans = create_apply_function_string(['a', 'b', 'c'], ['d', 'e'], []) exp = ("def ap_func(x_0,x_1,x_2,x_3,x_4):\n" " for i in range(len(x_0)):\n" " x_0[i],x_1[i],x_2[i] = jitted_f(x_3[i],x_4[i])\n" " return x_0,x_1,x_2\n") assert ans == exp def test_create_apply_function_string_with_params(): ans = create_apply_function_string(['a', 'b', 'c'], ['d', 'e'], ['d']) exp = ("def ap_func(x_0,x_1,x_2,x_3,x_4):\n" " for i in range(len(x_0)):\n" " x_0[i],x_1[i],x_2[i] = jitted_f(x_3,x_4[i])\n" " return x_0,x_1,x_2\n") assert ans == exp def test_create_toplevel_function_string_mult_outputs(): ans = create_toplevel_function_string(['a', 'b'], ['d', 'e'], ['pm', 'pm', 'pf', 'pm']) exp = '' exp = ("def hl_func(pm, pf):\n" " from pandas import DataFrame\n" " import numpy as np\n" " import pandas as pd\n" " def get_values(x):\n" " if isinstance(x, pd.Series):\n" " return x.values\n" " else:\n" " return x\n" " outputs = \\\n" " (pm.a, pm.b) = \\\n" " applied_f(get_values(pm.a), get_values(pm.b), " "get_values(pf.d), get_values(pm.e), )\n" " header = ['a', 'b']\n" " return DataFrame(data=np.column_stack(outputs)," "columns=header)") assert ans == exp def test_create_toplevel_function_string(): ans = create_toplevel_function_string(['a'], ['d', 'e'], ['pm', 'pf', 'pm']) exp = '' exp = ("def hl_func(pm, pf):\n" " from pandas import DataFrame\n" " import numpy as np\n" " import pandas as pd\n" " def get_values(x):\n" " if isinstance(x, pd.Series):\n" " return x.values\n" " else:\n" " return x\n" " outputs = \\\n" " (pm.a) = \\\n" " applied_f(get_values(pm.a), get_values(pf.d), " "get_values(pm.e), )\n" " header = ['a']\n" " return DataFrame(data=outputs," "columns=header)") assert ans == exp def some_calc(x, y, z): a = x + y b = x + y + z return (a, b) def test_make_apply_function(): ans_do_jit = make_apply_function(some_calc, ['a', 'b'], ['x', 'y', 'z'], [], do_jit=True, no_python=True) assert ans_do_jit ans_no_jit = make_apply_function(some_calc, ['a', 'b'], ['x', 'y', 'z'], [], do_jit=False, no_python=True) assert ans_no_jit @apply_jit(["a", "b"], ["x", "y", "z"], nopython=True) def Magic_calc(x, y, z): a = x + y b = x + y + z return (a, b) def Magic(pm, pf): # Adjustments outputs = pf.a, pf.b = Magic_calc(pm, pf) header = ['a', 'b'] return DataFrame(data=np.column_stack(outputs), columns=header) @iterate_jit(nopython=True) def Magic_calc2(x, y, z): a = x + y b = x + y + z return (a, b) class Foo(object): pass @iterate_jit(nopython=True) def faux_function(MARS): if MARS == 1: var = 2 else: var = 1 return var @iterate_jit(nopython=True) def ret_everything(a, b, c, d, e, f): c = a + b d = a + b e = a + b f = a + b return (c, d, e, f) def test_magic_apply_jit(): pm = Foo() pf = Foo() pm.a = np.ones((5,)) pm.b = np.ones((5,)) pf.x = np.ones((5,)) pf.y = np.ones((5,)) pf.z = np.ones((5,)) xx = Magic(pm, pf) exp = DataFrame(data=[[2.0, 3.0]] * 5, columns=["a", "b"]) assert_frame_equal(xx, exp) def test_magic_apply_jit_swap(): pm = Foo() pf = Foo() pm.a = np.ones((5,)) pm.b = np.ones((5,)) pf.x = np.ones((5,)) pf.y = np.ones((5,)) pf.z = np.ones((5,)) xx = Magic(pf, pm) exp = DataFrame(data=[[2.0, 3.0]] * 5, columns=["a", "b"]) assert_frame_equal(xx, exp) def test_magic_iterate_jit(): pm = Foo() pf = Foo() pm.a = np.ones((5,)) pm.b = np.ones((5,)) pf.x = np.ones((5,)) pf.y = np.ones((5,)) pf.z = np.ones((5,)) xx = Magic_calc2(pm, pf) exp = DataFrame(data=[[2.0, 3.0]] * 5, columns=["a", "b"]) assert_frame_equal(xx, exp) def test_faux_function_iterate_jit(): pm = Foo() pf = Foo() pf.MARS = np.ones((5,)) pf.var = np.ones((5,)) ans = faux_function(pm, pf) exp = DataFrame(data=[2.0] * 5, columns=['var']) assert_frame_equal(ans, exp) def test_ret_everything_iterate_jit(): pm = Foo() pf = Foo() pf.a = np.ones((5,)) pf.b = np.ones((5,)) pf.c = np.ones((5,)) pf.d = np.ones((5,)) pf.e = np.ones((5,)) pf.f = np.ones((5,)) ans = ret_everything(pm, pf) exp = DataFrame(data=[[2.0, 2.0, 2.0, 2.0]] * 5, columns=["c", "d", "e", "f"]) assert_frame_equal(ans, exp) @iterate_jit(nopython=True) def Magic_calc3(x, y, z): a = x + y b = a + z return (a, b) def test_function_takes_kwarg(): pm = Foo() pf = Foo() pm.a = np.ones((5,)) pm.b = np.ones((5,)) pf.x = np.ones((5,)) pf.y = np.ones((5,)) pf.z = np.ones((5,)) ans = Magic_calc3(pm, pf) exp = DataFrame(data=[[2.0, 3.0]] * 5, columns=["a", "b"]) assert_frame_equal(ans, exp) @iterate_jit(nopython=True) def Magic_calc4(x, y, z): a = x + y b = a + z return (a, b) def test_function_no_parameters_listed(): pm = Foo() pf = Foo() pm.a =
np.ones((5,))
numpy.ones
# coding: utf-8 # In[123]: import numpy as np class DecisonTree(object): def __init__(self,**kwargs): ''' 按照CART实现 task:Classification | Regression or 后 都是 不传参数的默认值 ''' self.task = kwargs.get('task') or 'Classification' self.max_depth = kwargs.get('max_depth') or np.infty min_samples_split = kwargs.get('min_samples_split') self.min_samples_split = kwargs.get('min_samples_split') or 2 self.min_samples_leaf = kwargs.get('min_samples_leaf') or 1 self.min_impurity_decrease = kwargs.get('min_samples_leaf') or 0 def train(self,X_train,y_train): ''' 对于类别属性来说,有两种处理方法: 1. 按属性中所有的值来分类来生成树(C3.0等早期分类树就是这种方式) 2. 将类别属性One-hot 编码来这样就只有0-1变量了。(Xgboost,CART 是这种) 3. 其实如果按照最好的离散属性分割方式,应该穷举所有的组合,找到一个最好的分割方式。H20好像有这种实践。 对于连续属性来说,就很好办了,直接二分分类。 属性中的值来说,一般来说,如果是(0,1)变量,那么每次分类后就可以去掉这个特征了,对于连续变量就不是了,要继续保留参与分割。 本算法采用方法2处理离散变量。即不再区分特征是离散变量还是连续变量,这样做能降低代码复杂度,而且做到了分类和回归任务的统一处理。 本算法仅仅生成二叉树,不生成多叉树。 ''' ''' 不可采用分割方式,将子数据集传入递归函数,这样会丢失feature 位置,也就没法记录分割位置了,哈哈哈 算了,还是切割吧。简化程序处理 ''' self.X_train = X_train self.y_train = y_train tree = self.TreeGenerate(X_train,y_train) self.Tree = self.pruning(tree) def predict(self,X_test): def get_node_value(X): T = self.Tree while True: F = T['splitF'] V = T['splitV'] T = T['left'] if X[F] < V else T['right'] if not isinstance(T,dict): return T ret = np.apply_along_axis(get_node_value,1,X_test) return ret def TreeGenerate(self,X_train,y_train,depth = 0): best_feature,best_value,best_error = self.chooseBestSplitfeature(X_train,y_train,depth)#选取最佳分裂属性,最佳分裂点 #print('best_feature,best_value::',best_feature,best_value) if best_feature is None:#如果best_feature 为空,说明当前节点不满足分裂条件,函数直接返回节点值。 return best_value Tree = {} Tree['splitF'] = best_feature Tree['splitV'] = best_value Tree['best_error'] = best_error Tree['depth'] = depth left_X_train,left_y_train,right_X_train,right_y_train = self.binSplit(X_train,y_train,best_feature,best_value) Tree['left'] = self.TreeGenerate(left_X_train,left_y_train,depth+1) Tree['right'] = self.TreeGenerate(right_X_train,right_y_train,depth+1) return Tree def chooseBestSplitfeature(self,X_train,y_train,depth): cls,cnt = np.unique(y_train,return_counts=True)#统计y值的数量 Error_ytrain = self.cal_Error(y_train) NodeV_ytrain = self.get_NodeValue(y_train) if (cls.shape[0]==1) or (depth > self.max_depth) or ((X_train == X_train[0]).all()) or (X_train.shape[0] < self.min_samples_split): #如果y值全部一样,停止分裂;超过最大高度,停止分裂;X中全部样本相同,停止分裂;X数量小于最小样本分割数,停止分裂 return None,NodeV_ytrain,Error_ytrain # if depth > self.max_depth:#超过最大高度,停止分裂 # return None,get_NodeValue(y_train),Error_ytrain # if (X_train == X_train[0]).all(): # #如果属性值为空为空,或者X中全部样本相同,则返回y中出现最多的值 # return None,get_NodeValue(y_train),Error_ytrain # if X_train.shape[0] < self.min_samples_split:# 如果X数量小于最小样本分割数,停止分裂 # return None,get_NodeValue(y_train),Error_ytrain current_error = Error_ytrain #print('current_error:',current_error) best_feature = 0 best_value = NodeV_ytrain best_error = Error_ytrain for i in range(X_train.shape[1]): cls = np.unique(X_train[:,i]) if cls.shape[0]==1: continue cls = np.delete(cls,
np.argmin(cls)
numpy.argmin
# Brain Tumor Classification # Enhance tumor region in each image. # Author: <NAME> # Copyleft: MIT Licience # ,,, ,,, # ;" '; ;' ", # ; @.ss$$$$$$s.@ ; # `s$$$$$$$$$$$$$$$' # $$$$$$$$$$$$$$$$$$ # $$$$P""Y$$$Y""W$$$$$ # $$$$ p"$$$"q $$$$$ # $$$$ .$$$$$. $$$$' # $$$DaU$$O$$DaU$$$' # '$$$$'.^.'$$$$' # '&$$$$$&' from __future__ import print_function import os import warnings import numpy as np import nibabel as nib from multiprocessing import Pool, cpu_count from scipy.ndimage.interpolation import zoom # Ignore the warning caused by SciPy warnings.simplefilter("ignore", UserWarning) # Helper function to run in multiple processes def unwrap_preprocess(arg, **kwarg): return BTCPreprocess._preprocess(*arg, **kwarg) class BTCPreprocess(object): def __init__(self, input_dirs, output_dirs, volume_type="t1ce"): '''__INIT__ Generates paths for preprocessing. Variables: - self.in_paths: a list contains path of each input image. - self.out_paths: a list provides path for each output image. - self.mask_paths: a list contains path of mask for each input image. Inputs: ------- - input_dirs: a list with two lists, [hgg_input_dir, lgg_input_dir], path of the directory which saves input images of\ HGG and LGG subjects. - output_dirs: a list with teo lists, [hgg_output_dir, lgg_output_dir], path of output directory for every subject in HGG and LGG. - volume_type: string, type of brain volume, one of "t1ce", "t1", "t2" or "flair". Default is "t1ce". ''' self.in_paths, self.out_paths, self.mask_paths = \ self.generate_paths(input_dirs, output_dirs, volume_type) return def run(self, is_mask=True, non_mask_coeff=0.333, processes=-1): '''RUN Function to map task to multiple processes. Inputs: ------- - is_mask: boolearn, if True, enhance tumor region. Default is True. - non_mask_coeff: float from 0 to 1, the coefficient of voxels in non-tumor region. Default is 0.333. - processes: int, the number of processes used. Default is -1, which means use all processes. ''' print("\nPreprocessing on the sample in BraTS dataset.\n") num = len(self.in_paths) # Generate parameters paras = zip([self] * num, self.in_paths, self.out_paths, self.mask_paths, [is_mask] * num, [non_mask_coeff] * num) # Set the number of processes if processes == -1 or processes > cpu_count(): processes = cpu_count() # Map task pool = Pool(processes=processes) pool.map(unwrap_preprocess, paras) return def _preprocess(self, in_path, to_path, mask_path, is_mask=True, non_mask_coeff=0.333): '''_PREPROCESS For each input image, four steps are done: -1- If is_mask, enhance tumor region. -2- Remove background. -3- Resize image. -4- Save image. Inputs: ------- - in_path: string, path of input image. - to_path: string, path of output image. - mask_path: string, path of the mask of input image. - is_mask: boolearn, if True, enhance tumor region. Default is True. - non_mask_coeff: float from 0 to 1, the coefficient of voxels in non-tumor region. Default is 0.333. ''' try: print("Preprocessing on: " + in_path) # Load image volume = self.load_nii(in_path) if is_mask: # Enhance tumor region mask = self.load_nii(mask_path) volume = self.segment(volume, mask, non_mask_coeff) # Removce background volume = self.trim(volume) # Resize image volume = self.resize(volume, [112, 112, 96]) # Save image self.save2nii(to_path, volume) except RuntimeError: print("\tFailed to rescal:" + in_path) return return @staticmethod def generate_paths(in_dirs, out_dirs, volume_type=None): '''GENERATE_PATHS Generates three lists with files' paths for prerprocessing. Inputs: ------- - input_dirs: a list with two lists, [hgg_input_dir, lgg_input_dir], path of the directory which saves input images of\ HGG and LGG subjects. - output_dirs: a list with teo lists, [hgg_output_dir, lgg_output_dir], path of output directory for every subject in HGG and LGG. - volume_type: string, type of brain volume, one of "t1ce", "t1", "t2" or "flair". Default is "t1ce". Outputs: -------- - in_paths: a list contains path of each input image. - out_paths: a list provides path for each output image. - mask_paths: a list contains path of mask for each input image. ''' # Function to create new directory # according to given path def create_dir(path): if not os.path.isdir(path): os.makedirs(path) return in_paths, out_paths, mask_paths = [], [], [] for in_dir, out_dir in zip(in_dirs, out_dirs): # For HGG or LFF subjects if not os.path.isdir(in_dir): print("Input folder {} is not exist.".format(in_dir)) continue # Create output folder for HGG or LGG subjects create_dir(out_dir) for subject in os.listdir(in_dir): # For each subject in HGG or LGG subject_dir = os.path.join(in_dir, subject) subject2dir = os.path.join(out_dir, subject) # Create folder for output create_dir(subject2dir) scan_names = os.listdir(subject_dir) # Get path of mask file for scan_name in scan_names: if "seg" in scan_name: scan_mask_path = os.path.join(subject_dir, scan_name) for scan_name in scan_names: if "seg" in scan_name: continue if volume_type is not None: if volume_type not in scan_name: continue # When find the target volume, save its path # and save paths for its output and mask in_paths.append(os.path.join(subject_dir, scan_name)) out_paths.append(os.path.join(subject2dir, scan_name)) mask_paths.append(scan_mask_path) return in_paths, out_paths, mask_paths @staticmethod def load_nii(path): '''LOAD_NII Load image to numpy ndarray from NIfTi file. Input: ------ - path: string , path of input image. Ouput: ------ - A numpy array of input imgae. ''' return np.rot90(nib.load(path).get_data(), 3) @staticmethod def segment(volume, mask, non_mask_coeff=0.333): '''SEGMENT Enhance tumor region by suppressing non-tumor region with a coefficient. Inuuts: ------- - volume: numpy ndarray, input image. - mask: numpy ndarray, mask with segmentation labels. - non_mask_coeff: float from 0 to 1, the coefficient of voxels in non-tumor region. Default is 0.333. Output: ------- - segged: numpy ndarray, tumor enhanced image. ''' # Set background to 0 if np.min(volume) != 0: volume -= np.min(volume) # Suppress non-tumor region non_mask_idx = np.where(mask == 0) segged = np.copy(volume) segged[non_mask_idx] = segged[non_mask_idx] * non_mask_coeff return segged @staticmethod def trim(volume): '''TRIM Remove unnecessary background around brain. Input: ------ - volume: numpy ndarray, input image. Output: ------- - trimmed: numpy ndarray, image without unwanted background. ''' # Get indices of slices that have brain's voxels non_zero_slices = [i for i in range(volume.shape[-1]) if np.sum(volume[..., i]) > 0] # Remove slices that only have background volume = volume[..., non_zero_slices] # In each slice, find the minimum area of brain # Coordinates of area are saved row_begins, row_ends = [], [] col_begins, col_ends = [], [] for i in range(volume.shape[-1]): non_zero_pixels = np.where(volume > 0) row_begins.append(np.min(non_zero_pixels[0])) row_ends.append(np.max(non_zero_pixels[0])) col_begins.append(np.min(non_zero_pixels[1])) col_ends.append(np.max(non_zero_pixels[1])) # Find the maximum area from all minimum areas row_begin, row_end = min(row_begins), max(row_ends) col_begin, col_end = min(col_begins), max(col_ends) # Generate a minimum square area taht includs the maximum area rows_num = row_end - row_begin cols_num = col_end - col_begin more_col_len = rows_num - cols_num more_col_len_left = more_col_len // 2 more_col_len_right = more_col_len - more_col_len_left col_begin -= more_col_len_left col_end += more_col_len_right len_of_side = rows_num + 1 # Remove unwanted background trimmed =
np.zeros([len_of_side, len_of_side, volume.shape[-1]])
numpy.zeros
import numpy as np from pydiva import pydiva2d import os import unittest print("Running tests on Diva data") print(" ") class TestDivaData(unittest.TestCase): @classmethod def setUp(cls): # Create lists and arrays cls.xlist = [1., 2., 10] cls.ylist = [2., -1., 0.] cls.datalist = [0., 10, 0] cls.weightlist = [1., .2, 1.] cls.xarray = np.array((6., 4., 2.1)) cls.yarray = np.array((1., 10., -1)) cls.yarray2 = np.array((1., 10., -1, 3.)) cls.datarray = np.array((7., 8., 9.)) cls.weightarray = np.array((1., 1., 1.)) cls.nogeojsonfile = "./nodata/data.js" cls.outputfile = "./datawrite/data.dat" cls.geojsonfile = "./datawrite/data.js" def test_init_data(self): data0 = pydiva2d.Diva2DData() self.assertIsNone(data0.x) self.assertIsNone(data0.y) self.assertIsNone(data0.field) self.assertIsNone(data0.weight) data1 = pydiva2d.Diva2DData(self.xlist, self.ylist, self.datalist) np.testing.assert_array_equal(data1.x, self.xlist) np.testing.assert_array_equal(data1.y, self.ylist) np.testing.assert_array_equal(data1.field, self.datalist) np.testing.assert_array_equal(data1.weight, np.ones_like(data1.field)) # Mix lists and arrays data2 = pydiva2d.Diva2DData(self.xarray, self.yarray, self.datalist, self.weightlist) np.testing.assert_array_equal(data2.x, self.xarray)
np.testing.assert_array_equal(data2.y, self.yarray)
numpy.testing.assert_array_equal
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from time import time from scipy.ndimage import imread from scipy import misc from sklearn.preprocessing import LabelBinarizer from model import Model # Read in train and test image TRAIN_DIR = 'data/train/' TEST_DIR = 'data/test/' PRED_DIR = 'data/pred/' SAVE_PATH='checkpoints/convnet_face/face-convnet-2' def load_data(img_dir, labels=False, one_hot=False, binary_class=False): img_data = [] data_labels = [] if labels: # get folder names aka class labels class_labels = os.listdir(img_dir) for label in class_labels: images = os.listdir(img_dir + label) # gather image array and its class for img in images: img_arr = imread(img_dir + label + "/" + img) img_data.append(img_arr) data_labels.append(label) if one_hot: data_labels_enc = [] # convert categorical labels to one-hot array enc = LabelBinarizer() data_labels = enc.fit_transform(data_labels) if binary_class: # quick and dirty way of converting binary labels to sparse matrix for i in data_labels: if i == 1: i = [1, 0] data_labels_enc.append(i) else: i = [0, 1] data_labels_enc.append(i) return
np.array(img_data)
numpy.array
import sys import os import numpy as np import cv2 import scipy from scipy.stats import norm from scipy.signal import convolve2d import math import numpy as np from PIL import Image def roi(image): im = image h,w=im.shape[:2] r = cv2.selectROI(im) imCrop = im[int(r[1]):int(r[1] + r[3]), int(r[0]):int(r[0] + r[2])] a=imCrop.shape l,m=imCrop.shape[:2] roi=np.zeros((h,w,3)) roi[int(r[1]):int(r[1] + r[3]), int(r[0]):int(r[0] + r[2])]=255 new_image=roi.astype(np.uint8) b=new_image.shape return new_image def pad_clr(image): h, w = image.shape[:2] fr_copy = image[0:1, ::1, ::] a = fr_copy.shape lr_copy = image[h - 1:h, ::1, ::] lc_copy = image[::1, w - 1:w, ::] fc_copy = image[::1, 0:1, ::] new_image = np.zeros((image.shape[0] + 2, image.shape[1] + 2, 3)) pad_main = np.copy(image[0:h, 0:w, ::]) l, b = new_image.shape[:2] new_image[1:h + 1, 1:w + 1, ::] = pad_main new_image[0:1, 1:w + 1, ::] = lr_copy new_image[l - 1:l:1, 1:b - 1, ::] = fr_copy new_image = np.array(new_image, dtype=np.uint8) nh, nw = new_image.shape[:2] return new_image def pad_bw(image): h, w = image.shape[:2] fr_copy = image[0:1, ::1] lr_copy = image[h - 1:h, ::1] lc_copy = image[::1, w - 1:w] fc_copy = image[::1, 0:1] new_image = np.zeros((image.shape[0] + 2, image.shape[1] + 2)) pad_main = np.copy(image[0:h, 0:w]) l, b = new_image.shape[:2] new_image[1:h + 1, 1:w + 1] = pad_main new_image[0:1, 1:w + 1] = lr_copy new_image[l - 1:l:1, 1:b - 1] = fr_copy new_image[1:l - 1, b - 1:b] = fc_copy new_image[1:l - 1, 0:1] = lc_copy new_image = np.array(new_image, dtype=np.uint8) nh, nw = new_image.shape[:2] return new_image def ComputePyr(ip_img_usr,num_layers): if len(ip_img_usr.shape) == 2: count=[] h, w = ip_img_usr.shape[:2] fr_copy = ip_img_usr[0:1, ::1] lr_copy = ip_img_usr[h - 1:h, ::1] lc_copy = ip_img_usr[::1, w - 1:w] fc_copy = ip_img_usr[::1, 0:1] new_image = np.zeros((h_1 + 2, w_1 + 2)) pad_main = np.copy(ip_img_usr[0:h, 0:w]) l, b = new_image.shape[:2] new_image[1:h + 1, 1:w + 1] = pad_main # first row new_image[0:1, 1:w + 1] = lr_copy # last row new_image[l - 1:l:1, 1:b - 1] = fr_copy # last column new_image[1:l - 1, b - 1:b] = fc_copy # first column new_image[1:l - 1, 0:1] = lc_copy new_image = np.array(new_image, dtype=np.uint8) pad_image=new_image.copy() gpyr=[pad_image] lpyr=[] nh, nw = new_image.shape[:2] for z in range(num_layers): if nh<4 or nw<4: break gauss_kern = np.array([[0.047459, 0.122933, 0.047459], [0.122933, 0.318432, 0.122933], [0.047459, 0.122933, 0.047459]]) gauss_new_layer = np.zeros((h + 2, w + 2)) for i in range(0, nh - 2): for j in range(0, nw - 2): w1 = pad_image[i:i + 3, j:j + 3] * gauss_kern gauss_new_layer[i, j] = np.sum(w1) gauss_new_layer = gauss_new_layer.astype("uint8") downsample_ip=
np.copy(gauss_new_layer)
numpy.copy
# This script is used to produce fitting and confidence interval for results in python. # #%% import numpy as np from scipy.optimize import curve_fit from scipy.stats.distributions import t #%% from numpy import cos, sin, exp, pi, meshgrid def KentFunc(Xin, theta, phi, psi, kappa, beta, A): # Assume theta_z, phi_z are column vectors ([0,2 pi]), theta, phi, psi are # rotational scaler ([0,2 pi]) theta_z, phi_z = Xin[:, 0], Xin[:, 1] Z = np.array([cos(theta_z) * cos(phi_z), sin(theta_z) * cos(phi_z), sin(phi_z)]).T # M by 3 finally coord = SO3(theta, phi, psi) mu1 = coord[:, 0:1] # col vector # mu23 = coord[:, 1:3] # 2 col vectors, 3 by 2 mu2 = coord[:, 1:2] # 2 col vectors, 3 by 2 mu3 = coord[:, 2:3] # 2 col vectors, 3 by 2 fval = A * exp(kappa * Z @ mu1 + beta * ((Z @ mu2) ** 2 - (Z @ mu3) ** 2)) return fval[:, 0] def KentFunc_bsl(Xin, theta, phi, psi, kappa, beta, A, bsl): # Assume theta_z, phi_z are column vectors ([0,2 pi]), theta, phi, psi are # rotational scaler ([0,2 pi]) theta_z, phi_z = Xin[:, 0], Xin[:, 1] Z = np.array([cos(theta_z) * cos(phi_z), sin(theta_z) * cos(phi_z), sin(phi_z)]).T # M by 3 finally coord = SO3(theta, phi, psi) mu1 = coord[:, 0:1] # col vector # mu23 = coord[:, 1:3] # 2 col vectors, 3 by 2 mu2 = coord[:, 1:2] # 2 col vectors, 3 by 2 mu3 = coord[:, 2:3] # 2 col vectors, 3 by 2 fval = A * exp(kappa * Z @ mu1 + beta * ((Z @ mu2) ** 2 - (Z @ mu3) ** 2)) + bsl return fval[:, 0] def SO3(theta, phi, psi): orig = np.array([[cos(theta)*cos(phi), sin(theta)*
cos(phi)
numpy.cos
import numpy as np from numpy.testing import assert_almost_equal from numpy.testing import assert_array_almost_equal import pytest from pygbm.plain.splitting import _find_histogram_split from pygbm.plain.splitting import (SplittingContext, find_node_split, find_node_split_subtraction, split_indices) @pytest.mark.parametrize('n_bins', [3, 32, 256]) def test_histogram_split(n_bins): rng = np.random.RandomState(42) feature_idx = 0 l2_regularization = 0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0. X_binned = np.asfortranarray( rng.randint(0, n_bins, size=(int(1e4), 2)), dtype=np.uint8) binned_feature = X_binned.T[feature_idx] sample_indices = np.arange(binned_feature.shape[0], dtype=np.uint32) ordered_hessians = np.ones_like(binned_feature, dtype=np.float32) all_hessians = ordered_hessians for true_bin in range(1, n_bins - 1): for sign in [-1, 1]: ordered_gradients = np.full_like(binned_feature, sign, dtype=np.float32) ordered_gradients[binned_feature <= true_bin] *= -1 all_gradients = ordered_gradients n_bins_per_feature = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32) context = SplittingContext(X_binned, n_bins, n_bins_per_feature, all_gradients, all_hessians, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split) split_info, _ = _find_histogram_split(context, feature_idx, sample_indices) assert split_info.bin_idx == true_bin assert split_info.gain >= 0 assert split_info.feature_idx == feature_idx assert (split_info.n_samples_left + split_info.n_samples_right == sample_indices.shape[0]) # Constant hessian: 1. per sample. assert split_info.n_samples_left == split_info.hessian_left @pytest.mark.parametrize('constant_hessian', [True, False]) def test_split_vs_split_subtraction(constant_hessian): # Make sure find_node_split and find_node_split_subtraction return the # same results. # Should we add a test about computation time to make sure # time(subtraction) < time(regular)? rng = np.random.RandomState(42) n_bins = 10 n_features = 20 n_samples = 500 l2_regularization = 0. min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0. X_binned = rng.randint(0, n_bins, size=(n_samples, n_features), dtype=np.uint8) X_binned = np.asfortranarray(X_binned) sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = rng.randn(n_samples).astype(np.float32) if constant_hessian: all_hessians = np.ones(1, dtype=np.float32) else: all_hessians = rng.lognormal(size=n_samples).astype(np.float32) n_bins_per_feature = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32) context = SplittingContext(X_binned, n_bins, n_bins_per_feature, all_gradients, all_hessians, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split) mask = rng.randint(0, 2, n_samples).astype(np.bool) sample_indices_left = sample_indices[mask] sample_indices_right = sample_indices[~mask] # first split parent, left and right with classical method si_parent, hists_parent = find_node_split(context, sample_indices) si_left, hists_left = find_node_split(context, sample_indices_left) si_right, hists_right = find_node_split(context, sample_indices_right) # split left with subtraction method si_left_sub, hists_left_sub = find_node_split_subtraction( context, sample_indices_left, hists_parent, hists_right) # split right with subtraction method si_right_sub, hists_right_sub = find_node_split_subtraction( context, sample_indices_right, hists_parent, hists_left) # make sure histograms from classical and subtraction method are the same for hists, hists_sub in ((hists_left, hists_left_sub), (hists_right, hists_right_sub)): for hist, hist_sub in zip(hists, hists_sub): for key in ('count', 'sum_hessians', 'sum_gradients'): assert_array_almost_equal(hist[key], hist_sub[key], decimal=4) # make sure split_infos from classical and subtraction method are the same for si, si_sub in ((si_left, si_left_sub), (si_right, si_right_sub)): assert_almost_equal(si.gain, si_sub.gain, decimal=3) assert_almost_equal(si.feature_idx, si_sub.feature_idx, decimal=3) assert_almost_equal(si.gradient_left, si_sub.gradient_left, decimal=3) assert_almost_equal(si.gradient_right, si_sub.gradient_right, decimal=3)
assert_almost_equal(si.hessian_right, si_sub.hessian_right, decimal=3)
numpy.testing.assert_almost_equal
__author__ = 'chrispaulson' import numpy as np import scipy from scipy.optimize import minimize from .matrixops import matrixops import copy from matplotlib import pyplot as plt import pylab from mpl_toolkits.mplot3d import axes3d from pyKriging import samplingplan import inspyred from random import Random from time import time from inspyred import ec import math as m class kriging(matrixops): def __init__(self, X, y, testfunction=None, name='', testPoints=None, **kwargs): self.X = copy.deepcopy(X) self.y = copy.deepcopy(y) self.testfunction = testfunction self.name = name self.n = self.X.shape[0] self.k = self.X.shape[1] self.theta = np.ones(self.k) self.pl = np.ones(self.k) * 2. self.sigma = 0 self.normRange = [] self.ynormRange = [] self.normalizeData() self.sp = samplingplan.samplingplan(self.k) #self.updateData() #self.updateModel() self.thetamin = 1e-5 self.thetamax = 100 self.pmin = 1 self.pmax = 2 # Setup functions for tracking history self.history = {} self.history['points'] = [] self.history['neglnlike'] = [] self.history['theta'] = [] self.history['p'] = [] self.history['rsquared'] = [0] self.history['adjrsquared'] = [0] self.history['chisquared'] = [1000] self.history['lastPredictedPoints'] = [] self.history['avgMSE'] = [] if testPoints: self.history['pointData'] = [] self.testPoints = self.sp.rlh(testPoints) for point in self.testPoints: testPrimitive = {} testPrimitive['point'] = point if self.testfunction: testPrimitive['actual'] = self.testfunction(point)[0] else: testPrimitive['actual'] = None testPrimitive['predicted'] = [] testPrimitive['mse'] = [] testPrimitive['gradient'] = [] self.history['pointData'].append(testPrimitive) else: self.history['pointData'] = None matrixops.__init__(self) def normX(self, X): ''' :param X: An array of points (self.k long) in physical world units :return X: An array normed to our model range of [0,1] for each dimension ''' X = copy.deepcopy(X) if type(X) is np.float64: # print self.normRange return np.array( (X - self.normRange[0][0]) / float(self.normRange[0][1] - self.normRange[0][0]) ) else: for i in range(self.k): X[i] = (X[i] - self.normRange[i][0]) / float(self.normRange[i][1] - self.normRange[i][0]) return X def inversenormX(self, X): ''' :param X: An array of points (self.k long) in normalized model units :return X : An array of real world units ''' X = copy.deepcopy(X) for i in range(self.k): X[i] = (X[i] * float(self.normRange[i][1] - self.normRange[i][0] )) + self.normRange[i][0] return X def normy(self, y): ''' :param y: An array of observed values in real-world units :return y: A normalized array of model units in the range of [0,1] ''' return (y - self.ynormRange[0]) / (self.ynormRange[1] - self.ynormRange[0]) def inversenormy(self, y): ''' :param y: A normalized array of model units in the range of [0,1] :return: An array of observed values in real-world units ''' return (y * (self.ynormRange[1] - self.ynormRange[0])) + self.ynormRange[0] def normalizeData(self): ''' This function is called when the initial data in the model is set. We find the max and min of each dimension and norm that axis to a range of [0,1] ''' for i in range(self.k): self.normRange.append([min(self.X[:, i]), max(self.X[:, i])]) # print self.X for i in range(self.n): self.X[i] = self.normX(self.X[i]) self.ynormRange.append(min(self.y)) self.ynormRange.append(max(self.y)) for i in range(self.n): self.y[i] = self.normy(self.y[i]) def addPoint(self, newX, newy, norm=True): ''' This add points to the model. :param newX: A new design vector point :param newy: The new observed value at the point of X :param norm: A boolean value. For adding real-world values, this should be True. If doing something in model units, this should be False ''' if norm: newX = self.normX(newX) newy = self.normy(newy) self.X = np.append(self.X, [newX], axis=0) self.y = np.append(self.y, newy) self.n = self.X.shape[0] self.updateData() while True: try: self.updateModel() except: self.train() else: break def update(self, values): ''' The function sets new hyperparameters :param values: the new theta and p values to set for the model ''' for i in range(self.k): self.theta[i] = values[i] for i in range(self.k): self.pl[i] = values[i + self.k] self.updateModel() def updateModel(self): ''' The function rebuilds the Psi matrix to reflect new data or a change in hyperparamters ''' try: self.updatePsi() except Exception as err: #pass # print Exception, err raise Exception("bad params") def predict(self, X): ''' This function returns the prediction of the model at the real world coordinates of X :param X: Design variable to evaluate :return: Returns the 'real world' predicted value ''' X = copy.deepcopy(X) X = self.normX(X) return self.inversenormy(self.predict_normalized(X)) def predict_var(self, X): ''' The function returns the model's predicted 'error' at this point in the model. :param X: new design variable to evaluate, in physical world units :return: Returns the posterior variance (model error prediction) ''' X = copy.deepcopy(X) X = self.normX(X) # print X, self.predict_normalized(X), self.inversenormy(self.predict_normalized(X)) return self.predicterr_normalized(X) def expimp(self, x): ''' Returns the expected improvement at the design vector X in the model :param x: A real world coordinates design vector :return EI: The expected improvement value at the point x in the model ''' S = self.predicterr_normalized(x) y_min = np.min(self.y) if S <= 0.: EI = 0. elif S > 0.: EI_one = ((y_min - self.predict_normalized(x)) * (0.5 + 0.5*m.erf(( 1./np.sqrt(2.))*((y_min - self.predict_normalized(x)) / S)))) EI_two = ((S * (1. / np.sqrt(2. * np.pi))) * (np.exp(-(1./2.) * ((y_min - self.predict_normalized(x))**2. / S**2.)))) EI = EI_one + EI_two return EI def weightedexpimp(self, x, w): """weighted expected improvement (Sobester et al. 2005)""" S = self.predicterr_normalized(x) y_min = np.min(self.y) if S <= 0.: EI = 0. elif S > 0.: EI_one = w*((y_min - self.predict_normalized(x)) * (0.5 + 0.5*m.erf((1./np.sqrt(2.))*((y_min - self.predict_normalized(x)) / S)))) EI_two = ((1. - w)*(S * (1. / np.sqrt(2. * np.pi))) * (np.exp(-(1./2.) * ((y_min - self.predict_normalized(x))**2. / S**2.)))) EI = EI_one + EI_two return EI def infill_objective_mse(self,candidates, args): ''' This acts :param candidates: An array of candidate design vectors from the infill global optimizer :param args: args from the optimizer :return fitness: An array of evaluated MSE values for the candidate population ''' fitness = [] for entry in candidates: fitness.append(-1 * self.predicterr_normalized(entry)) return fitness def infill_objective_ei(self,candidates, args): ''' The infill objective for a series of candidates from infill global search :param candidates: An array of candidate design vectors from the infill global optimizer :param args: args from the optimizer :return fitness: An array of evaluated Expected Improvement values for the candidate population ''' fitness = [] for entry in candidates: fitness.append(-1 * self.expimp(entry)) return fitness def infill(self, points, method='error', addPoint=True): ''' The function identifies where new points are needed in the model. :param points: The number of points to add to the model. Multiple points are added via imputation. :param method: Two choices: EI (for expected improvement) or Error (for general error reduction) :return: An array of coordinates identified by the infill ''' # We'll be making non-permanent modifications to self.X and self.y here, so lets make a copy just in case initX = np.copy(self.X) inity = np.copy(self.y) # This array will hold the new values we add returnValues =
np.zeros([points, self.k], dtype=float)
numpy.zeros
# -*- coding: utf-8 -*- ''' Copyright 2015 by <NAME> This file is part of Statistical Parameter Estimation Tool (SPOTPY). :author: <NAME> This class holds example code how to use the dream algorithm ''' import numpy as np import spotpy from spotpy.examples.spot_setup_hymod_python import spot_setup import matplotlib.pyplot as plt if __name__ == "__main__": parallel ='seq' # Runs everthing in sequential mode np.random.seed(2000) # Makes the results reproduceable # Initialize the Hymod example # In this case, we tell the setup which algorithm we want to use, so # we can use this exmaple for different algorithms spot_setup=spot_setup(_used_algorithm='sceua') #Select number of maximum allowed repetitions rep=500 filename = 'SCEUA_hymod' # Create the SCE-UA sampler of spotpy, alt_objfun is set to None to force SPOTPY # to jump into the def objectivefunction in the spot_setup class (default is # spotpy.objectivefunctions.rmse) sampler=spotpy.algorithms.sceua(spot_setup, dbname='SCEUA_hymod', dbformat='csv') #Start the sampler, one can specify ngs, kstop, peps and pcento id desired sampler.sample(rep)#,ngs=10, kstop=50, peps=0.1, pcento=0.1) # Load the results gained with the sceua sampler, stored in SCEUA_hymod.csv results = spotpy.analyser.load_csv_results('SCEUA_hymod') print(len(results), 'runs were saved.') fig= plt.figure(1,figsize=(9,5)) plt.plot(results['like1']) plt.show() plt.ylabel('RMSE') plt.xlabel('Iteration') fig.savefig('hymod_objectivefunction.png',dpi=300) # Example plot to show the parameter distribution ###### fig= plt.figure(2,figsize=(9,9)) normed_value = 1 plt.subplot(5,2,1) x = results['parcmax'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) #Ignores burn-in chain plt.plot(x[index],'.') plt.ylabel('cmax') plt.ylim(spot_setup.cmax.minbound, spot_setup.cmax.maxbound) plt.subplot(5,2,2) x = x[int(len(results)*0.9):] #choose the last 10% of the sample hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('cmax') plt.xlim(spot_setup.cmax.minbound, spot_setup.cmax.maxbound) plt.subplot(5,2,3) x = results['parbexp'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) plt.plot(x[index],'.') plt.ylabel('bexp') plt.ylim(spot_setup.bexp.minbound, spot_setup.bexp.maxbound) plt.subplot(5,2,4) x = x[int(len(results)*0.9):] hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('bexp') plt.xlim(spot_setup.bexp.minbound, spot_setup.bexp.maxbound) plt.subplot(5,2,5) x = results['paralpha'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) plt.plot(x[index],'.') plt.ylabel('alpha') plt.ylim(spot_setup.alpha.minbound, spot_setup.alpha.maxbound) plt.subplot(5,2,6) x = x[int(len(results)*0.9):] hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('alpha') plt.xlim(spot_setup.alpha.minbound, spot_setup.alpha.maxbound) plt.subplot(5,2,7) x = results['parKs'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) plt.plot(x[index],'.') plt.ylabel('Ks') plt.ylim(spot_setup.Ks.minbound, spot_setup.Ks.maxbound) plt.subplot(5,2,8) x = x[int(len(results)*0.9):] hist, bins =
np.histogram(x, bins=20, density=True)
numpy.histogram
import numpy as np import matplotlib.pyplot as plt import networkx as nx def distributed(x,L, *args): """Most basic distributed consensus algorithm It's actually gradient descent of 1/2(xLx)""" return -np.dot(L,x) def distributed_random_topology(x,graph, proportion=0.5, *args): """Same as dynamics but randomly rewires the graph edge connections.""" nx.connected_double_edge_swap(graph,np.floor(proportion*len(graph.nodes()))) L = nx.laplacian_matrix(graph) L = L.todense() return -
np.dot(L,x)
numpy.dot
from numpy.ma import add import pandas as pd import numpy as np np.seterr(divide='ignore') import scipy.signal as signal import scipy.stats as stats import matplotlib.pyplot as plt import statsmodels import statsmodels.api as sm import statsmodels.formula.api as smf import statsmodels.stats.multitest as multi from scipy.optimize import curve_fit from statsmodels.sandbox.regression.predstd import wls_prediction_std from scipy.stats import percentileofscore from scipy.stats import circstd, circmean import copy import itertools from matplotlib.lines import Line2D from random import sample import os from skopt.space import Space from skopt.sampler import Lhs def periodogram_df(df, folder = '', **kwargs): names = list(df.test.unique()) names.sort() for name in names: x, y = np.array(df[df.test == name].x), np.array(df[df.test == name].y) if folder: save_to = os.path.join(folder, "per_" + name) else: save_to = "" periodogram(x,y, save_to = save_to, name=name, **kwargs) def periodogram(X, Y, per_type='per', sampling_f = '', logscale = False, name = '', save_to = '', prominent = False, max_per = 240): if per_type == 'per' or per_type == 'welch': X_u = np.unique(X) Y_u = [] for x_u in X_u: #y_u.append(np.mean(y[t == x])) Y_u.append(np.median(Y[x_u == X])) if not sampling_f: sampling_f = 1/(X[1]-X[0]) Y = Y_u if per_type == 'per': # Fourier f, Pxx_den = signal.periodogram(Y,sampling_f) elif per_type =='welch': # Welch f, Pxx_den = signal.welch(Y,sampling_f) elif per_type == 'lombscargle': # Lomb-Scargle min_per = 2 #max_per = 50 f = np.linspace(1/max_per, 1/min_per, 10) Pxx_den = signal.lombscargle(X, Y, f) else: print("Invalid option") return # significance # Refinetti et al. 2007 p_t = 0.05 N = len(Y) T = (1 - (p_t/N)**(1/(N-1))) * sum(Pxx_den) # threshold for significance if f[0] == 0: per = 1/f[1:] Pxx = Pxx_den[1:] else: per = 1/f Pxx = Pxx_den Pxx = Pxx[per <= max_per] per = per[per <= max_per] try: if logscale: plt.semilogx(per, Pxx, 'ko') plt.semilogx(per, Pxx, 'k--', linewidth=0.5) plt.semilogx([min(per), max(per)], [T, T], 'k--', linewidth=1) else: plt.plot(per, Pxx, 'ko') plt.plot(per, Pxx, 'k--', linewidth=0.5) plt.plot([min(per), max(per)], [T, T], 'k--', linewidth=1) except: print("Could not plot!") return peak_label = '' if prominent: locs, heights = signal.find_peaks(Pxx, height = T) if any(locs): heights = heights['peak_heights'] s = list(zip(heights, locs)) s.sort(reverse=True) heights, locs = zip(*s) heights = np.array(heights) locs = np.array(locs) peak_label = ', max peak=' + str(per[locs[0]]) else: locs = Pxx >= T if any(locs): heights, locs = Pxx[locs], per[locs] HL = list(zip(heights, locs)) HL.sort(reverse = True) heights, locs = zip(*HL) peak_label = ', peaks=\n' locs = locs[:11] for loc in locs[:-1]: peak_label += "{:.2f}".format(loc) + ',' peak_label += "{:.2f}".format(locs[-1]) plt.xlabel('period [hours]') plt.ylabel('PSD') plt.title(name + peak_label) if save_to: plt.savefig(save_to+'.pdf') plt.savefig(save_to+'.png') plt.close() else: plt.show() def remove_lin_comp_df(df, n_components = 0, period = 24, summary_file=""): df2 = pd.DataFrame(columns=df.columns) if summary_file: df_fit = pd.DataFrame(columns=['test', 'k', 'CI', 'p', 'q']) for test in df.test.unique(): x,y = df[df['test']==test].x,df[df['test']==test].y x,y,fit = remove_lin_comp(x,y,n_components=n_components, period=period, return_fit=True) df_tmp = pd.DataFrame(columns=df.columns) df_tmp['x'] = x df_tmp['y'] = y df_tmp['test'] = test df2 = df2.append(df_tmp, ignore_index=True) if summary_file: fit['test'] = test df_fit=df_fit.append(fit, ignore_index=True) if summary_file: df_fit.q = multi.multipletests(df_fit.p, method = 'fdr_bh')[1] if summary_file.endswith("csv"): df_fit.to_csv(summary_file, index=False) elif summary_file.endswith("xlsx"): df_fit.to_excel(summary_file, index=False) return df2 def remove_lin_comp(X, Y, n_components = 0, period = 24, return_fit=False): X = np.array(X) Y = np.array(Y) X_fit = generate_independents(X, n_components = n_components, period = period, lin_comp = True) model = sm.OLS(Y, X_fit) results = model.fit() CIs = results.conf_int() if type(CIs) != np.ndarray: CIs = CIs.values CI = CIs[1] #A = results.params[0] k = results.params[1] """ X_lin = np.zeros(X_fit.shape) X_lin[:,1] = X_fit[:,1] Y_lin = results.predict(X_lin) Y = Y-Y_lin """ #Y_fit = results.predict(X_fir) #Y = Y - Y_fit #Y = Y - A - k*X if CI[0] * CI[1] > 0: # if both CIs hve the same sign Y = Y - k*X if return_fit: fit = {} fit['k'] = results.params[1] fit['CI'] = CI fit['p'] = results.pvalues[1] return X,Y,fit """ X_fit = generate_independents(X, n_components = n_components, period = period, lin_comp = False) model = sm.OLS(Y, X_fit) results = model.fit() plt.plot(X, results.fittedvalues, color="black") """ return X, Y # prepare the independent variables def generate_independents(X, n_components = 3, period = 24, lin_comp = False, remove_lin_comp = False): if n_components == 0: X_fit = X lin_comp = True else: for i in np.arange(n_components): n = i+1 A = np.sin((X/(period/n))*np.pi*2) B = np.cos((X/(period/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) if lin_comp and n_components: X_fit = np.column_stack((X, X_fit)) if remove_lin_comp: X_fit[:,0] = 0 X_fit = sm.add_constant(X_fit, has_constant='add') return X_fit # prepare the independent variables for limorhyde def generate_independents_compare(X1, X2, n_components1 = 3, period1 = 24, n_components2 = 3, period2 = 24, lin_comp = False, non_rhythmic=False, remove_lin_comp=False): H1 = np.zeros(X1.size) H2 = np.ones(X2.size) X = np.concatenate((X1, X2)) H_i = np.concatenate((H1, H2)) X_i = H_i * X for i in np.arange(n_components1): n = i+1 A = np.sin((X/(period1/n))*np.pi*2) B = np.cos((X/(period1/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) if non_rhythmic: X_fit = np.column_stack((X_fit, H_i)) else: for i in np.arange(n_components2): n = i+1 A_i = H_i * np.sin((X/(period2/n))*np.pi*2) B_i = H_i * np.cos((X/(period2/n))*np.pi*2) X_fit = np.column_stack((X_fit, np.column_stack((A_i, B_i)))) X_fit = np.column_stack((X_fit, H_i)) if lin_comp: X_fit = np.column_stack((X_i, X_fit)) X_fit = np.column_stack((X, X_fit)) if remove_lin_comp: X_fit[:,0] = 0 X_fit[:,1] = 0 X_fit = sm.add_constant(X_fit, has_constant='add') return X_fit """ ***************************** * start of finding the best * ***************************** """ def get_best_fits(df_results, criterium = 'R2_adj', reverse = False, n_components = []): df_best = pd.DataFrame(columns = df_results.columns, dtype=float) names = np.unique(df_results.test) for name in names: if n_components: for n_comp in n_components: if reverse: M = df_results[(df_results.test == name) & (df_results.n_components == n_comp)][criterium].min() else: M = df_results[(df_results.test == name) & (df_results.n_components == n_comp)][criterium].max() df_best = df_best.append(df_results[(df_results.test == name) & (df_results.n_components == n_comp) & (df_results[criterium] == M)], ignore_index = True) else: M = df_results[df_results.test == name][criterium].max() df_best = df_best.append(df_results[(df_results.test == name) & (df_results[criterium] == M)], ignore_index = True) return df_best def get_best_models_population(df, df_models, n_components = [1,2,3], lin_comp = False, criterium = 'RSS', reverse = True): names = np.unique(df_models.test) df_best = pd.DataFrame(columns = df_models.columns, dtype=float) df_models = get_best_fits(df_models, criterium = criterium, reverse = reverse, n_components=n_components) for test in names: n_points = df[df.test.str.startswith(test)].x.shape[0] # razlika med get_best_models in get_best_models_population df_test_models = df_models[df_models.test == test] df_test_models = df_test_models.sort_values(by=['n_components']) i = 0 for new_row in df_test_models.iterrows(): if i == 0: best_row = new_row i = 1 else: RSS_reduced = best_row[1].RSS RSS_full = new_row[1].RSS DF_reduced = n_points - (best_row[1].n_components * 2 + 1) DF_full = n_points - (new_row[1].n_components * 2 + 1) if lin_comp: DF_reduced -= 1 DF_full -= 1 #print (test, old_row[1].n_components, new_row[1].n_components) if compare_models(RSS_reduced, RSS_full, DF_reduced, DF_full) < 0.05: best_row = new_row df_best = df_best.append(best_row[1], ignore_index=True) return df_best # compare two models according to the F-test # http://people.reed.edu/~jones/Courses/P24.pdf # https://www.graphpad.com/guides/prism/7/curve-fitting/index.htm?reg_howtheftestworks.htm def get_best_models(df, df_models, n_components = [1,2,3], lin_comp = False, criterium='p', reverse = True): names = np.unique(df_models.test) df_best = pd.DataFrame(columns = df_models.columns, dtype=float) df_models = get_best_fits(df_models, n_components = n_components, criterium=criterium, reverse = reverse) for test in names: n_points = df[df.test == test].x.shape[0] df_test_models = df_models[df_models.test == test] df_test_models = df_test_models.sort_values(by=['n_components']) i = 0 for new_row in df_test_models.iterrows(): if i == 0: best_row = new_row i = 1 else: RSS_reduced = best_row[1].RSS RSS_full = new_row[1].RSS DF_reduced = n_points - (best_row[1].n_components * 2 + 1) DF_full = n_points - (new_row[1].n_components * 2 + 1) if lin_comp: DF_reduced -= 1 DF_full -= 1 #print (test, old_row[1].n_components, new_row[1].n_components) if compare_models(RSS_reduced, RSS_full, DF_reduced, DF_full) < 0.05: best_row = new_row df_best = df_best.append(best_row[1], ignore_index=True) return df_best """ *************************** * end of finding the best * *************************** """ """ ************ * plotting * ************ """ def plot_data(df, names = [], folder = '', prefix = '', color='black'): if not names: names = np.unique(df.test) for test in names: X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) plt.plot(X,Y,'o', markersize=1, color=color) plt.title(test) #test = test.replace("$","") #fig = plt.gcf() #fig.set_size_inches(11,8) if folder: plt.savefig(os.path.join(folder, prefix+test+'.png')) plt.savefig(os.path.join(folder, prefix+test+'.pdf')) plt.close() else: plt.show() def plot_data_pairs(df, names, folder = '', prefix ='', color1='black', color2='red'): for test1, test2 in names: X1, Y1 = np.array(df[df.test == test1].x), np.array(df[df.test == test1].y) X2, Y2 = np.array(df[df.test == test2].x), np.array(df[df.test == test2].y) plt.plot(X1,Y1,'o', color=color1, markersize=1, label=test1) plt.plot(X2,Y2,'o', color=color2, markersize=1, label=test2) plt.legend() plt.title(test1 + ' vs. ' + test2) if folder: plt.savefig(os.path.join(folder,prefix+test1+'_'+test2+'.png')) plt.savefig(os.path.join(folder,prefix+test1+'_'+test2+'.pdf')) plt.close() else: plt.show() def plot_components(X, Y, n_components = 3, period = 24, name = '', save_to = ''): A = np.sin((X/period)*np.pi*2) B = np.cos((X/period)*np.pi*2) C = np.sin((X/(period/2))*np.pi*2) D = np.cos((X/(period/2))*np.pi*2) E = np.sin((X/(period/3))*np.pi*2) F = np.cos((X/(period/3))*np.pi*2) #G = np.sin((X/(period/4))*np.pi*2) #H = np.cos((X/(period/4))*np.pi*2) fig, axs = plt.subplots(n_components, 2, constrained_layout=True) fig.suptitle(name, fontsize=16) axs[0,0].plot(A, Y,'.') axs[0,0].set(xlabel = 'sin((x/'+str(period)+') * 2$\pi$)') axs[0,1].plot(B, Y,'.') axs[0,1].set(xlabel = 'cos((x/'+str(period)+') * 2$\pi$)') if n_components >= 2: axs[1,0].plot(C, Y,'.') axs[1,0].set(xlabel = 'sin((x/'+str(period/2)+') * 2$\pi$)') axs[1,1].plot(D, Y,'.') axs[1,1].set(xlabel = 'cos((x/'+str(period/2)+') * 2$\pi$)') if n_components == 3: axs[2,0].plot(E, Y,'.') axs[2,0].set(xlabel = 'sin((x/'+str(period/3)+') * 2$\pi$)') axs[2,1].plot(F, Y,'.') axs[2,1].set(xlabel = 'cos((x/'+str(period/3)+') * 2$\pi$)') if n_components == 4: axs[3,0].plot(E, Y,'.') axs[3,0].set(xlabel = 'sin((x/'+str(period/4)+') * 2$\pi$)') axs[3,1].plot(F, Y,'.') axs[3,1].set(xlabel = 'cos((x/'+str(period/4)+') * 2$\pi$)') for ax in axs.flat: ax.set(ylabel = 'y') if save_to: plt.savefig(save_to+'.pdf') plt.savefig(save_to+'.png') plt.close() else: plt.show() def plot_phases(acrs, amps, tests, period=24, colors = ("black", "red", "green", "blue"), folder = "", prefix="", legend=True, CI_acrs = [], CI_amps = [], linestyles = [], title = "", labels = []):#, plot_measurements = False, measurements=None): acrs = np.array(acrs, dtype = float) amps = np.array(amps, dtype = float) if colors and len(colors) < len(tests): colors += ("black",) * (len(tests)-len(colors)) x = np.arange(0, 2*np.pi, np.pi/4) x_labels = list(map(lambda i: 'CT ' + str(i) + " ", list((x/(2*np.pi) * period).astype(int)))) x_labels[1::2] = [""]*len(x_labels[1::2]) ampM = np.max(amps) amps /= ampM acrs = -acrs fig = plt.figure() ax = fig.add_subplot(projection='polar') ax.set_theta_offset(0.5*np.pi) ax.set_theta_direction(-1) lines = [] for i, (acr, amp, test, color) in enumerate(zip(acrs, amps, tests, colors)): """ if "LDL" in test: color = "#FF0000" elif "HDL" in test: color = "#0000FF" elif "CHOL" in test: color = "#00FF00" elif "control" in test.lower(): color = "#000000" else: color = "#0000FF" """ if linestyles: #ax.plot([acr, acr], [0, amp], label=test, color=color, linestyle = linestyles[i]) ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, alpha = 0.75, linewidth=2, linestyle = linestyles[i]) ) lines.append(Line2D([0], [0], color=color, linewidth=2, linestyle=linestyles[i])) else: #ax.plot([acr, acr], [0, amp], label=test, color=color) ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, alpha = 0.75, linewidth=2) ) lines.append(Line2D([0], [0], color=color, linewidth=2)) #ax.plot([acr, acr], [0, amp], label=test, color=color) #ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, linewidth=2) ) if CI_acrs and CI_amps: amp_l, amp_u = np.array(CI_amps[i])/ampM amp_l = max(0, amp_l) amp_u = min(1, amp_u) acr_l, acr_u = -np.array(CI_acrs[i]) if acr_l - acr_u > 2*np.pi: plt.fill_between(np.linspace(0, np.pi*2, 1000), amp_l, amp_u, color=color, alpha=0.1) elif acr_u < acr_l: acr_l, acr_u = acr_u, acr_l plt.fill_between(np.linspace(acr_l, acr_u, 1000), amp_l, amp_u, color=color, alpha=0.1) ax.set_rmax(1) ax.set_rticks([0.5]) # Less radial ticks ax.set_yticklabels([""]) ax.set_xticks(x) ax.set_xticklabels(x_labels) ax.grid(True) ax.set_facecolor('#f0f0f0') """ for i, (acr, amp, test, color) in enumerate(zip(acrs, amps, tests, colors)): if plot_measurements: try: x,y = measurements except: df = measurements x,y=df[df.test == test].x, df[df.test == test].y plt.plot(x,y,'o',markersize=1, alpha = 0.75, color=color) """ name = "_".join(tests) #ax.set_title(name, va='bottom') if title: ax.set_title(title, va='bottom') else: ax.set_title(name, va='bottom') if legend: if labels: plt.legend(lines, labels, bbox_to_anchor=(1.0, 1), loc='upper left', borderaxespad=0., frameon=False) else: plt.legend(lines, tests, bbox_to_anchor=(1.0, 1), loc='upper left', borderaxespad=0., frameon=False) #ax.legend() if folder: plt.savefig(os.path.join(folder,prefix+name+"_phase.pdf")) plt.savefig(os.path.join(folder,prefix+name+"_phase.png")) plt.close() else: plt.show() """ ******************* * end of plotting * ******************* """ """ ***************************** * start of fitting wrappers * ***************************** """ def fit_group(df, n_components = 2, period = 24, names = "", folder = '', prefix='', **kwargs): df_results = pd.DataFrame(columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'RSS', 'R2', 'R2_adj', 'log-likelihood', 'amplitude', 'acrophase', 'mesor', 'peaks', 'heights', 'troughs', 'heights2'], dtype=float) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] if not any(names): names = np.unique(df.test) for test in names: for n_comps in n_components: for per in period: if n_comps == 0: per = 100000 X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) if folder: save_to = os.path.join(folder,prefix+test+'_compnts='+str(n_comps) +'_per=' + str(per)) else: save_to = '' results, statistics, rhythm_param, _, _ = fit_me(X, Y, n_components = n_comps, period = per, name = test, save_to = save_to, **kwargs) try: R2, R2_adj = results.rsquared,results.rsquared_adj except: R2, R2_adj = np.nan, np.nan df_results = df_results.append({'test': test, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'p_reject': statistics['p_reject'], 'RSS': statistics['RSS'], 'R2': R2, 'R2_adj': R2_adj, 'ME': statistics['ME'], 'resid_SE': statistics['resid_SE'], 'log-likelihood': results.llf, 'amplitude': rhythm_param['amplitude'], 'acrophase': rhythm_param['acrophase'], 'mesor': rhythm_param['mesor'], 'peaks': rhythm_param['peaks'], 'heights': rhythm_param['heights'], 'troughs': rhythm_param['troughs'], 'heights2': rhythm_param['heights2'] }, ignore_index=True) if n_comps == 0: break df_results.q = multi.multipletests(df_results.p, method = 'fdr_bh')[1] df_results.q_reject = multi.multipletests(df_results.p_reject, method = 'fdr_bh')[1] return df_results def population_fit_group(df, n_components = 2, period = 24, folder = '', prefix='', names = [], **kwargs): df_results = pd.DataFrame(columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'RSS', 'amplitude', 'acrophase', 'mesor'], dtype=float) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] if not any(names): names = np.unique(df.test) names = list(set(list(map(lambda x:x.split('_rep')[0], names)))) names.sort() for name in set(names): for n_comps in n_components: for per in period: if n_comps == 0: per = 100000 df_pop = df[df.test.str.startswith(name)] if folder: save_to=os.path.join(folder,prefix+name+'_compnts='+str(n_comps) +'_per=' + str(per)) _, statistics, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, save_to = save_to, **kwargs) else: _, statistics, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, **kwargs) df_results = df_results.append({'test': name, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'p_reject': statistics['p_reject'], 'RSS': statistics['RSS'], 'ME': statistics['ME'], 'resid_SE': statistics['resid_SE'], 'amplitude': rhythm_params['amplitude'], 'acrophase': rhythm_params['acrophase'], 'mesor': rhythm_params['mesor']}, ignore_index=True) if n_comps == 0: break df_results.q = multi.multipletests(df_results.p, method = 'fdr_bh')[1] df_results.q_reject = multi.multipletests(df_results.p_reject, method = 'fdr_bh')[1] return df_results """ *************************** * end of fitting wrappers * *************************** """ """ ****************************** * start of fitting functions * ****************************** """ def population_fit(df_pop, n_components = 2, period = 24, lin_comp= False, model_type = 'lin', plot = True, plot_measurements=True, plot_individuals=True, plot_margins=True, hold = False, save_to = '', x_label='', y_label='', return_individual_params = False, params_CI = False, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type = "LHS", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], color="black", **kwargs): if return_individual_params: ind_params = {} for param in parameters_to_analyse: ind_params[param] = [] params = -1 tests = df_pop.test.unique() k = len(tests) #X_test = np.linspace(0, 2*period, 1000) #X_fit_eval_params = generate_independents(X_test, n_components = n_components, period = period, lin_comp = lin_comp) #if lin_comp: # X_fit_eval_params[:,1] = 0 min_X = np.min(df_pop.x.values) max_X = np.max(df_pop.x.values) min_Y = np.min(df_pop.y.values) max_Y = np.max(df_pop.y.values) if plot: if plot_measurements: X_plot = np.linspace(min(min_X,0), 1.1*max(max_X,period), 1000) else: X_plot = np.linspace(0, 1.1*period, 1000) X_plot_fits = generate_independents(X_plot, n_components = n_components, period = period, lin_comp = lin_comp) #if lin_comp: # X_plot_fits[:,1] = 0 """ min_X = 1000 max_X = 0 min_Y = 1000 max_Y = 0 min_X_test = np.min(X_test) """ min_Y_test = 1000 max_Y_test = 0 for test in tests: x,y = np.array(df_pop[df_pop.test == test].x), np.array(df_pop[df_pop.test == test].y) """ min_X = min(min_X, np.min(x)) max_X = max(max_X, np.max(x)) min_Y = min(min_Y, np.min(y)) max_Y = max(max_Y, np.max(y)) """ results, statistics, rhythm_params, X_test, Y_test, model = fit_me(x, y, n_components = n_components, period = period, plot = False, return_model = True, lin_comp=lin_comp, **kwargs) X_fit_eval_params = generate_independents(X_test, n_components = n_components, period = period, lin_comp = lin_comp, remove_lin_comp=True) if lin_comp: X_fit_eval_params[:,1] = 0 if return_individual_params: Y_eval_params = results.predict(X_fit_eval_params) rhythm_ind_params = evaluate_rhythm_params(X_test, Y_eval_params, period=period) for param in parameters_to_analyse: ind_params[param].append(rhythm_ind_params[param]) if (plot and plot_individuals): #Y_eval_params = results.predict(X_fit_eval_params) Y_plot_fits = results.predict(X_plot_fits) if (plot and plot_individuals): if not hold: plt.plot(X_plot,Y_plot_fits,color=color, alpha=0.25, label=test) else: plt.plot(X_plot,Y_plot_fits,color=color, alpha=0.25) min_Y_test = min(min_Y_test, np.min(Y_plot_fits)) max_Y_test = max(max_Y_test, np.max(Y_plot_fits)) if plot and plot_measurements: plt.plot(x,y,'o', color=color, markersize=1) if type(params) == int: params = results.params if plot and plot_margins: #_, lowers, uppers = wls_prediction_std(results, exog=X_fit_eval_params, alpha=0.05) Y_plot_fits_all = Y_plot_fits else: params = np.vstack([params, results.params]) if plot and plot_margins: #_, l, u = wls_prediction_std(results, exog=X_fit_eval_params, alpha=0.05) #lowers = np.vstack([lowers, l]) #uppers = np.vstack([uppers, u]) Y_plot_fits_all = np.vstack([Y_plot_fits_all, Y_plot_fits]) # parameter statistics: means, variances, stadndard deviations, confidence intervals, p-values #http://reliawiki.com/index.php/Multiple_Linear_Regression_Analysis if k > 1: means = np.mean(params, axis=0) variances = np.sum((params-np.mean(params, axis=0))**2, axis = 0)/(k-1) # np.var(params, axis=0) # isto kot var z ddof=k-1 sd = variances**0.5 se = sd/((k-1)**0.5) T0 = means/se p_values = 2 * (1 - stats.t.cdf(abs(T0), k-1)) t = abs(stats.t.ppf(0.05/2,df=k-1)) lower_CI = means - ((t*sd)/((k-1)**0.5)) upper_CI = means + ((t*sd)/((k-1)**0.5)) results.initialize(model, means) else: means = params sd = np.zeros(len(params)) sd[:] = np.nan se = np.zeros(len(params)) se[:] = np.nan lower_CI = means upper_CI = means p_values = np.zeros(len(params)) p_values[:] = np.nan x,y = df_pop.x, df_pop.y xy = list(zip(x,y)) xy.sort() x,y = zip(*xy) x,y = np.array(x), np.array(y) X_fit = generate_independents(x, n_components = n_components, period = period, lin_comp = lin_comp) Y_fit = results.predict(X_fit) Y_eval_params = results.predict(X_fit_eval_params) rhythm_params = evaluate_rhythm_params(X_test, Y_eval_params, period=period) if plot: pop_name = "_".join(test.split("_")[:-1]) Y_plot_fits = results.predict(X_plot_fits) if not hold: plt.plot(X_plot,Y_plot_fits, color=color, label="population fit") else: plt.plot(X_plot,Y_plot_fits, color=color, label=pop_name) plt.legend() if x_label: plt.xlabel(x_label) else: plt.xlabel('time [h]') if y_label: plt.ylabel(y_label) else: plt.ylabel('measurements') min_Y_test = min(min_Y_test, np.min(Y_eval_params)) max_Y_test = max(max_Y_test, np.max(Y_eval_params)) if plot and plot_margins: if k == 1: _, lower, upper = wls_prediction_std(results, exog=X_plot_fits, alpha=0.05) else: #lower = np.mean(lowers, axis=0) #upper = np.mean(uppers, axis=0) var_Y = np.var(Y_plot_fits_all, axis=0, ddof = k-1) sd_Y = var_Y**0.5 lower = Y_plot_fits - ((t*sd_Y)/((k-1)**0.5)) upper = Y_plot_fits + ((t*sd_Y)/((k-1)**0.5)) plt.fill_between(X_plot, lower, upper, color=color, alpha=0.1) if plot: if plot_measurements: if model_type == 'lin': plt.axis([min(min_X,0), 1.1*max(max_X,period), 0.9*min(min_Y, min_Y_test), 1.1*max(max_Y, max_Y_test)]) else: plt.axis([min(min_X,0), max_X, 0.9*min(min_Y, min_Y_test), 1.1*max(max_Y, max_Y_test)]) else: plt.axis([0, period, min_Y_test*0.9, max_Y_test*1.1]) if plot: #pop_name = "_".join(test.split("_")[:-1]) if not hold: plt.title(pop_name + ', p-value=' + "{0:.5f}".format(statistics['p'])) if save_to: plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') plt.close() else: plt.show() statistics = calculate_statistics(x, y, Y_fit, n_components, period, lin_comp) statistics_params = {'values': means, 'SE': se, 'CI': (lower_CI, upper_CI), 'p-values': p_values} if params_CI: population_eval_params_CI(X_test, X_fit_eval_params, results, statistics_params, rhythm_params, samples_per_param=samples_per_param_CI, max_samples = max_samples_CI, k=k, sampling_type=sampling_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if return_individual_params: return params, statistics, statistics_params, rhythm_params, results, ind_params else: return params, statistics, statistics_params, rhythm_params, results def fit_me(X, Y, n_components = 2, period = 24, lin_comp = False, model_type = 'lin', alpha = 0, name = '', save_to = '', plot=True, plot_residuals=False, plot_measurements=True, plot_margins=True, return_model = False, color = False, plot_phase = True, hold=False, x_label = "", y_label = "", rescale_to_period=False, bootstrap=False, bootstrap_size=1000, bootstrap_type="std", params_CI = False, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type="LHS", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase']): #print(lin_comp) """ ### # prepare the independent variables ### """ """ if n_components == 0: X_fit = X X_fit_test = X_test lin_comp = True else: for i in np.arange(n_components): n = i+1 A = np.sin((X/(period/n))*np.pi*2) B = np.cos((X/(period/n))*np.pi*2) A_test = np.sin((X_test/(period/n))*np.pi*2) B_test = np.cos((X_test/(period/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) X_fit_test = np.column_stack((A_test, B_test)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) X_fit_test = np.column_stack((X_fit_test, np.column_stack((A_test, B_test)))) """ X_fit = generate_independents(X, n_components=n_components, period=period, lin_comp=lin_comp) #X_fit_eval_params = X_fit_test #if lin_comp and n_components: # X_fit = np.column_stack((X, X_fit)) # X_fit_eval_params = np.column_stack((np.zeros(len(X_test)), X_fit_test)) # X_fit_test = np.column_stack((X_test, X_fit_test)) #X_fit = sm.add_constant(X_fit, has_constant='add') #X_fit_test = sm.add_constant(X_fit_test, has_constant='add') #X_fit_eval_params = sm.add_constant(X_fit_eval_params, has_constant='add') """ ### # fit ### """ if model_type == 'lin': model = sm.OLS(Y, X_fit) results = model.fit() elif model_type == 'poisson': #model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) model = statsmodels.discrete.discrete_model.Poisson(Y, X_fit) results = model.fit(disp=0) elif model_type =='gen_poisson': #model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit) model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit, p=1) results = model.fit(disp=0) elif model_type == 'nb': # https://towardsdatascience.com/negative-binomial-regression-f99031bb25b4 # https://dius.com.au/2017/08/03/using-statsmodels-glms-to-model-beverage-consumption/#cameron # if not alpha: # train_model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) # train_results = train_model.fit() # df_train = pd.DataFrame() # df_train['Y'] = Y # df_train['mu'] = train_results.mu # df_train['AUX_OLS_DEP'] = df_train.apply(lambda x: ((x['Y'] - x['mu'])**2 - x['Y']) / x['mu'], axis=1) # ols_expr = """AUX_OLS_DEP ~ mu - 1""" # aux_olsr_results = smf.ols(ols_expr, df_train).fit() # alpha=aux_olsr_results.params[0] #model = sm.GLM(Y, X_fit, family=sm.families.NegativeBinomial(alpha=alpha)) model = statsmodels.discrete.discrete_model.NegativeBinomialP(Y, X_fit, p=1) results = model.fit(disp=0) else: print("Invalid option") return if model_type =='lin': Y_fit = results.fittedvalues else: Y_fit = results.predict(X_fit) if model_type in ['lin', 'poisson', 'nb']: statistics = calculate_statistics(X, Y, Y_fit, n_components, period, lin_comp) if model_type in ['poisson', 'nb']: statistics['count'] = np.sum(Y) else: RSS = sum((Y - Y_fit)**2) p = results.llr_pvalue statistics = {'p':p, 'RSS':RSS, 'count': np.sum(Y)} #Y_test = results.predict(X_fit_test) X_test = np.linspace(0, 2*period, 1000) X_fit_test = generate_independents(X_test, n_components=n_components, period=period, lin_comp=lin_comp, remove_lin_comp = True) Y_fit_test = results.predict(X_fit_test) rhythm_params = evaluate_rhythm_params(X_test, Y_fit_test, period=period) if lin_comp: rhythm_params['lin_comp'] = results.params[1] CIs = results.conf_int() if type(CIs) != np.ndarray: rhythm_params['CI(lin_comp)'] = CIs.values[1] else: rhythm_params['CI(lin_comp)'] = CIs[1] rhythm_params['p(lin_comp)'] = results.pvalues[1] #print(rhythm_params['p(lin_comp)']) """ ### # plot ### """ if plot: if plot_measurements: min_X = np.min(X) max_X = np.max(X) else: min_X = 0 max_X = period X_plot = np.linspace(min_X, max_X, 1000) X_plot_fits = generate_independents(X_plot, n_components=n_components, period=period, lin_comp=lin_comp) Y_plot = results.predict(X_plot_fits) ### if not color: color = 'black' if plot_measurements: if not hold: plt.plot(X,Y, 'ko', markersize=1, label = 'data', color=color) else: plt.plot(X,Y, 'ko', markersize=1, color=color) if not hold: plt.plot(X_plot, Y_plot, 'k', label = 'fit', color=color) else: plt.plot(X_plot, Y_plot, 'k', label = name, color=color) # plot measurements if plot_measurements: if rescale_to_period: X = X % period if model_type == 'lin': plt.axis([min_X, max_X, 0.9*min(min(Y), min(Y_plot)), 1.1*max(max(Y), max(Y_plot))]) else: plt.axis([min_X, max_X, 0.9*min(min(Y), min(Y_plot)), 1.1*max(max(Y), max(Y_plot))]) else: plt.axis([min_X, max_X, min(Y_plot)*0.9, max(Y_plot)*1.1]) if name: plt.title(name) """ if model_type == 'lin': if name: plt.title(name + ', p-value=' + "{0:.5f}".format(statistics['p'])) else: plt.title('p-value=' + "{0:.5f}".format(statistics['p'])) else: if name: plt.title(name + ', p-value=' + '{0:.3f}'.format(statistics['p']) + ' (n='+str(statistics['count'])+ ')') else: plt.title('p-value=' + '{0:.3f}'.format(statistics['p']) + ' (n='+str(statistics['count'])+ ')') """ if x_label: plt.xlabel(x_label) else: plt.xlabel('Time [h]') if y_label: plt.ylabel(y_label) elif model_type == 'lin': plt.ylabel('Measurements') else: plt.ylabel('Count') # plot confidence intervals if plot_margins: if model_type == 'lin': _, lower, upper = wls_prediction_std(results, exog=X_plot_fits, alpha=0.05) if color: plt.fill_between(X_plot, lower, upper, color=color, alpha=0.1) else: plt.fill_between(X_plot, lower, upper, color='#888888', alpha=0.1) else: # calculate and draw plots from the combinations of parameters from the 95 % confidence intervals of assessed parameters res2 = copy.deepcopy(results) params = res2.params CIs = results.conf_int() if type(CIs) != np.ndarray: CIs = CIs.values #N = 512 N = 1024 if n_components == 1: N2 = 10 elif n_components == 2: N2 = 8 else: N2 = 10 - n_components P = np.zeros((len(params), N2)) for i, CI in enumerate(CIs): P[i,:] = np.linspace(CI[0], CI[1], N2) n_param_samples = P.shape[1]**P.shape[0] N = n_param_samples #min(max_samples_CI, n_param_samples) if n_param_samples < 10**6: params_samples = np.random.choice(n_param_samples, size=N, replace=False) else: params_samples = my_random_choice(max_val=n_param_samples, size=N) for i,idx in enumerate(params_samples): p = lazy_prod(idx, P) res2.initialize(results.model, p) Y_test_CI = res2.predict(X_plot_fits) if plot and plot_margins: if color and color != '#000000': plt.plot(X_plot, Y_test_CI, color=color, alpha=0.05) else: plt.plot(X_plot, Y_test_CI, color='#888888', alpha=0.05) if not hold: if save_to: plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') plt.close() else: plt.show() if plot_residuals: resid = results.resid sm.qqplot(resid) plt.title(name) if save_to: plt.savefig(save_to+'_resid.pdf', bbox_inches='tight') plt.savefig(save_to+'_resid.png') plt.close() else: plt.show() if plot_phase: per = rhythm_params['period'] amp = rhythm_params['amplitude'] phase = rhythm_params['acrophase'] if save_to: folder = os.path.join(*os.path.split(save_to)[:-1]) plot_phases([phase], [amp], [name], period=per, folder=folder) else: plot_phases([phase], [amp], [name], period=per)#, plot_measurements=True, measurements=[X,Y]) if bootstrap: eval_params_bootstrap(X, X_fit, X_test, X_fit_test, Y, model_type = model_type, rhythm_params=rhythm_params, bootstrap_size=bootstrap_size, bootstrap_type=bootstrap_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if params_CI: eval_params_CI(X_test, X_fit_test, results, rhythm_params, samples_per_param = samples_per_param_CI, max_samples = max_samples_CI, k=len(X), sampling_type=sampling_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if return_model: return results, statistics, rhythm_params, X_test, Y_fit_test, model else: return results, statistics, rhythm_params, X_test, Y_fit_test """ **************************** * end of fitting functions * **************************** """ """ *********************** * start of assessment * *********************** """ # rhythm params def evaluate_rhythm_params(X,Y, project_acrophase=True, period=0): #plt.plot(X,Y) #plt.show() m = min(Y) M = max(Y) A = M - m MESOR = m + A/2 AMPLITUDE = abs(A/2) PHASE = 0 PHASE_LOC = 0 H = M - 0.01*M if M >= 0 else M + 0.01*M locs, heights = signal.find_peaks(Y, height = H) heights = heights['peak_heights'] if len(locs) >= 2: period2 = X[locs[1]] - X[locs[0]] period2 = int(round(period2)) else: period2 = np.nan if not period: period = period2 if len(locs) >= 1: PHASE = X[locs[0]] PHASE_LOC = locs[0] if period: ACROPHASE = phase_to_radians(PHASE, period) if project_acrophase: ACROPHASE = project_acr(ACROPHASE) else: ACROPHASE = np.nan # peaks and heights #Y = Y[X < 24] #X = X[X < 24] locs, heights = signal.find_peaks(Y, height = MESOR) heights = heights['peak_heights'] peaks = X[locs] heights = Y[locs] idxs1 = peaks <= period peaks = peaks[idxs1] heights = heights[idxs1] Y2 = M - Y locs2, heights2 = signal.find_peaks(Y2, height = MESOR-m) heights2 = heights2['peak_heights'] troughs = X[locs2] heights2 = Y[locs2] idxs2 = troughs <= period troughs = troughs[idxs2] heights2 = heights2[idxs2] # rhythm_params return {'period':period, 'amplitude':AMPLITUDE, 'acrophase':ACROPHASE, 'mesor':MESOR, 'peaks': peaks, 'heights': heights, 'troughs': troughs, 'heights2': heights2, 'max_loc': PHASE_LOC, 'period2':period2} def calculate_statistics(X, Y, Y_fit, n_components, period, lin_comp = False): # statistics according to Cornelissen (eqs (8) - (9)) MSS = sum((Y_fit - Y.mean())**2) RSS = sum((Y - Y_fit)**2) n_params = n_components * 2 + 1 if lin_comp: n_params += 1 N = Y.size F = (MSS/(n_params - 1)) / (RSS/(N - n_params)) p = 1 - stats.f.cdf(F, n_params - 1, N - n_params) #print("p-value(Cornelissen): {}".format(p)) # statistics of GOF according to Cornelissen (eqs (14) - (15)) # TODO: ali bi bilo potrebno popraviti za lumicycle - ko je več zaporednih meritev v eni časovni točki? #X_periodic = (X % period).astype(int) X_periodic = np.round_(X % period,2) X_unique = np.unique(X_periodic) n_T = len(X_unique) SSPE = 0 for x in X_unique: Y_i_avg = np.mean(Y[X_periodic == x]) SSPE += sum((Y[X_periodic == x] - Y_i_avg)**2) SSLOF = RSS-SSPE #print('RSS: ', RSS) #print('SSPE: ', SSPE) #print('SSLOF: ', SSLOF) if lin_comp: try: F = (SSLOF/(n_T-1-(2*n_components + 1)))/(SSPE/(N-n_T)) p_reject = 1 - stats.f.cdf(F, n_T-1-(2*n_components + 1), N-n_T) except: F = np.nan p_reject = np.nan else: try: F = (SSLOF/(n_T-1-2*n_components))/(SSPE/(N-n_T)) p_reject = 1 - stats.f.cdf(F, n_T-1-2*n_components, N-n_T) except: F = np.nan p_reject = np.nan # Another measure that describes goodnes of fit # How well does the curve describe the data? # signal to noise ratio # fitted curve: signal # noise: stdev_data = np.std(Y, ddof = 1) stdev_fit = np.std(Y_fit, ddof = 1) SNR = stdev_fit / stdev_data # Standard Error of residuals, margin of error # https://stats.stackexchange.com/questions/57746/what-is-residual-standard-error DoF = N - n_params resid_SE = np.sqrt(RSS/DoF) # https://scientificallysound.org/2017/05/16/independent-t-test-python/ # https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/margin-of-error/ critical_value = stats.t.ppf(1-0.025, DoF) ME = critical_value * resid_SE return {'p':p, 'p_reject':p_reject, 'SNR':SNR, 'RSS': RSS, 'resid_SE': resid_SE, 'ME': ME} """ ********************* * end of assessment * ********************* """ """ ***************************** * start of compare wrappers * ***************************** """ # compare pairs using a given number of components and period # analysis - options (from best to worst) (ADDITIONAL ANALYSIS) # - bootstrap1: independent bootstrap analysis # - CI1: independent analysis of confidence intervals of two models # - bootstrap2: bootstrap analysis of a merged model # - CI2: analysis of confidence intervals of a merged model def compare_pairs_limo(df, pairs, n_components = 3, period = 24, folder = "", prefix = "", analysis = "", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if analysis not in ("", "CI1", "bootstrap1", "CI2", "bootstrap2"): print("Invalid option") return columns = ['test', 'period', 'n_components', 'p', 'q', 'p params', 'q params', 'p(F test)', 'q(F test)'] if analysis: for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test1, test2 in pairs: for per in period: for n_comps in n_components: if folder: save_to = os.path.join(folder,prefix + test1 + '-' + test2 + '_per=' + str(per) + '_comps=' + str(n_comps)) else: save_to = '' #pvalues, params, results = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, lin_comp = lin_comp, model_type = model_type, alpha=alpha, save_to = save_to, plot_measurements=plot_measurements) #p_overall, pvalues, params, _ = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, save_to = save_to, **kwargs) p_overall, p_params, p_F, _, _, rhythm_params = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, save_to = save_to, additional_analysis = analysis, parameters_to_analyse=parameters_to_analyse, parameters_angular=parameters_angular, **kwargs) d = {} d['test'] = test1 + ' vs. ' + test2 d['period'] = per d['n_components'] = n_comps d['d_amplitude'] = rhythm_params['d_amplitude'] d['d_acrophase'] = rhythm_params['d_acrophase'] d['p'] = p_overall d['p params'] = p_params d['p(F test)'] = p_F if analysis: for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) df_results['q'] = multi.multipletests(df_results['p'], method = 'fdr_bh')[1] df_results['q params'] = multi.multipletests(df_results['p params'], method = 'fdr_bh')[1] df_results['q(F test)'] = multi.multipletests(df_results['p(F test)'], method = 'fdr_bh')[1] if analysis: for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using the best models as stored in df_best_models # Basic analysis: fist analysis according to LymoRhyde (Singer:2019). Extended with the extra sum-of-squares F test that compares two nested models # compare pairs with the presumption that the same model is used in both cases # the same model: the same period and the same number of cosinor components # # analysis - options (from best to worst) # - bootstrap1: independent bootstrap analysis # - CI1: independent analysis of confidence intervals of two models # - bootstrap2: bootstrap analysis of a merged model # - CI2: analysis of confidence intervals of a merged model def compare_pairs_best_models_limo(df, df_best_models, pairs, folder = "", prefix = "", analysis = "", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if analysis not in ("", "CI1", "bootstrap1", "CI2", "bootstrap2"): print("Invalid option") return columns = ['test', 'period1', 'n_components1', 'period2', 'n_components2', 'p', 'q', 'p params', 'q params', 'p(F test)', 'q(F test)'] if analysis: for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) for test1, test2 in pairs: model1 = df_best_models[df_best_models["test"] == test1].iloc[0] model2 = df_best_models[df_best_models["test"] == test2].iloc[0] n_components1 = model1.n_components n_components2 = model2.n_components period1 = model1.period period2 = model2.period # if models have different number of components always start with the simpler model # model is simpler if number of components is smaller if n_components1 > n_components2: test1, test2 = test2, test1 n_components1, n_components2 = n_components2, n_components1 period1, period2 = period2, period1 if folder: save_to = os.path.join(folder, prefix + test1 + '-' + test2 + '_per1=' + str(period1) + '_comps1=' + str(n_components1) + '_per1=' + str(period2) + '_comps1=' + str(n_components2)) else: save_to = '' p_overall, p_params, p_F, params, _, rhythm_params = compare_pair_df_extended(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, save_to = save_to, additional_analysis = analysis, parameters_to_analyse=parameters_to_analyse, parameters_angular=parameters_angular, **kwargs) d = {} d['test'] = test1 + ' vs. ' + test2 d['period1'] = period1 d['n_components1'] = n_components1 d['period2'] = period2 d['n_components2'] = n_components2 d['d_amplitude'] = rhythm_params['d_amplitude'] d['d_acrophase'] = rhythm_params['d_acrophase'] d['p'] = p_overall d['p params'] = p_params d['p(F test)'] = p_F if analysis: for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) #d['CI(d_amplitude)'] = rhythm_params['CI(d_amplitude)'] #d['p(d_amplitude)'] = rhythm_params['p(d_amplitude)'] #d['CI(d_acrophase)'] = rhythm_params['CI(d_acrophase)'] #d['p(d_acrophase)'] = rhythm_params['p(d_acrophase)'] df_results = df_results.append(d, ignore_index=True) df_results['q'] = multi.multipletests(df_results['p'], method = 'fdr_bh')[1] df_results['q params'] = multi.multipletests(df_results['p params'], method = 'fdr_bh')[1] df_results['q(F test)'] = multi.multipletests(df_results['p(F test)'], method = 'fdr_bh')[1] if analysis: for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using a given number of components and period # analysis - options (from best to worst) # - bootstrap: independent bootstrap analysis # - CI: independent analysis of confidence intervals of two models # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_models def diff_p_t_test_from_CI(X1, X2, CI1, CI2, DoF, angular = False): dX = X2 - X1 if angular: dX = project_acr(dX) t = abs(stats.t.ppf(0.05/2,df=DoF)) dev1 = (CI1[1] - CI1[0])/2 dev2 = (CI2[1] - CI2[0])/2 if angular: dev1 = abs(project_acr(dev1)) dev2 = abs(project_acr(dev2)) else: dev1 = abs(dev1) dev2 = abs(dev2) dev = dev1+dev2 se = (dev1 + dev2)/t CI = [dX-dev, dX+dev] T0 = dX/se p_val = 2 * (1 - stats.t.cdf(abs(T0), DoF)) return dX, p_val, CI def compare_pairs(df, pairs, n_components = 3, period = 24, analysis = "bootstrap", df_results_extended = pd.DataFrame(columns=["test"]), parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], lin_comp = False, **kwargs): if (analysis != "CI") and (analysis != "bootstrap"): print("Invalid option") return columns = ['test', 'period', 'n_components', 'p1', 'p2', 'q1', 'q2'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test1, test2 in pairs: for per in period: for n_comps in n_components: d = {} d['test'] = test1 + ' vs. ' + test2 d['period'] = per d['n_components'] = n_comps single_params = {} if (test1 in list(df_results_extended['test'])) and (test2 in list(df_results_extended['test'])): try: res1 = dict(df_results_extended[(df_results_extended['test'] == test1) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) res2 = dict(df_results_extended[(df_results_extended['test'] == test2) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) single_params["test1"] = {} single_params["test2"] = {} for param in parameters_to_analyse: single_params["test1"][f'CI({param})'] = res1[f'CI({param})'] single_params["test2"][f'CI({param})'] = res2[f'CI({param})'] except: pass if analysis == "CI": rhythm_params = compare_pair_CI(df, test1, test2, n_components = n_comps, period = per, single_params=single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) elif analysis == "bootstrap": rhythm_params = compare_pair_bootstrap(df, test1, test2, n_components = n_comps, period = per, single_params=single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan d['p1'] = rhythm_params['statistics1']['p'] d['p2'] = rhythm_params['statistics2']['p'] if lin_comp: rp1 = rhythm_params['rhythm_params1'] rp2 = rhythm_params['rhythm_params2'] d['d_lin_comp'], d['p(d_lin_comp)'], d['CI(d_lin_comp)'] = diff_p_t_test_from_CI(rp1['lin_comp'], rp2['lin_comp'], rp1['CI(lin_comp)'], rp2['CI(lin_comp)'], rhythm_params['DoF']) df_results = df_results.append(d, ignore_index=True) df_results['q1'] = multi.multipletests(df_results['p1'], method = 'fdr_bh')[1] df_results['q2'] = multi.multipletests(df_results['p2'], method = 'fdr_bh')[1] for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] if lin_comp: param = "lin_comp" df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using the best models as stored in df_best_models # each member of a pair uses its own model # analysis - options (from best to worst) # - bootstrap: independent bootstrap analysis # - CI: independent analysis of confidence intervals of two models # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_best_models def compare_pairs_best_models(df, df_best_models, pairs, analysis = "bootstrap", df_results_extended = pd.DataFrame(columns=["test"]), parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], lin_comp=False, **kwargs): if (analysis != "CI") and (analysis != "bootstrap"): print("Invalid option") return columns = ['test', 'period1', 'n_components1', 'period2', 'n_components2', 'p1', 'p2', 'q1', 'q2'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) for test1, test2 in pairs: model1 = df_best_models[df_best_models["test"] == test1].iloc[0] model2 = df_best_models[df_best_models["test"] == test2].iloc[0] n_components1 = model1.n_components n_components2 = model2.n_components period1 = model1.period period2 = model2.period d = {} d['test'] = test1 + ' vs. ' + test2 d['period1'] = period1 d['n_components1'] = n_components1 d['period2'] = period2 d['n_components2'] = n_components2 single_params = {} if (test1 in list(df_results_extended['test'])) and (test2 in list(df_results_extended['test'])): try: res1 = dict(df_results_extended[(df_results_extended['test'] == test1) & (df_results_extended['n_components'] == n_components1) & (df_results_extended['period'] == period1)].iloc[0]) res2 = dict(df_results_extended[(df_results_extended['test'] == test2) & (df_results_extended['n_components'] == n_components2) & (df_results_extended['period'] == period2)].iloc[0]) single_params["test1"] = {} single_params["test2"] = {} for param in parameters_to_analyse: single_params["test1"][f'CI({param})'] = res1[f'CI({param})'] single_params["test2"][f'CI({param})'] = res2[f'CI({param})'] except: pass if analysis == "CI": rhythm_params = compare_pair_CI(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, single_params = single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) elif analysis == "bootstrap": rhythm_params = compare_pair_bootstrap(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, single_params = single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan d['p1'] = rhythm_params['statistics1']['p'] d['p2'] = rhythm_params['statistics2']['p'] if lin_comp: rp1 = rhythm_params['rhythm_params1'] rp2 = rhythm_params['rhythm_params2'] d['d_lin_comp'], d['p(d_lin_comp)'], d['CI(d_lin_comp)'] = diff_p_t_test_from_CI(rp1['lin_comp'], rp2['lin_comp'], rp1['CI(lin_comp)'], rp2['CI(lin_comp)'], rhythm_params['DoF']) df_results = df_results.append(d, ignore_index=True) df_results['q1'] = multi.multipletests(df_results['p1'], method = 'fdr_bh')[1] df_results['q2'] = multi.multipletests(df_results['p2'], method = 'fdr_bh')[1] for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] if lin_comp: param = "lin_comp" df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using a given number of components and period # analysis - options (from best to worst) # - CI: independent analysis of confidence intervals of two models # - permutation: permutation/randomisation test # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_models_population def compare_pairs_population(df, pairs, n_components = 3, period = 24, folder = "", prefix = "", analysis = "CI", lin_comp= False, model_type = 'lin', df_results_extended = pd.DataFrame(columns=["test"]), parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if (analysis != "CI") and (analysis != "permutation"): print("Invalid option") return columns = ['test', 'period', 'n_components', 'p1', 'p2', 'q1', 'q2'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] if analysis == "CI": columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] else: columns += [f'p(d_{param})', f'q(d_{param})'] # permutation test does not assess the confidence intervals df_results = pd.DataFrame(columns = columns) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test1, test2 in pairs: for per in period: for n_comps in n_components: df_pop1 = df[df.test.str.startswith(test1)] df_pop2 = df[df.test.str.startswith(test2)] _, statistics1, _, rhythm_params1, _ = population_fit(df_pop1, n_components = n_comps, period = per, plot = False, lin_comp = lin_comp, model_type = model_type) _, statistics2, _, rhythm_params2, _ = population_fit(df_pop2, n_components = n_comps, period = per, plot = False, lin_comp = lin_comp, model_type = model_type) d = {} d['test'] = test1 + ' vs. ' + test2 d['period'] = per d['n_components'] = n_comps d['d_amplitude'] = rhythm_params2['amplitude'] - rhythm_params1['amplitude'] d['d_acrophase'] = project_acr(rhythm_params2['acrophase'] - rhythm_params1['acrophase']) d['p1'] = statistics1['p'] d['p2'] = statistics2['p'] if analysis == "CI": single_params = {} if (test1 in list(df_results_extended['test'])) and (test2 in list(df_results_extended['test'])): try: res1 = dict(df_results_extended[(df_results_extended['test'] == test1) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) res2 = dict(df_results_extended[(df_results_extended['test'] == test2) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) single_params["test1"] = {} single_params["test2"] = {} for param in parameters_to_analyse: single_params["test1"][f'CI({param})'] = res1[f'CI({param})'] single_params["test2"][f'CI({param})'] = res2[f'CI({param})'] except: pass rhythm_params = compare_pair_population_CI(df, test1, test2, n_components=n_comps, period=per, lin_comp = lin_comp, model_type = model_type, single_params = single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan elif analysis == "permutation": rhythm_params = permutation_test_population_approx(df, [(test1,test2)], n_components=n_comps, period=per, plot=False, lin_comp = lin_comp, model_type = model_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] #d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) df_results['q1'] = multi.multipletests(df_results['p1'], method = 'fdr_bh')[1] df_results['q2'] = multi.multipletests(df_results['p2'], method = 'fdr_bh')[1] for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using the best models as stored in best_models # analysis - options (from best to worst) # - CI: independent analysis of confidence intervals of two models # - permutation: permutation/randomisation test # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_best_models_population def compare_pairs_best_models_population(df, df_best_models, pairs, folder = "", prefix = "", analysis = "CI", df_results_extended = pd.DataFrame(columns=["test"]), parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if (analysis != "CI") and (analysis != "permutation"): print("Invalid option") return columns = ['test', 'period1', 'n_components1', 'period2', 'n_components2', 'p1', 'p2', 'q1', 'q2'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] if analysis == "CI": columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] else: columns += [f'p(d_{param})', f'q(d_{param})'] # permutation test does not assess the confidence intervals df_results = pd.DataFrame(columns = columns) for test1, test2 in pairs: model1 = df_best_models[df_best_models["test"] == test1].iloc[0] model2 = df_best_models[df_best_models["test"] == test2].iloc[0] n_components1 = model1.n_components n_components2 = model2.n_components period1 = model1.period period2 = model2.period p1 = model1.p p2 = model2.p q1 = model1.q q2 = model2.q d_amplitude = model2.amplitude - model1.amplitude d_acrophase = project_acr(model2.acrophase - model1.acrophase) d = {} d['test'] = test1 + ' vs. ' + test2 d['period1'] = period1 d['n_components1'] = n_components1 d['period2'] = period2 d['n_components2'] = n_components2 d['d_amplitude'] = d_amplitude d['d_acrophase'] = d_acrophase d['p1'] = p1 d['p2'] = p2 d['q1'] = q1 d['q2'] = q2 if analysis == "CI": single_params = {} if (test1 in list(df_results_extended['test'])) and (test2 in list(df_results_extended['test'])): try: res1 = dict(df_results_extended[(df_results_extended['test'] == test1) & (df_results_extended['n_components'] == n_components1) & (df_results_extended['period'] == period1)].iloc[0]) res2 = dict(df_results_extended[(df_results_extended['test'] == test2) & (df_results_extended['n_components'] == n_components2) & (df_results_extended['period'] == period2)].iloc[0]) single_params["test1"] = {} single_params["test2"] = {} for param in parameters_to_analyse: single_params["test1"][f'CI({param})'] = res1[f'CI({param})'] single_params["test2"][f'CI({param})'] = res2[f'CI({param})'] except: pass rhythm_params = compare_pair_population_CI(df, test1, test2, n_components=n_components1, period=period1, n_components2=n_components2, period2=period2, single_params = single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan elif analysis == "permutation": rhythm_params = permutation_test_population_approx(df, [(test1,test2)], n_components=n_components1, period=period1, n_components2=n_components2, period2=period2, plot=False, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] #d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results """ *************************** * end of compare wrappers * *************************** """ #def compare_pair_df_extended(df, test1, test2, n_components = 3, period = 24, n_components2 = None, period2 = None, lin_comp = False, model_type = 'lin', alpha = 0, save_to = '', non_rhythmic = False, plot=True, plot_measurements=True, plot_residuals=False, plot_margins=True, x_label = '', y_label = '', bootstrap = False, bootstrap_independent = False, bootstrap_type="std", bootstrap_size=1000, params_CI = False, params_CI_independent = False, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type="LHS"): # additional analysis - options (from best to worst) # - bootstrap1: independent bootstrap analysis # - CI1: independent analysis of confidence intervals of two models # - bootstrap2: bootstrap analysis of a merged model # - CI2: analysis of confidence intervals of a merged model def compare_pair_df_extended(df, test1, test2, n_components = 3, period = 24, n_components2 = None, period2 = None, lin_comp = False, model_type = 'lin', alpha = 0, save_to = '', non_rhythmic = False, plot=True, plot_measurements=True, plot_residuals=False, plot_margins=True, x_label = '', y_label = '', additional_analysis = "", bootstrap_type="std", bootstrap_size=1000, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type="LHS", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase']): n_components1 = n_components period1 = period if not n_components2: n_components2 = n_components1 if not period2: period2 = period1 df_pair = df[(df.test == test1) | (df.test == test2)].copy() df_pair['h_i'] = 0 df_pair.loc[df_pair.test == test2, 'h_i'] = 1 X = df_pair.x Y = df_pair.y H_i = df_pair.h_i """ ### # prepare the independent variables ### """ X_i = H_i * X for i in np.arange(n_components1): n = i+1 A = np.sin((X/(period1/n))*np.pi*2) B = np.cos((X/(period1/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) if non_rhythmic: X_fit = np.column_stack((X_fit, H_i)) idx_params = np.array([-1]) else: for i in np.arange(n_components2): n = i+1 A_i = H_i * np.sin((X/(period2/n))*np.pi*2) B_i = H_i * np.cos((X/(period2/n))*np.pi*2) X_fit = np.column_stack((X_fit, np.column_stack((A_i, B_i)))) X_fit = np.column_stack((X_fit, H_i)) # idx_params = [3, 4] # n = 1 # idx_params = [5, 6, 7, 8] # n = 2 # idx_params = [7, 8, 9, 10, 11, 12] # n = 3 # idx_params = [9, 10, 11, 12, 13, 14, 15, 16] # n = 4 #strt = 2*n_components + 1 #stp = strt + 2*n_components + 1 strt = -2 stp = strt - 2*n_components2 - 1 idx_params = np.arange(strt, stp, -1) if lin_comp: X_fit = np.column_stack((X_i, X_fit)) X_fit = np.column_stack((X, X_fit)) idx_params = np.array(idx_params) + 2 X_fit = sm.add_constant(X_fit, has_constant='add') """ ### # fit ### """ if model_type == 'lin': model = sm.OLS(Y, X_fit) results = model.fit() elif model_type == 'poisson': #model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) model = statsmodels.discrete.discrete_model.Poisson(Y, X_fit) results = model.fit(disp=0) elif model_type =='gen_poisson': #model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit) model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit, p=1) results = model.fit(disp=0) elif model_type == 'nb': # if not alpha: # train_model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) # train_results = train_model.fit() # df_train = pd.DataFrame() # df_train['Y'] = Y # df_train['mu'] = train_results.mu # df_train['AUX_OLS_DEP'] = df_train.apply(lambda x: ((x['Y'] - x['mu'])**2 - x['Y']) / x['mu'], axis=1) # ols_expr = """AUX_OLS_DEP ~ mu - 1""" # aux_olsr_results = smf.ols(ols_expr, df_train).fit() # alpha=aux_olsr_results.params[0] # model = sm.GLM(Y, X_fit, family=sm.families.NegativeBinomial(alpha=alpha)) model = statsmodels.discrete.discrete_model.NegativeBinomialP(Y, X_fit, p=1) results = model.fit(disp=0) else: print("Invalid option") return """ ### # plot ### """ ### if plot and plot_measurements: plt.plot(df_pair[df_pair.test == test1].x, df_pair[df_pair.test == test1].y, 'ko', markersize=1, alpha = 0.75) plt.plot(df_pair[df_pair.test == test2].x, df_pair[df_pair.test == test2].y, 'ro', markersize=1, alpha = 0.75) #plt.plot(X, results.fittedvalues, label = 'fit') if model_type =='lin': Y_fit = results.fittedvalues p_overall = results.f_pvalue else: Y_fit = results.predict(X_fit) p_overall = results.llr_pvalue X1 = X[H_i == 0] #Y_fit1 = Y_fit[H_i == 0] #L1 = list(zip(X1,Y_fit1)) #L1.sort() #X1,Y_fit1 = list(zip(*L1)) X2 = X[H_i == 1] #Y_fit2 = Y_fit[H_i == 1] #L2 = list(zip(X2,Y_fit2)) #L2.sort() #X2,Y_fit2 = list(zip(*L2)) #plt.plot(X1, Y_fit1, 'k', label = 'fit '+test1) #plt.plot(X2, Y_fit2, 'r', label = 'fit '+test2) ### F-test # for nested models # using extra-sum-of-squares F test # in a similar way as described in CYCLOPS # https://www.pnas.org/content/114/20/5312#sec-8 # https://www.pnas.org/content/pnas/suppl/2017/04/20/1619320114.DCSupplemental/pnas.201619320SI.pdf?targetid=nameddest%3DSTXT n_params_full = len(results.params) n_params_small = n_params_full - len(idx_params) N = len(Y) r_small = fit_me(X, Y, n_components, period, lin_comp=lin_comp, model_type=model_type, alpha=alpha, plot=False, x_label = x_label, y_label = y_label) RSS_small = r_small[1]['RSS'] RSS_full = sum((Y - Y_fit)**2) DoF_small = N-n_params_small DoF_full = N-n_params_full """ print('RSS_small: ', RSS_small) print('RSS_full: ', RSS_full) print('n_small, dof: ', n_params_small, DoF_small) print('n_full, dof: ', n_params_full, DoF_full) """ p_f = compare_models(RSS_small, RSS_full, DoF_small, DoF_full) if plot: ### plot with higher density n_points = 1000 max_P = max(period1, period2) X_full = np.linspace(min(min(X1),min(X2)), max(max_P, max(max(X1), max(X2))), n_points) X_fit_full = generate_independents_compare(X_full, X_full, n_components1 = n_components1, period1 = period1, n_components2 = n_components2, period2 = period2, lin_comp= lin_comp) H_i = X_fit_full[:,-1] locs = H_i == 0 #Y_fit_full = results.predict(X_fit_full) #plt.plot(X_full, Y_fit_full[0:n_points], 'k', label = test1) #plt.plot(X_full, Y_fit_full[n_points:], 'r', label = test2) Y_fit_full1 = results.predict(X_fit_full[locs]) Y_fit_full2 = results.predict(X_fit_full[~locs]) plt.plot(X_full, Y_fit_full1, 'k', label = test1) plt.plot(X_full, Y_fit_full2, 'r', label = test2) if model_type == 'lin' and plot_margins: _, lower, upper = wls_prediction_std(results, exog=X_fit_full[locs], alpha=0.05) plt.fill_between(X_full, lower, upper, color='black', alpha=0.1) _, lower, upper = wls_prediction_std(results, exog=X_fit_full[~locs], alpha=0.05) plt.fill_between(X_full, lower, upper, color='red', alpha=0.1) ### end of plot with higher density #p = min(results.pvalues[idx_params]) #plt.title(test1 + ' vs. ' + test2 + ', p-value=' + "{0:.5f}".format(p)) plt.title(test1 + ' vs. ' + test2 + ', p-value=' + "{0:.5f}".format(p_f)) plt.xlabel('time [h]') plt.ylabel('measurements') plt.legend() #fig = plt.gcf() #fig.set_size_inches(11,8) if save_to: plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') plt.close() else: plt.show() if plot_residuals: resid = results.resid sm.qqplot(resid) plt.title(test1 + ' vs. ' + test2) save_to_resid = save_to.split(".")[0] + '_resid' + save_to.split(".")[1] if save_to: plt.savefig(save_to_resid) plt.close() else: plt.show() #p_values = list(results.pvalues[idx_params]) + [p_f] pvalues = (results.pvalues) if type(pvalues) != np.ndarray: pvalues = pvalues.values p_params = np.nanmin(pvalues[idx_params.astype(int)]) # eval rhythm parameters n_points = 1000 max_P = max(2*period1, 2*period2) X_full = np.linspace(0, max_P, n_points) X_fit_full = generate_independents_compare(X_full, X_full, n_components1 = n_components1, period1 = period1, n_components2 = n_components2, period2 = period2, lin_comp= lin_comp, remove_lin_comp=True) H_i = X_fit_full[:,-1] locs = H_i == 0 Y_fit_full1 = results.predict(X_fit_full[locs]) Y_fit_full2 = results.predict(X_fit_full[~locs]) # rhythm_params rhythm_params1 = evaluate_rhythm_params(X_full, Y_fit_full1, period=period1) rhythm_params2 = evaluate_rhythm_params(X_full, Y_fit_full2, period=period2) rhythm_params = {'amplitude1': rhythm_params1['amplitude'], 'amplitude2': rhythm_params2['amplitude'], 'd_amplitude': rhythm_params2['amplitude']-rhythm_params1['amplitude'], 'acrophase1': rhythm_params1['acrophase'], 'acrophase2': rhythm_params2['acrophase'], 'd_acrophase': project_acr(rhythm_params2['acrophase']-rhythm_params1['acrophase']), 'mesor1': rhythm_params1['mesor'], 'mesor2': rhythm_params2['mesor'], 'd_mesor': rhythm_params2['mesor']-rhythm_params1['mesor']} if additional_analysis == "CI1": compare_pair_CI(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, samples_per_param_CI = samples_per_param_CI, max_samples_CI = max_samples_CI, sampling_type=sampling_type, rhythm_params=rhythm_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular) elif additional_analysis == "bootstrap1": compare_pair_bootstrap(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2=period2, rhythm_params=rhythm_params, bootstrap_size=bootstrap_size, bootstrap_type=bootstrap_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular) elif additional_analysis == "CI2": eval_params_diff_CI(X_full, X_fit_full, locs, results, rhythm_params = rhythm_params, samples_per_param = samples_per_param_CI, max_samples = max_samples_CI, k = len(X), sampling_type=sampling_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period1=period1, period2=period2) elif additional_analysis == "bootstrap2": eval_params_diff_bootstrap(X, X_fit, X_full, X_fit_full, Y, model_type, locs, rhythm_params = rhythm_params, bootstrap_size = bootstrap_size, bootstrap_type = bootstrap_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period1=period1, period2=period2) elif additional_analysis == "": pass else: print("Invalid option") if additional_analysis: for param in parameters_to_analyse: d_param = rhythm_params2[param] - rhythm_params1[param] if param in parameters_angular: d_param = project_acr(d_param) rhythm_params[f'd_{param}'] = d_param return (p_overall, p_params, p_f, results.params[idx_params], results, rhythm_params) def plot_df_models(df, df_models, folder ="", **kwargs): for row in df_models.iterrows(): test = row[1].test n_components = row[1].n_components period = row[1].period X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) if folder: save_to = os.path.join(folder,test+'_compnts='+str(n_components) +'_per=' + str(period)) else: save_to = "" fit_me(X, Y, n_components = n_components, period = period, name = test, save_to = save_to, plot=True, **kwargs) """ ****************************** * start of analysis wrappers * ****************************** """ # perform a more detailed analysis of the models that were identified to be the best, interesting... in previous analyses # analysis - options (from best to worst) # - bootstrap # - CI: analysis of confidence intervals of regression coefficients def analyse_models(df, n_components = 3, period = 24, plot = False, folder = "", analysis = "bootstrap", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], lin_comp = False, **kwargs): params_CI = False bootstrap = False if analysis == "CI": params_CI = True elif analysis == "bootstrap": bootstrap = True else: print("Invalid option") return columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject']#, 'amplitude', 'acrophase'] if not lin_comp: parameters_to_analyse_ext = parameters_to_analyse else: parameters_to_analyse_ext = parameters_to_analyse + ['lin_comp'] for param in parameters_to_analyse_ext: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'{param}'] columns += [f'CI({param})', f'p({param})', f'q({param})'] df_results_extended = pd.DataFrame(columns = columns) save_to = "" # for figures if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test in df.test.unique(): for per in period: for n_comps in n_components: X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) if plot and folder: save_to = os.path.join(folder,test+'_compnts='+str(n_comps) +'_per=' + str(per)) _, statistics, rhythm_params, _, _ = fit_me(X, Y, n_components = n_comps, period = per, name = test, save_to = save_to, plot=plot, bootstrap=bootstrap, params_CI = params_CI, parameters_to_analyse=parameters_to_analyse, parameters_angular=parameters_angular, lin_comp = lin_comp, **kwargs) #if sparse_output: # row = dict(row[1][['test', 'per', 'n_comps', 'p', 'q', 'p_reject', 'q_reject', 'amplitude', 'acrophase', 'mesor']]) #else: row = {'test': test, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'q': np.nan, 'p_reject': statistics['p_reject'], 'q_reject': np.nan, 'amplitude': rhythm_params['amplitude'], 'acrophase': rhythm_params['acrophase']} for param in parameters_to_analyse_ext: row[f'{param}'] = rhythm_params[f'{param}'] row[f'CI({param})'] = rhythm_params[f'CI({param})'] row[f'p({param})'] = rhythm_params[f'p({param})'] row[f'q({param})'] = np.nan df_results_extended = df_results_extended.append(row, ignore_index=True, sort=False) df_results_extended['q'] = multi.multipletests(df_results_extended['p'], method = 'fdr_bh')[1] df_results_extended['q_reject'] = multi.multipletests(df_results_extended['p_reject'], method = 'fdr_bh')[1] for param in parameters_to_analyse_ext: df_results_extended[f'q({param})'] = multi.multipletests(df_results_extended[f'p({param})'], method = 'fdr_bh')[1] return df_results_extended # perform a more detailed analysis of the models that were identified to be the best, interesting... in previous analyses # analysis - options (from best to worst) # - bootstrap # - CI: analysis of confidence intervals of regression coefficients def analyse_best_models(df, df_models, sparse_output = True, plot = False, folder = "", analysis = "bootstrap", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], lin_comp = False, **kwargs): params_CI = False bootstrap = False if analysis == "CI": params_CI = True elif analysis == "bootstrap": bootstrap = True else: print("Invalid option") return columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject'] if not lin_comp: parameters_to_analyse_ext = parameters_to_analyse else: parameters_to_analyse_ext = parameters_to_analyse + ['lin_comp'] for param in parameters_to_analyse_ext: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'{param}'] columns += [f'CI({param})', f'p({param})', f'q({param})'] df_results_extended = pd.DataFrame(columns = columns) if sparse_output: df_models = df_models[['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'amplitude', 'acrophase']] save_to = "" # for figures for row in df_models.iterrows(): test = row[1].test n_components = row[1].n_components period = row[1].period X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) if plot and folder: save_to = os.path.join(folder,test+'_compnts='+str(n_components) +'_per=' + str(period)) _, _, rhythm_params, _, _ = fit_me(X, Y, n_components = n_components, period = period, name = test, save_to = save_to, plot=plot, bootstrap=bootstrap, params_CI = params_CI, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) row = dict(row[1]) for param in parameters_to_analyse_ext: row[f'{param}'] = rhythm_params[f'{param}'] row[f'CI({param})'] = rhythm_params[f'CI({param})'] row[f'p({param})'] = rhythm_params[f'p({param})'] row[f'q({param})'] = np.nan df_results_extended = df_results_extended.append(row, ignore_index=True, sort=False) for param in parameters_to_analyse_ext: df_results_extended[f'q({param})'] = multi.multipletests(df_results_extended[f'p({param})'], method = 'fdr_bh')[1] return df_results_extended # perform a more detailed analysis of the models that were identified to be the best, interesting... in previous analyses # the only option supported is the CI anaylsis: analysis of confidence intervals of regression coefficients def analyse_models_population(df, n_components = 3, period = 24, plot=False, folder = "", prefix="", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject']#, 'amplitude', 'acrophase'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'{param}'] columns += [f'CI({param})', f'p({param})', f'q({param})'] df_results_extended = pd.DataFrame(columns = columns) save_to = "" # for figures names = np.unique(df.test) names = list(set(list(map(lambda x:x.split('_rep')[0], names)))) names.sort() if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for name in names: for n_comps in n_components: for per in period: df_pop = df[df.test.str.startswith(name)] if plot and folder: save_to=os.path.join(folder,prefix+name+'_compnts='+str(n_comps) +'_per=' + str(per)) _, statistics, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, plot = plot, save_to = save_to, params_CI = True, **kwargs) row = {'test': name, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'q': np.nan, 'p_reject': statistics['p_reject'], 'q_reject': np.nan, 'amplitude': rhythm_params['amplitude'], 'acrophase': rhythm_params['acrophase']} for param in parameters_to_analyse: row[f'{param}'] = rhythm_params[f'{param}'] row[f'CI({param})'] = rhythm_params[f'CI({param})'] row[f'p({param})'] = rhythm_params[f'p({param})'] row[f'q({param})'] = np.nan df_results_extended = df_results_extended.append(row, ignore_index=True, sort=False) df_results_extended['q'] = multi.multipletests(df_results_extended['p'], method = 'fdr_bh')[1] df_results_extended['q_reject'] = multi.multipletests(df_results_extended['p_reject'], method = 'fdr_bh')[1] for param in parameters_to_analyse: df_results_extended[f'q({param})'] = multi.multipletests(df_results_extended[f'p({param})'], method = 'fdr_bh')[1] return df_results_extended # perform a more detailed analysis of the models that were identified to be the best, interesting... in previous analyses # the only option supported is the CI anaylsis: analysis of confidence intervals of regression coefficients def analyse_best_models_population(df, df_models, sparse_output = True, plot=False, folder = "", prefix="", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject']#, 'amplitude', 'acrophase'] if 'lin_comp' in kwargs and kwargs['lin_comp'] and 'lin_comp' not in parameters_to_analyse: parameters_to_analyse += ['lin_comp'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'{param}'] columns += [f'CI({param})', f'p({param})', f'q({param})'] df_results_extended = pd.DataFrame(columns = columns) if sparse_output: df_models = df_models[['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'amplitude', 'acrophase']] save_to = "" # for figures for row in df_models.iterrows(): name = row[1].test n_comps = row[1].n_components per = row[1].period df_pop = df[df.test.str.startswith(name)] if plot and folder: save_to=os.path.join(folder,prefix+name+'_compnts='+str(n_comps) +'_per=' + str(per)) _, _, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, plot = plot, save_to = save_to, params_CI = True, **kwargs) row = dict(row[1]) for param in parameters_to_analyse: row[f'{param}'] = rhythm_params[f'{param}'] row[f'CI({param})'] = rhythm_params[f'CI({param})'] row[f'p({param})'] = rhythm_params[f'p({param})'] row[f'q({param})'] = np.nan df_results_extended = df_results_extended.append(row, ignore_index=True, sort=False) for param in parameters_to_analyse: df_results_extended[f'q({param})'] = multi.multipletests(df_results_extended[f'p({param})'], method = 'fdr_bh')[1] return df_results_extended """ **************************** * end of analysis wrappers * **************************** """ def plot_tuples_best_models(df, df_best_models, tuples, colors = ['black', 'red'], folder = '', **kwargs): for T in tuples: min_x = 1000 max_x = -1000 min_y = 1000 max_y = -1000 for test, color in zip(T, colors): model = df_best_models[df_best_models["test"] == test].iloc[0] n_components = model.n_components period = model.period X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) min_x = min(min(X), min_x) if 'plot_measurements' in kwargs and kwargs['plot_measurements'] == False: max_x = max(max(X % period), max_x) else: max_x = max(max(X), max_x) min_y = min(min(Y), min_y) max_y = max(max(Y), max_y) fit_me(X, Y, n_components = n_components, period = period, name = test, save_to = "", plot_residuals = False, hold=True, color = color, **kwargs) plt.title(" + ".join(T)) plt.axis([min(min_x,0), max_x, 0.9*min_y, 1.1*max_y]) plt.legend() if folder: save_to = os.path.join(folder,"+".join(T)+"_"+str(period)+"_"+str(n_components)) plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') else: plt.show() plt.close() def plot_tuples_best_population(df, df_best_models, tuples, colors = ['black', 'red'], folder = '', **kwargs): for T in tuples: min_x = 1000 max_x = -1000 min_y = 1000 max_y = -1000 for test, color in zip(T, colors): model = df_best_models[df_best_models["test"] == test].iloc[0] n_components = model.n_components period = model.period df_pop = df[df.test.str.startswith(test)] X, Y = np.array(df_pop.x), np.array(df_pop.y) min_x = min(min(X), min_x) if 'plot_measurements' in kwargs and kwargs['plot_measurements'] == False: max_x = max(max(X % period), max_x) else: max_x = max(max(X), max_x) min_y = min(min(Y), min_y) max_y = max(max(Y), max_y) population_fit(df_pop, n_components = n_components, period = period, save_to = "", hold=True, color = color, **kwargs) plt.title(" + ".join(T)) plt.axis([min(min_x,0), max_x, 0.9*min_y, 1.1*max_y]) plt.legend() if folder: save_to = os.path.join(folder,"+".join(T)+"_"+str(period)+"_"+str(n_components)) plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') else: plt.show() plt.close() def plot_tuples_models(df, tuples, n_components = 2, period = 24, colors = ['black', 'red'], folder = '', **kwargs): if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for per in period: for n_comps in n_components: for T in tuples: min_x = 1000 max_x = -1000 min_y = 1000 max_y = -1000 for test, color in zip(T, colors): X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) min_x = min(min(X), min_x) if 'plot_measurements' in kwargs and kwargs['plot_measurements'] == False: max_x = max(max(X % per), max_x) else: max_x = max(max(X), max_x) min_y = min(min(Y), min_y) max_y = max(max(Y), max_y) fit_me(X, Y, n_components = n_comps, period = per, name = test, save_to = "", plot_residuals = False, hold=True, color = color, **kwargs) plt.title(" + ".join(T)) plt.axis([min(min_x,0), max_x, 0.9*min_y, 1.1*max_y]) plt.legend() if folder: save_to = os.path.join(folder,"+".join(T)+"_"+str(per)+"_"+str(n_comps)) plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') else: plt.show() plt.close() def plot_tuples_population(df, tuples, n_components = 2, period = 24, colors = ['black', 'red'], folder = '', **kwargs): if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for per in period: for n_comps in n_components: for T in tuples: min_x = 1000 max_x = -1000 min_y = 1000 max_y = -1000 for test, color in zip(T, colors): df_pop = df[df.test.str.startswith(test)] X, Y = np.array(df_pop.x), np.array(df_pop.y) min_x = min(min(X), min_x) if 'plot_measurements' in kwargs and kwargs['plot_measurements'] == False: max_x = max(max(X % per), max_x) else: max_x = max(max(X), max_x) min_y = min(min(Y), min_y) max_y = max(max(Y), max_y) population_fit(df_pop, n_components = n_comps, period = per, save_to = "", hold=True, color = color, **kwargs) plt.title(" + ".join(T)) plt.axis([min(min_x,0), max_x, 0.9*min_y, 1.1*max_y]) plt.legend() if folder: save_to = os.path.join(folder,"+".join(T)+"_"+str(per)+"_"+str(n_comps)) plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') else: plt.show() plt.close() def plot_df_models_population(df, df_models, folder="", model_type="lin"): for row in df_models.iterrows(): pop = row[1].test n_components = row[1].n_components period = row[1].period #X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) df_pop = df[df.test.str.startswith(pop)] if folder: save_to = os.path.join(folder, pop+'_pop_compnts='+str(n_components) +'_per=' + str(period)) else: save_to = "" population_fit(df_pop, n_components = n_components, period = period, model_type = model_type, save_to = save_to) def compare_models(RSS1, RSS2, DF1, DF2): if DF2 < DF1: F = ((RSS1 - RSS2)/(DF1 - DF2))/(RSS2/DF2) return 1 - stats.f.cdf(F, DF1 - DF2, DF2) else: F = ((RSS2 - RSS1)/(DF2 - DF1))/(RSS1/DF1) return 1 - stats.f.cdf(F, DF2 - DF1, DF1) def ct_response(y, mu): return ((y-mu)**2 - y) / mu def ct_test(count, poiss_results): mu = poiss_results.mu y = count ct = ct_response(y, mu) ct_data=pd.DataFrame() ct_data['ct_resp'] = ct ct_data['mu'] = mu ct_results = smf.ols('ct_resp ~ mu - 1', ct_data).fit() alpha_ci95 = ct_results.conf_int(0.05).loc['mu'] print('\nC-T dispersion test: alpha = {:5.3f}, 95% CI = ({:5.3f}, {:5.3f})'.format(ct_results.params[0], alpha_ci95.loc[0], alpha_ci95.loc[1])) alpha = ct_results.params[0] return alpha def compare_ANOVA(df, pairs, n_components = 3, period = 24): # https://pythonfordatascience.org/anova-python/ # http://www.statistik.si/storitve/statisticne-analize-testi/anova-analiza-variance/ # https://www.youtube.com/watch?v=-yQb_ZJnFXw P = [] for test1, test2 in pairs: """ df2 = df[(df['test'] == test1) | (df['test'] == test2)].copy() df2['A'] = np.sin((df2['x']/period)*np.pi*2) df2['B'] = np.cos((df2['x']/period)*np.pi*2) if n_components >= 2: df2['C'] = np.sin((df2['x']/(period/2))*np.pi*2) df2['D'] = np.cos((df2['x']/(period/2))*np.pi*2) if n_components >= 3: df2['E'] = np.sin((df2['x']/(period/3))*np.pi*2) df2['F'] = np.cos((df2['x']/(period/3))*np.pi*2) """ P.append(stats.f_oneway(df['y'][df['test'] == test1], df['y'][df['test'] == test2]).pvalue) #results = smf.ols('y ~ test', data = df[(df['test'] == test1) | (df['test'] == test2)]).fit() #print(results.summary()) return multi.multipletests(P, method = 'fdr_bh')[1] #https://www.marsja.se/three-ways-to-carry-out-2-way-anova-with-python/ #https://pythonfordatascience.org/anova-2-way-n-way/ def compare_ANOVA2(df, pairs): P = [] for test1, test2 in pairs: data = df[(df['test'] == test1) | (df['test'] == test2)] formula = 'y ~ x + test + x:test' model = smf.ols(formula, data).fit() aov_table = sm.stats.anova_lm(model, typ=2) P.append(aov_table['PR(>F)']['x:test']) #P.append(model.pvalues[-1]) return multi.multipletests(P, method = 'fdr_bh')[1] #def test_phase(X1, Y1, X2, Y2, phase, period = 0, test1 = '', test2 = ''): # X2 -= phase # if period: # X1 %= period # X2 %= period """ Permutation test - does not work as well as it should. Problem: when you move an individual from the first population to the second one, rhythmicity is collapsed. N ... number of permutations (if omitted, all permutations are used) Procedure: - for each permutation... -- build permuted population 1 (pop1_perm) and permuted population 2 (pop2_perm) -- build a cosinor model for pop1_perm and pop2_perm -- evaluate rhythmicity params for pop1_perm and pop2_perm -- evalute differences for rhythmicity params between pop1_perm and pop2_perm -- add differences to a list - calculate percentile score of the difference for rhythmicity params between population 1 and population 2 """ """ def permutation_test_population(df, pairs, period = 24, n_components = 2, lin_comp = False, model_type = 'lin', N = None):#, N=10=, permutations=[]): df_results = pd.DataFrame(columns = ['pair', "d_amp", "p_d_amp", "d_acr", "p_d_acr", "d_mesor", "p_d_mesor"], dtype=float) for pair in pairs: df_pop1 = df[df.test.str.startswith(pair[0])] df_pop2 = df[df.test.str.startswith(pair[1])] _, statistics1, _, rhythm_params1, _ = population_fit(df_pop1, n_components = n_components, period = period, lin_comp= lin_comp, model_type = model_type, plot = False, plot_measurements=False, plot_individuals=False, plot_margins=False) _, statistics2, _, rhythm_params2, _ = population_fit(df_pop2, n_components = n_components, period = period, lin_comp= lin_comp, model_type = model_type, plot = False, plot_measurements=False, plot_individuals=False, plot_margins=False) p1, amplitude1, acrophase1, mesor1 = statistics1['p'], rhythm_params1['amplitude'], rhythm_params1['acrophase'], rhythm_params1['mesor'] p2, amplitude2, acrophase2, mesor2 = statistics2['p'], rhythm_params2['amplitude'], rhythm_params2['acrophase'], rhythm_params2['mesor'] #if p1 > 0.05 or p2 > 0.05: # print(pair, "rhythmicity in one is not significant") # continue d_amp = abs(amplitude1 - amplitude2) d_acr = abs(acrophase1 - acrophase2) d_mesor = abs(mesor1 - mesor2) amps, acrs, mesors = [], [], [] #[d_amp], [d_acr], [d_mesor] tests1 = list(df_pop1.test.unique()) tests2 = list(df_pop2.test.unique()) #n_pop1 = len(tests1) #n_pop2 = len(tests2) #tests = np.array(tests1 + tests2) permutations = generate_permutations_all(tests1, tests2) if N: permutations = np.array(list(permutations)) if N < len(permutations): idxs = np.random.choice(np.arange(len(permutations)), size=N, replace=False) permutations = permutations[idxs] else: idxs = np.random.choice(np.arange(len(permutations)), size=N, replace=True) permutations = permutations[idxs] #print(permutations) for perm1, perm2 in permutations: df_test1 = df[df.test.isin(perm1)] df_test2 = df[df.test.isin(perm2)] # could as well only permute the parameters of the models _, statistics_test1, _, rhythm_params_test1, _ = population_fit(df_test1, n_components = n_components, period = period, lin_comp = lin_comp, model_type = model_type, plot = False, plot_measurements=False, plot_individuals=False, plot_margins=False) _, statistics_test2, _, rhythm_params_test2, _ = population_fit(df_test2, n_components = n_components, period = period, lin_comp = lin_comp, model_type = model_type, plot = False, plot_measurements=False, plot_individuals=False, plot_margins=False) p_test1, amplitude_test1, acrophase_test1, mesor_test1 = statistics_test1['p'], rhythm_params_test1['amplitude'], rhythm_params_test1['acrophase'], rhythm_params_test1['mesor'] p_test2, amplitude_test2, acrophase_test2, mesor_test2 = statistics_test2['p'], rhythm_params_test2['amplitude'], rhythm_params_test2['acrophase'], rhythm_params_test2['mesor'] if p_test1 <= 0.05 and p_test2 <= 0.05: d_amp_test = abs(amplitude_test1 - amplitude_test2) d_acr_test = abs(acrophase_test1 - acrophase_test2) d_mesor_test = abs(mesor_test1 - mesor_test2) else: d_amp_test, d_acr_test, d_mesor_test = 0, 0, 0 amps.append(d_amp_test) acrs.append(d_acr_test) mesors.append(d_mesor_test) p_d_amp = 1 - percentileofscore(amps, d_amp, 'rank')/100 p_d_acr = 1 - percentileofscore(acrs, d_acr, 'rank')/100 p_d_mesor = 1 - percentileofscore(mesors, d_mesor, 'rank')/100 d = {"pair": tuple(pair), "d_amp": d_amp, "p_d_amp": p_d_amp, "d_acr": d_acr, "p_d_acr": p_d_acr, "d_mesor": d_mesor, "p_d_mesor": p_d_mesor} df_results = df_results.append(d, ignore_index=True) return df_results """ """ generate random permutations of two populations """ def generate_permutations(n_pop1, n_pop2, N): n = n_pop1 + n_pop2 permutations = [] for _ in range(N): R = np.random.permutation(n) permutations.append((R[:n_pop1], R[n_pop1:])) return permutations """ generate all possible permutations of two populations. Presumption: populations should be of equal sizes. """ def generate_permutations_all(pop1, pop2): n_pop1 = len(pop1) #n_pop2 = len(pop2) permutations = set() full = set(pop1 + pop2) for i in range(1,n_pop1): p1 = itertools.combinations(pop1,i) p2 = itertools.combinations(pop2,n_pop1-i) X = list(itertools.product(p1,p2)) # flatten for i in range(len(X)): X[i] = [a for b in X[i] for a in b] for x in X: x.sort() y = list(set(full)-set(x)) y.sort() z = [tuple(x), tuple(y)] z.sort() permutations.add(tuple(z)) return(permutations) """ * only approximative * rhythm params should be calculated for each population on the population mean cosinor * in this case, we evaluate rhythm params as means of rhythm params of each individual (only approximately equals mean of rhythm params from the population) N ... number of permutations (if omitted, all permutations are used) Procedure: - for each permutation... -- build permuted population 1 (pop1_perm) and permuted population 2 (pop2_perm) -- calculate means of rhythmicity params for pop1_perm and pop2_perm -- evalute differences for rhythmicity params between pop1_perm and pop2_perm -- add differences to a list - calculate percentile score of the difference for rhythmicity params between population 1 and population 2 """ def permutation_test_population_approx(df, pairs, period = 24, n_components = 2, n_components2 = None, period2 = None, N = None, parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs):#, N=10=, permutations=[]): n_components1 = n_components period1 = period if not n_components2: n_components2 = n_components1 if not period2: period2 = period1 columns = ['pair'] for param in parameters_to_analyse: columns += [f'd_{param}', f'p(d_{param})'] df_results = pd.DataFrame(columns = columns, dtype=float) for pair in pairs: df_pop1 = df[df.test.str.startswith(pair[0])] df_pop2 = df[df.test.str.startswith(pair[1])] _, statistics1, _, _, _, ind_params1= population_fit(df_pop1, n_components = n_components1, period = period1, return_individual_params = True, **kwargs)#lin_comp= lin_comp, model_type = model_type, plot = False, plot_measurements=False, plot_individuals=False, plot_margins=False, return_individual_params=True) _, statistics2, _, _, _, ind_params2 = population_fit(df_pop2, n_components = n_components2, period = period2, return_individual_params = True, **kwargs)#lin_comp= lin_comp, model_type = model_type, plot = False, plot_measurements=False, plot_individuals=False, plot_margins=False, return_individual_params=True) p1 = statistics1['p'] p2 = statistics2['p'] #if p1 > 0.05 or p2 > 0.05: # print(pair, ": rhythmicity in one is not significant", sep="") # continue mean_params1 = {} mean_params2 = {} ind_params_all = {} d_params = {} d_params_permute = {} # equations below only present an approximation for param in parameters_to_analyse: if param in parameters_angular: mean_params1[param] = project_acr(circmean(ind_params1[param], high = 0, low = -2*np.pi)) mean_params2[param] = project_acr(circmean(ind_params2[param], high = 0, low = -2*np.pi)) d_params[param] = project_acr(mean_params2[param] - mean_params1[param]) else: mean_params1[param] = np.mean(ind_params1[param]) mean_params2[param] = np.mean(ind_params2[param]) d_params[param] = mean_params2[param] - mean_params1[param] ind_params_all[param] = np.append(ind_params1[param], ind_params2[param]) d_params_permute[param] = [] n1 = len(list(df_pop1.test.unique())) n2 = len(list(df_pop2.test.unique())) permutations = np.array(list(generate_permutations_all(list(range(n1)), list(range(n1,n1+n2))))) if N: if N < len(permutations): idxs = np.random.choice(np.arange(len(permutations)), size=N, replace=False) permutations = permutations[idxs] else: idxs = np.random.choice(np.arange(len(permutations)), size=N, replace=True) permutations = permutations[idxs] for perm1, perm2 in permutations: perm1 = np.array(perm1) perm2 = np.array(perm2) for param in parameters_to_analyse: if param in parameters_angular: test1 = project_acr(circmean(ind_params_all[param][perm1], high = 0, low = -2*np.pi)) test2 = project_acr(circmean(ind_params_all[param][perm2], high = 0, low = -2*np.pi)) d_test = project_acr(test2 - test1) else: test1 = np.mean(ind_params_all[param][perm1]) test2 = np.mean(ind_params_all[param][perm2]) d_test = test2 - test1 d_params_permute[param].append(d_test) p_d = {} d = {"pair": tuple(pair)} for param in parameters_to_analyse: p_d[param] = 1 - percentileofscore(np.abs(d_params_permute[param]), np.abs(d_params[param]), 'rank')/100 d[f'd_{param}'] = d_params[param] d[f'p(d_{param})'] = p_d[param] df_results = df_results.append(d, ignore_index=True) if len(pairs) == 1: return d else: return df_results # eval parameters using bootstrap # bootstrap type should be set to either std (CI = X+-1.96*STD(X)) or percentile (CI = [2.5th percentile, 97.5th percentile]) def eval_params_bootstrap(X, X_fit, X_test, X_fit_eval_params, Y, model_type, rhythm_params, bootstrap_size=1000, bootstrap_type='std', t_test=True, parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], period=24): # generate and evaluate bootstrap samples params_bs = {} for param in parameters_to_analyse: params_bs[param] = np.zeros(bootstrap_size) idxs = np.arange(len(X)) for i in range(bootstrap_size): idxs_bs = np.random.choice(idxs, len(idxs), replace=True) Y_bs, X_fit_bs = Y[idxs_bs], X_fit[idxs_bs] if model_type == 'lin': model_bs = sm.OLS(Y_bs, X_fit_bs) results_bs = model_bs.fit() ## https://python.hotexamples.com/examples/statsmodels.genmod.generalized_linear_model/GLM/fit_constrained/python-glm-fit_constrained-method-examples.html #model_bs = sm.GLM(Y_bs, X_fit_bs) #constr = "const>-1" #results_bs = model_bs.fit_constrained(constr) elif model_type == 'poisson': #model_bs = sm.GLM(Y_bs, X_fit_bs, family=sm.families.Poisson()) model_bs = statsmodels.discrete.discrete_model.Poisson(Y_bs, X_fit_bs) results_bs = model_bs.fit(disp=0) elif model_type =='gen_poisson': #model_bs = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y_bs, X_fit_bs) model_bs = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y_bs, X_fit_bs, p=1) results_bs = model_bs.fit(disp=0) elif model_type == 'nb': #model_bs = sm.GLM(Y_bs, X_fit_bs, family=sm.families.NegativeBinomial(alpha=alpha)) model_bs = statsmodels.discrete.discrete_model.NegativeBinomialP(Y_bs, X_fit_bs, p=1) results_bs = model_bs.fit(disp=0) #Y_test_bs = results_bs.predict(X_fit_test) Y_eval_params_bs = results_bs.predict(X_fit_eval_params) rhythm_params_bs = evaluate_rhythm_params(X_test, Y_eval_params_bs, period=period) """ if rhythm_params_bs['amplitude'] > np.max(Y_eval_params_bs): print(results_bs.summary()) plt.plot(X[idxs_bs], Y_bs,'.') plt.plot(X_test, Y_eval_params_bs) plt.show() """ # remove the fits that exhibit divergence for param in parameters_to_analyse: if (abs(rhythm_params_bs['amplitude']) > (np.max(Y)-np.min(Y))) or ((rhythm_params_bs['period2']) and (rhythm_params_bs['period2'] < rhythm_params_bs['period2'])): params_bs[param][i] = np.nan else: #plt.plot(X_test, Y_eval_params_bs, alpha=0.5) params_bs[param][i] = rhythm_params_bs[param] #plt.show() # analyse bootstrap samples DoF = bootstrap_size - len(results_bs.params) n_params = len(results_bs.params) rhythm_params['DoF'] = DoF for param in parameters_to_analyse: if param in parameters_angular: angular = True else: angular = False sample_bs = params_bs[param] mean, p_val, CI = bootstrap_statistics(sample_bs, angular=angular, bootstrap_type = bootstrap_type, t_test= t_test, n_params=n_params) rhythm_params[f'{param}_bootstrap'] = mean rhythm_params[f'CI({param})'] = CI rhythm_params[f'p({param})'] = p_val return rhythm_params # eval rhythmicity parameter differences using bootstrap in a combination with limorhyde # bootstrap type should be set to either std (CI = X+-1.96*STD(X)) or percentile (CI = [2.5th percentile, 97.5th percentile]) def eval_params_diff_bootstrap(X, X_fit, X_full, X_fit_full, Y, model_type, locs, rhythm_params, bootstrap_size, bootstrap_type, t_test=True, parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], period1=24, period2=24): params_bs = {} for param in parameters_to_analyse: params_bs[param] =
np.zeros(bootstrap_size)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Wed Apr 15 22:38:18 2020 @author: alankar """ import numpy as np import matplotlib.pyplot as plt from scipy import interpolate from matplotlib.lines import Line2D import pickle #Constants kB = 1.3807e-16 #Boltzman's Constant in CGS mp = 1.6726231e-24 #Mass of a Proton in CGS GAMMA = 5./3 #Specific Heat Ratio for an Ideal Gas fig = plt.figure(figsize=(30,30)) CHI = np.linspace(1.0,1000, 100000) M1=0.5 M2=1.0 M3=1.5 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) #Problem Constants mu = 0.672442 Tcl = 1.e4 #K ncl = 0.1 # particles per cm^3 T_hot = CHI*Tcl LAMBDA_HOT= LAMBDA(T_hot) #erg cm3 s-1 #LAMBDA at T_hot #GET IT FROM COOLTABLE.DAT Tmix= np.sqrt(Tcl*T_hot) #K LAMBDA_MIX = LAMBDA(Tmix) #erg cm3 s-1 #LAMBDA at T_mix #GET IT FROM COOLTABLE.DAT ALPHA = 1. n_hot=ncl/CHI #Normalized Quantities Tcl_4 = Tcl/1e4 #K P3 = (ncl*Tcl)/1e3 #cm-3 K CHI_100=(CHI)/100 LAMBDA_HOT_N23 = LAMBDA_HOT/1e-23 #erg cm3 s-1 LAMBDA_MIX_N21_4 = LAMBDA_MIX/(10**-21.4) #erg cm3 s-1 cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) R1= (2 * (Tcl_4**(5/2)) * M1 * CHI_100 )/(P3*LAMBDA_MIX_N21_4*ALPHA) R2= (2 * (Tcl_4**(5/2)) * M2 * CHI_100 )/(P3*LAMBDA_MIX_N21_4*ALPHA) R3= (2 * (Tcl_4**(5/2)) * M3 * CHI_100 )/(P3*LAMBDA_MIX_N21_4*ALPHA) pc=3.098e18 tcc1= (np.sqrt(CHI)*R1*pc)/(M1*cs_hot) tcc2= (np.sqrt(CHI)*R2*pc)/(M2*cs_hot) tcc3= (np.sqrt(CHI)*R3*pc)/(M3*cs_hot) f1=0.9*((2*R1*(n_hot/0.01))**0.3)*((M1*(cs_hot/1.e7))**0.6) f2=0.9*((2*R2*(n_hot/0.01))**0.3)*((M2*(cs_hot/1.e7))**0.6) f3=0.9*((2*R3*(n_hot/0.01))**0.3)*((M3*(cs_hot/1.e7))**0.6) t_life_pred1=10*tcc1*f1 t_life_pred2=10*tcc2*f2 t_life_pred3=10*tcc3*f3 t_cool_hot=((1/(GAMMA-1))*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y1=np.log10(t_life_pred1/Myr) Y2=np.log10(t_life_pred2/Myr) Y3=np.log10(t_life_pred3/Myr) plt.plot(X,Y1,label='Gronke-Oh Criterion for $\mathrm{\mathcal{M}=0.5}$',linewidth=4.5) plt.plot(X,Y2,label='Gronke-Oh Criterion for $\mathrm{\mathcal{M}=1.0}$',linewidth=4.5, color='red') plt.plot(X,Y3,label='Gronke-Oh Criterion for $\mathrm{\mathcal{M}=1.5}$',linewidth=4.5, color='green') ############################################ data1=np.loadtxt('Li_pt_dest.dat') X1=data1[:,0] Y1=data1[:,1] plt.plot(X1,Y1,'o', color='gray', markersize=30, label='Li Destroyed Clouds',alpha=0.5) data1=np.loadtxt('Li_pt_grth.dat') X1=data1[:,0] Y1=data1[:,1] plt.plot(X1,Y1,'^', color='gray', markersize=30, label='Li Growing Clouds', alpha=0.5) ####################################################### ############################################ M=0.5 R= [10.36,3.49] pc=3.098e18 T_hot=1.e6 n_hot=0.001 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (10*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:blue', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,label=r'Growing Clouds in Our Simulations for $\mathrm{\mathcal{M}=0.5}$',fillstyle=filling, **marker_style) ####################################################### M=1.0 R= [14.0,5.47] pc=3.098e18 T_hot=1.e6 n_hot=0.001 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (10*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:red', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,label=r'Growing Clouds in Our Simulations for $\mathrm{\mathcal{M}=1.0}$',fillstyle=filling, **marker_style) ############################################################# M=1.5 R= [17.0,7.16] pc=3.098e18 T_hot=1.e6 n_hot=0.001 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (10*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:green', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,label=r'Growing Clouds in Our Simulations for $\mathrm{\mathcal{M}=1.5}$',fillstyle=filling, **marker_style) ####################################################### M=0.5 R=[23.92,124.06] pc=3.098e18 T_hot=3.e6 n_hot=0.1/300 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (17.32*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=
np.log10(t_cool_hot/Myr)
numpy.log10
import math from collections import Counter, defaultdict from datetime import datetime import networkx as nx import numpy as np import pandas as pd import plotly.graph_objects as go import pyproj from numpy import mean, nanmean from cognite.power.data_classes import PowerAssetList # unified plotting colors _MARKER_EDGE_COLOR = "rgb(85,150,210)" _MARKER_FILL_COLOR = "rgb(230,230,230)" # univeral transverse mercator zone 32 = south norway, germany _LATLON_PROJ = "+proj=utm +zone=32, +north +ellps=WGS84 +datum=WGS84 +units=m +no_defs" _PROJECTION = pyproj.Proj(_LATLON_PROJ, preserve_units=True) def _latlon_to_xy(lat, lon): (x, y) = (lat, lon) return (x, y) def voltage_color(base_voltage: float): color_map = [ (-1e9, "000000"), (100, "000000"), (132, "9ACA3C"), (300, "20B3DE"), (420, "ED1C24"), (1e9, "ED1C24"), ] color_map = [(v, tuple(int(h[i : i + 2], 16) for i in (0, 2, 4))) for v, h in color_map] # to rgb ix_above = 0 while color_map[ix_above][0] < base_voltage: ix_above += 1 t = (base_voltage - color_map[ix_above - 1][0]) / (color_map[ix_above][0] - color_map[ix_above - 1][0]) color = [ int(color_map[ix_above - 1][1][rgb] + t * (color_map[ix_above][1][rgb] - color_map[ix_above - 1][1][rgb])) for rgb in range(3) ] c = ",".join(map(str, color)) return f"rgb({c})" def _flow_color(flow: float): return voltage_color(base_voltage=flow) def node_locations(power_area, interpolate_missing_positions=True): node_loc = { name: [ float(substation.metadata.get("PositionPoint.xPosition", math.nan)), float(substation.metadata.get("PositionPoint.yPosition", math.nan)), ] for name, substation in power_area._graph.nodes(data="object") } if interpolate_missing_positions: orphan_count = 0 for it in range(2): for s, loc in node_loc.items(): if math.isnan(loc[0]): nb_locs = [ node_loc[n] for n in nx.neighbors(power_area._graph, s) if not math.isnan(node_loc[n][0]) ] mean_loc = [sum(c) / len(nb_locs) for c in zip(*nb_locs)] if len(mean_loc) == 2: node_loc[s] = mean_loc elif it == 1: node_loc[s] = [20, 55 + orphan_count] # TODO don't hardcode this orphan_count += 1 return node_loc def node_layout(power_area, position): if position == "source": node_positions = node_locations(power_area) elif position == "project": node_positions = {n: _latlon_to_xy(*xy) for n, xy in node_locations(power_area).items()} elif position == "spring": node_positions = nx.spring_layout(power_area._graph) elif position == "kamada": node_positions = nx.kamada_kawai_layout(power_area._graph) else: raise ValueError(f"Unknown layout {position}") return node_positions def create_substation_plot(node_locations, node_plot_mode): text, x, y = zip(*[(k, v[0], v[1]) for k, v in node_locations.items()]) return go.Scatter( x=x, y=y, text=text, mode=node_plot_mode, textposition="top center", hoverinfo="text", marker=dict(size=15, line=dict(color=_MARKER_EDGE_COLOR, width=2), color=_MARKER_FILL_COLOR), ) def create_substation_map_plot(node_locations): text, lon, lat = zip(*[(k, v[0], v[1]) for k, v in node_locations.items()]) # to get an edge color we plot the same data twice with difference marker size plots = [ go.Scattermapbox(lat=lat, lon=lon, showlegend=False, marker=dict(size=17, color=_MARKER_EDGE_COLOR),), go.Scattermapbox( lat=lat, lon=lon, text=text, mode="markers", showlegend=False, hoverinfo="text", marker=dict(size=13, color=_MARKER_FILL_COLOR), textposition="top center", ), ] return plots def edge_locations(power_area, node_locations): # there is a gotcha here that having 100s of line plots is resource intensive, so making one for each # ac line segment causes computers to catch fire. To get the coloring right we create one for each # base voltage value, and then we split the line by adding nans. This makes the function unintuitive. networkx_edges = power_area._graph.edges(data=True) lons = defaultdict(list) lats = defaultdict(list) center_lons = defaultdict(list) center_lats = defaultdict(list) text = defaultdict(list) counter = Counter([(edge[0], edge[1]) for edge in list(power_area._graph.edges(data=True))]) dups = {key: 1 for key in counter if counter[key] + counter[key[::-1]] == 2} # TODO: handle 3? for acls in networkx_edges: lon, lat = zip(*[node_locations[s] for s in acls[:2]]) center_lat = mean(lat) center_lon = mean(lon) if (acls[0], acls[1]) in dups: # probably there are more elegant ways, but we want to offset the center in cases where there are multiple # lines between two substations lat_len = abs(lat[1] - lat[0]) lon_len = abs(lon[1] - lon[0]) edge_length = math.sqrt((lat_len) ** 2 + (lon_len) ** 2) center_lat += 0.005 * dups[(acls[0], acls[1])] * lon_len / edge_length center_lon += 0.005 * dups[(acls[0], acls[1])] * lat_len / edge_length dups[(acls[0], acls[1])] *= -1 base_voltage = acls[2]["object"].metadata.get("BaseVoltage_nominalVoltage", "0") lats[base_voltage] += [lat[0], center_lat, lat[1], math.nan] lons[base_voltage] += [lon[0], center_lon, lon[1], math.nan] center_lons[base_voltage].append(center_lon) center_lats[base_voltage].append(center_lat) text[base_voltage].append("{}: {} kV".format(acls[2]["object"].name, base_voltage)) return lats, lons, center_lats, center_lons, text def create_line_segment_plot(x, y, center_x, center_y, text): line_plots = [ go.Scatter( x=x[base_voltage], y=y[base_voltage], line=dict(width=2, color=voltage_color(float(base_voltage)), shape="spline", smoothing=1.3), hoverinfo="none", mode="lines", ) for base_voltage in x.keys() ] center_plots = [ go.Scatter( x=center_x[base_voltage], y=center_y[base_voltage], text=text[base_voltage], mode="markers", hoverinfo="text", marker=dict(size=0.0001, color=voltage_color(float(base_voltage))), ) for base_voltage in text.keys() ] return line_plots, center_plots def create_line_segment_map_plot(lats, lons, center_lats, center_lons, text): line_plots = [ go.Scattermapbox( mode="lines", lon=lons[base_voltage], lat=lats[base_voltage], hoverinfo="none", showlegend=False, line=dict(color=voltage_color(float(base_voltage)), width=6), ) for base_voltage in lats.keys() ] center_plots = [ go.Scattermapbox( lat=center_lats[base_voltage], lon=center_lons[base_voltage], text=text[base_voltage], mode="markers", showlegend=False, hoverinfo="text", marker=dict(size=0.0001, color=voltage_color(float(base_voltage))), ) for base_voltage in text.keys() ] return line_plots + center_plots def _np_datetime_to_ms(np_datetime): return np_datetime.astype("datetime64[ms]").astype("uint64") class PowerPlot: @staticmethod def draw_with_map(power_area, height=None): # plot substations node_locs = node_locations(power_area, interpolate_missing_positions=False) substation_plots = create_substation_map_plot(node_locs) # plot ac line segments lats, lons, center_lats, center_lons, text = edge_locations(power_area, node_locs) ac_line_segment_plots = create_line_segment_map_plot(lats, lons, center_lats, center_lons, text) center = nanmean([v for v in node_locs.values()], axis=0) fig = go.Figure( # ordering matters here: substations last so they are drawn on top data=ac_line_segment_plots + substation_plots, layout=go.Layout( hovermode="closest", mapbox_style="stamen-terrain", margin={"r": 0, "t": 0, "l": 0, "b": 0}, height=height, mapbox=dict(zoom=7, center=dict(lon=center[0], lat=center[1])), ), ) return fig @staticmethod def draw(power_area, labels="fixed", position="kamada", height=None): node_positions = node_layout(power_area, position) node_plot_mode = "markers" if labels == "fixed": node_plot_mode += "+text" # plot substations substation_plot = create_substation_plot(node_positions, node_plot_mode) # plot ac line segments lats, lons, center_lats, center_lons, text = edge_locations(power_area, node_positions) ac_line_segment_plots, ac_line_label_point_plot = create_line_segment_plot( lons, lats, center_lons, center_lats, text ) fig = go.Figure( data=ac_line_segment_plots + ac_line_label_point_plot + [substation_plot], layout=go.Layout( height=height, plot_bgcolor="rgb(250,250,250)", titlefont_size=16, showlegend=False, hovermode="closest", margin=dict(b=0, l=0, r=0, t=0), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, constrain="domain"), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, scaleanchor="x"), ), ) return fig @staticmethod def draw_flow( power_area, labels="fixed", position="kamada", height=None, timeseries_type="estimated_value", granularity="1h", date: "np.datetime64" = None, ): """ Draws power flow through the area. Args: labels,position,height: as in `draw` timeseries_type: type of time series to retrieve, i.e. value/estimated_value. granularity: time step at which to average values over, as in the Python SDK `retrieve_dataframe` function. date: datetime object at which to visualize flow, use None for now. """ node_plot_mode = "markers" if labels == "fixed": node_plot_mode += "+text" node_positions = node_layout(power_area, position) substation_plot = create_substation_plot(node_positions, node_plot_mode) lats, lons, center_lats, center_lons, text = edge_locations(power_area, node_positions) ac_line_segment_plots, ac_line_label_point_plot = create_line_segment_plot( lons, lats, center_lons, center_lats, text ) terminals = PowerAssetList( list(set(sum([list(data["terminals"].values()) for f, t, data in power_area._graph.edges(data=True)], []))), cognite_client=power_area._cognite_client, ) ts = terminals.time_series(measurement_type="ThreePhaseActivePower", timeseries_type=timeseries_type) analogs = power_area._cognite_client.assets.retrieve_multiple(ids=[t.asset_id for t in ts]) terminal_ids: List[int] = [a.parent_id for a in analogs] target_time = np.datetime64(date or datetime.now()) delta = np.timedelta64(5, "D") start = _np_datetime_to_ms((target_time - delta)) end = _np_datetime_to_ms((target_time + delta)) df = power_area._cognite_client.datapoints.retrieve_dataframe( id=[t.id for t in ts], aggregates=["average"], granularity=granularity, start=start, # TODO: split data prep and update end=end, include_aggregate_name=False, ) df.columns = terminal_ids ix = np.searchsorted(df.index, target_time, side="left") flow_values = df.iloc[ix - 1, :] title = f"flow at {df.index[ix - 1]}" distances = [ np.linalg.norm(np.array(node_positions[edge[0]]) - np.array(node_positions[edge[1]])) for edge in power_area._graph.edges ] global_arrow_scale = 0.15 * np.mean(distances) # TODO: what is reasonable here? arrow_traces = [] for f, t, data in power_area._graph.edges(data=True): terminal_map = data["terminals"] terminals = [terminal_map[f], terminal_map[t]] flow_values_t = [] for side in [0, 1]: val = np.nan if terminals[side].id in flow_values.index: val = flow_values[terminals[side].id] if isinstance(val, pd.Series): val = val.dropna() val = val.mean() if not val.empty else np.nan flow_values_t.append(val) from_pos = np.array(node_positions[f]) to_pos = np.array(node_positions[t]) from_to_vec = to_pos - from_pos distance = np.linalg.norm(from_to_vec) arrow_scale = min(global_arrow_scale, 0.3 * distance) from_to_vec /= max(distance, 0.1) if flow_values_t[0] < flow_values_t[1]: flow_vec = -from_to_vec else: flow_vec = from_to_vec orthogonal = np.array([-flow_vec[1], flow_vec[0]]) mid = (from_pos + to_pos) / 2 sign_from = math.copysign(1, flow_values_t[0]) if not np.isnan(flow_values_t[0]) else 0 arrow_from_mid = mid - 0.5 * arrow_scale * from_to_vec # arrow middle is always closer to from # direction of arrow depends on sign of flow arrow_from_tail = arrow_from_mid - 0.33 * arrow_scale * flow_vec * sign_from arrow_from_head = arrow_from_mid + 0.33 * arrow_scale * flow_vec * sign_from arrow_from_left = arrow_from_tail - orthogonal * global_arrow_scale * 0.5 arrow_from_right = arrow_from_tail + orthogonal * global_arrow_scale * 0.5 sign_to = math.copysign(1, flow_values_t[1]) if not
np.isnan(flow_values_t[1])
numpy.isnan
from src.test_functions.test_function import Function import numpy as np class Zakharov(Function): """ https://www.sfu.ca/~ssurjano/zakharov.html """ def minimal_value(self, nb_dimensions): return 0.0 def fitness_function_implementation(self, x, axis=1): x =
np.asarray(x)
numpy.asarray
import matplotlib.pyplot as plt import numpy as np from numpy.linalg import norm # Don't delete this line, even if PyCharm says it's an unused import. # It is required for projection='3d' in add_subplot() from mpl_toolkits.mplot3d import Axes3D def rand_rotation_matrix(deflection=1.0, seed=None): """Creates a random rotation matrix. Args: deflection: the magnitude of the rotation. For 0, no rotation; for 1, completely random rotation. Small deflection => small perturbation. DOI: http://www.realtimerendering.com/resources/GraphicsGems/gemsiii/rand_rotation.c http://blog.lostinmyterminal.com/python/2015/05/12/random-rotation-matrix.html """ if seed is not None: np.random.seed(seed) theta, phi, z = np.random.uniform(size=(3,)) theta = theta * 2.0 * deflection * np.pi # Rotation about the pole (Z). phi = phi * 2.0 * np.pi # For direction of pole deflection. z = z * 2.0 * deflection # For magnitude of pole deflection. # Compute a vector V used for distributing points over the sphere # via the reflection I - V Transpose(V). This formulation of V # will guarantee that if x[1] and x[2] are uniformly distributed, # the reflected points will be uniform on the sphere. Note that V # has length sqrt(2) to eliminate the 2 in the Householder matrix. r = np.sqrt(z) V = (np.sin(phi) * r, np.cos(phi) * r, np.sqrt(2.0 - z)) st = np.sin(theta) ct = np.cos(theta) R = np.array(((ct, st, 0), (-st, ct, 0), (0, 0, 1))) # Construct the rotation matrix ( V Transpose(V) - I ) R. M = (np.outer(V, V) - np.eye(3)).dot(R) return M def add_gaussian_noise_to_pcloud(pcloud, mu=0, sigma=1): gnoise =
np.random.normal(mu, sigma, pcloud.shape[0])
numpy.random.normal
from comancpipeline.Analysis import BaseClasses from comancpipeline.Tools import WCS, Coordinates, Filtering, Fitting, Types from comancpipeline.Tools.WCS import DefineWCS from comancpipeline.Tools.WCS import ang2pix from comancpipeline.Tools.WCS import ang2pixWCS import h5py import numpy as np import matplotlib.pyplot as plt from astropy.io import fits import sys from astropy.wcs import WCS import os import argparse import configparser from scipy.ndimage.filters import median_filter from scipy.ndimage.filters import gaussian_filter,maximum_filter from matplotlib import pyplot class SimpleMap(object): def __init__(self, xpix=100, ypix=100, cdeltx=1, cdelty=1, ctypex='RA---TAN', ctypey='DEC--TAN', x0=0, y0=0, filtertod=False, lon=0, lat=0): self.xpix = int(xpix) self.ypix = int(ypix) self.cdeltx = float(cdeltx)/60. self.cdelty = float(cdelty)/60. self.x0 = int(x0) self.y0 = int(y0) self.ctype=[ctypex, ctypey] self.naxis = [self.xpix, self.ypix] self.cdelt = [self.cdeltx, self.cdelty] self.crval = [self.x0, self.y0] self.lon = lon self.lat = lat self.filtertod = filtertod def __call__(self, container, filename=''): self.run(container) self.filename = filename def run(self,container): tod = container.getdset('spectrometer/tod') ra = container.getdset('spectrometer/pixel_pointing/pixel_ra') dec = container.getdset('spectrometer/pixel_pointing/pixel_dec') mjd = container.getdset('spectrometer/MJD') el = container.getdset('spectrometer/pixel_pointing/pixel_el') #create wcs self.crval = [np.nanmedian(ra), np.nanmedian(dec)] self.wcs,_,_ = DefineWCS(naxis=self.naxis, cdelt=self.cdelt, crval=self.crval, ctype=self.ctype) maps = self.MakeMap(tod, ra, dec, mjd, el) noisemap = self.MakeNoiseMap(tod, ra, dec, mjd, el) #save wcs info #container.setExtrasData('Mapping/WCS', # self.wcs, # [Types._OTHER_]) #save map container.setExtrasData('Mapping/SimpleMaps', maps, [Types._HORNS_, Types._SIDEBANDS_, Types._FREQUENCY_, Types._OTHER_, Types._OTHER_]) #save noise map container.setExtrasData('Mapping/NoiseMaps', noisemap, [Types._HORNS_, Types._SIDEBANDS_, Types._FREQUENCY_, Types._OTHER_, Types._OTHER_]) def initialPeak(self,tod, x, y): rms = Filtering.calcRMS(tod) r = np.sqrt((x)**2 + (y)**2) close = (r < 10) tod -= Filtering.estimateBackground(tod, rms, close) dx, dy = 1./60., 1./60. Dx, Dy = 1., 1. npix = int(Dx/dx) xpix, ypix = np.arange(npix+1), np.arange(npix+1) xpix = xpix*dx - Dx/2. ypix = ypix*dy - Dy/2. m = np.histogram2d(x, y, xpix, weights=tod)[0]/np.histogram2d(x, y, xpix)[0] m = median_filter(m, 3) xmax,ymax = np.unravel_index(np.nanargmax(m),m.shape) return xpix[xmax], ypix[ymax] def MakeMap(self, tod, ra, dec, mjd, el): #takes a 1D tod array and makes a simple map #produce arrays for mapping npix = self.naxis[0]*self.naxis[1] pixbins = np.arange(0, npix+1).astype(int) nHorns, nSBs, nChans, nSamples = tod.shape rms = Filtering.calcRMS(tod) maps = np.zeros((nHorns, nSBs, nChans, self.naxis[0], self.naxis[1])) for i in range(nHorns): good = (np.isnan(ra[i,:]) == False) & (np.isnan(tod[i,0,0]) == False) pa = Coordinates.pa(ra[i,good], dec[i,good], mjd[good], self.lon, self.lat) x, y = Coordinates.Rotate(ra[i,good], dec[i,good], self.crval[0], self.crval[1], -pa) nbins = 10 xbins = np.linspace(np.min(x),np.max(x), nbins+1) xmids = (xbins[1:] + xbins[:-1])/2. xbw, _ = np.histogram(x,xbins) ybw, _ = np.histogram(y,xbins) todAvg = np.nanmean(np.nanmean(tod[i,...],axis=0),axis=0) fitx0, fity0 = self.initialPeak(todAvg[good], x, y) r = np.sqrt((x-fitx0)**2 + (y-fity0)**2) close = (r < 6./60.) pix = ang2pixWCS(self.wcs, ra[i,good], dec[i,good]).astype('int') mask = np.where((pix != -1))[0] h, b = np.histogram(pix, pixbins, weights=(pix != -1).astype(float)) self.hits = np.reshape(h, (self.naxis[0], self.naxis[1])) for j in range(nSBs): for k in range(nChans): todmap = tod[i,j,k,good] if self.filtertod: txbw, _ = np.histogram(x,xbins, weights=todmap) tybw, _ = np.histogram(y,xbins, weights=todmap) fb = txbw/xbw gd = np.isfinite(fb) pmdl = np.poly1d(np.polyfit(xmids[gd],fb[gd],1)) todmap -= pmdl(x) fb = tybw/ybw gd = np.isfinite(fb) pmdl = np.poly1d(np.polyfit(xmids[gd],fb[gd],1)) todmap -= pmdl(y) w, b = np.histogram(pix[mask], pixbins, weights=todmap[mask]) # w, b = np.histogram(pix[:], pixbins, weights=tod[i,j,k,:]) m = np.reshape(w, (self.naxis[0], self.naxis[1])) maps[i,j,k,...] = m/self.hits pyplot.subplot(projection=self.wcs) pyplot.imshow(maps[0,0,0,:,:]) pyplot.show() return maps def MakeNoiseMap(self, tod, ra, dec, mjd, el): #takes a 1D tod array and makes a simple noise map #produce arrays for mapping npix = self.naxis[0]*self.naxis[1] pixbins = np.arange(0, npix+1).astype(int) rms = Filtering.calcRMS(tod) #get noise rms and associated ra and dec noise, ranew, dnew, mjdnew = Filtering.noiseProperties(tod,ra,dec,mjd) nHorns, nSBs, nChans, nSamples = noise.shape maps = np.zeros((nHorns, nSBs, nChans, self.naxis[0], self.naxis[1])) for i in range(nHorns): good = (np.isnan(ranew[i,:]) == False) & (np.isnan(noise[i,0,0]) == False) pa = Coordinates.pa(ranew[i,good], dnew[i,good], mjdnew[good], self.lon, self.lat) x, y = Coordinates.Rotate(ranew[i,good], dnew[i,good], self.crval[0], self.crval[1], -pa) nbins = 10 xbins = np.linspace(np.min(x),np.max(x), nbins+1) xmids = (xbins[1:] + xbins[:-1])/2. xbw, _ =
np.histogram(x,xbins)
numpy.histogram
import numpy as np import pandas as pd import scipy.stats as si ''' This section is highly dependent upon knowledge of the black & scholes formula for option pricing and using Monte Carlo methods to price options. There are a number of terms such as d1, d2, delta, gamma, vega that are specific to option ricing and I will not add comments to explain what these are. If you are unfamiliar with this, read something like 'Options, Futures and Other Derivatives' by <NAME>. Note however that I use numpy arrays here, so when a calculation is performed, I am often calculating multiple values at the same time. I assume an input array containing multiple stock prices is passed in, which results n multiple price, delta, gamma etx values being calculated and which will later be used to plot graphs. This module has two classes: BlackScholes: This calculates the price, delta, gamma etc of an option using the B&S Formula BasicMonteCarloOption: This calculates the price, delta, gamma etc by using monte carlo methods. With this class I tend to return 2 argument (not 1) from the functions. The second argument tends to be the standard deviation. So I may have (optPrice, optStdDev) = calculateSomeValue( numpyArrayOfStockPrices ) This section is only for European Options and it does not include things such as interest rate curves, borrow curves, volatility surface etc etc. (ie it is a simplified version) ''' class BlackScholes(): # Private Functions def __init__(self, fltStrike, fltVol, fltRiskFreeRate, fltTimeToMaturity, boolIsCall): # Set the variables self.__fltStrike = fltStrike self.__fltVol = fltVol self.__fltRiskFreeRate = fltRiskFreeRate self.__fltTimeToMaturity = fltTimeToMaturity self.__boolIsCall = boolIsCall def __str__(self): strF = 'EuropeanOption: [Strike:{strike}; Vol:{vol}; '\ 'RFRate:{rfrate}; Time:{time}; IsCall:{iscall};]' return strF.format(strike=self.__fltStrike, vol=self.__fltVol, rfrate=self.__fltRiskFreeRate, time=self.__fltTimeToMaturity, iscall=self.__boolIsCall) def __getD1(self, npStock): npSK = np.log(npStock / self.__fltStrike) npTopD1 = npSK + ( self.__fltRiskFreeRate + (self.__fltVol ** 2) / 2 ) * self.__fltTimeToMaturity npD1 = npTopD1 / (self.__fltVol * np.sqrt(self.__fltTimeToMaturity)) return npD1 def __getD2(self, npStock): npD1 = self.__getD1(npStock) npD2 = npD1 - (self.__fltVol * np.sqrt(self.__fltTimeToMaturity)) return npD2 def __getD2FromD1(self, npD1): npD2 = npD1 - (self.__fltVol * np.sqrt(self.__fltTimeToMaturity)) return npD2 def __getCallPrice(self, npStock): npD1 = self.__getD1(npStock) npD2 = self.__getD2FromD1(npD1) npCall = npStock * si.norm.cdf(npD1)\ - (self.__fltStrike * np.exp(-self.__fltRiskFreeRate * self.__fltTimeToMaturity) * si.norm.cdf(npD2)) return npCall def __getCallDelta(self, npStock): npD1 = self.__getD1(npStock) npDelta = si.norm.cdf(npD1) return npDelta def __getCallTheta(self, npStock): npD1 = self.__getD1(npStock) npD2 = self.__getD2FromD1(npD1) npArg1 = -(npStock * si.norm.pdf(npD1) * self.__fltVol) \ / (2 * np.sqrt(self.__fltTimeToMaturity)) npArg2 = -self.__fltRiskFreeRate * self.__fltStrike * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) \ * si.norm.cdf(npD2) npTheta = (npArg1 + npArg2) / 365 return npTheta def __getCallRho(self, npStock): npD2 = self.__getD2(npStock) npRho = (self.__fltStrike * self.__fltTimeToMaturity * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) * si.norm.cdf(npD2)) * 0.01 return npRho def __getPutPrice(self, npStock): npD1 = self.__getD1(npStock) npD2 = self.__getD2FromD1(npD1) npPut = self.__fltStrike * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) \ * si.norm.cdf(-npD2) - npStock * si.norm.cdf(-npD1) return npPut def __getPutDelta(self, npStock): npD1 = self.__getD1(npStock) npDelta = (si.norm.cdf(npD1) - 1) return npDelta def __getPutTheta(self, npStock): npD1 = self.__getD1(npStock) npD2 = self.__getD2FromD1(npD1) npArg1 = -(npStock * si.norm.pdf(npD1) * self.__fltVol) \ / (2 * np.sqrt(self.__fltTimeToMaturity)) npArg2 = self.__fltRiskFreeRate * self.__fltStrike * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) \ * si.norm.cdf(-npD2) npTheta = (npArg1 + npArg2) / 365 return npTheta def __getPutRho(self, npStock): npD2 = self.__getD2(npStock) npRho = (- self.__fltStrike * self.__fltTimeToMaturity * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) * si.norm.cdf(-npD2)) * 0.01 return npRho # Public Functions def getOptionPrice(self, npStock): if self.__boolIsCall: return self.__getCallPrice(npStock) else: return self.__getPutPrice(npStock) def getOptionDelta(self, npStock): if self.__boolIsCall: return self.__getCallDelta(npStock) else: return self.__getPutDelta(npStock) def getOptionGamma(self, npStock): # Gamma is Call/Put independent npD1 = self.__getD1(npStock) n1 = (si.norm.pdf(npD1)) d1 = (npStock * self.__fltVol * np.sqrt(self.__fltTimeToMaturity)) npGamma = n1 / d1 return npGamma def getOptionVega(self, npStock): # Vega is Call/Put independent npD1 = self.__getD1(npStock) npVega = npStock * (si.norm.pdf(npD1)) \ * np.sqrt(self.__fltTimeToMaturity) / 100 return npVega def getOptionTheta(self, npStock): if self.__boolIsCall: return self.__getCallTheta(npStock) else: return self.__getPutTheta(npStock) def getOptionRho(self, npStock): if self.__boolIsCall: return self.__getCallRho(npStock) else: return self.__getPutRho(npStock) class BasicMonteCarloOption(): # Private Functions def __init__(self, fltStrike, fltVol, fltRiskFreeRate, fltTimeToMaturity, boolIsCall, intNoIter): self.__fltStrike = fltStrike self.__fltVol = fltVol self.__fltRiskFreeRate = fltRiskFreeRate self.__fltTimeToMaturity = fltTimeToMaturity self.__boolIsCall = boolIsCall self.__intNoIter = intNoIter def __str__(self): strF = 'BasicMonteCarloOption: [Strike:{strike}; Vol:{vol}; ' \ 'RFRate:{rfrate}; Time:{time}; IsCall:{iscall}; ' \ 'NoIter:{noiter}]' return strF.format(strike=self.__fltStrike, vol=self.__fltVol, rfrate=self.__fltRiskFreeRate, time=self.__fltTimeToMaturity, iscall=self.__boolIsCall, noiter=self.__intNoIter) def getOptionPrice(self, npStock): # Get the random numbers Z = np.random.standard_normal((1, self.__intNoIter)) # Now get the multipliers to find the final stock price a1 = Z * self.__fltVol * np.sqrt(self.__fltTimeToMaturity) a2 = (self.__fltRiskFreeRate - 0.5 * self.__fltVol ** 2) \ * self.__fltTimeToMaturity Mult = np.exp(a1 + a2) # For every stock price, get m_intNoIter final stock prices by doing # a matrix multiplication. We multiply the initial stock price,by # the multipliers to get the final stock price. I do need to change # the stocks to a matrix to achive this. npMatrix = npStock.copy() npMatrix = np.reshape(npMatrix, (len(npStock), -1)) FinalS = np.matmul(npMatrix, Mult) # Calculate the payoff if self.__boolIsCall: npPayoff = FinalS - self.__fltStrike else: npPayoff = self.__fltStrike - FinalS # Build a matrix of zero's the same size as the payoff matrix. npZeros = np.zeros(npPayoff.shape) # Build a matrix of adjusted payoff, where the P&L if floored at zero. npPayoffAdj = np.maximum(npPayoff, npZeros) # Get the present value of the monte carlo simulations npPV = npPayoffAdj * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) # Calculate the mean for each axis. npPrice = np.mean(npPV, axis=1) # Calculate the stdev for each axis. npSTD = np.std(npPV, axis=1) # Return the option price. return (npPrice, npSTD) def getOptionDelta(self, npStock): # Get the random numbers Z = np.random.standard_normal((1, self.__intNoIter)) # Now get the multipliers to find the final stock price a1 = Z * self.__fltVol * np.sqrt(self.__fltTimeToMaturity) a2 = (self.__fltRiskFreeRate - 0.5 * self.__fltVol ** 2) \ * self.__fltTimeToMaturity Mult = np.exp(a1 + a2) # For every stock price, get m_intNoIter final stock prices by doing # a matrix multiplication. We multiply the initial stock price,by # the multipliers to get the final stock price. I do need to change # the stocks to a matrix to achive this. npMatrix = npStock.copy() npMatrix = np.reshape(npMatrix, (len(npStock), -1)) FinalS = np.matmul(npMatrix, Mult) # Get a bumped stockprice and then calculate the final stockprice npBump = npMatrix * 0.01 FinalSBump = np.matmul(npMatrix + npBump, Mult) # Calculate the payoff if self.__boolIsCall: npPayoff = FinalS - self.__fltStrike npPayoffBump = FinalSBump - self.__fltStrike else: npPayoff = self.__fltStrike - FinalS npPayoffBump = self.__fltStrike - FinalSBump # Build a matrix of zero's the same size as the payoff matrix. npZeros = np.zeros(npPayoff.shape) # Build a matrix of adjusted payoff, where the P&L if floored at zero. npPayoffAdj = np.maximum(npPayoff, npZeros) npPayoffAdjBump = np.maximum(npPayoffBump, npZeros) # Get the present value of the monte carlo simulations npPV = npPayoffAdj * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) npPVBump = npPayoffAdjBump * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) # Calculate the delta npAllDelta = (npPVBump - npPV) / npBump # Calculate the mean for each axis. npDelta = np.mean(npAllDelta, axis=1) # Calculate the stdev for each axis. npDeltaSTD = np.std(npAllDelta, axis=1) # Return the option price. return (npDelta, npDeltaSTD) def getOptionRho(self, npStock): # Get the random numbers Z = np.random.standard_normal((1, self.__intNoIter)) fltBump = 0.0001 fltRiskFreeRateBump = self.__fltRiskFreeRate + fltBump # Now get the multipliers to find the final stock price a1 = Z * self.__fltVol * np.sqrt(self.__fltTimeToMaturity) a2 = (self.__fltRiskFreeRate - 0.5 * self.__fltVol ** 2) \ * self.__fltTimeToMaturity Mult = np.exp(a1 + a2) a1 = Z * self.__fltVol * np.sqrt(self.__fltTimeToMaturity) a2 = (fltRiskFreeRateBump - 0.5 * self.__fltVol ** 2) \ * self.__fltTimeToMaturity MultBump = np.exp(a1 + a2) # For every stock price, get m_intNoIter final stock prices by # doing a matrix multiplication. We multiply the initial stock # price,by the transpose of the multipliers to get the final stock # price npMatrix = npStock.copy() npMatrix = np.reshape(npMatrix, (len(npStock), -1)) FinalS = np.matmul(npMatrix, Mult) # Get a bumped stockprice and then calculate the final stockprice FinalSBump = np.matmul(npMatrix, MultBump) # Calculate the payoff if self.__boolIsCall: npPayoff = FinalS - self.__fltStrike npPayoffBump = FinalSBump - self.__fltStrike else: npPayoff = self.__fltStrike - FinalS npPayoffBump = self.__fltStrike - FinalSBump # Build a matrix of zero's the same size as the payoff matrix. npZeros = np.zeros(npPayoff.shape) # Build a matrix of adjusted payoff, where the P&L if floored at zero. npPayoffAdj = np.maximum(npPayoff, npZeros) npPayoffAdjBump = np.maximum(npPayoffBump, npZeros) # Get the present value of the monte carlo simulations npPV = npPayoffAdj * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) npPVBump = npPayoffAdjBump * np.exp( -fltRiskFreeRateBump * self.__fltTimeToMaturity) # Calculate the delta npAllRho = (npPVBump - npPV) * (0.01 / fltBump) # Calculate the mean for each axis. npRho = np.mean(npAllRho, axis=1) # Calculate the stdev for each axis. npRhoSTD = np.std(npAllRho, axis=1) # Return the option price. return (npRho, npRhoSTD) def getOptionGamma(self, npStock): # Note the gamma may become unstable, see the following: # https://quant.stackexchange.com/questions/18208/ # greeks-why-does-my-monte-carlo-give-correct-delta-but-incorrect-gamma # Get the random numbers Z = np.random.standard_normal((1, self.__intNoIter)) # Now get the multipliers to find the final stock price a1 = Z * self.__fltVol * np.sqrt(self.__fltTimeToMaturity) a2 = (self.__fltRiskFreeRate - 0.5 * self.__fltVol ** 2) \ * self.__fltTimeToMaturity Mult = np.exp(a1 + a2) # For every stock price, get m_intNoIter final stock prices by # doing a matrix multiplication. We multiply the initial stock # price,by the transpose of the multipliers to get the final stock # price npMatrix = npStock.copy() npMatrix = np.reshape(npMatrix, (len(npStock), -1)) FinalS = np.matmul(npMatrix, Mult) # Get a bumped stockprice and then calculate the final stockprice npBump = npMatrix * 0.01 FinalSBumpPlus = np.matmul((npMatrix + npBump), Mult) FinalSBumpMinus = np.matmul((npMatrix - npBump), Mult) # Calculate the payoff if self.__boolIsCall: npPayoff = FinalS - self.__fltStrike npPayoffBumpPlus = FinalSBumpPlus - self.__fltStrike npPayoffBumpMinus = FinalSBumpMinus - self.__fltStrike else: npPayoff = self.__fltStrike - FinalS npPayoffBumpPlus = self.__fltStrike - FinalSBumpPlus npPayoffBumpMinus = self.__fltStrike - FinalSBumpMinus # Build a matrix of zero's the same size as the payoff matrix. npZeros = np.zeros(npPayoff.shape) # Build a matrix of adjusted payoff, where the P&L if floored at zero. npPayoffAdj = np.maximum(npPayoff, npZeros) npPayoffAdjBumpPlus = np.maximum(npPayoffBumpPlus, npZeros) npPayoffAdjBumpMinus = np.maximum(npPayoffBumpMinus, npZeros) # Get the present value of the monte carlo simulations npPV = npPayoffAdj * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) npPVBumpPlus = npPayoffAdjBumpPlus * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) npPVBumpMinus = npPayoffAdjBumpMinus * np.exp( -self.__fltRiskFreeRate * self.__fltTimeToMaturity) # Calculate the numerator and denominator n1 = (npPVBumpPlus - (2 * npPV) + npPVBumpMinus) d1 = (npBump * npBump) # Calculate the delta npAllGamma = n1 / d1 # Calculate the mean for each axis. npGamma = np.mean(npAllGamma, axis=1) # Calculate the stdev for each axis. npGammaSTD = np.std(npAllGamma, axis=1) # Return the option price. return (npGamma, npGammaSTD) def getOptionVega(self, npStock): # Get the random numbers Z = np.random.standard_normal((1, self.__intNoIter)) # Now get the multipliers to find the final stock price a1 = Z * self.__fltVol * np.sqrt(self.__fltTimeToMaturity) a2 = (self.__fltRiskFreeRate - 0.5 * (self.__fltVol ** 2)) \ * self.__fltTimeToMaturity Mult =
np.exp(a1 + a2)
numpy.exp
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #Coastal Pioneer WireFollowing Profilers (WFP elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data =
np.array([])
numpy.array
# solver backward-time central-space method (implicit method) # Boundary condition is u(0,t)=0 and u_x(1,t)=0 import numpy as np def BTCS(dt,dx,t_max,x_max,k,u0): s = k*dt/dx**2 x = np.arange(0,x_max+dx,dx) t =
np.arange(0,t_max+dt,dt)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File img_utils.py created on 22:39 2017/9/11 @author: <NAME> @version: 1.0 """ import numpy as np import cv2 import os def img_crop_to_array(image): ''' Divide an image into 8x8 small sprites, and then convert them into numpy arrays. Shape of returned array: (64, 32, 32, 3) ''' sprite_size = 32 img = cv2.resize(image, (sprite_size * 8, sprite_size * 8)) np_image_data = np.asarray(img, dtype=np.float16) np_image_data = cv2.normalize(np_image_data.astype('float'), None, 0.0, 1.0, cv2.NORM_MINMAX) np_data_4d = np.array([]).reshape((0, 32, 32, 3)) for x in range(8): for y in range(8): sprite = np_image_data[(x * sprite_size):((x + 1) * sprite_size), (y * sprite_size):((y + 1) * sprite_size)] np_data_4d =
np.concatenate((np_data_4d, sprite[np.newaxis, ...]), axis=0)
numpy.concatenate
from imaginative_ddpg import GAN_DDPG import numpy as np from reward_model import Reward_Model as rew_mod from collections import deque from os import system import time def inverse_sigmoid(x): return 1. / (1 + np.exp(x)) class GodelMachine(object): def __init__(self): self.origin_pacer = GAN_DDPG((300,), 2) self.reward_model = rew_mod(300) self.run() def run(self): state = deque(maxlen=300) for i in range(300): state.append(0) nodems = False if True: mesa = 0 for i in range(1000000000): action, action_raw = self.origin_pacer.get_action(np.expand_dims(np.float32(
np.array(state)
numpy.array
import copy import os import os.path as osp import pickle as pkl import numpy as np import torch import torch.utils.data as data # 1211: 1383 # Joints in H3.6M -- data has 32 joints, # but only 17 that move; these are the indices. H36M_NAMES = [''] * 32 H36M_NAMES[0] = 'Hip' H36M_NAMES[1] = 'RHip' H36M_NAMES[2] = 'RKnee' H36M_NAMES[3] = 'RFoot' H36M_NAMES[6] = 'LHip' H36M_NAMES[7] = 'LKnee' H36M_NAMES[8] = 'LFoot' H36M_NAMES[12] = 'Spine' H36M_NAMES[13] = 'Thorax' H36M_NAMES[14] = 'Neck/Nose' H36M_NAMES[15] = 'Head' H36M_NAMES[17] = 'LShoulder' H36M_NAMES[18] = 'LElbow' H36M_NAMES[19] = 'LWrist' H36M_NAMES[25] = 'RShoulder' H36M_NAMES[26] = 'RElbow' H36M_NAMES[27] = 'RWrist' """ dict_keys(['Directions', 'WalkingDog', 'Eating 2', 'Posing', 'Smoking 1', 'Phoning', 'TakingPhoto 1', 'Waiting', 'Walking 1', 'Purchases 1', 'Eating', 'Phoning 1', 'TakingPhoto', 'Directions 1', 'SittingDown 2', 'Discussion 1', 'Posing 1', 'WalkTogether 1', 'Purchases', 'SittingDown', 'Smoking', 'Greeting 1', 'Sitting 1', 'Sitting 2', 'WalkTogether', 'Waiting 1', 'WalkingDog 1', 'Greeting', 'Discussion', 'Walking']) """ def project_point_radial(P, R, T, f, c, k, p): """ Project points from 3d to 2d using camera parameters including radial and tangential distortion Args P: Nx3 points in world coordinates R: 3x3 Camera rotation matrix T: 3x1 Camera translation parameters f: (scalar) Camera focal length c: 2x1 Camera center k: 3x1 Camera radial distortion coefficients p: 2x1 Camera tangential distortion coefficients Returns Proj: Nx2 points in pixel space D: 1xN depth of each point in camera space radial: 1xN radial distortion per point tan: 1xN tangential distortion per point r2: 1xN squared radius of the projected points before distortion """ # P is a matrix of 3-dimensional points assert len(P.shape) == 2 assert P.shape[1] == 3 N = P.shape[0] X = R.dot(P.T - T) # rotate and translate XX = X[:2, :] / X[2, :] r2 = XX[0, :] ** 2 + XX[1, :] ** 2 radial = 1 + np.einsum( 'ij,ij->j', np.tile(k, (1, N)),
np.array([r2, r2 ** 2, r2 ** 3])
numpy.array
#! python3 # coding: utf-8 # * ===================================================================================== # * # * Filename: AMT_final.py # * # * Description: Python program for AMT2018 final thesis # * # * Version: 1.0 # * Created: 06/07/2018 07:09:10 PM # * Revision: none # * Interpreter: Python3.6 # * # * Author: <NAME>, <EMAIL> # * Organization: Tinjin University # * # * ===================================================================================== # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np from scipy.fftpack import fft import math_tool def polyfunc(r, theta): # description: Definition of the Zernike polynomial. Takes in r and theta, which is # the position based on cylindrical coordinate (CC), returns Z value on that # position, just like the literal function do. # param: r, theta # return: sum, which represents the value of Z ci = np.array([0 ,0, 0, 0, 1.205834, 1.209232, -0.073527, 0.283878, -0.047157, 0.69305, 0.0821, -0.520752, -0.054379, -0.092302, 0.02262, -0.009395], dtype=np.double) zi = np.array([1, r*np.cos(theta), r*np.sin(theta), 2*r**2-1, r**2*np.cos(2*theta), r**2*np.sin(2*theta), (3*r**2-2)*r*np.cos(theta), (3*r**2-2)*r*np.sin(theta), 6*r**4-6*r**2+1, r**3*np.cos(3*theta), r**3*np.sin(3*theta), (4*r**2-3)*r**2*np.cos(2*theta), (4*r**2-3)*r**2*np.sin(2*theta), (10*r**4-12*r**2+3)*r*np.cos(theta), (10*r**4-12*r**2+3)*r*np.sin(theta), 20*r**6-30*r**4+12*r**2-1], dtype = np.double) sum = 0 for i in np.arange(0, np.shape(ci)[0]): sum = sum+ci[i]*zi[i] return sum def rot(r, theta): # description: Definition of the conical section. Similar to polyfunc # param: r, theta # return: result, which represents the value of Z c = 1/594.51107 k = 0 numerator = c*r**2 denominator = 1+(1-(1+k)*c**2*r**2)**0.5 result = numerator/denominator return result def zfunc(r, theta): # description: Definition of the surface shape function. This function # is a combination of polyfunc and rot. Meanwhile, normalization # for r is processed. # param: r, theta # return: result, which represents the value of Z result = polyfunc(r/200, theta)+rot(r, theta) return result def rtheta2xy(func, x, y): # description: Takes a combination of x and y (under rectangular coordinates)(RC), # and gives the Z value of a function which takes cylindrical # coordinate (CC) at that point. # param: x, y: coordinate in rectangular coordinates (RC). # return: result, which represents the value of Z r = (x**2+y**2)**0.5 if x > 0: theta = np.arctan(y/x) elif x < 0: theta = np.arctan(y/x)+np.pi else: if y>=0: theta = np.pi/2 else: theta = -np.pi/2 result = func(r, theta) return result def get_rad_seq(rtfunc, r, N): # description: For a given function in cylindrical coordinate (CC), generate a # sample sequence of Z value on a specific circle with radius r. # param: rtfunc: the target function which is based on CC # r: radius of the circle # N: number of sample points # return: result, which is a generated sequence with length N result =
np.zeros(N)
numpy.zeros
import os, sys import inspect currentdir = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) import numpy as np import pytest import librosa import soundpy as sp test_dir = 'test_audio/' test_audiofile = '{}audio2channels.wav'.format(test_dir) test_traffic = '{}traffic.wav'.format(test_dir) test_python = '{}python.wav'.format(test_dir) test_horn = '{}car_horn.wav'.format(test_dir) samples_48000, sr_48000 = librosa.load(test_audiofile, sr=48000) samples_44100, sr_44100 = librosa.load(test_audiofile, sr=44100) samples_22050, sr_22050 = librosa.load(test_audiofile, sr=22050) samples_16000, sr_16000 = librosa.load(test_audiofile, sr=16000) samples_8000, sr_8000 = librosa.load(test_audiofile, sr=8000) def test_shape_samps_channels_mono(): input_data = np.array([1,2,3,4,5]) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data, output_data) def test_shape_samps_channels_stereo_correct(): input_data = np.array([1,2,3,4,5,6,7,8,9,10]).reshape(5,2) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data, output_data) def test_shape_samps_channels_stereo_incorrect(): input_data = np.array([1,2,3,4,5,6,7,8,9,10]).reshape(2,5) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data.T, output_data) def test_calc_phase(): np.random.seed(seed=0) rand_fft = np.random.random(2) + np.random.random(2) * 1j phase = sp.dsp.calc_phase(rand_fft) value1 = np.array([0.67324134+0.73942281j, 0.79544405+0.60602703j]) assert np.allclose(value1, phase) def test_calc_phase_framelength10_default(): frame_length = 10 time = np.arange(0, 10, 0.1) signal = np.sin(time)[:frame_length] fft_vals = np.fft.fft(signal) phase = sp.dsp.calc_phase(fft_vals) value1 = np.array([ 1. +0.j, -0.37872566+0.92550898j]) assert np.allclose(value1, phase[:2]) def test_calc_phase_framelength10_radiansTrue(): frame_length = 10 time = np.arange(0, 10, 0.1) signal = np.sin(time)[:frame_length] fft_vals = np.fft.fft(signal) phase = sp.dsp.calc_phase(fft_vals, radians = True) value1 = np.array([ 0., 1.95921533]) assert np.allclose(value1, phase[:2]) def test_reconstruct_whole_spectrum(): x = np.array([3.,2.,1.,0.,0.,0.,0.]) x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x) expected = np.array([3., 2., 1., 0., 1., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == len(x) def test_reconstruct_whole_spectrum_input4_nfft7(): x = np.array([3.,2.,1.,0.]) n_fft = 7 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) expected = np.array([3., 2., 1., 0., 1., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_reconstruct_whole_spectrum_input4_nfft6(): x = np.array([3.,2.,1.,0.]) n_fft= 6 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) print(x_reconstructed) expected = np.array([3., 2., 1., 0., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_reconstruct_whole_spectrum_input4_nfft5(): x = np.array([3.,2.,1.,0.]) n_fft = 5 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) print(x_reconstructed) expected = np.array([3., 2., 1., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_reconstruct_whole_spectrum_input4_nfft14(): x = np.array([3.,2.,1.,0.]) n_fft = 14 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) print(x_reconstructed) expected =
np.array([3., 2., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 2., 3.])
numpy.array
# -*- coding: utf-8 """Module for testing reading charactersitic lines. This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location tests/tools_tests/characteristics_tests.py SPDX-License-Identifier: MIT """ from nose.tools import eq_ from tespy.tools.characteristics import (char_line, compressor_map, load_default_char, load_custom_char) from tespy.tools.helpers import extend_basic_path from pkg_resources import resource_filename import os import json import numpy as np import shutil class characteristics_tests: def setup(self): # create data path and write json files into path self.path = extend_basic_path('data') def test_custom_char_line_import(self): # we need to write some data to the path first, using defaults data_path = resource_filename('tespy.data', 'char_lines.json') with open(data_path) as f: raw_data = json.loads(f.read()) data = raw_data['heat exchanger']['kA_char2'] with open(os.path.join(self.path, 'char_lines.json'), 'w') as outfile: json.dump(data, outfile) char_original = load_default_char('heat exchanger', 'kA_char2', 'EVAPORATING FLUID', char_line) char_custom = load_custom_char('EVAPORATING FLUID', char_line) shutil.rmtree(self.path, ignore_errors=True) x_cond =
np.array_equal(char_original.x, char_custom.x)
numpy.array_equal
#!/usr/bin/env python3 # Copyright 2021 <NAME>, <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import os from networks.tpdi_networks import DFCNetwork from sklearn.decomposition import PCA import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from matplotlib.colors import ListedColormap from matplotlib.ticker import FormatStrFormatter mpl.rcParams['mathtext.fontset'] = 'stix' mpl.rcParams['font.family'] = 'STIXGeneral' out_dir = './logs/toy_experiments/fig2' if not os.path.exists(out_dir): os.makedirs(out_dir) np.random.seed(42) torch.manual_seed(42) n_in=5 n_hidden=[2] n_out=2 nb_Q = 2000 nb_J_damped = 100 fit_on = 'total' # 'J', 'total', 'Q' def rescale(matrix, scale=1.): matrix_magnitude = np.linalg.norm(matrix) return scale/matrix_magnitude * matrix def all_positive_eig(A): lamb = np.linalg.eigvals(A) return sum(lamb.real<0) == 0 def all_negative_eig(A): lamb = np.linalg.eigvals(A) return sum(lamb.real>0) == 0 def generate_random_Q(jac): while True: permutation = np.random.randn(n_out,n_out) Q_rand = np.matmul(jac.T, permutation) if all_positive_eig(
np.matmul(jac, Q_rand)
numpy.matmul
import torchaudio import torch import torch.utils.data as data import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import os import csv import math def getDFTFeature(filepath,win_size=1024,win_shift=512,preemphasis=False,channel_first=True,drop_dc=True,cut_len=5160,normalize=False): ''' 获取一个音频的对数DFT频谱 Args: filepath: 音频路径 win_size: 窗口大小(点) win_shift: 滑动距离(点) preemphasis: 是否预强化。通过一阶差分弱低频强高频 channel_first: whether to put channels in first dimension drop_dc: whether to drop DC component in spectrum (frequency==0) cut_len: keep the fix number of points in time axis normalize: 观察发现能量很小,对数能量在-100的数量级,有必要处理一下 Return: (log_power_spectrum, phase_spectrum):能量谱与相位谱相叠形成的tensor 大小原本为(2C,T,M//2),C为通道数据,T为帧数,M为FFT点数 经转置后变为(T,M//2,2C) ''' waveform, sample_freq = torchaudio.load(filepath) m, n = waveform.shape # padding to 2^k if (n-win_size)%win_shift != 0: waveform = torch.cat([waveform,torch.zeros(m,win_shift-(n-win_size)%win_shift)],dim=1) n = waveform.shape[1] # split frames into rows frame_num = (n-win_size)//win_shift + 1 strided_input = waveform.as_strided((m,frame_num,win_size),(n,win_shift,1)) strided_input = strided_input - torch.mean(strided_input,dim=2).unsqueeze(2) # pre-emphasis preemphasis = 0.97 offset_strided_input = torch.nn.functional.pad( strided_input, (1, 0), mode='replicate') strided_input = strided_input - preemphasis*offset_strided_input[:,:,:-1] # windowed and FFT win_func = torch.hamming_window(win_size,periodic=False) windowed_input = strided_input * win_func fft = torch.rfft(windowed_input,1,normalized=False, onesided=True)*2/win_size if drop_dc: fft = fft[:,:,1:] fft = fft[:,:cut_len,:] power_spectrum = fft.pow(2).sum(3) log_power_spectrum = torch.log10(power_spectrum)*10 # 对于能量谱正则化处理 mean_vec = log_power_spectrum.mean(axis=1,keepdim=True) std_vec = log_power_spectrum.std(axis=1,keepdim=True) log_power_spectrum = (log_power_spectrum-mean_vec)/std_vec # phase_spectrum = fft[:,:,:,0]/fft.pow(2).sum(3).sqrt() phase_spectrum = torch.acos(phase_spectrum) phase_spectrum[fft[:,:,:,0]<0] = -phase_spectrum[fft[:,:,:,0]<0] spectrums = torch.cat([log_power_spectrum,phase_spectrum],dim=0) if not channel_first: spectrums = spectrums.permute(1,2,0) return spectrums class TUTDataset(data.Dataset): ''' TUT audio dataset ''' def __init__(self, data_folder,label_folder,sample_freq=44100,split_set=["split1"],ir_set=["ir0"],ov_set=["ov1"],cut_len=5160): ''' Args: data_folder: the path where audio files stored in label_folder: the path where label files stored in sample_freq: the sample frequency of audios split_set: a list, containing the split sets to be loaded ir_set: a list, containing the ir sets to be loaded ov_set: a list, containing the ov sets to be loaded cut_len: the length of feature in time axis ''' super(TUTDataset).__init__() self.data_folder = data_folder self.label_folder = label_folder self.file_names = list(os.listdir(data_folder)) self.sample_freq = sample_freq self.cut_len = cut_len # choose target set self.split_set = set(split_set) self.ir_set = set(ir_set) self.ov_set = set(ov_set) self.file_names = [name for name in self.file_names if (set(name.split("_"))&self.split_set and set(name.split("_"))&self.ir_set and set(name.split("_"))&self.ov_set)] self.name2idx, self.idx2name = self.getAllEvents() self.name2idx['silence'] = 0 self.idx2name.insert(0,'silence') self.num_class = len(self.idx2name) self.frame_len = 1024 self.frame_shift = 512 def __getitem__(self,index): '''get a data sample Args: index: the index Return: (sample_data,sample_sed_label,sample_doa_label): sample_data: 2C x N x F matrix, C is the number of channels, N is time points, F is frequency bins. sample_sed_label: N-dim vector, the class of sound event sample_doa_label: N x 3K matrix, the position of sound event (at unit circle), the final dimension is like (x0,y0,z0,x1,y1,z1,...) ''' file_name = self.file_names[index] label_name = file_name.replace('.wav','.csv') feature = getDFTFeature(os.path.join(self.data_folder,file_name)) label = self.getLabel(os.path.join(self.label_folder,label_name)) if(feature.shape[1]<5160): feature = torch.cat((feature,torch.zeros(feature.shape[0],5160-feature.shape[1],feature.shape[2])),dim=1) return feature,torch.LongTensor(label[0]),torch.tensor(label[1]) def getAllEvents(self): '''get all event labels Return: (label2idx,idx2label) label2idx: a dict to convert event name to index. events count froim 1 idx2label: a list to convert index to event name. 0 is corresponding to silence ''' event_set = set([]) for filename in os.listdir(self.label_folder): if '.csv' in filename: with open(os.path.join(self.label_folder,filename),'r') as f: reader = csv.DictReader(f) for row in reader: event_set.add(row['sound_event_recording']) return {v:(k+1) for k,v in enumerate(event_set)},list(event_set) def decode_one(self,sed_tensor,doa_tensor): '''decode information of predict output Args: sed_tensor: a tensor of predict SED, size T x num_class+1 doa_tensor: a tensor of predict DOA, size T x (num_class+1)*3 Return: all_events: a list of all events, every element is a dict storing name, start, end, ele, azi, etc. of a event. ''' sed_tensor = sed_tensor.cpu().numpy() doa_tensor = doa_tensor.cpu().numpy() all_events = [] current_idx = set([]) onset = {} N = sed_tensor.shape[0] K = sed_tensor.shape[1] for i in range(N): # print(sed_tensor[i,:]) idx = set(np.where(sed_tensor[i,:]>0.5)[0]) # open new events for v in idx: if v not in onset: onset[v] = i # close old events tmp = onset.copy() for v in tmp.keys(): if v not in idx: startp = onset.pop(v) endp = i start = ((startp-1)*self.frame_shift+self.frame_len)/self.sample_freq end = ((endp-1)*self.frame_shift+self.frame_len)/self.sample_freq x = np.mean(doa_tensor[startp:endp,v*3]) y = np.mean(doa_tensor[startp:endp,v*3+1]) z = np.mean(doa_tensor[startp:endp,v*3+2]) r = math.sqrt(x*x+y*y+z*z) if r<1e-5: ele=0 azi=0 else: ele = math.asin(z/r) azi = math.acos(max(min(x/(r*math.cos(ele)),1),-1)) if y<0: azi = -azi all_events.append({ "idx":v, "event":self.idx2name[v], "start":start, "end":end, "x":x, "y":y, "z":z, "ele":ele*180/math.pi, "azi":azi*180/math.pi }) # events continuing to audio end i = N-1 tmp = onset.copy() print(onset) for v in tmp.keys(): startp = onset.pop(v) endp = i start = ((startp-1)*self.frame_shift+self.frame_len)/self.sample_freq end = ((endp-1)*self.frame_shift+self.frame_len)/self.sample_freq x = np.mean(doa_tensor[startp:endp,v*3]) y =
np.mean(doa_tensor[startp:endp,v*3+1])
numpy.mean
"""Tests for the process module""" # Copyright Contributors to the Climbing Ratings project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from .. import process from ..normal_distribution import NormalDistribution from ..process_helpers import TriDiagonalLU from .assertions import assert_close_get class TestProcessFunctions(unittest.TestCase): """Tests for functions in the climber module""" def setUp(self) -> None: np.seterr(all="raise") self.assert_close = assert_close_get(self, self.__class__) def test_invert_lu_dot_g(self) -> None: """Test that for X = invert_lu_dot_g(LU, G), LU X = G""" g = np.array([10.0, 5.0, 32.0]) d = np.array([1.0, 3.0, 10.0]) b = np.array([-2.0, 1.0]) a = np.array([0.1, -2.0]) lu = TriDiagonalLU(d, b, a) x = process._invert_lu_dot_g(lu, g) u_matrix = np.diagflat(d) + np.diagflat(b, 1) l_matrix = np.eye(3) + np.diagflat(a, -1) lu_matrix = np.dot(l_matrix, u_matrix) # Test that LU X = G. lux = np.dot(lu_matrix, x) self.assert_close(g, lux, "LU X") def test_invert_lu(self) -> None: """Test invert_lu(LU, U'L') M = -I""" m = np.array([1.0, -2.0, 0.0, 0.5, 2.0, 1.0, 0.0, 3.0, 11.0]).reshape((3, 3)) lu = TriDiagonalLU( np.array([1.0, 3.0, 10.0]),
np.array([-2, 1.0])
numpy.array
import enum from matplotlib.collections import LineCollection, PolyCollection from scipy.spatial import Voronoi, Delaunay, voronoi_plot_2d, delaunay_plot_2d import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl import matplotlib.cm as cm from collections import defaultdict import sys eps = sys.float_info.epsilon def voronoi_polygons_2D(vor, return_ridges=False): new_regions = [] new_vertices = vor.vertices.tolist() center = vor.points.mean(axis=0) radius = vor.points.ptp().max() #radius = max(self.width, self.height) # Construct a map containing all ridges for a given point all_ridges = defaultdict(list) #construct map of all regions and all ridge points. #foreach pair of points that form a ridge. extract the ridge points and vertices. for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices): all_ridges[p1].append((p2, v1, v2)) all_ridges[p2].append((p1, v1, v2)) # Reconstruct infinite regions for p1, region in enumerate(vor.point_region): vertices = vor.regions[region] if all(v >= 0 for v in vertices): # finite region new_regions.append(vertices) continue # reconstruct a non-finite region ridges = all_ridges[p1] new_region = [v for v in vertices if v >= 0] for p2, v1, v2 in ridges: if v2 < 0: v1, v2 = v2, v1 if v1 >= 0: # finite ridge: already in the region continue # Compute the missing endpoint of an infinite ridge t = vor.points[p2] - vor.points[p1] # tangent t /= np.linalg.norm(t) n =
np.array([-t[1], t[0]])
numpy.array
import numpy as np import matplotlib.pyplot as plt import sympy from sympy import * import sys sys.path.append(r'C:\Users\elira\Google Drive\butools2\Python') sys.path.append('/home/d/dkrass/eliransc/Python') from tqdm import tqdm from butools.ph import * from butools.map import * from butools.queues import * from butools.mam import * from butools.dph import * from scipy.linalg import expm, sinm, cosm from sympy import * from sympy import Symbol from sympy.physics.quantum import TensorProduct import pickle as pkl import pandas as pd from sympy import diff, sin, exp from numpy.linalg import matrix_power def busy(s, lam2, mu2): return ((lam2 + mu2 + s) - ((lam2 + mu2 + s) ** 2 - 4 * lam2 * mu2) ** 0.5) / (2 * lam2) def ser_lap(s, mu): return mu / (s + mu) def hyper(s, lam1, lam2, mu1, mu2): return ser_lap(s, mu1) * lam1 / (lam1 + lam2) + ser_lap(s, mu2) * lam2 / (lam1 + lam2) def rho(lam1, lam2, mu1, mu2): return (lam1 + lam2) * ((lam1 / ((lam1 + lam2) * mu1)) + (lam2 / ((lam1 + lam2) * mu2))) def w_lap(s, lam1, lam2, mu1, mu2): return ((1 - rho(lam1, lam2, mu1, mu2)) * s) / (s - (lam1 + lam2) * (1 - hyper(s, lam1, lam2, mu1, mu2))) def F(s, lam1, lam2, mu1, mu2): return w_lap(s, lam1, lam2, mu1, mu2) * ser_lap(s, mu1) def A(s, lam1, lam2, mu2): return (lam1 / (lam1 + lam2 - lam2 * (ser_lap(s, mu2)))) def beta(s, lam1, lam2, mu1, mu2): return (lam1 / (lam1 + lam2 + s) + ((A(s, lam1, lam2, mu2) * lam2) / (lam1 + lam2 + s)) * ( ser_lap(s, mu2) - busy(s + lam1, lam2, mu2))) / ( 1 - ((lam2 * busy(s + lam1, lam2, mu2)) / (lam1 + lam2 + s))) def tau(s, lam1, lam2, mu1, mu2): return ser_lap(s, mu1) * (A(s, lam1, lam2, mu2) * ( 1 - F(lam1 + lam2 - lam2 * busy(s + lam1, lam2, mu2), lam1, lam2, mu1, mu2)) + F( lam1 + lam2 - lam2 * busy(s + lam1, lam2, mu2), lam1, lam2, mu1, mu2) * beta(s, lam1, lam2, mu1, mu2)) def get_var(lam1, lam2, mu1, mu2): s = Symbol('s') y = tau(s, lam1, lam2, mu1, mu2) dx = diff(y, s) dxdx = diff(dx, s) return dxdx.subs(s, 0) - (dx.subs(s, 0)) ** 2 def get_nth_moment(lam1, lam2, mu1, mu2, n): s = Symbol('s') y = tau(s, lam1, lam2, mu1, mu2) for i in range(n): if i == 0: dx = diff(y, s) else: dx = diff(dx, s) return dx.subs(s, 0) def get_first_n_moments(parameters, n=5): lam1, lam2, mu1, mu2 = parameters moments = [] for n in range(1, n + 1): moments.append(get_nth_moment(lam1, lam2, mu1, mu2, n) * (-1) ** n) moments = np.array([moments], dtype='float') return moments def kroneker_sum(G, H): size_g = G.shape[0] size_h = H.shape[0] return np.kron(G, np.identity(size_h)) + np.kron(np.identity(size_g), H) def give_boundry_probs(R, A0, A1, A, B, C0, ro): p00, p01, p02, p100, p110, p120, p101, p111, p121 = symbols('p00 p01 p02 p100 p110 p120 p101 p111 p121') eqns = [np.dot(np.array([p00, p01, p02]), np.ones((A0.shape[0]))) - (1 - ro)] eq3 = np.dot(np.array([p00, p01, p02]), A0) + np.dot(np.array([p100, p110, p120, p101, p111, p121]), A1) eq1 = np.dot(np.array([p00, p01, p02]), C0) eq2 = np.dot(np.array([p100, p110, p120, p101, p111, p121]), B + np.dot(R, A)) for eq_ind in range(B.shape[0]): eqns.append(eq1[0, eq_ind] + eq2[0, eq_ind]) for eq_ind in range(A0.shape[0]): eqns.append(eq3[0, eq_ind]) A_mat, b = linear_eq_to_matrix(eqns[:-1], [p00, p01, p02, p100, p110, p120, p101, p111, p121]) return A_mat, b def get_expect_gph_system(R, p1_arr, xm_max=5000): expected = 0 for pi_val in range(1, xm_max): ui = p1_arr.reshape((1, R.shape[0])) Ri = np.linalg.matrix_power(R, pi_val - 1) expected += np.dot(
np.dot(ui, Ri)
numpy.dot
import numbers import numpy as np import scipy.sparse as ss import warnings from .base import _BaseSparray from .compat import ( broadcast_to, broadcast_shapes, ufuncs_with_fixed_point_at_zero, intersect1d_sorted, union1d_sorted, combine_ranges, len_range ) # masks for kinds of multidimensional indexing EMPTY_SLICE_INDEX_MASK = 0b1 SLICE_INDEX_MASK = 0b10 INTEGER_INDEX_MASK = 0b100 ARRAY_INDEX_MASK = 0b1000 class FlatSparray(_BaseSparray): '''Simple sparse ndarray-like, similar to scipy.sparse matrices. Defined by three member variables: self.data : array of nonzero values (may include zeros) self.indices : sorted int64 array of nonzero flat indices self.shape : tuple of integers, ala ndarray shape ''' def __init__(self, indices, data, shape=None, is_canonical=False): indices = np.array(indices, dtype=int, copy=False).ravel() data = np.array(data, copy=False).ravel() assert len(indices) == len(data), '# inds (%d) != # data (%d)' % ( len(indices), len(data)) if not is_canonical: # sort and sum duplicates, but allow explicit zeros indices, inv_ind = np.unique(indices, return_inverse=True) data = np.bincount(inv_ind, weights=data).astype(data.dtype, copy=False) if shape is None: self.shape = (indices[-1] + 1,) else: self.shape = shape assert np.prod(shape) >= len(data) self.indices = indices self.data = data @property def dtype(self): return self.data.dtype @staticmethod def from_ndarray(arr): '''Converts an array-like to a FlatSparray object.''' arr = np.array(arr, copy=False) mask = arr.flat != 0 idx, = np.nonzero(mask) return FlatSparray(idx, arr.flat[mask], shape=arr.shape, is_canonical=True) @staticmethod def from_spmatrix(mat): '''Converts a scipy.sparse matrix to a FlatSparray object''' # attempt to canonicalize using scipy.sparse's code try: mat.sum_duplicates() except AttributeError: pass mat = mat.tocoo() inds = np.ravel_multi_index((mat.row, mat.col), mat.shape) if (np.diff(inds) > 0).all(): # easy case: indices are pre-sorted return FlatSparray(inds, mat.data, shape=mat.shape, is_canonical=True) # do the sorting ourselves order = np.argsort(inds) return FlatSparray(inds[order], mat.data[order], shape=mat.shape, is_canonical=True) def toarray(self): a = np.zeros(self.shape, dtype=self.data.dtype) a.flat[self.indices] = self.data return a def tocoo(self): assert len(self.shape) == 2 row, col = np.unravel_index(self.indices, self.shape) return ss.coo_matrix((self.data, (row, col)), shape=self.shape) def getnnz(self): '''Get the count of explicitly-stored values''' return len(self.indices) nnz = property(fget=getnnz, doc=getnnz.__doc__) def nonzero(self): '''Returns a tuple of arrays containing indices of non-zero elements. Note: Does not include explicitly-stored zeros. ''' nz_inds = self.indices[self.data!=0] return np.unravel_index(nz_inds, self.shape) def transpose(self, *axes): if self.ndim < 2: return self # axes control dimension order, defaults to reverse if not axes: axes = range(self.ndim - 1, -1, -1) elif len(axes) == 1 and self.ndim > 1: axes = axes[0] new_shape = tuple(self.shape[i] for i in axes) if self.shape == new_shape: return self # Hack: convert our flat indices into the new shape's flat indices. old_multi_index = np.unravel_index(self.indices, self.shape) new_multi_index = tuple(old_multi_index[i] for i in axes) new_inds = np.ravel_multi_index(new_multi_index, new_shape) return FlatSparray(new_inds, self.data, new_shape) def diagonal(self, offset=0, axis1=0, axis2=1): if axis1 == axis2: raise ValueError('axis1 and axis2 cannot be the same') if self.ndim < 2: raise ValueError('diagonal requires at least two dimensions') # TODO: support different axes, ndim > 2, etc if self.ndim > 2: raise NotImplementedError('diagonal() is NYI for ndim > 2') if axis1 != 0 or axis2 != 1: raise NotImplementedError('diagonal() is NYI for non-default axes') if offset >= 0: n = min(self.shape[0], self.shape[1] - offset) ranges = np.array([[0, n, 1], [offset, n + offset, 1]], dtype=self.indices.dtype) else: n = min(self.shape[0] + offset, self.shape[1]) ranges = np.array([[-offset, n - offset, 1], [0, n, 1]], dtype=self.indices.dtype) if n < 0: return FlatSparray([], [], shape=(0,), is_canonical=True) flat_idx = combine_ranges(ranges, self.shape, n, inner=True) return self._getitem_flatidx(flat_idx, (n,)) def setdiag(self, values, offset=0): if self.ndim < 2: raise ValueError('setdiag() requires at least two dimensions') # TODO: support different axes, ndim > 2, etc if self.ndim > 2: raise NotImplementedError('setdiag() is NYI for ndim > 2') # XXX: copypasta from diagonal() if offset >= 0: n = min(self.shape[0], self.shape[1] - offset) ranges = np.array([[0, n, 1], [offset, n + offset, 1]], dtype=self.indices.dtype) else: n = min(self.shape[0] + offset, self.shape[1]) ranges = np.array([[-offset, n - offset, 1], [0, n, 1]], dtype=self.indices.dtype) if n <= 0: return self diag_indices = combine_ranges(ranges, self.shape, n, inner=True) self._setitem_flatidx(diag_indices, values) def __repr__(self): return '<%s-FlatSparray of type %s\n\twith %d stored elements>' % ( self.shape, self.data.dtype, self.getnnz()) def __str__(self): lines = [] multi_inds = np.unravel_index(self.indices, self.shape) for x in zip(self.data, *multi_inds): lines.append(' %s\t%s' % (x[1:], x[0])) return '\n'.join(lines) def reshape(self, new_shape): try: idx = new_shape.index(-1) except ValueError: assert np.prod(new_shape) >= len(self.data) else: assert sum(d == -1 for d in new_shape) == 1, 'Only one -1 allowed' new_shape = list(new_shape) new_shape[idx] =
np.prod(self.shape)
numpy.prod
# Copyright (c) 2015-2019 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. import copy import os import numpy as np import scipy.signal import astropy.io.fits as pf from .. import qarray as qa from ..timing import Timer, function_timer from ..todmap import MapSampler from ..tod import flagged_running_average, Interval from .psd_math import autocov_psd, crosscov_psd class OpNoiseEstim: """Noise estimation operator. Args: signal(str): Cache object name to analyze flags(str): Cached flags to apply detmask(byte): Flag bits to consider commonmask(byte): Flag bits to consider out(str): Output directory to write the PSDs to. maskfile(str): FITS file name to read the mask from. mapfile(str): FITS map to sample and subtract from the signal. pol(bool): Sample also the polarized part of the map. nbin_psd(int): Bin the resulting PSD. lagmax(int): Maximum lag to consider for the covariance function. stationary_period(float): Break the observation into several estimation periods of this length [s]. nosingle(bool): Do not evaluate individual PSDs. Overridden by pairs. nocross(bool): Do not evaluate cross-PSDs. Overridden by pairs. calibrate_signal_estimate(bool): Regress, not just subtract the signal estimate. nsum(int): Downsampling factor for decimated data. naverage(int): Smoothing kernel width for downsampled data. apply_intervals(bool): If true, only measure the covariance within each interval pairs(iterable): Detector pairs to estimate noise for. Overrides nosingle and nocross. save_cov(bool): Save also the sample covariance. """ def __init__( self, signal=None, flags=None, detmask=1, commonmask=1, out=None, maskfile=None, mapfile=None, pol=True, nbin_psd=1000, lagmax=10000, stationary_period=86400.0, nosingle=False, nocross=True, calibrate_signal_estimate=False, nsum=10, naverage=100, apply_intervals=False, pairs=None, save_cov=False, ): self._signal = signal self._flags = flags self._detmask = detmask self._commonmask = commonmask self._out = out self._maskfile = maskfile self._mapfile = mapfile self._pol = pol self._nbin_psd = nbin_psd self._lagmax = lagmax self._stationary_period = stationary_period self._nosingle = nosingle self._nocross = nocross self._calibrate_signal_estimate = calibrate_signal_estimate self._apply_intervals = apply_intervals self._pairs = pairs # Parameters for downsampling the data self._nsum = nsum self._naverage = naverage self._save_cov = save_cov @function_timer def exec(self, data): comm = data.comm.comm_group masksampler = None if self._maskfile: masksampler = MapSampler(self._maskfile, comm=comm) mapsampler = None if self._mapfile: mapsampler = MapSampler(self._mapfile, comm=comm, pol=True) for obs in data.obs: tod = obs["tod"] if len(tod.local_dets) < len(tod.detectors): raise RuntimeError( "Noise estimation does not work on " "detector-split data" ) dets = {} for idet, det in enumerate(tod.detectors): dets[det] = idet ndet = len(dets) if self._pairs is not None: pairs = self._pairs else: # Construct a list of detector pairs pairs = [] for idet1 in range(ndet): det1 = tod.detectors[idet1] for idet2 in range(idet1, ndet): det2 = tod.detectors[idet2] if det1 == det2 and self._nosingle: continue if det1 != det2 and self._nocross: continue pairs.append([det1, det2]) timestamps = tod.local_times() commonflags = tod.local_common_flags() commonflags = commonflags & self._commonmask != 0 fsample = 1 / np.median(np.diff(timestamps)) if "name" in obs: fileroot = "noise_{}".format(obs["name"]) elif "id" in obs: fileroot = "noise_{}".format(obs["id"]) else: fileroot = "noise_{}".format(int(timestamps[0])) if self._apply_intervals: intervals = tod.local_intervals(obs["intervals"]) else: intervals = [ Interval( start=timestamps[0], stop=timestamps[-1], first=0, last=timestamps.size - 1, ) ] self.subtract_signal(tod, comm, masksampler, mapsampler, intervals) # self.highpass_signal(tod, comm, intervals) # Extend the gap between intervals to prevent sample pairs # that cross the gap. gap_min = np.int(self._lagmax) + 1 # Downsampled data requires longer gaps gap_min_nsum = np.int(self._lagmax * self._nsum) + 1 offset, nsamp = tod.local_samples gapflags = np.zeros_like(commonflags) gapflags_nsum = np.zeros_like(commonflags) for ival1, ival2 in zip(intervals[:-1], intervals[1:]): gap_start = ival1.last + 1 gap_stop = max(gap_start + gap_min, ival2.first) gap_stop_nsum = max(gap_start + gap_min_nsum, ival2.first) if gap_start < offset + nsamp and gap_stop > offset: gap_start = max(0, gap_start - offset) gap_stop = min(offset + nsamp, gap_stop - offset) gapflags[gap_start:gap_stop] = True gap_stop_nsum = min(offset + nsamp, gap_stop_nsum - offset) gapflags_nsum[gap_start:gap_stop_nsum] = True # FIXME: This operator needs to handle situations where # det1 and det2 are not on the same process. Then the # check at the top of the loop can be removed. for det1, det2 in pairs: if det1 not in dets or det2 not in dets: # User-specified pair is invalid continue signal1 = tod.local_signal(det1) flags1 = tod.local_flags(det1, name=self._flags) flags = flags1 & self._detmask != 0 signal2 = None flags2 = None if det1 != det2: signal2 = tod.local_signal(det2) flags2 = tod.local_flags(det2, name=self._flags) flags[flags2 & self._detmask != 0] = True flags[commonflags] = True self.process_noise_estimate( signal1, signal2, flags, gapflags, gapflags_nsum, timestamps, fsample, comm, fileroot, det1, det2, intervals, ) return def highpass_signal(self, tod, comm, intervals): """ Suppress the sub-harmonic modes in the TOD by high-pass filtering. """ tm = Timer() tm.start() rank = 0 if comm is not None: rank = comm.rank if rank == 0: print("High-pass-filtering signal", flush=True) for det in tod.local_dets: signal = tod.local_signal(det, name=self._signal) flags = tod.local_flags(det, name=self._flags) flags &= self._detmask for ival in intervals: ind = slice(ival.first, ival.last + 1) sig = signal[ind] flg = flags[ind] trend = flagged_running_average( sig, flg, self._lagmax, return_flags=False ) sig -= trend if comm is not None: comm.barrier() tm.stop() if rank == 0: tm.report("TOD high pass") return def subtract_signal(self, tod, comm, masksampler, mapsampler, intervals): """ Subtract a signal estimate from the TOD and update the flags for noise estimation. """ if mapsampler is None and masksampler is None: return tm = Timer() tm.start() rank = 0 if comm is not None: rank = comm.rank if rank == 0: print("Subtracting signal", flush=True) for det in tod.local_dets: if det.endswith("-diff") and not self._pol: continue # if comm.rank == 0: # print('Subtracting signal for {}'.format(det), flush=True) # tod.cache.report() epsilon = 0 # FIXME: Where can we get this for every detector? eta = (1 - epsilon) / (1 + epsilon) signal = tod.local_signal(det, name=self._signal) flags = tod.local_flags(det, name=self._flags) flags &= self._detmask try: quats = tod.local_pointing(det) except AttributeError: quats = None if quats is None: continue iquweights = tod.local_weights(det) for ival in intervals: ind = slice(ival.first, ival.last + 1) sig = signal[ind] flg = flags[ind] quat = quats[ind] theta, phi = qa.to_position(quat) iquw = iquweights[ind, :] if masksampler is not None: maskflg = masksampler.at(theta, phi) < 0.5 flg[maskflg] |= 255 if mapsampler is not None: if self._pol: bg = mapsampler.atpol(theta, phi, iquw) else: bg = mapsampler.at(theta, phi) * iquw[:, 0] if self._calibrate_signal_estimate: good = flg == 0 ngood =
np.sum(good)
numpy.sum
# -*- coding: utf-8 -*- """Monte Carlo simulations of the Ising model using the Metropolis algorithm. Copyright (c) Mason DataMaterials Group. Distributed under the terms of the MIT License. Notes ----- Our code is an adaptation of the Ising model code example in chapter 7.7.1, pages 318–319, of *Annotated Algorithms in Python* [ann_algo_python]_, which was released under the BSDv3 License. The starting code remains under that license, while all subsequent changes and new features are released under the MIT license. References ---------- .. [ann_algo_python] <NAME>, *Annotated Algorithms in Python: With Applications in Physics, Biology, and Finance*, 1st ed. (Experts4solutions, Lexington, KY, 2014). """ import logging import math import random from pathlib import Path import numpy as np import pandas as pd __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2017, Mason DataMaterials Group" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "August 31, 2017" logger = logging.getLogger(__name__) class Ising(object): """Monte Carlo simulation of the Ising model.""" coords = [] def __init__(self, number_sites_along_xyz): """Set the number of sites in the cubic lattice. Parameters ---------- nsites_along_xyz : int Sets the number of sites along each side of the cubic lattice. Defines a lattice with total sites equal to nsites_along_xyz**3 """ self.number_sites_along_xyz = number_sites_along_xyz self.site_spin = [[[1 for x in range(number_sites_along_xyz)] for y in range(number_sites_along_xyz)] for z in range(number_sites_along_xyz)] self.magnetization = number_sites_along_xyz**3 def __getitem__(self, site_index): """Return the spin value at the specified site index. Uses periodic boundaries for neighbors outside of grid. Parameters ---------- site_index : int A site index from 0 to number_sites_along_xyz**3 """ number_sites_along_xyz = self.number_sites_along_xyz site_x, site_y, site_z = site_index index_x = (site_x + number_sites_along_xyz) % number_sites_along_xyz index_y = (site_y + number_sites_along_xyz) % number_sites_along_xyz index_z = (site_z + number_sites_along_xyz) % number_sites_along_xyz return self.site_spin[index_x][index_y][index_z] def __setitem__(self, site_index, new_spin_value): """Set the spin value at the specified site index. Uses periodic boundaries for neighbors outside of grid. Parameters ---------- site_index : int A site index from 0 to number_sites_along_xyz**3 new_spin_value : int In the Ising model, the spin value is restricted to values of 1 or -1 """ number_sites_along_xyz = self.number_sites_along_xyz site_x, site_y, site_z = site_index index_x = (site_x + number_sites_along_xyz) % number_sites_along_xyz index_y = (site_y + number_sites_along_xyz) % number_sites_along_xyz index_z = (site_z + number_sites_along_xyz) % number_sites_along_xyz self.site_spin[index_x][index_y][index_z] = new_spin_value def run_simulation(self, steps, temperature, external_field): """Run Monte Carlo simulation. Parameters ---------- steps : int Number of time steps to run the simulation. external_field : float External magnetic field in units of (check units) temperature : float System temperature in units of (check units) Returns ------- simulation_statistics The mean and standard deviation of the magnetization at a given temperature. """ logger.info("Starting simulation run for t=%s, h=%s, steps=%s", temperature, external_field, steps) magnetization_history = self._monte_carlo_simulation( steps=steps, temperature=temperature, external_field=external_field) mean_magnetization =
np.mean(magnetization_history)
numpy.mean
import numpy as np import subprocess from scipy.interpolate import interp1d from scipy.optimize import curve_fit import scipy.stats from .configuring_parameters import ConfiguringParameters from .utils import * from . import diamonds_functions as diamonds from . import asteroseismic_functions as astero __all__ = ['FamedStar',] class FamedStar(object): """ Generic class to represent a star processed by the FAMED pipeline. Longer description Parameters ---------- catalog_id : str Catalogue ID of the star (e.g. 'KIC' for Kepler ot 'TIC' for TESS). star_id : str ID of the star as a string (e.g. '0012008916' or '7037405'). teff : float Effective temperature of the star in Kelvin. """ def __init__(self, catalog_id, star_id, teff): self.catalog_id = catalog_id self.star_id = star_id self.teff = teff self.cp = ConfiguringParameters() peakbagging_results_dir = self.cp.diamonds_path/'PeakBagging'/'results' self.star_dir = peakbagging_results_dir/(self.catalog_id+self.star_id) # Read in the fitted background parameters background_results_dir = self.cp.diamonds_path/'Background'/'results' if self.cp.print_on_screen: if self.cp.external_background_results_dir != '-99': print(' Using an external background fit provided by the user') self.bgp = diamonds.get_background(self.catalog_id, self.star_id, background_results_dir, self.cp.background_run_number, self.cp.external_background_results_dir, self.cp.external_background_filename_suffix) ### Methods to be used by mupltiple modalities (e.g. GLOBAL and CHUNK) def compute_acf_dnu(self, scaling_dnu, par_hist, asef_hist): """ Compute `dnu` from the autocorrelation of the timeseries. This function computes the ACF**2 of the multi-modal sampling obtained with DIAMONDS to evaluate an estimate of the large frequency separation `dnu`. The final value is estimated from a Gaussian fit to the ACF**2. Parameters ---------- scaling_dnu : float The large frequency separation as estimated from the scaling laws. par_hist : array asef_hist : array Returns ------- acf_dnu : float The peak of the Gaussian curve fit to the ACF**2 of the timeseries. interpolated_dnu : array Interpolated array of the `dnu` values. Used primarily for plotting. interpolated_acf : array Interpolated array of the ACF**2. Used primarily for plottoing. """ # Set the limits based on scaling_dnu dnu_range_side = scaling_dnu * self.cp.dnu_acf_range_side top_dnu = scaling_dnu + dnu_range_side bottom_dnu = scaling_dnu - dnu_range_side # Autocorrelate the ASEF freqbin = par_hist[1] - par_hist[0] dnu_range_bins = round((top_dnu-bottom_dnu)/freqbin)+1 bottom_dnu_bins = round(bottom_dnu/freqbin) lag = np.arange(dnu_range_bins) + bottom_dnu_bins temp = asef_hist-np.mean(asef_hist) norm = np.sum(temp**2) result = np.correlate(temp,temp,mode='full')/norm result = result[len(result)//2:][lag] result = result-np.min(result) # Interpolate the results n_interpol = 101 interpolated_dnu = np.arange(n_interpol)/(n_interpol-1)*(top_dnu - bottom_dnu) + bottom_dnu interpolated_acf = interp1d(lag*freqbin,result,'cubic',fill_value='extrapolate',bounds_error=False)(interpolated_dnu) j = np.argmax(interpolated_acf) best_acf = interpolated_acf[j] acf_dnu = interpolated_dnu[j] # Perform a Gaussian fit to the ACF^2 from the smoothed PSD x = interpolated_dnu y = interpolated_acf**2 coeff,cov = curve_fit(gaussian_func,x,y,p0=[max(y),acf_dnu,acf_dnu/10,min(y),0,0]) acf_dnu = coeff[1] return acf_dnu, interpolated_dnu, interpolated_acf def compute_asef(self, param, distr, n_bins=100): """ Compute an Averaged Shifted Envelope Function (ASEF) This function computes an Averaged Shifted Envelope Function (ASEF) from an input sampling distribution. Parameters ---------- param : array The parameter over which we are computing the ASEF. In the case of FAMED, this is the frequency. distr : array The distribution of the parameter to compute the ASEF for. In the case of FAMED, this is the nested sampling iterations. n_bins : int, default: 100 The number of bins used to compute the Average Shifted Histogram. Returns ------- param : array The rebinned parameter distribution. distr : array The rebinned ASEF of the original distribution. """ min_par = min(param) max_par = max(param) binwidth = (max_par-min_par)/n_bins # Now perform average shifting for ASH n_sim = 20 # Number of combined histograms simsize = binwidth/n_sim distr_rebin = np.zeros(shape=(n_sim,n_bins)) param_rebin = np.zeros(shape=(n_sim, n_bins)) for k in range(n_sim): # Define bin-edges. bins = [min_par + j*binwidth + k*simsize for j in range(n_bins+1)] rebin = scipy.stats.binned_statistic( x = param, values = distr, statistic='max', bins = bins, ) bin_edges = rebin[1] bin_centres = (bin_edges[1:] + bin_edges[:-1]) / 2 distr_rebin[k,:] = np.nan_to_num(rebin[0]) param_rebin[k,:] = bin_centres param = param_rebin.mean(axis=0) distr = distr_rebin.mean(axis=0) return param, distr def evaluate_sampling_frequencies(self, par0, par_hist, freq, spsd, maximum, range_maximum): """ Compute frequencies and uncertainties from the multi-modal fit. This function computes the frequencies and their uncertainties from the multi-modal fit of DIAMONDS. The extracted frequencies do not necessarily correspond to real oscillation peaks but they correspond to the extracted local maxima from the ASEF histogram. The function also provides the sampling counts, SPSD local maximum for each frequency, as well as an additional improvement to the definition of the frequency range for each ASEF peak. Parameters ---------- par0 : array The sampled frequency from DIAMONDS multi-modal fit. par_hist : array The rebinned sampled frequency as returned by the ASEF freq : array Frequency axis of the smoothed PSD. spsd : array The smoothed PSD. maximum : array The length N array of frequencies where maxima occur in the ASEF as returned by the hill climbing algorithm. range_maximum : array The 2xN array with the range of frequency to consider for evaluating each maximum. Returns ------- sampled_estimates : dict A dictionary containing the following keys: `freq1` for the frequency, `freq1_sig` for the uncertainty, `sampling_counts` for the total nested iterations values, and `spsd_maximum` for the maxima of the smoothed PSD. """ n_maxima = len(maximum) freq1 = np.zeros(n_maxima) freq_sig1 = np.zeros(n_maxima) sampling_counts = np.zeros(n_maxima) spsd_maximum = np.zeros(n_maxima) nest_iter = np.arange(len(par0)) range_maximim_old = range_maximum freqbin = freq[1]-freq[0] for i in range(0, n_maxima): # Consider the frequency range around the local maximum iterations = 0 while iterations < self.cp.max_iterations_frequency + 1: upper_bound = range_maximum[1,i] lower_bound = range_maximum[0,i] tmp_freq_range = np.where((freq >= lower_bound) & (freq <= upper_bound))[0] # Make sure that within each range, at least one frequency # point is found. while len(tmp_freq_range)<1: upper_bound += freqbin/2 lower_bound -= freqbin/2 tmp_freq_range = np.where((freq >= lower_bound) & (freq <= upper_bound))[0] range_maximum[1,i] = upper_bound range_maximum[0,i] = lower_bound tmp_range = np.where((par0 <= upper_bound) & (par0 >= lower_bound))[0] par0_range = par0[tmp_range] spsd_range = spsd[tmp_freq_range] # Count the total of the nested iteration values falling in this # maximum bin. Note this is not the number of nested sampling # points, but it includes the actual nested iteration value from # each point (which can be up to several thousands for an # individual sampling point). In this way it is possible to # better weight the local maxima by the actual level of # likelihood that they have reached during the sampling. sampling_counts[i] = np.sum(nest_iter[tmp_range]) # Save the maximum smoothed PSD in the region of this maximum spsd_maximum[i] = np.max(spsd_range) # Weighted by nested iteration value freq1[i] = np.sum(par0_range*tmp_range**2)/np.sum(tmp_range**2) freq_sig1[i] = np.sqrt(np.sum((par0_range-freq1[i])**2*tmp_range**2)/np.sum(tmp_range**2)) if iterations == 1: break # Improve frequency ranges for computation of uncertainties and # evaluation of the number of sampling points. Do not exceed # ranges by more than estimated sigma * X times (usually 2) if upper_bound > freq1[i]+freq_sig1[i]*self.cp.max_sigma_range: range_maximum[1,i] = freq1[i]+freq_sig1[i]*self.cp.max_sigma_range if lower_bound < freq1[i]-freq_sig1[i]*self.cp.max_sigma_range: range_maximum[0,i] = freq1[i]-freq_sig1[i]*self.cp.max_sigma_range # Try to make ranges extend by at least sigma * Y times (usually 1) on each side left_freq = freq1[i]-freq_sig1[i]*self.cp.min_sigma_range right_freq = freq1[i]+freq_sig1[i]*self.cp.min_sigma_range if lower_bound > left_freq: if i == 0: if left_freq <= np.min(par_hist): range_maximum[0,i] = np.min(par_hist) if left_freq > np.min(par_hist): range_maximum[0,i] = left_freq else: if left_freq <= range_maximum[1,i-1]: range_maximum[0,i] = range_maximum[1,i-1] if left_freq > range_maximum[1,i-1]: range_maximum[0,i] = left_freq if upper_bound < right_freq: if i == n_maxima-1: if right_freq >= np.max(par_hist): range_maximum[1,i] =
np.max(par_hist)
numpy.max
##### #this is the file to run the cnn. You have the ability to either use #the nvidia cnn or the sio cnn. ### from functions import (detect_edges, detect_line_segments, plot_line_segments, show_image, extract_data) import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt import cv2 import os import csv import pandas as pd from sklearn.utils import shuffle from sklearn.model_selection import train_test_split n=3 #1 for nvidia cnn, 2 for sio cnn, 3 for speed model #keras.models.load_model('model1.hf') #extract data from folders. data_dir1 = '../../Data/training_data/training_data' #first we extract images file_list = np.asarray(os.listdir(data_dir1)) a=0 x1 = [] for f in file_list: frame = cv2.imread(data_dir1 + '/' + f) x1.append(frame) #print(a) a+=1 x1=np.asarray(x1) #print(x1.shape) #now extract labels labels = np.genfromtxt('../../Data/training_norm.csv',delimiter = ',') y1 = labels[1:,1:] #print(y1.shape) data_dir2 = '../../Data/captureOVAL-28_02_2020' x2,y2 = extract_data(data_dir2) x2 = np.asarray(x2) #print(x2.shape) y2[:,0] = (y2[:,0] -50)/80 y2[:,1] = (y2[:,1])/35 #print(y2.shape) data_dir3 = '../../Data/captureOVAL2-28_02_2020' x3,y3 = extract_data(data_dir3) x3 = np.asarray(x3) #print(x3.shape) y3[:,0] = (y3[:,0] -50)/80 y3[:,1] = (y3[:,1])/35 #print(y3.shape) data_dir4 = '../../Data/captureOVAL03_03_2020' x4,y4 = extract_data(data_dir4) x4 = np.asarray(x4) #print(x4.shape) y4[:,0] = (y4[:,0] -50)/80 y4[:,1] = (y4[:,1])/35 #print(y4.shape) data_dir5 = '../../Data/human_stopped_data' x5,y5 = extract_data(data_dir5) x5 =
np.asarray(x5)
numpy.asarray
#!/usr/bin/env python # PROGRAM: plot_sst.py # ---------------------------------------------------------------------------------- # Version 0.18 # 19 August, 2019 # michael.taylor AT reading DOT ac DOT uk # PYTHON DEBUGGER CONTROL: #------------------------ # import os; os._exit(0) # import ipdb # ipdb.set_trace() import os.path import optparse from optparse import OptionParser import sys import numpy as np import xarray import pandas as pd from pandas import Series, DataFrame, Panel import seaborn as sns; sns.set(style="darkgrid") import datetime import matplotlib import matplotlib.pyplot as plt; plt.close("all") #import typhon #from typhon.plots import plot_bitfield #cmap = 'tab20c' # https://matplotlib.org/users/colormaps def calc_median(counts,bins): """ # ------------------------------- # CALCULATE MEDIUM FROM HISTOGRAM # ------------------------------- # M_estimated ~ L_m + [ ( N/2 - F_{m-1} ) / f_m] * c # # where, # # L_m =lower limit of the median bar # N = is the total number of observations # F_{m-1} = cumulative frequency (total number of observations) in all bars below the median bar # f_m = frequency of the median bar # c = median bar width """ M = 0 counts_cumsum = counts.cumsum() counts_half = counts_cumsum[-1]/2.0 for i in np.arange(0,bins.shape[0]-1): counts_l = counts_cumsum[i] counts_r = counts_cumsum[i+1] if (counts_half >= counts_l) & (counts_half < counts_r): c = bins[1]-bins[0] L_m = bins[i+1] F_m_minus_1 = counts_cumsum[i] f_m = counts[i+1] M = L_m + ( (counts_half - F_m_minus_1) / f_m ) * c return M def plot_n_sst(times,n_sst_q3,n_sst_q4,n_sst_q5): """ # --------------------------------------- # PLOT CUMULATIVE SST OBSERVATION DENSITY # --------------------------------------- """ ocean_area = 361900000.0 t = np.array(times, dtype=np.datetime64) years = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') / 365.0 Q3 = pd.Series(n_sst_q3, index=times).fillna(0) / ocean_area / years Q4 = pd.Series(n_sst_q4, index=times).fillna(0) / ocean_area / years Q5 = pd.Series(n_sst_q5, index=times).fillna(0) / ocean_area / years df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = df['QL=4'] + df['QL=5'] df = df.mask(np.isinf(df)) fig = plt.figure() plt.plot(times,df['QL=4 & 5'].cumsum(), drawstyle='steps') plt.plot(times,df['QL=3'].cumsum(), drawstyle='steps') plt.tick_params(labelsize=12) plt.ylabel("Observation density / $\mathrm{km^{-2} \ yr^{-1}}$", fontsize=12) title_str = ' ' + 'QL=3:max=' + "{0:.5f}".format(df['QL=3'].cumsum().max()) + ' ' + 'QL=4 & 5:max=' + "{0:.5f}".format(df['QL=4 & 5'].cumsum().max()) print(title_str) plt.legend(loc='best') plt.savefig('n_sst.pdf') # plt.savefig('n_sst.png', dpi=600) # plt.savefig('n_sst.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_n_sst_lat(lat_vec,n_sst_q3_lat,n_sst_q4_lat,n_sst_q5_lat): """ # ------------------------------------------ # PLOT SST OBSERVATION DENSITY WITH LATITUDE # ------------------------------------------ """ interpolation = np.arange(-90,90,1) multiplier = 1.0 Q3 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q3_lat), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q4_lat), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q5_lat), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = df['QL=4'] + df['QL=5'] df['QL=3 & 4 & 5'] = df['QL=3'] + df['QL=4'] + df['QL=5'] df = df.mask(np.isinf(df)) fig = plt.figure() plt.fill_between(interpolation, df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(interpolation, df['QL=3'], step="post", alpha=0.4) plt.plot(interpolation, df['QL=4 & 5'], drawstyle='steps-post', label='QL=4 & 5') plt.plot(interpolation, df['QL=3'], drawstyle='steps-post', label='QL=3') ax = plt.gca() ax.set_xlim([-90,90]) ticks = ax.get_xticks() ax.set_xticks(np.linspace(-90, 90, 7)) plt.tick_params(labelsize=12) plt.xlabel("Latitude / $\mathrm{\degree N}$", fontsize=12) plt.ylabel("Observation density / $\mathrm{km^{-2} \ yr^{-1}}$", fontsize=12) plt.legend(loc='best') plt.savefig('n_sst_lat.pdf') # plt.savefig('n_sst_lat.png', dpi=600) # plt.savefig('n_sst_lat.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_sst(sst_midpoints,sst_q3_hist,sst_q4_hist,sst_q5_hist): """ # ------------------------------ # PLOT HISTOGRAM OF SST + MEDIAN # ------------------------------ """ # interpolation = np.arange(260.05,319.95,0.1) # original bin midpoints i = np.arange(260,320,0.1) # bin edges n = len(i) m = 1.0 q3 = m * pd.Series(np.interp(i,sst_midpoints,sst_q3_hist), index=i) q4 = m * pd.Series(np.interp(i,sst_midpoints,sst_q4_hist), index=i) q5 = m * pd.Series(np.interp(i,sst_midpoints,sst_q5_hist), index=i) dq = pd.DataFrame({'QL=3':q3, 'QL=4':q4, 'QL=5':q5}) dq['QL=4 & 5'] = 0.5 * (dq['QL=4'] + dq['QL=5']) # dq = dq.mask(np.isinf(df)) M3 = calc_median(dq['QL=3'].values,i[0:n]) M4_5 = calc_median(dq['QL=4 & 5'].values,i[0:n]) interpolation = np.arange(260,320,1) # 10x original resolution n = len(interpolation) multiplier = 10.0 Q3 = multiplier * pd.Series(np.interp(interpolation,sst_midpoints,sst_q3_hist), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,sst_midpoints,sst_q4_hist), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,sst_midpoints,sst_q5_hist), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = 0.5 * (df['QL=4'] + df['QL=5']) # df = df.mask(np.isinf(df)) fig = plt.figure() plt.fill_between(interpolation,df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(interpolation,df['QL=3'], step="post", alpha=0.4) plt.plot(interpolation,df['QL=4 & 5'], drawstyle='steps-post') plt.plot(interpolation,df['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([260,310]) plt.tick_params(labelsize=12) plt.xlabel("SST / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ K^{-1}}$", fontsize=12) title_str = 'SST: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_sst.pdf') # plt.savefig('hist_sst.png', dpi=600) # plt.savefig('hist_sst.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_sensitivity(sensitivity_midpoints,sensitivity_q3_hist,sensitivity_q4_hist,sensitivity_q5_hist): """ # ------------------------------------------------ # PLOT HISTOGRAM OF RETRIEVAL SENSITIVITY + MEDIAN # ------------------------------------------------ """ # interpolation = np.arange(0.005,1.995,0.01) # original bin midpoints interpolation = np.arange(0,2,0.01) n = len(interpolation) multiplier = 1.0 Q3 = multiplier * pd.Series(np.interp(interpolation,sensitivity_midpoints,sensitivity_q3_hist), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,sensitivity_midpoints,sensitivity_q4_hist), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,sensitivity_midpoints,sensitivity_q5_hist), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = 0.5 * (df['QL=4'] + df['QL=5']) # df = df.mask(np.isinf(df)) M3 = calc_median(df['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df['QL=4 & 5'].values,interpolation[0:n]) fig = plt.figure() plt.fill_between(100.0*interpolation,df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(100.0*interpolation,df['QL=3'], step="post", alpha=0.4) plt.plot(100.0*interpolation,df['QL=4 & 5'], drawstyle='steps-post') plt.plot(100.0*interpolation,df['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([85,110]) plt.tick_params(labelsize=12) plt.xlabel("Retrieval sensitivity / $\mathrm{\%}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ {\%}^{-1} }$", fontsize=12) title_str = 'Sensitivity: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_sensitivity.pdf') # plt.savefig('hist_sensitivity.png', dpi=600) # plt.savefig('hist_sensitivity.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_total_uncertainty(total_uncertainty_midpoints,total_uncertainty_q3_hist,total_uncertainty_q4_hist,total_uncertainty_q5_hist): """ # -------------------------------------------- # PLOT HISTOGRAM OF TOTAL UNCERTAINTY + MEDIAN # -------------------------------------------- """ # interpolation = np.arange(0.005,3.995+0.01,0.01) # original bin midpoints interpolation = np.arange(0,4,0.01) n = len(interpolation) multiplier = 1.0 Q3 = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q3_hist), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q4_hist), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q5_hist), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = 0.5 * (df['QL=4'] + df['QL=5']) # df = df.mask(np.isinf(df)) M3 = calc_median(df['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df['QL=4 & 5'].values,interpolation[0:n]) fig = plt.figure() plt.fill_between(total_uncertainty_midpoints,df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(total_uncertainty_midpoints,df['QL=3'], step="post", alpha=0.4) plt.plot(total_uncertainty_midpoints,df['QL=4 & 5'], drawstyle='steps-post') plt.plot(total_uncertainty_midpoints,df['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([0.0,1.25]) plt.tick_params(labelsize=12) plt.xlabel("Total uncertainty / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ cK^{-1}}$", fontsize=12) title_str = 'Uncertainty: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_total_uncertainty.pdf') # plt.savefig('hist_total_uncertainty.png', dpi=600) # plt.savefig('hist_total_uncertainty.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_total_uncertainty2(total_uncertainty_midpoints,total_uncertainty_q3_hist_avhrr,total_uncertainty_q4_hist_avhrr,total_uncertainty_q5_hist_avhrr,total_uncertainty_q3_hist_atsr,total_uncertainty_q4_hist_atsr,total_uncertainty_q5_hist_atsr): """ # -------------------------------------------------------------- # PLOT HISTOGRAM OF TOTAL UNCERTAINTY + MEDIAN FOR AVHRR VS ATSR # -------------------------------------------------------------- """ # interpolation = np.arange(0.005,3.995,0.01) # original bin midpoints interpolation = np.arange(0,4,0.01) n = len(interpolation) multiplier = 1.0 Q3_avhrr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q3_hist_avhrr), index=interpolation) Q4_avhrr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q4_hist_avhrr), index=interpolation) Q5_avhrr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q5_hist_avhrr), index=interpolation) df_avhrr = pd.DataFrame({'QL=3':Q3_avhrr, 'QL=4':Q4_avhrr, 'QL=5':Q5_avhrr}) # df_avhrr['QL=4 & 5'] = 0.5 * (df_avhrr['QL=4'] + df_avhrr['QL=5']) df_avhrr['QL=4 & 5'] = df_avhrr['QL=5'] # df_avhrr = df_avhrr.mask(np.isinf(df_avhrr)) Q3_atsr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q3_hist_atsr), index=interpolation) Q4_atsr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q4_hist_atsr), index=interpolation) Q5_atsr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q5_hist_atsr), index=interpolation) df_atsr = pd.DataFrame({'QL=3':Q3_atsr, 'QL=4':Q4_atsr, 'QL=5':Q5_atsr}) df_atsr['QL=4 & 5'] = 0.5 * (df_atsr['QL=4'] + df_atsr['QL=5']) # df_atsr = df_atsr.mask(np.isinf(df_atsr)) fig = plt.figure() plt.fill_between(total_uncertainty_midpoints,df_avhrr['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(total_uncertainty_midpoints,df_avhrr['QL=3'], step="post", alpha=0.4) plt.plot(total_uncertainty_midpoints,df_avhrr['QL=4 & 5'], drawstyle='steps-post') plt.plot(total_uncertainty_midpoints,df_avhrr['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([0.0,1.25]) plt.tick_params(labelsize=12) plt.xlabel("Total uncertainty / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ cK^{-1}}$", fontsize=12) M3 = calc_median(df_avhrr['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df_avhrr['QL=4 & 5'].values,interpolation[0:n]) title_str = 'AVHRR: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_total_uncertainty_avhrr.pdf') # plt.savefig('hist_total_uncertainty_avhrr.png', dpi=600) # plt.savefig('hist_total_uncertainty_avhrr.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') fig = plt.figure() plt.fill_between(total_uncertainty_midpoints,df_atsr['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(total_uncertainty_midpoints,df_atsr['QL=3'], step="post", alpha=0.4) plt.plot(total_uncertainty_midpoints,df_atsr['QL=4 & 5'], drawstyle='steps-post') plt.plot(total_uncertainty_midpoints,df_atsr['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([0.0,1.25]) plt.tick_params(labelsize=12) plt.xlabel("Total uncertainty / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ cK^{-1}}$", fontsize=12) M3 = calc_median(df_atsr['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df_atsr['QL=4 & 5'].values,interpolation[0:n]) title_str = 'ATSR: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_total_uncertainty_atsr.pdf') # plt.savefig('hist_total_uncertainty_atsr.png', dpi=600) # plt.savefig('hist_total_uncertainty_atsr.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def calc_n_sst_timeseries(satellites): """ # --------------------------------------------------------------- # CALC MEAN OF TIMESERIES OF DAILY OBSERVATION DENSITY PER SENSOR # --------------------------------------------------------------- """ ocean_area = 361900000.0 labels = ['ATSR1','ATSR2','AATSR','NOAA07','NOAA09','NOAA11','NOAA12','NOAA14','NOAA15','NOAA16','NOAA17','NOAA18','NOAA19','METOPA'] satellites = ['ATSR1','ATSR2','AATSR','AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] df_all = pd.DataFrame() for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3, 'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] df_all = df_all.append(df,ignore_index=True) satellites_avhrr = ['AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] df_avhrr = pd.DataFrame() for i in range(0,len(satellites_avhrr)): filename = satellites_avhrr[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3, 'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] df_avhrr = df_avhrr.append(df,ignore_index=True) satellites_atsr = ['AATSR','ATSR1','ATSR2'] df_atsr = pd.DataFrame() for i in range(0,len(satellites_atsr)): filename = satellites_atsr[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3, 'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] df_atsr = df_atsr.append(df,ignore_index=True) return df_all, df_avhrr, df_atsr def plot_n_sst_timeseries(satellites): """ # ------------------------------------------------------- # PLOT TIMESERIES OF DAILY OBSERVATION DENSITY PER SENSOR # ------------------------------------------------------- """ ocean_area = 361900000.0 labels = ['ATSR1','ATSR2','AATSR','NOAA07','NOAA09','NOAA11','NOAA12','NOAA14','NOAA15','NOAA16','NOAA17','NOAA18','NOAA19','METOPA'] satellites = ['ATSR1','ATSR2','AATSR','AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) lab = [] ncolors = len(satellites) ax1.set_prop_cycle('color',[plt.cm.gnuplot2(j) for j in np.linspace(0, 1, ncolors)]) for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] # df['Sum'] = df['Q4'].fillna(0) + df['Q5'].fillna(0) # df['Sum_mean'] = df['Sum'].resample("1d").sum().fillna(0).rolling(window=31, min_periods=1).median() # df['Sum_mean'].plot(ax=ax1) lab.append(labels[i]) ax1.plot(times, df['Sum'], '.', markersize=0.2) ax1.set_ylim([0,18]) print(labels[i] + "," + str(df['Sum'].mean()) + "," + str(df['Sum'].shape[0])) plt.tick_params(labelsize=12) title_str = 'QL=4 & 5' ax1.set_title(title_str, fontsize=10) lab = [] ncolors = len(satellites) ax2.set_prop_cycle('color',[plt.cm.gnuplot2(j) for j in np.linspace(0, 1, ncolors)]) for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3}) # df['Q3_mean'] = df['Q3'].resample("1d").sum().rolling(window=31, min_periods=1).median() # df['Q3_mean'].plot(ax=ax2) lab.append(labels[i]) ax2.plot(times, df['Q3'], '.', markersize=0.2) ax2.set_ylim([0,18]) print(labels[i] + "," + str(df['Q3'].mean()) + "," + str(df['Q3'].shape[0])) plt.tick_params(labelsize=12) title_str = 'QL=3' ax2.set_title(title_str, fontsize=10) fig.legend(lab, fontsize=8, loc=7, markerscale=20, scatterpoints=5) fig.subplots_adjust(right=0.8) fig.text(0.01, 0.5, 'Observation density / $\mathrm{km^{-2} \ yr^{-1}}$', va='center', rotation='vertical') plt.savefig('n_sst_timeseries.pdf') # plt.savefig('n_sst_timeseries.png', dpi=600) # plt.savefig('n_sst_timeseries.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_n_sst_boxplots(satellites): """ # -------------------------------------------------------------- # PLOT YEARLY BOXPLOTS FROM DAILY OBSERVATION DENSITY PER SENSOR # -------------------------------------------------------------- """ ocean_area = 361900000.0 labels = ['ATSR1','ATSR2','AATSR','NOAA07','NOAA09','NOAA11','NOAA12','NOAA14','NOAA15','NOAA16','NOAA17','NOAA18','NOAA19','METOPA'] satellites = ['ATSR1','ATSR2','AATSR','AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] fig, ax = plt.subplots(figsize=(12,5)) ts = pd.Series(df['Sum'].values, index=times) sns.boxplot(ts.index.month, ts, ax=ax) title_str = 'QL=4 & 5:' + labels[i] ax.set_ylabel('Observation density / $\mathrm{km^{-2} \ yr^{-1}}$') ax.set_title(title_str, fontsize=10) file_str = 'n_sst_boxplot_' + labels[i] + '_QL4_5' + '.pdf' # file_str = 'n_sst_boxplot_' + labels[i] + '_QL4_5' + '.png' # file_str = 'n_sst_boxplot_' + labels[i] + '_QL4_5' + '.eps' plt.savefig(file_str) # plt.savefig(file_str, dpi=600) # plt.savefig(file_str, format='eps', rasterized=True, dpi=1200) plt.close("all") for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3}) fig, ax = plt.subplots(figsize=(12,5)) ts = pd.Series(df['Q3'].values, index=times) sns.boxplot(ts.index.month, ts, ax=ax) title_str = 'QL=3:' + labels[i] ax.set_ylabel('Observation density / $\mathrm{km^{-2} \ yr^{-1}}$') ax.set_title(title_str, fontsize=10) file_str = 'n_sst_boxplot_' + labels[i] + '_QL3' '.pdf' # file_str = 'n_sst_boxplot_' + labels[i] + '_QL3' '.png' # file_str = 'n_sst_boxplot_' + labels[i] + '_QL3' '.eps' plt.savefig(file_str) # plt.savefig(file_str, dpi=600) # plt.savefig(file_str, format='eps', rasterized=True, dpi=1200) plt.close("all") def calc_lat_fraction(): """ # --------------------------------------------------------------- # EXTRACT OCEAN FRACTION WITH LATITUDE FROM L4 OSTIA LANDSEA MASK # --------------------------------------------------------------- """ # mask:source = "NAVOCEANO_landmask_v1.0 EUMETSAT_OSI-SAF_icemask ARCLake_lakemask" # mask:comment = "water land lake ice" # mask:flag_masks = 1b, 2b, 4b, 8b, 16b # mask:summary = "OSTIA L4 product from the ESA SST CCI project, produced using OSTIA reanalysis sytem v3.0" ds = xarray.open_dataset('landsea_mask.nc') x = ds.lon y = ds.lat z = ds.mask water = z==1 land = z==2 water_ice = z==9 # water only = 52.42% # land only = 33.67% # water + ice = 13.91% f = 1 - (np.sum(land[0,:,:],axis=1) / len(x)*1.) lat_vec = y lat_fraction = f # exec(open('plot_landsea_mask.py').read()) return lat_vec, lat_fraction def load_data(lat_vec, lat_fraction): # # Rescale ocean_area to total area of surface in each latitude zone # ocean_area = 361900000.0 # ETOPO1: km2 R = 6371.0088 # km # Formula for the area of the Earth between a line of latitude and the north pole (the area of a spherical cap): A = 2*pi*R*h where R is the radius of the earth and h is the perpendicular distance from the plane containing the line of latitude to the pole. We can calculate h using trigonometry: h = R*(1-sin(lat)). The area north of a line of latitude is therefore: A = 2*pi*R^2(1-sin(lat)). # The area between two lines of latitude is the difference between the area north of one latitude and the area north of the other latitude: A = |2*pi*R^2(1-sin(lat2)) - 2*pi*R^2(1-sin(lat1)) = 2*pi*R^2 |sin(lat1) - sin(lat2) # The area of a lat-long rectangle is proportional to the difference in the longitudes. The area I just calculated is the area between longitude lines differing by 360 degrees. Therefore the area we seek is: A = 2*pi*R^2 |sin(lat1)-sin(lat2)| |lon1-lon2|/360 = (pi/180)R^2 |sin(lat1)-sin(lat2)| |lon1-lon2| dlat = 0.05 A = [] N = len(lat_vec) for i in range(N): dA = 2. * np.pi * R**2.0 * np.absolute( np.sin(np.pi/180 * (lat_vec[\ i]+dlat/2)) - np.sin(np.pi/180 * (lat_vec[i]-dlat/2))) A.append(dA) surface_vec = np.array(A) ocean_vec = surface_vec * np.array(lat_fraction) FPE = 100. * (1.0 - np.sum(ocean_vec) / ocean_area) print('FPE(ETOPO1,ocean_area)=', FPE) fig, ax = plt.subplots() plt.plot(lat_vec, surface_vec, label='surface area') plt.plot(lat_vec, ocean_vec, label='ocean') plt.legend() plt.xlabel('Latitude / degrees') plt.ylabel(r'Area / $km^{2}$') # title_str = "ETOPO1 ocean_area=" + "{0:.3e}".format(ocean_area) + " calculated=" + "{0:.3e}".format(np.sum(ocean_vec)) # plt.title(title_str) file_str = "ocean_area.png" fig.tight_layout() plt.savefig('ocean_area.pdf') # plt.savefig('ocean_area.png', dpi=600) # plt.savefig('ocean_area.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') satellites = ['AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G','AATSR','ATSR1','ATSR2'] df = [] for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' dsi = xarray.open_dataset(filename) df.append(dsi) dsi = [] ds = xarray.concat(df, dim='time') df = [] dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() dates = [] days = [] times_duplicates = [] Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) idx = [] n_sst_q3 = Q3_duplicates.groupby(Q3_duplicates.index).sum() n_sst_q4 = Q4_duplicates.groupby(Q4_duplicates.index).sum() n_sst_q5 = Q5_duplicates.groupby(Q5_duplicates.index).sum() Q3_duplicates = [] Q4_duplicates = [] Q5_duplicates = [] # # CALCULATE CLEAR SKY FRACTION # # water only = 52.42% / land only = 33.67% / water + ice = 13.91% / non-land = 66.33% n_ocean = (0.5242 + 0.1391) * 3600 * 7200 * len(times) n_q3 = np.sum(n_sst_q3) n_q4 = np.sum(n_sst_q4) n_q5 = np.sum(n_sst_q5) clearsky_q3 = n_q3 / n_ocean clearsky_q4 = n_q4 / n_ocean clearsky_q5 = n_q5 / n_ocean # # SLICE BY LATITUDE # # NB: change: * years rather than / years n_sst_q3_lat = np.sum(ds['n_sst_q3_lat'],axis=0)[0:3600,] / np.array((lat_fraction * surface_vec) * years) n_sst_q4_lat = np.sum(ds['n_sst_q4_lat'],axis=0)[0:3600,] / np.array((lat_fraction * surface_vec) * years) n_sst_q5_lat = np.sum(ds['n_sst_q5_lat'],axis=0)[0:3600,] / np.array((lat_fraction * surface_vec) * years) gd_q3 = np.isfinite(np.array(n_sst_q3_lat)) gd_q4 = np.isfinite(np.array(n_sst_q4_lat)) gd_q5 = np.isfinite(np.array(n_sst_q5_lat)) n_sst_q3_lat_mean = np.array(n_sst_q3_lat)[gd_q3].mean() n_sst_q4_lat_mean = np.array(n_sst_q4_lat)[gd_q4].mean() n_sst_q5_lat_mean = np.array(n_sst_q5_lat)[gd_q5].mean() print('n_sst_q3_lat_mean=', n_sst_q3_lat_mean) print('n_sst_q4_lat_mean=', n_sst_q4_lat_mean) print('n_sst_q5_lat_mean=', n_sst_q5_lat_mean) # # CONCATENATE HISTOGRAMS # sst_midpoints = ds['sst_midpoints'] sst_q3_hist = 100.0 * np.sum(ds['sst_q3_hist'],axis=0) / np.sum(np.sum(ds['sst_q3_hist'],axis=0)) sst_q4_hist = 100.0 * np.sum(ds['sst_q4_hist'],axis=0) / np.sum(np.sum(ds['sst_q4_hist'],axis=0)) sst_q5_hist = 100.0 * np.sum(ds['sst_q5_hist'],axis=0) / np.sum(np.sum(ds['sst_q5_hist'],axis=0)) sensitivity_midpoints = ds['sensitivity_midpoints'] sensitivity_q3_hist = 100.0 * np.sum(ds['sensitivity_q3_hist'],axis=0) / np.sum(np.sum(ds['sensitivity_q3_hist'],axis=0)) sensitivity_q4_hist = 100.0 * np.sum(ds['sensitivity_q4_hist'],axis=0) / np.sum(np.sum(ds['sensitivity_q4_hist'],axis=0)) sensitivity_q5_hist = 100.0 * np.sum(ds['sensitivity_q5_hist'],axis=0) / np.sum(np.sum(ds['sensitivity_q5_hist'],axis=0)) total_uncertainty_midpoints = ds['total_uncertainty_midpoints'] total_uncertainty_q3_hist = 100.0 *
np.sum(ds['total_uncertainty_q3_hist'],axis=0)
numpy.sum
''' ############################################################################### "MajoranaNanowire" Python3 Module v 1.0 (2020) Created by <NAME> (2018) ############################################################################### "Function" submodule This sub-package contains some functions required for the "Hamiltonian" sub-package. ############################################################################### ''' #%%############################################################################ ######################## Required Packages ############################ ############################################################################### import numpy as np import scipy.sparse import scipy.sparse.linalg import scipy.linalg from scipy import constants from MajoranaNanowires.third_functions import pfaffian as pf #%% ############################# Functions #%% def FermiDirac(E,kT,mu=0): """ Computes the Fermi-Dirac distribution. Parameters ---------- E: scalar or arr Energies. kT: scalar Temperature (in units of energy). mu: scalar or arr Fermi energy. Returns ------- result: scalar or arr Fermi-Dirac distribution for the given energies. """ np.seterr(over='ignore') np.seterr(divide='ignore') return (1/(1+np.exp((E-mu)/kT))) #%% def density_TF(phi,kT=0,E_F=0,material='InAs',band='conduction',Vz=0): """ Computes the charge density of a 3D (free) electron gas in the Thomas-Fermi approximation. Parameters ---------- phi: scalar or arr Electrostatic energy. kT: scalar Temperature (in units of energy). E_F: scalar or arr Fermi energy. material: str or dic Material for which is evaluated. For a general material, 'material' is a dictionary with arguments m_eff (conduction effective mass), m_eff_hh (heavy hole effective mass), m_eff_lh (light hole effective mass), and E_gap (semiconductor gap). These parameters are already saved in this function for InAs and InSb, which can be chosen by choosing material='InAs' or 'InSb', resprectively. band: str Whether to include 'conduction', 'valence' or 'both' bands in the calculations. Vz: scalar Zeeman splitting. Returns ------- den: scalar or arr Charge density in the Thomas-Fermi approximation for the given electrostatic energies. """ np.seterr(invalid='ignore') if material=='InAs': m_eff=0.023 m_eff_hh=0.41 m_eff_lh=0.026 E_gap=418 elif material=='InSb': m_eff=0.015 m_eff_hh=0.43 m_eff_lh=0.015 E_gap=170 else: if 'E_gap' in material: material['m_eff'], material['m_eff_hh'], material['m_eff_lh'], material['E_gap'] = m_eff, m_eff_hh, m_eff_lh, E_gap else: material['m_eff'] = m_eff if band=='conduction': if Vz==0: den_e=-1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F)*1e-3*constants.e*FermiDirac(-phi-E_F,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_e,0) else: den_e=-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F+Vz)*1e-3*constants.e*FermiDirac(-phi-E_F-Vz,kT))/constants.hbar)**3*1e-27 den_e=den_e-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F-Vz)*1e-3*constants.e*FermiDirac(-phi-E_F+Vz,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_e,0) elif band=='valence': if Vz==0: den_hh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_hh+den_lh,0) else: den_hh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_hh=den_hh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_lh=den_lh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_hh+den_lh,0) elif band=='both': if Vz==0: den_e=-1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F)*1e-3*constants.e*FermiDirac(-phi-E_F,kT))/constants.hbar)**3*1e-27 den_e=np.nan_to_num(den_e,0) den_hh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den_h=np.nan_to_num(den_hh+den_lh,0) den=den_e+den_h else: den_e=-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F+Vz)*1e-3*constants.e*FermiDirac(-phi-E_F-Vz,kT))/constants.hbar)**3*1e-27 den_e=den_e-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F-Vz)*1e-3*constants.e*FermiDirac(-phi-E_F+Vz,kT))/constants.hbar)**3*1e-27 den_e=np.nan_to_num(den_e,0) den_hh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_hh=den_hh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_lh=den_lh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den_h=np.nan_to_num(den_hh+den_lh,0) den=den_e+den_h return (den) #%% ############################# Array manipulation #%% def order_eig(E,U=0,sparse='yes',BdG='yes'): """ Order the eigenfunctions from smaller to larger. If BdG==yes and sparse==yes, it also ensures that there are the same number of positive eigenvalues than negative. Parameters ---------- E: arr Eigenvalues. U: arr Eigenvectors. sparse: {'yes','no'} Whether the eigenspectrum has been computed from a sparse matrix. BdG: {'yes','no'} Whether the eigenspectrum must have BdG symmetry or not. Returns ------- E, U: arrs Eigenspectrum ordered from smaller to larger eigenvalues. """ n_eig=len(E) if np.isscalar(U): if BdG=='yes': if sparse=='yes': idx = np.argsort(E) E = E[idx] if (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==1): E[n_eig-1]=-E[n_eig-2] elif (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==-1): E[0]=-E[1] idx = np.argsort(E) return (idx) else: if BdG=='yes': if sparse=='yes': idx = np.argsort(E) E = E[idx] U = U[:,idx] if (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==1): E[n_eig-1]=-E[n_eig-2] elif (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==-1): E[0]=-E[1] idx = np.argsort(E) E = E[idx] U = U[:,idx] return (E),(U) #%% def length(vec): """ Length of a given vector. If vec is an scalar, its length is 1. Parameters ---------- vec: scalar or arr Input vector Returns ------- length: int Length of vec. If vec is an scalar, its length is 1. """ if np.ndim(vec)==0: length=1 else: length=len(vec) return length #%% def diagonal(N,k=0,init=0,step=1): """ Indices of some diagonal of a given marix. It is more efficient than its numpy counterpart. Parameters ---------- N: int Length of the diagonal (number of elements). k: int Offset of the off-diagonal. k=0 is the main diagonal, k>0 is a diagonal in the upper-part of the Hamiltonian, and k<0 in the lower one. init: int The starting element of the diagonal. step: int The step between elements in the diagonal. Returns ------- indices: tuple of arr Indices of the diagonal. The first element of the tuple are the row elements, and the second one are the column ones. """ assert np.isscalar(k), 'The offset k must be a scalar' if k==0: indices=(np.arange(init,N,step=step),np.arange(init,N,step=step)) elif k>0: indices=(np.arange(init,N-k,step=step),np.arange(init,N-k,step=step)+k) elif k<0: indices=(np.arange(init,N+k,step=step)-k,np.arange(init,N+k,step=step)) return(indices) #%% def concatenate(arg): """ Concatenate a list of arrays. Parameters ---------- arg: tuple or list of arr List of arrays to be concatenated. Returns ------- con: arr or list Array or list of the concatenated list. """ if isinstance(arg[0],tuple) and len(arg[0])==2: index_1, index_2 = np.array([]), np.array([]) for i in range(len(arg)): index_1 = np.append(index_1,arg[i][0]) index_2 = np.append(index_2,arg[i][1]) indices=(index_1,index_2) else: indices=np.concatenate(arg) return(indices) #%% def between(arg, interval): """ Computes whether a given number is between a given interval or not. Parameters ---------- arg: scalar Number to be evaluated. interval: tuple Interval in which perform the evaluation. Returns ------- result: bool If arg is between interval, result=True, and result=False in other case. """ if arg>=interval[0] and arg<=interval[1]: result=True else: result=False return(result) #%% def arg_isclose(vec,val): """ Find the index of a given vector that corresponds to the element of the array "vec" which is closest to to an specific value "val". Parameters ---------- vec: arr Array in which it is desired to find the closest element. val: scalar Closest value. Returns ------- result: int Index of the element of vec closest to val. """ arg=np.argmin(np.abs(vec-val)) return(arg) #%% ############################# Constructors or extractors #%% def build_mesh(N,L,mesh_type='regular',fact=0.5,asym=1): """ Build a 2D inhomogeneous rectangular mesh. Parameters ---------- N: arr Number of sites in each direction. L: arr Length en each direction. mesh_type: str Whether to build a 'regular' mesh, or an inhomogeneous one with a discretization given by a 'geometric' distribution, an 'exponential' separation, or a 'random' one. fact: scalar Factor which regulates the separations between sites. asym: scalar The asymmetry between the factors applied for the x and y direction. Returns ------- x, y: mesh Mesh in the x and y directions. dis: mesh Mesh with the discretization in each point. """ if mesh_type=='regular': x, y = np.linspace(-L[1]/2,L[1]/2,N[0]), np.linspace(-L[0]/2,L[0]/2,N[1]) dis=np.array([np.abs(x[1]-x[0]),np.abs(y[1]-y[0])]) x,y=np.meshgrid(x,y,indexing='ij') return (x,y,dis) elif mesh_type=='geometric': xm,ym=np.zeros(N), np.zeros(N) dis_m=np.array([np.zeros(N),np.zeros(N)]) for i in range(N[0]): for j in range(N[1]): xm[i,j]=(L[0]/2*fact**np.abs(i-int((N[0]-1)/2))-L[0]/2)*np.sign(i-int((N[0]-1)/2))*(L[0]/(L[0]/2*fact**np.abs(0-int((N[0]-1)/2))-L[0]/2)/2) ym[i,j]=(L[1]/2*fact**np.abs(j-int((N[1]-1)/2))-L[1]/2)*np.sign(j-int((N[1]-1)/2))*(L[1]/(L[1]/2*fact**np.abs(0-int((N[1]-1)/2))-L[1]/2)/2) for i in range(N[0]): for j in range(N[1]): if not(j==0 or j==N[1]-1): dis_m[1,i,j]=np.abs(ym[i,j+1]-ym[i,j])/2+np.abs(ym[i,j-1]-ym[i,j])/2 if not(i==0 or i==N[0]-1): dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j])/2+np.abs(xm[i,j]-xm[i+1,j])/2 if i==0: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i+1,j]) elif i==N[0]-1: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j]) if j==0: dis_m[1,i,j]=np.abs(ym[i,j]-ym[i,j+1]) elif j==N[1]-1: dis_m[1,i,j]=np.abs(ym[i,j]-ym[i,j-1]) return (xm,ym,dis_m) elif mesh_type=='exponential': np.seterr(all='ignore') xm,ym=np.zeros(N), np.zeros(N) dis_m=np.array([np.zeros(N),np.zeros(N)]) for i in range(N[0]): for j in range(N[1]): xm[i,j]=(1-np.exp(-np.abs(i-int((N[0]-1)/2))*fact))*np.sign(i-int((N[0]-1)/2))*(1-np.exp(-np.abs(N[0]-int((N[0]-1)/2))*fact))**(-1)*L[0]/2 ym[i,j]=(1-np.exp(-np.abs(j-int((N[1]-1)/2))*fact/asym))*np.sign(j-int((N[1]-1)/2))*(1-np.exp(-np.abs(N[1]-int((N[1]-1)/2))*fact/asym))**(-1)*L[1]/2 for i in range(N[0]): for j in range(N[1]): if not(j==0 or j==N[1]-1): dis_m[1,i,j]=np.abs(ym[i,j+1]-ym[i,j])/2+np.abs(ym[i,j-1]-ym[i,j])/2 if not(i==0 or i==N[0]-1): dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j])/2+np.abs(xm[i,j]-xm[i+1,j])/2 if i==0: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i+1,j]) elif i==N[0]-1: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j]) if j==0: dis_m[1,i,j]=np.abs(ym[i,j]-ym[i,j+1]) elif j==N[1]-1: dis_m[1,i,j]=np.abs(ym[i,j]-ym[i,j-1]) return (xm,ym,dis_m) elif mesh_type=='random': x,y,dis=build_mesh(N,L,mesh_type='regular') xm,ym=np.zeros(N), np.zeros(N) dis_m=np.array([np.zeros(N),np.zeros(N)]) for i in range(N[0]): for j in range(N[1]): xp, yp = x[:,0]+(np.random.rand(N[0])-0.5)*dis[0]*fact, y[0,:]+(np.random.rand(N[0])-0.5)*dis[1]*fact xm[i,j],ym[i,j]=xp[i],yp[j] for i in range(N[0]): for j in range(N[1]): if not(j==0 or j==N[1]-1): dis_m[1,i,j]=np.abs(ym[i,j+1]-ym[i,j])/2+np.abs(ym[i,j-1]-ym[i,j])/2 if not(i==0 or i==N[0]-1): dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j])/2+np.abs(xm[i,j]-xm[i+1,j])/2 if i==0: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i+1,j]) elif i==N[0]-1: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j]) if j==0: dis_m[1,i,j]=np.abs(ym[i,j]-ym[i,j+1]) elif j==N[1]-1: dis_m[1,i,j]=np.abs(ym[i,j]-ym[i,j-1]) return (xm,ym,dis_m) #%% def get_potential(phi_in,x,y,z,symmetry='none',mesh_type='none'): """ Obtain the potential from a function for a given sites. Parameters ---------- phi_in: fun Fenics function of the electrostatic potential. x,y,z: arr Points in which evaluate the potential. symmetry: {'none','x','y','z','full-shell'} Imposed symmetry of the potential. mesh_type:___ ______________________________ Returns ------- phi_out: arr Electrostatic potential in the sites given by x,y,z. """ phi_out=np.zeros((len(x),len(y),len(z))) if symmetry=='none': for i in range(len(x)): for j in range(len(y)): for k in range(len(z)): phi_out[i,j,k]=phi_in(x[i],y[j],z[k]) elif symmetry=='y': if mesh_type=='none': for i in range(len(x)): for j in range(int((len(y)-1)/2)+1): for k in range(len(z)): phi_out[i,j,k]=phi_in(x[i],y[j],z[k]) phi_out[i,len(y)-j-1,k]=phi_out[i,j,k] elif mesh_type=='yz-mesh': for i in range(len(x)): for j in range(int((len(y[:,0])-1)/2)+1): for k in range(len(z[0,:])): phi_out[i,j,k]=phi_in(x[i],y[j,k],z[j,k]) phi_out[i,len(y[:,0])-j-1,k]=phi_out[i,j,k] elif symmetry=='yz': for i in range(len(x)): for j in range(int((len(y)-1)/2)+1): for k in range(int((len(z)-1)/2)+1): phi_out[i,j,k]=phi_in(x[i],y[j],z[k]) phi_out[i,len(y)-j-1,k]=phi_out[i,j,k] phi_out[i,j,len(z)-k-1]=phi_out[i,j,k] phi_out[i,len(y)-j-1,len(z)-k-1]=phi_out[i,j,k] elif symmetry=='xy': for i in range(int((len(x)-1)/2)+1): for j in range(int((len(y)-1)/2)+1): for k in range(len(z)): phi_out[i,j,k]=phi_in(x[i],y[j],z[k]) phi_out[i,len(y)-j-1,k]=phi_out[i,j,k] phi_out[len(x)-i-1,j,k]=phi_out[i,j,k] phi_out[len(x)-i-1,len(y)-j-1,k]=phi_out[i,j,k] elif symmetry=='x': for i in range(int((len(x)-1)/2)+1): for j in range(len(y)): for k in range(len(z)): phi_out[i,j,k]=phi_in(x[i],y[j],z[k]) phi_out[len(x)-i-1,j,k]=phi_out[i,j,k] elif symmetry=='full-shell': for i in range(len(x)): for j in range(int((len(y)-1)/2)+1): for k in range(len(z)): if (z[k]>=0) and (y[j]<=z[k]/np.tan(np.pi/3)) and (y[j]>=-z[k]/np.tan(np.pi/3)): phi_out[i,j,k]=phi_in(x[i],y[j],z[k]) phi_out[i,len(y)-j-1,k]=phi_out[i,j,k] for l in range(1,4): phi_out[i,int(round((j-25)*np.cos(np.pi/3*l)-(k-25)*np.sin(np.pi/3*l)))+25,int(round((j-25)*np.sin(np.pi/3*l)+(k-25)*np.cos(np.pi/3*l)))+25]=phi_out[i,j,k] phi_out[i,int(round((len(y)-j-1-25)*np.cos(np.pi/3*l)-(k-25)*np.sin(np.pi/3*l)))+25,int(round((len(y)-j-1-25)*np.sin(np.pi/3*l)+(k-25)*np.cos(np.pi/3*l)))+25]=phi_out[i,j,k] for j in range(int((len(y)-1)/2)+1): for k in range(len(z)): if phi_out[i,j,k]==0: phi_out[i,j,k]=phi_out[i,int(j+1),k] for j in range(int((len(y)-1)/2)+1): for k in range(len(z)): if phi_out[i,j,k]==0: phi_out[i,j,k]=phi_out[i,int(j+2),k] phi_out[i,len(y)-j-1,k]=phi_out[i,j,k] return (phi_out) #%% def get_ElectricField(phi,x,y,z): """ Obtain the electric field of a given electrostatic potential. Parameters ---------- phi: arr Electrostatic potential. x,y,z: arr Points in which it is evaluated the potential. Returns ------- E: arr Electric field of phi. Each element E[i] is the electric field in each direction. """ dis=np.array([np.abs(x[1]-x[0]),np.abs(y[1]-y[0]),np.abs(z[1]-z[0])]) if np.ndim(phi)==3: Ex, Ey, Ez = np.gradient(phi,dis[0],dis[1],dis[2]) return (np.array([Ex,Ey,Ez])) elif np.ndim(phi)==2: Ey, Ez = np.gradient(phi,dis[1],dis[2]) return (np.array([Ey,Ez])) elif np.ndim(phi)==1: Ex = np.gradient(phi,dis) return (Ex) #%% ############################# Modifiers #%% def mask_hexagonal(fun_in,y,z,x=0,change=np.nan,mesh_type='regular'): """ Hexagonal mask. This function change the values for those points of fun_in which are outside the hexagonal section. Parameters ---------- fun_in: arr Function to be masked. y,z: arr Points of the section in which it is evaluated the function. x: arr Points of the length in which it is evaluated the function. If x=0, then it is only evaluated in 2D. change: value Value to which change those points outside of the hexagonal section. Returns ------- fun_out: arr Masked function. """ if np.isscalar(x): if mesh_type=='regular': Ny, Nz = len(y), len(z) Ly, Lz = y[Ny-1]*2, z[Nz-1]*2 a0=Ly/2 b0=a0*np.sin(np.pi/3) fun_out=np.zeros((len(y),len(z))) for j in range(Ny): for k in range(Nz): if not(between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0))): fun_out[j,k]=change else: fun_out[j,k]=fun_in[j,k] else: Ny, Nz = len(y[:,0]), len(z[0,:]) Ly, Lz = y[Ny-1,0]*2, z[0,Nz-1]*2 a0=Ly/2 b0=a0*np.sin(np.pi/3) fun_out=np.zeros((Ny,Nz)) for j in range(Ny): for k in range(Nz): if not(between(z[j,k], (-b0,b0)) and between(z[j,k],(2*b0/a0*y[j,k]-2*b0,-2*b0/a0*y[j,k]+2*b0)) and between(z[j,k],(-2*b0/a0*y[j,k]-2*b0,2*b0/a0*y[j,k]+2*b0))): fun_out[j,k]=change else: fun_out[j,k]=fun_in[j,k] if change=='masked': fun_out=np.ma.array(fun_out, mask=np.isnan(fun_out)) else: Ny, Nz = len(y), len(z) Ly, Lz = y[Ny-1]*2, z[Nz-1]*2 a0=Ly/2 b0=a0*np.sin(np.pi/3) fun_out=np.zeros((len(x),len(y),len(z))) for j in range(Ny): for k in range(Nz): if not(between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0))): fun_out[:,j,k]=np.ones(len(x))*change else: fun_out[:,j,k]=fun_in[:,j,k] if change=='masked': fun_out=np.ma.array(fun_out, mask=np.isnan(fun_out)) return (fun_out) #%% def mask_wire(fun_in,N,dis,change=np.nan,include=np.array(['wire']),W_w=0,W_l1=0,W_l2=0,faces_l1=np.array([]),faces_l2=np.array([])): """ Mask for wires. This function change the values for those points of fun_in which are outside the hexagonal section and/or layers surrounding the wire. Parameters ---------- fun_in: arr Function to be masked. N: arr Number of sites in each direction. dis: arr Discretization in each direction. change: value Value to which change those points outside of the hexagonal section. include: arr Whether to include the wire ('wire') and/or some layers ('layer_1 and/or 'layer_2'). W_w: float Width of the nanowire. If W_w=0, then the width is taken as N*dis. W_l1: float Width of the first layer surrounding the wire. W_l1=0 means that there is no layer. W_l2: float Width of the first layer surrounding the wire. W_l1=0 means that there is no (second) layer. faces_l1: arr Facets that the first layer covers to the wire. Each facet is labeled with a number from 1 to 6 (the upper one is 1, and the rest are numbered clockwise). Each element of the array denotes with a string (e.g. np.array(['1','2'])) if such facet is covered. faces_l2: arr Same for the second layer. Returns ------- fun_out: arr Masked function. """ if len(N)==3: Nx, Ny, Nz = N dis_x, dis_y, dis_z = dis fun_in=fun_in[0] elif len(N)==2: Ny, Nz = N dis_y, dis_z = dis y, z= np.linspace(-(Ny-1)*dis_y/2,(Ny-1)*dis_y/2,Ny), np.linspace(-(Nz-1)*dis_z/2,(Nz-1)*dis_z/2,Nz) if np.isscalar(W_w): if W_w==0: W_w=Ny*dis_y a0=W_w/2 b0=a0*np.sin(np.pi/3) elif not(np.isscalar(W_w)): a0=Ny*dis_y/2 b0=Nz*dis_z/2*np.sin(np.pi/3) if faces_l1.size==0: faces_l1=np.array(['0']) if faces_l2.size==0: faces_l2=np.array(['0']) fun_out=np.zeros((Ny,Nz)) for j in range(Ny): for k in range(Nz): if (include=='wire').any(): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0))): fun_out[j,k]=fun_in[j,k] else: fun_out[j,k]=change if (include=='layer_1').any(): if (faces_l1=='1').any() and ((between(y[j], (-a0/2,a0/2)) and between(z[k], (b0,b0+W_l1)))): fun_out[j,k]=fun_in[j,k] elif (faces_l1=='2').any() and ((between(z[k], (-2*b0/a0*y[j]+2*b0,2*b0/a0*y[j]+W_l1)) and between(z[k], (2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0+W_l1)))): fun_out[j,k]=fun_in[j,k] elif (faces_l1=='6').any() and ((between(z[k], (2*b0/a0*y[j]+2*b0,-2*b0/a0*y[j]+W_l1)) and between(z[k], (-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0+W_l1)))): fun_out[j,k]=fun_in[j,k] elif (faces_l1=='3').any() and ((between(z[k], (-b0,2*b0/a0*y[j]-2*b0)) and between(z[k], (2*b0/a0*y[j]-2*b0-W_l1,-2*b0/a0*y[j]+2*b0+W_l1)))): fun_out[j,k]=fun_in[j,k] elif (faces_l1=='5').any() and ((between(z[k], (-b0,-2*b0/a0*y[j]-2*b0)) and between(z[k], (-2*b0/a0*y[j]-2*b0-W_l1,2*b0/a0*y[j]+2*b0+W_l1)))): fun_out[j,k]=fun_in[j,k] elif (faces_l1=='4').any() and ((between(y[j], (-a0/2-W_l1/2,a0/2+W_l1/2)) and between(z[k], (-b0-W_l1,-b0)))): fun_out[j,k]=fun_in[j,k] if (include=='layer_2').any(): if (faces_l2=='1').any(): if (faces_l1=='1').any() and ((between(y[j], (-a0/2,a0/2)) and between(z[k], (b0+W_l1,b0+W_l1+W_l2)))): fun_out[j,k]=fun_in[j,k] elif not(faces_l1=='1').any() and ((between(y[j], (-a0/2,a0/2)) and between(z[k], (b0,b0+W_l2)))): fun_out[j,k]=fun_in[j,k] if (faces_l2=='2').any(): if (faces_l1=='2').any() and ((between(z[k], (-2*b0/a0*y[j]+2*b0+W_l1,2*b0/a0*y[j]+W_l1+W_l2)) and between(z[k], (2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0+W_l1+W_l2)))): fun_out[j,k]=fun_in[j,k] elif not(faces_l1=='2').any() and ((between(z[k], (-2*b0/a0*y[j]+2*b0,2*b0/a0*y[j]+W_l2)) and between(z[k], (2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0+W_l2)))): fun_out[j,k]=fun_in[j,k] if (faces_l2=='6').any(): if (faces_l1=='6').any() and ((between(z[k], (2*b0/a0*y[j]+2*b0+W_l1,-2*b0/a0*y[j]+W_l1+W_l2)) and between(z[k], (-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0+W_l1+W_l2)))): fun_out[j,k]=fun_in[j,k] elif not(faces_l1=='6').any() and ((between(z[k], (2*b0/a0*y[j]+2*b0,-2*b0/a0*y[j]+W_l2)) and between(z[k], (-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0+W_l2)))): fun_out[j,k]=fun_in[j,k] if (faces_l2=='3').any(): if (faces_l1=='3').any() and ((between(z[k], (-b0,2*b0/a0*y[j]-2*b0-W_l1)) and between(z[k], (2*b0/a0*y[j]-2*b0-W_l1-W_l2,-2*b0/a0*y[j]+2*b0+W_l1+W_l2)))): fun_out[j,k]=fun_in[j,k] elif not(faces_l1=='3').any() and ((between(z[k], (-b0,2*b0/a0*y[j]-2*b0)) and between(z[k], (2*b0/a0*y[j]-2*b0-W_l2,-2*b0/a0*y[j]+2*b0+W_l2)))): fun_out[j,k]=fun_in[j,k] if (faces_l2=='5').any(): if (faces_l1=='5').any() and ((between(z[k], (-b0,-2*b0/a0*y[j]-2*b0-W_l1)) and between(z[k], (-2*b0/a0*y[j]-2*b0-W_l1-W_l2,2*b0/a0*y[j]+2*b0+W_l1+W_l2)))): fun_out[j,k]=fun_in[j,k] elif not(faces_l1=='5').any() and ((between(z[k], (-b0,-2*b0/a0*y[j]-2*b0)) and between(z[k], (-2*b0/a0*y[j]-2*b0-W_l2,2*b0/a0*y[j]+2*b0+W_l2)))): fun_out[j,k]=fun_in[j,k] if (faces_l2=='4').any(): if (faces_l1=='4').any() and ((between(y[j], (-a0/2-W_l1/2-W_l2/2,a0/2+W_l1/2+W_l2/2)) and between(z[k], (-b0-W_l1-W_l2,-b0)))): fun_out[j,k]=fun_in[j,k] elif not(faces_l1=='4').any() and ((between(y[j], (-a0/2-W_l2/2,a0/2+W_l2/2)) and between(z[k], (-b0-W_l2,-b0)))): fun_out[j,k]=fun_in[j,k] if change=='masked': fun_out=np.ma.array(fun_out, mask=np.isnan(fun_out)) if len(N)==3: fun_out=np.tile(fun_out,(Nx,1,1)) return (fun_out) #%% def interface(N,dis,width,faces,a0,b0): """ Find points close to the some nanowire facet (assuming an hexagonal cross- section nanowire). Parameters ---------- N: arr Number of sites in each direction. dis: arr Discretization in each direction. witdh: float Width of the "close region" to the facet. faces: arr Which facets include in the search. Each facet is labeled with a number from 1 to 6 (the upper one is 1, and the rest are numbered clockwise). Each element of the array denotes with a string (e.g. np.array(['1','2'])) if such facet is covered. Returns ------- sites: arr Array with the """ L=np.array([(N[0]-1)*dis[0], (N[1]-1)*dis[1], (N[2]-1)*dis[2]]) x, y =np.linspace(-L[1]/2,L[1]/2,N[1]), np.linspace(-L[2]/2,L[2]/2,N[2]) fun_out=np.zeros(N[1::],dtype=int) for i in range(N[1]): for j in range(N[2]): if (faces=='1').any() and ((between(x[i], (-a0/2,a0/2)) and between(y[j], (b0-width,b0)) and between(y[j], (-2*b0/a0*x[i],b0))and between(y[j], (2*b0/a0*x[i],b0)))): fun_out[i,j]=1 elif (faces=='6').any() and ((between(y[j], (-2*b0/a0*x[i]+2*b0-width*b0/a0*2,2*b0/a0*x[i])) and between(y[j], (2*b0/a0*x[i]-2*b0-width,-2*b0/a0*x[i]+2*b0)) and between(y[j], (0,b0)) )): fun_out[i,j]=1 elif (faces=='2').any() and ((between(y[j], (2*b0/a0*x[i]+2*b0-width*b0/a0*2,-2*b0/a0*x[i])) and between(y[j], (-2*b0/a0*x[i]-2*b0-width,2*b0/a0*x[i]+2*b0)) and between(y[j], (0,b0)) )): fun_out[i,j]=1 elif (faces=='5').any() and ((between(y[j], (-b0,2*b0/a0*x[i]-2*b0+width*b0/a0*2)) and between(y[j], (2*b0/a0*x[i]-2*b0,-2*b0/a0*x[i]+2*b0+width)) and between(y[j], (-b0,0)) )): fun_out[i,j]=1 elif (faces=='3').any() and ((between(y[j], (-b0,-2*b0/a0*x[i]-2*b0+width*b0/a0*2)) and between(y[j], (-2*b0/a0*x[i]-2*b0,2*b0/a0*x[i]+2*b0+width)) and between(y[j], (-b0,0)) )): fun_out[i,j]=1 elif (faces=='4').any() and ((between(x[i], (-a0/2,a0/2)) and between(y[j], (-b0,-b0+width)))): fun_out[i,j]=1 fun_out_end=np.zeros(N) for i in range(N[0]): fun_out_end[i,:,:]=fun_out return fun_out_end #%% def H_rectangular2hexagonal(H,N,dis,BdG='no',output='H',m=0,sparse='yes'): """ Transform a Hamiltonian of a nanwoire with rectangular cross-section to a nanowire with an hexagonal one. Parameters ---------- H: arr Hamiltonian with rectangular section. N: arr Number of sites in each direction. dis: arr Discretization in each direction. BdG: str Whether the Hamiltonian has BdG symmetry. m: int Number of sites of the discretized Hamiltonian with the hexagonal section. output: str Whether to return the Hamiltonian (output='H'), the number of sites of the discretized Hamiltonian with the hexagonal section (output='m_hex'), or the sites that are inside of the nanowire section (output='sites'). Returns ------- Depends on the parameter output. """ if len(N)==2: N=np.array([1,N[0],N[1]]) dis=np.array([0,dis[0],dis[1]]) Nx, Ny, Nz = N[0], N[1], N[2] Ly, Lz = dis[1]*Ny, dis[2]*Nz y, z = np.linspace(-float(Ly)/2,float(Ly)/2,Ny), np.linspace(-float(Lz)/2,float(Lz)/2,Nz) a0=float(Ly)/2 b0=a0*np.sin(np.pi/3)*(Lz/Ly) l=0 if (output=='H'): if m==0: m=H_rectangular2hexagonal(H,N,dis,BdG=BdG,output='m_hex',m=0) if BdG=='no': if sparse=='yes': H_del=scipy.sparse.dok_matrix((m,2*Nx*Ny*Nz),dtype=complex) else: H_del=np.zeros((m,2*Nx*Ny*Nz),dtype=complex) for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): H_del[l,2*(k+(j+i*Ny)*Nz)]=1 H_del[l+1,2*(k+(j+i*Ny)*Nz)+1]=1 l=l+2 elif BdG=='yes': if sparse=='yes': H_del=scipy.sparse.dok_matrix((m,4*Nx*Ny*Nz),dtype=complex) else: H_del=np.zeros((m,4*Nx*Ny*Nz),dtype=complex) for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): H_del[l,2*(k+(j+i*Ny)*Nz)]=1 H_del[l+1,2*(k+(j+i*Ny)*Nz)+1]=1 H_del[l+int(m/2),2*(k+(j+i*Ny)*Nz)+int(2*Nx*Ny*Nz)]=1 H_del[l+1+int(m/2),2*(k+(j+i*Ny)*Nz)+1+int(2*Nx*Ny*Nz)]=1 l=l+2 H=H_del.dot(H.dot(H_del.transpose())) return (H) elif (output=='m_hex'): m=0 for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): m=m+1 if BdG=='no': m=m*2 elif BdG=='yes': m=m*4 return (m) elif (output=='sites'): m=0 sites=np.array([]) for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): if (between(z[k], (b0-dis[2],b0))): sites=np.append(sites,m) m=m+2 return (sites) #%% def U_rectangular2hexagonal(U_in,N,dis,BdG='no',m=0): """ Transform a wavefunction of a nanwoire with rectangular cross-section to a nanowire with an hexagonal one, erasing to this end the elements of the Hamiltonian outside the hexagonal section of the wire. Parameters ---------- U_in: arr Wavefunction of a nanowire with rectangular section. N: arr Number of sites in each direction. dis: arr Discretization in each direction. BdG: str Whether the Hamiltonian has BdG symmetry. m: int Number of sites of the hexagonal cross-section nanowire. It can be computed using the function Function.H_rectangular2hexagonal. Returns ------- U: arr Wavefunction of a nanowire with hexagonal section. """ if len(N)==2: N=np.array([1,N[0],N[1]]) dis=np.array([0,dis[0],dis[1]]) if scipy.sparse.issparse(U_in): U_in=U_in.todense() Nx, Ny, Nz = N[0], N[1], N[2] Ly, Lz = dis[1]*Ny, dis[2]*Nz y, z = np.linspace(-float(Ly)/2,float(Ly)/2,Ny), np.linspace(-float(Lz)/2,float(Lz)/2,Nz) a0=float(Ly)/2 b0=a0*np.sin(np.pi/3)*(Lz/Ly) n_eig=np.shape(U_in)[1] l=0 if BdG=='no': U=np.zeros((m,n_eig),dtype=complex) for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): U[l,:], U[l+1,:] = U_in[2*(k+(j+i*Ny)*Nz),:], U_in[2*(k+(j+i*Ny)*Nz)+1,:] l=l+2 elif BdG=='yes': U=np.zeros((m,n_eig),dtype=complex) for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): U[l,:], U[l+1,:] = U_in[2*(k+(j+i*Ny)*Nz),:], U_in[2*(k+(j+i*Ny)*Nz)+1,:] U[l+int(m/2),:], U[l+1+int(m/2),:] = U_in[2*(k+(j+i*Ny)*Nz)+int(2*Nx*Ny*Nz),:], U_in[2*(k+(j+i*Ny)*Nz)+1+int(2*Nx*Ny*Nz),:] l=l+2 U=scipy.sparse.dok_matrix(U) return (U) #%% def U_hexagonal2rectangular(U_in,N,dis,BdG='no',space='position'): """ Transform a wavefunction of a nanwoire with hexagonal cross-section to a nanowire with an rectangular one, filling with zeros the new elements outside the hexagonal section of the wire. Parameters ---------- U_in: arr Wavefunction of a nanowire with hexagonal section. N: arr Number of sites in each direction. dis: arr Discretization in each direction. BdG: str Whether the Hamiltonian has BdG symmetry. space: str Whether the wavefunction is in position space or momentum. Returns ------- U: arr Wavefunction of a nanowire with rectangular section. """ if len(N)==2: N=np.array([1,N[0],N[1]]) dis=np.array([0,dis[0],dis[1]]) if space=='momentum': Nx, Ny, Nz = N[0], N[1], N[2] m=len(U_in[:,0,0]) n_eig=len(U_in[0,:,0]) n_k=len(U_in[0,0,:]) if BdG=='no': U_out = np.empty([2*Nx*Ny*Nz,int(n_eig),n_k],dtype=complex) elif BdG=='yes': U_out = np.empty([4*Nx*Ny*Nz,int(n_eig),n_k],dtype=complex) Ly, Lz = dis[1]*Ny, dis[2]*Nz y, z = np.linspace(-float(Ly)/2,float(Ly)/2,Ny), np.linspace(-float(Lz)/2,float(Lz)/2,Nz) a0=float(Ly)/2 b0=a0*np.sin(np.pi/3)*(Lz/Ly) l=0 if BdG=='no': for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): U_out[2*(k+(j+i*Ny)*Nz),:,:]=U_in[l,:,:] U_out[2*(k+(j+i*Ny)*Nz)+1,:,:]=U_in[l+1,:,:] l=l+2 else: U_out[2*(k+(j+i*Ny)*Nz),:,:]=np.zeros((n_eig,n_k)) U_out[2*(k+(j+i*Ny)*Nz)+1,:,:]=np.zeros((n_eig,n_k)) elif BdG=='yes': for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0)) ): U_out[2*(k+(j+i*Ny)*Nz),:,:]=U_in[l,:,:] U_out[2*(k+(j+i*Ny)*Nz)+1,:,:]=U_in[l+1,:,:] U_out[2*(k+(j+i*Ny)*Nz)+2*Nx*Ny*Nz,:,:]=U_in[l+int(m/2),:,:] U_out[2*(k+(j+i*Ny)*Nz)+1+2*Nx*Ny*Nz,:,:]=U_in[l+1+int(m/2),:,:] l=l+2 else: U_out[2*(k+(j+i*Ny)*Nz),:,:]=np.zeros((n_eig,n_k)) U_out[2*(k+(j+i*Ny)*Nz)+1,:,:]=np.zeros((n_eig,n_k)) U_out[2*(k+(j+i*Ny)*Nz)+2*Nx*Ny*Nz,:,:]=np.zeros((n_eig,n_k)) U_out[2*(k+(j+i*Ny)*Nz)+1+2*Nx*Ny*Nz,:,:]=np.zeros((n_eig,n_k)) elif space=='position': Nx, Ny, Nz = N[0], N[1], N[2] m=len(U_in[:,0]) n_eig=len(U_in[0,:]) if BdG=='no': U_out = np.empty([2*Nx*Ny*Nz,int(n_eig)],dtype=complex) elif BdG=='yes': U_out = np.empty([4*Nx*Ny*Nz,int(n_eig)],dtype=complex) Ly, Lz = dis[1]*Ny, dis[2]*Nz y, z = np.linspace(-float(Ly)/2,float(Ly)/2,Ny), np.linspace(-float(Lz)/2,float(Lz)/2,Nz) a0=float(Ly)/2 b0=a0*np.sin(np.pi/3)*(Lz/Ly) if scipy.sparse.issparse(U_in): U_in=U_in.todense() l=0 if BdG=='no': for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0))): U_out[2*(k+(j+i*Ny)*Nz),:]=U_in[l,:] U_out[2*(k+(j+i*Ny)*Nz)+1,:]=U_in[l+1,:] l=l+2 else: U_out[2*(k+(j+i*Ny)*Nz),:]=np.zeros((n_eig)) U_out[2*(k+(j+i*Ny)*Nz)+1,:]=np.zeros((n_eig)) elif BdG=='yes': for i in range(Nx): for j in range(Ny): for k in range(Nz): if (between(z[k], (-b0,b0)) and between(z[k],(2*b0/a0*y[j]-2*b0,-2*b0/a0*y[j]+2*b0)) and between(z[k],(-2*b0/a0*y[j]-2*b0,2*b0/a0*y[j]+2*b0))): U_out[2*(k+(j+i*Ny)*Nz),:]=U_in[l,:] U_out[2*(k+(j+i*Ny)*Nz)+1,:]=U_in[l+1,:] U_out[2*(k+(j+i*Ny)*Nz)+2*Nx*Ny*Nz,:]=U_in[l+int(m/2),:] U_out[2*(k+(j+i*Ny)*Nz)+1+2*Nx*Ny*Nz,:]=U_in[l+1+int(m/2),:] l=l+2 else: U_out[2*(k+(j+i*Ny)*Nz),:]=np.zeros((n_eig)) U_out[2*(k+(j+i*Ny)*Nz)+1,:]=np.zeros((n_eig)) U_out[2*(k+(j+i*Ny)*Nz)+2*Nx*Ny*Nz,:]=np.zeros((n_eig)) U_out[2*(k+(j+i*Ny)*Nz)+1+2*Nx*Ny*Nz,:]=np.zeros((n_eig)) return (U_out) #%% def H_rec2shape(H,shape,N,dis,BdG='no',output='H',m=0): """ Transform a Hamiltonian of a nanwoire with rectangular cross-section to a nanowire with a different one. Parameters ---------- H: arr Hamiltonian with rectangular section. shape: arr or str Shape of the section. It can be a (Nx,Ny,Nz) or (Ny,Nz) array, where each 0 element means that the corresponding site is not part of the section, while 1 means it is; or it can be 'hexagonal', what means that the section must be an hexagonal shape. N: arr Number of sites in each direction. dis: arr Discretization in each direction. BdG: {'yes','no'} Whether the Hamiltonian has BdG symmetry. output: {'H','m'} Either to return the Hamiltonian (output='H') or the number of sites of the discretized Hamiltonian with the desired shape (output='m'). m: int Number of sites of the discretized Hamiltonian with the desired shape. If m=0, m is computed. Returns ------- Depends on the parameter output. """ if len(N)==2: N=np.array([1,N[0],N[1]]) dis=np.array([0,dis[0],dis[1]]) if np.isscalar(shape) and shape=='hexagonal': shape=np.ones(N) shape=mask_hexagonal(shape,np.linspace(-N[1]*dis[1]/2,N[1]*dis[1]/2,N[1]),np.linspace(-N[2]*dis[2]/2,N[2]*dis[2]/2,N[2]),x=np.linspace(0,N[0]*dis[0],N[0]),change=0) shape=shape.flatten() if m==0: m=len(shape[shape==1]) if BdG=='no': m=m*2 elif BdG=='yes': m=m*4 if scipy.sparse.issparse(H): sparse='yes' else: sparse='no' if (output=='H'): if BdG=='no': if sparse=='yes': H_del=scipy.sparse.dok_matrix((m,2*np.prod(N)),dtype=complex) else: H_del=np.zeros((m,2*np.prod(N)),dtype=complex) elif BdG=='yes': if sparse=='yes': H_del=scipy.sparse.dok_matrix((m,4*np.prod(N)),dtype=complex) else: H_del=np.zeros((m,4*np.prod(N)),dtype=complex) j=0 for i in range(np.prod(N)): if shape[i]==1: H_del[j,2*i],H_del[j+1,2*i+1] = 1, 1 if BdG=='yes': H_del[j+int(m/2),2*i+2*int(np.prod(N))],H_del[j+1+int(m/2),2*i+1+2*int(np.prod(N))] = 1, 1 j+=2 H=H_del.dot(H.dot(H_del.transpose())) return (H) elif (output=='m'): return (m) #%% def U_rec2shape(U_in,shape,N,dis,BdG='no',m=0): """ Transform a wavefunction of a nanwoire with rectangular cross-section to a nanowire with a different one, erasing to this end the elements of the wavefunction outside the section of the wire. Parameters ---------- U_in: arr Wavefunction of a nanowire with rectangular section. shape: arr or str Shape of the section. It can be a (Nx,Ny,Nz) or (Ny,Nz) array, where each np.nan element means that the corresponding site is not part of the section; or it can be 'hexagonal', what means that the section must be an hexagonal shape. N: arr Number of sites in each direction. dis: arr Discretization in each direction. BdG: str Whether the Hamiltonian has BdG symmetry. m: int Number of sites of the discretized Hamiltonian with the desired shape. If m=0, m is computed. Returns ------- U: arr Wavefunction of a nanowire with hexagonal section. """ if len(N)==2: N=np.array([1,N[0],N[1]]) dis=np.array([0,dis[0],dis[1]]) n_eig=np.shape(U_in)[1] if m==0: m=len(shape[shape==1]) if BdG=='no': m=m*2 elif BdG=='yes': m=m*4 if scipy.sparse.issparse(U_in): sparse='yes' U_in=U_in.todense() else: sparse='no' if np.isscalar(shape) and shape=='hexagonal': shape=np.ones(N) shape=mask_hexagonal(shape,np.linspace(-N[1]*dis[1]/2,N[1]*dis[1]/2,N[1]),np.linspace(-N[2]*dis[2]/2,N[2]*dis[2]/2,N[2]),x=np.linspace(0,N[0]*dis[0],N[0]),change=0) shape=shape.flatten() shape=np.repeat(shape,2) if BdG=='yes': shape=np.tile(shape,2) U=np.zeros((m,n_eig),dtype=complex) U=U_in[shape==1,:] if sparse=='yes': U=scipy.sparse.dok_matrix(U) return (U) #%% def U_shape2rec(U_in,shape,N,dis,BdG='no'): """ Transform a wavefunction of a nanwoire with an arbitrary cross-section to a nanowire with an rectangular one, filling with zeros the new elements outside the hexagonal section of the wire. Parameters ---------- U_in: arr Wavefunction of a nanowire with hexagonal section. shape: arr or str Shape of the section. It can be a (Nx,Ny,Nz) or (Ny,Nz) array, where each np.nan element means that the corresponding site is not part of the section; or it can be 'hexagonal', what means that the section must be an hexagonal shape. N: arr Number of sites in each direction. dis: arr Discretization in each direction. BdG: str Whether the Hamiltonian has BdG symmetry. space: str Whether the wavefunction is in position space or momentum. Returns ------- U: arr Wavefunction of a nanowire with rectangular section. """ if len(N)==2: N=np.array([1,N[0],N[1]]) dis=np.array([0,dis[0],dis[1]]) n_eig=len(U_in[0,:]) if np.isscalar(shape) and shape=='hexagonal': shape=np.ones(N) shape=mask_hexagonal(shape,np.linspace(-N[1]*dis[1]/2,N[1]*dis[1]/2,N[1]),np.linspace(-N[2]*dis[2]/2,N[2]*dis[2]/2,N[2]),x=np.linspace(0,N[0]*dis[0],N[0]),change=0) shape=shape.flatten() shape=np.repeat(shape,2) if BdG=='yes': shape=np.tile(shape,2) if scipy.sparse.issparse(U_in): sparse='yes' U_in=U_in.todense() else: sparse='no' if BdG=='no': U_out = np.zeros((2*np.prod(N),int(n_eig)),dtype=complex) elif BdG=='yes': U_out = np.zeros((4*np.prod(N),int(n_eig)),dtype=complex) U_out[shape==1,:]=U_in if sparse=='yes': U_out=scipy.sparse.dok_matrix(U_out) return (U_out) #%% ############################# Spectrum #%% def prob(U,N,BdG='yes'): """ Obtains the probability density of a given wavefunction. Parameters ---------- U: arr Wavefunction in a 1D array. N: int or arr Number of sites. Each element of N[i] is the number of sites along the direction i. If N is int, then there is just one dimension. BdG: {'yes','no'} Whether the wavefunction U is written in the BdG formalism. Returns ------- P: arr Probability density of U with the same dimension than N. """ P=np.zeros(N) if BdG=='no': P=(np.abs(U[0::2])**2+np.abs(U[1::2])**2).reshape(N) elif BdG=='yes': P=(np.abs(U[0:2*np.prod(N):2])**2+np.abs(U[1:2*np.prod(N):2])**2+np.abs(U[2*np.prod(N)::2])**2+np.abs(U[2*np.prod(N)+1::2])**2).reshape(N) return (P) #%% def Qtot(E,U,kT): """ Computes the total charge in the system. Parameters ---------- E: scalar or arr Energies. U: arr Eigenstates corresponding to each energy. kT: scalar Temperature (in units of energy). Returns ------- Qtot: scalar Total charge in the system. """ den=np.dot(U,np.dot(np.diag(1/(1+np.exp(E/kT))),np.transpose(U))) Qtot=np.sum(np.diag(den)[0:int(len(E)/2)]) return Qtot #%% def QM(Uodd,Ueven): """ Computes the Majorana charge (wavefunction overlap). Parameters ---------- Uodd: arr Eigenstate of the odd-parity Majorana state. Uevev: arr Eigenstate of the even-parity Majorana state. Returns ------- QM: scalar Majorana charge (overlap between U_L and U_R). """ QM = np.absolute(np.dot(Uodd+Ueven, -1j*(Uodd-Ueven))) return QM #%% def Density_Matrix(E,U,kT): """ Computes the density matrix of the system. Parameters ---------- E: scalar or arr Energies. U: arr Eigenstates corresponding to each energy. kT: scalar Temperature (in units of energy). Returns ------- den: arr Density matrix of the system. """ den = np.dot(U, np.dot(np.diag(1 / (1 + np.exp(E / kT))), np.transpose(U))) return den #%% def Density(E,U,N,kT): """ Computes the charge density of the system. Parameters ---------- E: arr Energies. U: arr Eigenstates. N: arr Number of sites in each direction. kT: scalar Temperature (in units of energy). Returns ------- den: arr (3D) Charge density in each site.. """ np.seterr(over='ignore') if np.ndim(N)==1: Nx=N[0] Ny=N[1] Nz=N[2] n_eig=len(E) den=np.zeros((Nx,Ny,Nz)) for i in range(Nx): for j in range(Ny): for k in range(Nz): for m in range(n_eig): den[i,j,k]=den[i,j,k]+(np.abs(U[2*(k+(i*Ny+j)*Nz),m])**2+np.abs(U[2*(k+(i*Ny+j)*Nz)+1,m])**2)*(1 / (1 + np.exp(E[m] / kT))) #den = np.dot(U, np.transpose(U)) elif np.ndim(N)==0: Nx=N n_eig=len(E) den=np.zeros((Nx)) for i in range(Nx): for m in range(n_eig): den[i]=den[i]+(np.abs(U[2*i,m])**2+np.abs(U[2*i+1,m])**2)*(1 / (1 + np.exp(E[m] / kT))) #den = np.dot(U, np.transpose(U)) return den #%% def Density_momentum(E,U,k,N,kT): """ Charge densisty of an infnite system in one direction. Parameters ---------- E: arr Energies. U: arr Eigenstates. k: arr Momentum vector. N: arr Number of sites in each direction. kT: scalar Temperature (in units of energy). Returns ------- den: arr (2D) Charge density in each site. """ Nx=N[0] Ny=N[1] Nz=N[2] n_eig=len(E) if np.ndim(U)==3: den=np.zeros((Nx,Ny,Nz)) for i_x in range(Nx): for i_y in range(Ny): for i_z in range(Nz): for i_E in range(n_eig): den[i_x,i_y,i_z]=den[i_x,i_y,i_z]+(np.abs(U[int(2*(i_z+(i_y+i_x*Ny)*Nz)),i_E,0])**2+np.abs(U[int(2*(i_z+(i_y+i_x*Ny)*Nz))+1,i_E,0])**2)*denfromDOS(k,E[i_E,:],kT) elif np.ndim(U)==2: Nx=1 den=np.zeros((Ny,Nz)) i_x=0 for i_y in range(Ny): for i_z in range(Nz): for i_E in range(n_eig): den[i_y,i_z]=den[i_y,i_z]+(np.abs(U[int(2*(i_z+(i_y+i_x*Ny)*Nz)),i_E])**2+np.abs(U[int(2*(i_z+(i_y+i_x*Ny)*Nz))+1,i_E])**2)*denfromDOS(k,E[i_E,:],kT) return den #%% def k_F(mu,aR,Vz,m_eff=0.023): """ Find the Fermi momentum for a 1D infinite nanowire. Parameters ---------- mu: scalar or arr Chemical potential. aR: scalar or arr Spin-orbit coupling. Vz: scalar or arr Zeeman splitting. m_eff: scalar or str Effective mass. Returns ------- k_F: scalar or arr Fermi momentum. """ if m_eff=='InAs': m_eff=0.023 elif m_eff=='InSb': m_eff=0.015 m=constants.m_e*m_eff hbar=constants.hbar mu,aR,Vz=mu*1e-3*constants.e,aR*1e-12*constants.e,Vz*1e-3*constants.e kSO=m*aR/hbar**2 kZ=np.sqrt(2*m*Vz)/hbar kmu_p=2*m*mu/hbar**2 kF=np.zeros(2) kF[0]=np.sqrt(2*kSO**2+kmu_p+np.sqrt(4*kSO**4+kZ**4+4*kmu_p*kSO**2)) kF[1]=np.sqrt(2*kSO**2+kmu_p-np.sqrt(4*kSO**4+kZ**4+4*kmu_p*kSO**2)) kF=kF*1e-9 return (kF) #%% def DOS(k,E): """ Density of states of a 1D infinite nanowire. Parameters ---------- k: arr momentum vector. E: arr Energies. Returns ------- DOS: arr Density of states. """ DOS=np.abs(np.gradient(E,k))**(-1)/np.pi DOS[0]=0 return(DOS) #%% def denfromDOS(k,E,kT): """ 1D charge denisty of an infinite nanowire. Parameters ---------- k: arr momentum vector. E: arr Energies (in units of energy). Returns ------- DOS: arr Density of states. """ np.seterr(over='ignore') dos=DOS(k,E) den=0 for i in range(len(E)-1): den=den+dos[i]*(E[i+1]-E[i])*(1 / (1 + np.exp(E[i] / kT))) if not(np.abs(k[0])==np.abs(k[-1])): den=den*2 return (den) #%% def LDOS(P_n,E_n,E_sample,a_0=0.0): """ Local density of states as a function of the energies E_sample. Parameters ---------- P_n: arr Probability density of the wavefunction at a given point for different eigensates. E_n: arr Corresponding energies. E_sample: arr Energies in which the LDOS is evaluated. a_0: float Dirac delta characteristic length. If a_0=0 perfect Dirac delta is used, while otherwise it is used an analytical expression for the Delta with a characteristic width. Returns ------- LDOS: arr Local density of states for a given energies. """ n_n=len(E_n) n_out=len(E_sample) LDOS=np.zeros(n_out) if a_0==0.0: for i in range(n_out-1): for j in range(n_n): if (E_sample[i+1]>=E_n[j]) and (E_sample[i]<=E_n[j]): LDOS[i]=LDOS[i]+P_n[j] return(LDOS) else: if a_0=='none': a_0=np.abs(E_sample[0]-E_sample[1])*4 def Dirac_delta(E,En,a_0): return np.exp(-((E-En)/a_0)**2)/(np.sqrt(np.pi)*np.abs(a_0)) for i in range(n_out): for j in range(n_n): LDOS[i]=LDOS[i]+P_n[j]*Dirac_delta(E_sample[i],E_n[j],a_0) return (LDOS) #%% def dIdV(LDOS,E_sample,kT): """ Differential conductance for a given energies E_sample. Parameters ---------- LDOS: arr Local density of states computed using Functions.LDOS. E_sample: arr Energies in which the dIdV (and LDOS) is evaluated. kT: float Temperature (in units of energy). Returns ------- dIdV: arr Differential conductance for a given energies. """ def sech(x): return 1.0/np.cosh(x) n=len(E_sample) dIdV=np.zeros(n) for i in range(n): for j in range(n): dIdV[i]=dIdV[i]+LDOS[j]*sech((E_sample[i]-E_sample[j])/(2*kT))**2 return (dIdV) #%% ############################# Others #%% def Chern_number(H_k,k_vec,N): """ Computes the Chern number of a 1D Hamiltonian in k-space. Parameters ---------- H_k: arr 1D Hamiltonian in k-space. Each element H_k[:,:,i] is the Hamiltonian evaluated at k_vec[i]. k_vec: arr Momentum vector of the first Brillouin zone in which the Hamiltonian is evaluated. N: int Number of sites in which the unit cell of the Hamiltonian is discretized. Returns ------- Ch: int Chern number of the given 1D Hamiltonian. """ Gamma=np.zeros((4*N,4*N),dtype=complex) for i in range(N): Gamma[2*i:2*i+2,2*i+2*N:2*i+2*N+2]=np.array([[1,0],[0,1]]) Gamma[2*i+2*N:2*i+2*N+2,2*i:2*i+2]=np.array([[1,0],[0,1]]) Ch=np.sign(pf.pfaffian(np.dot(Gamma,H_k[:,:,int((len(k_vec)-1)/2)])))*np.sign(pf.pfaffian(np.dot(Gamma,H_k[:,:,int(len(k_vec)-1)]))) return (Ch) #%% def rho_acc(x,y,z,den_acc_in,n_lattice,r_lattice,superlattice_type='none'): """ Computes the superficial charge density of a nanowire with hexagonal section. Parameters ---------- x,y,z: arr Positions of the mesh of the nanowire section. den_acc_in: scalar Magnitude of the accumulation layer. n_lattice: int Number of superlattice cells. r_lattice: float Partial coverage of the SC. superlattice_type: str Whether the superlattice is on top, at the bottom, or there is no superlattice (none). Returns ------- rho_acc: arr Charge density inside the wire due to the charge accumulation layer. """ Nx, Ny, Nz = len(x), len(y), len(z) Lx, Ly, Lz = x[Nx-1], y[Ny-1]*2, z[Nz-1]*2 a0=Ly/2 b0=a0*np.sin(np.pi/3) dis=np.array([np.abs(x[0]-x[1]),np.abs(y[0]-y[1]),np.abs(z[0]-z[1])]) L_SC, L_0=Lx/n_lattice*r_lattice, Lx/n_lattice*(1-r_lattice) den_acc_out=np.zeros((Nx,Ny,Nz)) if superlattice_type=='top': den_acc_out[:,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,-b0)]=np.ones((Nx,arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in for j in range(Nx): for i in range(n_lattice+1): if (x[j]>=L_SC/2+i*(L_SC+L_0)) and (x[j]<=L_SC/2+L_0+i*(L_SC+L_0)): den_acc_out[j,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,b0)]=np.ones((arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in elif superlattice_type=='bottom': den_acc_out[:,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,b0)]=np.ones((Nx,arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in for j in range(Nx): for i in range(n_lattice+1): if (x[j]>=L_SC/2+i*(L_SC+L_0)) and (x[j]<=L_SC/2+L_0+i*(L_SC+L_0)): den_acc_out[j,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,-b0)]=np.ones((arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in elif superlattice_type=='none': den_acc_out[:,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,-b0)+1]=np.ones((Nx,arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in den_acc_out[:,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,b0)-1]=np.ones((Nx,arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in else: for j in range(Nx): for i in range(n_lattice+1): if (x[j]>=L_SC/2+i*(L_SC+L_0)) and (x[j]<=L_SC/2+L_0+i*(L_SC+L_0)): den_acc_out[j,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,-b0)]=np.ones((arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in den_acc_out[j,arg_isclose(y,-a0/2):arg_isclose(y,a0/2)+1,arg_isclose(z,b0)]=np.ones((arg_isclose(y,a0/2)-arg_isclose(y,-a0/2)+1))*den_acc_in for k in range(Nz): if (z[k]>=-b0) and (z[k]<=0): den_acc_out[:,arg_isclose(2*b0/a0*y-2*b0,z[k]-dis[2])+1,k]=np.ones(Nx)*den_acc_in den_acc_out[:,arg_isclose(-2*b0/a0*y-2*b0,z[k]-dis[2])-1,k]=np.ones(Nx)*den_acc_in elif (z[k]<=b0) and (z[k]>=0): den_acc_out[:,arg_isclose(2*b0/a0*y+2*b0,z[k]+dis[2])-1,k]=np.ones(Nx)*den_acc_in den_acc_out[:,arg_isclose(-2*b0/a0*y+2*b0,z[k]+dis[2])+1,k]=
np.ones(Nx)
numpy.ones
"""Miscellaneous utility functions. """ from enum import Enum import re import inspect import itertools from scipy import ndimage as ndi from numpydoc.docscrape import FunctionDoc import numpy as np import wrapt def str_to_rgb(arg): """Convert an rgb string 'rgb(x,y,z)' to a list of ints [x,y,z]. """ return list( map(int, re.match(r'rgb\((\d+),\s*(\d+),\s*(\d+)\)', arg).groups()) ) def ensure_iterable(arg, color=False): """Ensure an argument is an iterable. Useful when an input argument can either be a single value or a list. If a color is passed then it will be treated specially to determine if it is iterable. """ if is_iterable(arg, color=color): return arg else: return itertools.repeat(arg) def is_iterable(arg, color=False): """Determine if a single argument is an iterable. If a color is being provided and the argument is a 1-D array of length 3 or 4 then the input is taken to not be iterable. """ if arg is None: return False elif type(arg) is str: return False elif np.isscalar(arg): return False elif color and isinstance(arg, (list, np.ndarray)): if np.array(arg).ndim == 1 and (len(arg) == 3 or len(arg) == 4): return False else: return True else: return True def is_rgb(shape): """If last dim is 3 or 4 assume image is rgb. """ ndim = len(shape) last_dim = shape[-1] if ndim > 2 and last_dim < 5: return True else: return False def is_pyramid(data): """If shape of arrays along first axis is strictly decreasing. """ size = np.array([np.prod(d.shape) for d in data]) if len(size) > 1: return np.all(size[:-1] > size[1:]) else: return False def trim_pyramid(pyramid): """Trim very small arrays of top of pyramid. Parameters ---------- pyramid : list of array Pyramid data Returns ------- trimmed : list of array Trimmed pyramid data """ keep = [np.any(np.greater_equal(p.shape, 2 ** 6 - 1)) for p in pyramid] if np.sum(keep) >= 2: return [p for k, p in zip(keep, pyramid) if k] else: return pyramid[:2] def should_be_pyramid(shape): """Check if any data axes needs to be pyramidified Parameters ---------- shape : tuple of int Shape of data to be tested Returns ------- pyr_axes : tuple of bool True wherever an axis exceeds the pyramid threshold. """ return np.log2(shape) >= 13 def get_pyramid_and_rgb(data, pyramid=None, rgb=None): """Check if data is or needs to be a pyramid and make one if needed. Parameters ---------- data : array, list, or tuple Data to be checked if pyramid or if needs to be turned into a pyramid. pyramid : bool, optional Value that can force data to be considered as a pyramid or not, otherwise computed. rgb : bool, optional Value that can force data to be considered as a rgb, otherwise computed. Returns ------- ndim : int Dimensionality of the data. rgb : bool If data is rgb. pyramid : bool If data is a pyramid or a pyramid has been generated. data_pyramid : list or None If None then data is not and does not need to be a pyramid. Otherwise is a list of arrays where each array is a level of the pyramid. """ # Determine if data currently is a pyramid currently_pyramid = is_pyramid(data) if currently_pyramid: shapes = [d.shape for d in data] init_shape = shapes[0] else: init_shape = data.shape # Determine if rgb, and determine dimensionality if rgb is False: pass else: # If rgb is True or None then guess if rgb # allowed or not, and if allowed set it to be True rgb_guess = is_rgb(init_shape) if rgb and rgb_guess is False: raise ValueError( "Non rgb or rgba data was passed, but rgb data was" " requested." ) else: rgb = rgb_guess if rgb: ndim = len(init_shape) - 1 else: ndim = len(init_shape) if pyramid is False: if currently_pyramid: raise ValueError( "Non pyramided data was requested, but pyramid" " data was passed" ) else: data_pyramid = None else: if currently_pyramid: data_pyramid = trim_pyramid(data) pyramid = True else: # Guess if data should be pyramid or if a pyramid was requested if pyramid: pyr_axes = [True] * ndim else: pyr_axes = should_be_pyramid(data.shape) if np.any(pyr_axes): pyramid = True # Set axes to be downsampled to have a factor of 2 downscale = np.ones(len(data.shape)) downscale[pyr_axes] = 2 largest = np.min(np.array(data.shape)[pyr_axes]) # Determine number of downsample steps needed max_layer = np.floor(np.log2(largest) - 9).astype(int) data_pyramid = fast_pyramid( data, downscale=downscale, max_layer=max_layer ) data_pyramid = trim_pyramid(data_pyramid) else: data_pyramid = None pyramid = False return ndim, rgb, pyramid, data_pyramid def fast_pyramid(data, downscale=2, max_layer=None): """Compute fast image pyramid. In the interest of speed this method subsamples, rather than downsamples, the input image. Parameters ---------- data : array Data from which pyramid is to be generated. downscale : int or list Factor to downscale each step of the pyramid by. If a list, one value must be provided for every axis of the array. max_layer : int, optional The maximum number of layers of the pyramid to be created. Returns ------- pyramid : list List of arrays where each array is a level of the generated pyramid. """ if max_layer is None: max_layer = np.floor(np.log2(np.max(data.shape))).astype(int) + 1 zoom_factor = np.divide(1, downscale) pyramid = [data] for i in range(max_layer - 1): pyramid.append( ndi.zoom(pyramid[i], zoom_factor, prefilter=False, order=0) ) return pyramid def increment_unnamed_colormap(name, names): """Increment name for unnamed colormap. Parameters ---------- name : str Name of colormap to be incremented. names : str Names of existing colormaps. Returns ------- name : str Name of colormap after incrementing. """ if name == '[unnamed colormap]': past_names = [n for n in names if n.startswith('[unnamed colormap')] name = f'[unnamed colormap {len(past_names)}]' return name def calc_data_range(data): """Calculate range of data values. If all values are equal return [0, 1]. Parameters ------- data : array Data to calculate range of values over. Returns ------- values : list of float Range of values. Notes ----- If the data type is uint8, no calculation is performed, and 0-255 is returned. """ if data.dtype == np.uint8: return [0, 255] if np.prod(data.shape) > 1e6: # If data is very large take the average of the top, bottom, and # middle slices bottom_plane_idx = (0,) * (data.ndim - 2) middle_plane_idx = tuple(s // 2 for s in data.shape[:-2]) top_plane_idx = tuple(s - 1 for s in data.shape[:-2]) idxs = [bottom_plane_idx, middle_plane_idx, top_plane_idx] reduced_data = [ [np.max(data[idx]) for idx in idxs], [np.min(data[idx]) for idx in idxs], ] else: reduced_data = data min_val = np.min(reduced_data) max_val = np.max(reduced_data) if min_val == max_val: min_val = 0 max_val = 1 return [float(min_val), float(max_val)] def compute_max_shape(shapes, max_dims=None): """Computes the maximum shape combination from the given shapes. Parameters ---------- shapes : iterable of tuple Shapes to coombine. max_dims : int, optional Pre-computed maximum dimensions of the final shape. If None, is computed on the fly. Returns ------- max_shape : tuple Maximum shape combination. """ shapes = tuple(shapes) if max_dims is None: max_dims = max(len(shape) for shape in shapes) max_shape = [0] * max_dims for dim in range(max_dims): for shape in shapes: try: dim_len = shape[dim] except IndexError: pass else: if dim_len > max_shape[dim]: max_shape[dim] = dim_len return tuple(max_shape) def formatdoc(obj): """Substitute globals and locals into an object's docstring.""" frame = inspect.currentframe().f_back try: obj.__doc__ = obj.__doc__.format( **{**frame.f_globals, **frame.f_locals} ) return obj finally: del frame def segment_normal(a, b, p=(0, 0, 1)): """Determines the unit normal of the vector from a to b. Parameters ---------- a : np.ndarray Length 2 array of first point or Nx2 array of points b : np.ndarray Length 2 array of second point or Nx2 array of points p : 3-tuple, optional orthogonal vector for segment calculation in 3D. Returns ------- unit_norm : np.ndarray Length the unit normal of the vector from a to b. If a == b, then returns [0, 0] or Nx2 array of vectors """ d = b - a if d.ndim == 1: if len(d) == 2: normal = np.array([d[1], -d[0]]) else: normal = np.cross(d, p) norm = np.linalg.norm(normal) if norm == 0: norm = 1 else: if d.shape[1] == 2: normal =
np.stack([d[:, 1], -d[:, 0]], axis=0)
numpy.stack
#!/usr/bin/env python # coding: utf-8 # # Model Specification # This example solve a standard AR(1) process but with multiple noise measurements. If there are many parameters, we need more data for proper estimation. # In[11]: import numpy as np import pandas as pd import linkalman import scipy from linkalman.models import BaseConstantModel as BCM from linkalman.core.utils import gen_PSD from scipy.optimize import minimize import matplotlib.pyplot as plt import datetime from copy import deepcopy # # Unrestricted Parametrization of Covariance Matrices # Sometime we want to let a covariance matrix (e.g. `R`) to be fully parametrized without restriction (e.g. PSD of `R`). Here I use `linkalman.core.utils.gen_PSD` to achieve this. It uses Cholesky decomposition with strictly non-negative diagonal values to achieve unique and restriction-free parametrizaion. # In[12]: def my_f(theta): """ AR(1) model. Introduce noise and """ # Define theta f = 1 / (1 + np.exp(theta[3])) sigma = np.exp(theta[4]) # Generate F F = np.array([[f]]) # Generate Q Q = np.array([[sigma]]) # Generate R, set to 0 to be consistent with AR(1) process R = gen_PSD(theta[0:3], 2) # need three parameters to define a 2-by-2 R # Generate H H = np.array([[1], [theta[5]]]) # enforce one coefficient to be 1 to make the system more identifiable. # Generate D D = np.array([[theta[6]], [theta[7]]]) # Collect system matrices M = {'F': F, 'Q': Q, 'H': H, 'R': R, 'D': D} return M # In[13]: def my_solver(param, obj_func, verbose=False, **kwargs): """ Simple solver for LLY """ obj_ = lambda x: -obj_func(x) def disp_f(x): print('theta is {}. Function value is: {}.'.format(x, obj_func(x))) callbackf = None if verbose: callbackf = disp_f res = minimize(obj_, param, callback=callbackf, **kwargs) theta_opt = np.array(res.x) fval_opt = res.fun return theta_opt, fval_opt # In[14]: # Initialize the model x = 1 # used to calculate stationary mean model = BCM() model.set_f(my_f, x_0=x * np.ones([1, 1])) model.set_solver(my_solver, method='nelder-mead', options={'xatol': 1e-8, 'maxfev': 200}, verbose=False) # # Generate Synthetic Data # Same as the standard setup, but I cross off some measurements during training period and see how `linkalman` handles them. I generate some partial missing data for each of the measurements. # In[15]: # Some initial parameters theta = np.array([0.1, 0.3, 0.1, -0.5, -0.1, 2, 4, 5]) T = 3000 train_split_ratio = 0.7 forecast_cutoff_ratio = 0.8 missing_range_1st = [0.3, 0.4] # range of missing for the first measurement missing_range_2nd_end = 0.5 # end ratio of missing for the second measurement # Split train data train_split_t = np.floor(T * train_split_ratio).astype(int) # Generate missing data for forcasting forecast_t = np.floor(T * forecast_cutoff_ratio).astype(int) # If we want AR(1) with non-zero stationary mean, we should proivde a constant x_col = ['const'] Xt = pd.DataFrame({x_col[0]: x *
np.ones(T)
numpy.ones
import openml import numpy as np from sklearn.preprocessing import LabelEncoder import pandas as pd from torch.utils.data import Dataset def simple_lapsed_time(text, lapsed): hours, rem = divmod(lapsed, 3600) minutes, seconds = divmod(rem, 60) print(text+": {:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds)) def task_dset_ids(task): dataset_ids = { 'binary': [1487,44,1590,42178,1111,31,42733,1494,1017,4134], 'multiclass': [188, 1596, 4541, 40664, 40685, 40687, 40975, 41166, 41169, 42734], 'regression':[541, 42726, 42727, 422, 42571, 42705, 42728, 42563, 42724, 42729] } return dataset_ids[task] def concat_data(X,y): # import ipdb; ipdb.set_trace() return pd.concat([pd.DataFrame(X['data']), pd.DataFrame(y['data'][:,0].tolist(),columns=['target'])], axis=1) def data_split(X,y,nan_mask,indices): x_d = { 'data': X.values[indices], 'mask': nan_mask.values[indices] } if x_d['data'].shape != x_d['mask'].shape: raise'Shape of data not same as that of nan mask!' y_d = { 'data': y[indices].reshape(-1, 1) } return x_d, y_d def data_prep_CBC(seed, task, datasplit=[.65, .15, .2]): np.random.seed(seed) #Load data CBC_file_dir = "data/ProcessedData-2021-Filtrados.csv" CBC = pd.read_csv(CBC_file_dir, error_bad_lines=True) CBC = CBC[CBC['Clase'] != 2] CBC['Clase'] = CBC['Clase'].replace(to_replace = 3, value = 2) CBC['Clase'] = CBC['Clase'].replace(to_replace = 4, value = 2) healthy = CBC.loc[CBC['Clase'] == 0] thalassemias = CBC.loc[CBC['Clase'] == 1] anemias = CBC.loc[CBC['Clase'] == 2] CBC = pd.concat([healthy,thalassemias, anemias]) y = CBC['Clase'] CBC = CBC.drop('Clase', axis=1) CBC = CBC.drop('TipoClase', axis=1) X = CBC categorical_indicator = [] for i in range(0, len(X.iloc[0])): categorical_indicator.append(False) categorical_columns = X.columns[list(np.where(
np.array(categorical_indicator)
numpy.array
import random import numpy as np from PyQt5.QtWidgets import QMainWindow, QApplication from OpenGL import GL, GLU, GLUT import logging from ui.mainwindow import Ui_MainWindow def random_rgb(): """ Get random bright enough color """ color = [random.random() for _ in range(4)] if sum(color[:3]) / 3 < 0.5: return random_rgb() else: return color def cart2pol(x, y): r = np.sqrt(x ** 2 + y ** 2) ang = np.arctan2(y, x) return r, ang def pol2cart(r, ang): x = r * np.cos(ang) y = r * np.sin(ang) return x, y # noinspection PyPep8Naming class MainWindow(QMainWindow, Ui_MainWindow): generated_points = [] generated_colors = [] def __init__(self, parent=None): super().__init__(parent) self.setupUi(self) self.primitiveComboBox.activated.connect(self.resetRandomAndUpdate) self.AlphaSlider.valueChanged.connect(self.openGLWidget.update) self.AlphaComboBox.activated.connect(self.openGLWidget.update) self.blendSFactor.activated.connect(self.openGLWidget.update) self.blendDFactor.activated.connect(self.openGLWidget.update) self.updateButton.clicked.connect(self.resetRandomAndUpdate) self.XScissorSlider.valueChanged.connect(self.openGLWidget.update) self.YScissorSlider.valueChanged.connect(self.openGLWidget.update) self.openGLWidget.initializeGL() self.openGLWidget.paintGL = self.paintGL self.actionsDict = { "GL_POINTS": self.paintGL_random, "GL_LINES": self.paintGL_random, "GL_LINE_STRIP": self.paintGL_random, "GL_LINE_LOOP": self.paintGL_random, "GL_TRIANGLES": self.paintGL_random, "GL_TRIANGLE_STRIP": self.paintGL_circular_random, "GL_TRIANGLE_FAN": self.paintGL_circular_random, "GL_QUADS": self.paintGL_quads, "GL_QUAD_STRIP": self.paintGL_quad_strip, "GL_POLYGON": self.paintGL_polygon, "Фрактал": self.paintGL_fractal, "<NAME>": self.paintGL_spline } def resetRandomAndUpdate(self): self.fractalLevelSpinBox.setEnabled(False) self.generated_points = [] self.generated_colors = [] self.openGLWidget.update() def glScissorTest(self): GL.glEnable(GL.GL_SCISSOR_TEST) # print(self.x_scissor, self.y_scissor) x_scissor = self.XScissorSlider.value() / 100 y_scissor = self.YScissorSlider.value() / 100 GL.glScissor( int(x_scissor * self.openGLWidget.width()), int(y_scissor * self.openGLWidget.height()), self.openGLWidget.width(), self.openGLWidget.height()) def glAlphaTest(self): GL.glEnable(GL.GL_ALPHA_TEST) alpha_method = self.AlphaComboBox.currentText() alpha_value = self.AlphaSlider.value() / 100 GL.glAlphaFunc(getattr(GL, alpha_method), alpha_value) def glBlendTest(self): GL.glEnable(GL.GL_BLEND) sFactor = self.blendSFactor.currentText() dFactor = self.blendDFactor.currentText() GL.glBlendFunc(getattr(GL, sFactor), getattr(GL, dFactor)) def loadScene(self): width, height = self.openGLWidget.width(), self.openGLWidget.height() GL.glViewport(0, 0, width, height) GL.glMatrixMode(GL.GL_PROJECTION) GL.glLoadIdentity() GL.glOrtho(0, 1, 0, 1, -1, 1) GL.glMatrixMode(GL.GL_MODELVIEW) GL.glLoadIdentity() def paintGL(self): # print('Paint') self.loadScene() self.glScissorTest() self.glAlphaTest() self.glBlendTest() self.actionsDict[self.primitiveComboBox.currentText()]() def paintGL_random(self): GL.glPointSize(2) random_dict = { "GL_POINTS": { "GL_MODE": GL.GL_POINTS, "POINTS_NUM": 50 }, "GL_LINES": { "GL_MODE": GL.GL_LINES, "POINTS_NUM": 5 * 2 }, "GL_LINE_STRIP": { "GL_MODE": GL.GL_LINE_STRIP, "POINTS_NUM": 5 }, "GL_LINE_LOOP": { "GL_MODE": GL.GL_LINE_LOOP, "POINTS_NUM": 5 }, "GL_TRIANGLES": { "GL_MODE": GL.GL_TRIANGLES, "POINTS_NUM": 3 * 3 } } GL.glBegin( random_dict[self.primitiveComboBox.currentText()] ['GL_MODE']) self.drawRandomPoints( random_dict [self.primitiveComboBox.currentText()] ['POINTS_NUM']) GL.glEnd() GL.glFinish() def drawRandomPoints(self, number): if len(self.generated_points) == 0: self.generated_points = [ (np.random.random(), np.random.random()) for _ in range(number)] self.generated_colors = [random_rgb() for _ in range(number)] self.placeGeneratedPoints() def placeGeneratedPoints(self): for point, color in zip(self.generated_points, self.generated_colors): GL.glColor4d(*color) GL.glVertex2d(*point) def paint(self, X1, Y1, X2, Y2): line11 = [] line12 = [] line13 = [] start = (0.1, 0.1) finish = (0.9, 0.1) draggable1 = (X1, Y1) draggable2 = (X2, Y2) GL.glBegin(GL.GL_POINTS) GL.glVertex2d(*draggable2) GL.glVertex2d(*draggable1) GL.glEnd() GL.glBegin(GL.GL_LINE_STRIP) for i in range(100): line11.append(((draggable1[0] - start[0])/100*i + start[0], (draggable1[1] - start[1])/100*i + start[1])) line12.append( ((draggable2[0] - draggable1[0]) / 100 * i + draggable1[0], (draggable2[1] - draggable1[1]) / 100 * i + draggable1[1])) line13.append( ((finish[0] - draggable2[0]) / 100 * i + draggable2[0], (finish[1] - draggable2[1]) / 100 * i + draggable2[1])) line21 = [] line22 = [] for i in range(100): dot1 = line11[i] dot2 = line12[i] dot3 = line13[i] line21.append(((dot2[0] - dot1[0]) / 100 * i + dot1[0], (dot2[1] - dot1[1]) / 100 * i + dot1[1])) line22.append(((dot3[0] - dot2[0]) / 100 * i + dot2[0], (dot3[1] - dot2[1]) / 100 * i + dot2[1])) for i in range(100): dot21 = line21[i] dot22 = line22[i] GL.glVertex2d((dot22[0] - dot21[0]) / 100 * i + dot21[0], (dot22[1] - dot21[1]) / 100 * i + dot21[1]) GL.glEnd() GL.glFinish() def paintGL_spline(self): self.paint(0.25, 0.75, 0.75, 0.75) def paintGL_circular_random(self): random_dict = { "GL_TRIANGLE_STRIP": GL.GL_TRIANGLE_STRIP, "GL_TRIANGLE_FAN": GL.GL_TRIANGLE_FAN, } acc_angle = 0 N = 5 if len(self.generated_points) == 0: self.generated_colors.append(random_rgb()) self.generated_points.append((0.5, 0.5)) max_rad = 0.5 self.generated_colors.extend([random_rgb() for _ in range(N)]) for _ in range(N): r = np.random.random() * max_rad acc_angle += random.random() * 360 / N x, y = pol2cart(r, acc_angle / 180 * np.pi) x += 0.5 y += 0.5 self.generated_points.append((x, y)) GL.glPointSize(2) GL.glBegin(random_dict[self.primitiveComboBox.currentText()]) self.placeGeneratedPoints() GL.glEnd() GL.glFinish() def paintGL_quads(self): N = 4 if len(self.generated_points) == 0: for _ in range(N): c_x, c_y = np.random.random() * 0.98 + 0.01, np.random.random() * 0.98 + 0.01 max_rad = min(c_x, 1 - c_x, c_y, 1 - c_y) acc_angle = 0 r = np.random.random() * max_rad self.generated_colors.extend([random_rgb() for _ in range(4)]) for _ in range(4): acc_angle += random.random() * 360 / 4 x, y = pol2cart(r, acc_angle / 180 * np.pi) x += c_x y += c_y self.generated_points.append((x, y)) GL.glPointSize(2) GL.glBegin(GL.GL_QUADS) self.placeGeneratedPoints() GL.glEnd() GL.glFinish() def paintGL_quad_strip(self): N = 4 if len(self.generated_points) == 0: y_s = sorted([np.random.random() for _ in range(N)]) x_s = [[np.random.random() for _ in range(2)] for _ in range(N)] [l.sort() for l in x_s] self.generated_colors = [random_rgb() for _ in range(N * 2)] for i in range(N): self.generated_points.append((x_s[i][0], y_s[i])) self.generated_points.append((x_s[i][1], y_s[i])) GL.glPointSize(2) GL.glBegin(GL.GL_QUAD_STRIP) self.placeGeneratedPoints() GL.glEnd() GL.glFinish() def paintGL_polygon(self): N = 8 if len(self.generated_points) == 0: acc_angle = 0 r = np.random.random() * 0.5 self.generated_colors = [random_rgb() for _ in range(N)] for _ in range(N): acc_angle += random.random() * 360 / N x, y = pol2cart(r, acc_angle / 180 * np.pi) x += 0.5 y += 0.5 self.generated_points.append((x, y)) GL.glPointSize(2) GL.glBegin(GL.GL_POLYGON) self.placeGeneratedPoints() GL.glEnd() GL.glFinish() def paintGL_fractal(self): self.fractalLevelSpinBox.setEnabled(True) GL.glBegin(GL.GL_LINE_STRIP) start = (0.20, 0.5) end = (0.80, 0.5) self.drawFractal(*start, *end, level=self.fractalLevelSpinBox.value()) GL.glEnd() def drawFractal(self, x1, y1, x2, y2, level=1, recursive=False): p1, p2 = np.array((x1, y1)), np.array((x2, y2)) vec = p2 - p1 coef = np.linalg.norm(vec) center = p1 + vec / 2 angle = cart2pol(*vec)[1] rotate_matr = np.array([ # Матрица поворота [
np.cos(angle)
numpy.cos
import numpy as np import scipy as sp def reshape_dims(M,dims=None): num_dim = np.ndim(M) if num_dim ==3: M1r= M.reshape((np.prod(dims[:2]),dims[2]),order='F') elif num_dim ==2: M1r = M.reshape(dims,order='F') return M1r def remove_trend(Y_rm,detrend_option='linear'): mean_pixel = Y_rm.mean(axis=1, keepdims=True) Y_rm2 = Y_rm - mean_pixel # Detrend if detrend_option=='linear': detr_data = sp.signal.detrend(Y_rm2,axis=1,type='l') #elif detrend_option=='quad': #detr_data = detrend(Y_rm) else: print('Add option') Y_det = detr_data + mean_pixel offset = Y_rm - Y_det return Y_det, offset def unpad(x): """ Given padded matrix with nan Get rid of all nan in order (row, col) Parameters: ---------- x: np.array array to unpad (all nan values) Outputs: ------- x: np.array unpaded array (will not contain nan values) dimension might be different from input array """ x = x[:, ~np.isnan(x).all(0)] x = x[~np.isnan(x).all(1)] return x def pad(array, reference_shape, offsets, array_type=np.nan): """ Pad array wrt reference_shape exlcluding offsets with dtype=array_type Parameters: ---------- array: np.array array to be padded reference_shape:tuple size of narray to create offsets: tuple list of offsets (number of elements must be equal to the dimension of the array) will throw a ValueError if offsets is too big and the reference_shape cannot handle the offsets array_type: dtype data type to pad array with. Outputs: ------- result: np.array (reference_shape) padded array given input """ # Create an array of zeros with the reference shape result = np.ones(reference_shape) * array_type # Create a list of slices from offset to offset + shape in each dimension insertHere = [slice(offsets[dim], offsets[dim] + array.shape[dim]) for dim in range(array.ndim)] # Insert the array in the result at the specified offsets result[insertHere] = array return result def nextpow2(value): """ Extracted from caiman.source_extraction.cnmf.deconvolution import axcov Find exponent such that 2^exponent is >= abs(value). Parameters: ---------- value : int Returns: ------- exponent : int """ exponent = 0 avalue = np.abs(value) while avalue > np.power(2, exponent): exponent += 1 return exponent def axcov(data, maxlag=10): """ Edited from cnmf.deconvolution Compute the autocovariance of data at lag = -maxlag:0:maxlag Parameters: ---------- data : array Array containing fluorescence data maxlag : int Number of lags to use in autocovariance calculation Output: ------- axcov : array Autocovariances computed from -maxlag:0:maxlag """ data = data - np.mean(data) T = len(data) bins = np.size(data) xcov = np.fft.fft(data, np.power(2, nextpow2(2 * bins - 1))) xcov = np.fft.ifft(np.square(np.abs(xcov))) xcov = np.concatenate([xcov[np.arange(xcov.size - maxlag, xcov.size)], xcov[np.arange(0, maxlag + 1)]]) return np.real(np.divide(xcov, T)) #### SOME FILTERS def low_pass_weights(window, cutoff): """Calculate weights for a low pass Lanczos filter. Args: window: int The length of the filter window. cutoff: float The cutoff frequency in inverse time steps. """ order = ((window - 1) // 2 ) + 1 nwts = 2 * order + 1 w =
np.zeros([nwts])
numpy.zeros
import numpy as np import tensorflow as tf from util import concrete_shape from transforms import Simplex, Logit """ Utility methods for defining constrained variables as transforms of an unconstrained parameterization. """ def unconstrained(shape=None, init=None, name=None): if init is None: shape = concrete_shape(shape) init = np.float32(np.random.randn(*shape)) val = tf.Variable(init, name=name) return val def unconstrained_zeros(shape=None, name=None): shape = concrete_shape(shape) init = np.float32(np.zeros(shape)) val = tf.Variable(init, name=name) return val def unconstrained_small(shape=None, name=None): shape = concrete_shape(shape) init = np.float32(np.random.randn(*shape) * 1e-6) val = tf.Variable(init, name=name) return val def unconstrained_scale(shape=None, name=None): shape = concrete_shape(shape) init = np.float32(np.random.randn(*shape)) val = tf.Variable(init, name=name) scale = tf.Variable(np.float32(1e-6), name=name) return val * scale def simplex_constrained(shape=None, init_log=None, name=None): if init_log is None: shape = concrete_shape(shape) init_log = np.float32(np.random.randn(*shape)) log_value = tf.Variable(init_log, name= "log_"+name if name is not None else None) return Simplex.transform(log_value) def unit_interval(shape=None, init_log=None, name=None): # Defines a matrix each element of which is in the unit interval. # This is different from simplex_constrained which defines a # vector guaranteed to be in the unit simplex. if init_log is None: shape = concrete_shape(shape) init_log = np.float32(np.random.randn(*shape)) log_value = tf.Variable(init_log, name= "log_"+name if name is not None else None) return Logit.transform(log_value) def positive_exp(shape=None, init_log=None, name=None): # a Tensor of values that are pointwise positive, represented by an exponential if init_log is None: shape = concrete_shape(shape) init_log = np.float32(np.ones(shape) * -10) log_value = tf.Variable(init_log, name= "log_"+name if name is not None else None) pos_value = tf.exp(tf.clip_by_value(log_value, -42, 42), name=name) return pos_value def psd_matrix(shape=None, init=None, name=None): assert(init is None) # TODO figure out init semantics n, n2 = shape assert(n==n2) init = np.float32(
np.eye(n)
numpy.eye
import numpy as np from frankapy import FrankaArm, SensorDataMessageType from frankapy import FrankaConstants as FC from frankapy.proto_utils import sensor_proto2ros_msg, make_sensor_group_msg from frankapy.proto import ForcePositionSensorMessage, ForcePositionControllerSensorMessage from franka_interface_msgs.msg import SensorDataGroup from frankapy.utils import transform_to_list, min_jerk from tqdm import trange import rospy if __name__ == "__main__": fa = FrankaArm() fa.reset_joints() fa.close_gripper() while True: input('Presse [Enter] to enter guide mode and move robot to be on top of a flat surface.') fa.run_guide_mode() while True: inp = input('[r]etry or [c]ontinue? ') if inp not in ('r', 'c'): print('Please give valid input!') else: break if inp == 'c': break rospy.loginfo('Generating Trajectory') # EE will follow a 2D circle while pressing down with a target force dt = 0.01 T = 10 ts =
np.arange(0, T, dt)
numpy.arange
""" The microstructure module provide elementary classes to describe a crystallographic granular microstructure such as mostly present in metallic materials. It contains several classes which are used to describe a microstructure composed of several grains, each one having its own crystallographic orientation: * :py:class:`~pymicro.crystal.microstructure.Microstructure` * :py:class:`~pymicro.crystal.microstructure.Grain` * :py:class:`~pymicro.crystal.microstructure.Orientation` """ import numpy as np import os import vtk import h5py import math from pathlib import Path from scipy import ndimage from matplotlib import pyplot as plt, colors from pymicro.crystal.lattice import Lattice, Symmetry, CrystallinePhase, Crystal from pymicro.crystal.quaternion import Quaternion from pymicro.core.samples import SampleData import tables from math import atan2, pi class Orientation: """Crystallographic orientation class. This follows the passive rotation definition which means that it brings the sample coordinate system into coincidence with the crystal coordinate system. Then one may express a vector :math:`V_c` in the crystal coordinate system from the vector in the sample coordinate system :math:`V_s` by: .. math:: V_c = g.V_s and inversely (because :math:`g^{-1}=g^T`): .. math:: V_s = g^T.V_c Most of the code to handle rotations has been written to comply with the conventions laid in :cite:`Rowenhorst2015`. """ def __init__(self, matrix): """Initialization from the 9 components of the orientation matrix.""" g = np.array(matrix, dtype=np.float64).reshape((3, 3)) self._matrix = g self.euler = Orientation.OrientationMatrix2Euler(g) self.rod = Orientation.OrientationMatrix2Rodrigues(g) self.quat = Orientation.OrientationMatrix2Quaternion(g, P=1) def orientation_matrix(self): """Returns the orientation matrix in the form of a 3x3 numpy array.""" return self._matrix def __repr__(self): """Provide a string representation of the class.""" s = 'Crystal Orientation \n-------------------' s += '\norientation matrix = \n %s' % self._matrix.view() s += '\nEuler angles (degrees) = (%8.3f,%8.3f,%8.3f)' % (self.phi1(), self.Phi(), self.phi2()) s += '\nRodrigues vector = %s' % self.OrientationMatrix2Rodrigues(self._matrix) s += '\nQuaternion = %s' % self.OrientationMatrix2Quaternion(self._matrix, P=1) return s def to_crystal(self, v): """Transform a vector or a matrix from the sample frame to the crystal frame. :param ndarray v: a 3 component vector or a 3x3 array expressed in the sample frame. :return: the vector or matrix expressed in the crystal frame. """ if v.size not in [3, 9]: raise ValueError('input arg must be a 3 components vector ' 'or a 3x3 matrix, got %d vlaues' % v.size) g = self.orientation_matrix() if v.size == 3: # input is vector return np.dot(g, v) else: # input is 3x3 matrix return np.dot(g, np.got(v, g.T)) def to_sample(self, v): """Transform a vector or a matrix from the crystal frame to the sample frame. :param ndarray v: a 3 component vector or a 3x3 array expressed in the crystal frame. :return: the vector or matrix expressed in the sample frame. """ if v.size not in [3, 9]: raise ValueError('input arg must be a 3 components vector ' 'or a 3x3 matrix, got %d vlaues' % v.size) g = self.orientation_matrix() if v.size == 3: # input is vector return np.dot(g.T, v) else: # input is 3x3 matrix return np.dot(g.T, np.got(v, g)) @staticmethod def cube(): """Create the particular crystal orientation called Cube and which corresponds to euler angle (0, 0, 0).""" return Orientation.from_euler((0., 0., 0.)) @staticmethod def brass(): """Create the particular crystal orientation called Brass and which corresponds to euler angle (35.264, 45, 0).""" return Orientation.from_euler((35.264, 45., 0.)) @staticmethod def copper(): """Create the particular crystal orientation called Copper and which corresponds to euler angle (90, 35.264, 45).""" return Orientation.from_euler((90., 35.264, 45.)) @staticmethod def s3(): """Create the particular crystal orientation called S3 and which corresponds to euler angle (59, 37, 63).""" return Orientation.from_euler((58.980, 36.699, 63.435)) @staticmethod def goss(): """Create the particular crystal orientation called Goss and which corresponds to euler angle (0, 45, 0).""" return Orientation.from_euler((0., 45., 0.)) @staticmethod def shear(): """Create the particular crystal orientation called shear and which corresponds to euler angle (45, 0, 0).""" return Orientation.from_euler((45., 0., 0.)) @staticmethod def random(): """Create a random crystal orientation.""" from random import random from math import acos phi1 = random() * 360. Phi = 180. * acos(2 * random() - 1) / np.pi phi2 = random() * 360. return Orientation.from_euler([phi1, Phi, phi2]) def ipf_color(self, axis=np.array([0., 0., 1.]), symmetry=Symmetry.cubic, saturate=True): """Compute the IPF (inverse pole figure) colour for this orientation. This method has bee adapted from the DCT code. .. note:: This method coexist with the `get_ipf_colour` for the moment. :param ndarray axis: the direction to use to compute the IPF colour. :param Symmetry symmetry: the symmetry operator to use. :return bool saturate: a flag to saturate the RGB values. """ axis /= np.linalg.norm(axis) Vc = np.dot(self.orientation_matrix(), axis) # get the symmetry operators syms = symmetry.symmetry_operators() syms = np.concatenate((syms, -syms)) Vc_syms = np.dot(syms, Vc) # phi: rotation around 001 axis, from 100 axis to Vc vector, projected on (100,010) plane Vc_phi = np.arctan2(Vc_syms[:, 1], Vc_syms[:, 0]) * 180 / pi # chi: rotation around 010 axis, from 001 axis to Vc vector, projected on (100,001) plane Vc_chi = np.arctan2(Vc_syms[:, 0], Vc_syms[:, 2]) * 180 / pi # psi : angle from 001 axis to Vc vector Vc_psi = np.arccos(Vc_syms[:, 2]) * 180 / pi if symmetry is Symmetry.cubic: angleR = 45 - Vc_chi # red color proportional to (45 - chi) minAngleR = 0 maxAngleR = 45 angleB = Vc_phi # blue color proportional to phi minAngleB = 0 maxAngleB = 45 elif symmetry is Symmetry.hexagonal: angleR = 90 - Vc_psi # red color proportional to (90 - psi) minAngleR = 0 maxAngleR = 90 angleB = Vc_phi # blue color proportional to phi minAngleB = 0 maxAngleB = 30 else: raise(ValueError('unsupported crystal symmetry to compute IPF color')) # find the axis lying in the fundamental zone fz_list = ((angleR >= minAngleR) & (angleR < maxAngleR) & (angleB >= minAngleB) & (angleB < maxAngleB)).tolist() if not fz_list.count(True) == 1: raise(ValueError('problem moving to the fundamental zone')) return None i_SST = fz_list.index(True) r = angleR[i_SST] / maxAngleR g = (maxAngleR - angleR[i_SST]) / maxAngleR * (maxAngleB - angleB[i_SST]) / maxAngleB b = (maxAngleR - angleR[i_SST]) / maxAngleR * angleB[i_SST] / maxAngleB rgb = np.array([r, g, b]) if saturate: rgb = rgb / rgb.max() return rgb def get_ipf_colour(self, axis=np.array([0., 0., 1.]), symmetry=Symmetry.cubic): """Compute the IPF (inverse pole figure) colour for this orientation. Given a particular axis expressed in the laboratory coordinate system, one can compute the so called IPF colour based on that direction expressed in the crystal coordinate system as :math:`[x_c,y_c,z_c]`. There is only one tuple (u,v,w) such that: .. math:: [x_c,y_c,z_c]=u.[0,0,1]+v.[0,1,1]+w.[1,1,1] and it is used to assign the RGB colour. :param ndarray axis: the direction to use to compute the IPF colour. :param Symmetry symmetry: the symmetry operator to use. :return tuple: a tuple contining the RGB values. """ axis /= np.linalg.norm(axis) # find the axis lying in the fundamental zone for sym in symmetry.symmetry_operators(): Osym = np.dot(sym, self.orientation_matrix()) Vc =
np.dot(Osym, axis)
numpy.dot
# -*- coding: utf-8 -*- """ Package for dealing with alignment methods between two AmpObject meshes Copyright: <NAME> 2020, <EMAIL> """ import numpy as np import copy import vtk import math from scipy import spatial from scipy.optimize import minimize from ampscan.core import AmpObject from ampscan.vis import vtkRenWin from ampscan.analyse import create_slices, est_volume, calc_csa # For doc examples import os staticfh = os.path.join(os.getcwd(), "tests", "stl_file.stl") movingfh = os.path.join(os.getcwd(), "tests", "stl_file_2.stl") class align(object): r""" Automated alignment methods between two meshes Parameters ---------- moving: AmpObject The moving AmpObject that is to be aligned to the static object static: AmpObject The static AmpObject that the moving AmpObject that the moving object will be aligned to method: str, default 'linPoint2Plane' A string of the method used for alignment *args: The arguments used for the alignment methods **kwargs: The keyword arguments used for the alignment methods Returns ------- m: AmpObject The aligned AmpObject, it same number of vertices and face array as the moving AmpObject Access this using align.m Examples -------- >>> static = AmpObject(staticfh) >>> moving = AmpObject(movingfh) >>> al = align(moving, static).m """ def __init__(self, moving, static, method = 'linPoint2Plane', inverse=False, *args, **kwargs): mData = dict(zip(['vert', 'faces', 'values'], [moving.vert, moving.faces, moving.values])) alData = copy.deepcopy(mData) self.m = AmpObject(alData, stype='reg') self.s = static if inverse: self.inverse(method=method, *args, **kwargs) else: self.runICP(method=method, *args, **kwargs) def runICP(self, method = 'linPoint2Plane', maxiter=20, inlier=1.0, initTransform=None, *args, **kwargs): r""" The function to run the ICP algorithm, this function calls one of multiple methods to calculate the affine transformation Parameters ---------- method: str, default 'linPoint2Plane' A string of the method used for alignment maxiter: int, default 20 Maximum number of iterations to run the ICP algorithm inlier: float, default 1.0 The proportion of closest points to use to calculate the transformation, if < 1 then vertices with highest error are discounted *args: The arguments used for the alignment methods **kwargs: The keyword arguments used for the alignment methods """ # Define the rotation, translation, error and quaterion arrays Rs = np.zeros([3, 3, maxiter+1]) Ts = np.zeros([3, maxiter+1]) err = np.zeros([maxiter+1]) if initTransform is None: initTransform = np.eye(4) Rs[:, :, 0] = initTransform[:3, :3] Ts[:, 0] = initTransform[3, :3] fC = self.s.vert[self.s.faces].mean(axis=1) kdTree = spatial.cKDTree(fC) self.m.rigidTransform(Rs[:, :, 0], Ts[:, 0]) inlier = math.ceil(self.m.vert.shape[0]*inlier) [dist, idx] = kdTree.query(self.m.vert, 1) # Sort by distance sort =
np.argsort(dist)
numpy.argsort
""" This is the implementation of the AYS Environment in the form that it can used within the Agent-Environment interface in combination with the DRL-agent. @author: <NAME> """ import sys import numpy as np from scipy.integrate import odeint import AYS.ays_model as ays import AYS.ays_general as ays_general from DeepReinforcementLearning.Basins import Basins from gym import Env import mpl_toolkits.mplot3d as plt3d import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from matplotlib.offsetbox import AnchoredText from plots.AYS_3D_figures import create_figure import plots.AYS_3D_figures as ays_plot import os SMALL_SIZE = 12 MEDIUM_SIZE = 14 BIGGER_SIZE = 16 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title @np.vectorize def inv_compactification(y, x_mid): if y == 0: return 0. if np.allclose(y, 1): return np.infty return x_mid * y / (1 - y) from inspect import currentframe, getframeinfo def get_linenumber(): print_debug_info() print("Line: ") cf = currentframe() return cf.f_back.f_lineno def print_debug_info(): frameinfo = getframeinfo(currentframe()) print ("File: ", frameinfo.filename) class AYS_Environment(Env): """ The environment is based on Kittel et al. 2017, and contains in part code adapted from https://github.com/timkittel/ays-model/ . This Environment describes the 3D implementation of a simple model for the development of climate change, wealth and energy transformation which is inspired by the model from Kellie-Smith and Cox. Dynamic variables are : - excess atmospheric carbon stock A - the economic output/production Y (similar to wealth) - the renewable energy knowledge stock S Parameters ---------- - sim_time: Timestep that will be integrated in this simulation step In each grid point the agent can choose between subsidy None, A, B or A and B in combination. """ dimensions=np.array( ['A','Y','S'] ) management_options=['default', 'LG' , 'ET','LG+ET' ] action_space=[(False, False), (True, False), (False, True), (True, True)] action_space_number=np.arange(len(action_space)) # AYS example from Kittel et al. 2017: tau_A = 50 tau_S = 50 beta = 0.03 beta_LG = 0.015 eps = 147 A_offset = 600 theta = beta /(950-A_offset) # beta / ( 950 - A_offset(=350) ) #theta = 8.57e-5 rho = 2. sigma = 4e12 sigma_ET = sigma*0.5**(1/rho) #sigma_ET = 2.83e12 phi = 4.7e10 AYS0 = [240, 7e13, 5e11] possible_test_cases=[[0.4949063922255394, 0.4859623171738628, 0.5] , [0.42610779 ,0.52056811, 0.5]] def __init__(self, t0=0, dt=1 , reward_type='PB', image_dir='./images/', run_number=0, plot_progress=False): self.image_dir=image_dir self.run_number = run_number self.plot_progress=plot_progress # The grid defines the number of cells, hence we have 8x8 possible states self.final_state=False self.reward=0 self.reward_type=reward_type self.reward_function=self.get_reward_function(reward_type) timeStart = 0 intSteps = 10 # integration Steps self.t=self.t0=t0 self.dt=dt self.sim_time_step=np.linspace(timeStart,dt, intSteps) self.green_fp=[0,1,1] self.brown_fp=[0.6,0.4,0] self.final_radius=0.05 # Attention depending on how large the radius is, the BROWN_FP can be reached! self.color_list=ays_plot.color_list self.X_MID= [240, 7e13, 5e11] # Definitions from outside self.current_state=[0.5, 0.5, 0.5] self.state=self.start_state=self.current_state self.observation_space=self.state """ This values define the planetary boundaries of the AYS model """ self.A_PB = self._compactification( ays.boundary_parameters["A_PB"] , self.X_MID[0]) # Planetary boundary self.Y_SF = self._compactification( ays.boundary_parameters["W_SF"] , self.X_MID[1]) # Social foundations as boundary self.S_LIMIT=0 self.PB=[self.A_PB, self.Y_SF,0] print("Init AYS Environment!", "\nReward Type: " + reward_type, "\nSustainability Boundaries [A_PB, Y_SF, S_ren]: ", inv_compactification(self.PB, self.X_MID) ) def step(self, action): """ This function performs one simulation step in a RFL algorithm. It updates the state and returns a reward according to the chosen reward-function. """ next_t= self.t + self.dt self.state=self._perform_step(action, next_t) self.t=next_t if self._arrived_at_final_state(): self.final_state = True reward=self.reward_function(action) # TODO check if this might be needed before step is done to evaluate the current state, not the next state! if not self._inside_planetary_boundaries(): self.final_state = True #print("Left planetary boundaries!" + str(self.state)) reward=0 return self.state, reward, self.final_state def _perform_step(self, action, next_t): parameter_list=self._get_parameters(action) traj_one_step=odeint(ays.AYS_rescaled_rhs, self.state, [self.t, next_t] , args=parameter_list[0], mxstep=50000) a = traj_one_step[:,0][-1] y = traj_one_step[:,1][-1] s = traj_one_step[:,2][-1] return np.array( (a,y,s) ) def reset(self): #self.state=np.array(self.random_StartPoint()) self.state=np.array(self.current_state_region_StartPoint()) #self.state=np.array(self.current_state) self.final_state=False self.t=self.t0 return self.state def reset_for_state(self, state=None): if state==None: self.start_state=self.state=
np.array(self.current_state)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 4 15:23:46 2018 @author: Jared """ from collections import Counter import pymongo import pandas as pd from ast import literal_eval from ml.elements import * #import machineLearner as ml #get rid of if doing oqmd database #from qmpy import * #use python 2.7! from matplotlib import pyplot as plt import math #import mysql.connector import numpy as np from pandas.plotting import scatter_matrix import matplotlib.patches as mpatches import matplotlib import matplotlib.gridspec as gridspec # ENERGY OF FORMATION # dH = totalEnergy - sum(i,x){x*E_i}, x number of atoms of that type # STABILITY (E_HULL) # dH_stab = dH - dH_hull # dH_hull (ev/atom), but calculated a different way than our energy of formation # We need # Access Syntax for direct acces to DB ''' cnx = mysql.connector.connect(user='root', password='<PASSWORD>', host='127.0.0.1', database='qmpy_jared') cursor = cnx.cursor() cursor.execute("USE qmpy_jared;") cursor.close() cnx.close() ''' # DEFINITIONS FOR OQMD DATA ''' space = 'Cs-Sn-Br' comp = 'CsSnBr3' space = PhaseSpace(space) energy, phase = space.gclp(comp) compute_stability print(energy, phase) ''' def main(): matplotlib.rcParams.update({'font.size': 15.5}) # QUICK LOAD TO AVOID CALCULATION path = '/Users/Jared/Dropbox/Master Thesis/code/codeOutputs/' deltaH_qmpy = pd.read_csv(path + 'compEnergy_qmdb_d3.csv') print('qmpy ', len(deltaH_qmpy)) mng_client = pymongo.MongoClient('localhost', 27017) db = mng_client['perovskites'] # GET AGGREGATED CRYSTAL DATA FROM MONGODB df = pd.DataFrame(list(db['qw_outputs_aggregated'].find())) #df = pd.read_csv('/Users/Jared/Dropbox/Master Thesis/Data/crystalDB3/aggregated_features_14092018.csv') df_features = pd.read_csv('/Users/Jared/Dropbox/Master Thesis/Data/featureDB2/d2_paper_24102018.csv') ''' plt.ylabel('$E_{gap}$ (eV)') plt.xlabel('Iodine Mixing Fraction') plt.title('Iodine Bandgap Trend') s = 'fracI' s2 = 'dir_gap' y_cl = df_features.groupby([s])[s2].mean() x_cl = np.array([i for i in y_cl.index]) y_cl = y_cl.values plt.scatter(df_features[s], df_features[s2], alpha = 0.2) p1, = plt.plot(x_cl, y_cl, linestyle = '-', lw = 2, label = 'D$_{3}$') ax1 = plt.axes() ax1.yaxis.set_major_locator(plt.MaxNLocator(6)) #plt.legend(handles = [p1]) plt.tight_layout() path = '/Users/Jared/Dropbox/Master Thesis/code/codeOutputs/' plt.savefig(path + 'dummyTrend_realI.png', dpi = 400, bbox_inches="tight") plt.show() ''' #df = df.dropna(axis = 0) dff = df.drop(df[df['nIterations'] >= 201].index).copy() dff = dff.drop(df[df['crystal_id'] == 1526850748].index).copy() df = dff.drop(df[df['crystal_id'] == 1526752626].index).copy() print('here', len(df)) #deltaH_qmdb = getCrystalOQMDData(df) # MY CALCULATED FORMATION ENERGY mu = getMuCorrectedDFT2() deltaH2_formation = getDeltaH_formation(df, mu) mu = getMuDFT() deltaH_formation = getDeltaH_formation(df, mu) #df_delta = pd.DataFrame(deltaH_formation, columns = 'dH_formation') #deltaH_formation.to_csv('/Users/Jared/Dropbox/Master Thesis/code/codeOutputs/df_formation.csv') #plotDeltaH_formation(list(deltaH_formation['deltaH_formation'])) # GEOMETRIC FORMATION ENERGY (BASED ON FIT) #deltaH_geo = getDeltaH_geo(df) #deltaH_geo.to_csv('/Users/Jared/Dropbox/Master Thesis/' + # 'code/codeOutputs/deltaH_geo.csv') deltaH_geo = pd.read_csv('/Users/Jared/Dropbox/Master Thesis/' + 'code/codeOutputs/deltaH_geo.csv') print('geo', len(deltaH_geo)) #plotDeltaH_geo(list(deltaH_geo['deltaH_geo'])) # comparison of geometric approach fidelity ''' plt.plot(deltaH_geo['descriptor'], deltaH['deltaH'], 'o') plt.xlabel('$(t + \mu)^{\eta}$') plt.ylabel('$\Delta H_{f}$ (eV/atom)') plt.title('Formation Energy vs. Geometric Factor') plt.show() ''' #error associated with SG15 basis set #delta = ((10.78 + 8.19 + 7.69 + 0.19)*(4/20) + # (4.35 + 8.07)*(4/20) + # (1.9 + 6.03 + 5.53)*(8/20)) # MERGE ALL DATA result = pd.merge(deltaH_formation, deltaH_qmpy, on=['crystal_id']) result = pd.merge(result, deltaH_geo, on=['crystal_id']) result= pd.merge(result, df_features, on=['crystal_id']) result_corrected = pd.merge(deltaH2_formation, deltaH_qmpy, on=['crystal_id']) result_corrected = pd.merge(result_corrected, deltaH_geo, on=['crystal_id']) result_corrected = pd.merge(result_corrected, df_features, on=['crystal_id']) sresult = result_corrected ''' result = result[result.crystal_id != 1519471915] result = result[result.crystal_id != 1519608323] result = result[result.crystal_id != 1519429441] result = result[result.crystal_id != 1520265350] result = result[result.crystal_id != 1520268226] result = result[result.crystal_id != 1520334800] result = result[result.crystal_id != 1520343157] result = result[result.crystal_id != 1520349833] result = result[result.crystal_id != 1520411007] result = result[result.crystal_id != 1520429554] result = result[result.crystal_id != 1520442584] result = result[result.crystal_id != 1520483780] ''' # big plot my_dpi = 500 fig = plt.figure(figsize=(5, 5), dpi=my_dpi) m = np.array((list(result['deltaH_formation'] - result['deltaH_hull']))) m = m.mean() m = 0.150 # 100 mev line ymin = 1.12*min(result['deltaH_hull']) if min(result['deltaH_hull']) <=0 else 0.88*min(result['deltaH_hull']) ymax = 1.12*max(result['deltaH_hull']) if max(result['deltaH_hull']) >=0 else 0.88*max(result['deltaH_hull']) xmax = ymax plt.ylim(ymin, ymax) plt.xlim(ymin, xmax) xy = [min(result['deltaH_hull']), max(result['deltaH_hull'])] xy = [ymin, ymax] p1, = plt.plot(xy, xy, color = 'k', label = '$E_{hull}$') p0c, = plt.plot(result['deltaH_hull'], result_corrected['deltaH_formation'], 'o', alpha = 0.5, color = 'r', label = '$\mu_{corrected}$') p0, = plt.plot(result['deltaH_hull'], result['deltaH_formation'], 'o', alpha = 0.5, label = '$\mu$') #p1, = plt.plot(xy, xy, color = 'k', label = '$E_{hull}$') #xy = [min(result['deltaH_hull']), max(result['deltaH_hull'])] #p2, = plt.plot(xy, [i + m for i in xy], alpha = 1.0, # color = 'k', # label = '$\Delta E_{hull}$ = 100 meV', # linestyle = '--', linewidth = 3.0) plt.xlabel('$\Delta H_{f, OQMD}$ (eV/atom)') plt.ylabel('$\Delta H_{f}$ (eV/atom)') plt.title('Convex Hull Distance', y = 1.04) plt.legend(handles = [p0c, p0, p1]) ax1 = plt.axes() ax1.xaxis.set_major_locator(plt.MaxNLocator(6)) ax1.yaxis.set_major_locator(plt.MaxNLocator(6)) ax1.tick_params(bottom = True, top = True, left = True, right = True, direction = 'in') plt.savefig(path + 'paper_oqmdb_new1.png', dpi=400, bbox_inches="tight") plt.show() ''' # hist plot c, d, e = plt.hist(list(result['deltaH_formation'] - result['deltaH_hull']), bins = 21) plt.setp(e, edgecolor='w', lw=1, alpha = 0.7) #plt.title('Stability of ' + str(len(result)) + ' Compounds') #plt.xlabel('$E_{hull}$ distance (eV)') #plt.ylabel('Count') c, d, e = plt.hist( list(result_corrected['deltaH_formation'] - result['deltaH_hull']), bins = 21, color = 'r') plt.setp(e, edgecolor='w', lw=1, alpha = 0.7) plt.title('D$_{3}$ Hull Distance') plt.xlabel('$\Delta E_{hull}$ (eV)') plt.ylabel('Count') ax1 = plt.axes() ax1.tick_params(bottom = True, top = True, left = True, right = True, direction = 'in') plt.savefig(path + 'oqmdb_new1.png', dpi=400, bbox_inches="tight") plt.show() ''' #sresult = result_corrected.copy() #result_corrected[['fracCl','fracBr', # 'fracI', 'fracCs', #'fracRb', 'fracNa', #'fracK', 'fracSn', # 'fracGe', 'deltaH_hull']] #plt.scatter(result['fracCl'], result['deltaH_hull']) #print(sresult['t']) print(len(sresult)) # # # lattice validity t1 = 2*(sresult['lb'].values)/(sresult['la'].values) t2 = 2*(sresult['lb'].values)/(sresult['lc'].values) ''' blue_patch = mpatches.Patch(color='blue', label='2*lb/la') red_patch = mpatches.Patch(color='red', label='2*lb/lc') c2, d2, e2 = plt.hist(t1, bins = 21, color = 'b') plt.setp(e2, edgecolor='w', lw=1, alpha = 0.7) c1, d1, e1 = plt.hist(t2, bins = 21, color = 'r') plt.setp(e1, edgecolor='w', lw=1, alpha = 0.7) plt.legend(handles=[blue_patch, red_patch]) plt.title('D$_{3}$ Perovskite Validity') plt.xlabel('Lattice Vector Ratio') plt.ylabel('Count') plt.show() ''' sresult['hullDistance'] = list(result_corrected['deltaH_formation'] - result_corrected['deltaH_hull']) sresult['deltaH_formation'] = list(result_corrected['deltaH_formation']) ''' # # # goldshmitd vs dhhull plt.scatter(sresult['t'].values, sresult['hullDistance'].values) plt.show() # # # goldschmidt validity #plt.hist(sresult['t'].values) c1, d1, e1 = plt.hist(sresult['t'].values, bins = 21) plt.setp(e1, edgecolor='w', lw=1) plt.title('D$_{3}$ Perovskite Validity') plt.xlabel('Goldschmidt Tolerance Factor') plt.ylabel('Count') plt.show() ''' plt.ylabel('$\Delta E_{hull}$ (eV)') plt.xlabel('Sodium Mixing Fraction') plt.title('Sodium $\Delta E_{hull}$ Trend') s = 'fracNa' s2 = 'hullDistance' y_cl = sresult.groupby([s])[s2].mean() x_cl =
np.array([i for i in y_cl.index])
numpy.array
# 4.3.2 ポアソン混合分布における推論:ギブスサンプリング #%% # 4.3.2項で利用するライブラリ import numpy as np from scipy.stats import poisson, gamma # ポアソン分布, ガンマ分布 import matplotlib.pyplot as plt #%% ## 観測モデル(ポアソン混合分布)の設定 # 真のパラメータを指定 lambda_truth_k = np.array([10, 25, 40]) # 真の混合比率を指定 pi_truth_k = np.array([0.35, 0.25, 0.4]) # クラスタ数を取得 K = len(lambda_truth_k) # 作図用のxの点を作成 x_line = np.arange(0, 2 * np.max(lambda_truth_k)) print(x_line) # 観測モデルを計算 model_prob = 0.0 for k in range(K): # クラスタkの分布の確率を計算 tmp_prob = poisson.pmf(k=x_line, mu=lambda_truth_k[k]) # K個の分布の加重平均を計算 model_prob += tmp_prob * pi_truth_k[k] #%% # 観測モデルを作図 plt.figure(figsize=(12, 9)) plt.bar(x=x_line, height=model_prob) # 真の分布 plt.xlabel('x') plt.ylabel('prob') plt.suptitle('Poisson Mixture Model', size = 20) plt.title('$\lambda=[' + ', '.join([str(lmd) for lmd in lambda_truth_k]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in pi_truth_k])+ ']$', loc='left') plt.show() #%% ## 観測データの生成 # (観測)データ数を指定 N = 250 # 真のクラスタを生成 s_truth_nk = np.random.multinomial(n=1, pvals=pi_truth_k, size=N) # 真のクラスタ番号を抽出 _, s_truth_n = np.where(s_truth_nk == 1) # (観測)データを生成 #x_n = np.random.poisson(lam=np.prod(lambda_truth_k**s_truth_nk, axis=1), size=N) x_n = np.random.poisson(lam=lambda_truth_k[s_truth_n], size=N) print(x_n[:10]) #%% # 観測データのヒストグラムを作成 plt.figure(figsize=(12, 9)) plt.bar(x=x_line, height=model_prob, label='true model', color='white', alpha=1, edgecolor='red', linestyle='--') # 真の分布 plt.bar(x=x_line, height=[np.sum(x_n == x) / len(x_n) for x in x_line], label='observation data') # 観測データ plt.xlabel('x') plt.ylabel('dens') plt.suptitle('Poisson Mixture Model', size=20) plt.title('$N=' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in lambda_truth_k]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in pi_truth_k]) + ']$', loc='left') plt.legend() plt.show() #%% # 真のクラスタのヒストグラムを作成 plt.figure(figsize=(12, 9)) for k in range(K): plt.bar(x=x_line, height=[np.sum(x_n[s_truth_n == k] == x) for x in x_line], alpha=0.5, label='cluster:' + str(k + 1)) # 真のクラスタ plt.xlabel('x') plt.ylabel('count') plt.suptitle('Poisson Mixture Model', size=20) plt.title('$N=' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in lambda_truth_k]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in pi_truth_k]) + ']$', loc='left') plt.legend() plt.show() #%% ## 事前分布(ガンマ分布とディリクレ分布)の設定 # lambdaの事前分布のパラメータを指定 a = 1.0 b = 1.0 # piの事前分布のパラメータを指定 alpha_k = np.repeat(2.0, K) #%% ## 初期値の設定 # lambdaを生成 lambda_k = np.random.gamma(shape=a, scale=1 / b, size=K) print(lambda_k) # piを生成 pi_k = np.random.dirichlet(alpha=alpha_k, size=1).reshape(K) print(pi_k) #%% # 初期値による混合分布を計算 init_prob = 0.0 for k in range(K): # クラスタkの分布の確率を計算 tmp_prob = poisson.pmf(k=x_line, mu=lambda_k[k]) # K個の分布の加重平均を計算 init_prob += tmp_prob * pi_k[k] # 初期値による分布を作図 plt.figure(figsize=(12, 9)) plt.bar(x_line, init_prob) # 初期値による分布 plt.xlabel('x') plt.ylabel('prob') plt.suptitle('Poisson Mixture Model', size = 20) plt.title('$iter:' + str(0) + ', \lambda=[' + ', '.join([str(lmd) for lmd in np.round(lambda_k, 2)]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in
np.round(pi_k, 2)
numpy.round
from IMLearn.learners import UnivariateGaussian, MultivariateGaussian import numpy as np import plotly.graph_objects as go import plotly.io as pio pio.templates.default = "plotly_white" pio.renderers.default = "browser" def test_univariate_gaussian(): # Question 1 - Draw samples and print fitted model expectation, variance = 10, 1 sample_size = 1000 samples = np.random.normal(expectation, variance, sample_size) uni_gaussian_fitter = UnivariateGaussian().fit(samples) print("(%f, %f)" % (uni_gaussian_fitter.mu_, uni_gaussian_fitter.var_)) # Question 2 - Empirically showing sample mean is consistent sample_sizes = np.arange(10, sample_size+1, 10) error_distances = np.empty(sample_sizes.size) for i in range(sample_sizes.size): part_of_sample = sample_sizes[i] uni_gaussian_fitter.fit(samples[0:part_of_sample+1]) error_distances[i] = np.abs(uni_gaussian_fitter.mu_ - expectation) fig = go.Figure(data=go.Scatter(x=sample_sizes, y=error_distances)) fig.update_layout(title="The absolute distance between the estimated- and true value of the expectation") fig.update_xaxes(title_text="Sample Size",) fig.update_yaxes(title_text="Distance between the estimated and true expectation") fig.show() # Question 3 - Plotting Empirical PDF of fitted model sample_pdf = uni_gaussian_fitter.pdf(samples) pdf_fig = go.Figure(data=go.Scatter(x=samples, y=sample_pdf, mode='markers')) pdf_fig.update_layout(title="The empirical PDF function of each sample") pdf_fig.update_xaxes(title_text="Sample Value", ) pdf_fig.update_yaxes(title_text="Fitted PDF Value of the Sample") pdf_fig.show() def test_multivariate_gaussian(): # Question 4 - Draw samples and print fitted model mean = np.array([0, 0, 4, 0]).T cov = np.array([ [1, 0.2, 0, 0.5], [0.2, 2, 0, 0], [0, 0, 1, 0], [0.5, 0, 0, 1] ]) sample_size = 1000 samples =
np.random.multivariate_normal(mean, cov, sample_size)
numpy.random.multivariate_normal