prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ Created on Thu Apr 7 10:17:56 2022 @author: <NAME> """ import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import argparse import numpy as np import random import scipy.sparse as sp class GATLayer(nn.Module): def __init__(self,input_feature,output_feature,dropout,alpha,concat=True): super(GATLayer,self).__init__() self.input_feature = input_feature self.output_feature = output_feature self.alpha = alpha self.dropout = dropout self.concat = concat self.a = nn.Parameter(torch.empty(size=(2*output_feature,1))) self.w = nn.Parameter(torch.empty(size=(input_feature,output_feature))) self.leakyrelu = nn.LeakyReLU(self.alpha) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.w.data,gain=1.414) nn.init.xavier_uniform_(self.a.data,gain=1.414) def forward(self,h,adj): Wh = torch.mm(h,self.w) e = self._prepare_attentional_mechanism_input(Wh) zero_vec = -9e15*torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) # adj>0的位置使用e对应位置的值替换,其余都为-9e15,这样设定经过Softmax后每个节点对应的行非邻居都会变为0。 attention = F.softmax(attention, dim=1) # 每行做Softmax,相当于每个节点做softmax attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.mm(attention, Wh) # 得到下一层的输入 if self.concat: return F.elu(h_prime) #激活 else: return h_prime def _prepare_attentional_mechanism_input(self,Wh): Wh1 = torch.matmul(Wh,self.a[:self.output_feature,:]) # N*out_size @ out_size*1 = N*1 Wh2 = torch.matmul(Wh,self.a[self.output_feature:,:]) # N*1 e = Wh1+Wh2.T # Wh1的每个原始与Wh2的所有元素相加,生成N*N的矩阵 return self.leakyrelu(e) class GAT(nn.Module): def __init__(self,input_size,hidden_size,output_size,dropout,alpha,nheads,concat=True): super(GAT,self).__init__() self.dropout= dropout self.attention = [GATLayer(input_size, hidden_size, dropout=dropout, alpha=alpha,concat=True) for _ in range(nheads)] for i,attention in enumerate(self.attention): self.add_module('attention_{}'.format(i),attention) self.out_att = GATLayer(hidden_size*nheads, output_size, dropout=dropout, alpha=alpha,concat=False) def forward(self,x,adj): #x = F.dropout(x,self.dropout,training=self.training) x = torch.cat([att(x,adj) for att in self.attention],dim=1) #x = F.dropout(x,self.dropout,training=self.training) x = F.elu(self.out_att(x,adj)) return F.log_softmax(x,dim=1) def train(epoch): t = time.time() model.train() optimizer.zero_grad() output = model(features,adj) loss_train = F.nll_loss(output[idx_train],labels[idx_train]) acc_train = accuracy(output[idx_train], labels[idx_train]) loss_train.backward() optimizer.step() model.eval() output = model(features, adj) acc_val = accuracy(output[idx_val],labels[idx_val]) loss_val = F.nll_loss(output[idx_val], labels[idx_val]) print('Epoch: {:04d}'.format(epoch+1), 'loss_train: {:.4f}'.format(loss_train.data.item()), 'acc_train: {:.4f}'.format(acc_train.data.item()), 'loss_val: {:.4f}'.format(loss_val.data.item()), 'acc_val: {:.4f}'.format(acc_val.data.item()), 'time: {:.4f}s'.format(time.time() - t)) return loss_val.data.item() def compute_test(): model.eval() output = model(features, adj) loss_test = F.nll_loss(output[idx_test], labels[idx_test]) acc_test = accuracy(output[idx_test], labels[idx_test]) print("Test set results:", "loss= {:.4f}".format(loss_test.data.item()), "accuracy= {:.4f}".format(acc_test.data.item())) def encode_onehot(labels): classes = set(labels) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_onehot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32) return labels_onehot def normalize_adj(mx): """Row-normalize sparse matrix""" rowsum = np.array(mx.sum(1)) r_inv_sqrt =
np.power(rowsum, -0.5)
numpy.power
import numpy as np import cv2 # OpenCV???C?u???? import matplotlib.pyplot as plt import torch import torch.utils.data as data from itertools import product as product import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.autograd import Function # In[2]: def group_annotation_by_class(dataset): true_case_stat = {} all_gt_boxes = {} all_difficult_cases = {} for i in range(len(dataset)): image_id, annotation = dataset.get_annotation(i) gt_boxes, classes, is_difficult = annotation gt_boxes = torch.from_numpy(gt_boxes) for i, difficult in enumerate(is_difficult): class_index = int(classes[i]) gt_box = gt_boxes[i] if not difficult: true_case_stat[class_index] = true_case_stat.get(class_index, 0) + 1 if class_index not in all_gt_boxes: all_gt_boxes[class_index] = {} if image_id not in all_gt_boxes[class_index]: all_gt_boxes[class_index][image_id] = [] all_gt_boxes[class_index][image_id].append(gt_box) if class_index not in all_difficult_cases: all_difficult_cases[class_index]={} if image_id not in all_difficult_cases[class_index]: all_difficult_cases[class_index][image_id] = [] all_difficult_cases[class_index][image_id].append(difficult) for class_index in all_gt_boxes: for image_id in all_gt_boxes[class_index]: all_gt_boxes[class_index][image_id] = torch.stack(all_gt_boxes[class_index][image_id]) for class_index in all_difficult_cases: for image_id in all_difficult_cases[class_index]: all_gt_boxes[class_index][image_id] = torch.tensor(all_gt_boxes[class_index][image_id]) return true_case_stat, all_gt_boxes, all_difficult_cases def compute_average_precision_per_class(num_true_cases, gt_boxes, difficult_cases, prediction_file, iou_threshold, use_2007_metric): with open(prediction_file) as f: image_ids = [] boxes = [] scores = [] for line in f: t = line.rstrip().split(" ") image_ids.append(t[0]) scores.append(float(t[1])) box = torch.tensor([float(v) for v in t[2:]]).unsqueeze(0) box -= 1.0 # convert to python format where indexes start from 0 boxes.append(box) scores = np.array(scores) sorted_indexes =
np.argsort(-scores)
numpy.argsort
#!/usr/bin/env python # coding: utf-8 import skimage.io as io import cv2 import matplotlib.pyplot as plt import numpy as np import face_recognition from skimage.transform import PiecewiseAffineTransform, warp from skimage import transform as tf import warnings warnings.filterwarnings('ignore') def plot_landmarks(image,face_landmarks): '''plot the landmarks on the image INPUT: face_landmarks - dict({"key1":(X1,Y1), "key2":(X2,Y2), ...}) OUTPUT: the face landmarks plot of input image ''' # image = face_recognition.load_image_file(filename) plt.imshow(image) for key, value in face_landmarks.items(): # print(key) plt.scatter(value[0],value[1],s=1) def get_boundary(face_landmarks,facial_feature,start,end): ''' return the lower or upper boundary of face components ''' X = np.array(face_landmarks[facial_feature]).T[0] X = np.hstack((X,X))[start:end] Y =
np.array(face_landmarks[facial_feature])
numpy.array
import sys, os cur_file_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(cur_file_path, '..')) import os.path as osp import glob, time, copy, pickle, json from torch.utils.data import Dataset, DataLoader from fitting.fitting_utils import read_keypoints, load_planercnn_res import numpy as np import torch import cv2 SPLIT = ['Scene04', 'Scene05', 'Scene07', 'Scene10', 'Scene11', 'Scene12', 'Scene13', 'Scene14'] SCENE_MAP = {'Scene04' : 'lobby19-3', 'Scene05' : 'lobby18-1', 'Scene07' : 'lobby15', 'Scene10' : 'lobby22-1-tog', 'Scene11' : 'livingroom00', 'Scene12' : 'office1-1-tog-lcrnet', 'Scene13' : 'library3-tog', 'Scene14' : 'garden1' } # GT 3d joints do not align with images. QUANT_BLACKLIST = ['Scene04', 'Scene12'] # for some reason 3d joint annotation is off by one frame SHIFT_LIST = ['Scene05'] # which scene objects contact the ground, used for floor fit. GROUND_CTC_PARTS = {'Scene05' : ['00_couch_seat'], 'Scene07' : ['00_couch_seat', '01_couch_seat'], 'Scene10' : ['00_couch_seat', '01_couch_seat', '03_couch_seat'], 'Scene11' : ['00_couch_seat', '01_couch_seat', '01_couch_seat-1', '02_couch_seat'], 'Scene13' : ['04_couch_seat', '05_chair_leg', '05_chair_leg-1', '05_chair_leg-2', '05_chair_leg-3', '07_chair_leg', '07_chair_leg-1', '07_chair_leg-2', '07_chair_leg-3', '08_chair_leg', '08_chair_leg-1', '08_chair_leg-2', '08_chair_leg-3', '09_chair_leg', '09_chair_leg-1', '09_chair_leg-2', '09_chair_leg-3'], 'Scene14' : ['01_chair_leg', '01_chair_leg-1', '01_chair_leg-3', '01_chair_leg-4', '02_chair_leg', '02_chair_leg-1', '02_chair_leg-3', '02_chair_leg-4', '03_chair_leg', '03_chair_leg-1', '03_chair_leg-3', '03_chair_leg-4', '04_table_leg', '04_table_leg-1', '04_table_leg-2', '04_table_leg-3', '00_couch_leg', '00_couch_leg-1', '00_couch_leg-3', '00_couch_leg-4']} IMG_WIDTH, IMG_HEIGHT = 1920, 1080 class iMapperDataset(Dataset): def __init__(self, root_path, seq_len=10, # split the data into sequences of this length load_img=False, load_floor_plane=False, # if true, loads the PlaneRCNN floor plane from the dataset and uses this scene=None, # if given, loads only this scene scene_subseq_idx=-1, # if given, loads only this single subsequence of a specified recording load_gt_floor=False, # if true, uses object locations to get GT floor load_scene_mesh=False, mask_joints=False # if true, masks 2d joints based on person mask ): super(iMapperDataset, self).__init__() self.data_dir = root_path self.seq_len = seq_len self.load_img = load_img self.load_floor_plane = load_floor_plane self.load_gt_floor = load_gt_floor self.load_scene_mesh = load_scene_mesh self.scene = scene self.scene_subseq_idx = scene_subseq_idx self.mask_joints = mask_joints if self.scene is None and self.scene_subseq_idx > 0: print('Ignoring subseq_idx since scene is not specified...') self.scene_subseq_idx = -1 self.split_scenes = SPLIT # load (img) data paths self.data_dict = self.load_data() self.data_len = len(self.data_dict['img_paths']) print('This split contains %d sub-sequences...' % (self.data_len)) def load_data(self): ''' Loads in the full dataset, except for image frames which are loaded on the fly. ''' # get the sequences we want scene_list = [] if self.scene is not None: scene_path = os.path.join(self.data_dir, self.scene) if os.path.exists(scene_path): scene_list = [scene_path] else: print('Could not find specified scene at %s!' % (scene_path)) else: all_scene_dirs = [os.path.join(self.data_dir, scene_name) for scene_name in self.split_scenes] scene_list = [f for f in all_scene_dirs if os.path.exists(f) and os.path.isdir(f)] scene_names = [f.split('/')[-1] for f in scene_list] print('Found %d scenes...' % (len(scene_names))) print('Splitting into subsequences of length %d frames...' % (self.seq_len)) # split each scene into sequences and record information for loading data data_out = { 'img_paths' : [], 'mask_paths' : [], 'cam_matx' : [], 'joints2d' : [], 'joints3d' : [], 'occlusions' : [], 'floor_plane' : [], 'gt_floor_plane' : [], 'scene_mesh' : [], 'names' : [] } for scene_path, scene_name in zip(scene_list, scene_names): # first load in data for full sequence scene_data = dict() # # path to image frames # img_folder = osp.join(scene_path, 'raw_frames') img_paths = [osp.join(img_folder, img_fn) for img_fn in os.listdir(img_folder) if img_fn.endswith('.png') or img_fn.endswith('.jpg') and not img_fn.startswith('.')] img_paths = sorted(img_paths) frame_names = ['.'.join(f.split('/')[-1].split('.')[:-1]) for f in img_paths] mask_folder = osp.join(scene_path, 'masks') mask_paths = [os.path.join(mask_folder, f + '.png') for f in frame_names] cur_seq_len = len(img_paths) if len(img_paths) < self.seq_len: continue if scene_name in QUANT_BLACKLIST: continue scene_data['img_paths'] = img_paths scene_data['mask_paths'] = mask_paths # # intrinsics # intrins_path = osp.join(scene_path, 'intrinsics.json') with open(intrins_path, 'r') as f: intrins_data = json.load(f) cam_mat = np.array(intrins_data) # # 2d observed keypoints (OpenPose) # keyp_folder = osp.join(scene_path, 'op_keypoints') keyp_paths = [osp.join(keyp_folder, f + '_keypoints.json') for f in frame_names] keyp_frames = [read_keypoints(f) for f in keyp_paths] joint2d_data = np.stack(keyp_frames, axis=0) # T x J x 3 (x,y,conf) nobs_frames = joint2d_data.shape[0] scene_data['joints2d'] = joint2d_data # # scene GT info which gives 3d joints, occlusions for each joint, and ground plane # scene_info_path = osp.join(scene_path, 'gt/skel_%s_GT.json' % (SCENE_MAP[scene_name])) with open(scene_info_path, 'r') as f: scene_info = json.load(f) # first joints 3d joints3d = [] for k, v in sorted(scene_info['3d'].items()): frame_id = int(k) pose = np.zeros(shape=(len(v[list(v.keys())[0]]), len(v)), dtype=np.float32) for joint, pos in v.items(): pose[:, int(joint)] = pos joints3d.append(pose.T) joints3d = np.stack(joints3d, axis=0) ngt_frames = joints3d.shape[0] ngt_joints = joints3d.shape[1] # confidence in 3d joint annotations (some are marked 0.0 and need to be thrown out) conf3d = [] for frame_id, v in enumerate(scene_info['confidence']['values']): cur_conf = np.zeros((ngt_joints, 1), dtype=np.float32) for joint, jconf in v.items(): cur_conf[int(joint)] = float(jconf) conf3d.append(cur_conf) conf3d = np.stack(conf3d, axis=0) # now use it to mask out 3d joints (inf means not observed) conf3d[conf3d == 0.0] = float('inf') joints3d = joints3d * conf3d if scene_name in SHIFT_LIST: joints3d_shift = np.ones_like(joints3d)*float('inf') joints3d_shift[:-1] = joints3d[1:] joints3d = joints3d_shift occlusion_mask = np.zeros((ngt_frames, ngt_joints), dtype=np.int) for k, v in scene_info['occluded'].items(): frame_id = int(k) - 1 occlusion_mask[frame_id] = v floor_trans = np.array(scene_info['ground']) floor_rot = np.array(scene_info['ground_rot']) # align GT subsampled data to full 30 hz sampling rate observed data joints3d_aligned = np.ones((nobs_frames, ngt_joints, 3), dtype=np.float)*float('inf') occlusions_aligned =
np.ones((nobs_frames, ngt_joints), dtype=np.float)
numpy.ones
#!/usr/bin/env python3 import numpy as np from matplotlib import pyplot as plt import torch from torch import nn from torch.autograd import Function # import emd class LaserScan: """Class that contains LaserScan with x,y,z,r""" EXTENSIONS_SCAN = ['.bin'] def __init__(self, project=False, H=64, W=1024, fov_up=3.0, fov_down=-25.0): self.project = project self.proj_H = H self.proj_W = W self.proj_fov_up = fov_up self.proj_fov_down = fov_down self.reset() def reset(self): """ Reset scan members. """ self.points = np.zeros((0, 3), dtype=np.float32) # [m, 3]: x, y, z self.remissions = np.zeros((0, 1), dtype=np.float32) # [m ,1]: remission # projected range image - [H,W] range (-1 is no data) self.proj_range = np.full((self.proj_H, self.proj_W), -1, dtype=np.float32) # unprojected range (list of depths for each point) self.unproj_range = np.zeros((0, 1), dtype=np.float32) # projected point cloud xyz - [H,W,3] xyz coord (-1 is no data) self.proj_xyz = np.full((self.proj_H, self.proj_W, 3), -1, dtype=np.float32) # projected remission - [H,W] intensity (-1 is no data) self.proj_remission = np.full((self.proj_H, self.proj_W), -1, dtype=np.float32) # projected index (for each pixel, what I am in the pointcloud) # [H,W] index (-1 is no data) self.proj_idx = np.full((self.proj_H, self.proj_W), -1, dtype=np.int32) # for each point, where it is in the range image self.proj_x = np.zeros((0, 1), dtype=np.float32) # [m, 1]: x self.proj_y = np.zeros((0, 1), dtype=np.float32) # [m, 1]: y # mask containing for each pixel, if it contains a point or not self.proj_mask = np.zeros((self.proj_H, self.proj_W), dtype=np.int32) # [H,W] mask def size(self): """ Return the size of the point cloud. """ return self.points.shape[0] def __len__(self): return self.size() def open_scan(self, filename): """ Open raw scan and fill in attributes """ # reset just in case there was an open structure self.reset() # check filename is string if not isinstance(filename, str): raise TypeError("Filename should be string type, " "but was {type}".format(type=str(type(filename)))) # check extension is a laserscan if not any(filename.endswith(ext) for ext in self.EXTENSIONS_SCAN): raise RuntimeError("Filename extension is not valid scan file.") # if all goes well, open pointcloud scan = np.fromfile(filename, dtype=np.float32, count=-1) scan = scan.reshape((-1, 5)) # put in attribute points = scan[:, 0:3] # get xyz remissions = scan[:, 3] # get remission self.set_points(points, remissions) def set_points(self, points, remissions=None): """ Set scan attributes (instead of opening from file) """ # reset just in case there was an open structure self.reset() # check scan makes sense if not isinstance(points, np.ndarray): raise TypeError("Scan should be numpy array") # check remission makes sense if remissions is not None and not isinstance(remissions, np.ndarray): raise TypeError("Remissions should be numpy array") # put in attribute self.points = points # get xyz if remissions is not None: self.remissions = remissions # get remission else: self.remissions = np.zeros((points.shape[0]), dtype=np.float32) # if projection is wanted, then do it and fill in the structure if self.project: self.do_range_projection() def do_range_projection(self): """ Project a pointcloud into a spherical projection image.projection. Function takes no arguments because it can be also called externally if the value of the constructor was not set (in case you change your mind about wanting the projection) """ # laser parameters fov_up = self.proj_fov_up / 180.0 * np.pi # field of view up in rad fov_down = self.proj_fov_down / 180.0 * np.pi # field of view down in rad fov = abs(fov_down) + abs(fov_up) # get field of view total in rad # get depth of all points depth = np.linalg.norm(self.points, 2, axis=1) # get scan components scan_x = self.points[:, 0] scan_y = self.points[:, 1] scan_z = self.points[:, 2] # get angles of all points yaw = -np.arctan2(scan_y, scan_x) pitch = np.arcsin(scan_z / depth) # get projections in image coords proj_x = 0.5 * (yaw / np.pi + 1.0) # in [0.0, 1.0] proj_y = 1.0 - (pitch + abs(fov_down)) / fov # in [0.0, 1.0] # scale to image size using angular resolution proj_x *= self.proj_W # in [0.0, W] proj_y *= self.proj_H # in [0.0, H] # round and clamp for use as index proj_x = np.floor(proj_x) proj_x = np.minimum(self.proj_W - 1, proj_x) proj_x = np.maximum(0, proj_x).astype(np.int32) # in [0,W-1] self.proj_x = np.copy(proj_x) # store a copy in orig order proj_y = np.floor(proj_y) proj_y = np.minimum(self.proj_H - 1, proj_y) proj_y = np.maximum(0, proj_y).astype(np.int32) # in [0,H-1] self.proj_y = np.copy(proj_y) # stope a copy in original order # copy of depth in original order self.unproj_range = np.copy(depth) # order in decreasing depth indices = np.arange(depth.shape[0]) order = np.argsort(depth)[::-1] depth = depth[order] indices = indices[order] points = self.points[order] remission = self.remissions[order] proj_y = proj_y[order] proj_x = proj_x[order] # assing to images self.proj_range[proj_y, proj_x] = depth self.proj_xyz[proj_y, proj_x] = points self.proj_remission[proj_y, proj_x] = remission self.proj_idx[proj_y, proj_x] = indices self.proj_mask = (self.proj_idx > 0).astype(np.float32) class SemLaserScan(LaserScan): """Class that contains LaserScan with x,y,z,r,sem_label,sem_color_label,inst_label,inst_color_label""" EXTENSIONS_LABEL = ['.label'] def __init__(self, nclasses, sem_color_dict=None, project=False, H=64, W=1024, fov_up=3.0, fov_down=-25.0): super(SemLaserScan, self).__init__(project, H, W, fov_up, fov_down) self.reset() self.nclasses = nclasses # number of classes # make semantic colors max_sem_key = 0 for key, data in sem_color_dict.items(): if key + 1 > max_sem_key: max_sem_key = key + 1 self.sem_color_lut = np.zeros((max_sem_key + 100, 3), dtype=np.float32) for key, value in sem_color_dict.items(): self.sem_color_lut[key] = np.array(value, np.float32) / 255.0 # make instance colors max_inst_id = 100000 self.inst_color_lut = np.random.uniform(low=0.0, high=1.0, size=(max_inst_id, 3)) # force zero to a gray-ish color self.inst_color_lut[0] = np.full((3), 0.1) def reset(self): """ Reset scan members. """ super(SemLaserScan, self).reset() # semantic labels self.sem_label = np.zeros((0, 1), dtype=np.uint32) # [m, 1]: label self.sem_label_color =
np.zeros((0, 3), dtype=np.float32)
numpy.zeros
""" Created on Thu Jan 26 17:04:11 2017 Preprocess Luna datasets and create nodule masks (and/or blank subsets) NOTE that: 1. we do NOT segment the lungs at all -- we will use the raw images for training (DO_NOT_SEGMENT = True) 2. No corrections are made to the nodule radius in relation to the thickness of the layers (radius = (ca[4])/2, simply) @author: <NAME>, <EMAIL> Some functions have reused from the respective examples/kernels openly published at the https://www.kaggle.com/arnavkj95/data-science-bowl-2017/ , as referenced within the file """ #%matplotlib inline import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.ndimage as ndimage import scipy.ndimage # added for scaling\ import cv2 import time import glob from skimage import measure, morphology, segmentation import SimpleITK as sitk DO_NOT_SEGMENT = True #### major difference with the initial/Feb version RESIZE_SPACING = [2,2,2] ### z, y, x (x & y MUST be the same) luna_subset = 0 # initial LUNA_BASE_DIR = "../luna/data/original_lungs/subset%s/" # added on AWS; data as well LUNA_DIR = LUNA_BASE_DIR % luna_subset CSVFILES = "../luna/data/original_lungs/CSVFILES/%s" LUNA_ANNOTATIONS = CSVFILES % "annotations.csv" LUNA_CANDIDATES = CSVFILES % "candidates.csv" MARKER_INTERNAL_THRESH = -400 # was -400; maybe use -320 ?? MARKER_FRAME_WIDTH = 9 # 9 seems OK for the half special case ... def generate_markers(image): #Creation of the internal Marker useTestPlot = False if useTestPlot: timg = image plt.imshow(timg, cmap='gray') plt.show() add_frame_vertical = True # NOT a good idea; no added value if add_frame_vertical: # add frame for potentially closing the lungs that touch the edge, but only vertically fw = MARKER_FRAME_WIDTH # frame width (it looks that 2 is the minimum width for the algorithms implemented here, namely the first 2 operations for the marker_internal) xdim = image.shape[1] #ydim = image.shape[0] img2 = np.copy(image) img2 [:, 0] = -1024 img2 [:, 1:fw] = 0 img2 [:, xdim-1:xdim] = -1024 img2 [:, xdim-fw:xdim-1] = 0 marker_internal = img2 < MARKER_INTERNAL_THRESH else: marker_internal = image < MARKER_INTERNAL_THRESH # was -400 useTestPlot = False if useTestPlot: timg = marker_internal plt.imshow(timg, cmap='gray') plt.show() correct_edges2 = False ## NOT a good idea - no added value if correct_edges2: marker_internal[0,:] = 0 marker_internal[:,0] = 0 #marker_internal[:,1] = True #marker_internal[:,2] = True marker_internal[511,:] = 0 marker_internal[:,511] = 0 marker_internal = segmentation.clear_border(marker_internal, buffer_size=0) marker_internal_labels = measure.label(marker_internal) areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker external_a = ndimage.binary_dilation(marker_internal, iterations=10) # was 10 external_b = ndimage.binary_dilation(marker_internal, iterations=55) # was 55 marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed def generate_markers_3d(image): #Creation of the internal Marker marker_internal = image < -400 marker_internal_labels = np.zeros(image.shape).astype(np.int16) for i in range(marker_internal.shape[0]): marker_internal[i] = segmentation.clear_border(marker_internal[i]) marker_internal_labels[i] = measure.label(marker_internal[i]) #areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas = [r.area for i in range(marker_internal.shape[0]) for r in measure.regionprops(marker_internal_labels[i])] for i in range(marker_internal.shape[0]): areas = [r.area for r in measure.regionprops(marker_internal_labels[i])] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels[i]): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[i, coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker # 3x3 structuring element with connectivity 1, used by default struct1 = ndimage.generate_binary_structure(2, 1) struct1 = struct1[np.newaxis,:,:] # expand by z axis . external_a = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=10) external_b = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=55) marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed BINARY_CLOSING_SIZE = 7 ## added for tests; 5 for disk seems sufficient - fo safety let's go with 6 or even 7 def seperate_lungs(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3) # was structure=np.ones((5,5)) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512))) ### was -2000 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def rescale_n(n,reduce_factor): return max( 1, int(round(n / reduce_factor))) #image = image_slices[70] def seperate_lungs_cv2(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) reduce_factor = 512 / image.shape[0] #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) useTestPlot = False if useTestPlot: timg = sobel_gradient plt.imshow(timg, cmap='gray') plt.show() #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) if useTestPlot: timg = marker_external plt.imshow(timg, cmap='gray') plt.show() #Reducing the image created by the Watershed algorithm to its outline #wsize = rescale_n(3,reduce_factor) # THIS IS TOO SMALL, dynamically adjusting the size for the watersehed algorithm outline = ndimage.morphological_gradient(watershed, size=(3,3)) # original (3,3), (wsize, wsize) is too small to create an outline outline = outline.astype(bool) outline_u = outline.astype(np.uint8) #added #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, rescale_n(8,reduce_factor)) # dyanmically adjust the number of iterattions; original was 8 blackhat_struct_cv2 = blackhat_struct.astype(np.uint8) #Perform the Black-Hat outline += (cv2.morphologyEx(outline_u, cv2.MORPH_BLACKHAT, kernel=blackhat_struct_cv2)).astype(np.bool) # fats if useTestPlot: timg = outline plt.imshow(timg, cmap='gray') plt.show() #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) if useTestPlot: timg = lungfilter plt.imshow(timg, cmap='gray') plt.show() #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure2 = morphology.disk(2) # used to fill the gaos/holes close to the border (otherwise the large sttructure would create a gap by the edge) structure3 = morphology.disk(rescale_n(BINARY_CLOSING_SIZE,reduce_factor)) # dynanically adjust; better , 5 seems sufficient, we use 7 for safety/just in case ##lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, ORIGINAL iterations=3) # was structure=np.ones((5,5)) lungfilter2 = ndimage.morphology.binary_closing(lungfilter, structure=structure2, iterations=3) # ADDED lungfilter3 = ndimage.morphology.binary_closing(lungfilter, structure=structure3, iterations=3) lungfilter = np.bitwise_or(lungfilter2, lungfilter3) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) #image.shape #segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512)).astype(np.int16)) # was -2000 someone suggested 30 segmented = np.where(lungfilter == 1, image, -2000*np.ones(image.shape).astype(np.int16)) # was -2000 someone suggested 30 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def seperate_lungs_3d(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers_3d(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, axis=2) sobel_filtered_dy = ndimage.sobel(image, axis=1) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(1,3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) blackhat_struct = blackhat_struct[np.newaxis,:,:] #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) # very long time #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter =
np.bitwise_or(marker_internal, outline)
numpy.bitwise_or
################################################################################ # # # This file is part of the Morphomatics library # # see https://github.com/morphomatics/morphomatics # # # # Copyright (C) 2021 Zuse Institute Berlin # # # # Morphomatics is distributed under the terms of the ZIB Academic License. # # see $MORPHOMATICS/LICENSE # # # ################################################################################ import copy import numpy as np from . import Manifold, Connection, LieGroup, SO3, GLpn class SE3(Manifold): """Returns the product manifold SE(3)^k, i.e., a product of k rigid body motions. manifold = SE3(k) Elements of SE(3)^k are represented as arrays of size kx4x4 where every 4x4 slice are homogeneous coordinates of an element of SE(3), i.e., the upper-left 3x3 block is the rotational part, the upper-right 3x1 part is the translational part, and the lower row is [0 0 0 1]. Tangent vectors, consequently, follow the same ‘layout‘. To improve efficiency, tangent vectors are always represented in the Lie Algebra. """ def __init__(self, k=1, structure='AffineGroup'): if k == 1: name = 'Rigid motions' elif k > 1: name = 'Special Euclidean group SE(3)^{k}'.format(k=k) else: raise RuntimeError("k must be an integer no less than 1.") self._k = k self._SO = SO3(k) dimension = 6 * self._k point_shape = [self._k, 4, 4] super().__init__(name, dimension, point_shape) if structure: getattr(self, f'init{structure}Structure')() def initAffineGroupStructure(self): """ Instantiate SE(3)^k with standard Lie group structure and canonical Cartan-Shouten connection. """ structure = SE3.AffineGroupStructure(self) self._connec = structure self._group = structure @property def k(self): return self._k def rand(self): P = np.zero(self.point_shape) P[:, :3, :3] = self._SO.rand() P[:, :3, 3] = np.random.rand((self._k, 3)) P[:, 3, 3] = 1 return P def randvec(self, P): X =
np.zero(self.point_shape)
numpy.zero
# ***************************************************************************** # Copyright (c) 2019, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import sdc import time @sdc.jit def logistic_regression(iterations): t1 = time.time() N = 10**8 D = 10 g = 2 * np.random.ranf(D) - 1 X = 2 * np.random.ranf((N, D)) - 1 Y = ((np.dot(X, g) > 0.0) == (np.random.ranf(N) > .90)) + .0 w = np.random.ranf(D) - .5 for i in range(iterations): w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X) R =
np.dot(X, w)
numpy.dot
import numpy as np from scipy import integrate from floris.utils.tools import valid_ops as vops # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # MISCELLANEOUS # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # MAIN # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # def __Xie_Archer_wake(x, y, z, v_inflow, D_r, C_t, z_hub): beta = (1. +
np.sqrt(1 - C_t)
numpy.sqrt
import os import unittest import numpy as np import config from mos.dataset_reader import RawDatasetReader, MissingDataRawDatasetReader, \ SyntheticRawDatasetReader, CorruptSubjectRawDatasetReader from mos.subjective_model import MosModel, DmosModel, \ MaximumLikelihoodEstimationModelReduced, MaximumLikelihoodEstimationModel, \ LiveDmosModel, MaximumLikelihoodEstimationDmosModel, LeastSquaresModel, \ SubjrejMosModel, ZscoringSubjrejMosModel, SubjrejDmosModel, \ ZscoringSubjrejDmosModel, PerSubjectModel from tools.misc import import_python_file __copyright__ = "Copyright 2016, Netflix, Inc." __license__ = "Apache, Version 2.0" class SubjectiveModelTest(unittest.TestCase): def setUp(self): self.dataset_filepath = config.ROOT + '/python/test/resource/NFLX_dataset_public_raw.py' self.output_dataset_filepath = config.ROOT + '/workspace/workdir/NFLX_dataset_public_test.py' self.output_dataset_pyc_filepath = config.ROOT + '/workspace/workdir/NFLX_dataset_public_test.pyc' def tearDown(self): if os.path.exists(self.output_dataset_filepath): os.remove(self.output_dataset_filepath) if os.path.exists(self.output_dataset_pyc_filepath): os.remove(self.output_dataset_pyc_filepath) def test_mos_subjective_model(self): dataset = import_python_file(self.dataset_filepath) dataset_reader = RawDatasetReader(dataset) subjective_model = MosModel(dataset_reader) result = subjective_model.run_modeling() scores = result['quality_scores'] self.assertAlmostEquals(scores[0], 4.884615384615385, places=4) self.assertAlmostEquals(scores[10], 2.0769230769230771, places=4) self.assertAlmostEquals(np.mean(scores), 3.544790652385589, places=4) def test_mos_subjective_model_output(self): dataset = import_python_file(self.dataset_filepath) dataset_reader = RawDatasetReader(dataset) subjective_model = MosModel(dataset_reader) subjective_model.run_modeling() subjective_model.to_aggregated_dataset_file(self.output_dataset_filepath) self.assertTrue(os.path.exists(self.output_dataset_filepath)) dataset2 = import_python_file(self.output_dataset_filepath) dis_video = dataset2.dis_videos[0] self.assertTrue('groundtruth' in dis_video) self.assertTrue('os' not in dis_video) self.assertAlmostEquals(dis_video['groundtruth'], 4.884615384615385, places=4) def test_mos_subjective_model_output_custom_resampling(self): dataset = import_python_file(self.dataset_filepath) dataset_reader = RawDatasetReader(dataset) subjective_model = MosModel(dataset_reader) subjective_model.run_modeling() subjective_model.to_aggregated_dataset_file(self.output_dataset_filepath, resampling_type='lanczos') self.assertTrue(os.path.exists(self.output_dataset_filepath)) dataset2 = import_python_file(self.output_dataset_filepath) self.assertFalse(hasattr(dataset2, 'quality_height')) self.assertFalse(hasattr(dataset2, 'quality_width')) self.assertEquals(dataset2.resampling_type, 'lanczos') dis_video = dataset2.dis_videos[0] self.assertTrue('groundtruth' in dis_video) self.assertTrue('os' not in dis_video) self.assertAlmostEquals(dis_video['groundtruth'], 4.884615384615385, places=4) def test_mos_subjective_model_output2(self): dataset = import_python_file(self.dataset_filepath) dataset_reader = RawDatasetReader(dataset) subjective_model = MosModel(dataset_reader) subjective_model.run_modeling() dataset2 = subjective_model.to_aggregated_dataset() dis_video = dataset2.dis_videos[0] self.assertTrue('groundtruth' in dis_video) self.assertTrue('os' not in dis_video) self.assertAlmostEquals(dis_video['groundtruth'], 4.884615384615385, places=4) def test_mos_subjective_model_normalize_final(self): dataset = import_python_file(self.dataset_filepath) dataset_reader = RawDatasetReader(dataset) subjective_model = MosModel(dataset_reader) result = subjective_model.run_modeling(normalize_final=True) scores = result['quality_scores'] self.assertAlmostEquals(scores[0], 1.1318646945818083, places=4) self.assertAlmostEquals(scores[10], -1.2400334499143002, places=4) self.assertAlmostEquals(np.mean(scores), 0.0, places=4) def test_mos_subjective_model_transform_final(self): dataset = import_python_file(self.dataset_filepath) dataset_reader = RawDatasetReader(dataset) subjective_model = MosModel(dataset_reader) result = subjective_model.run_modeling(transform_final={'p1': 10, 'p0': 1}) scores = result['quality_scores'] self.assertAlmostEquals(scores[0], 49.84615384615385, places=4) self.assertAlmostEquals(scores[10], 21.769230769230771, places=4) self.assertAlmostEquals(np.mean(scores), 36.44790652385589, places=4) def test_from_dataset_file(self): subjective_model = MosModel.from_dataset_file(self.dataset_filepath) result = subjective_model.run_modeling() scores = result['quality_scores'] self.assertAlmostEquals(scores[0], 4.884615384615385, places=4) self.assertAlmostEquals(scores[10], 2.0769230769230771, places=4) self.assertAlmostEquals(np.mean(scores), 3.544790652385589, places=4) def test_dmos_subjective_model(self): subjective_model = DmosModel.from_dataset_file(self.dataset_filepath) result = subjective_model.run_modeling() scores = result['quality_scores'] self.assertAlmostEquals(scores[0], 5.0, places=4) self.assertAlmostEquals(scores[10], 2.1923076923076921, places=4) self.assertAlmostEquals(np.mean(scores), 3.7731256085686473, places=4) def test_dmos_subjective_model_normalize_final(self): subjective_model = DmosModel.from_dataset_file(self.dataset_filepath) result = subjective_model.run_modeling(normalize_final=True) scores = result['quality_scores'] self.assertAlmostEquals(scores[0], 1.0440613892053001, places=4) self.assertAlmostEquals(scores[10], -1.3452648137895296, places=4) self.assertAlmostEquals(np.mean(scores), 0.0, places=4) def test_dmos_subjective_model_dscore_mode_same(self): subjective_model = DmosModel.from_dataset_file(self.dataset_filepath) result = subjective_model.run_modeling(normalize_final=True) scores = result['quality_scores'] self.assertAlmostEquals(scores[0], 1.0440613892053001, places=4) self.assertAlmostEquals(scores[10], -1.3452648137895296, places=4) self.assertAlmostEquals(np.mean(scores), 0.0, places=4) def test_observer_aware_subjective_model_with_dscoring(self): subjective_model = MaximumLikelihoodEstimationModelReduced.from_dataset_file( self.dataset_filepath) result = subjective_model.run_modeling(dscore_mode=True) self.assertAlmostEquals(np.sum(result['observer_bias']), -0.090840910829083799, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.089032585621095089, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 15.681766163430936, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.012565584832977776, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 298.35293969059796, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 1.4163670233392607, places=4) def test_observer_aware_subjective_model_with_zscoring(self): subjective_model = MaximumLikelihoodEstimationModelReduced.from_dataset_file( self.dataset_filepath) result = subjective_model.run_modeling(zscore_mode=True) self.assertAlmostEquals(np.sum(result['observer_bias']), 0.0, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.0, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 11.568205661696393, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.0079989301785523791, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 0.0, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 0.80942484781493518, places=4) def test_observer_aware_subjective_model_with_dscoring_and_zscoring(self): subjective_model = MaximumLikelihoodEstimationModelReduced.from_dataset_file( self.dataset_filepath) result = subjective_model.run_modeling(dscore_mode=True, zscore_mode=True) self.assertAlmostEquals(np.sum(result['observer_bias']), 0.0, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.0, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 11.628499078069273, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.0082089371266301642, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 0.0, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 0.80806512456121071, places=4) def test_observer_aware_subjective_model_use_log(self): subjective_model = MaximumLikelihoodEstimationModelReduced.from_dataset_file( self.dataset_filepath) result = subjective_model.run_modeling(use_log=True) self.assertAlmostEquals(np.sum(result['observer_bias']), -0.082429594509296211, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.089032585621095089, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 15.681766163430936, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.012565584832977776, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 280.2889206910113, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 1.4355485462027884, places=4) def test_observer_content_aware_subjective_model(self): subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file( self.dataset_filepath) result = subjective_model.run_modeling() self.assertAlmostEquals(np.sum(result['content_bias']), 0, places=4) self.assertAlmostEquals(np.var(result['content_bias']), 0, places=4) self.assertAlmostEquals(np.sum(result['content_ambiguity']), 3.8972884776604402, places=4) self.assertAlmostEquals(np.var(result['content_ambiguity']), 0.0041122094732031289, places=4) self.assertAlmostEquals(np.sum(result['observer_bias']), -0.055712761348815837, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.085842891905121704, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 10.164665557559516, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.028749990587721687, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 280.20774261173619, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 1.4351342153719635, places=4) def test_observer_content_aware_subjective_model_missingdata(self): dataset = import_python_file(self.dataset_filepath) np.random.seed(0) info_dict = { 'missing_probability': 0.1, } dataset_reader = MissingDataRawDatasetReader(dataset, input_dict=info_dict) subjective_model = MaximumLikelihoodEstimationModel(dataset_reader) result = subjective_model.run_modeling() self.assertAlmostEquals(np.sum(result['content_bias']), 0, places=4) self.assertAlmostEquals(np.var(result['content_bias']), 0, places=4) self.assertAlmostEquals(np.sum(result['content_ambiguity']), 3.9104244772977128, places=4) self.assertAlmostEquals(np.var(result['content_ambiguity']), 0.0037713583509767193, places=4) self.assertAlmostEquals(np.sum(result['observer_bias']), -0.21903272050455846, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.084353684687185043, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 9.8168943054654481, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.028159236075789944, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 280.05548186797336, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 1.4339487982797514, places=4) np.random.seed(0) info_dict = { 'missing_probability': 0.5, } dataset_reader = MissingDataRawDatasetReader(dataset, input_dict=info_dict) subjective_model = MaximumLikelihoodEstimationModel(dataset_reader) result = subjective_model.run_modeling() self.assertAlmostEquals(np.sum(result['content_bias']), 0, places=4) self.assertAlmostEquals(np.var(result['content_bias']), 0, places=4) self.assertAlmostEquals(np.sum(result['content_ambiguity']), 2.63184284168883, places=4) self.assertAlmostEquals(np.var(result['content_ambiguity']), 0.019164097909450246, places=4) self.assertAlmostEquals(np.sum(result['observer_bias']), 0.2263148440748638, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.070613033112114504, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 12.317917502439435, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.029455722248727296, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 280.29962156788139, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 1.4717366222424826, places=4) def test_observer_content_aware_subjective_model_nocontent(self): subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file( self.dataset_filepath) result = subjective_model.run_modeling(mode='NO_CONTENT') self.assertAlmostEquals(np.sum(result['observer_bias']), -0.090840910829083799, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.089032585621095089, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 15.681766163430936, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.012565584832977776, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 280.31447815213642, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 1.4355485462027884, places=4) self.assertAlmostEquals(np.sum(result['content_bias']), 0.0, places=4) self.assertAlmostEquals(np.var(result['content_bias']), 0.0, places=4) self.assertAlmostEquals(np.sum(result['content_ambiguity']), 0.0, places=4) self.assertAlmostEquals(np.var(result['content_ambiguity']), 0.0, places=4) def test_observer_content_aware_subjective_model_nosubject(self): subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file( self.dataset_filepath) result = subjective_model.run_modeling(mode='NO_SUBJECT') self.assertAlmostEquals(np.sum(result['observer_bias']), 0.0, places=4) self.assertAlmostEquals(np.var(result['observer_bias']), 0.0, places=4) self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 0.0, places=4) self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.0, places=4) self.assertAlmostEquals(np.sum(result['quality_scores']), 280.0384615384616, places=4) self.assertAlmostEquals(np.var(result['quality_scores']), 1.4012220200639218, places=4) self.assertAlmostEquals(np.sum(result['content_bias']), 0.0, places=4) self.assertAlmostEquals(np.var(result['content_bias']), 0.0, places=4) self.assertAlmostEquals(
np.sum(result['content_ambiguity'])
numpy.sum
'''This class will log 1d array in Nd matrix from device and qualisys object''' import numpy as np from datetime import datetime as datetime from time import time from utils_mpc import quaternionToRPY class LoggerControl(): def __init__(self, dt, N0_gait, joystick=None, estimator=None, loop=None, gait=None, statePlanner=None, footstepPlanner=None, footTrajectoryGenerator=None, logSize=60e3, ringBuffer=False): self.ringBuffer = ringBuffer logSize = np.int(logSize) self.logSize = logSize self.i = 0 self.dt = dt # Allocate the data: # Joystick self.joy_v_ref = np.zeros([logSize, 6]) # reference velocity of the joystick # Estimator self.esti_feet_status = np.zeros([logSize, 4]) # input feet status (contact or not) self.esti_feet_goals = np.zeros([logSize, 3, 4]) # input feet goals (desired on the ground) self.esti_q_filt = np.zeros([logSize, 19]) # output position self.esti_v_filt = np.zeros([logSize, 18]) # output velocity self.esti_v_secu = np.zeros([logSize, 12]) # filtered output velocity for security check self.esti_FK_lin_vel = np.zeros([logSize, 3]) # estimated velocity of the base with FK self.esti_FK_xyz = np.zeros([logSize, 3]) # estimated position of the base with FK self.esti_xyz_mean_feet = np.zeros([logSize, 3]) # average of feet goals self.esti_filt_lin_vel = np.zeros([logSize, 3]) # estimated velocity of the base before low pass filter self.esti_HP_x = np.zeros([logSize, 3]) # x input of the velocity complementary filter self.esti_HP_dx = np.zeros([logSize, 3]) # dx input of the velocity complementary filter self.esti_HP_alpha = np.zeros([logSize, 3]) # alpha parameter of the velocity complementary filter self.esti_HP_filt_x = np.zeros([logSize, 3]) # filtered output of the velocity complementary filter self.esti_LP_x = np.zeros([logSize, 3]) # x input of the position complementary filter self.esti_LP_dx = np.zeros([logSize, 3]) # dx input of the position complementary filter self.esti_LP_alpha = np.zeros([logSize, 3]) # alpha parameter of the position complementary filter self.esti_LP_filt_x = np.zeros([logSize, 3]) # filtered output of the position complementary filter self.esti_kf_X = np.zeros([logSize, 18]) # state of the Kalman filter self.esti_kf_Z = np.zeros([logSize, 16]) # measurement for the Kalman filter # Loop self.loop_o_q_int = np.zeros([logSize, 19]) # position in world frame (esti_q_filt + dt * loop_o_v) self.loop_o_v = np.zeros([logSize, 18]) # estimated velocity in world frame self.loop_h_v = np.zeros([logSize, 18]) # estimated velocity in horizontal frame self.loop_pos_virtual_world = np.zeros([logSize, 3]) # x, y, yaw perfect position in world # Gait self.planner_gait = np.zeros([logSize, N0_gait, 4]) # Gait sequence self.planner_is_static = np.zeros([logSize]) # if the planner is in static mode or not self.planner_q_static = np.zeros([logSize, 19]) # position in static mode (4 stance phase) self.planner_RPY_static = np.zeros([logSize, 3]) # RPY orientation in static mode (4 stance phase) # State planner if statePlanner is not None: self.planner_xref = np.zeros([logSize, 12, 1+statePlanner.getNSteps()]) # Reference trajectory # Footstep planner if gait is not None: self.planner_fsteps = np.zeros([logSize, gait.getCurrentGait().shape[0], 12]) # Reference footsteps position self.planner_h_ref = np.zeros([logSize]) # reference height of the planner # Foot Trajectory Generator self.planner_goals = np.zeros([logSize, 3, 4]) # 3D target feet positions self.planner_vgoals = np.zeros([logSize, 3, 4]) # 3D target feet velocities self.planner_agoals = np.zeros([logSize, 3, 4]) # 3D target feet accelerations # Model Predictive Control # output vector of the MPC (next state + reference contact force) if statePlanner is not None: self.mpc_x_f = np.zeros([logSize, 24, statePlanner.getNSteps()]) # Whole body control self.wbc_x_f = np.zeros([logSize, 24]) # input vector of the WBC (next state + reference contact force) self.wbc_P = np.zeros([logSize, 12]) # proportionnal gains of the PD+ self.wbc_D = np.zeros([logSize, 12]) # derivative gains of the PD+ self.wbc_q_des = np.zeros([logSize, 12]) # desired position of actuators self.wbc_v_des = np.zeros([logSize, 12]) # desired velocity of actuators self.wbc_tau_ff = np.zeros([logSize, 12]) # feedforward torques computed by the WBC self.wbc_f_ctc = np.zeros([logSize, 12]) # contact forces computed by the WBC self.wbc_feet_pos = np.zeros([logSize, 3, 4]) # current feet positions according to WBC self.wbc_feet_pos_target = np.zeros([logSize, 3, 4]) # current feet positions targets for WBC self.wbc_feet_err = np.zeros([logSize, 3, 4]) # error between feet positions and their reference self.wbc_feet_vel = np.zeros([logSize, 3, 4]) # current feet velocities according to WBC self.wbc_feet_vel_target = np.zeros([logSize, 3, 4]) # current feet velocities targets for WBC self.wbc_feet_acc_target = np.zeros([logSize, 3, 4]) # current feet accelerations targets for WBC self.wbc_feet_pos_invkin = np.zeros([logSize, 3, 4]) # current feet positions according to InvKin self.wbc_feet_vel_invkin = np.zeros([logSize, 3, 4]) # current feet velocities according to InvKin # Timestamps self.tstamps = np.zeros(logSize) def sample(self, joystick, estimator, loop, gait, statePlanner, footstepPlanner, footTrajectoryGenerator, wbc): if (self.i >= self.logSize): if self.ringBuffer: self.i = 0 else: return # Logging from joystick self.joy_v_ref[self.i] = joystick.v_ref[:, 0] # Logging from estimator self.esti_feet_status[self.i] = estimator.feet_status[:] self.esti_feet_goals[self.i] = estimator.feet_goals self.esti_q_filt[self.i] = estimator.q_filt[:, 0] self.esti_v_filt[self.i] = estimator.v_filt[:, 0] self.esti_v_secu[self.i] = estimator.v_secu[:] self.esti_FK_lin_vel[self.i] = estimator.FK_lin_vel[:] self.esti_FK_xyz[self.i] = estimator.FK_xyz[:] self.esti_xyz_mean_feet[self.i] = estimator.xyz_mean_feet[:] self.esti_filt_lin_vel[self.i] = estimator.filt_lin_vel[:] if not estimator.kf_enabled: self.esti_HP_x[self.i] = estimator.filter_xyz_vel.x self.esti_HP_dx[self.i] = estimator.filter_xyz_vel.dx self.esti_HP_alpha[self.i] = estimator.filter_xyz_vel.alpha self.esti_HP_filt_x[self.i] = estimator.filter_xyz_vel.filt_x self.esti_LP_x[self.i] = estimator.filter_xyz_pos.x self.esti_LP_dx[self.i] = estimator.filter_xyz_pos.dx self.esti_LP_alpha[self.i] = estimator.filter_xyz_pos.alpha self.esti_LP_filt_x[self.i] = estimator.filter_xyz_pos.filt_x else: self.esti_kf_X[self.i] = estimator.kf.X[:, 0] self.esti_kf_Z[self.i] = estimator.Z[:, 0] # Logging from the main loop self.loop_o_q_int[self.i] = loop.q[:, 0] self.loop_o_v[self.i] = loop.v[:, 0] self.loop_h_v[self.i] = loop.h_v[:, 0] self.loop_pos_virtual_world[self.i] = np.array([loop.q[0, 0], loop.q[1, 0], loop.yaw_estim]) # Logging from the planner # self.planner_q_static[self.i] = planner.q_static[:] # self.planner_RPY_static[self.i] = planner.RPY_static[:, 0] self.planner_xref[self.i] = statePlanner.getReferenceStates() self.planner_fsteps[self.i] = footstepPlanner.getFootsteps() self.planner_gait[self.i] = gait.getCurrentGait() self.planner_goals[self.i] = footTrajectoryGenerator.getFootPosition() self.planner_vgoals[self.i] = footTrajectoryGenerator.getFootVelocity() self.planner_agoals[self.i] = footTrajectoryGenerator.getFootAcceleration() self.planner_is_static[self.i] = gait.getIsStatic() self.planner_h_ref[self.i] = loop.h_ref # Logging from model predictive control self.mpc_x_f[self.i] = loop.x_f_mpc # Logging from whole body control self.wbc_x_f[self.i] = loop.x_f_wbc self.wbc_P[self.i] = loop.result.P self.wbc_D[self.i] = loop.result.D self.wbc_q_des[self.i] = loop.result.q_des self.wbc_v_des[self.i] = loop.result.v_des self.wbc_tau_ff[self.i] = loop.result.tau_ff self.wbc_f_ctc[self.i] = wbc.f_with_delta[:, 0] self.wbc_feet_pos[self.i] = wbc.feet_pos self.wbc_feet_pos_target[self.i] = wbc.log_feet_pos_target[:, :, self.i+1] self.wbc_feet_err[self.i] = wbc.feet_err self.wbc_feet_vel[self.i] = wbc.feet_vel self.wbc_feet_vel_target[self.i] = wbc.log_feet_vel_target[:, :, self.i+1] self.wbc_feet_acc_target[self.i] = wbc.log_feet_acc_target[:, :, self.i+1] self.wbc_feet_pos_invkin[self.i] = wbc.invKin.cpp_posf.transpose() self.wbc_feet_vel_invkin[self.i] = wbc.invKin.cpp_vf.transpose() # Logging timestamp self.tstamps[self.i] = time() self.i += 1 def processMocap(self, N, loggerSensors): self.mocap_b_v = np.zeros([N, 3]) self.mocap_b_w = np.zeros([N, 3]) self.mocap_RPY = np.zeros([N, 3]) for i in range(N): oRb = loggerSensors.mocapOrientationMat9[i] """from IPython import embed embed()""" self.mocap_b_v[i] = (oRb.transpose() @ loggerSensors.mocapVelocity[i].reshape((3, 1))).ravel() self.mocap_b_w[i] = (oRb.transpose() @ loggerSensors.mocapAngularVelocity[i].reshape((3, 1))).ravel() self.mocap_RPY[i] = quaternionToRPY(loggerSensors.mocapOrientationQuat[i])[:, 0] def plotAll(self, loggerSensors): from matplotlib import pyplot as plt N = self.tstamps.shape[0] t_range = np.array([k*self.dt for k in range(N)]) self.processMocap(N, loggerSensors) index6 = [1, 3, 5, 2, 4, 6] index12 = [1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12] """plt.figure() for i in range(4): if i == 0: ax0 = plt.subplot(2, 2, i+1) else: plt.subplot(2, 2, i+1, sharex=ax0) switch = np.diff(self.esti_feet_status[:, i]) tmp = self.wbc_feet_pos[:-1, 2, i] tmp_y = tmp[switch > 0] tmp_x = t_range[:-1] tmp_x = tmp_x[switch > 0] plt.plot(tmp_x, tmp_y, linewidth=3)""" lgd_X = ["FL", "FR", "HL", "HR"] lgd_Y = ["Pos X", "Pos Y", "Pos Z"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) plt.plot(t_range, self.wbc_feet_pos[:, i % 3, np.int(i/3)], color='b', linewidth=3, marker='') plt.plot(t_range, self.wbc_feet_err[:, i % 3, np.int(i/3)] + self.wbc_feet_pos[0, i % 3, np.int(i/3)], color='g', linewidth=3, marker='') plt.plot(t_range, self.wbc_feet_pos_target[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='') """plt.plot(t_range, self.wbc_feet_pos_invkin[:, i % 3, np.int(i/3)], color='darkviolet', linewidth=3, linestyle="--", marker='')""" if (i % 3) == 2: mini = np.min(self.wbc_feet_pos[:, i % 3, np.int(i/3)]) maxi = np.max(self.wbc_feet_pos[:, i % 3, np.int(i/3)]) plt.plot(t_range, self.planner_gait[:, 0, np.int( i/3)] * (maxi - mini) + mini, color='k', linewidth=3, marker='') plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+"", "error", lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref", "Contact state"], prop={'size': 8}) plt.suptitle("Measured & Reference feet positions (base frame)") lgd_X = ["FL", "FR", "HL", "HR"] lgd_Y = ["Vel X", "Vel Y", "Vel Z"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) plt.plot(t_range, self.wbc_feet_vel[:, i % 3, np.int(i/3)], color='b', linewidth=3, marker='') plt.plot(t_range, self.wbc_feet_vel_target[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='') """plt.plot(t_range, self.wbc_feet_vel_invkin[:, i % 3, np.int(i/3)], color='darkviolet', linewidth=3, linestyle="--", marker='')""" plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)], lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref"], prop={'size': 8}) plt.suptitle("Measured and Reference feet velocities (base frame)") lgd_X = ["FL", "FR", "HL", "HR"] lgd_Y = ["Acc X", "Acc Y", "Acc Z"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) plt.plot(t_range, self.wbc_feet_acc_target[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='') plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref"], prop={'size': 8}) plt.suptitle("Reference feet accelerations (base frame)") # LOG_Q lgd = ["Position X", "Position Y", "Position Z", "Position Roll", "Position Pitch", "Position Yaw"] plt.figure() for i in range(6): if i == 0: ax0 = plt.subplot(3, 2, index6[i]) else: plt.subplot(3, 2, index6[i], sharex=ax0) if i in [0, 1]: plt.plot(t_range, self.loop_pos_virtual_world[:, i], "b", linewidth=3) plt.plot(t_range, self.loop_pos_virtual_world[:, i], "r", linewidth=3) elif i == 5: plt.plot(t_range, self.loop_pos_virtual_world[:, 2], "b", linewidth=3) plt.plot(t_range, self.loop_pos_virtual_world[:, 2], "r", linewidth=3) else: plt.plot(t_range, self.planner_xref[:, i, 0], "b", linewidth=2) plt.plot(t_range, self.planner_xref[:, i, 1], "r", linewidth=3) if i < 3: plt.plot(t_range, loggerSensors.mocapPosition[:, i], "k", linewidth=3) else: plt.plot(t_range, self.mocap_RPY[:, i-3], "k", linewidth=3) # plt.plot(t_range, self.log_q[i, :], "grey", linewidth=4) # plt.plot(t_range[:-2], self.log_x_invkin[i, :-2], "g", linewidth=2) # plt.plot(t_range[:-2], self.log_x_ref_invkin[i, :-2], "violet", linewidth=2, linestyle="--") plt.legend(["Robot state", "Robot reference state", "Ground truth"], prop={'size': 8}) plt.ylabel(lgd[i]) plt.suptitle("Measured & Reference position and orientation") # LOG_V lgd = ["Linear vel X", "Linear vel Y", "Linear vel Z", "Angular vel Roll", "Angular vel Pitch", "Angular vel Yaw"] plt.figure() for i in range(6): if i == 0: ax0 = plt.subplot(3, 2, index6[i]) else: plt.subplot(3, 2, index6[i], sharex=ax0) plt.plot(t_range, self.loop_h_v[:, i], "b", linewidth=2) plt.plot(t_range, self.joy_v_ref[:, i], "r", linewidth=3) if i < 3: plt.plot(t_range, self.mocap_b_v[:, i], "k", linewidth=3) # plt.plot(t_range, self.esti_FK_lin_vel[:, i], "violet", linewidth=3, linestyle="--") plt.plot(t_range, self.esti_filt_lin_vel[:, i], "violet", linewidth=3, linestyle="--") else: plt.plot(t_range, self.mocap_b_w[:, i-3], "k", linewidth=3) """N = 2000 y = np.convolve(self.mocap_b_w[:, i-3], np.ones(N)/N, mode='valid') plt.plot(t_range[int(N/2)-1:-int(N/2)], y, linewidth=3, linestyle="--")""" # plt.plot(t_range, self.log_dq[i, :], "g", linewidth=2) # plt.plot(t_range[:-2], self.log_dx_invkin[i, :-2], "g", linewidth=2) # plt.plot(t_range[:-2], self.log_dx_ref_invkin[i, :-2], "violet", linewidth=2, linestyle="--") plt.legend(["Robot state", "Robot reference state", "Ground truth"], prop={'size': 8}) plt.ylabel(lgd[i]) plt.suptitle("Measured & Reference linear and angular velocities") """plt.figure() plt.plot(t_range[:-2], self.log_x[6, :-2], "b", linewidth=2) plt.plot(t_range[:-2], self.log_x_cmd[6, :-2], "r", linewidth=2) plt.plot(t_range[:-2], self.log_dx_invkin[0, :-2], "g", linewidth=2) plt.plot(t_range[:-2], self.log_dx_ref_invkin[0, :-2], "violet", linewidth=2) plt.legend(["WBC integrated output state", "Robot reference state", "Task current state", "Task reference state"])""" # Analysis of the footstep locations (current and future) with a slider to move along time # self.slider_predicted_footholds() # Analysis of the footholds locations during the whole experiment """import utils_mpc import pinocchio as pin f_c = ["r", "b", "forestgreen", "rebeccapurple"] quat = np.zeros((4, 1)) steps = np.zeros((12, 1)) o_step = np.zeros((3, 1)) plt.figure() plt.plot(self.loop_o_q_int[:, 0], self.loop_o_q_int[:, 1], linewidth=2, color="k") for i in range(self.planner_fsteps.shape[0]): fsteps = self.planner_fsteps[i] RPY = utils_mpc.quaternionToRPY(self.loop_o_q_int[i, 3:7]) quat[:, 0] = utils_mpc.EulerToQuaternion([0.0, 0.0, RPY[2]]) oRh = pin.Quaternion(quat).toRotationMatrix() for j in range(4): #if np.any(fsteps[k, (j*3):((j+1)*3)]) and not np.array_equal(steps[(j*3):((j+1)*3), 0], # fsteps[k, (j*3):((j+1)*3)]): # steps[(j*3):((j+1)*3), 0] = fsteps[k, (j*3):((j+1)*3)] # o_step[:, 0:1] = oRh @ steps[(j*3):((j+1)*3), 0:1] + self.loop_o_q_int[i:(i+1), 0:3].transpose() o_step[:, 0:1] = oRh @ fsteps[0:1, (j*3):((j+1)*3)].transpose() + self.loop_o_q_int[i:(i+1), 0:3].transpose() plt.plot(o_step[0, 0], o_step[1, 0], linestyle=None, linewidth=1, marker="o", color=f_c[j]) """ lgd1 = ["HAA", "HFE", "Knee"] lgd2 = ["FL", "FR", "HL", "HR"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) tau_fb = self.wbc_P[:, i] * (self.wbc_q_des[:, i] - self.esti_q_filt[:, 7+i]) + \ self.wbc_D[:, i] * (self.wbc_v_des[:, i] - self.esti_v_filt[:, 6+i]) h1, = plt.plot(t_range, self.wbc_tau_ff[:, i], "r", linewidth=3) h2, = plt.plot(t_range, tau_fb, "b", linewidth=3) h3, = plt.plot(t_range, self.wbc_tau_ff[:, i] + tau_fb, "g", linewidth=3) h4, = plt.plot(t_range[:-1], loggerSensors.torquesFromCurrentMeasurment[1:, i], "violet", linewidth=3, linestyle="--") plt.xlabel("Time [s]") plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [Nm]") tmp = lgd1[i % 3]+" "+lgd2[int(i/3)] plt.legend([h1, h2, h3, h4], ["FF "+tmp, "FB "+tmp, "PD+ "+tmp, "Meas "+tmp], prop={'size': 8}) plt.ylim([-8.0, 8.0]) plt.suptitle("FF torques & FB torques & Sent torques & Meas torques") lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"] lgd2 = ["FL", "FR", "HL", "HR"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3) h2, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--") plt.xlabel("Time [s]") plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]") plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)], "WBC " + lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8}) if (i % 3) == 2: plt.ylim([-0.0, 26.0]) else: plt.ylim([-26.0, 26.0]) plt.suptitle("Contact forces (MPC command) & WBC QP output") lgd1 = ["HAA", "HFE", "Knee"] lgd2 = ["FL", "FR", "HL", "HR"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) h1, = plt.plot(t_range, self.wbc_q_des[:, i], color='r', linewidth=3) h2, = plt.plot(t_range, self.esti_q_filt[:, 7+i], color='b', linewidth=3) plt.xlabel("Time [s]") plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [rad]") plt.legend([h1, h2], ["Ref "+lgd1[i % 3]+" "+lgd2[int(i/3)], lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8}) plt.suptitle("Desired actuator positions & Measured actuator positions") # Evolution of predicted trajectory along time log_t_pred = np.array([k*self.dt*10 for k in range(self.mpc_x_f.shape[2])]) log_t_ref = np.array([k*self.dt*10 for k in range(self.planner_xref.shape[2])]) """from IPython import embed embed()""" titles = ["X", "Y", "Z", "Roll", "Pitch", "Yaw"] step = 1000 plt.figure() for j in range(6): plt.subplot(3, 2, index6[j]) c = [[i/(self.mpc_x_f.shape[0]+5), 0.0, i/(self.mpc_x_f.shape[0]+5)] for i in range(0, self.mpc_x_f.shape[0], step)] for i in range(0, self.mpc_x_f.shape[0], step): h1, = plt.plot(log_t_pred+(i+10)*self.dt, self.mpc_x_f[i, j, :], "b", linewidth=2, color=c[int(i/step)]) h2, = plt.plot(log_t_ref+i*self.dt, self.planner_xref[i, j, :], linestyle="--", marker='x', color="g", linewidth=2) #h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]), # self.planner_xref[:, j, 0], linestyle=None, marker='x', color="r", linewidth=1) plt.xlabel("Time [s]") plt.legend([h1, h2, h3], ["Output trajectory of MPC", "Input trajectory of planner"]) #, "Actual robot trajectory"]) plt.title("Predicted trajectory for " + titles[j]) plt.suptitle("Analysis of trajectories in position and orientation computed by the MPC") plt.figure() for j in range(6): plt.subplot(3, 2, index6[j]) c = [[i/(self.mpc_x_f.shape[0]+5), 0.0, i/(self.mpc_x_f.shape[0]+5)] for i in range(0, self.mpc_x_f.shape[0], step)] for i in range(0, self.mpc_x_f.shape[0], step): h1, = plt.plot(log_t_pred+(i+10)*self.dt, self.mpc_x_f[i, j+6, :], "b", linewidth=2, color=c[int(i/step)]) h2, = plt.plot(log_t_ref+i*self.dt, self.planner_xref[i, j+6, :], linestyle="--", marker='x', color="g", linewidth=2) h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]), self.planner_xref[:, j+6, 0], linestyle=None, marker='x', color="r", linewidth=1) plt.xlabel("Time [s]") plt.legend([h1, h2, h3], ["Output trajectory of MPC", "Input trajectory of planner", "Actual robot trajectory"]) plt.title("Predicted trajectory for velocity in " + titles[j]) plt.suptitle("Analysis of trajectories of linear and angular velocities computed by the MPC") step = 1000 lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"] lgd2 = ["FL", "FR", "HL", "HR"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3) h2, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--") plt.xlabel("Time [s]") plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]") plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)], "WBC " + lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8}) if (i % 3) == 2: plt.ylim([-0.0, 26.0]) else: plt.ylim([-26.0, 26.0]) plt.suptitle("Contact forces (MPC command) & WBC QP output") lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"] lgd2 = ["FL", "FR", "HL", "HR"] plt.figure() for i in range(4): if i == 0: ax0 = plt.subplot(1, 4, i+1) else: plt.subplot(1, 4, i+1, sharex=ax0) for k in range(0, self.mpc_x_f.shape[0], step): h2, = plt.plot(log_t_pred+k*self.dt, self.mpc_x_f[k, 12+(3*i+2), :], linestyle="--", marker='x', linewidth=2) h1, = plt.plot(t_range, self.mpc_x_f[:, 12+(3*i+2), 0], "r", linewidth=3) # h3, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--") plt.plot(t_range, self.esti_feet_status[:, i], "k", linestyle="--") plt.xlabel("Time [s]") plt.ylabel(lgd2[i]+" [N]") plt.legend([h1, h2], ["MPC "+lgd2[i], "MPC "+lgd2[i]+" trajectory"]) plt.ylim([-1.0, 26.0]) plt.suptitle("Contact forces trajectories & Actual forces trajectories") # Analysis of the complementary filter behaviour clr = ["b", "darkred", "forestgreen"] # Velocity complementary filter lgd_Y = ["dx", "ddx", "alpha dx", "dx_out", "dy", "ddy", "alpha dy", "dy_out", "dz", "ddz", "alpha dz", "dz_out"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, i+1) else: plt.subplot(3, 4, i+1, sharex=ax0) if i % 4 == 0: plt.plot(t_range, self.esti_HP_x[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # x input of the velocity complementary filter elif i % 4 == 1: plt.plot(t_range, self.esti_HP_dx[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # dx input of the velocity complementary filter elif i % 4 == 2: plt.plot(t_range, self.esti_HP_alpha[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # alpha parameter of the velocity complementary filter else: plt.plot(t_range, self.esti_HP_filt_x[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # filtered output of the velocity complementary filter plt.legend([lgd_Y[i]], prop={'size': 8}) plt.suptitle("Evolution of the quantities of the velocity complementary filter") # Position complementary filter lgd_Y = ["x", "dx", "alpha x", "x_out", "y", "dy", "alpha y", "y_out", "z", "dz", "alpha z", "z_out"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, i+1) else: plt.subplot(3, 4, i+1, sharex=ax0) if i % 4 == 0: plt.plot(t_range, self.esti_LP_x[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # x input of the position complementary filter elif i % 4 == 1: plt.plot(t_range, self.esti_LP_dx[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # dx input of the position complementary filter elif i % 4 == 2: plt.plot(t_range, self.esti_LP_alpha[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # alpha parameter of the position complementary filter else: plt.plot(t_range, self.esti_LP_filt_x[:, int(i/4)], color=clr[int(i/4)], linewidth=3, marker='') # filtered output of the position complementary filter plt.legend([lgd_Y[i]], prop={'size': 8}) plt.suptitle("Evolution of the quantities of the position complementary filter") plt.show(block=True) from IPython import embed embed() def saveAll(self, loggerSensors, fileName="data"): date_str = datetime.now().strftime('_%Y_%m_%d_%H_%M') np.savez(fileName + date_str + ".npz", joy_v_ref=self.joy_v_ref, esti_feet_status=self.esti_feet_status, esti_feet_goals=self.esti_feet_goals, esti_q_filt=self.esti_q_filt, esti_v_filt=self.esti_v_filt, esti_v_secu=self.esti_v_secu, esti_FK_lin_vel=self.esti_FK_lin_vel, esti_FK_xyz=self.esti_FK_xyz, esti_xyz_mean_feet=self.esti_xyz_mean_feet, esti_filt_lin_vel=self.esti_filt_lin_vel, esti_HP_x=self.esti_HP_x, esti_HP_dx=self.esti_HP_dx, esti_HP_alpha=self.esti_HP_alpha, esti_HP_filt_x=self.esti_HP_filt_x, esti_LP_x=self.esti_LP_x, esti_LP_dx=self.esti_LP_dx, esti_LP_alpha=self.esti_LP_alpha, esti_LP_filt_x=self.esti_LP_filt_x, esti_kf_X=self.esti_kf_X, esti_kf_Z=self.esti_kf_Z, loop_o_q_int=self.loop_o_q_int, loop_o_v=self.loop_o_v, loop_h_v=self.loop_h_v, loop_pos_virtual_world=self.loop_pos_virtual_world, planner_q_static=self.planner_q_static, planner_RPY_static=self.planner_RPY_static, planner_xref=self.planner_xref, planner_fsteps=self.planner_fsteps, planner_gait=self.planner_gait, planner_goals=self.planner_goals, planner_vgoals=self.planner_vgoals, planner_agoals=self.planner_agoals, planner_is_static=self.planner_is_static, planner_h_ref=self.planner_h_ref, mpc_x_f=self.mpc_x_f, wbc_x_f=self.wbc_x_f, wbc_P=self.wbc_P, wbc_D=self.wbc_D, wbc_q_des=self.wbc_q_des, wbc_v_des=self.wbc_v_des, wbc_tau_ff=self.wbc_tau_ff, wbc_f_ctc=self.wbc_f_ctc, wbc_feet_pos=self.wbc_feet_pos, wbc_feet_pos_target=self.wbc_feet_pos_target, wbc_feet_err=self.wbc_feet_err, wbc_feet_vel=self.wbc_feet_vel, wbc_feet_vel_target=self.wbc_feet_vel_target, wbc_feet_acc_target=self.wbc_feet_acc_target, tstamps=self.tstamps, q_mes=loggerSensors.q_mes, v_mes=loggerSensors.v_mes, baseOrientation=loggerSensors.baseOrientation, baseAngularVelocity=loggerSensors.baseAngularVelocity, baseLinearAcceleration=loggerSensors.baseLinearAcceleration, baseAccelerometer=loggerSensors.baseAccelerometer, torquesFromCurrentMeasurment=loggerSensors.torquesFromCurrentMeasurment, mocapPosition=loggerSensors.mocapPosition, mocapVelocity=loggerSensors.mocapVelocity, mocapAngularVelocity=loggerSensors.mocapAngularVelocity, mocapOrientationMat9=loggerSensors.mocapOrientationMat9, mocapOrientationQuat=loggerSensors.mocapOrientationQuat, ) def loadAll(self, loggerSensors, fileName=None): if fileName is None: import glob fileName = np.sort(glob.glob('data_2021_*.npz'))[-1] # Most recent file data = np.load(fileName) # Load LoggerControl arrays self.joy_v_ref = data["joy_v_ref"] self.logSize = self.joy_v_ref.shape[0] self.esti_feet_status = data["esti_feet_status"] self.esti_feet_goals = data["esti_feet_goals"] self.esti_q_filt = data["esti_q_filt"] self.esti_v_filt = data["esti_v_filt"] self.esti_v_secu = data["esti_v_secu"] self.esti_FK_lin_vel = data["esti_FK_lin_vel"] self.esti_FK_xyz = data["esti_FK_xyz"] self.esti_xyz_mean_feet = data["esti_xyz_mean_feet"] self.esti_filt_lin_vel = data["esti_filt_lin_vel"] self.esti_HP_x = data["esti_HP_x"] self.esti_HP_dx = data["esti_HP_dx"] self.esti_HP_alpha = data["esti_HP_alpha"] self.esti_HP_filt_x = data["esti_HP_filt_x"] self.esti_LP_x = data["esti_LP_x"] self.esti_LP_dx = data["esti_LP_dx"] self.esti_LP_alpha = data["esti_LP_alpha"] self.esti_LP_filt_x = data["esti_LP_filt_x"] self.esti_kf_X = data["esti_kf_X"] self.esti_kf_Z = data["esti_kf_Z"] self.loop_o_q_int = data["loop_o_q_int"] self.loop_o_v = data["loop_o_v"] self.loop_h_v = data["loop_h_v"] self.loop_pos_virtual_world = data["loop_pos_virtual_world"] self.planner_q_static = data["planner_q_static"] self.planner_RPY_static = data["planner_RPY_static"] self.planner_xref = data["planner_xref"] self.planner_fsteps = data["planner_fsteps"] self.planner_gait = data["planner_gait"] self.planner_goals = data["planner_goals"] self.planner_vgoals = data["planner_vgoals"] self.planner_agoals = data["planner_agoals"] self.planner_is_static = data["planner_is_static"] self.planner_h_ref = data["planner_h_ref"] self.mpc_x_f = data["mpc_x_f"] self.wbc_x_f = data["wbc_x_f"] self.wbc_P = data["wbc_P"] self.wbc_D = data["wbc_D"] self.wbc_q_des = data["wbc_q_des"] self.wbc_v_des = data["wbc_v_des"] self.wbc_tau_ff = data["wbc_tau_ff"] self.wbc_f_ctc = data["wbc_f_ctc"] self.wbc_feet_pos = data["wbc_feet_pos"] self.wbc_feet_pos_target = data["wbc_feet_pos_target"] self.wbc_feet_err = data["wbc_feet_err"] self.wbc_feet_vel = data["wbc_feet_vel"] self.wbc_feet_vel_target = data["wbc_feet_vel_target"] self.wbc_feet_acc_target = data["wbc_feet_acc_target"] self.tstamps = data["tstamps"] # Load LoggerSensors arrays loggerSensors.q_mes = data["q_mes"] loggerSensors.v_mes = data["v_mes"] loggerSensors.baseOrientation = data["baseOrientation"] loggerSensors.baseAngularVelocity = data["baseAngularVelocity"] loggerSensors.baseLinearAcceleration = data["baseLinearAcceleration"] loggerSensors.baseAccelerometer = data["baseAccelerometer"] loggerSensors.torquesFromCurrentMeasurment = data["torquesFromCurrentMeasurment"] loggerSensors.mocapPosition = data["mocapPosition"] loggerSensors.mocapVelocity = data["mocapVelocity"] loggerSensors.mocapAngularVelocity = data["mocapAngularVelocity"] loggerSensors.mocapOrientationMat9 = data["mocapOrientationMat9"] loggerSensors.mocapOrientationQuat = data["mocapOrientationQuat"] loggerSensors.logSize = loggerSensors.q_mes.shape[0] def slider_predicted_trajectory(self): from matplotlib import pyplot as plt from matplotlib.widgets import Slider, Button # The parametrized function to be plotted def f(t, time): return np.sin(2 * np.pi * t) + time index6 = [1, 3, 5, 2, 4, 6] log_t_pred = np.array([(k+1)*self.dt*10 for k in range(self.mpc_x_f.shape[2])]) log_t_ref = np.array([k*self.dt*10 for k in range(self.planner_xref.shape[2])]) trange = np.max([np.max(log_t_pred), np.max(log_t_ref)]) h1s = [] h2s = [] axs = [] h1s_vel = [] h2s_vel = [] axs_vel = [] # Define initial parameters init_time = 0.0 # Create the figure and the line that we will manipulate fig = plt.figure() ax = plt.gca() for j in range(6): ax = plt.subplot(3, 2, index6[j]) h1, = plt.plot(log_t_pred, self.mpc_x_f[0, j, :], "b", linewidth=2) h2, = plt.plot(log_t_ref, self.planner_xref[0, j, :], linestyle="--", marker='x', color="g", linewidth=2) h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]), self.planner_xref[:, j, 0], linestyle=None, marker='x', color="r", linewidth=1) axs.append(ax) h1s.append(h1) h2s.append(h2) #ax.set_xlabel('Time [s]') axcolor = 'lightgoldenrodyellow' #ax.margins(x=0) # Make a horizontal slider to control the time. axtime = plt.axes([0.25, 0.03, 0.65, 0.03], facecolor=axcolor) time_slider = Slider( ax=axtime, label='Time [s]', valmin=0.0, valmax=self.logSize*self.dt, valinit=init_time, ) # Create the figure and the line that we will manipulate (for velocities) fig_vel = plt.figure() ax = plt.gca() for j in range(6): ax = plt.subplot(3, 2, index6[j]) h1, = plt.plot(log_t_pred, self.mpc_x_f[0, j, :], "b", linewidth=2) h2, = plt.plot(log_t_ref, self.planner_xref[0, j, :], linestyle="--", marker='x', color="g", linewidth=2) h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]), self.planner_xref[:, j+6, 0], linestyle=None, marker='x', color="r", linewidth=1) axs_vel.append(ax) h1s_vel.append(h1) h2s_vel.append(h2) #axcolor = 'lightgoldenrodyellow' #ax.margins(x=0) # Make a horizontal slider to control the time. axtime_vel = plt.axes([0.25, 0.03, 0.65, 0.03], facecolor=axcolor) time_slider_vel = Slider( ax=axtime_vel, label='Time [s]', valmin=0.0, valmax=self.logSize*self.dt, valinit=init_time, ) # The function to be called anytime a slider's value changes def update(val, recursive=False): time_slider.val = np.round(val / (self.dt*10), decimals=0) * (self.dt*10) rounded = int(np.round(time_slider.val / self.dt, decimals=0)) for j in range(6): h1s[j].set_xdata(log_t_pred + time_slider.val) h2s[j].set_xdata(log_t_ref + time_slider.val) y1 = self.mpc_x_f[rounded, j, :] - self.planner_xref[rounded, j, 1:] y2 = self.planner_xref[rounded, j, :] - self.planner_xref[rounded, j, :] h1s[j].set_ydata(y1) h2s[j].set_ydata(y2) axs[j].set_xlim([time_slider.val - self.dt * 3, time_slider.val+trange+self.dt * 3]) ymin = np.min([np.min(y1), np.min(y2)]) ymax = np.max([np.max(y1), np.max(y2)]) axs[j].set_ylim([ymin - 0.05 * (ymax - ymin), ymax + 0.05 * (ymax - ymin)]) fig.canvas.draw_idle() if not recursive: update_vel(time_slider.val, True) def update_vel(val, recursive=False): time_slider_vel.val = np.round(val / (self.dt*10), decimals=0) * (self.dt*10) rounded = int(np.round(time_slider_vel.val / self.dt, decimals=0)) for j in range(6): h1s_vel[j].set_xdata(log_t_pred + time_slider.val) h2s_vel[j].set_xdata(log_t_ref + time_slider.val) y1 = self.mpc_x_f[rounded, j+6, :] y2 = self.planner_xref[rounded, j+6, :] h1s_vel[j].set_ydata(y1) h2s_vel[j].set_ydata(y2) axs_vel[j].set_xlim([time_slider.val - self.dt * 3, time_slider.val+trange+self.dt * 3]) ymin = np.min([np.min(y1), np.min(y2)]) ymax = np.max([np.max(y1),
np.max(y2)
numpy.max
""" Code by <NAME> Reference for the dataset: https://www.aitex.es/afid/ AFID: a public fabric image database for defect detection. <NAME>, <NAME>, <NAME>, <NAME>, <NAME> AUTEX Research Journal, No. 4, 2019 Note: Mask_images/0044_019_04_mask1.png and 0044_019_04_mask2.png ... have been merged into 0044_019_04_mask.png Mask_images/0097_030_03_mask1.png and 0097_030_03_mask2.png ... have been merged into 0097_030_03_mask.png Mask_images/0100_025_08_mask.png was created manually since it was missing in the original dataset """ import logging import argparse import os import cv2 import numpy as np import sys import PCA.ImagePCAModel parser = argparse.ArgumentParser() parser.add_argument('--imageFilepath', help="The filepath of the test image. Default: './data/Defect_images/0001_002_00.png'", default='./data/Defect_images/0001_002_00.png') parser.add_argument('--outputDirectory', help="The output directory. Default: './outputs/'", default='./outputs/') args = parser.parse_args() file_handler = logging.FileHandler(filename=os.path.join(args.outputDirectory, 'texture_analysis.log')) stdout_handler = logging.StreamHandler(sys.stdout) handlers = [file_handler, stdout_handler] logging.basicConfig( level=logging.DEBUG, format='[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s', handlers=handlers ) def main(): logging.info("create_semseg_population.py main()") # Create the output directory if not os.path.exists(args.outputDirectory): os.makedirs(args.outputDirectory) # Load the test image testImg = cv2.imread(args.imageFilepath, cv2.IMREAD_GRAYSCALE) image_shapeHWC = testImg.shape blurredImg = cv2.medianBlur(testImg, 3) # Mask the saturated area at the left of the image, plus an additional band _, saturation_mask = cv2.threshold(testImg, 254, 255, cv2.THRESH_BINARY) saturation_mask = cv2.dilate(saturation_mask, kernel=np.ones((21, 21), dtype=np.uint8)) no_saturation_img = cv2.min(testImg, (255 - saturation_mask)) no_saturation_blurred_img = cv2.min(blurredImg, (255 - saturation_mask)) # Apply Sobel filter in the x and y directions sobel_x_img = cv2.Sobel(no_saturation_blurred_img, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=3) sobel_x_img = (127 + sobel_x_img).astype(np.uint8) sobel_y_img = cv2.Sobel(no_saturation_blurred_img, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=3) sobel_y_img = (127 + sobel_y_img).astype(np.uint8) sobel_xy_img = cv2.Sobel(no_saturation_blurred_img, ddepth=cv2.CV_32F, dx=1, dy=1, ksize=3) sobel_xy_img = (127 + sobel_xy_img).astype(np.uint8) sobel_x2_img = cv2.Sobel(no_saturation_blurred_img, ddepth=cv2.CV_32F, dx=2, dy=0, ksize=3) sobel_x2_img = (127 + sobel_x2_img).astype(np.uint8) sobel_y2_img = cv2.Sobel(no_saturation_blurred_img, ddepth=cv2.CV_32F, dx=0, dy=2, ksize=3) sobel_y2_img = (127 + sobel_y2_img).astype(np.uint8) # Select surface samples number_of_surface_samples = 300 sample_surface_sizeHW = (5, 5) surface_sample_rect_list = [] surface_samples_img = cv2.cvtColor(testImg, cv2.COLOR_GRAY2BGR) while len(surface_sample_rect_list) < number_of_surface_samples: center = (
np.random.randint(sample_surface_sizeHW[0]//2, image_shapeHWC[1] - 1 - sample_surface_sizeHW[0]//2)
numpy.random.randint
import numpy as np from quanser.hardware import HIL, HILError, PWMMode saturate = lambda x, x_max, x_min: min(x_max, max(x_min, x)) class QCar(): #region: Buffers # Throttle Write Only - PWM channel 0 is mtr cmd write_pwm_channel_throttle = np.array([0], dtype=np.int32) write_pwm_buffer_throttle = np.array([0], dtype=np.float64) # Steering Write Only - Other channel 1000 is steering cmd write_other_channel_steering = np.array([1000], dtype=np.int32) write_other_buffer_steering = np.array([0], dtype=np.float64) # LEDs Write Only - Other channel 11000:11003 + 11008:11011 are LEDs write_other_channels_LEDs = np.array([11008, 11009, 11010, 11011, 11000, 11001, 11002, 11003], dtype=np.int32) write_other_buffer_LEDs = np.zeros(8, dtype=np.float64) # User LEDs Write Only - Other channel 11004:11007 are User LEDs write_other_channels_usr_LEDs = np.array([11004, 11005, 11006, 11007], dtype=np.int32) write_other_buffer_usr_LEDs = np.zeros(4, dtype=np.float64) # Steering and LEDs Write - Other channel 1000 is steering cmd and 11000:11003 + 11008:11011 are LEDs write_other_channels_str_LEDs = np.array([1000, 11008, 11009, 11010, 11011, 11000, 11001, 11002, 11003], dtype=np.int32) write_other_buffer_str_LEDs = np.append(np.array([0], dtype=np.float64), np.zeros(8, dtype=np.float64)) # Initialize return arrays mtr_current, bat_voltage = np.zeros(2, dtype=np.float64) mtr_encoder = np.zeros(1, dtype=np.int32) accelerometer = np.zeros(3, dtype=np.float64) gyroscope = np.zeros(3, dtype=np.float64) # Battery Read Only - Analog channel 6 is battery voltage read_analog_channels_battery = np.array([6], dtype=np.int32) read_analog_buffer_battery = np.zeros(1, dtype=np.float64) # Encoder Read Only - Encoder channel 0 is throttle motor encoder read_encoder_channels_throttle = np.array([0], dtype=np.int32) read_encoder_buffer_throttle = np.zeros(1, dtype=np.int32) # Gyroscope Read Only - Other channels 3000:3002 are for gyroscope read_other_channels_gyroscope = np.array([3000, 3001, 3002], dtype=np.int32) read_other_buffer_gyroscope = np.zeros(3, dtype=np.float64) # Accelerometer Read Only - Other channels 4000:4002 are for accelerometer read_other_channels_accelerometer = np.array([4000, 4001, 4002], dtype=np.int32) read_other_buffer_accelerometer = np.zeros(3, dtype=np.float64) # IMU Read - Other channels 3000:3002 + 4000:4002 are for IMU read_other_channels_IMU = np.array([3000, 3001, 3002, 4000, 4001, 4002], dtype=np.int32) read_other_buffer_IMU = np.zeros(6, dtype=np.float64) # Power Read - Analog channels 5, 6 are motor current and battery voltage read_analog_channels_power = np.array([5, 6], dtype=np.int32) read_analog_buffer_power = np.zeros(2, dtype=np.float64) #endregion def __init__(self): ''' This function configures the QCar and returns a handle to the QCar card. Use the handle for other methods such as qcar_io or terminate_qcar.''' self.card = HIL() try: # Open the Card self.card.open("qcar", "0") if self.card.is_valid(): # Set PWM mode (duty cycle) and frequency self.card.set_pwm_mode(
np.array([0], dtype=np.uint32)
numpy.array
""" Version 1.01 Encodes fitting and interpolating using Gaussian processes following Rasmussen and Williams (2006). The Gaussian process algorithms come from chapter 3 and the Jacobian of the negative log likelihood from chapter 5 of Rasmussen and Williams. Covariance functions can either be linear, squared exponential, neural network-like, or squared exponential with a linear trend. Bounds for hyperparameters are specified in log10 space. Hyperparameters are given in log space. A typical workflow is: g= gp.maternGP({0: (-4, 4), 1: (-4, 4), 2: (-4, -2)}, x, y) g.findhyperparameters() g.results() g.predict(x) plt.figure() g.sketch('.') plt.show() Prior functions can also be sampled. For example, g= gp.sqexplinGP({0: (-2,2), 1: (-2,2), 2: (-2,2), 3: (-2,2), 4: (-2,2)}, x, y) plot(x, g.sampleprior(3, th= [1.0, 0.1, 3.1, 1.3])) will plot three samples of the prior latent functions with hyperparameters 1.0, 0.1, 3.1, and 1.3. There is no need to specify the hyperparameter for measurement error: it is not used to generate prior functions. N.B. small (close to zero) values of the estimated measurement error can lead to instabilities in finding the hyperparameters. """ import numpy as np from scipy import linalg import matplotlib.pyplot as plt class gaussianprocess: def __init__(self, lthbounds, x, y, merrors= False): ''' Creates a Gaussian process. Arguments -- lthbounds: a dictionary of pairs of the bounds on the hyperparameters in log10 space, such as {0: [0,6], 1: [-3,4], 2: [-6,-4]} x: a 1-d array of the abscissa data y: a multi-dimensional array of the ordinate data merrors: if specified, a 1-d array of the measurement errors (as variances) v''' self.b= [lthbounds[a] for a in lthbounds.keys()] self.x, self.y, self.xnew= x, y, x self.merrors= merrors def covfn(self): raise NotImplementedError(' No covariance function specified in class %s' % self.__class__.__name__) def d1covfn(self): raise NotImplementedError(' No first derivative of the covariance function specified in class %s' % self.__class__.__name__) def d1d2covfn(self): raise NotImplementedError(' No second derivative of the covariance function specified in class %s' % self.__class__.__name__) def kernelmatrix(self, lth, x): """ Returns kernel matrix K(X,X) supplemented with measurement noise and its Cholesky decomposition. Arguments -- lth: log of the hyperparameters x: abscissa values merrors: if specified, rescales the fitted measurement error """ k= np.empty((len(x), len(x))) for i in range(len(x)): k[i,:]= self.covfn(x[i], x, lth)[0] if np.any(self.merrors): kn= k + np.exp(lth[-1])*np.diag(self.merrors) else: kn= k + np.exp(lth[-1])*np.identity(len(x)) L= linalg.cho_factor(kn) return k, L def nlml(self, lth): """ Returns negative of log marginal likelihood. Arguments -- lth: log of the hyperparameters """ x, y= self.x, self.y k, L= self.kernelmatrix(lth, x) al= linalg.cho_solve(L, y) halfdetK= np.sum(np.log(np.diagonal(L[0]))) return 0.5*np.dot(y, al) + halfdetK + 0.5*len(y)*np.log(2*np.pi) def jacnlml(self, lth): """ Returns the Jacobian of negative log marginal likelihood with respect to the hyperparameters with deriviatives being taken assuming the hyperparmaters are in log space. Arguments -- lth: log of the hyperparameters """ x, y= self.x, self.y k, L= self.kernelmatrix(lth, x) # find derivatives of kernel matrix wrt hyperparameters kjac= np.empty((len(x), len(x), len(lth))) for i in range(len(x)): kjac[i, :, :-1]= self.covfn(x[i], x, lth)[1] if np.any(self.merrors): kjac[:, :, -1]= np.diag(self.merrors)*np.exp(lth[-1]) else: kjac[:, :, -1]= np.identity(len(x))*np.exp(lth[-1]) # calculate jacobian al= linalg.cho_solve(L, y) alal= np.outer(al, al) Kinv= linalg.cho_solve(L, np.identity(len(x))) return np.asarray([-0.5*np.trace(np.dot(alal - Kinv, kjac[:,:,i])) for i in range(len(lth))]) def findhyperparameters(self, noruns= 1, exitearly= False, stvals= False, optmethod= 'l_bfgs_b', optmessages= False, quiet= True, linalgmax= 3): """ Finds the best fit hyperparameters (.lth_opt) and the optimum value of negative log marginal likelihood (.nlml_opt). Arguments -- noruns: number of attempts to find optimum hyperparameters (the best of all the runs is chosen) exitearly: if True, fitting stops at the first successful attempt stvals: an (optional) initial guess for the log hyperparameters optmethod: the optimization routine to be used, either 'l_bfgs_b' (default) or 'tnc' optmessages: if True, display messages from the optimization routine quiet: if True, print warning that if an optimum hyperparameter is at a bound linalgmax: number of attempts (default is 3) if a linear algebra (numerical) error is generated """ b= self.b self.hparamerr= [] lmlml= np.empty(noruns) lthf= np.empty((noruns, len(b))) success= np.empty(noruns) # convert b into exponential base b= np.array(b)*np.log(10) # run optimization for i in range(noruns): linalgerror= 0 while linalgerror < linalgmax: try: if np.any(stvals): # initial values given for hyperparameters lth= stvals else: # choose random initial values for hyperparameters lth= [np.random.uniform(b[j][0], b[j][1]) for j in range(len(b))] # run Gaussian process if optmethod == 'tnc': from scipy.optimize import fmin_tnc lthf[i,:], nf, success[i]= fmin_tnc(self.nlml, lth, fprime= self.jacnlml, bounds= b, maxfun= 1000, messages= optmessages) linalgerror= linalgmax lmlml[i]= self.nlml(lthf[i,:]) elif optmethod == 'l_bfgs_b': from scipy.optimize import fmin_l_bfgs_b lthf[i,:], lmlml[i], dout= fmin_l_bfgs_b(self.nlml, lth, fprime= self.jacnlml, bounds= b, disp= optmessages) linalgerror= linalgmax success[i]= dout['warnflag'] + 1 else: print(optmethod + ' unrecognized.') except np.linalg.LinAlgError: print(' Warning: linear algebra error - trying a different initial condition') linalgerror += 1 if success[i] != 1 or np.any(np.isnan(lthf)): print(' Warning: optimization failed at run ' + str(i+1)) else: if exitearly: break # only process runs that did not converge if np.any(success == 1): lmlml= lmlml[success == 1] lthf= lthf[success == 1] # find best choice lthb= lthf[lmlml.argmin()] self.nlml_opt= lmlml.min() # print warning for i in range(len(b)): if (lthb[i] == b[i][1] or lthb[i] == b[i][0]): if not quiet: print( ' Warning: hparam[' + str(i) + '] is at a boundary') print('\thparam[' + str(i) + ']= {:e}'.format(np.exp(lthb[i])) + ' [{:e}'.format(np.exp(b[i][0])) + ', {:e}]'.format(np.exp(b[i][1]))) if lthb[i] == b[i][1]: self.hparamerr.append([i, 'u']) else: self.hparamerr.append([i, 'l']) self.lth_opt= lthb else: raise gaussianprocessException('Optimization of hyperparameters failed') def results(self, warning= True): ''' Displays results from optimizing hyperparameters. Arguments -- warning: if True, warn when a hyperparameter hits a boundary ''' print('log(max likelihood)= %e' % (-self.nlml_opt)) for j, pv in enumerate(np.exp(self.lth_opt)): print('hparam[' + str(j) + ']= {:e}'.format(pv) + ' [{:e}'.format(10**(self.b[j][0])) + ', {:e}]'.format(10**(self.b[j][1]))) if warning: for el in self.hparamerr: if el[1] == 'l': print('Warning: hyperparameter ' + str(el[0]) + ' is at a lower bound') else: print('Warning: hyperparameter ' + str(el[0]) + ' is at an upper bound') def sample(self, size= 1): ''' Generate samples from the Gaussian process as an array. Arguments -- size: number of samples ''' try: return np.transpose(np.random.multivariate_normal(self.mnp, self.covp, size)) except AttributeError: print( ' Run gp.predict() first before sampling.') def sampleprior(self, size= 1, lth= False): ''' Generate samples from the prior of the Gaussian process as an array. Arguments -- size: number of samples lth: log hyperparameters to use (if not specified, the hyperparameters are chosen at random) ''' x, y, b= self.x, self.y, self.b if np.any(lth): # hyperparameters are given (measurement error is not necessary) if len(lth) == self.noparams: lth= np.concatenate((lth, [1.0])) else: # sample random hyperparameters lth= np.log(np.power(10, [np.random.uniform(b[i][0], b[i][1]) for i in range(len(b))])) cov= self.kernelmatrix(lth, x)[0] return np.transpose(np.random.multivariate_normal(np.zeros(len(x)), cov, size)) def predict(self, xnew, merrorsnew= False, derivs= 0, addnoise= False): """ Determines the predicted mean latent function (.f) and its variance (.fvar) and potentially the predicted mean first derivative (.df) and its variance (.dfvar) and the predicted mean second derivative (.ddf) and its variance (.ddfvar) . Also .mnp is the predicted combined array of the mean latent function and its mean derivatives and .covp is the corresponding covariance matrix. Arguments -- xnew: abscissa values for which predicted ordinate values are desired merrorsnew: if specified, the expected measurements errors at xnew (need not be specified if xnew= x) derivs: if 0, only the latent function is inferred; if 1, the latent function and the first derivative are inferred; if 2, the latent function and the first and second derivatives are inferred addnoise: if True, add measuremnet noise to the predicted variance """ if len(self.x) == len(xnew) and (self.x == xnew).all(): xold= True else: xold= False if np.any(self.merrors) and not np.any(merrorsnew) and not xold: print('Length of xnew is different from x.') raise gaussianprocessException('Measurement errors were used to find the hyperparameters and measurement errors are therefore required for any predictions.') elif not hasattr(self, 'lth_opt'): raise gaussianprocessException(' Run gp.findhyperparameters() first before making predictions.') else: # set up self.xnew= xnew lth, x, y= self.lth_opt, self.x, self.y # work with an array of length 3*N: the first N values being the function, # the second N values being the first derivative, and the last N values being the second derivative Knewold= np.empty((len(xnew), len(x))) Knewnew= np.empty((len(xnew), len(xnew))) if derivs > 0: d1Knewold= np.empty((len(xnew), len(x))) d1Knewnew= np.empty((len(xnew), len(xnew))) d1d2Knewnew= np.empty((len(xnew), len(xnew))) if derivs > 1: d12Knewold= np.empty((len(xnew), len(x))) d12Knewnew= np.empty((len(xnew), len(xnew))) d12d2Knewnew= np.empty((len(xnew), len(xnew))) d12d22Knewnew= np.empty((len(xnew), len(xnew))) for i in range(len(xnew)): Knewold[i,:]= self.covfn(xnew[i], x, lth)[0] Knewnew[i,:]= self.covfn(xnew[i], xnew, lth)[0] if derivs > 0: d1Knewold[i,:]= self.d1covfn(xnew[i], x, lth)[0] d1Knewnew[i,:]= self.d1covfn(xnew[i], xnew, lth)[0] d1d2Knewnew[i,:]= self.d1d2covfn(xnew[i], xnew, lth)[0] if derivs > 1: d12Knewold[i,:]= self.d12covfn(xnew[i], x, lth)[0] d12Knewnew[i,:]= self.d12covfn(xnew[i], xnew, lth)[0] d12d2Knewnew[i,:]= self.d12d2covfn(xnew[i], xnew, lth)[0] d12d22Knewnew[i,:]= self.d12d22covfn(xnew[i], xnew, lth)[0] if derivs == 0: kv= Knewold km= Knewnew elif derivs == 1: kv= np.bmat([[Knewold], [d1Knewold]]) km= np.bmat([[Knewnew, np.transpose(d1Knewnew)], [d1Knewnew, d1d2Knewnew]]) elif derivs == 2: kv= np.bmat([[Knewold], [d1Knewold], [d12Knewold]]) km= np.bmat([[Knewnew, np.transpose(d1Knewnew), np.transpose(d12Knewnew)], [d1Knewnew, d1d2Knewnew, np.transpose(d12d2Knewnew)], [d12Knewnew, d12d2Knewnew, d12d22Knewnew]]) # find mean prediction k, L= self.kernelmatrix(lth, x) m= np.dot(kv, linalg.cho_solve(L, y)) mnp= np.reshape(np.array(m), np.size(m)) self.mnp= mnp # find variance of prediction covp= km - np.dot(kv, linalg.cho_solve(L, np.transpose(kv))) self.covp= covp varp= np.diag(covp) # for user self.f= mnp[:len(xnew)] self.fvar= varp[:len(xnew)] fvar= varp[:len(xnew)] if addnoise: # add measurement error to the variance of the latent function if
np.any(self.merrors)
numpy.any
"""TNQMetro: Tensor-network based package for efficient quantum metrology computations.""" # Table of Contents # # 1 Functions for finite size systems......................................29 # 1.1 High level functions...............................................37 # 1.2 Low level functions...............................................257 # 1.2.1 Problems with exact derivative.............................1207 # 1.2.2 Problems with discrete approximation of the derivative.....2411 # 2 Functions for infinite size systems..................................3808 # 2.1 High level functions.............................................3816 # 2.2 Low level functions..............................................4075 # 3 Auxiliary functions..................................................5048 import itertools import math import warnings import numpy as np from ncon import ncon ######################################## # # # # # 1 Functions for finite size systems. # # # # # ######################################## ############################# # # # 1.1 High level functions. # # # ############################# def fin(N, so_before_list, h, so_after_list, BC='O', L_ini=None, psi0_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True, D_psi0_max=100, D_psi0_max_forced=False): """ Optimization of the QFI over operator L (in MPO representation) and wave function psi0 (in MPS representation) and check of convergence in their bond dimensions. Function for finite size systems. User has to provide information about the dynamics by specifying the quantum channel. It is assumed that the quantum channel is translationally invariant and is built from layers of quantum operations. User has to provide one defining operation for each layer as a local superoperator. These local superoperators have to be input in order of their action on the system. Parameter encoding is a stand out quantum operation. It is assumed that the parameter encoding acts only once and is unitary so the user has to provide only its generator h. Generator h has to be diagonal in computational basis, or in other words, it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites a particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Dimension d is the dimension of local Hilbert space (dimension of physical index). Generator h has to be diagonal in the computational basis, or in other words, it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. BC: 'O' or 'P', optional Boundary conditions, 'O' for OBC, 'P' for PBC. L_ini: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. psi0_ini: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC, optional Initial MPS for psi0. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge has to be imposed on MPO representing L, otherwise False. D_psi0_max: integer, optional Maximal value of D_psi0 (D_psi0 is bond dimension for MPS representing psi0). D_psi0_max_forced: bool, optional True if D_psi0_max has to be reached, otherwise False. Returns: result: float Optimal value of figure of merit. result_m: ndarray Matrix describing the figure of merit as a function of bond dimensions of respectively L [rows] and psi0 [columns]. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in MPO representation. psi0: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC Optimal psi0 in MPS representation. """ if np.linalg.norm(h - np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') d = np.shape(h)[0] ch = fin_create_channel(N, d, BC, so_before_list + so_after_list) ch2 = fin_create_channel_derivative(N, d, BC, so_before_list, h, so_after_list) result, result_m, L, psi0 = fin_gen(N, d, BC, ch, ch2, None, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) return result, result_m, L, psi0 def fin_gen(N, d, BC, ch, ch2, epsilon=None, L_ini=None, psi0_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True, D_psi0_max=100, D_psi0_max_forced=False): """ Optimization of the figure of merit (usually interpreted as the QFI) over operator L (in MPO representation) and wave function psi0 (in MPS representation) and check of convergence when increasing their bond dimensions. Function for finite size systems. User has to provide information about the dynamics by specifying a quantum channel ch and its derivative ch2 (or two channels separated by small parameter epsilon) as superoperators in MPO representation. There are no constraints on the structure of the channel but the complexity of calculations highly depends on the channel's bond dimension. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. ch: list of length N of ndarrays of a shape (Dl_ch,Dr_ch,d**2,d**2) for OBC (Dl_ch, Dr_ch can vary between sites) or ndarray of a shape (D_ch,D_ch,d**2,d**2,N) for PBC Quantum channel as a superoperator in MPO representation. ch2: list of length N of ndarrays of a shape (Dl_ch2,Dr_ch2,d**2,d**2) for OBC (Dl_ch2, Dr_ch2 can vary between sites) or ndarray of a shape (D_ch2,D_ch2,d**2,d**2,N) for PBC Interpretiaon depends on whether epsilon is specifed (2) or not (1, default approach): 1) derivative of the quantum channel as a superoperator in the MPO representation, 2) the quantum channel as superoperator in the MPO representation for the value of estimated parameter shifted by epsilon in relation to ch. epsilon: float, optional If specified then interpeted as value of a separation between estimated parameters encoded in ch and ch2. L_ini: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. psi0_ini: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC, optional Initial MPS for psi0. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if the Hermitian gauge has to be imposed on MPO representing L, otherwise False. D_psi0_max: integer, optional Maximal value of D_psi0 (D_psi0 is bond dimension for MPS representing psi0). D_psi0_max_forced: bool, optional True if D_psi0_max has to be reached, otherwise False. Returns: result: float Optimal value of the figure of merit. result_m: ndarray Matrix describing the figure of merit as a function of bond dimensions of respectively L [rows] and psi0 [columns]. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in MPO representation. psi0: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC Optimal psi0 in MPS representation. """ if epsilon is None: result, result_m, L, psi0 = fin_FoM_FoMD_optbd(N, d, BC, ch, ch2, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) else: result, result_m, L, psi0 = fin2_FoM_FoMD_optbd(N, d, BC, ch, ch2, epsilon, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) return result, result_m, L, psi0 def fin_state(N, so_before_list, h, so_after_list, rho0, BC='O', L_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True): """ Optimization of the QFI over operator L (in MPO representation) and check of convergence when increasing its bond dimension. Function for finite size systems and fixed state of the system. User has to provide information about the dynamics by specifying a quantum channel. It is assumed that the quantum channel is translationally invariant and is built from layers of quantum operations. User has to provide one defining operation for each layer as a local superoperator. Those local superoperator have to be input in order of their action on the system. Parameter encoding is a stand out quantum operation. It is assumed that parameter encoding acts only once and is unitary so the user has to provide only its generator h. Generator h has to be diagonal in the computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Dimension d is the dimension of local Hilbert space (dimension of physical index). Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. rho0: list of length N of ndarrays of a shape (Dl_rho0,Dr_rho0,d,d) for OBC (Dl_rho0, Dr_rho0 can vary between sites) or ndarray of a shape (D_rho0,D_rho0,d,d,N) for PBC Density matrix describing initial state of the system in MPO representation. BC: 'O' or 'P', optional Boundary conditions, 'O' for OBC, 'P' for PBC. L_ini: list of length N of ndarrays of shape (Dl_L,Dr_L,d,d) for OBC, (Dl_L, Dr_L can vary between sites) or ndarray of shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge has to be imposed on MPO representing L, otherwise False. Returns: result: float Optimal value of figure of merit. result_v: ndarray Vector describing figure of merit in function of bond dimensions of L. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in the MPO representation. """ if np.linalg.norm(h - np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') d = np.shape(h)[0] ch = fin_create_channel(N, d, BC, so_before_list + so_after_list) ch2 = fin_create_channel_derivative(N, d, BC, so_before_list, h, so_after_list) rho = channel_acting_on_operator(ch, rho0) rho2 = channel_acting_on_operator(ch2, rho0) result, result_v, L = fin_state_gen(N, d, BC, rho, rho2, None, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) return result, result_v, L def fin_state_gen(N, d, BC, rho, rho2, epsilon=None, L_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True): """ Optimization of the the figure of merit (usually interpreted as the QFI) over operator L (in MPO representation) and check of convergence when increasing its bond dimension. Function for finite size systems and fixed state of the system. User has to provide information about the dynamics by specifying a quantum channel ch and its derivative ch2 (or two channels separated by small parameter epsilon) as superoperators in the MPO representation. There are no constraints on the structure of the channel but the complexity of calculations highly depends on channel's bond dimension. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. rho: list of length N of ndarrays of a shape (Dl_rho,Dr_rho,d,d) for OBC (Dl_rho, Dr_rho can vary between sites) or ndarray of a shape (D_rho,D_rho,d,d,N) for PBC Density matrix at the output of the quantum channel in the MPO representation. rho2: list of length N of ndarrays of a shape (Dl_rho2,Dr_rho2,d,d) for OBC (Dl_rho2, Dr_rho2 can vary between sites) or ndarray of a shape (D_rho2,D_rho2,d,d,N) for PBC Interpretaion depends on whether epsilon is specifed (2) or not (1, default approach): 1) derivative of density matrix at the output of quantum channel in MPO representation, 2) density matrix at the output of quantum channel in MPO representation for the value of estimated parameter shifted by epsilon in relation to rho. epsilon: float, optional If specified then it is interpeted as the value of separation between estimated parameters encoded in rho and rho2. L_ini: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge has to be imposed on MPO representing L, otherwise False. Returns: result: float Optimal value of figure of merit. result_v: ndarray Vector describing figure of merit as a function of bond dimensions of L. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in MPO representation. """ if epsilon is None: result, result_v, L = fin_FoM_optbd(N, d, BC, rho, rho2, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) else: result, result_v, L = fin2_FoM_optbd(N, d, BC, rho, rho2, epsilon, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) return result, result_v, L ############################ # # # 1.2 Low level functions. # # # ############################ def fin_create_channel(N, d, BC, so_list, tol=10**-10): """ Creates MPO for a superoperator describing translationally invariant quantum channel from list of local superoperators. Function for finite size systems. For OBC, tensor-network length N has to be at least 2k-1, where k is the correlation length (number of sites on which acts the biggest local superoperator). Local superoperators acting on more then 4 neighbouring sites are not currently supported. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). For OBC tensor-network length N has to be at least 2k-1 where k is the correlation length (number of sites on which acts the biggest local superoperator). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. so_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites a particular local superoperator acts List of local superoperators in order of their action on the system. Local superoperators acting on more then 4 neighbour sites are not currently supported. tol: float, optional Factor which after multiplication by the highest singular value gives a cutoff on singular values that are treated as nonzero. Returns: ch: list of length N of ndarrays of shape (Dl_ch,Dr_ch,d**2,d**2) for OBC (Dl_ch, Dr_ch can vary between sites) or ndarray of shape (D_ch,D_ch,d**2,d**2,N) for PBC Quantum channel as a superoperator in the MPO representation. """ if so_list == []: if BC == 'O': ch = np.eye(d**2,dtype=complex) ch = ch[np.newaxis,np.newaxis,:,:] ch = [ch]*N elif BC == 'P': ch = np.eye(d**2,dtype=complex) ch = ch[np.newaxis,np.newaxis,:,:,np.newaxis] ch = np.tile(ch,(1,1,1,1,N)) return ch if BC == 'O': ch = [0]*N kmax = max([int(math.log(np.shape(so_list[i])[0],d**2)) for i in range(len(so_list))]) if N < 2*kmax-1: warnings.warn('For OBC tensor-network length N have to be at least 2k-1 where k is correlation length (number of sites on which acts the biggest local superoperator).') for x in range(N): if x >= kmax and N-x >= kmax: ch[x] = ch[x-1] continue for i in range(len(so_list)): so = so_list[i] k = int(math.log(np.shape(so)[0],d**2)) if np.linalg.norm(so-np.diag(np.diag(so))) < 10**-10: so = np.diag(so) if k == 1: bdchil = 1 bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = so[nx] elif k == 2: so = np.reshape(so,(d**2,d**2),order='F') u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh if x == 0: bdchil = 1 bdchir = bdchi chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us[nx,:]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x > 0 and x < N-1: bdchil = bdchi bdchir = bdchi chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv[:,nx],us[nx,:]] legs = [[-1],[-2]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-1: bdchil = bdchi bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv[:,nx]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif k == 3: so = np.reshape(so,(d**2,d**4),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**2),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 if x == 0: bdchil = 1 bdchir = bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us1[nx,:]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == 1: bdchil = bdchi1 bdchir = bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us2[:,nx,:],us1[nx,:]] legs = [[-1,-2],[-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x > 1 and x < N-2: bdchil = bdchi2*bdchi1 bdchir = bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-3],[-4]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-2: bdchil = bdchi2*bdchi1 bdchir = bdchi2 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx],us2[:,nx,:]] legs = [[-1],[-2,-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-1: bdchil = bdchi2 bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif k == 4: so = np.reshape(so,(d**2,d**6),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**2,d**2),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 if x == 0: bdchil = 1 bdchir = bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us1[nx,:]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == 1: bdchil = bdchi1 bdchir = bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us2[:,nx,:],us1[nx,:]] legs = [[-1,-2],[-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == 2: bdchil = bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us3[:,nx,:],us2[:,nx,:],us1[nx,:]] legs = [[-1,-3],[-2,-4],[-5]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x > 2 and x < N-3: bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-4],[-3,-5],[-6]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-3: bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:],us2[:,nx,:]] legs = [[-1],[-2,-4],[-3,-5]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-2: bdchil = bdchi3*bdchi2 bdchir = bdchi3 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:]] legs = [[-1],[-2,-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-1: bdchil = bdchi3 bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') else: if k == 1: bdchil = 1 bdchir = 1 chi = so[np.newaxis,np.newaxis,:,:] elif k == 2: u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh us = np.reshape(us,(d**2,d**2,bdchi),order='F') sv = np.reshape(sv,(bdchi,d**2,d**2),order='F') tensors = [sv,us] legs = [[-1,-3,1],[1,-4,-2]] chi = ncon(tensors,legs) if x == 0: tensors = [us] legs = [[-2,-3,-1]] chi = ncon(tensors,legs) bdchil = 1 bdchir = bdchi elif x > 0 and x < N-1: tensors = [sv,us] legs = [[-1,-3,1],[1,-4,-2]] chi = ncon(tensors,legs) bdchil = bdchi bdchir = bdchi elif x == N-1: tensors = [sv] legs = [[-1,-2,-3]] chi = ncon(tensors,legs) bdchil = bdchi bdchir = 1 chi = np.reshape(chi,(bdchil,bdchir,d**2,d**2),order='F') elif k == 3: so = np.reshape(so,(d**4,d**8),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2,d**2,d**2),order='F') if x == 0: tensors = [us1] legs = [[-2,-3,-1]] chi = ncon(tensors,legs) bdchil = 1 bdchir = bdchi1 elif x == 1: tensors = [us2,us1] legs = [[-1,-5,1,-2],[1,-6,-3]] chi = ncon(tensors,legs) bdchil = bdchi1 bdchir = bdchi2*bdchi1 elif x > 1 and x < N-2: tensors = [sv2,us2,us1] legs = [[-1,-5,1],[-2,1,2,-3],[2,-6,-4]] chi = ncon(tensors,legs) bdchil = bdchi2*bdchi1 bdchir = bdchi2*bdchi1 elif x == N-2: tensors = [sv2,us2] legs = [[-1,-4,1],[-2,1,-5,-3]] chi = ncon(tensors,legs) bdchil = bdchi2*bdchi1 bdchir = bdchi2 elif x == N-1: tensors = [sv2] legs = [[-1,-2,-3]] chi = ncon(tensors,legs) bdchil = bdchi2 bdchir = 1 chi = np.reshape(chi,(bdchil,bdchir,d**2,d**2),order='F') elif k == 4: so = np.reshape(so,(d**4,d**12),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**8),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**4,d**4),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 sv3 = np.reshape(sv3,(bdchi3,d**2,d**2),order='F') if x == 0: tensors = [us1] legs = [[-2,-3,-1]] chi = ncon(tensors,legs) bdchil = 1 bdchir = bdchi1 elif x == 1: tensors = [us2,us1] legs = [[-1,-4,1,-2],[1,-5,-3]] chi = ncon(tensors,legs) bdchil = bdchi1 bdchir = bdchi2*bdchi1 elif x == 2: tensors = [us3,us2,us1] legs = [[-1,-6,1,-3],[-2,1,2,-4],[2,-7,-5]] chi = ncon(tensors,legs) bdchil = bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 elif x > 2 and x < N-3: tensors = [sv3,us3,us2,us1] legs = [[-1,-7,1],[-2,1,2,-4],[-3,2,3,-5],[3,-8,-6]] chi = ncon(tensors,legs) bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 elif x == N-3: tensors = [sv3,us3,us2] legs = [[-1,-6,1],[-2,1,2,-4],[-3,2,-7,-5]] chi = ncon(tensors,legs) bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2 elif x == N-2: tensors = [sv3,us3] legs = [[-1,-4,1],[-2,1,-5,-3]] chi = ncon(tensors,legs) bdchil = bdchi3*bdchi2 bdchir = bdchi3 elif x == N-1: tensors = [sv3] legs = [[-1,-2,-3]] chi = ncon(tensors,legs) bdchil = bdchi3 bdchir = 1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') if i == 0: bdchl = bdchil bdchr = bdchir ch[x] = chi else: bdchl = bdchil*bdchl bdchr = bdchir*bdchr tensors = [chi,ch[x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] ch[x] = ncon(tensors,legs) ch[x] = np.reshape(ch[x],(bdchl,bdchr,d**2,d**2),order='F') elif BC == 'P': for i in range(len(so_list)): so = so_list[i] k = int(math.log(np.shape(so)[0],d**2)) if np.linalg.norm(so-np.diag(np.diag(so))) < 10**-10: so = np.diag(so) if k == 1: bdchi = 1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = so[nx] elif k == 2: so = np.reshape(so,(d**2,d**2),order='F') u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = np.outer(sv[:,nx],us[nx,:]) elif k == 3: so = np.reshape(so,(d**2,d**4),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**2),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 bdchi = bdchi2*bdchi1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-3],[-4]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchi,bdchi),order='F') elif k == 4: so = np.reshape(so,(d**2,d**6),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**2,d**2),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 bdchi = bdchi3*bdchi2*bdchi1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-4],[-3,-5],[-6]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchi,bdchi),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') else: if k == 1: bdchi = 1 chi = so[np.newaxis,np.newaxis,:,:] elif k == 2: u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh us = np.reshape(us,(d**2,d**2,bdchi),order='F') sv = np.reshape(sv,(bdchi,d**2,d**2),order='F') tensors = [sv,us] legs = [[-1,-3,1],[1,-4,-2]] chi = ncon(tensors,legs) elif k == 3: so = np.reshape(so,(d**4,d**8),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2,d**2,d**2),order='F') tensors = [sv2,us2,us1] legs = [[-1,-5,1],[-2,1,2,-3],[2,-6,-4]] chi = ncon(tensors,legs) bdchi = bdchi2*bdchi1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') elif k == 4: so = np.reshape(so,(d**4,d**12),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**8),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**4,d**4),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 sv3 = np.reshape(sv3,(bdchi3,d**2,d**2),order='F') tensors = [sv3,us3,us2,us1] legs = [[-1,-7,1],[-2,1,2,-4],[-3,2,3,-5],[3,-8,-6]] chi = ncon(tensors,legs) bdchi = bdchi3*bdchi2*bdchi1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') if i == 0: bdch = bdchi ch = chi else: bdch = bdchi*bdch tensors = [chi,ch] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] ch = ncon(tensors,legs) ch = np.reshape(ch,(bdch,bdch,d**2,d**2),order='F') ch = ch[:,:,:,:,np.newaxis] ch = np.tile(ch,(1,1,1,1,N)) return ch def fin_create_channel_derivative(N, d, BC, so_before_list, h, so_after_list): """ Creates a MPO for the derivative (over estimated parameter) of the superoperator describing the quantum channel. Function for finite size systems. Function for translationally invariant channels with unitary parameter encoding generated by h. Generator h has to be diagonal in the computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. Returns: chd: list of length N of ndarrays of a shape (Dl_chd,Dr_chd,d**2,d**2) for OBC (Dl_chd, Dr_chd can vary between sites) or ndarray of a shape (D_chd,D_chd,d**2,d**2,N) for PBC Derivative of superoperator describing quantum channel in MPO representation. """ if np.linalg.norm(h-np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') if len(so_before_list) == 0: if BC == 'O': ch1 = np.eye(d**2,dtype=complex) ch1 = ch1[np.newaxis,np.newaxis,:,:] ch1 = [ch1]*N elif BC == 'P': ch1 = np.eye(d**2,dtype=complex) ch1 = ch1[np.newaxis,np.newaxis,:,:,np.newaxis] ch1 = np.tile(ch1,(1,1,1,1,N)) ch1d = fin_commutator(N,d,BC,ch1,h,1j) ch2 = fin_create_channel(N,d,BC,so_after_list) if BC == 'O': chd = [0]*N for x in range(N): bdch1dl = np.shape(ch1d[x])[0] bdch1dr = np.shape(ch1d[x])[1] bdch2l = np.shape(ch2[x])[0] bdch2r = np.shape(ch2[x])[1] tensors = [ch2[x],ch1d[x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[x] = np.reshape(ncon(tensors,legs),(bdch1dl*bdch2l,bdch1dr*bdch2r,d**2,d**2),order='F') elif BC == 'P': bdch1d = np.shape(ch1d)[0] bdch2 = np.shape(ch2)[0] chd = np.zeros((bdch1d*bdch2,bdch1d*bdch2,d**2,d**2,N),dtype=complex) for x in range(N): tensors = [ch2[:,:,:,:,x],ch1d[:,:,:,:,x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[:,:,:,:,x] = np.reshape(ncon(tensors,legs),(bdch1d*bdch2,bdch1d*bdch2,d**2,d**2),order='F') elif len(so_after_list) == 0: ch1 = fin_create_channel(N,d,BC,so_before_list) chd = fin_commutator(N,d,BC,ch1,h,1j) else: ch1 = fin_create_channel(N,d,BC,so_before_list) ch1d = fin_commutator(N,d,BC,ch1,h,1j) ch2 = fin_create_channel(N,d,BC,so_after_list) if BC == 'O': chd = [0]*N for x in range(N): bdch1dl = np.shape(ch1d[x])[0] bdch1dr = np.shape(ch1d[x])[1] bdch2l = np.shape(ch2[x])[0] bdch2r = np.shape(ch2[x])[1] tensors = [ch2[x],ch1d[x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[x] = np.reshape(ncon(tensors,legs),(bdch1dl*bdch2l,bdch1dr*bdch2r,d**2,d**2),order='F') elif BC == 'P': bdch1d = np.shape(ch1d)[0] bdch2 = np.shape(ch2)[0] chd = np.zeros((bdch1d*bdch2,bdch1d*bdch2,d**2,d**2,N),dtype=complex) for x in range(N): tensors = [ch2[:,:,:,:,x],ch1d[:,:,:,:,x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[:,:,:,:,x] = np.reshape(ncon(tensors,legs),(bdch1d*bdch2,bdch1d*bdch2,d**2,d**2),order='F') return chd def fin_commutator(N, d, BC, a, h, c): """ Calculate MPO for commutator b = [a, c*sum{h}] of MPO a with sum of local generators h and with arbitrary multiplicative scalar factor c. Generator h have to be diagonal in computational basis, or in other words it is assumed that a is expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. a: list of length N of ndarrays of a shape (Dl_a,Dr_a,d,d) for OBC (Dl_a, Dr_a can vary between sites) or ndarray of a shape (D_a,D_a,d,d,N) for PBC MPO. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Generator h have to be diagonal in computational basis, or in other words it is assumed that a is expressed in the eigenbasis of h. c: complex Scalar factor which multiplies sum of local generators. Returns: b: list of length N of ndarrays of a shape (Dl_b,Dr_b,d,d) for OBC (Dl_b, Dr_b can vary between sites) or ndarray of a shape (D_b,D_b,d,d,N) for PBC Commutator [a, c*sum{h}] in MPO representation. """ if np.linalg.norm(h-np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that a is expressed in the eigenbasis of h.') if BC == 'O': bh = [0]*N b = [0]*N for x in range(N): da = np.shape(a[x])[2] bda1 = np.shape(a[x])[0] bda2 = np.shape(a[x])[1] if x == 0: bdbh1 = 1 bdbh2 = 2 bh[x] = np.zeros((bdbh1,bdbh2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): bh[x][:,:,nx,nxp] = np.array([[c*(h[nxp,nxp]-h[nx,nx]),1]]) elif x > 0 and x < N-1: bdbh1 = 2 bdbh2 = 2 bh[x] = np.zeros((bdbh1,bdbh2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): bh[x][:,:,nx,nxp] = np.array([[1,0],[c*(h[nxp,nxp]-h[nx,nx]),1]]) elif x == N-1: bdbh1 = 2 bdbh2 = 1 bh[x] = np.zeros((bdbh1,bdbh2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): bh[x][:,:,nx,nxp] = np.array([[1],[c*(h[nxp,nxp]-h[nx,nx])]]) if da == d: # a is operator b[x] = np.zeros((bdbh1*bda1,bdbh2*bda2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): b[x][:,:,nx,nxp] = np.kron(bh[x][:,:,nx,nxp],a[x][:,:,nx,nxp]) elif da == d**2: # a is superoperator (vectorized channel) bh[x] = np.reshape(bh[x],(bdbh1,bdbh2,d**2),order='F') b[x] = np.zeros((bdbh1*bda1,bdbh2*bda2,d**2,d**2),dtype=complex) for nx in range(d**2): for nxp in range(d**2): b[x][:,:,nx,nxp] = np.kron(bh[x][:,:,nx],a[x][:,:,nx,nxp]) elif BC == 'P': da = np.shape(a)[2] bda = np.shape(a)[0] if N == 1: bdbh = 1 else: bdbh = 2 bh = np.zeros((bdbh,bdbh,d,d,N),dtype=complex) for nx in range(d): for nxp in range(d): if N == 1: bh[:,:,nx,nxp,0] = c*(h[nxp,nxp]-h[nx,nx]) else: bh[:,:,nx,nxp,0] = np.array([[c*(h[nxp,nxp]-h[nx,nx]),1],[0,0]]) for x in range(1,N-1): bh[:,:,nx,nxp,x] = np.array([[1,0],[c*(h[nxp,nxp]-h[nx,nx]),1]]) bh[:,:,nx,nxp,N-1] = np.array([[1,0],[c*(h[nxp,nxp]-h[nx,nx]),0]]) if da == d: # a is operator b = np.zeros((bdbh*bda,bdbh*bda,d,d,N),dtype=complex) for nx in range(d): for nxp in range(d): for x in range(N): b[:,:,nx,nxp,x] = np.kron(bh[:,:,nx,nxp,x],a[:,:,nx,nxp,x]) elif da == d**2: # a is superoperator (vectorized channel) bh = np.reshape(bh,(bdbh,bdbh,d**2,N),order='F') b = np.zeros((bdbh*bda,bdbh*bda,d**2,d**2,N),dtype=complex) for nx in range(d**2): for nxp in range(d**2): for x in range(N): b[:,:,nx,nxp,x] = np.kron(bh[:,:,nx,x],a[:,:,nx,nxp,x]) return b def fin_enlarge_bdl(cold,factor): """ Enlarge bond dimension of SLD MPO. Function for finite size systems. Parameters: cold: SLD MPO, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC factor: factor which determine on average relation between old and newly added values of SLD MPO Returns: c: SLD MPO with bd += 1 """ rng = np.random.default_rng() if type(cold) is list: n = len(cold) if n == 1: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: c = [0]*n x = 0 d = np.shape(cold[x])[2] bdl1 = 1 bdl2 = np.shape(cold[x])[1]+1 c[x] = np.zeros((bdl1,bdl2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): meanrecold = np.sum(np.abs(np.real(cold[x][:,:,nx,nxp])))/(bdl2-1) meanimcold = np.sum(np.abs(np.imag(cold[x][:,:,nx,nxp])))/(bdl2-1) c[x][:,:,nx,nxp] = (meanrecold*rng.random((bdl1,bdl2))+1j*meanimcold*rng.random((bdl1,bdl2)))*factor c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[x][0:bdl1-1,0:bdl2-1,:,:] = cold[x] for x in range(1,n-1): d = np.shape(cold[x])[2] bdl1 = np.shape(cold[x])[0]+1 bdl2 = np.shape(cold[x])[1]+1 c[x] = np.zeros((bdl1,bdl2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): meanrecold = np.sum(np.abs(np.real(cold[x][:,:,nx,nxp])))/((bdl1-1)*(bdl2-1)) meanimcold = np.sum(np.abs(np.imag(cold[x][:,:,nx,nxp])))/((bdl1-1)*(bdl2-1)) c[x][:,:,nx,nxp] = (meanrecold*rng.random((bdl1,bdl2))+1j*meanimcold*rng.random((bdl1,bdl2)))*factor c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[x][0:bdl1-1,0:bdl2-1,:,:] = cold[x] x = n-1 d = np.shape(cold[x])[2] bdl1 = np.shape(cold[x])[0]+1 bdl2 = 1 c[x] = np.zeros((bdl1,bdl2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): meanrecold = np.sum(np.abs(np.real(cold[x][:,:,nx,nxp])))/(bdl1-1) meanimcold = np.sum(np.abs(np.imag(cold[x][:,:,nx,nxp])))/(bdl1-1) c[x][:,:,nx,nxp] = (meanrecold*rng.random((bdl1,bdl2))+1j*meanimcold*rng.random((bdl1,bdl2)))*factor c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[x][0:bdl1-1,0:bdl2-1,:,:] = cold[x] elif type(cold) is np.ndarray: n = np.shape(cold)[4] d = np.shape(cold)[2] bdl = np.shape(cold)[0]+1 c = np.zeros((bdl,bdl,d,d,n),dtype=complex) for nx in range(d): for nxp in range(d): for x in range(n): meanrecold = np.sum(np.abs(np.real(cold[:,:,nx,nxp,x])))/(bdl-1)**2 meanimcold = np.sum(np.abs(np.imag(cold[:,:,nx,nxp,x])))/(bdl-1)**2 c[:,:,nx,nxp,x] = (meanrecold*rng.random((bdl,bdl))+1j*meanimcold*rng.random((bdl,bdl)))*factor c = (c + np.conj(np.moveaxis(c,2,3)))/2 c[0:bdl-1,0:bdl-1,:,:,:] = cold return c def fin_enlarge_bdpsi(a0old,factor): """ Enlarge bond dimension of wave function MPS. Function for finite size systems. Parameters: a0old: wave function MPS, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC ratio: factor which determine on average relation between last and next to last values of diagonals of wave function MPS Returns: a0: wave function MPS with bd += 1 """ rng = np.random.default_rng() if type(a0old) is list: n = len(a0old) if n == 1: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: a0 = [0]*n x = 0 d = np.shape(a0old[x])[2] bdpsi1 = 1 bdpsi2 = np.shape(a0old[x])[1]+1 a0[x] = np.zeros((bdpsi1,bdpsi2,d),dtype=complex) for nx in range(d): meanrea0old = np.sum(np.abs(np.real(a0old[x][:,:,nx])))/(bdpsi2-1) meanima0old = np.sum(np.abs(np.imag(a0old[x][:,:,nx])))/(bdpsi2-1) a0[x][:,:,nx] = (meanrea0old*rng.random((bdpsi1,bdpsi2))+1j*meanima0old*rng.random((bdpsi1,bdpsi2)))*factor a0[x][0:bdpsi1-1,0:bdpsi2-1,:] = a0old[x] for x in range(1,n-1): d = np.shape(a0old[x])[2] bdpsi1 = np.shape(a0old[x])[0]+1 bdpsi2 = np.shape(a0old[x])[1]+1 a0[x] = np.zeros((bdpsi1,bdpsi2,d),dtype=complex) for nx in range(d): meanrea0old = np.sum(np.abs(np.real(a0old[x][:,:,nx])))/((bdpsi1-1)*(bdpsi2-1)) meanima0old = np.sum(np.abs(np.imag(a0old[x][:,:,nx])))/((bdpsi1-1)*(bdpsi2-1)) a0[x][:,:,nx] = (meanrea0old*rng.random((bdpsi1,bdpsi2))+1j*meanima0old*rng.random((bdpsi1,bdpsi2)))*factor a0[x][0:bdpsi1-1,0:bdpsi2-1,:] = a0old[x] x = n-1 d = np.shape(a0old[x])[2] bdpsi1 = np.shape(a0old[x])[0]+1 bdpsi2 = 1 a0[x] = np.zeros((bdpsi1,bdpsi2,d),dtype=complex) for nx in range(d): meanrea0old = np.sum(np.abs(np.real(a0old[x][:,:,nx])))/(bdpsi1-1) meanima0old = np.sum(np.abs(np.imag(a0old[x][:,:,nx])))/(bdpsi1-1) a0[x][:,:,nx] = (meanrea0old*rng.random((bdpsi1,bdpsi2))+1j*meanima0old*rng.random((bdpsi1,bdpsi2)))*factor a0[x][0:bdpsi1-1,0:bdpsi2-1,:] = a0old[x] tensors = [np.conj(a0[n-1]),a0[n-1]] legs = [[-1,-3,1],[-2,-4,1]] r1 = ncon(tensors,legs) a0[n-1] = a0[n-1]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[n-1]),a0[n-1]] legs = [[-1,-3,1],[-2,-4,1]] r2 = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),a0[x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r1 = ncon(tensors,legs) a0[x] = a0[x]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[x]),a0[x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r2 = ncon(tensors,legs) tensors = [np.conj(a0[0]),a0[0],r2] legs = [[4,2,1],[5,3,1],[2,3,4,5]] r1 = ncon(tensors,legs) a0[0] = a0[0]/np.sqrt(np.abs(r1)) elif type(a0old) is np.ndarray: n = np.shape(a0old)[3] d = np.shape(a0old)[2] bdpsi = np.shape(a0old)[0]+1 a0 = np.zeros((bdpsi,bdpsi,d,n),dtype=complex) for nx in range(d): for x in range(n): meanrea0old = np.sum(np.abs(np.real(a0old[:,:,nx,x])))/(bdpsi-1)**2 meanima0old = np.sum(np.abs(np.imag(a0old[:,:,nx,x])))/(bdpsi-1)**2 a0[:,:,nx,x] = (meanrea0old*rng.random((bdpsi,bdpsi))+1j*meanima0old*rng.random((bdpsi,bdpsi)))*factor a0[0:bdpsi-1,0:bdpsi-1,:,:] = a0old if n == 1: tensors = [np.conj(a0[:,:,:,0]),a0[:,:,:,0]] legs = [[2,2,1],[3,3,1]] r1 = ncon(tensors,legs) a0[:,:,:,0] = a0[:,:,:,0]/np.sqrt(np.abs(r1)) else: tensors = [np.conj(a0[:,:,:,n-1]),a0[:,:,:,n-1]] legs = [[-1,-3,1],[-2,-4,1]] r1 = ncon(tensors,legs) a0[:,:,:,n-1] = a0[:,:,:,n-1]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[:,:,:,n-1]),a0[:,:,:,n-1]] legs = [[-1,-3,1],[-2,-4,1]] r2 = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),a0[:,:,:,x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r1 = ncon(tensors,legs) a0[:,:,:,x] = a0[:,:,:,x]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[:,:,:,x]),a0[:,:,:,x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r2 = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),a0[:,:,:,0],r2] legs = [[4,2,1],[5,3,1],[2,3,4,5]] r1 = ncon(tensors,legs) a0[:,:,:,0] = a0[:,:,:,0]/np.sqrt(np.abs(r1)) return a0 ######################################### # 1.2.1 Problems with exact derivative. # ######################################### def fin_FoM_FoMD_optbd(n,d,bc,ch,chp,cini=None,a0ini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True,bdpsimax=100,alwaysbdpsimax=False): """ Iterative optimization of FoM/FoMD over SLD MPO and initial wave function MPS and also check of convergence in bond dimensions. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC ch: MPO for quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC chp: MPO for generalized derivative of quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC cini: initial MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0ini: initial MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for SLD MPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False bdpsimax: maximal value of bd for initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for initial wave function MPS have to be reached, otherwise False (default value) Returns: result: optimal value of FoM/FoMD resultm: matrix describing FoM/FoMD in function of bd of respectively SLD MPO [rows] and initial wave function MPS [columns] c: optimal MPO for SLD a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine if bc == 'O': a0 = a0[np.newaxis,np.newaxis,:] a0 = [a0]*n elif bc == 'P': a0 = a0[np.newaxis,np.newaxis,:,np.newaxis] a0 = np.tile(a0,(1,1,1,n)) else: a0 = a0ini if bc == 'O': bdpsi = max([np.shape(a0[i])[0] for i in range(n)]) a0 = [a0[i].astype(complex) for i in range(n)] elif bc == 'P': bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultm = np.zeros((bdlmax,bdpsimax),dtype=float) resultm[bdl-1,bdpsi-1],c,a0 = fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision,lherm) if bc == 'O' and n == 1: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] return result,resultm,c,a0 factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: while True: if bdpsi == bdpsimax: break else: a0old = a0 bdpsi += 1 i = 0 while True: a0 = fin_enlarge_bdpsi(a0,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-1,bdpsi-2]: break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdpsimax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-1,bdpsi-2]: bdpsi += -1 a0 = a0old a0copy = a0new ccopy = cnew break else: a0 = a0new c = cnew if problem: break if bdl == bdlmax: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-2,bdpsi-1]: a0 = a0new c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-2,bdpsi-1]: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: if resultm[bdl-1,bdpsi-1] < resultm[bdl-2,bdpsi]: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] bdl += -1 bdpsi += 1 result = resultm[bdl-1,bdpsi-1] else: resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi-1] break if not(problem): break return result,resultm,c,a0 def fin_FoM_optbd(n,d,bc,a,b,cini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True): """ Optimization of FoM over SLD MPO and also check of convergence in bond dimension. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC a: MPO for density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC b: MPO for generalized derivative of density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cini: initial MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for SLD MPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: result: optimal value of FoM resultv: vector describing FoM in function of bd of SLD MPO c: optimal MPO for SLD """ while True: if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultv = np.zeros(bdlmax,dtype=float) if bc == 'O': resultv[bdl-1],c = fin_FoM_OBC_optm(a,b,c,imprecision,lherm) if n == 1: resultv = resultv[0:bdl] result = resultv[bdl-1] return result,resultv,c elif bc == 'P': resultv[bdl-1],c = fin_FoM_PBC_optm(a,b,c,imprecision,lherm) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdl == bdlmax: resultv = resultv[0:bdl] result = resultv[bdl-1] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) if bc == 'O': resultv[bdl-1],cnew = fin_FoM_OBC_optm(a,b,c,imprecision,lherm) elif bc == 'P': resultv[bdl-1],cnew = fin_FoM_PBC_optm(a,b,c,imprecision,lherm) if resultv[bdl-1] >= resultv[bdl-2]: c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultv[bdl-1] < (1+imprecision)*resultv[bdl-2]: resultv = resultv[0:bdl] result = resultv[bdl-1] break if not(problem): break return result,resultv,c def fin_FoMD_optbd(n,d,bc,c2d,cpd,a0ini=None,imprecision=10**-2,bdpsimax=100,alwaysbdpsimax=False): """ Optimization of FoMD over initial wave function MPS and also check of convergence in bond dimension. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC c2d: MPO for square of dual of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cpd: MPO for dual of generalized derivative of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0ini: initial MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdpsimax: maximal value of bd for initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for initial wave function MPS have to be reached, otherwise False (default value) Returns: result: optimal value of FoMD resultv: vector describing FoMD in function of bd of initial wave function MPS a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine if bc == 'O': a0 = a0[np.newaxis,np.newaxis,:] a0 = [a0]*n elif bc == 'P': a0 = a0[np.newaxis,np.newaxis,:,np.newaxis] a0 = np.tile(a0,(1,1,1,n)) else: a0 = a0ini if bc == 'O': bdpsi = max([np.shape(a0[i])[0] for i in range(n)]) a0 = [a0[i].astype(complex) for i in range(n)] elif bc == 'P': bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) resultv = np.zeros(bdpsimax,dtype=float) if bc == 'O': resultv[bdpsi-1],a0 = fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision) if n == 1: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] return result,resultv,a0 elif bc == 'P': resultv[bdpsi-1],a0 = fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdpsi == bdpsimax: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break else: bdpsi += 1 i = 0 while True: a0 = fin_enlarge_bdpsi(a0,factorv[i]) if bc == 'O': resultv[bdpsi-1],a0new = fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision) elif bc == 'P': resultv[bdpsi-1],a0new = fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision) if resultv[bdpsi-1] >= resultv[bdpsi-2]: a0 = a0new break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdpsimax) and resultv[bdpsi-1] < (1+imprecision)*resultv[bdpsi-2]: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break if not(problem): break return result,resultv,a0 def fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision=10**-2,lherm=True): """ Iterative optimization of FoM/FoMD over SLD MPO and initial wave function MPS. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC ch: MPO for quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC chp: MPO for generalized derivative of quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fval: optimal value of FoM/FoMD c: optimal MPO for SLD a0: optimal MPS for initial wave function """ relunc_f = 0.1*imprecision if bc == 'O': chd = [0]*n chpd = [0]*n for x in range(n): chd[x] = np.conj(np.moveaxis(ch[x],2,3)) chpd[x] = np.conj(np.moveaxis(chp[x],2,3)) elif bc == 'P': chd = np.conj(np.moveaxis(ch,2,3)) chpd = np.conj(np.moveaxis(chp,2,3)) f = np.array([]) iter_f = 0 while True: a0_dm = wave_function_to_density_matrix(a0) a = channel_acting_on_operator(ch,a0_dm) b = channel_acting_on_operator(chp,a0_dm) if bc == 'O': fom,c = fin_FoM_OBC_optm(a,b,c,imprecision,lherm) elif bc == 'P': fom,c = fin_FoM_PBC_optm(a,b,c,imprecision,lherm) f = np.append(f,fom) if iter_f >= 2 and np.std(f[-4:])/np.mean(f[-4:]) <= relunc_f: break if bc == 'O': c2 = [0]*n for x in range(n): bdl1 = np.shape(c[x])[0] bdl2 = np.shape(c[x])[1] c2[x] = np.zeros((bdl1**2,bdl2**2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): for nxpp in range(d): c2[x][:,:,nx,nxp] = c2[x][:,:,nx,nxp]+np.kron(c[x][:,:,nx,nxpp],c[x][:,:,nxpp,nxp]) elif bc == 'P': bdl = np.shape(c)[0] c2 = np.zeros((bdl**2,bdl**2,d,d,n),dtype=complex) for nx in range(d): for nxp in range(d): for nxpp in range(d): for x in range(n): c2[:,:,nx,nxp,x] = c2[:,:,nx,nxp,x]+np.kron(c[:,:,nx,nxpp,x],c[:,:,nxpp,nxp,x]) c2d = channel_acting_on_operator(chd,c2) cpd = channel_acting_on_operator(chpd,c) if bc == 'O': fomd,a0 = fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision) elif bc == 'P': fomd,a0 = fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision) f = np.append(f,fomd) iter_f += 1 fval = f[-1] return fval,c,a0 def fin_FoM_OBC_optm(a,b,c,imprecision=10**-2,lherm=True): """ Optimization of FoM over MPO for SLD. Function for finite size systems with OBC. Parameters: a: MPO for density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) b: MPO for generalized derivative of density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fomval: optimal value of FoM c: optimal MPO for SLD """ n = len(c) tol_fom = 0.1*imprecision/n**2 if n == 1: if np.shape(a[0])[0] == 1 and np.shape(b[0])[0] == 1 and np.shape(c[0])[0] == 1: d = np.shape(c[0])[2] tensors = [b[0][0,0,:,:]] legs = [[-2,-1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[0][0,0,:,:],np.eye(d)] legs = [[-2,-3],[-4,-1]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(d*d,d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[0][0,0,:,:] = np.reshape(cv,(d,d),order='F') if lherm: c[0] = (c[0]+np.conj(np.moveaxis(c[0],2,3)))/2 cv = np.reshape(c[0],-1,order='F') fomval = np.real(2*cv @ l1 - cv @ l2 @ cv) else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: relunc_fom = 0.1*imprecision l1f = [0]*n l2f = [0]*n fom = np.array([]) iter_fom = 0 while True: tensors = [c[n-1],b[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1f[n-2] = ncon(tensors,legs) l1f[n-2] = l1f[n-2][:,:,0,0] tensors = [c[n-1],a[n-1],c[n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2f[n-2] = ncon(tensors,legs) l2f[n-2] = l2f[n-2][:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [c[x],b[x],l1f[x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1f[x-1] = ncon(tensors,legs) tensors = [c[x],a[x],c[x],l2f[x]] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2f[x-1] = ncon(tensors,legs) bdl1,bdl2,d,d = np.shape(c[0]) tensors = [b[0],l1f[0]] legs = [[-5,1,-4,-3],[-2,1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[0],np.eye(d),l2f[0]] legs = [[-9,1,-4,-7],[-8,-3],[-2,1,-6]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[0] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[0] = (c[0]+np.conj(np.moveaxis(c[0],2,3)))/2 cv = np.reshape(c[0],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [c[0],b[0]] legs = [[-3,-1,1,2],[-4,-2,2,1]] l1c = ncon(tensors,legs) l1c = l1c[:,:,0,0] tensors = [c[0],a[0],c[0]] legs = [[-4,-1,1,2],[-5,-2,2,3],[-6,-3,3,1]] l2c = ncon(tensors,legs) l2c = l2c[:,:,:,0,0,0] for x in range(1,n-1): bdl1,bdl2,d,d = np.shape(c[x]) tensors = [l1c,b[x],l1f[x]] legs = [[-1,1],[1,2,-4,-3],[-2,2]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[x],np.eye(d),l2f[x]] legs = [[-1,1,-5],[1,2,-4,-7],[-8,-3],[-2,2,-6]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[x] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[x] = (c[x]+np.conj(np.moveaxis(c[x],2,3)))/2 cv = np.reshape(c[x],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [l1c,c[x],b[x]] legs = [[3,4],[3,-1,1,2],[4,-2,2,1]] l1c = ncon(tensors,legs) tensors = [l2c,c[x],a[x],c[x]] legs = [[4,5,6],[4,-1,1,2],[5,-2,2,3],[6,-3,3,1]] l2c = ncon(tensors,legs) bdl1,bdl2,d,d = np.shape(c[n-1]) tensors = [l1c,b[n-1]] legs = [[-1,1],[1,-5,-4,-3]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[n-1],np.eye(d)] legs = [[-1,1,-5],[1,-9,-4,-7],[-8,-3]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[n-1] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[n-1] = (c[n-1]+np.conj(np.moveaxis(c[n-1],2,3)))/2 cv = np.reshape(c[n-1],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) iter_fom += 1 if iter_fom >= 2 and all(fom[-2*n:] > 0) and np.std(fom[-2*n:])/np.mean(fom[-2*n:]) <= relunc_fom: break fomval = fom[-1] return fomval,c def fin_FoM_PBC_optm(a,b,c,imprecision=10**-2,lherm=True): """ Optimization of FoM over MPO for SLD. Function for finite size systems with PBC. Parameters: a: MPO for density matrix, expected ndarray of a shape (bd,bd,d,d,n) b: MPO for generalized derivative of density matrix, expected ndarray of a shape (bd,bd,d,d,n) c: MPO for SLD, expected ndarray of a shape (bd,bd,d,d,n) imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fomval: optimal value of FoM c: optimal MPO for SLD """ n = np.shape(a)[4] d = np.shape(a)[2] bdr = np.shape(a)[0] bdrp = np.shape(b)[0] bdl = np.shape(c)[0] tol_fom = 0.1*imprecision/n**2 if n == 1: tensors = [b[:,:,:,:,0],np.eye(bdl)] legs = [[1,1,-4,-3],[-2,-1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[:,:,:,:,0],np.eye(d),np.eye(bdl),np.eye(bdl)] legs = [[1,1,-4,-7],[-8,-3],[-2,-1],[-6,-5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,0] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,0] = (c[:,:,:,:,0]+np.conj(np.moveaxis(c[:,:,:,:,0],2,3)))/2 cv = np.reshape(c[:,:,:,:,0],-1,order='F') fomval = np.real(2*cv @ l1 - cv @ l2 @ cv) else: relunc_fom = 0.1*imprecision l1f = np.zeros((bdl,bdrp,bdl,bdrp,n-1),dtype=complex) l2f = np.zeros((bdl,bdr,bdl,bdl,bdr,bdl,n-1),dtype=complex) fom = np.array([]) iter_fom = 0 while True: tensors = [c[:,:,:,:,n-1],b[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1f[:,:,:,:,n-2] = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1],c[:,:,:,:,n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2f[:,:,:,:,:,:,n-2] = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [c[:,:,:,:,x],b[:,:,:,:,x],l1f[:,:,:,:,x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1f[:,:,:,:,x-1] = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x],l2f[:,:,:,:,:,:,x]] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6,-4,-5,-6]] l2f[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [b[:,:,:,:,0],l1f[:,:,:,:,0]] legs = [[2,1,-4,-3],[-2,1,-1,2]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[:,:,:,:,0],np.eye(d),l2f[:,:,:,:,:,:,0]] legs = [[2,1,-4,-7],[-8,-3],[-2,1,-6,-1,2,-5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,0] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,0] = (c[:,:,:,:,0]+np.conj(np.moveaxis(c[:,:,:,:,0],2,3)))/2 cv = np.reshape(c[:,:,:,:,0],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [c[:,:,:,:,0],b[:,:,:,:,0]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1c = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2c = ncon(tensors,legs) for x in range(1,n-1): tensors = [l1c,b[:,:,:,:,x],l1f[:,:,:,:,x]] legs = [[3,4,-1,1],[1,2,-4,-3],[-2,2,3,4]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[:,:,:,:,x],np.eye(d),l2f[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-5],[1,2,-4,-7],[-8,-3],[-2,2,-6,3,4,5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,x] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,x] = (c[:,:,:,:,x]+np.conj(np.moveaxis(c[:,:,:,:,x],2,3)))/2 cv = np.reshape(c[:,:,:,:,x],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [l1c,c[:,:,:,:,x],b[:,:,:,:,x]] legs = [[-1,-2,3,4],[3,-3,1,2],[4,-4,2,1]] l1c = ncon(tensors,legs) tensors = [l2c,c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x]] legs = [[-1,-2,-3,4,5,6],[4,-4,1,2],[5,-5,2,3],[6,-6,3,1]] l2c = ncon(tensors,legs) tensors = [l1c,b[:,:,:,:,n-1]] legs = [[-2,2,-1,1],[1,2,-4,-3]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[:,:,:,:,n-1],np.eye(d)] legs = [[-2,2,-6,-1,1,-5],[1,2,-4,-7],[-8,-3]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,n-1] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,n-1] = (c[:,:,:,:,n-1]+np.conj(np.moveaxis(c[:,:,:,:,n-1],2,3)))/2 cv = np.reshape(c[:,:,:,:,n-1],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) iter_fom += 1 if iter_fom >= 2 and all(fom[-2*n:] > 0) and np.std(fom[-2*n:])/np.mean(fom[-2*n:]) <= relunc_fom: break fomval = fom[-1] return fomval,c def fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision=10**-2): """ Optimization of FoMD over MPS for initial wave function. Function for finite size systems with OBC. Parameters: c2d: MPO for square of dual of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cpd: MPO for dual of generalized derivative of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) imprecision: expected imprecision of the end results, default value is 10**-2 Returns: fomdval: optimal value of FoMD a0: optimal MPS for initial wave function """ n = len(a0) if n == 1: if np.shape(c2d[0])[0] == 1 and np.shape(cpd[0])[0] == 1 and np.shape(a0[0])[0] == 1: d = np.shape(a0[0])[2] tensors = [c2d[0][0,0,:,:]] legs = [[-1,-2]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(d,d),order='F') tensors = [cpd[0][0,0,:,:]] legs = [[-1,-2]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(d,d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[0][0,0,:] = np.reshape(a0v,(d),order='F') fomdval = np.real(fomdval[position]) else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: relunc_fomd = 0.1*imprecision l2df = [0]*n lpdf = [0]*n fomd = np.array([]) iter_fomd = 0 while True: tensors = [np.conj(a0[n-1]),c2d[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2df[n-2] = ncon(tensors,legs) l2df[n-2] = l2df[n-2][:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cpd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdf[n-2] = ncon(tensors,legs) lpdf[n-2] = lpdf[n-2][:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),c2d[x],a0[x],l2df[x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2df[x-1] = ncon(tensors,legs) tensors = [np.conj(a0[x]),cpd[x],a0[x],lpdf[x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpdf[x-1] = ncon(tensors,legs) bdpsi1,bdpsi2,d = np.shape(a0[0]) tensors = [c2d[0],l2df[0]] legs = [[-7,1,-3,-6],[-2,1,-5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [cpd[0],lpdf[0]] legs = [[-7,1,-3,-6],[-2,1,-5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[0] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) a0[0] = np.moveaxis(a0[0],2,0) a0[0] = np.reshape(a0[0],(d*bdpsi1,bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[0],full_matrices=False) a0[0] = np.reshape(u,(d,bdpsi1,np.shape(s)[0]),order='F') a0[0] = np.moveaxis(a0[0],0,2) tensors = [np.diag(s) @ vh,a0[1]] legs = [[-1,1],[1,-2,-3]] a0[1] = ncon(tensors,legs) tensors = [np.conj(a0[0]),c2d[0],a0[0]] legs = [[-4,-1,1],[-5,-2,1,2],[-6,-3,2]] l2dc = ncon(tensors,legs) l2dc = l2dc[:,:,:,0,0,0] tensors = [np.conj(a0[0]),cpd[0],a0[0]] legs = [[-4,-1,1],[-5,-2,1,2],[-6,-3,2]] lpdc = ncon(tensors,legs) lpdc = lpdc[:,:,:,0,0,0] for x in range(1,n-1): bdpsi1,bdpsi2,d = np.shape(a0[x]) tensors = [l2dc,c2d[x],l2df[x]] legs = [[-1,1,-4],[1,2,-3,-6],[-2,2,-5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [lpdc,cpd[x],lpdf[x]] legs = [[-1,1,-4],[1,2,-3,-6],[-2,2,-5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[x] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) a0[x] = np.moveaxis(a0[x],2,0) a0[x] = np.reshape(a0[x],(d*bdpsi1,bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[x],full_matrices=False) a0[x] = np.reshape(u,(d,bdpsi1,np.shape(s)[0]),order='F') a0[x] = np.moveaxis(a0[x],0,2) tensors = [np.diag(s) @ vh,a0[x+1]] legs = [[-1,1],[1,-2,-3]] a0[x+1] = ncon(tensors,legs) tensors = [l2dc,np.conj(a0[x]),c2d[x],a0[x]] legs = [[3,4,5],[3,-1,1],[4,-2,1,2],[5,-3,2]] l2dc = ncon(tensors,legs) tensors = [lpdc,np.conj(a0[x]),cpd[x],a0[x]] legs = [[3,4,5],[3,-1,1],[4,-2,1,2],[5,-3,2]] lpdc = ncon(tensors,legs) bdpsi1,bdpsi2,d = np.shape(a0[n-1]) tensors = [l2dc,c2d[n-1]] legs = [[-1,1,-4],[1,-7,-3,-6]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [lpdc,cpd[n-1]] legs = [[-1,1,-4],[1,-7,-3,-6]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[n-1] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) iter_fomd += 1 for x in range(n-1,0,-1): bdpsi1,bdpsi2,d = np.shape(a0[x]) a0[x] = np.moveaxis(a0[x],2,1) a0[x] = np.reshape(a0[x],(bdpsi1,d*bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[x],full_matrices=False) a0[x] = np.reshape(vh,(np.shape(s)[0],d,bdpsi2),order='F') a0[x] = np.moveaxis(a0[x],1,2) tensors = [a0[x-1],u @ np.diag(s)] legs = [[-1,1,-3],[1,-2]] a0[x-1] = ncon(tensors,legs) if iter_fomd >= 2 and all(fomd[-2*n:] > 0) and np.std(fomd[-2*n:])/np.mean(fomd[-2*n:]) <= relunc_fomd: break fomdval = fomd[-1] return fomdval,a0 def fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision=10**-2): """ Optimization of FoMD over MPS for initial wave function. Function for finite size systems with PBC. Parameters: c2d: MPO for square of dual of SLD, expected ndarray of a shape (bd,bd,d,d,n) cpd: MPO for dual of generalized derivative of SLD, expected ndarray of a shape (bd,bd,d,d,n) a0: MPS for initial wave function, expected ndarray of a shape (bd,bd,d,n) imprecision: expected imprecision of the end results, default value is 10**-2 Returns: fomdval: optimal value of FoMD a0: optimal MPS for initial wave function """ n = np.shape(c2d)[4] d = np.shape(c2d)[2] bdl2d = np.shape(c2d)[0] bdlpd = np.shape(cpd)[0] bdpsi = np.shape(a0)[0] tol_fomd = 0.1*imprecision/n**2 if n == 1: tensors = [c2d[:,:,:,:,0],np.eye(bdpsi),np.eye(bdpsi)] legs = [[1,1,-3,-6],[-2,-1],[-5,-4]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cpd[:,:,:,:,0],np.eye(bdpsi),np.eye(bdpsi)] legs = [[1,1,-3,-6],[-2,-1],[-5,-4]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [np.eye(bdpsi),np.eye(bdpsi)] legs = [[-2,-1],[-4,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,0] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomdval = np.real(fomdval[position]) else: relunc_fomd = 0.1*imprecision l2df = np.zeros((bdpsi,bdl2d,bdpsi,bdpsi,bdl2d,bdpsi,n-1),dtype=complex) lpdf = np.zeros((bdpsi,bdlpd,bdpsi,bdpsi,bdlpd,bdpsi,n-1),dtype=complex) psinormf = np.zeros((bdpsi,bdpsi,bdpsi,bdpsi,n-1),dtype=complex) fomd = np.array([]) iter_fomd = 0 while True: tensors = [np.conj(a0[:,:,:,n-1]),c2d[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2df[:,:,:,:,:,:,n-2] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cpd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdf[:,:,:,:,:,:,n-2] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),a0[:,:,:,n-1]] legs = [[-1,-3,1],[-2,-4,1]] psinormf[:,:,:,:,n-2] = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x],l2df[:,:,:,:,:,:,x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] l2df[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x],lpdf[:,:,:,:,:,:,x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] lpdf[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),a0[:,:,:,x],psinormf[:,:,:,:,x]] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] psinormf[:,:,:,:,x-1] = ncon(tensors,legs) tensors = [c2d[:,:,:,:,0],l2df[:,:,:,:,:,:,0]] legs = [[2,1,-3,-6],[-2,1,-5,-1,2,-4]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cpd[:,:,:,:,0],lpdf[:,:,:,:,:,:,0]] legs = [[2,1,-3,-6],[-2,1,-5,-1,2,-4]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormf[:,:,:,:,0]] legs = [[-2,-4,-1,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,0] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2dc = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdc = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),a0[:,:,:,0]] legs = [[-1,-3,1],[-2,-4,1]] psinormc = ncon(tensors,legs) for x in range(1,n-1): tensors = [l2dc,c2d[:,:,:,:,x],l2df[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-4],[1,2,-3,-6],[-2,2,-5,3,4,5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [lpdc,cpd[:,:,:,:,x],lpdf[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-4],[1,2,-3,-6],[-2,2,-5,3,4,5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormc,psinormf[:,:,:,:,x]] legs = [[1,2,-1,-3],[-2,-4,1,2]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,x] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) tensors = [l2dc,np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x]] legs = [[-1,-2,-3,3,4,5],[3,-4,1],[4,-5,1,2],[5,-6,2]] l2dc = ncon(tensors,legs) tensors = [lpdc,np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x]] legs = [[-1,-2,-3,3,4,5],[3,-4,1],[4,-5,1,2],[5,-6,2]] lpdc = ncon(tensors,legs) tensors = [psinormc,np.conj(a0[:,:,:,x]),a0[:,:,:,x]] legs = [[-1,-2,2,3],[2,-3,1],[3,-4,1]] psinormc = ncon(tensors,legs) tensors = [l2dc,c2d[:,:,:,:,n-1]] legs = [[-2,2,-5,-1,1,-4],[1,2,-3,-6]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [lpdc,cpd[:,:,:,:,n-1]] legs = [[-2,2,-5,-1,1,-4],[1,2,-3,-6]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormc] legs = [[-2,-4,-1,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,n-1] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) iter_fomd += 1 if iter_fomd >= 2 and all(fomd[-2*n:] > 0) and np.std(fomd[-2*n:])/np.mean(fomd[-2*n:]) <= relunc_fomd: break fomdval = fomd[-1] return fomdval,a0 def fin_FoM_OBC_val(a,b,c): """ Calculate the value of FoM. Function for finite size systems with OBC. Parameters: a: MPO for density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) b: MPO for generalized derivative of density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) Returns: fomval: value of FoM """ n = len(c) if n == 1: if np.shape(a[0])[0] == 1 and np.shape(b[0])[0] == 1 and np.shape(c[0])[0] == 1: tensors = [c[0][0,0,:,:],b[0][0:,0,:,:]] legs = [[1,2],[2,1]] l1 = ncon(tensors,legs) tensors = [c[0][0,0,:,:],[0][0,0,:,:],[0][0,0,:,:]] legs = [[1,2],[2,3],[3,1]] l2 = ncon(tensors,legs) fomval = 2*l1-l2 else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: tensors = [c[n-1],b[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1 = ncon(tensors,legs) l1 = l1[:,:,0,0] tensors = [c[n-1],a[n-1],c[n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2 = ncon(tensors,legs) l2 = l2[:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [c[x],b[x],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1 = ncon(tensors,legs) tensors = [c[x],a[x],c[x],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2 = ncon(tensors,legs) tensors = [c[0],b[0],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1 = ncon(tensors,legs) l1 = float(l1) tensors = [c[0],a[0],c[0],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2 = ncon(tensors,legs) l2 = float(l2) fomval = 2*l1-l2 return fomval def fin_FoM_PBC_val(a,b,c): """ Calculate the value of FoM. Function for finite size systems with PBC. Parameters: a: MPO for a density matrix, expected ndarray of a shape (bd,bd,d,d,n) b: MPO for generalized derivative of a density matrix, expected ndarray of a shape (bd,bd,d,d,n) c: MPO for the SLD, expected ndarray of a shape (bd,bd,d,d,n) Returns: fomval: value of FoM """ n = np.shape(a)[4] if n == 1: tensors = [c[:,:,:,:,0],b[:,:,:,:,0]] legs = [[3,3,1,2],[4,4,2,1]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0]] legs = [[4,4,1,2],[5,5,2,3],[6,6,3,1]] l2 = ncon(tensors,legs) fomval = 2*l1-l2 else: tensors = [c[:,:,:,:,n-1],b[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1],c[:,:,:,:,n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2 = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [c[:,:,:,:,x],b[:,:,:,:,x],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6,-4,-5,-6]] l2 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],b[:,:,:,:,0],l1] legs = [[5,3,1,2],[6,4,2,1],[3,4,5,6]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0],l2] legs = [[7,4,1,2],[8,5,2,3],[9,6,3,1],[4,5,6,7,8,9]] l2 = ncon(tensors,legs) fomval = 2*l1-l2 return fomval def fin_FoMD_OBC_val(c2d,cpd,a0): """ Calculate value of FoMD. Function for finite size systems with OBC. Parameters: c2d: MPO for square of dual of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cpd: MPO for dual of generalized derivative of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) Returns: fomdval: value of FoMD """ n = len(a0) if n == 1: if np.shape(c2d[0])[0] == 1 and np.shape(cpd[0])[0] == 1 and np.shape(a0[0])[0] == 1: tensors = [np.conj(a0[0][0,0,:]),c2d[0][0,0,:,:],a0[0][0,0,:]] legs = [[1],[1,2],[2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[0][0,0,:]),cpd[0][0,0,:,:],a0[0][0,0,:]] legs = [[1],[1,2],[2]] lpd = ncon(tensors,legs) fomdval = 2*lpd-l2d else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: tensors = [np.conj(a0[n-1]),c2d[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2d = ncon(tensors,legs) l2d = l2d[:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cpd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpd = ncon(tensors,legs) lpd = lpd[:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),c2d[x],a0[x],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[x]),cpd[x],a0[x],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[0]),c2d[0],a0[0],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2d = ncon(tensors,legs) l2d = float(l2d) tensors = [np.conj(a0[0]),cpd[0],a0[0],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpd = ncon(tensors,legs) lpd = float(lpd) fomdval = 2*lpd-l2d return fomdval def fin_FoMD_PBC_val(c2d,cpd,a0): """ Calculate the value of FoMD. Function for finite size systems with PBC. Parameters: c2d: MPO for square of dual of the SLD, expected ndarray of a shape (bd,bd,d,d,n) cpd: MPO for dual of generalized derivative of the SLD, expected ndarray of a shape (bd,bd,d,d,n) a0: MPS for the initial wave function, expected ndarray of a shape (bd,bd,d,n) Returns: fomdval: value of FoMD """ n = np.shape(c2d)[4] if n == 1: tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0]] legs = [[3,3,1],[4,4,1,2],[5,5,2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0]] legs = [[3,3,1],[4,4,1,2],[5,5,2]] lpd = ncon(tensors,legs) fomdval = 2*lpd-l2d else: tensors = [np.conj(a0[:,:,:,n-1]),c2d[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cpd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpd = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0],l2d] legs = [[6,3,1],[7,4,1,2],[8,5,2],[3,4,5,6,7,8]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0],lpd] legs = [[6,3,1],[7,4,1,2],[8,5,2],[3,4,5,6,7,8]] lpd = ncon(tensors,legs) fomdval = 2*lpd-l2d return fomdval ################################################################# # 1.2.2 Problems with discrete approximation of the derivative. # ################################################################# def fin2_FoM_FoMD_optbd(n,d,bc,ch,chp,epsilon,cini=None,a0ini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True,bdpsimax=100,alwaysbdpsimax=False): """ Iterative optimization of FoM/FoMD over SLD MPO and initial wave function MPS and also a check of convergence with increasing bond dimensions. Function for finite size systems. Version with two channels separated by epsilon. Parameters: n: number of sites in TN d: dimension of the local Hilbert space (dimension of the physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC ch: MPO for a quantum channel at the value of estimated parameter phi=phi_0, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC chp: MPO for a quantum channel at the value of estimated parameter phi=phi_0+epsilon, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC epsilon: value of a separation between estimated parameters encoded in ch and chp, float cini: initial MPO for the SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0ini: initial MPS for the initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if the maximal value of bd for SLD MPO has to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False bdpsimax: maximal value of bd for the initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if the maximal value of bd for initial wave function MPS has to be reached, otherwise False (default value) Returns: result: optimal value of FoM/FoMD resultm: matrix describing FoM/FoMD as a function of bd of respectively SLD MPO [rows] and the initial wave function MPS [columns] c: optimal MPO for SLD a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine if bc == 'O': a0 = a0[np.newaxis,np.newaxis,:] a0 = [a0]*n elif bc == 'P': a0 = a0[np.newaxis,np.newaxis,:,np.newaxis] a0 = np.tile(a0,(1,1,1,n)) else: a0 = a0ini if bc == 'O': bdpsi = max([np.shape(a0[i])[0] for i in range(n)]) a0 = [a0[i].astype(complex) for i in range(n)] elif bc == 'P': bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultm = np.zeros((bdlmax,bdpsimax),dtype=float) resultm[bdl-1,bdpsi-1],c,a0 = fin2_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,epsilon,imprecision,lherm) if bc == 'O' and n == 1: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] return result,resultm,c,a0 factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: while True: if bdpsi == bdpsimax: break else: a0old = a0 bdpsi += 1 i = 0 while True: a0 = fin_enlarge_bdpsi(a0,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin2_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,epsilon,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-1,bdpsi-2]: break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdpsimax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-1,bdpsi-2]: bdpsi += -1 a0 = a0old a0copy = a0new ccopy = cnew break else: a0 = a0new c = cnew if problem: break if bdl == bdlmax: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin2_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,epsilon,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-2,bdpsi-1]: a0 = a0new c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-2,bdpsi-1]: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: if resultm[bdl-1,bdpsi-1] < resultm[bdl-2,bdpsi]: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] bdl += -1 bdpsi += 1 result = resultm[bdl-1,bdpsi-1] else: resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi-1] break if not(problem): break return result,resultm,c,a0 def fin2_FoM_optbd(n,d,bc,a,b,epsilon,cini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True): """ Optimization of FoM over SLD MPO and also check of convergence in bond dimension. Function for finite size systems. Version with two states separated by epsilon. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC a: MPO for the density matrix at the value of estimated parameter phi=phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC b: MPO for the density matrix at the value of estimated parameter phi=phi_0+epsilon, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC epsilon: value of a separation between estimated parameters encoded in a and b, float cini: initial MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for SLD MPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: result: optimal value of FoM resultv: vector describing FoM as a function of bd of the SLD MPO c: optimal MPO for SLD """ while True: if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultv = np.zeros(bdlmax,dtype=float) if bc == 'O': resultv[bdl-1],c = fin2_FoM_OBC_optm(a,b,epsilon,c,imprecision,lherm) if n == 1: resultv = resultv[0:bdl] result = resultv[bdl-1] return result,resultv,c elif bc == 'P': resultv[bdl-1],c = fin2_FoM_PBC_optm(a,b,epsilon,c,imprecision,lherm) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdl == bdlmax: resultv = resultv[0:bdl] result = resultv[bdl-1] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) if bc == 'O': resultv[bdl-1],cnew = fin2_FoM_OBC_optm(a,b,epsilon,c,imprecision,lherm) elif bc == 'P': resultv[bdl-1],cnew = fin2_FoM_PBC_optm(a,b,epsilon,c,imprecision,lherm) if resultv[bdl-1] >= resultv[bdl-2]: c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultv[bdl-1] < (1+imprecision)*resultv[bdl-2]: resultv = resultv[0:bdl] result = resultv[bdl-1] break if not(problem): break return result,resultv,c def fin2_FoMD_optbd(n,d,bc,c2d,cd,cpd,epsilon,a0ini=None,imprecision=10**-2,bdpsimax=100,alwaysbdpsimax=False): """ Optimization of FoMD over initial wave function MPS and also check of convergence when increasing the bond dimension. Function for finite size systems. Version with two dual SLDs separated by epsilon. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC c2d: MPO for square of dual of SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cd: MPO for dual of SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cpd: MPO for dual of SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC epsilon: value of a separation between estimated parameters encoded in cd and cpd, float a0ini: initial MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdpsimax: maximal value of bd for initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for initial wave function MPS have to be reached, otherwise False (default value) Returns: result: optimal value of FoMD resultv: vector describing FoMD in function of bd of initial wave function MPS a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine if bc == 'O': a0 = a0[np.newaxis,np.newaxis,:] a0 = [a0]*n elif bc == 'P': a0 = a0[np.newaxis,np.newaxis,:,np.newaxis] a0 = np.tile(a0,(1,1,1,n)) else: a0 = a0ini if bc == 'O': bdpsi = max([np.shape(a0[i])[0] for i in range(n)]) a0 = [a0[i].astype(complex) for i in range(n)] elif bc == 'P': bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) resultv = np.zeros(bdpsimax,dtype=float) if bc == 'O': resultv[bdpsi-1],a0 = fin2_FoMD_OBC_optm(c2d,cd,cpd,epsilon,a0,imprecision) if n == 1: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] return result,resultv,a0 elif bc == 'P': resultv[bdpsi-1],a0 = fin2_FoMD_PBC_optm(c2d,cd,cpd,epsilon,a0,imprecision) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdpsi == bdpsimax: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break else: bdpsi += 1 i = 0 while True: a0 = fin_enlarge_bdpsi(a0,factorv[i]) if bc == 'O': resultv[bdpsi-1],a0new = fin2_FoMD_OBC_optm(c2d,cd,cpd,epsilon,a0,imprecision) elif bc == 'P': resultv[bdpsi-1],a0new = fin2_FoMD_PBC_optm(c2d,cd,cpd,epsilon,a0,imprecision) if resultv[bdpsi-1] >= resultv[bdpsi-2]: a0 = a0new break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdpsimax) and resultv[bdpsi-1] < (1+imprecision)*resultv[bdpsi-2]: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break if not(problem): break return result,resultv,a0 def fin2_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,epsilon,imprecision=10**-2,lherm=True): """ Iterative optimization of FoM/FoMD over SLD MPO and initial wave function MPS. Function for finite size systems. Version with two channels separated by epsilon. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC ch: MPO for quantum channel at the value of estimated parameter phi=phi_0, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC chp: MPO for quantum channel at the value of estimated parameter phi=phi_0+epsilon, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC epsilon: value of a separation between estimated parameters encoded in ch and chp, float imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fval: optimal value of FoM/FoMD c: optimal MPO for SLD a0: optimal MPS for initial wave function """ relunc_f = 0.1*imprecision if bc == 'O': chd = [0]*n chpd = [0]*n for x in range(n): chd[x] = np.conj(np.moveaxis(ch[x],2,3)) chpd[x] = np.conj(np.moveaxis(chp[x],2,3)) elif bc == 'P': chd = np.conj(np.moveaxis(ch,2,3)) chpd = np.conj(np.moveaxis(chp,2,3)) f = np.array([]) iter_f = 0 while True: a0_dm = wave_function_to_density_matrix(a0) a = channel_acting_on_operator(ch,a0_dm) b = channel_acting_on_operator(chp,a0_dm) if bc == 'O': fom,c = fin2_FoM_OBC_optm(a,b,epsilon,c,imprecision,lherm) elif bc == 'P': fom,c = fin2_FoM_PBC_optm(a,b,epsilon,c,imprecision,lherm) f = np.append(f,fom) if iter_f >= 2 and np.std(f[-4:])/np.mean(f[-4:]) <= relunc_f: break if bc == 'O': c2 = [0]*n for x in range(n): bdl1 = np.shape(c[x])[0] bdl2 = np.shape(c[x])[1] c2[x] = np.zeros((bdl1**2,bdl2**2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): for nxpp in range(d): c2[x][:,:,nx,nxp] = c2[x][:,:,nx,nxp]+np.kron(c[x][:,:,nx,nxpp],c[x][:,:,nxpp,nxp]) elif bc == 'P': bdl = np.shape(c)[0] c2 = np.zeros((bdl**2,bdl**2,d,d,n),dtype=complex) for nx in range(d): for nxp in range(d): for nxpp in range(d): for x in range(n): c2[:,:,nx,nxp,x] = c2[:,:,nx,nxp,x]+np.kron(c[:,:,nx,nxpp,x],c[:,:,nxpp,nxp,x]) c2d = channel_acting_on_operator(chd,c2) cd = channel_acting_on_operator(chd,c) cpd = channel_acting_on_operator(chpd,c) if bc == 'O': fomd,a0 = fin2_FoMD_OBC_optm(c2d,cd,cpd,epsilon,a0,imprecision) elif bc == 'P': fomd,a0 = fin2_FoMD_PBC_optm(c2d,cd,cpd,epsilon,a0,imprecision) f = np.append(f,fomd) iter_f += 1 fval = f[-1] return fval,c,a0 def fin2_FoM_OBC_optm(a,b,epsilon,c,imprecision=10**-2,lherm=True): """ Optimization of FoM over MPO for SLD. Function for finite size systems with OBC. Version with two states separated by epsilon. Parameters: a: MPO for the density matrix at the value of estimated parameter phi=phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) b: MPO for the density matrix at the value of estimated parameter phi=phi_0+epsilon, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) epsilon: value of a separation between estimated parameters encoded in a and b, float c: MPO for the SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fomval: optimal value of FoM c: optimal MPO for SLD """ n = len(c) tol_fom = 0.1*imprecision/n**2 if n == 1: if np.shape(a[0])[0] == 1 and np.shape(b[0])[0] == 1 and np.shape(c[0])[0] == 1: d = np.shape(c[0])[2] tensors = [b[0][0,0,:,:]] legs = [[-2,-1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[0][0,0,:,:]] legs = [[-2,-1]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [a[0][0,0,:,:],np.eye(d)] legs = [[-2,-3],[-4,-1]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(d*d,d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[0][0,0,:,:] = np.reshape(cv,(d,d),order='F') if lherm: c[0] = (c[0]+np.conj(np.moveaxis(c[0],2,3)))/2 cv = np.reshape(c[0],-1,order='F') fomval = np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv) else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: relunc_fom = 0.1*imprecision l1f = [0]*n l1_0f = [0]*n l2f = [0]*n fom = np.array([]) iter_fom = 0 while True: tensors = [c[n-1],b[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1f[n-2] = ncon(tensors,legs) l1f[n-2] = l1f[n-2][:,:,0,0] tensors = [c[n-1],a[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1_0f[n-2] = ncon(tensors,legs) l1_0f[n-2] = l1_0f[n-2][:,:,0,0] tensors = [c[n-1],a[n-1],c[n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2f[n-2] = ncon(tensors,legs) l2f[n-2] = l2f[n-2][:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [c[x],b[x],l1f[x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1f[x-1] = ncon(tensors,legs) tensors = [c[x],a[x],l1_0f[x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1_0f[x-1] = ncon(tensors,legs) tensors = [c[x],a[x],c[x],l2f[x]] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2f[x-1] = ncon(tensors,legs) bdl1,bdl2,d,d = np.shape(c[0]) tensors = [b[0],l1f[0]] legs = [[-5,1,-4,-3],[-2,1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[0],l1_0f[0]] legs = [[-5,1,-4,-3],[-2,1]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [a[0],np.eye(d),l2f[0]] legs = [[-9,1,-4,-7],[-8,-3],[-2,1,-6]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[0] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[0] = (c[0]+np.conj(np.moveaxis(c[0],2,3)))/2 cv = np.reshape(c[0],-1,order='F') fom = np.append(fom,np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv)) tensors = [c[0],b[0]] legs = [[-3,-1,1,2],[-4,-2,2,1]] l1c = ncon(tensors,legs) l1c = l1c[:,:,0,0] tensors = [c[0],a[0]] legs = [[-3,-1,1,2],[-4,-2,2,1]] l1_0c = ncon(tensors,legs) l1_0c = l1_0c[:,:,0,0] tensors = [c[0],a[0],c[0]] legs = [[-4,-1,1,2],[-5,-2,2,3],[-6,-3,3,1]] l2c = ncon(tensors,legs) l2c = l2c[:,:,:,0,0,0] for x in range(1,n-1): bdl1,bdl2,d,d = np.shape(c[x]) tensors = [l1c,b[x],l1f[x]] legs = [[-1,1],[1,2,-4,-3],[-2,2]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l1_0c,a[x],l1_0f[x]] legs = [[-1,1],[1,2,-4,-3],[-2,2]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [l2c,a[x],np.eye(d),l2f[x]] legs = [[-1,1,-5],[1,2,-4,-7],[-8,-3],[-2,2,-6]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[x] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[x] = (c[x]+np.conj(np.moveaxis(c[x],2,3)))/2 cv = np.reshape(c[x],-1,order='F') fom = np.append(fom,np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv)) tensors = [l1c,c[x],b[x]] legs = [[3,4],[3,-1,1,2],[4,-2,2,1]] l1c = ncon(tensors,legs) tensors = [l1_0c,c[x],a[x]] legs = [[3,4],[3,-1,1,2],[4,-2,2,1]] l1_0c = ncon(tensors,legs) tensors = [l2c,c[x],a[x],c[x]] legs = [[4,5,6],[4,-1,1,2],[5,-2,2,3],[6,-3,3,1]] l2c = ncon(tensors,legs) bdl1,bdl2,d,d = np.shape(c[n-1]) tensors = [l1c,b[n-1]] legs = [[-1,1],[1,-5,-4,-3]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l1_0c,a[n-1]] legs = [[-1,1],[1,-5,-4,-3]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [l2c,a[n-1],np.eye(d)] legs = [[-1,1,-5],[1,-9,-4,-7],[-8,-3]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[n-1] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[n-1] = (c[n-1]+np.conj(np.moveaxis(c[n-1],2,3)))/2 cv = np.reshape(c[n-1],-1,order='F') fom = np.append(fom,np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv)) iter_fom += 1 if iter_fom >= 2 and all(fom[-2*n:] > 0) and np.std(fom[-2*n:])/np.mean(fom[-2*n:]) <= relunc_fom: break fomval = fom[-1] return fomval,c def fin2_FoM_PBC_optm(a,b,epsilon,c,imprecision=10**-2,lherm=True): """ Optimization of FoM over MPO for SLD. Function for finite size systems with PBC. Version with two states separated by epsilon. Parameters: a: MPO for the density matrix at the value of estimated parameter phi=phi_0, expected ndarray of a shape (bd,bd,d,d,n) b: MPO for the density matrix at the value of estimated parameter phi=phi_0+epsilon, expected ndarray of a shape (bd,bd,d,d,n) epsilon: value of a separation between estimated parameters encoded in a and b, float c: MPO for the SLD, expected ndarray of a shape (bd,bd,d,d,n) imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fomval: optimal value of FoM c: optimal MPO for SLD """ n = np.shape(a)[4] d = np.shape(a)[2] bdr = np.shape(a)[0] bdrp = np.shape(b)[0] bdl = np.shape(c)[0] tol_fom = 0.1*imprecision/n**2 if n == 1: tensors = [b[:,:,:,:,0],np.eye(bdl)] legs = [[1,1,-4,-3],[-2,-1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[:,:,:,:,0],np.eye(bdl)] legs = [[1,1,-4,-3],[-2,-1]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [a[:,:,:,:,0],np.eye(d),np.eye(bdl),np.eye(bdl)] legs = [[1,1,-4,-7],[-8,-3],[-2,-1],[-6,-5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,0] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,0] = (c[:,:,:,:,0]+np.conj(np.moveaxis(c[:,:,:,:,0],2,3)))/2 cv = np.reshape(c[:,:,:,:,0],-1,order='F') fomval = np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv) else: relunc_fom = 0.1*imprecision l1f = np.zeros((bdl,bdrp,bdl,bdrp,n-1),dtype=complex) l1_0f = np.zeros((bdl,bdrp,bdl,bdrp,n-1),dtype=complex) l2f = np.zeros((bdl,bdr,bdl,bdl,bdr,bdl,n-1),dtype=complex) fom = np.array([]) iter_fom = 0 while True: tensors = [c[:,:,:,:,n-1],b[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1f[:,:,:,:,n-2] = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1_0f[:,:,:,:,n-2] = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1],c[:,:,:,:,n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2f[:,:,:,:,:,:,n-2] = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [c[:,:,:,:,x],b[:,:,:,:,x],l1f[:,:,:,:,x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1f[:,:,:,:,x-1] = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],l1_0f[:,:,:,:,x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1_0f[:,:,:,:,x-1] = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x],l2f[:,:,:,:,:,:,x]] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6,-4,-5,-6]] l2f[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [b[:,:,:,:,0],l1f[:,:,:,:,0]] legs = [[2,1,-4,-3],[-2,1,-1,2]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[:,:,:,:,0],l1_0f[:,:,:,:,0]] legs = [[2,1,-4,-3],[-2,1,-1,2]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [a[:,:,:,:,0],np.eye(d),l2f[:,:,:,:,:,:,0]] legs = [[2,1,-4,-7],[-8,-3],[-2,1,-6,-1,2,-5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,0] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,0] = (c[:,:,:,:,0]+np.conj(np.moveaxis(c[:,:,:,:,0],2,3)))/2 cv = np.reshape(c[:,:,:,:,0],-1,order='F') fom = np.append(fom,np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv)) tensors = [c[:,:,:,:,0],b[:,:,:,:,0]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1c = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1_0c = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2c = ncon(tensors,legs) for x in range(1,n-1): tensors = [l1c,b[:,:,:,:,x],l1f[:,:,:,:,x]] legs = [[3,4,-1,1],[1,2,-4,-3],[-2,2,3,4]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l1_0c,a[:,:,:,:,x],l1_0f[:,:,:,:,x]] legs = [[3,4,-1,1],[1,2,-4,-3],[-2,2,3,4]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [l2c,a[:,:,:,:,x],np.eye(d),l2f[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-5],[1,2,-4,-7],[-8,-3],[-2,2,-6,3,4,5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,x] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,x] = (c[:,:,:,:,x]+np.conj(np.moveaxis(c[:,:,:,:,x],2,3)))/2 cv = np.reshape(c[:,:,:,:,x],-1,order='F') fom = np.append(fom,np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv)) tensors = [l1c,c[:,:,:,:,x],b[:,:,:,:,x]] legs = [[-1,-2,3,4],[3,-3,1,2],[4,-4,2,1]] l1c = ncon(tensors,legs) tensors = [l1_0c,c[:,:,:,:,x],a[:,:,:,:,x]] legs = [[-1,-2,3,4],[3,-3,1,2],[4,-4,2,1]] l1_0c = ncon(tensors,legs) tensors = [l2c,c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x]] legs = [[-1,-2,-3,4,5,6],[4,-4,1,2],[5,-5,2,3],[6,-6,3,1]] l2c = ncon(tensors,legs) tensors = [l1c,b[:,:,:,:,n-1]] legs = [[-2,2,-1,1],[1,2,-4,-3]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l1_0c,a[:,:,:,:,n-1]] legs = [[-2,2,-1,1],[1,2,-4,-3]] l1_0 = ncon(tensors,legs) l1_0 = np.reshape(l1_0,-1,order='F') tensors = [l2c,a[:,:,:,:,n-1],np.eye(d)] legs = [[-2,2,-6,-1,1,-5],[1,2,-4,-7],[-8,-3]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*(l1-l1_0)/epsilon dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,n-1] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,n-1] = (c[:,:,:,:,n-1]+np.conj(np.moveaxis(c[:,:,:,:,n-1],2,3)))/2 cv = np.reshape(c[:,:,:,:,n-1],-1,order='F') fom = np.append(fom,np.real(2*cv @ (l1-l1_0)/epsilon - cv @ l2 @ cv)) iter_fom += 1 if iter_fom >= 2 and all(fom[-2*n:] > 0) and np.std(fom[-2*n:])/np.mean(fom[-2*n:]) <= relunc_fom: break fomval = fom[-1] return fomval,c def fin2_FoMD_OBC_optm(c2d,cd,cpd,epsilon,a0,imprecision=10**-2): """ Optimization of FoMD over MPS for initial wave function. Function for finite size systems with OBC. Version with two dual SLDs separated by epsilon. Parameters: c2d: MPO for the square of the dual of the SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cd: MPO for the dual of the SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cpd: MPO for the dual of the SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) epsilon: value of a separation between estimated parameters encoded in cd and cpd, float a0: MPS for the initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) imprecision: expected imprecision of the end results, default value is 10**-2 Returns: fomdval: optimal value of FoMD a0: optimal MPS for the initial wave function """ n = len(a0) if n == 1: if np.shape(c2d[0])[0] == 1 and np.shape(cpd[0])[0] == 1 and np.shape(a0[0])[0] == 1: d = np.shape(a0[0])[2] tensors = [c2d[0][0,0,:,:]] legs = [[-1,-2]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(d,d),order='F') tensors = [cpd[0][0,0,:,:]] legs = [[-1,-2]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(d,d),order='F') tensors = [cd[0][0,0,:,:]] legs = [[-1,-2]] ld = ncon(tensors,legs) ld = np.reshape(ld,(d,d),order='F') eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[0][0,0,:] = np.reshape(a0v,(d),order='F') fomdval = np.real(fomdval[position]) else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: relunc_fomd = 0.1*imprecision l2df = [0]*n lpdf = [0]*n ldf = [0]*n fomd = np.array([]) iter_fomd = 0 while True: tensors = [np.conj(a0[n-1]),c2d[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2df[n-2] = ncon(tensors,legs) l2df[n-2] = l2df[n-2][:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cpd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdf[n-2] = ncon(tensors,legs) lpdf[n-2] = lpdf[n-2][:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] ldf[n-2] = ncon(tensors,legs) ldf[n-2] = ldf[n-2][:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),c2d[x],a0[x],l2df[x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2df[x-1] = ncon(tensors,legs) tensors = [np.conj(a0[x]),cpd[x],a0[x],lpdf[x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpdf[x-1] = ncon(tensors,legs) tensors = [np.conj(a0[x]),cd[x],a0[x],ldf[x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] ldf[x-1] = ncon(tensors,legs) bdpsi1,bdpsi2,d = np.shape(a0[0]) tensors = [c2d[0],l2df[0]] legs = [[-7,1,-3,-6],[-2,1,-5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [cpd[0],lpdf[0]] legs = [[-7,1,-3,-6],[-2,1,-5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [cd[0],ldf[0]] legs = [[-7,1,-3,-6],[-2,1,-5]] ld = ncon(tensors,legs) ld = np.reshape(ld,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[0] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) a0[0] = np.moveaxis(a0[0],2,0) a0[0] = np.reshape(a0[0],(d*bdpsi1,bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[0],full_matrices=False) a0[0] = np.reshape(u,(d,bdpsi1,np.shape(s)[0]),order='F') a0[0] = np.moveaxis(a0[0],0,2) tensors = [np.diag(s) @ vh,a0[1]] legs = [[-1,1],[1,-2,-3]] a0[1] = ncon(tensors,legs) tensors = [np.conj(a0[0]),c2d[0],a0[0]] legs = [[-4,-1,1],[-5,-2,1,2],[-6,-3,2]] l2dc = ncon(tensors,legs) l2dc = l2dc[:,:,:,0,0,0] tensors = [np.conj(a0[0]),cpd[0],a0[0]] legs = [[-4,-1,1],[-5,-2,1,2],[-6,-3,2]] lpdc = ncon(tensors,legs) lpdc = lpdc[:,:,:,0,0,0] tensors = [np.conj(a0[0]),cd[0],a0[0]] legs = [[-4,-1,1],[-5,-2,1,2],[-6,-3,2]] ldc = ncon(tensors,legs) ldc = ldc[:,:,:,0,0,0] for x in range(1,n-1): bdpsi1,bdpsi2,d = np.shape(a0[x]) tensors = [l2dc,c2d[x],l2df[x]] legs = [[-1,1,-4],[1,2,-3,-6],[-2,2,-5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [lpdc,cpd[x],lpdf[x]] legs = [[-1,1,-4],[1,2,-3,-6],[-2,2,-5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [ldc,cd[x],ldf[x]] legs = [[-1,1,-4],[1,2,-3,-6],[-2,2,-5]] ld = ncon(tensors,legs) ld = np.reshape(ld,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[x] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) a0[x] = np.moveaxis(a0[x],2,0) a0[x] = np.reshape(a0[x],(d*bdpsi1,bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[x],full_matrices=False) a0[x] = np.reshape(u,(d,bdpsi1,np.shape(s)[0]),order='F') a0[x] = np.moveaxis(a0[x],0,2) tensors = [np.diag(s) @ vh,a0[x+1]] legs = [[-1,1],[1,-2,-3]] a0[x+1] = ncon(tensors,legs) tensors = [l2dc,np.conj(a0[x]),c2d[x],a0[x]] legs = [[3,4,5],[3,-1,1],[4,-2,1,2],[5,-3,2]] l2dc = ncon(tensors,legs) tensors = [lpdc,np.conj(a0[x]),cpd[x],a0[x]] legs = [[3,4,5],[3,-1,1],[4,-2,1,2],[5,-3,2]] lpdc = ncon(tensors,legs) tensors = [ldc,np.conj(a0[x]),cd[x],a0[x]] legs = [[3,4,5],[3,-1,1],[4,-2,1,2],[5,-3,2]] ldc = ncon(tensors,legs) bdpsi1,bdpsi2,d = np.shape(a0[n-1]) tensors = [l2dc,c2d[n-1]] legs = [[-1,1,-4],[1,-7,-3,-6]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [lpdc,cpd[n-1]] legs = [[-1,1,-4],[1,-7,-3,-6]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [ldc,cd[n-1]] legs = [[-1,1,-4],[1,-7,-3,-6]] ld = ncon(tensors,legs) ld = np.reshape(ld,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[n-1] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) iter_fomd += 1 for x in range(n-1,0,-1): bdpsi1,bdpsi2,d = np.shape(a0[x]) a0[x] = np.moveaxis(a0[x],2,1) a0[x] = np.reshape(a0[x],(bdpsi1,d*bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[x],full_matrices=False) a0[x] = np.reshape(vh,(np.shape(s)[0],d,bdpsi2),order='F') a0[x] = np.moveaxis(a0[x],1,2) tensors = [a0[x-1],u @ np.diag(s)] legs = [[-1,1,-3],[1,-2]] a0[x-1] = ncon(tensors,legs) if iter_fomd >= 2 and all(fomd[-2*n:] > 0) and np.std(fomd[-2*n:])/np.mean(fomd[-2*n:]) <= relunc_fomd: break fomdval = fomd[-1] return fomdval,a0 def fin2_FoMD_PBC_optm(c2d,cd,cpd,epsilon,a0,imprecision=10**-2): """ Optimization of FoMD over MPS for initial wave function. Function for finite size systems with PBC. Version with two dual SLDs separated by epsilon. Parameters: c2d: MPO for square of dual of SLD at the value of estimated parameter phi=-phi_0, expected ndarray of a shape (bd,bd,d,d,n) cd: MPO for dual of SLD at the value of estimated parameter phi=-phi_0, expected ndarray of a shape (bd,bd,d,d,n) cpd: MPO for dual of SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected ndarray of a shape (bd,bd,d,d,n) epsilon: value of a separation between estimated parameters encoded in cd and cpd, float a0: MPS for initial wave function, expected ndarray of a shape (bd,bd,d,n) imprecision: expected imprecision of the end results, default value is 10**-2 Returns: fomdval: optimal value of FoMD a0: optimal MPS for initial wave function """ n = np.shape(c2d)[4] d = np.shape(c2d)[2] bdl2d = np.shape(c2d)[0] bdlpd = np.shape(cpd)[0] bdld = np.shape(cd)[0] bdpsi = np.shape(a0)[0] tol_fomd = 0.1*imprecision/n**2 if n == 1: tensors = [c2d[:,:,:,:,0],np.eye(bdpsi),np.eye(bdpsi)] legs = [[1,1,-3,-6],[-2,-1],[-5,-4]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cpd[:,:,:,:,0],np.eye(bdpsi),np.eye(bdpsi)] legs = [[1,1,-3,-6],[-2,-1],[-5,-4]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cd[:,:,:,:,0],np.eye(bdpsi),np.eye(bdpsi)] legs = [[1,1,-3,-6],[-2,-1],[-5,-4]] ld = ncon(tensors,legs) ld = np.reshape(ld,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [np.eye(bdpsi),np.eye(bdpsi)] legs = [[-2,-1],[-4,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,0] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomdval = np.real(fomdval[position]) else: relunc_fomd = 0.1*imprecision l2df = np.zeros((bdpsi,bdl2d,bdpsi,bdpsi,bdl2d,bdpsi,n-1),dtype=complex) lpdf = np.zeros((bdpsi,bdlpd,bdpsi,bdpsi,bdlpd,bdpsi,n-1),dtype=complex) ldf = np.zeros((bdpsi,bdld,bdpsi,bdpsi,bdld,bdpsi,n-1),dtype=complex) psinormf = np.zeros((bdpsi,bdpsi,bdpsi,bdpsi,n-1),dtype=complex) fomd = np.array([]) iter_fomd = 0 while True: tensors = [np.conj(a0[:,:,:,n-1]),c2d[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2df[:,:,:,:,:,:,n-2] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cpd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdf[:,:,:,:,:,:,n-2] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] ldf[:,:,:,:,:,:,n-2] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),a0[:,:,:,n-1]] legs = [[-1,-3,1],[-2,-4,1]] psinormf[:,:,:,:,n-2] = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x],l2df[:,:,:,:,:,:,x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] l2df[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x],lpdf[:,:,:,:,:,:,x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] lpdf[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cd[:,:,:,:,x],a0[:,:,:,x],ldf[:,:,:,:,:,:,x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] ldf[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),a0[:,:,:,x],psinormf[:,:,:,:,x]] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] psinormf[:,:,:,:,x-1] = ncon(tensors,legs) tensors = [c2d[:,:,:,:,0],l2df[:,:,:,:,:,:,0]] legs = [[2,1,-3,-6],[-2,1,-5,-1,2,-4]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cpd[:,:,:,:,0],lpdf[:,:,:,:,:,:,0]] legs = [[2,1,-3,-6],[-2,1,-5,-1,2,-4]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cd[:,:,:,:,0],ldf[:,:,:,:,:,:,0]] legs = [[2,1,-3,-6],[-2,1,-5,-1,2,-4]] ld = ncon(tensors,legs) ld = np.reshape(ld,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormf[:,:,:,:,0]] legs = [[-2,-4,-1,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,0] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2dc = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdc = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cd[:,:,:,:,0],a0[:,:,:,0]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] ldc = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),a0[:,:,:,0]] legs = [[-1,-3,1],[-2,-4,1]] psinormc = ncon(tensors,legs) for x in range(1,n-1): tensors = [l2dc,c2d[:,:,:,:,x],l2df[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-4],[1,2,-3,-6],[-2,2,-5,3,4,5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [lpdc,cpd[:,:,:,:,x],lpdf[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-4],[1,2,-3,-6],[-2,2,-5,3,4,5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [ldc,cd[:,:,:,:,x],ldf[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-4],[1,2,-3,-6],[-2,2,-5,3,4,5]] ld = ncon(tensors,legs) ld = np.reshape(ld,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormc,psinormf[:,:,:,:,x]] legs = [[1,2,-1,-3],[-2,-4,1,2]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,x] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) tensors = [l2dc,np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x]] legs = [[-1,-2,-3,3,4,5],[3,-4,1],[4,-5,1,2],[5,-6,2]] l2dc = ncon(tensors,legs) tensors = [lpdc,np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x]] legs = [[-1,-2,-3,3,4,5],[3,-4,1],[4,-5,1,2],[5,-6,2]] lpdc = ncon(tensors,legs) tensors = [ldc,np.conj(a0[:,:,:,x]),cd[:,:,:,:,x],a0[:,:,:,x]] legs = [[-1,-2,-3,3,4,5],[3,-4,1],[4,-5,1,2],[5,-6,2]] ldc = ncon(tensors,legs) tensors = [psinormc,np.conj(a0[:,:,:,x]),a0[:,:,:,x]] legs = [[-1,-2,2,3],[2,-3,1],[3,-4,1]] psinormc = ncon(tensors,legs) tensors = [l2dc,c2d[:,:,:,:,n-1]] legs = [[-2,2,-5,-1,1,-4],[1,2,-3,-6]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [lpdc,cpd[:,:,:,:,n-1]] legs = [[-2,2,-5,-1,1,-4],[1,2,-3,-6]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [ldc,cd[:,:,:,:,n-1]] legs = [[-2,2,-5,-1,1,-4],[1,2,-3,-6]] ld = ncon(tensors,legs) ld = np.reshape(ld,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormc] legs = [[-2,-4,-1,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*(lpd-ld)/epsilon-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,n-1] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) iter_fomd += 1 if iter_fomd >= 2 and all(fomd[-2*n:] > 0) and np.std(fomd[-2*n:])/np.mean(fomd[-2*n:]) <= relunc_fomd: break fomdval = fomd[-1] return fomdval,a0 def fin2_FoM_OBC_val(a,b,epsilon,c): """ Calculate value of FoM. Function for finite size systems with OBC. Version with two states separated by epsilon. Parameters: a: MPO for density matrix at the value of estimated parameter phi=phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) b: MPO for density matrix at the value of estimated parameter phi=phi_0+epsilon, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) epsilon: value of a separation between estimated parameters encoded in a and b, float c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) Returns: fomval: value of FoM """ n = len(c) if n == 1: if np.shape(a[0])[0] == 1 and np.shape(b[0])[0] == 1 and np.shape(c[0])[0] == 1: tensors = [c[0][0,0,:,:],b[0][0,0,:,:]] legs = [[1,2],[2,1]] l1 = ncon(tensors,legs) tensors = [c[0][0,0,:,:],a[0][0,0,:,:]] legs = [[1,2],[2,1]] l1_0 = ncon(tensors,legs) tensors = [c[0][0,0,:,:],a[0][0,0,:,:],c[0][0,0,:,:]] legs = [[1,2],[2,3],[3,1]] l2 = ncon(tensors,legs) fomval = 2*(l1-l1_0)/epsilon-l2 else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: tensors = [c[n-1],b[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1 = ncon(tensors,legs) l1 = l1[:,:,0,0] tensors = [c[n-1],a[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1_0 = ncon(tensors,legs) l1_0 = l1_0[:,:,0,0] tensors = [c[n-1],a[n-1],c[n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2 = ncon(tensors,legs) l2 = l2[:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [c[x],b[x],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1 = ncon(tensors,legs) tensors = [c[x],a[x],l1_0] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1_0 = ncon(tensors,legs) tensors = [c[x],a[x],c[x],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2 = ncon(tensors,legs) tensors = [c[0],b[0],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1 = ncon(tensors,legs) l1 = float(l1) tensors = [c[0],a[0],l1_0] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1_0 = ncon(tensors,legs) l1_0 = float(l1_0) tensors = [c[0],a[0],c[0],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2 = ncon(tensors,legs) l2 = float(l2) fomval = 2*(l1-l1_0)/epsilon-l2 return fomval def fin2_FoM_PBC_val(a,b,epsilon,c): """ Calculate value of FoM. Function for finite size systems with PBC. Version with two states separated by epsilon. Parameters: a: MPO for density matrix at the value of estimated parameter phi=phi_0, expected ndarray of a shape (bd,bd,d,d,n) b: MPO for density matrix at the value of estimated parameter phi=phi_0+epsilon, expected ndarray of a shape (bd,bd,d,d,n) epsilon: value of a separation between estimated parameters encoded in a and b, float c: MPO for SLD, expected ndarray of a shape (bd,bd,d,d,n) Returns: fomval: value of FoM """ n = np.shape(a)[4] if n == 1: tensors = [c[:,:,:,:,0],b[:,:,:,:,0]] legs = [[3,3,1,2],[4,4,2,1]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0]] legs = [[3,3,1,2],[4,4,2,1]] l1_0 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0]] legs = [[4,4,1,2],[5,5,2,3],[6,6,3,1]] l2 = ncon(tensors,legs) fomval = 2*(l1-l1_0)/epsilon-l2 else: tensors = [c[:,:,:,:,n-1],b[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1_0 = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1],c[:,:,:,:,n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2 = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [c[:,:,:,:,x],b[:,:,:,:,x],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],l1_0] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1_0 = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6,-4,-5,-6]] l2 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],b[:,:,:,:,0],l1] legs = [[5,3,1,2],[6,4,2,1],[3,4,5,6]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],l1_0] legs = [[5,3,1,2],[6,4,2,1],[3,4,5,6]] l1_0 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0],l2] legs = [[7,4,1,2],[8,5,2,3],[9,6,3,1],[4,5,6,7,8,9]] l2 = ncon(tensors,legs) fomval = 2*(l1-l1_0)/epsilon-l2 return fomval def fin2_FoMD_OBC_val(c2d,cd,cpd,epsilon,a0): """ Calculate value of FoMD. Function for finite size systems with OBC. Version with two dual SLDs separated by epsilon. Parameters: c2d: MPO for square of dual of SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cd: MPO for dual of SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cpd: MPO for dual of SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) epsilon: value of a separation between estimated parameters encoded in cd and cpd, float a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) Returns: fomdval: value of FoMD """ n = len(a0) if n == 1: if np.shape(c2d[0])[0] == 1 and np.shape(cpd[0])[0] == 1 and np.shape(a0[0])[0] == 1: tensors = [np.conj(a0[0][0,0,:]),c2d[0][0,0,:,:],a0[0][0,0,:]] legs = [[1],[1,2],[2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[0][0,0,:]),cpd[0][0,0,:,:],a0[0][0,0,:]] legs = [[1],[1,2],[2]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[0][0,0,:]),cd[0][0,0,:,:],a0[0][0,0,:]] legs = [[1],[1,2],[2]] ld = ncon(tensors,legs) fomdval = 2*(lpd-ld)/epsilon-l2d else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: tensors = [np.conj(a0[n-1]),c2d[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2d = ncon(tensors,legs) l2d = l2d[:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cpd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpd = ncon(tensors,legs) lpd = lpd[:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] ld = ncon(tensors,legs) ld = ld[:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),c2d[x],a0[x],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[x]),cpd[x],a0[x],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[x]),cd[x],a0[x],ld] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] ld = ncon(tensors,legs) tensors = [np.conj(a0[0]),c2d[0],a0[0],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2d = ncon(tensors,legs) l2d = float(l2d) tensors = [np.conj(a0[0]),cpd[0],a0[0],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpd = ncon(tensors,legs) lpd = float(lpd) tensors = [np.conj(a0[0]),cd[0],a0[0],ld] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] ld = ncon(tensors,legs) ld = float(ld) fomdval = 2*(lpd-ld)/epsilon-l2d return fomdval def fin2_FoMD_PBC_val(c2d,cd,cpd,epsilon,a0): """ Calculate value of FoMD. Function for finite size systems with PBC. Version with two dual SLDs separated by epsilon. Parameters: c2d: MPO for square of dual of SLD at the value of estimated parameter phi=-phi_0, expected ndarray of a shape (bd,bd,d,d,n) cd: MPO for dual of SLD at the value of estimated parameter phi=-phi_0, expected ndarray of a shape (bd,bd,d,d,n) cpd: MPO for dual of SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected ndarray of a shape (bd,bd,d,d,n) epsilon: value of a separation between estimated parameters encoded in cd and cpd, float a0: MPS for initial wave function, expected ndarray of a shape (bd,bd,d,n) Returns: fomdval: value of FoMD """ n = np.shape(c2d)[4] if n == 1: tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0]] legs = [[3,3,1],[4,4,1,2],[5,5,2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0]] legs = [[3,3,1],[4,4,1,2],[5,5,2]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cd[:,:,:,:,0],a0[:,:,:,0]] legs = [[3,3,1],[4,4,1,2],[5,5,2]] ld = ncon(tensors,legs) fomdval = 2*(lpd-ld)/epsilon-l2d else: tensors = [np.conj(a0[:,:,:,n-1]),c2d[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cpd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] ld = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cd[:,:,:,:,x],a0[:,:,:,x],ld] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] ld = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0],l2d] legs = [[6,3,1],[7,4,1,2],[8,5,2],[3,4,5,6,7,8]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0],lpd] legs = [[6,3,1],[7,4,1,2],[8,5,2],[3,4,5,6,7,8]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cd[:,:,:,:,0],a0[:,:,:,0],ld] legs = [[6,3,1],[7,4,1,2],[8,5,2],[3,4,5,6,7,8]] ld = ncon(tensors,legs) fomdval = 2*(lpd-ld)/epsilon-l2d return fomdval ########################################## # # # # # 2 Functions for infinite size systems. # # # # # ########################################## ############################# # # # 2.1 High level functions. # # # ############################# def inf(so_before_list, h, so_after_list, L_ini=None, psi0_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True, D_psi0_max=100, D_psi0_max_forced=False): """ Optimization of the lim_{N --> infinity} QFI/N over operator tilde{L} (in iMPO representation) and wave function psi0 (in iMPS representation) and check of convergence in their bond dimensions. Function for infinite size systems. User has to provide information about the dynamics by specifying quantum channel. It is assumed that quantum channel is translationally invariant and is build from layers of quantum operations. User has to provide one defining for each layer operation as a local superoperator. Those local superoperator have to be input in order of their action on the system. Parameter encoding is a stand out quantum operation. It is assumed that parameter encoding acts only once and is unitary so the user have to provide only its generator h. Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Dimension d is the dimension of local Hilbert space (dimension of physical index). Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. L_ini: ndarray of a shape (D_L,D_L,d,d), optional Initial iMPO for tilde{L}. psi0_ini: ndarray of a shape (D_psi0,D_psi0,d), optional Initial iMPS for psi0. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for iMPO representing tilde{L}). D_L_max_forced: bool, optional True if D_L_max have to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge have to be imposed on iMPO representing tilde{L}, otherwise False. D_psi0_max: integer, optional Maximal value of D_psi0 (D_psi0 is bond dimension for iMPS representing psi0). D_psi0_max_forced: bool, optional True if D_psi0_max have to be reached, otherwise False. Returns: result: float Optimal value of figure of merit. result_m: ndarray Matrix describing figure of merit in function of bond dimensions of respectively tilde{L} [rows] and psi0 [columns]. L: ndarray of a shape (D_L,D_L,d,d) Optimal tilde{L} in iMPO representation. psi0: ndarray of a shape (D_psi0,D_psi0,d) Optimal psi0 in iMPS representation. """ if np.linalg.norm(h - np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') d = np.shape(h)[0] epsilon = 10**-4 aux = np.kron(h, np.eye(d)) - np.kron(np.eye(d), h) z = np.diag(np.exp(-1j * np.diag(aux) * epsilon)) ch = inf_create_channel(d, so_before_list + so_after_list) ch2 = inf_create_channel(d, so_before_list + [z] + so_after_list) result, result_m, L, psi0 = inf_gen(d, ch, ch2, epsilon, inf_L_symfun, inf_psi0_symfun, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) return result, result_m, L, psi0 def inf_gen(d, ch, ch2, epsilon, symfun_L, symfun_psi0, L_ini=None, psi0_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True, D_psi0_max=100, D_psi0_max_forced=False): """ Optimization of the figure of merit (usually interpreted as lim_{N --> infinity} QFI/N) over operator tilde{L} (in iMPO representation) and wave function psi0 (in iMPS representation) and check of convergence in their bond dimensions. Function for infinite size systems. User has to provide information about the dynamics by specifying two channels separated by small parameter epsilon as superoperators in iMPO representation. By definition this infinite approach assumes translation invariance of the problem, other than that there are no constraints on the structure of the channel but the complexity of calculations highly depends on channel's bond dimension. Parameters: d: integer Dimension of local Hilbert space (dimension of physical index). ch: ndarray of a shape (D_ch,D_ch,d**2,d**2) Quantum channel as superoperator in iMPO representation. ch2: ndarray of a shape (D_ch2,D_ch2,d**2,d**2) Quantum channel as superoperator in iMPO representation for the value of estimated parameter shifted by epsilon in relation to ch. epsilon: float Value of a separation between estimated parameters encoded in ch and ch2. symfun_L: function Function which symmetrize iMPO for tilde{L} after each step of otimization (the most simple one would be lambda x: x). Choosing good function is key factor for successful optimization in infinite approach. TNQMetro package features inf_L_symfun function which performs well in dephasing type problems. symfun_psi0: function Function which symmetrize iMPS for psi0 after each step of otimization (the most simple one would be lambda x: x). Choosing good function is key factor for successful optimization in infinite approach. TNQMetro package features inf_psi0_symfun function which performs well in dephasing type problems. L_ini: ndarray of a shape (D_L,D_L,d,d), optional Initial iMPO for tilde{L}. psi0_ini: ndarray of a shape (D_psi0,D_psi0,d), optional Initial iMPS for psi0. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for iMPO representing tilde{L}). D_L_max_forced: bool, optional True if D_L_max have to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge have to be imposed on iMPO representing tilde{L}, otherwise False. D_psi0_max: integer, optional Maximal value of D_psi0 (D_psi0 is bond dimension for iMPS representing psi0). D_psi0_max_forced: bool, optional True if D_psi0_max have to be reached, otherwise False. Returns: result: float Optimal value of figure of merit. result_m: ndarray Matrix describing figure of merit in function of bond dimensions of respectively tilde{L} [rows] and psi0 [columns]. L: ndarray of a shape (D_L,D_L,d,d) Optimal tilde{L} in iMPO representation. psi0: ndarray of a shape (D_psi0,D_psi0,d) Optimal psi0 in iMPS representation. """ result, result_m, L, psi0 = inf_FoM_FoMD_optbd(d, ch, ch2, epsilon, symfun_L, symfun_psi0, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) return result, result_m, L, psi0 def inf_state(so_before_list, h, so_after_list, rho0, L_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True): """ Optimization of the lim_{N --> infinity} QFI/N over operator tilde{L} (in iMPO representation) and check of convergence in its bond dimension. Function for infinite size systems and fixed state of the system. User has to provide information about the dynamics by specifying quantum channel. It is assumed that quantum channel is translationally invariant and is build from layers of quantum operations. User has to provide one defining for each layer operation as a local superoperator. Those local superoperator have to be input in order of their action on the system. Parameter encoding is a stand out quantum operation. It is assumed that parameter encoding acts only once and is unitary so the user have to provide only its generator h. Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Dimension d is the dimension of local Hilbert space (dimension of physical index). Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. rho0: ndarray of a shape (D_rho0,D_rho0,d,d) Density matrix describing initial state of the system in iMPO representation. L_ini: ndarray of a shape (D_L,D_L,d,d), optional Initial iMPO for tilde{L}. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for iMPO representing tilde{L}). D_L_max_forced: bool, optional True if D_L_max have to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge have to be imposed on iMPO representing tilde{L}, otherwise False. Returns: result: float Optimal value of figure of merit. result_v: ndarray Vector describing figure of merit in function of bond dimensions of tilde{L}. L: ndarray of a shape (D_L,D_L,d,d) Optimal tilde{L} in iMPO representation. """ if np.linalg.norm(h - np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') d = np.shape(h)[0] epsilon = 10**-4 aux = np.kron(h, np.eye(d)) - np.kron(np.eye(d), h) z = np.diag(np.exp(-1j * np.diag(aux) * epsilon)) ch = inf_create_channel(d, so_before_list + so_after_list) ch2 = inf_create_channel(d, so_before_list + [z] + so_after_list) rho = channel_acting_on_operator(ch, rho0) rho2 = channel_acting_on_operator(ch2, rho0) result, result_v, L = inf_state_gen(d, rho, rho2, epsilon, inf_L_symfun, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) return result, result_v, L def inf_state_gen(d, rho, rho2, epsilon, symfun_L, L_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True): """ Optimization of the figure of merit (usually interpreted as lim_{N --> infinity} QFI/N) over operator tilde{L} (in iMPO representation) and check of convergence in its bond dimension. Function for infinite size systems and fixed state of the system. User has to provide information about the dynamics by specifying two channels separated by small parameter epsilon as superoperators in iMPO representation. By definition this infinite approach assumes translation invariance of the problem, other than that there are no constraints on the structure of the channel but the complexity of calculations highly depends on channel's bond dimension. Parameters: d: integer Dimension of local Hilbert space (dimension of physical index). rho: ndarray of a shape (D_rho,D_rho,d,d) Density matrix at the output of quantum channel in iMPO representation. rho2: ndarray of a shape (D_rho2,D_rho2,d,d) Density matrix at the output of quantum channel in iMPO representation for the value of estimated parameter shifted by epsilon in relation to rho. epsilon: float Value of a separation between estimated parameters encoded in rho and rho2. symfun_L: function Function which symmetrize iMPO for tilde{L} after each step of otimization (the most simple one would be lambda x: x). Choosing good function is key factor for successful optimization in infinite approach. TNQMetro package features inf_L_symfun function which performs well in dephasing type problems. L_ini: ndarray of a shape (D_L,D_L,d,d), optional Initial iMPO for tilde{L}. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for iMPO representing tilde{L}). D_L_max_forced: bool, optional True if D_L_max have to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge have to be imposed on iMPO representing tilde{L}, otherwise False. Returns: result: float Optimal value of figure of merit. result_v: ndarray Vector describing figure of merit in function of bond dimensions of tilde{L}. L: ndarray of a shape (D_L,D_L,d,d) Optimal tilde{L} in iMPO representation. """ result, result_v, L = inf_FoM_optbd(d, rho, rho2, epsilon, symfun_L, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) return result, result_v, L def inf_L_symfun(l): """ Symmetrize function for iMPO representing tilde{L} which performs well in dephasing type problems. Parameters: l: ndarray of a shape (D_L,D_L,d,d) iMPO for tilde{L}. Returns: l: ndarray of a shape (D_L,D_L,d,d) Symmetrize iMPO for tilde{L}. """ bdl = np.shape(l)[0] d = np.shape(l)[2] if bdl == 1: l = np.reshape(l,(d,d),order='F') lmd = np.mean(np.diag(l)) l = np.imag(l) l = (l+np.rot90(l,2).T)/2 l = lmd*np.eye(d)+1j*l l = np.reshape(l,(bdl,bdl,d,d),order='F') else: for nx in range(d): l[:,:,nx,nx] = np.zeros((bdl,bdl),dtype=complex) l[0,0,nx,nx] = 1 return l def inf_psi0_symfun(p): """ Symmetrize function for iMPS representing psi0 which performs well in dephasing type problems. Parameters: p: ndarray of a shape (D_psi0,D_psi0,d) iMPS for psi0. Returns: p: ndarray of a shape (D_psi0,D_psi0,d) Symmetrize iMPS for psi0. """ p = (p+np.conj(np.moveaxis(p,0,1)))/2 p = (p+np.moveaxis(np.flip(p,2),0,1))/2 p = (p+np.moveaxis(np.rot90(p,2),0,1))/2 return p ############################ # # # 2.2 Low level functions. # # # ############################ def inf_create_channel(d, so_list, tol=10**-10): """ Creates iMPO for superoperator describing translationally invariant quantum channel from list of local superoperators. Function for infinite size systems. Local superoperators acting on more then 4 neighbour sites are not currently supported. Parameters: d: integer Dimension of local Hilbert space (dimension of physical index). so_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators in order of their action on the system. Local superoperators acting on more then 4 neighbour sites are not currently supported. tol: float, optional Factor which after multiplication by the highest singular value give cutoff on singular values. Returns: ch: ndarray of a shape (D_ch,D_ch,d**2,d**2) Quantum channel as superoperator in iMPO representation. """ if so_list == []: ch = np.eye(d**2,dtype=complex) ch = ch[np.newaxis,np.newaxis,:,:] return ch for i in range(len(so_list)): so = so_list[i] k = int(math.log(np.shape(so)[0],d**2)) if np.linalg.norm(so-np.diag(np.diag(so))) < 10**-10: so = np.diag(so) if k == 1: bdchi = 1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = so[nx] elif k == 2: so = np.reshape(so,(d**2,d**2),order='F') u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = np.outer(sv[:,nx],us[nx,:]) elif k == 3: so = np.reshape(so,(d**2,d**4),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**2),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 bdchi = bdchi2*bdchi1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-3],[-4]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchi,bdchi),order='F') elif k == 4: so = np.reshape(so,(d**2,d**6),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**2,d**2),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 bdchi = bdchi3*bdchi2*bdchi1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-4],[-3,-5],[-6]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchi,bdchi),order='F') else: warnings.warn('Local noise superoperators acting on more then 4 neighbour sites are not currently supported.') else: if k == 1: bdchi = 1 chi = so[np.newaxis,np.newaxis,:,:] elif k == 2: u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh us = np.reshape(us,(d**2,d**2,bdchi),order='F') sv = np.reshape(sv,(bdchi,d**2,d**2),order='F') tensors = [sv,us] legs = [[-1,-3,1],[1,-4,-2]] chi = ncon(tensors,legs) elif k == 3: so = np.reshape(so,(d**4,d**8),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2,d**2,d**2),order='F') tensors = [sv2,us2,us1] legs = [[-1,-5,1],[-2,1,2,-3],[2,-6,-4]] chi = ncon(tensors,legs) bdchi = bdchi2*bdchi1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') elif k == 4: so = np.reshape(so,(d**4,d**12),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**8),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**4,d**4),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 sv3 = np.reshape(sv3,(bdchi3,d**2,d**2),order='F') tensors = [sv3,us3,us2,us1] legs = [[-1,-7,1],[-2,1,2,-4],[-3,2,3,-5],[3,-8,-6]] chi = ncon(tensors,legs) bdchi = bdchi3*bdchi2*bdchi1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') else: warnings.warn('Local noise superoperators acting on more then 4 neighbour sites are not currently supported.') if i == 0: bdch = bdchi ch = chi else: bdch = bdchi*bdch tensors = [chi,ch] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] ch = ncon(tensors,legs) ch = np.reshape(ch,(bdch,bdch,d**2,d**2),order='F') return ch def inf_L_normalization(l): """ Normalize (shifted) SLD iMPO. Parameters: l: (shifted) SLD iMPO, expected ndarray of a shape (bd,bd,d,d) Returns: l: normalized (shifted) SLD iMPO """ d = np.shape(l)[2] tensors = [l] legs = [[-1,-2,1,1]] tm = ncon(tensors,legs) ltr = np.linalg.eigvals(tm) ltr = ltr[np.argmax(np.abs(ltr))] ltr = np.real(ltr) l = d*l/ltr return l def inf_psi0_normalization(p): """ Normalize wave function iMPS. Parameters: p: wave function iMPS, expected ndarray of a shape (bd,bd,d) Returns: p: normalized wave function iMPS """ bdp = np.shape(p)[0] tensors = [np.conj(p),p] legs = [[-1,-3,1],[-2,-4,1]] tm = ncon(tensors,legs) tm = np.reshape(tm,(bdp*bdp,bdp*bdp),order='F') tm = (tm+np.conj(tm).T)/2 tmval = np.linalg.eigvalsh(tm) pnorm = np.sqrt(tmval[-1]) p = p/pnorm return p def inf_enlarge_bdl(cold,factor,symfun): """ Enlarge bond dimension of (shifted) SLD iMPO. Function for infinite size systems. Parameters: cold: (shifted) SLD iMPO, expected ndarray of a shape (bd,bd,d,d) factor: factor which determine on average relation between old and newly added values of (shifted) SLD iMPO symfun: symmetrize function Returns: c: (shifted) SLD iMPO with bd += 1 """ d = np.shape(cold)[2] bdl = np.shape(cold)[0]+1 rng = np.random.default_rng() c = np.zeros((bdl,bdl,d,d),dtype=complex) for nx in range(d): for nxp in range(d): meanrecold = np.sum(np.abs(np.real(cold[:,:,nx,nxp])))/(bdl-1)**2 meanimcold = np.sum(np.abs(np.imag(cold[:,:,nx,nxp])))/(bdl-1)**2 c[:,:,nx,nxp] = (meanrecold*rng.random((bdl,bdl))+1j*meanimcold*rng.random((bdl,bdl)))*factor c = (c + np.conj(np.moveaxis(c,2,3)))/2 c[0:bdl-1,0:bdl-1,:,:] = cold c = symfun(c) c = inf_L_normalization(c) return c def inf_enlarge_bdpsi(a0old,ratio,symfund): """ Enlarge bond dimension of wave function iMPS. Function for infinite size systems. Parameters: a0old: wave function iMPS, expected ndarray of a shape (bd,bd,d) ratio: factor which determine on average relation between last and next to last values of diagonals of wave function iMPS symfund: symmetrize function Returns: a0: wave function iMPS with bd += 1 """ d = np.shape(a0old)[2] bdpsi = np.shape(a0old)[0]+1 a0 = np.zeros((bdpsi,bdpsi,d),dtype=complex) for i in range(d): if i <= np.ceil(d/2)-1: a0oldihalf = np.triu(np.rot90(a0old[:,:,i],-1)) a0[0:bdpsi-1,1:bdpsi,i] = a0oldihalf a0[:,:,i] = a0[:,:,i]+a0[:,:,i].T a0[:,:,i] = a0[:,:,i]+np.diag(np.concatenate(([0],np.diag(a0[:,:,i],2),[0]))) a0[:,:,i] = np.rot90(a0[:,:,i],1) a0[0,-1,i] = ratio*(1+1j)*np.abs(a0[0,-2,i]) a0[-1,0,i] = np.conj(a0[0,-1,i]) if i == np.ceil(d/2)-1 and np.mod(d,2) == 1: a0[:,:,i] = (a0[:,:,i]+a0[:,:,i].T)/2 else: a0[:,:,i] = a0[:,:,d-1-i].T a0 = symfund(a0) a0 = inf_psi0_normalization(a0) return a0 def inf_FoM_FoMD_optbd(d,ch,chp,epsilon,symfun,symfund,cini=None,a0ini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True,bdpsimax=100,alwaysbdpsimax=False): """ Iterative optimization of FoM/FoMD over (shifted) SLD iMPO and initial wave function iMPS and also check of convergence in bond dimensions. Function for infinite size systems. Parameters: d: dimension of local Hilbert space (dimension of physical index) ch: iMPO for quantum channel at the value of estimated parameter phi=phi_0, expected ndarray of a shape (bd,bd,d**2,d**2) chp: iMPO for quantum channel at the value of estimated parameter phi=phi_0+epsilon, expected ndarray of a shape (bd,bd,d**2,d**2) epsilon: value of a separation between estimated parameters encoded in ch and chp, float symfun: symmetrize function for iMPO for (shifted) SLD symfund: symmetrize function for iMPS for initial wave function cini: initial iMPO for (shifted) SLD, expected TN of a shape (bd,bd,d,d) a0ini: initial iMPS for initial wave function, expected TN of a shape (bd,bd,d) imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for (shifted) SLD iMPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for (shifted) SLD iMPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD iMPO, otherwise False bdpsimax: maximal value of bd for iMPS for initial wave function, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for iMPS for initial wave function have to be reached, otherwise False (default value) Returns: result: optimal value of FoM/FoMD resultm: matrix describing FoM/FoMD in function of bd of respectively (shifted) SLD iMPO [rows] and initial wave function iMPS [columns] c: optimal iMPO for (shifted) SLD a0: optimal iMPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine a0 = a0[np.newaxis,np.newaxis,:] else: a0 = a0ini bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) if cini is None: bdl = 1 c = np.triu(np.ones((d,d))-np.eye(d)) c = 1j*epsilon*c c = c+np.conj(c).T c = np.eye(d)+c c = np.reshape(c,(bdl,bdl,d,d),order='F') else: c = cini bdl = np.shape(c)[0] c = c.astype(complex) resultm = np.zeros((bdlmax,bdpsimax),dtype=float) resultm[bdl-1,bdpsi-1],c,a0 = inf_FoM_FoMD_optm(c,a0,ch,chp,epsilon,symfun,symfund,imprecision,lherm) ratiov = np.array([10**-3,10**-2.5,10**-2]) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: while True: if bdpsi == bdpsimax: break else: a0old = a0 bdpsi += 1 i = 0 while True: a0 = inf_enlarge_bdpsi(a0,ratiov[i],symfund) resultm[bdl-1,bdpsi-1],cnew,a0new = inf_FoM_FoMD_optm(c,a0,ch,chp,epsilon,symfun,symfund,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-1,bdpsi-2]: break i += 1 if i == np.size(ratiov): problem = True break if problem: break if not(alwaysbdpsimax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-1,bdpsi-2]: bdpsi += -1 a0 = a0old a0copy = a0new ccopy = cnew break else: a0 = a0new c = cnew if problem: break if bdl == bdlmax: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi] break else: bdl += 1 i = 0 while True: c = inf_enlarge_bdl(c,factorv[i],symfun) resultm[bdl-1,bdpsi-1],cnew,a0new = inf_FoM_FoMD_optm(c,a0,ch,chp,epsilon,symfun,symfund,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-2,bdpsi-1]: a0 = a0new c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-2,bdpsi-1]: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: if resultm[bdl-1,bdpsi-1] < resultm[bdl-2,bdpsi]: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] bdl += -1 bdpsi += 1 result = resultm[bdl-1,bdpsi-1] else: resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi-1] break if not(problem): break return result,resultm,c,a0 def inf_FoM_optbd(d,a,b,epsilon,symfun,cini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True): """ Optimization of FoM over (shifted) SLD iMPO and also check of convergence in bond dimension. Function for infinite size systems. Parameters: d: dimension of local Hilbert space (dimension of physical index) a: iMPO for density matrix at the value of estimated parameter phi=phi_0, expected ndarray of a shape (bd,bd,d,d) b: iMPO for density matrix at the value of estimated parameter phi=phi_0+epsilon, expected ndarray of a shape (bd,bd,d,d) epsilon: value of a separation between estimated parameters encoded in a and b, float symfun: symmetrize function for iMPO for (shifted) SLD cini: initial iMPO for (shifted) SLD, expected TN of a shape (bd,bd,d,d) imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for (shifted) SLD iMPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for (shifted) SLD iMPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD iMPO, otherwise False Returns: result: optimal value of FoM resultv: matrix describing FoM in function of bd of (shifted) SLD iMPO c: optimal iMPO for (shifted) SLD """ while True: if cini is None: bdl = 1 c = np.triu(np.ones((d,d))-np.eye(d)) c = 1j*epsilon*c c = c+np.conj(c).T c = np.eye(d)+c c = np.reshape(c,(bdl,bdl,d,d),order='F') else: c = cini bdl = np.shape(c)[0] c = c.astype(complex) resultv = np.zeros(bdlmax,dtype=float) resultv[bdl-1],c = inf_FoM_optm_glob(a,b,c,epsilon,symfun,imprecision,lherm) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdl == bdlmax: resultv = resultv[0:bdl] result = resultv[bdl-1] break else: bdl += 1 i = 0 while True: c = inf_enlarge_bdl(c,factorv[i],symfun) resultv[bdl-1],cnew = inf_FoM_optm_glob(a,b,c,epsilon,symfun,imprecision,lherm) if resultv[bdl-1] >= resultv[bdl-2]: c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultv[bdl-1] < (1+imprecision)*resultv[bdl-2]: resultv = resultv[0:bdl] result = resultv[bdl-1] break if not(problem): break return result,resultv,c def inf_FoMD_optbd(d,c2d,cpd,epsilon,symfund,a0ini=None,imprecision=10**-2,bdpsimax=100,alwaysbdpsimax=False): """ Optimization of FoMD over initial wave function iMPS and also check of convergence in bond dimension. Function for infinite size systems. Parameters: d: dimension of local Hilbert space (dimension of physical index) c2d: iMPO for square of dual of (shifted) SLD at the value of estimated parameter phi=-phi_0, expected ndarray of a shape (bd,bd,d,d) cpd: iMPO for dual of (shifted) SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected ndarray of a shape (bd,bd,d,d) epsilon: value of a separation between estimated parameters encoded in c2d and cpd, float symfund: symmetrize function for iMPS for initial wave function a0ini: initial iMPS for initial wave function, expected TN of a shape (bd,bd,d) imprecision: expected imprecision of the end results, default value is 10**-2 bdpsimax: maximal value of bd for iMPS for initial wave function, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for iMPS for initial wave function have to be reached, otherwise False (default value) Returns: result: optimal value of FoMD resultv: matrix describing FoMD in function of bd of initial wave function iMPS a0: optimal iMPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine a0 = a0[np.newaxis,np.newaxis,:] else: a0 = a0ini bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) resultv = np.zeros(bdpsimax,dtype=float) resultv[bdpsi-1],a0 = inf_FoMD_optm_glob(c2d,cpd,a0,epsilon,symfund,imprecision) ratiov = np.array([10**-3,10**-2.5,10**-2]) problem = False while True: if bdpsi == bdpsimax: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break else: bdpsi += 1 i = 0 while True: a0 = inf_enlarge_bdpsi(a0,ratiov[i],symfund) resultv[bdpsi-1],a0new = inf_FoMD_optm_glob(c2d,cpd,a0,epsilon,symfund,imprecision) if resultv[bdpsi-1] >= resultv[bdpsi-2]: a0 = a0new break i += 1 if i == np.size(ratiov): problem = True break if problem: break if not(alwaysbdpsimax) and resultv[bdpsi-1] < (1+imprecision)*resultv[bdpsi-2]: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break if not(problem): break return result,resultv,a0 def inf_FoM_FoMD_optm(c,a0,ch,chp,epsilon,symfun,symfund,imprecision=10**-2,lherm=True): """ Iterative optimization of FoM/FoMD over (shifted) SLD iMPO and initial wave function iMPS. Function for infinite size systems. Parameters: c: iMPO for (shifted) SLD, expected ndarray of a shape (bd,bd,d,d) a0: iMPS for initial wave function, expected ndarray of a shape (bd,bd,d) ch: iMPO for quantum channel at the value of estimated parameter phi=phi_0, expected ndarray of a shape (bd,bd,d**2,d**2) chp: iMPO for quantum channel at the value of estimated parameter phi=phi_0+epsilon, expected ndarray of a shape (bd,bd,d**2,d**2) epsilon: value of a separation between estimated parameters encoded in ch and chp, float symfun: symmetrize function for iMPO for (shifted) SLD symfund: symmetrize function for iMPS for initial wave function imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD iMPO, otherwise False Returns: fval: optimal value of FoM/FoMD c: optimal iMPO for (shifted) SLD a0: optimal iMPS for initial wave function """ d = np.shape(c)[2] bdl = np.shape(c)[0] relunc_f = 0.1*imprecision chd = np.conj(np.moveaxis(ch,2,3)) chpd = np.conj(np.moveaxis(chp,2,3)) f = np.array([]) iter_f = 0 while True: a0_dm = wave_function_to_density_matrix(a0) a = channel_acting_on_operator(ch,a0_dm) b = channel_acting_on_operator(chp,a0_dm) fom,c = inf_FoM_optm_glob(a,b,c,epsilon,symfun,imprecision,lherm) f = np.append(f,fom) if iter_f >= 2 and np.std(f[-4:])/np.mean(f[-4:]) <= relunc_f: break c2 = np.zeros((bdl**2,bdl**2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): for nxpp in range(d): c2[:,:,nx,nxp] = c2[:,:,nx,nxp]+np.kron(c[:,:,nx,nxpp],c[:,:,nxpp,nxp]) c2d = channel_acting_on_operator(chd,c2) cpd = channel_acting_on_operator(chpd,c) fomd,a0 = inf_FoMD_optm_glob(c2d,cpd,a0,epsilon,symfund,imprecision) f = np.append(f,fomd) iter_f += 1 fval = f[-1] return fval,c,a0 def inf_FoM_optm_glob(a,b,c,epsilon,symfun,imprecision=10**-2,lherm=True): """ Optimization of FoM over iMPO for (shifted) SLD. Function for infinite size systems. Parameters: a: iMPO for density matrix at the value of estimated parameter phi=phi_0, expected ndarray of a shape (bd,bd,d,d) b: iMPO for density matrix at the value of estimated parameter phi=phi_0+epsilon, expected ndarray of a shape (bd,bd,d,d) c: iMPO for (shifted) SLD, expected ndarray of a shape (bd,bd,d,d) epsilon: value of a separation between estimated parameters encoded in a and b, float symfun: symmetrize function for iMPO for (shifted) SLD imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD iMPO, otherwise False Returns: fomval: optimal value of FoM c: optimal iMPO for (shifted) SLD """ def inf_FoM_optm_glob_mix(m,c_old,opt_flag=True,c_old_locopt=None): """ Nested function for mixing localy optimal iMPO for (shifted) SLD with its initial form according to parameter m. Parameters: m: mixing parameter c_old: initial iMPO for (shifted) SLD, expected ndarray of a shape (bd,bd,d,d) opt_flag: boolean value, True (default value) if calculating localy optimal iMPO is necessary, otherwise False c_old_locopt: localy optimal iMPO for (shifted) SLD used when opt_flag=False, default value is None Returns: fomvalf: value of FoM c_newf: iMPO for (shifted) SLD after mixing c_locoptf: localy optimal iMPO for (shifted) SLD before mixing """ if opt_flag: c_locoptf = inf_FoM_optm_loc(a,b,c_old,epsilon,imprecision,lherm) c_locoptf = symfun(c_locoptf) c_locoptf = inf_L_normalization(c_locoptf) else: c_locoptf = c_old_locopt c_newf = c_locoptf*np.sin(m*np.pi)-c_old*np.cos(m*np.pi) c_newf = symfun(c_newf) c_newf = inf_L_normalization(c_newf) fomvalf = inf_FoM_val(a,b,c_newf,epsilon) return fomvalf,c_newf,c_locoptf step_ini = 10**-1 step_tiny = 10**-10 relunc_fom = 0.1*imprecision fom = np.array([]) fom_1 = inf_FoM_val(a,b,c,epsilon) fom_05,c_05 = inf_FoM_optm_glob_mix(1/2,c)[:2] if fom_05 > fom_1: c = c_05 fom = np.append(fom,fom_05) else: fom = np.append(fom,fom_1) del c_05 fom_tinylean = inf_FoM_optm_glob_mix(1+step_tiny,c)[0] if fom_tinylean > fom[0]: step = step_ini else: step = -step_ini opt_flag = True c_locopt = None iter_fom = 1 while True: fomval,c_new,c_locopt = inf_FoM_optm_glob_mix(1+step,c,opt_flag,c_locopt) if fomval > fom[-1]: c = c_new fom = np.append(fom,fomval) opt_flag = True iter_fom += 1 else: step = step/2 opt_flag = False if np.abs(step) < step_tiny or (iter_fom >= 4 and all(fom[-4:] > 0) and np.std(fom[-4:])/np.mean(fom[-4:]) <= relunc_fom): break fomval = fom[-1] return fomval,c def inf_FoMD_optm_glob(c2d,cpd,a0,epsilon,symfund,imprecision=10**-2): """ Optimization of FoMD over iMPS for initial wave function. Function for infinite size systems. Parameters: c2d: iMPO for square of dual of (shifted) SLD at the value of estimated parameter phi=-phi_0, expected ndarray of a shape (bd,bd,d,d) cpd: iMPO for dual of (shifted) SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected ndarray of a shape (bd,bd,d,d) a0: iMPS for initial wave function, expected ndarray of a shape (bd,bd,d) epsilon: value of a separation between estimated parameters encoded in c2d and cpd, float symfund: symmetrize function for iMPS for initial wave function imprecision: expected imprecision of the end results, default value is 10**-2 Returns: fomdval: optimal value of FoMD a0: optimal iMPS for initial wave function """ def inf_FoMD_optm_glob_mix(m,a0_old,opt_flag=True,a0_old_locopt=None): """ Nested function for mixing localy optimal iMPS for initial wave function with its initial form according to parameter m. Parameters: m: mixing parameter a0_old: initial iMPS for initial wave function, expected ndarray of a shape (bd,bd,d) opt_flag: boolean value, True (default value) if calculating localy optimal iMPS is necessary, otherwise False a0_old_locopt: localy optimal iMPS for initial wave function used when opt_flag=False, default value is None Returns: fomdvalf: value of FoMD a0_newf: iMPS for initial wave function after mixing a0_locoptf: localy optimal iMPS for initial wave function before mixing """ if opt_flag: a0_locoptf = inf_FoMD_optm_loc(c2d,cpd,a0_old,epsilon,imprecision) a0_locoptf = symfund(a0_locoptf) a0_locoptf = inf_psi0_normalization(a0_locoptf) else: a0_locoptf = a0_old_locopt a0_newf = a0_locoptf*np.sin(m*np.pi)-a0_old*np.cos(m*np.pi) a0_newf = symfund(a0_newf) a0_newf = inf_psi0_normalization(a0_newf) fomdvalf = inf_FoMD_val(c2d,cpd,a0_newf,epsilon) return fomdvalf,a0_newf,a0_locoptf step_ini = 10**-1 step_tiny = 10**-10 relunc_fomd = 0.1*imprecision fomd = np.array([]) fomd_1 = inf_FoMD_val(c2d,cpd,a0,epsilon) fomd_05,a0_05 = inf_FoMD_optm_glob_mix(1/2,a0)[:2] if fomd_05 > fomd_1: a0 = a0_05 fomd = np.append(fomd,fomd_05) else: fomd = np.append(fomd,fomd_1) del a0_05 fomd_tinylean = inf_FoMD_optm_glob_mix(1+step_tiny,a0)[0] if fomd_tinylean > fomd[0]: step = step_ini else: step = -step_ini opt_flag = True a0_locopt = None iter_fomd = 1 while True: fomdval,a0_new,a0_locopt = inf_FoMD_optm_glob_mix(1+step,a0,opt_flag,a0_locopt) if fomdval > fomd[-1]: a0 = a0_new fomd = np.append(fomd,fomdval) opt_flag = True iter_fomd += 1 else: step = step/2 opt_flag = False if np.abs(step) < step_tiny or (iter_fomd >= 4 and all(fomd[-4:] > 0) and np.std(fomd[-4:])/np.mean(fomd[-4:]) <= relunc_fomd): break fomdval = fomd[-1] return fomdval,a0 def inf_FoM_optm_loc(a,b,c,epsilon,imprecision=10**-2,lherm=True): """ Calculate localy optimal iMPO for (shifted) SLD. Function for infinite size systems. Parameters: a: iMPO for density matrix at the value of estimated parameter phi=phi_0, expected ndarray of a shape (bd,bd,d,d) b: iMPO for density matrix at the value of estimated parameter phi=phi_0+epsilon, expected ndarray of a shape (bd,bd,d,d) c: iMPO for (shifted) SLD, expected ndarray of a shape (bd,bd,d,d) epsilon: value of a separation between estimated parameters encoded in a and b, float imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD iMPO, otherwise False Returns: c: localy optimal iMPO for (shifted) SLD """ d = np.shape(a)[2] bdr = np.shape(a)[0] bdrp = np.shape(b)[0] bdl = np.shape(c)[0] tol_fom = imprecision*epsilon**2 tensors = [c,b] legs = [[-1,-3,1,2],[-2,-4,2,1]] tm = ncon(tensors,legs) tm = np.reshape(tm,(bdl*bdrp,bdl*bdrp),order='F') tmval,tmvr =
np.linalg.eig(tm)
numpy.linalg.eig
""" This module contains code for data retrieval and sampling. Preprocess of data took place in advance of this file. """ from solardataretrieval import utilities import boto3 from solardatatools.clear_day_detection import filter_for_sparsity from solardatatools import find_clear_days from io import BytesIO import pandas as pd import numpy as np import sys from sys import path path.append('..') from functools import partial def get_summary_file(): """ This function gets the summary file (.csv) for sunpower data that was generated by preprossing. param: not applicable return: summary file as a dataframe """ key, secret_key = utilities.get_credentials() s3 = boto3.client('s3', aws_access_key_id=key, aws_secret_access_key=secret_key) summary_df = pd.read_csv('s3://pv.insight.sunpower.preprocessed/summary_file.csv', index_col=0) return summary_df class Retrieval(): """ This class includes three functions for data sampling pipeline. Initially, the data are filtered_indexes based on the user filter threshold parameters. The data are randmoly retrieved from the filtered data based on user input of number of sites and days per site. The selected data are uploaded in AWS S3 bucket including power output values and metadata. Parameters ---------- Data sampling: number_of_sites, number_of_days, quantile_percent Returns ---------- Random selection of sites and days per site, uploaded data on AWS S3 Bucket. """ def __init__(self): self.number_of_sites = None self.number_of_days = None self.quantile_percent = None self.site_filter_list = [] self.daily_filter_list = [] self.summary_df = get_summary_file() def add_site_filter(self, site_filter_expression): self.site_filter_list.append(site_filter_expression) return self.site_filter_list def construct_standard_site_filters(self): self.add_site_filter(self.summary_df['overall_sparsity'] <0.3) self.add_site_filter(self.summary_df['overall_quality'] >0.7) self.add_site_filter(self.summary_df['time_sample'] ==288) def add_daily_filter(self, daily_filter): self.daily_filter_list.append(daily_filter) return self.daily_filter_list def data_retrieval(self, number_of_sites, number_of_days, quantile_percent): df_site_filter = pd.DataFrame(data=self.site_filter_list).T filtered_indexes = np.alltrue(df_site_filter, axis=1) df_meta_data = pd.DataFrame(columns=['site_ID', 'sensor_ID', 'start_timestamp', 'end_timestamp', 'duration_days', 'time_sample', 'quantile_95', 'overall_sparsity', "overall_quality", "days_selected"]) summary_file_filtered = self.summary_df[filtered_indexes] all_sites = summary_file_filtered.site_ID.unique() site_IDs_selected = np.random.choice(all_sites, number_of_sites) index_to_download = [] #from original summary file! sensor_IDs_selected = [] for site_id in site_IDs_selected: site1 = summary_file_filtered.loc[summary_file_filtered['site_ID'] == site_id] sensor_IDs = site1.sensor_ID.unique() selected_sensor =
np.random.choice(sensor_IDs, 1)
numpy.random.choice
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den =
N.array([2,2,1])
numpy.array
import numpy as np import _pickle as pickle import gpflow import os from Dataset import getDemonstrationDataset from Sliding_Block import * import sys sys.path.insert(0,'./../Task_Agnostic_Online_Multitask_Imitation_Learning/') from Housekeeping import * def validate_GP_controller(context_code, window_size, partial_observability, drift_per_time_step, moving_windows_x_size, behavior_controller, mean_x, deviation_x, mean_y, deviation_y): if not os.path.exists(LOGS_DIRECTORY): os.makedirs(LOGS_DIRECTORY) file_to_save_logs = LOGS_DIRECTORY + str(context_code) + '_' + str(window_size) + '_' + str(partial_observability) + '_' + 'GP.pkl' logs_for_all_blocks = {} for block_mass in ALL_BLOCK_MASSES_TO_VALIDATE: logs_for_a_block_and_initial_state = {} for initial_state in INITIALIZATION_STATES_TO_VALIDATE: all_observations = [] all_behavior_control_means = [] all_behavior_control_deviations = [] all_behavior_costs = [] all_target_control_means, all_target_control_deviations = [], [] env = Sliding_Block(mass=block_mass, initial_state=initial_state) total_cost = total_variance = 0. observation = env.state from LQR import dlqr K, X, eigVals = dlqr(env.A, env.B, env.Q, env.R) target_mean_control, target_var_control = -1. * np.dot(K, observation), np.array([[0.]]) if not partial_observability: observation = np.append(observation.T, np.array([[block_mass]]), axis=1) else: observation = observation.T moving_window_x = np.zeros((1, moving_windows_x_size)) moving_window_x[0, -observation.shape[1]:] = observation[0] behavior_mean_control, behavior_var_control = behavior_controller.predict_y(NORMALIZE(moving_window_x, mean_x, deviation_x)) behavior_mean_control = REVERSE_NORMALIZE(behavior_mean_control, mean_y, deviation_y) behavior_var_control = behavior_var_control * deviation_y step_limit = 0 while (step_limit < MAXIMUM_NUMBER_OF_STEPS): step_limit += 1 all_observations.append(observation) all_behavior_control_means.append(behavior_mean_control) all_behavior_control_deviations.append(np.sqrt(behavior_var_control)) all_target_control_means.append(target_mean_control) all_target_control_deviations.append(target_var_control) observation, cost, finish = env.step(behavior_mean_control) all_behavior_costs.append(cost) target_mean_control, target_var_control = -1. * np.dot(K, observation), np.array([[0.]]) if not window_size == 1: moving_window_x[0, :-drift_per_time_step] = moving_window_x[0, drift_per_time_step:] moving_window_x[0, -drift_per_time_step:-(drift_per_time_step-behavior_mean_control.shape[1])] = behavior_mean_control[0] moving_window_x[0, -(drift_per_time_step-behavior_mean_control.shape[0])] = -cost if not partial_observability: observation = np.append(observation.T, np.array([[block_mass]]), axis=1) else: observation = observation.T moving_window_x[0, -observation.shape[1]:] = observation[0] behavior_mean_control, behavior_var_control = behavior_controller.predict_y(NORMALIZE(moving_window_x, mean_x, deviation_x)) behavior_mean_control = REVERSE_NORMALIZE(behavior_mean_control, mean_y, deviation_y) behavior_var_control = behavior_var_control * deviation_y logs_for_a_block_and_initial_state[str(initial_state)] = {OBSERVATIONS_LOG_KEY:
np.concatenate(all_observations)
numpy.concatenate
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den =
N.array([4,4,2])
numpy.array
import numpy as np from scipy.io.wavfile import read import librosa import torch import os import csv max_wav_value=32768.0 def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)) #mask = (ids < lengths.unsqueeze(1)).byte() #deprecated mask = (ids < lengths.unsqueeze(1)).bool() return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return torch.autograd.Variable(x) def flatten_list(l): return [item for sublist in l for item in sublist] def str2bool(v): return v.lower() in ('true', '1') def makedirs(path): if not os.path.exists(path): print(" [*] Make directories : {}".format(path)) os.makedirs(path) def add_postfix(path, postfix): path_without_ext, ext = path.rsplit('.', 1) return "{}.{}.{}".format(path_without_ext, postfix, ext) def get_kl_weight(af, lag, k, x0, upper, constant, nsteps=250000): kl_weights = [0 for _ in range(nsteps)] steps = list(range(nsteps)) for i, step in enumerate(steps): if step >= lag: if af == 'logistic': kl_weights[i] = float(upper/(1+np.exp(-k*(step-x0)))) elif af == 'linear': #kl_weights[i] = min(upper, step/x0) kl_weights[i] = min(upper, (step-lag)/x0) elif af == 'constant': kl_weights[i] = constant else: kl_weights[i] = 0 return kl_weights def get_text_padding_rate(input_lengths, top_n=3): batch_size = input_lengths.size(0) max_len = int(max(input_lengths)) mean_len = float(sum(input_lengths)) / len(input_lengths) padding_rate = 1 - mean_len / max_len top_len = input_lengths[:min(batch_size, top_n)] top_len = '-'.join([str(int(l)) for l in top_len]) return padding_rate, max_len, top_len def get_mel_padding_rate(gate_padded, top_n=3): batch_size, max_len = gate_padded.shape padded_zeros = torch.sum(gate_padded, 1) - 1 padding_rate = float(sum(padded_zeros) / gate_padded.numel()) min_padded_zeros = sorted(padded_zeros)[:min(batch_size, top_n)] top_len = [max_len-i for i in min_padded_zeros] top_len = '-'.join([str(int(l)) for l in top_len]) return padding_rate, max_len, top_len def add_rand_noise(key_values, noise_range=(-0.5,0.5), seed=0): n = len(key_values) np.random.seed(seed) values = np.random.rand(n) lower, upper = noise_range noises = [v * (upper-lower) + lower for v in values] key_values_with_noise = [d+n for (d,n) in zip(key_values, noises)] return key_values_with_noise def sort_with_noise(key_values, key_values_noisy, reverse=True): """order clean key values with the order sorted by noisy key values""" idx = [i[0] for i in sorted(enumerate(key_values_noisy), key=lambda x:x[1], reverse=reverse)] key_values_resorted = [key_values[i] for i in idx] return key_values_resorted def get_key_values(filelist, filelist_cols): if 'dur' in filelist_cols: key = 'dur' key_idx = filelist_cols.index(key) key_values = [float(line[key_idx]) for line in filelist] else: key = 'text' key_idx = filelist_cols.index(key) key_values = [len(line[key_idx]) for line in filelist] return key_values, key def get_batch_sizes(filelist, filelist_cols, batch_size): key_values, key = get_key_values(filelist, filelist_cols) values_sorted = sorted(key_values, reverse=True) batch_len_max_mean = np.mean(values_sorted[:batch_size]) batch_capacity = batch_size * batch_len_max_mean # get batches where each batch gets full capacity batch_sizes = [] remaining = key_values[:] while len(remaining) > 0: bs = 1 while np.max(remaining[:min(bs, len(remaining))]) * bs <= batch_capacity: bs += 1 batch_size_current = min(bs-1, len(remaining)) batch_sizes.append(batch_size_current) remaining = remaining[batch_size_current:] return batch_sizes def permute_filelist(filelist, filelist_cols, seed=0, permute_opt='rand', local_rand_factor=0.1): if permute_opt == 'rand': filelist_permuted = filelist[:]
np.random.seed(seed)
numpy.random.seed
from __future__ import absolute_import, division, print_function import logging import sys logging.basicConfig( stream=sys.stdout, format='%(asctime)s %(name)s-%(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') import os import numpy as np from operator import itemgetter from biopandas.pdb import PandasPdb from . import utils from . import filtering from . import data_projection as dp logger = logging.getLogger("postprocessing") class PostProcessor(object): def __init__(self, extractor=None, working_dir=None, rescale_results=True, filter_results=False, feature_to_resids=None, pdb_file=None, accuracy_method='mse', predefined_relevant_residues=None, use_GMM_estimator=True): """ Class which computes all the necessary averages and saves them as fields TODO move some functionality from class feature_extractor here :param extractor: :param feature_importance: :param std_feature_importance: :param cluster_indices: :param working_dir: :param feature_to_resids: an array of dimension nfeatures*2 which tells which two residues are involved in a feature """ self.extractor = extractor self.name = extractor.name self.feature_importances = extractor.feature_importance self.std_feature_importances = extractor.std_feature_importance self.supervised = extractor.supervised self.cluster_indices = extractor.cluster_indices self.nclusters = 1 if extractor.labels is None else extractor.labels.shape[1] self.working_dir = working_dir if self.working_dir is None: self.working_dir = os.getcwd() self.pdb_file = pdb_file self.predefined_relevant_residues = predefined_relevant_residues self.use_GMM_estimator = use_GMM_estimator # Rescale and filter results if needed self.rescale_results = rescale_results if self.feature_importances is not None: if rescale_results: self.feature_importances, self.std_feature_importances = utils.rescale_feature_importance( self.feature_importances, self.std_feature_importances) if filter_results: self.feature_importances, self.std_feature_importances = filtering.filter_feature_importance( self.feature_importances, self.std_feature_importances) # Put importance and std to 0 for residues pairs which were filtered out during features filtering (they are set as -1 in self.feature_importances and self.std_feature_importances) self.indices_filtered = np.where(self.feature_importances[:, 0] == -1)[0] self.feature_importances[self.indices_filtered, :] = 0 self.std_feature_importances[self.indices_filtered, :] = 0 # Set mapping from features to residues self.nfeatures = self.feature_importances.shape[0] else: self.indices_filtered = np.empty((0, 0)) self.nfeatures = self.extractor.samples.shape[1] if feature_to_resids is None and self.pdb_file is None: feature_to_resids = utils.get_default_feature_to_resids(self.nfeatures) elif feature_to_resids is None and self.pdb_file is not None: feature_to_resids = utils.get_feature_to_resids_from_pdb(self.nfeatures, self.pdb_file) self.feature_to_resids = feature_to_resids self.accuracy_method = accuracy_method # Set average feature importances to None self.importance_per_residue_and_cluster = None self.std_importance_per_residue_and_cluster = None self.importance_per_residue = None self.std_importance_per_residue = None # Performance metrics self.predefined_relevant_residues = predefined_relevant_residues self.average_std = None if extractor.test_set_errors is not None: self.test_set_errors = extractor.test_set_errors.mean() else: self.test_set_errors = None self.data_projector = None self.separation_score = None self.accuracy = None self.accuracy_per_cluster = None self._importance_mapped_to_resids = None self._std_importance_mapped_to_resids = None def average(self): """ Computes average importance per cluster and residue and residue etc. Sets the fields importance_per_residue_and_cluster, importance_per_residue :return: itself """ self._map_feature_to_resids() self._compute_importance_per_residue() if self.supervised: self._compute_importance_per_residue_and_cluster() return self def evaluate_performance(self): """ Computes -average of standard deviation (per residue) -projection classification entropy -classification score (for toy model only) """ self._compute_average_std() self._compute_projection_classification_entropy() if self.predefined_relevant_residues is not None: self.compute_accuracy() return self def get_important_features(self, states=None, sort=True): """ :param states: (optional) the indices of the states :param sort: (optional) sort the features by their importance :return: np.array of shape (n_features, 2) with entries (feature_index, importance) """ fi = self.feature_importances if states is not None and self.supervised: fi = fi[:, states] fi = fi.sum(axis=1) fi, _ = utils.rescale_feature_importance(fi) fi = fi.squeeze() fi = [(e, i) for (e, i) in enumerate(fi)] if sort: fi = [(e, i) for (e, i) in sorted(fi, key=itemgetter(1), reverse=True)] return np.array(fi) def persist(self): """ Save .npy files of the different averages and pdb files with the beta column set to importance :return: itself """ directory = self.get_output_dir() if not os.path.exists(directory): os.makedirs(directory) np.save(directory + "importance_per_residue", self.importance_per_residue) np.save(directory + "std_importance_per_residue", self.std_importance_per_residue) np.save(directory + "feature_importance", self.feature_importances) np.save(directory + "std_feature_importance", self.std_feature_importances) if self.importance_per_residue_and_cluster is not None and self.std_importance_per_residue_and_cluster is not None: np.save(directory + "importance_per_residue_and_cluster", self.importance_per_residue_and_cluster) np.save(directory + "std_importance_per_residue_and_cluster", self.std_importance_per_residue_and_cluster) if self.separation_score is not None: np.save(directory + 'separation_score', self.separation_score) if self.predefined_relevant_residues is not None: np.save(directory + "predefined_relevant_residues", self.predefined_relevant_residues) if self.accuracy is not None: np.save(directory + 'accuracy', self.accuracy) if self.accuracy_per_cluster is not None: np.save(directory + 'accuracy_per_cluster', self.accuracy_per_cluster) if self.test_set_errors is not None: np.save(directory + 'test_set_errors', self.test_set_errors) if self.feature_to_resids is not None: np.save(directory + 'feature_to_resids', self.feature_to_resids) if self.pdb_file is not None: pdb = PandasPdb() pdb.read_pdb(self.pdb_file) self._save_to_pdb(pdb, directory + "importance.pdb", self._map_to_correct_residues(self.importance_per_residue)) if self.importance_per_residue_and_cluster is not None: for cluster_idx, importance in enumerate(self.importance_per_residue_and_cluster.T): cluster_name = "cluster_{}".format(cluster_idx) \ if self.extractor.label_names is None else \ self.extractor.label_names[cluster_idx] self._save_to_pdb(pdb, directory + "{}_importance.pdb".format(cluster_name), self._map_to_correct_residues(importance)) return self def _load_if_exists(self, filepath): if os.path.exists(filepath): return np.load(filepath) else: return None def get_output_dir(self): return self.working_dir + "/{}/".format(self.extractor.name) def load(self): """ Loads files dumped by the 'persist' method :return: itself """ directory = self.get_output_dir() if not os.path.exists(directory): return self self.importance_per_residue = np.load(directory + "importance_per_residue.npy") self.std_importance_per_residue = np.load(directory + "std_importance_per_residue.npy") self.feature_importances = np.load(directory + "feature_importance.npy") self.std_feature_importances = np.load(directory + "std_feature_importance.npy") self.importance_per_residue_and_cluster = self._load_if_exists( directory + "importance_per_residue_and_cluster.npy") self.std_importance_per_residue_and_cluster = self._load_if_exists( directory + "std_importance_per_residue_and_cluster.npy") self.separation_score = self._load_if_exists(directory + "separation_score.npy") self.predefined_relevant_residues = self._load_if_exists(directory + "predefined_relevant_residues.npy") self.accuracy = self._load_if_exists(directory + "accuracy.npy") self.accuracy_per_cluster = self._load_if_exists(directory + "accuracy_per_cluster.npy") self.test_set_errors = self._load_if_exists(directory + "test_set_errors.npy") if self.feature_to_resids is None: # Can be useful to override this in postprocesseing self.feature_to_resids = self._load_if_exists(directory + "feature_to_resids.npy") #np.unique(np.asarray(self.feature_to_resids.flatten())) return self def _map_feature_to_resids(self): # Create array of all unique reside numbers index_to_resid = self.get_index_to_resid() self.nresidues = len(index_to_resid) res_id_to_index = {} # a map pointing back to the index in the array index_to_resid for idx, resid in enumerate(index_to_resid): res_id_to_index[resid] = idx # Now we now which residue points to which feature _importance_mapped_to_resids =
np.zeros((self.nresidues, self.feature_importances.shape[1]))
numpy.zeros
import unittest import pickle import numpy as np import numpy.testing as npt from sigpy import nufft, util if __name__ == '__main__': unittest.main() class TestNufft(unittest.TestCase): def test_nufft(self): # Check deltas ishape = [3] input = np.array([0, 1, 0], np.complex) # delta coord = np.array([[-1], [0], [1]], np.float) npt.assert_allclose(nufft.nufft(input, coord), np.array([1.0, 1.0, 1.0]) / (3**0.5), atol=0.01, rtol=0.01) ishape = [4] input = np.array([0, 0, 1, 0], np.complex) # delta coord = np.array([[-2], [-1], [0], [1]], np.float) npt.assert_allclose(nufft.nufft(input, coord), np.array([1.0, 1.0, 1.0, 1.0]) / (4**0.5), atol=0.01, rtol=0.01) ishape = [5] input = np.array([0, 0, 1, 0, 0], np.complex) # delta coord =
np.array([[-2], [-1], [0], [1], [2]], np.float)
numpy.array
from __future__ import division import sys import os import random import argparse from pathlib import Path import torch from torch.utils import data import numpy as np from tqdm import tqdm from models import get_model from datasets import get_dataset from loss import * from utils import * from buffer import createBuffer import time def train(args): # prepare datasets if args.dataset == 'i19S': datasetSs = get_dataset('7S') datasetTs = get_dataset('12S') else: if args.dataset in ['7S', 'i7S']: dataset_get = get_dataset('7S') if args.dataset in ['12S', 'i12S']: dataset_get = get_dataset('12S') # loss reg_loss = EuclideanLoss() if args.model == 'hscnet': cls_loss = CELoss() if args.dataset in ['i7S', 'i12S', 'i19S']: w1, w2, w3 = 1, 1, 100000 else: w1, w2, w3 = 1, 1, 10 # prepare model and optimizer device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = get_model(args.model, args.dataset) model.init_weights() model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, eps=1e-8, betas=(0.9, 0.999)) # resume from existing or start a new session if args.resume is not None: if os.path.isfile(args.resume): print("Loading model and optimizer from checkpoint '{}'".format\ (args.resume)) checkpoint = torch.load(args.resume, map_location=device) model.load_state_dict(checkpoint['model_state']) optimizer.load_state_dict(checkpoint['optimizer_state']) print("Loaded checkpoint '{}' (epoch{})".format(args.resume, checkpoint['epoch'])) save_path = Path(args.resume) args.save_path = save_path.parent #start_epoch = checkpoint['epoch'] + 1 else: print("No checkpoint found at '{}'".format(args.resume)) sys.exit() else: if args.dataset in ['i7S', 'i12S', 'i19S']: model_id = "{}-{}-{}-initlr{}-iters{}-bsize{}-aug{}-{}".format(\ args.exp_name, args.dataset, args.model, args.init_lr, args.n_iter, args.batch_size, int(args.aug), args.train_id) else: model_id = "{}-{}-{}-initlr{}-iters{}-bsize{}-aug{}-{}".format(\ args.exp_name, args.dataset, args.scene.replace('/','.'), args.model, args.init_lr, args.n_iter, args.batch_size, int(args.aug), args.train_id) save_path = Path(model_id) args.save_path = 'checkpoints'/save_path args.save_path.mkdir(parents=True, exist_ok=True) start_epoch = 1 # Continual learning over scenes buffer = createBuffer(data_path=args.data_path, exp=args.exp_name, buffer_size=args.buffer_size, dataset= args.dataset) if args.dataset == 'i7S': scenes = ['chess', 'fire', 'heads', 'office', 'pumpkin', 'redkitchen', 'stairs'] if args.dataset == 'i12S': scenes = ['apt1/kitchen','apt1/living','apt2/bed', 'apt2/kitchen','apt2/living','apt2/luke','office1/gates362', 'office1/gates381','office1/lounge','office1/manolis', 'office2/5a','office2/5b'] if args.dataset == 'i19S': scenes = ['chess', 'fire', 'heads', 'office', 'pumpkin', 'redkitchen', 'stairs', 'apt1/kitchen','apt1/living','apt2/bed', 'apt2/kitchen','apt2/living','apt2/luke','office1/gates362', 'office1/gates381','office1/lounge','office1/manolis', 'office2/5a','office2/5b'] for i,scene in enumerate(scenes): # if not first scene if args.dataset in ['i7S', 'i12S']: if i > 0: dataset = dataset_get(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=args.aug, Buffer=True, dense_pred_flag=args.dense_pred, exp=args.exp_name) else: dataset = dataset_get(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=args.aug, Buffer=False, exp=args.exp_name) trainloader = data.DataLoader(dataset, batch_size=args.batch_size, num_workers=4, shuffle=True) buffer_dataset = dataset_get(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=False, Buffer=False, dense_pred_flag=args.dense_pred, exp=args.exp_name) buffer_trainloader = data.DataLoader(buffer_dataset, batch_size=args.batch_size, num_workers=4, shuffle=True) if args.dataset == 'i19S': if i == 0: dataset = datasetSs(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=args.aug, Buffer=False, exp=args.exp_name) buffer_dataset = datasetSs(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=False, Buffer=False, dense_pred_flag=args.dense_pred, exp=args.exp_name) if i >0 and i < 7: dataset = datasetSs(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=args.aug, Buffer=True, dense_pred_flag=args.dense_pred, exp=args.exp_name) buffer_dataset = datasetSs(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=False, Buffer=False, dense_pred_flag=args.dense_pred, exp=args.exp_name) if i >= 7: dataset = datasetTs(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=args.aug, Buffer=True, dense_pred_flag=args.dense_pred, exp=args.exp_name) buffer_dataset = datasetTs(args.data_path, args.dataset, args.scene, split='train_{}'.format(scene), model=args.model, aug=False, Buffer=False, dense_pred_flag=args.dense_pred, exp=args.exp_name) trainloader = data.DataLoader(dataset, batch_size=args.batch_size, num_workers=4, shuffle=True) buffer_trainloader = data.DataLoader(buffer_dataset, batch_size=args.batch_size, num_workers=4, shuffle=True) # start training args.n_epoch = int(np.ceil(args.n_iter * args.batch_size / len(dataset))) #for epoch in range(start_epoch, start_epoch + args.n_epoch+1): for epoch in range(1, args.n_epoch+1): lr = args.init_lr model.train() train_loss_list = [] coord_loss_list = [] if args.model == 'hscnet': lbl_1_loss_list = [] lbl_2_loss_list = [] for _, (data_ori, data_buffer) in enumerate(tqdm(trainloader)): img, coord, mask, lbl_1, lbl_2, lbl_1_oh, lbl_2_oh, _ = data_ori if mask.sum() == 0: continue optimizer.zero_grad() img = img.to(device) coord = coord.to(device) mask = mask.to(device) train_loss, coord_loss, lbl_1_loss, lbl_2_loss = loss(img, coord, mask, lbl_1, lbl_2, lbl_1_oh, lbl_2_oh, model, reg_loss, cls_loss, device, w1, w2, w3) # compute loss for buffer if not first scene if i > 0 : # sample a random minibatch from buffer dataloader img_buff, coord_buff, mask_buff, lbl_1_buff, lbl_2_buff, lbl_1_oh_buff, lbl_2_oh_buff, _, dense_pred = data_buffer if mask_buff.sum() == 0: continue img_buff = img_buff.to(device) coord_buff = coord_buff.to(device) mask_buff = mask_buff.to(device) buff_loss = loss_buff_DK(img_buff, coord_buff, mask_buff, lbl_1_buff, lbl_2_buff, lbl_1_oh_buff, lbl_2_oh_buff, model, reg_loss, cls_loss, device, w1, w2, w3, dense_pred=dense_pred) train_loss+= 1 * buff_loss coord_loss_list.append(coord_loss.item()) if args.model == 'hscnet': lbl_1_loss_list.append(lbl_1_loss.item()) lbl_2_loss_list.append(lbl_2_loss.item()) train_loss_list.append(train_loss.item()) train_loss.backward() optimizer.step() with open(args.save_path/args.log_summary, 'a') as logfile: if args.model == 'hscnet': logtt = 'task {}:Epoch {}/{} - lr: {} - reg_loss: {} - cls_loss_1: {}' \ ' - cls_loss_2: {} - train_loss: {} '.format(scene, epoch, args.n_epoch, lr, np.mean(coord_loss_list),
np.mean(lbl_1_loss_list)
numpy.mean
import numpy as np import gym from gym import spaces from numpy.random import default_rng import pickle import os import math import matplotlib.pyplot as plt from PIL import Image from gym_flp import rewards from IPython.display import display, clear_output import anytree from anytree import Node, RenderTree, PreOrderIter, LevelOrderIter, LevelOrderGroupIter ''' v0.0.3 Significant changes: 08.09.2020: - Dicrete option removed from spaces; only Box allowed - Classes for quadtratic set covering and mixed integer programming (-ish) added - Episodic tasks: no more terminal states (exception: max. no. of trials reached) 12.10.2020: - mip added - fbs added ''' class qapEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode=None, instance=None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.DistanceMatrices, self.FlowMatrices = pickle.load(open(os.path.join(__location__,'discrete', 'qap_matrices.pkl'), 'rb')) self.transport_intensity = None self.instance = instance self.mode = mode while not (self.instance in self.DistanceMatrices.keys() or self.instance in self.FlowMatrices.keys() or self.instance in ['Neos-n6', 'Neos-n7', 'Brewery']): print('Available Problem Sets:', self.DistanceMatrices.keys()) self.instance = input('Pick a problem:').strip() self.D = self.DistanceMatrices[self.instance] self.F = self.FlowMatrices[self.instance] # Determine problem size relevant for much stuff in here: self.n = len(self.D[0]) # Action space has two option: # 1) Define as Box with shape (1, 2) and allow values to range from 1 through self.n # 2) Define as Discrete with x = 1+((n^2-n)/2) actions (one half of matrix + 1 value from diagonal) --> Omit "+1" to obtain range from 0 to x! # self.action_space = spaces.Box(low=-1, high=6, shape=(1,2), dtype=np.int) # Doubles complexity of the problem as it allows the identical action (1,2) and (2,1) self.action_space = spaces.Discrete(int((self.n**2-self.n)*0.5)+1) # If you are using images as input, the input values must be in [0, 255] as the observation is normalized (dividing by 255 to have values in [0, 1]) when using CNN policies. if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape=(1, self.n, 3), dtype = np.uint8) # Image representation elif self.mode == 'human': self.observation_space = spaces.Box(low=1, high = self.n, shape=(self.n,), dtype=np.float32) self.states = {} # Create an empty dictonary where states and their respective reward will be stored for future reference self.actions = self.pairwiseExchange(self.n) # Initialize Environment with empty state and action self.action = None self.state = None self.internal_state = None #Initialize moving target to incredibly high value. To be updated if reward obtained is smaller. self.movingTargetReward = np.inf self.MHC = rewards.mhc.MHC() # Create an instance of class MHC in module mhc.py from package rewards def reset(self): state = default_rng().choice(range(1,self.n+1), size=self.n, replace=False) #MHC, self.TM = self.MHC.compute(self.D, self.F, state) self.internal_state = state.copy() return state def step(self, action): # Create new State based on action fromState = self.internal_state.copy() swap = self.actions[action] fromState[swap[0]-1], fromState[swap[1]-1] = fromState[swap[1]-1], fromState[swap[0]-1] newState = fromState.copy() #MHC, self.TM = self.MHC.compute(self.D, self.F, current_permutation) MHC, self.TM = self.MHC.compute(self.D, self.F, newState) if self.mode == 'human': self.states[tuple(fromState)] = MHC if self.movingTargetReward == np.inf: self.movingTargetReward = MHC #reward = self.movingTargetReward - MHC reward = -1 if MHC > self.movingTargetReward else 10 self.movingTargetReward = MHC if MHC < self.movingTargetReward else self.movingTargetReward if self.mode == "rgb_array": rgb = np.zeros((1,self.n,3), dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((fromState-np.min(fromState))/(np.max(fromState)-np.min(fromState))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for i, s in enumerate(fromState): rgb[0:1, i] = [R[s-1], G[s-1], B[s-1]] newState = np.array(rgb) self.state = newState.copy() self.internal_state = fromState.copy() return newState, reward, False, {} def render(self, mode=None): if self.mode == "human": SCALE = 1 # Scale size of pixels for displayability img_h, img_w = SCALE, (len(self.internal_state))*SCALE data = np.zeros((img_h, img_w, 3), dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((self.internal_state-np.min(self.internal_state))/(np.max(self.internal_state)-np.min(self.internal_state))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for i, s in enumerate(self.internal_state): data[0*SCALE:1*SCALE, i*SCALE:(i+1)*SCALE] = [R[s-1], G[s-1], B[s-1]] img = Image.fromarray(data, 'RGB') if self.mode == 'rgb_array': img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def close(self): pass def pairwiseExchange(self, x): actions = [(i,j) for i in range(1,x) for j in range(i+1,x+1) if not i==j] actions.append((1,1)) return actions class fbsEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode=None, instance = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.mode = mode self.instance = instance while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed ''' Nomenclature: W --> Width of Plant (y coordinate) L --> Length of Plant (x coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' #if self.l is None or self.w is None: # self.l = np.random.randint(max(self.min_side_length, np.min(self.a)/self.min_side_length), max(self.min_side_length, np.min(self.a)/self.min_side_length), size=(self.n,)) # self.l = np.sqrt(self.A/self.aspect_ratio) # self.w = np.round(self.a/self.l) # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L # Design a layout with l = 1,5 * w #self.L = divisor(int(self.A)) #self.W = self.A/self.L # These values need to be set manually, e.g. acc. to data from literature. Following Eq. 1 in Ulutas & Kulturel-Konak (2012), the minimum side length can be determined by assuming the smallest facility will occupy alone. self.aspect_ratio = int(max(self.beta)) if not self.beta is None else 1 self.min_length = np.min(self.a) / self.L self.min_width = np.min(self.a) / self.W # We define minimum side lengths to be 1 in order to be displayable in array self.min_length = 1 self.min_width = 1 self.action_space = spaces.Discrete(5) #Taken from doi:10.1016/j.engappai.2020.103697 self.actions = {0: 'Randomize', 1: 'Bit Swap', 2: 'Bay Exchange', 3: 'Inverse', 4: 'Idle'} #self.state_space = spaces.Box(low=1, high = self.n, shape=(self.n,), dtype=np.int) self.bay_space = spaces.Box(low=0, high = 1, shape=(self.n,), dtype=np.int) # binary vector indicating bay breaks (i = 1 means last facility in bay) self.state = None self.permutation = None # Permutation of all n facilities, read from top to bottom self.bay = None self.done = False self.MHC = rewards.mhc.MHC() if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": observation_low = np.tile(np.array([0,0,self.min_length,self.min_width],dtype=int), self.n) observation_high = np.tile(np.array([self.W, self.L, self.W, self.L], dtype=int), self.n) self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = int) # Vector representation of coordinates else: print("Nothing correct selected") def reset(self): # 1. Get a random permutation and bays self.permutation, self.bay = self.sampler() # 2. Last position in bay break vector has to be 1 by default. self.bay[-1] = 1 self.fac_x, self.fac_y, self.fac_b, self.fac_h = self.getCoordinates() self.D = getDistances(self.fac_x, self.fac_y) reward, self.TM = self.MHC.compute(self.D, self.F, self.permutation[:]) self.state = self.constructState(self.fac_x, self.fac_y, self.fac_b, self.fac_h, self.n) return self.state def constructState(self, x, y, l, w, n): # Construct state state_prelim = np.zeros((4*n,), dtype=float) state_prelim[0::4] = y state_prelim[1::4] = x state_prelim[2::4] = w state_prelim[3::4] = l if self.mode == "human": self.state = np.array(state_prelim) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(state_prelim) return self.state[:] def ConvertCoordinatesToState(self, state_prelim): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((self.permutation-np.min(self.permutation))/(np.max(self.permutation)-np.min(self.permutation))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for x, p in enumerate(self.permutation): x_from = state_prelim[4*x+1] -0.5 * state_prelim[4*x+3] y_from = state_prelim[4*x+0] -0.5 * state_prelim[4*x+2] x_to = state_prelim[4*x+1] + 0.5 * state_prelim[4*x+3] y_to = state_prelim[4*x+0] + 0.5 * state_prelim[4*x+2] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[p-1], G[p-1], B[p-1]] return np.array(data, dtype=np.uint8) def sampler(self): return default_rng().choice(range(1,self.n+1), size=self.n, replace=False), self.bay_space.sample() def getCoordinates(self): facilities = np.where(self.bay==1)[0] #Read all positions with a bay break bays = np.split(self.permutation, facilities[:-1]+1) lengths = np.zeros((len(self.permutation,))) widths = np.zeros((len(self.permutation,))) fac_x = np.zeros((len(self.permutation,))) fac_y = np.zeros((len(self.permutation,))) x = 0 start = 0 for b in bays: #Get the facilities that are located in the bay areas = self.a[b-1] #Get the area associated with the facilities end = start + len(areas) lengths[start:end] = np.sum(areas)/self.W #Calculate all facility widhts in bay acc. to Eq. (1) in https://doi.org/10.1016/j.eswa.2011.11.046 widths[start:end] = areas/lengths[start:end] fac_x[start:end] = lengths[start:end] * 0.5 + x x += np.sum(areas)/self.W y = np.ones(len(b)) ll = 0 for idx, l in enumerate(widths[start:end]): y[idx] = ll + 0.5*l ll += l fac_y[start:end] = y start = end return fac_x, fac_y, lengths, widths def step(self, action): a = self.actions[action] #k = np.count_nonzero(self.bay) fromState = np.array(self.permutation) # Get lists with a bay positions and facilities in each bay facilities = np.where(self.bay==1)[0] bay_breaks = np.split(self.bay, facilities[:-1]+1) # Load indiv. facilities into bay acc. to breaks; omit break on last position to avoid empty array in list. bays = np.split(self.permutation, facilities[:-1]+1) if a == 'Randomize': # Two vector elements randomly chosen are exchanged. Bay vector remains untouched. k = default_rng().choice(range(len(self.permutation-1)), size=1, replace=False) l = default_rng().choice(range(len(self.permutation-1)), size=1, replace=False) fromState[k], fromState[l] = fromState[l], fromState[k] self.permutation = np.array(fromState) elif a == 'Bit Swap': #One element randomly selected flips its value (1 to 0 or 0 to 1) j = default_rng().choice(range(len(self.bay-1)), size=1, replace=False) temp_bay = np.array(self.bay) # Make a copy of bay temp_bay[j] = 1 if temp_bay[j] == 0 else 0 self.bay = np.array(temp_bay) elif a == 'Bay Exchange': #Two bays are randomly selected and exchange facilities contained in them o = int(default_rng().choice(range(len(bays)), size=1, replace=False)) p = int(default_rng().choice(range(len(bays)), size=1, replace=False)) while p==o: # Make sure bays are not the same p = int(default_rng().choice(range(len(bays)), size=1, replace=False)) # Swap bays and break points accordingly: bays[o], bays[p] = bays[p], bays[o] bay_breaks[o], bay_breaks[p] = bay_breaks[p], bay_breaks[o] new_bay = np.concatenate(bay_breaks) new_state = np.concatenate(bays) # Make sure state is saved as copy self.permutation = np.array(new_state) self.bay = np.array(new_bay) elif a == 'Inverse': #Facilities present in a certain bay randomly chosen are inverted. q = default_rng().choice(range(len(bays))) bays[q] = np.flip(bays[q]) new_bay = np.concatenate(bay_breaks) new_state = np.concatenate(bays) # Make sure state is saved as copy self.permutation = np.array(new_state) self.bay = np.array(new_bay) elif a == 'Idle': pass # Keep old state self.fac_x, self.fac_y, self.fac_b, self.fac_h = self.getCoordinates() self.D = getDistances(self.fac_x, self.fac_y) reward, self.TM = self.MHC.compute(self.D, self.F, fromState) self.state = self.constructState(self.fac_x, self.fac_y, self.fac_b, self.fac_h, self.n) self.done = False #Always false for continuous task return self.state[:], reward, self.done, {} def render(self, mode= None): if self.mode== "human": # Mode 'human' needs intermediate step to convert state vector into image array data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') if self.mode == "rgb_array": data = self.state[:] img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() #23.02.21: Switched to data instead of img for testing video return img def close(self): pass #self.close() class ofpEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode = None, instance = None, distance = None, aspect_ratio = None, step_size = None, greenfield = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.mode = mode self.aspect_ratio = 2 if aspect_ratio is None else aspect_ratio self.step_size = 2 if step_size is None else step_size self.greenfield = greenfield self.instance = instance while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] self.counter = 0 self.done = False self.pseudo_stability = 0 #If the reward has not improved in the last 200 steps, terminate the episode self.best_reward = None # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed ''' Nomenclature: W --> Width of Plant (x coordinate) L --> Length of Plant (y coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' #if self.l is None or self.w is None: # self.l = np.random.randint(max(self.min_side_length, np.min(self.a)/self.min_side_length), max(self.min_side_length, np.min(self.a)/self.min_side_length), size=(self.n,)) # self.l = np.sqrt(self.A/self.aspect_ratio) # self.w = np.round(self.a/self.l) # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L if self.greenfield: self.L = 2*self.L self.W = 2*self.W # Design a layout with l = 1,5 * w #self.L = divisor(int(self.A)) #self.W = self.A/self.L # These values need to be set manually, e.g. acc. to data from literature. Following Eq. 1 in Ulutas & Kulturel-Konak (2012), the minimum side length can be determined by assuming the smallest facility will occupy alone. self.aspect_ratio = int(max(self.beta)) if not self.beta is None else self.aspect_ratio self.min_length = 1 self.min_width = 1 # 3. Define the possible actions: 5 for each box [toDo: plus 2 to manipulate sizes] + 1 idle action for all self.actions = {} for i in range(self.n): self.actions[0+(i)*5] = "up" self.actions[1+(i)*5] = "down" self.actions[2+(i)*5] = "right" self.actions[3+(i)*5] = "left" self.actions[4+(i)*5] = "rotate" self.actions[len(self.actions)] = "keep" # 4. Define actions space as Discrete Space self.action_space = spaces.Discrete(1+5*self.n) #5 actions for each facility: left, up, down, right, rotate + idle action across all # 5. Set some starting points self.reward = 0 self.state = None self.internal_state = None #Placeholder for state variable for internal manipulation in rgb_array mode if self.w is None or self.l is None: self.l = np.random.randint(self.min_side_length*self.aspect_ratio, np.min(self.a), size=(self.n, )) self.w = np.round(self.a/self.l) # 6. Set upper and lower bound for observation space # min x position can be point of origin (0,0) [coordinates map to upper left corner] # min y position can be point of origin (0,0) [coordinates map to upper left corner] # min width can be smallest area divided by its length # min lenght can be smallest width (above) multiplied by aspect ratio # max x pos can be bottom right edge of grid # max y pos can be bottpm right edge of grid if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": #observation_low = np.tile(np.array([0,0,self.min_side_length, self.min_side_length],dtype=float), self.n) #observation_high = np.tile(np.array([self.L, self.W, max(self.l), max(self.w)], dtype=float), self.n) observation_low = np.zeros(4* self.n) observation_high = np.zeros(4* self.n) observation_low[0::4] = max(self.w) observation_low[1::4] = max(self.l) observation_low[2::4] = max(self.w) observation_low[3::4] = max(self.l) observation_high[0::4] = self.W - max(self.w) observation_high[1::4] = self.L - max(self.l) observation_high[2::4] = self.W - max(self.w) observation_high[3::4] = self.L - max(self.l) self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = np.uint8) # Vector representation of coordinates else: print("Nothing correct selected") self.MHC = rewards.mhc.MHC() # Set Boundaries self.upper_bound = self.L- max(self.l)/2 self.lower_bound = 0 + max(self.l)/2 self.left_bound = 0 + max(self.w)/2 self.right_bound = self.W- max(self.w)/2 def reset(self): # Start with random x and y positions if self.mode == 'human': state_prelim = self.observation_space.sample() # Override length (l) and width (w) or facilities with data from instances state_prelim[2::4] = self.w state_prelim[3::4] = self.l self.D = getDistances(state_prelim[0::4], state_prelim[1::4]) self.internal_state = np.array(state_prelim) self.state = np.array(state_prelim) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) self.counter = 0 self.best_reward = reward self.reward = 0 elif self.mode == 'rgb_array': state_prelim = np.zeros((self.W, self.L, 3),dtype=np.uint8) x = np.random.uniform(0, self.L, size=(self.n,)) y = np.random.uniform(0, self.W, size=(self.n,)) #s = self.constructState(y, x, self.w, self.l, self.n) s = np.zeros(4*self.n) s[0::4] = y s[1::4] = x s[2::4] = self.w s[3::4] = self.l self.internal_state = np.array(s).copy() #self.state = self.constructState(y, x, self.w, self.l, self.n) self.D = getDistances(s[0::4], s[1::4]) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) self.state = self.ConvertCoordinatesToState(self.internal_state) self.counter = 0 self.best_reward = reward return self.state.copy() # def offGrid(self, s): # if np.any(s[0::4]-s[2::4] < 0): # #print("Bottom bound breached") # og = True # elif np.any(s[0::4]+s[2::4] > self.W): # #print("Top bound breached") # og = True # elif np.any(s[1::4]-s[3::4] < 0): # #print("left bound breached") # og = True # elif np.any(s[1::4]+s[3::4] > self.L): # #print("right bound breached") # og = True # else: # og = False # return og # def collision_test(self, y, x, w, l): # # collision test # collision = False #initialize collision for each collision test # for i in range (0, self.n-1): # for j in range (i+1,self.n): # if not(x[i]+0.5*l[i] < x[j]-0.5*l[j] or x[i]-0.5*l[i] > x[j]+0.5*l[j] or y[i]-0.5*w[i] > y[j]+0.5*w[j] or y[i]+0.5*w[i] < y[j]-0.5*w[j]): # collision = True # break # return collision def collision(self,x,y,w,l): collision = False for i in range(0,self.n-1): for j in range(i+1,self.n): if (abs(int(x[i]) - int(x[j])) < 0.5*self.w[i]+0.5*self.w[j]): if(abs(int(y[i]) - int(y[j])) < 0.5*self.l[i]+0.5*self.l[j]): #print(x[i],y[i],x[j],y[j]) collision = True if (abs(int(y[i]) - int(y[j])) < 0.5*self.l[i]+0.5*self.l[j]): if(abs(int(x[i]) - int(x[j])) < 0.5*self.w[i]+0.5*self.w[j]): #print(x[i],y[i],x[j],y[j]) collision = True return collision def step(self, action): self.reward = 0 m = np.int(np.ceil((action+1)/5)) # Facility on which the action is # Get copy of state to manipulate: temp_state = self.internal_state[:] step_size = self.step_size # Do the action if self.actions[action] == "up": if temp_state[4*(m-1)+1] + temp_state[4*(m-1)+3]*0.5 + step_size < self.upper_bound: temp_state[4*(m-1)+1] += step_size else: temp_state[4*(m-1)+1] += 0 #print('Forbidden action: machine', m, 'left grid on upper bound') elif self.actions[action] == "down": if temp_state[4*(m-1)+1] - temp_state[4*(m-1)+3]*0.5 + step_size > self.lower_bound: temp_state[4*(m-1)+1] -= step_size else: temp_state[4*(m-1)+1] += 0 #print('Forbidden action: machine', m, 'left grid on lower bound') elif self.actions[action] == "right": if temp_state[4*(m-1)]+temp_state[4*(m-1)+2]*0.5 + step_size < self.right_bound: temp_state[4*(m-1)] += step_size else: temp_state[4*(m-1)] += 0 #print('Forbidden action: machine', m, 'left grid on right bound') elif self.actions[action] == "left": if temp_state[4*(m-1)]-temp_state[4*(m-1)+2]*0.5 + step_size > self.left_bound: temp_state[4*(m-1)] -= step_size else: temp_state[4*(m-1)] += 0 #print('Forbidden action: machine', m, 'left grid on left bound') elif self.actions[action] == "keep": None #Leave everything as is elif self.actions[action] == "rotate": temp_state[4*(m-1)+2], temp_state[4*(m-1)+3] = temp_state[4*(m-1)+3], temp_state[4*(m-1)+2] else: raise ValueError("Received invalid action={} which is not part of the action space".format(action)) self.fac_x, self.fac_y, self.fac_b, self.fac_h = temp_state[0::4], temp_state[1::4], temp_state[2::4], temp_state[3::4] # ToDo: Read this from self.state self.D = getDistances(self.fac_x, self.fac_y) fromState = np.array(range(1,self.n+1)) # Need to create permutation matrix MHC, self.TM = self.MHC.compute(self.D, self.F, fromState) self.internal_state = np.array(temp_state) # Keep a copy of the vector representation for future steps self.state = self.internal_state[:] # Test if initial state causing a collision. If yes than initialize a new state until there is no collision collision = self.collision(temp_state[0::4],temp_state[1::4], temp_state[2::4], temp_state[3::4]) # Pass every 4th item starting at 0 (x pos) and 1 (y pos) for checking if (MHC < self.best_reward) and (collision == False) : self.best_reward = MHC self.reward = 50 if collision == True: self.reward = -2 if self.mode == 'rgb_array': self.state = self.ConvertCoordinatesToState(self.internal_state) #Retain state for internal use self.pseudo_stability = self.counter self.done = True if self.pseudo_stability == 200 else False self.counter += 1 #print(self.reward) return self.state,self.reward,self.done,{} def ConvertCoordinatesToState(self, state_prelim): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) p = np.arange(self.n) R = np.array((p-np.min(p))/(np.max(p)-np.min(p))*255).astype(int) R[R<=20] = 255 G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) G[G<=20] = 255 B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) B[B<=20] = 255 for x, p in enumerate(p): x_from = state_prelim[4*x+0] -0.5 * state_prelim[4*x+2] y_from = state_prelim[4*x+1] -0.5 * state_prelim[4*x+3] x_to = state_prelim[4*x+0] + 0.5 * state_prelim[4*x+2] y_to = state_prelim[4*x+1] + 0.5 * state_prelim[4*x+3] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[p-1], G[p-1], B[p-1]] return np.array(data, dtype=np.uint8) def constructState(self, x, y, b, h, n): # Construct state state_prelim = np.zeros((4*n,), dtype=float) state_prelim[0::4] = x state_prelim[1::4] = y state_prelim[2::4] = b state_prelim[3::4] = h if self.mode == "human": self.state = np.array(state_prelim) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(state_prelim) return self.state[:] def render(self): if self.mode == "human": data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') if self.mode == "rgb_array": img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def close(self): pass #Nothing here yet class stsEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode = None, instance = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.instance = instance self.mode = mode self.MHC = rewards.mhc.MHC() while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L ''' Nomenclature: W --> Width of Plant (y coordinate) L --> Length of Plant (x coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' # Provide variables for layout encoding (epsilon in doi:10.1016/j.ejor.2018.01.001) self.permutation = None self.slicing = None self.orientation_space = spaces.Box(low=0, high = 1, shape=(self.n-1,), dtype=np.int) # binary vector indicating bay breaks (i = 1 means last facility in bay) self.state = None if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": #observation_low = np.tile(np.array([0,0,self.min_side_length, self.min_side_length],dtype=float), self.n) #observation_high = np.tile(np.array([self.L, self.W, max(self.l), max(self.w)], dtype=float), self.n) observation_low = np.zeros(4* self.n) observation_high = np.zeros(4* self.n) observation_low[0::4] = 0.0 #Top-left corner y observation_low[1::4] = 0.0 #Top-left corner x observation_low[2::4] = 1.0 #Width observation_low[3::4] = 1.0 #Length observation_high[0::4] = self.W observation_high[1::4] = self.L observation_high[2::4] = self.W observation_high[3::4] = self.L self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = float) # Vector representation of coordinates else: print("Nothing correct selected") self.action_space = spaces.Discrete(5) self.actions = {0: 'Permute', 1: 'Slice_Swap', 2: 'Shuffle', 3: 'Bit_Swap', 4: 'Idle'} def reset(self): # 1. Get a random permutation, slicing order and orientation self.permutation, self.slicing, self.orientation = self.sampler() # 2. Build the tree incl. size information s = self.TreeBuilder(self.permutation, self.slicing, self.orientation) centers = np.array([s[0::4] + 0.5*s[2::4], s[1::4] + 0.5* s[3::4]]) self.D = getDistances(centers[0], centers[1]) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) if self.mode == "human": self.state = np.array(s) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(s) return self.state def ConvertCoordinatesToState(self, s): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) p = self.permutation[:] R = np.array((p-np.min(p))/(np.max(p)-np.min(p))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for x in range(self.n): y_from = s[4*x+0] x_from = s[4*x+1] y_to = y_from + s[4*x+2] x_to = x_from + s[4*x+3] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[x], G[x], B[x]] return np.array(data, dtype=np.uint8) def TreeBuilder(self,p,s,o): names = {0: 'V', 1: 'H'} contains = np.array(p) W = self.W L = self.L area = W * L self.STS = Node(name = None, contains = contains, parent = None, area = area, width = W, length = L, upper_left = np.zeros((2,)), lower_right = np.array([W,L]), dtype = float) for i,r in enumerate(o): name = names[r] cut_after_pos = s[i] whats_in_pos = p[cut_after_pos-1] parent = anytree.search.find(self.STS, lambda node: np.any(node.contains==whats_in_pos)) parent.name = name starting_point = parent.upper_left cuts = np.split(parent.contains, [np.where(parent.contains == whats_in_pos)[0][0]+1]) for c in cuts: area = float(np.sum(self.a[c-1])) length = area/parent.width if name == 'V' else parent.length width = area/parent.length if name == 'H' else parent.width starting_point = starting_point contains = c new_name = None if not len(c)==1 else c[0] Node(name = new_name, \ contains = contains, \ parent = parent, \ area = area, \ width = width, \ length = length, \ upper_left = starting_point, \ lower_right = starting_point + np.array([width, length]), \ dtype = float) starting_point = starting_point + np.array([0, length]) if parent.name == 'V' else starting_point + np.array([width, 0]) parent.contains = None self.STS.root.area = np.sum([i.area for i in self.STS.root.children]) s = np.zeros((4*self.n,)) for l in self.STS.leaves: trg = int(l.name)-1 s[4*trg] = l.upper_left[0] s[4*trg+1] = l.upper_left[1] s[4*trg+2] = l.width s[4*trg+3] = l.length return s def step(self, a): action = self.actions[a] ''' Available actions in STS: - Random permutation change - Random slicing order change at two positions - Shuffle slicing order (new random array) - Bitswap in Orientation vector - Do Nothing ''' if action == 'Permute': i = np.random.randint(0, len(self.permutation)-1) j = np.random.randint(0, len(self.permutation)-1) temp_perm = np.array(self.permutation) temp_perm[i], temp_perm[j] = temp_perm[j], temp_perm[i] self.permutation = np.array(temp_perm) elif action == 'Slice_Swap': i = np.random.randint(0, len(self.slicing)-1) j = np.random.randint(0, len(self.slicing)-1) temp_sli = np.array(self.slicing) temp_sli[i], temp_sli[j] = temp_sli[j], temp_sli[i] self.slicing = np.array(temp_sli) elif action == 'Shuffle': self.slicing = default_rng().choice(range(1,self.n), size=self.n-1, replace=False) elif action == 'Bit_Swap': i = np.random.randint(0, len(self.orientation)-1) if self.orientation[i] == 1: self.orientation[i] = 0 elif self.orientation[i] == 0: self.orientation[i] = 1 elif action == 'Idle': self.permutation =
np.array(self.permutation)
numpy.array
# TRANSPORT PROPERTIES OF GASES # ------------------------------ # import packages/modules from math import sqrt import numpy as np import re # internals from PyREMOT.docs.rmtUtility import rmtUtilityClass as rmtUtil # core from PyREMOT.core import Tref, R_CONST from PyREMOT.core import roundNum from PyREMOT.core import CONST_EQ_GAS_DIFFUSIVITY, CONST_EQ_GAS_VISCOSITY # data from PyREMOT.data import viscosityEqList from PyREMOT.data import viscosityList from PyREMOT.data.dataGasThermalConductivity import TherConductivityList from PyREMOT.data.componentData import thermalConductivityEqList def main(): pass # NOTE ### diffusivity ### def calGasDiffusivity(equation, compList, params): """ calculate gas diffusivity [m2/s] args: params: changes with equation eq1: Chapman-Enskog """ # choose equation if equation == 1: return calGaDiEq1(compList, params) else: return -1 def calGaDiEq1(compList, params): """ calculate based on Chapman-Enskog args: params: compList: component name list MoFri: mole fraction list T: temperature [K] P: pressure [Pa] MWi: molecular weight list [g/mol] CrTei: critical temperature [K] CrPri: critical pressure [bar] """ # input MoFri = params['MoFri'] T = params['T'] P = params['P'] MWi = params['MWi'] CrTei = params['CrTei'] CrPri = params['CrPri'] # component no. compNo = len(compList) # e/K eK_Ratio = np.array([0.75*item for item in CrTei]) # sigma - characteristic length of the intermolecular force law sigma = np.zeros(compNo) for i in range(compNo): _loop = (CrTei[i]/CrPri[i])**(1/3) sigma[i] = 2.44*_loop # e[i,j] eij =
np.zeros((compNo, compNo))
numpy.zeros
import copy import sys sys.path.append('SetsClustering') from multiprocessing import Process ,Manager import numpy as np import LinearProgrammingInTheDarkClassVersion as LPD from multiprocessing import Pool from jgrapht.algorithms.shortestpaths import johnson_allpairs import jgrapht from SetsClustering import Utils, PointSet, KMeansAlg from SetsClustering import KMeansForSetsSensitivityBounder as SensBounder from SetsClustering import Coreset as CS from scipy.spatial.distance import cdist import seaborn as sns from copy import deepcopy import itertools from scipy.ndimage import convolve from timeit import default_timer as timer from tqdm import tqdm import dill import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.pylab as pl from scipy.linalg import null_space import scipy.ndimage as ndi from scipy.spatial import ConvexHull import argparse, os, pickle from scipy.io import netcdf POWER = 4 FORCE_NEIGHBORING = 20 import psutil CPUS = psutil.cpu_count() # import multiprocessing # # from pathos.multiprocessing import ProcessingPool as Pool # # from sklearn.externals.joblib import Parallel, delayed # from multiprocessing import Process parser = argparse.ArgumentParser(description='Initial Location Generator') parser.add_argument('-d', type=str, default=None, help='Directory containing all maps') parser.add_argument('-pp', default=False, action='store_true', help='preprocess map') parser.add_argument('-ft', default='.nc', type=str, help='Type of map file') parser.add_argument('-nf', default=1, type=int, help='Number of files describing a map of velocities') parser.add_argument('-eps_g', default=None, type=float, help=r'resolution of the \varepsilon-grid') parser.add_argument('-eps_b', default=0.08, type=float, help=r'epsilon approximation for each of the patches of the currents') parser.add_argument('-k', default=10, type=int, help='Desired number of drifters') parser.add_argument('-bs', default=2, type=int, help='size of the blob prior to the clustering phase') parser.add_argument('-coreset_sample_size', default=1000, type=int, help='The size of the coreset for the clustering phase') parser.add_argument('-time', default=False, action='store_true', help='Apply our system over time') parser.add_argument('-tol', default=0.2, type=float, help='Tolerance for minimum volume ellipsoid') parser.add_argument('-resume', default=False, action='store_true', help='In case of code being killed, you can resume from last map') parser.add_argument('-show', default=False, action='store_true', help='Show only our segementation and clustering. Must have preporcessed these data before') class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' NORMAL = '\033[0m' plt.rcParams.update({'font.size': 16}) manager = Manager() def removeInclusionsJob(lst, ids, path_str): global resdict for i in range(len(lst)): resdict[ids[i]] = True if lst[i] in path_str: resdict[ids[i]] = False def removeInclusions(unified_paths, file_path='', file_prefix=''): global manager global resdict global A unified_paths_strings = [str(x[0]).strip('[]') for x in unified_paths] unified_paths_strings.sort(key=(lambda x: len(x.split(',')))) lst = [list(grp) for i, grp in itertools.groupby(unified_paths_strings, key=(lambda x: len(x.split(','))))] sizes = np.cumsum([len(x) for x in lst]) unique_ids = [list(range(sizes[i-1], sizes[i]) if i > 0 else range(sizes[i])) for i in range(len(sizes))] if len(unified_paths_strings) > 10000: with Manager() as manager: proc_list = [] resdict = manager.dict() for i, item in enumerate(lst): if i != (len(lst) - 1): proc_list.append( Process(target=removeInclusionsJob, args=(item, unique_ids[i], '\n'.join(unified_paths_strings[sizes[i]:]))) ) proc_list[-1].start() for proc in proc_list: proc.join() mask = [x[1] for x in resdict.items()] else: resdict = dict() for i, item in enumerate(lst): if i != (len(lst) - 1): removeInclusionsJob(item, unique_ids[i], '\n'.join(unified_paths_strings[sizes[i]:])) mask = [x[1] for x in resdict.items()] mask.extend([True for _ in range(len(lst[-1]))]) np.save('{}mask_unified_paths_{}.npy'.format(file_path, file_prefix), mask) return [[int(y) for y in x.split(', ')] for x in list(itertools.compress(unified_paths_strings, mask))] def removeDuplicates(list_1): list2 = list(set(list_1)) list2.sort(key=list_1.index) return list2 def makedir(dir_path): try: os.mkdir(dir_path) except OSError as error: print(error) def saveVels(data, file_path, smoothed=True): if smoothed: file_path += 'Smoothed_Vel/' else: file_path += 'Original_Vel/' makedir(file_path) temp = np.tile(data[:, :, 0][:, :, np.newaxis], 10) temp.dump(file_path + 'matrix_vel_x.dat') temp = np.tile(data[:, :, 1][:, :, np.newaxis], 10) temp.dump(file_path + 'matrix_vel_y.dat') def readNetCDFFile(file_path, over_time): file2read = netcdf.NetCDFFile(file_path, 'r') U = file2read.variables['u'].data # velocity in x-axis V = file2read.variables['v'].data # velocity in y-axis mask = np.logical_and(np.abs(U) <= 1e3, np.abs(V) <= 1e3) V = np.multiply(V, mask) U = np.multiply(U, mask) if not over_time: U = U[0, :, :, :] V = V[0, :, :, :] return U,V def innerFunction(current_possible_combs, unique_keys): global resdict for i, element in enumerate(current_possible_combs): resdict[unique_keys[i]] = (removeDuplicates(element[0][0] + element[1][0]), element[0][1] + element[1][1]) def getAllPossiblePaths(list1, list2): global CPUS global manager global resdict if len(list1) * len(list2) > 10000: manager = Manager() resdict = manager.dict() all_possible_combs = np.array_split(list(itertools.product(list1, list2)), CPUS) unique_ids = np.array_split(np.arange(sum([x.size for x in all_possible_combs])), CPUS) proc_list = [] for i, item in enumerate(all_possible_combs): proc_list.append( Process(target=innerFunction, args=(item, unique_ids[i])) ) proc_list[-1].start() for proc in proc_list: proc.join() temp = list(resdict.values()) else: temp = [] for element in itertools.product(list1, list2): temp.append((removeDuplicates(element[0][0] + element[1][0]), element[0][1] + element[1][1])) return temp class CurrentEstimation(object): def __init__(self, grid, k=10, epsilon_grid=0.06, tolerance=0.001, epsilon_body=2, is_grid=True, is_data_vectorized=True, blob_size=3, sens_file_name='sens.npz', coreset_sample_size = int(1e3), save_mode=True, matrix_of_velocities=True, save_path='', file_prefix='', show=False, verbose=False): self.grid = grid self.is_grid=is_grid self.d = (self.grid.ndim - 1) if matrix_of_velocities else self.grid.ndim self.epsilon_grid = epsilon_grid self.epsilon_body = epsilon_body self.tolerance = tolerance self.g = jgrapht.create_graph(directed=True) self.cost_func = (lambda x: self.grid[tuple(x.astype("int") if is_grid else x)]) # create a simple membership cost function self.iocsAlg = None self.segments = [] self.eps_star = None self.bodies = [] self.full_bodies = [] self.is_data_vectorized = is_data_vectorized self.k = k self.blob_size = blob_size self.coreset_sample_size = coreset_sample_size self.save_mode = save_mode self.binary_grid = None self.matrix_of_velocities = matrix_of_velocities self.sens_file_name = sens_file_name self.ellipsoids = [] self.convex_hulls = [] self.verbose = verbose self.save_path = save_path self.file_prefix = file_prefix self.show = show def polynomialGridSearchParallelizedVersion(self): with Pool() as pool: pass def checkIfContained(self, point): for i,body in enumerate((self.full_bodies if self.epsilon_body == 0 else self.bodies)): if body.ndim > 1: temp_in_body = np.equal(body, point).all(1).any() temp_in_CH = False if self.convex_hulls[i] is not None: temp_in_CH = np.all(self.convex_hulls[i][:,:-1].dot(point) <= -self.convex_hulls[i][:,-1]) if temp_in_body or temp_in_CH: return True else: if np.linalg.norm(body - point) == 0: return True return False def IOCS(self, p): cost_func = lambda x: 0.85 <= np.dot(np.nan_to_num(self.grid[tuple(p)]/np.linalg.norm(self.grid[tuple(p)])), np.nan_to_num(self.grid[tuple(x)]/np.linalg.norm(self.grid[tuple(x)]))) \ <= 1 and 0.5 <= np.linalg.norm(self.grid[tuple(p)])/np.linalg.norm(self.grid[tuple(x)]) <= 2 self.iocsAlg = LPD.LinearProgrammingInTheDark(P=self.grid,cost_func=cost_func, point=p, d=self.d, epsilon=self.tolerance, hull_hyper=None, matrix_of_vecs=True) if self.iocsAlg.lower_d <= 1: if self.iocsAlg.lower_d == 0: self.bodies.append(p) self.full_bodies.append(p) self.ellipsoids.append(None) self.convex_hulls.append(None) else: idxs = np.where(self.iocsAlg.oracle.flattened_data == 1)[0] Z = np.empty((idxs.shape[0], p.shape[0])) Z[:, self.iocsAlg.irrelevant_dims] = p[self.iocsAlg.irrelevant_dims] Z[:, self.iocsAlg.dims_to_keep[0]] = \ np.arange(*(self.iocsAlg.oracle.bounding_box[self.iocsAlg.dims_to_keep].flatten() + np.array([0, 1])).tolist())[idxs] self.bodies.append(Z) self.full_bodies.append(Z) self.ellipsoids.append(None) self.convex_hulls.append(None) elif self.iocsAlg.get_all_points: idxs = np.where(self.iocsAlg.oracle.flattened_data == 1)[0] Z = self.iocsAlg.oracle.coordinates[:-1, idxs].T self.bodies.append(Z) self.full_bodies.append(Z) self.ellipsoids.append(None) self.convex_hulls.append(None) else: self.ellipsoids.append(self.iocsAlg.computeAMVEE() + (p, )) if self.epsilon_body > 0: s = timer() self.approximateBody(self.ellipsoids[-1][0][-1], self.ellipsoids[-1][0][-2], idx_dims_retrieve=self.ellipsoids[-1][-3], dims_value=self.ellipsoids[-1][-1], rest_dims=self.ellipsoids[-1][-2]) else: self.attainWholeBody(self.ellipsoids[-1][0][-1], self.ellipsoids[-1][0][-2], idx_dims_retrieve=self.ellipsoids[-1][-3], dims_value=self.ellipsoids[-1][-1], rest_dims=self.ellipsoids[-1][-2]) def polynomialGridSearch(self): dims = list(self.grid.shape[:-1] if self.matrix_of_velocities else self.grid.shape) for i in range(len(dims)): dims[i] = np.arange(0, dims[i], int(np.round(dims[i] * self.epsilon_grid))) try: X = np.array(np.meshgrid(*dims)).T.reshape(-1, len(dims)) return X except MemoryError: raise MemoryError("Cant handle this much data! Lower your epsilon or simply run the parallelized version") @staticmethod def semiBinarizeGrid(grid, kernel_size=None): # Apply Mean-Filter kernel = np.ones(tuple([grid.ndim if kernel_size is None else kernel_size for i in range(grid.ndim)]), np.float32) / (kernel_size ** grid.ndim if kernel_size is not None else grid.ndim ** grid.ndim) return convolve(grid, kernel, mode='constant', cval=0) def generateEpsilonStar(self, degree=None): if degree is None: degree = self.epsilon_body Z = np.arange(0, 2*np.pi, degree * np.pi) V = np.array(np.meshgrid(*[Z for i in range(self.d)])).T.reshape(-1, self.d) V = np.divide(V, np.linalg.norm(V, axis=1)[:, np.newaxis], out=np.zeros_like(V), where=(V != 0)) V = np.unique(np.around(np.unique(V[1:], axis=0), self.d+1), axis=0) return V @staticmethod def run_dill_encoded(payload): fun, args = dill.loads(payload) return fun(*args) @staticmethod def apply_async(pool, fun, args): payload = dill.dumps((fun, args)) return pool.apply_async(CurrentEstimation.run_dill_encoded, (payload,)) def attainWholeBody(self, E, c, idx_dims_retrieve=None, dims_value=None, rest_dims=None): if self.iocsAlg.oracle.checkIfInsidePixelStyleNumpyVer(np.round(c)) > 1.0: raise ValueError('Something is wrong with the ellipsoid!') bounding_box = self.iocsAlg.oracle.bounding_box indices = np.vstack(map(np.ravel, np.meshgrid(*[np.arange(bounding_box[x, 0], bounding_box[x, 1]+1) for x in range(bounding_box.shape[0])]))).T body = [] temp = 0 for idx in indices: if self.iocsAlg.oracle.checkIfInsidePixelStyleNumpyVer(idx) == 1 and np.linalg.norm(E.dot(idx - c)) <= 1 \ and not self.checkIfContained(idx): temp += 1 if np.linalg.norm(self.grid[tuple(idx)]) > 1e-10: body.append(idx) if len(body) > 0: self.full_bodies.append(np.vstack(body)) def approximateBody(self, E, c, idx_dims_retrieve=None, dims_value=None, rest_dims=None): bounding_box = self.iocsAlg.oracle.bounding_box indices_of_lengths = np.argsort([x[0] - x[1] for x in bounding_box]) coeffs = np.zeros((indices_of_lengths.shape[0],)) for i in range(coeffs.shape[0]): if i == (coeffs.shape[0] - 1): coeffs[indices_of_lengths[i]] = 1 else: coeffs[indices_of_lengths[i]] = max(((bounding_box[indices_of_lengths[i],1] - bounding_box[indices_of_lengths[i],0]) * self.epsilon_body),1) V = np.vstack(map(np.ravel, np.meshgrid(*[np.arange(start=x[0], stop=x[1], step=coeffs[j]) for (j,x) in enumerate(bounding_box)]))).T V = np.unique(V.astype("int"), axis=0) body = [] for v in V: if (self.iocsAlg.oracle.checkIfInsidePixelStyleNumpyVer(v) <= 1.0) and\ (np.linalg.norm(E.dot(v - c)) <= np.sqrt(1 + (1 + self.iocsAlg.eps) * E.shape[0])) and\ (np.linalg.norm(self.grid[tuple(v)]) > 0) and (not self.checkIfContained(v)): body.append(v) if len(body) > 0: self.bodies.append(np.vstack(body)) if len(body) > (self.d + 1): try: self.convex_hulls.append(ConvexHull(self.bodies[-1]).equations) except: self.convex_hulls.append(None) else: self.convex_hulls.append(None) def createBlobs(self, body): if body.ndim == 1: return [PointSet.PointSet(body[np.newaxis,:])] elif body.shape[0] < self.blob_size: return [PointSet.PointSet(body)] else: blob = [] for x_val in np.unique(body[:,0]): idxs = np.where(body[:, 0] == x_val)[0] if body[idxs].shape[0] < self.blob_size: blob.extend([PointSet.PointSet(body[idxs])]) else: splitted_array = np.array_split(body[idxs], int(body[idxs].shape[0] / self.blob_size)) blob.extend([PointSet.PointSet(x) for x in splitted_array]) return blob def clusteringAssignment(self, set_P, Q): assignments_per_point = [] assignments_per_blob = [] for P in set_P: dists = cdist(P.P, Q) cols_idxs = np.argmin(dists, axis=1) min_idx = np.argmin(np.min(dists, axis=1)) assignments_per_point.extend([cols_idxs[min_idx] for p in P.P]) assignments_per_blob.append(cols_idxs[min_idx]) return assignments_per_point, assignments_per_blob def clusterWaves(self, continue_from=0,return_full_bodies=True): P = [] blobs = [] if self.epsilon_body != 0: for body in self.bodies: P = [] # need to make a way to make sure that there is a trade-off between the first 3 entries and last two if body.ndim == 1: body = body[np.newaxis, :] for point in body: a = self.grid[tuple(point.astype("int"))] b = np.linalg.norm(a) P.append( np.hstack((point*FORCE_NEIGHBORING, np.divide(a,b, out=np.zeros_like(a), where=b!=0) * np.linalg.norm(point)))) blobs.extend(self.createBlobs(np.array(deepcopy(P)))) else: for body in self.full_bodies: # need to make a way to make sure that there is a trade-off between the first 3 entries and last two P = [] if body.ndim == 1: body = body[np.newaxis, :] for point in body: P.append( np.hstack((point*FORCE_NEIGHBORING, self.grid[tuple(point.astype("int"))] / np.linalg.norm(self.grid[tuple(point.astype("int"))]) * np.linalg.norm(point)))) blobs.extend(self.createBlobs(np.array(deepcopy(P)))) set_P_indiced = [(P, idx) for (idx, P) in enumerate(blobs)] # taking the full! if continue_from > 0 or self.show: sensitivity = np.load(self.save_path + self.file_prefix + self.sens_file_name)['s'] print("Loaded sensitivity for sets clustering!") else: k_means_sens_bounder = SensBounder.KMeansForSetsSensitivityBounder(set_P_indiced, self.k, None, None) sensitivity = k_means_sens_bounder.boundSensitivity() if self.save_mode: np.savez(self.save_path + self.file_prefix + self.sens_file_name, s=sensitivity) print('Sum of sensitivity is {}'.format(np.sum(sensitivity))) print("Saved sensitivity for sets clustering!") if continue_from <= 1 and not self.show: k_means_alg = KMeansAlg.KMeansAlg(blobs[0].d, self.k) coreset = CS.Coreset() C = coreset.computeCoreset(set_P_indiced, sensitivity, int(self.coreset_sample_size)) _, Q, _ = k_means_alg.computeKmeans(C[0], False) np.savez('{}Optimal_clustering_{}.npz'.format(self.save_path, self.file_prefix), Q=Q) else: Q = np.load('{}Optimal_clustering_{}.npz'.format(self.save_path,self.file_prefix))['Q'] print("Loaded optimal clustering of coreset") assignments_per_point, assignments_per_blob = self.clusteringAssignment(blobs, Q) return np.array(blobs), np.array(assignments_per_blob), assignments_per_point def addConnections(self, pairs, g_all, i, j, list_of_vertices, shift_idx_root, shift_idx_leaf, is_leaf=None, enable_weights=False, connections=[]): dists = np.linalg.norm(self.clustered_bodies[i][pairs[:,0]] - self.clustered_bodies[j][pairs[:,1]], axis=1) pairs_of_interest = pairs[np.where(dists <= 2)[0]] if len(pairs_of_interest) != 0: if enable_weights: for pair in pairs_of_interest: root_of_path_of_interest = self.clustered_bodies[i][pair[0]] leaf_of_path_of_interest = self.clustered_bodies[j][pair[1]] direction = root_of_path_of_interest - leaf_of_path_of_interest direction = direction / np.linalg.norm(direction) target_direction = self.grid[tuple(root_of_path_of_interest.astype("int"))] alpha = np.dot(direction, target_direction/np.linalg.norm(target_direction)) if alpha > 0.7: try: g_all.add_edge(int(pair[0] + shift_idx_root), int(pair[1] + shift_idx_leaf)) list_of_vertices = np.delete(list_of_vertices, np.where(list_of_vertices == (pair[1]+shift_idx_leaf))) if is_leaf is not None: is_leaf = np.delete(is_leaf, np.where(is_leaf == (pair[0] + shift_idx_root))) except: continue else: roots = np.unique(pairs_of_interest[:, 0]) for root in roots: try: idxs_of_interest = np.where(pairs_of_interest[:, 0] == root)[0] pairs_of_interest_per_root = pairs_of_interest[idxs_of_interest, :] root_of_path_of_interest = self.clustered_bodies[i][root][np.newaxis, :] leaf_of_path_of_interest = self.clustered_bodies[j][pairs_of_interest_per_root[:, 1]] directions = leaf_of_path_of_interest - root_of_path_of_interest directions = np.divide(directions, np.linalg.norm(directions, axis=1)[:, np.newaxis], out=np.zeros_like(directions), where=np.linalg.norm(directions, axis=1)[:, np.newaxis]!=0, casting="unsafe") target_direction = self.grid[tuple(root_of_path_of_interest.flatten().astype("int"))] alpha = np.dot(directions, target_direction / np.linalg.norm(target_direction)) l = np.argmax(alpha) if alpha[l] >= 0.7: g_all.add_edge(int(root + shift_idx_root), int(pairs_of_interest[idxs_of_interest[l]][1] + shift_idx_leaf)) list_of_vertices = \ np.delete(list_of_vertices, np.where(list_of_vertices == (pairs_of_interest[idxs_of_interest[l]][1] + shift_idx_leaf))) if is_leaf is not None: is_leaf = np.delete(is_leaf, np.where(is_leaf == (root + shift_idx_root))) connections.append((i, int(root), j, int(pairs_of_interest[idxs_of_interest[l]][1]))) except: continue return g_all, list_of_vertices, is_leaf, connections def containedInMap(self, point): temp = point + self.grid[tuple(point.astype("int"))] if np.any(temp < 0) or np.any(temp >= np.array(list(self.grid.shape[:-1]))): return False return True def attainDiameterOfSetOfPoints(self, P): return np.max(np.linalg.norm(P - P[np.argmax(np.linalg.norm(P - np.mean(P, axis=0)[np.newaxis, :], axis=1))][np.newaxis, :], axis=1)) def avoidRedundantConnection(self, point, P, orig_idxs): norms = np.linalg.norm(P - point[np.newaxis, :], axis=1) idxs = np.argsort(norms) temp = P - point[np.newaxis, :] temp = np.around(np.multiply(temp[idxs], (1 / norms[idxs])[:, np.newaxis]), 2) _, idx2 = np.unique(temp, axis=0, return_index=True) return orig_idxs[idxs[idx2]] def generateGraph(self, is_full=True, enable_weights=False, enable_all=False): leaves = [] roots = [] all_others = [] roots_all = np.array([]) leaves_all = np.array([]) idx_shift = 0 g_all = jgrapht.create_graph(directed=True, weighted=False) graphs = [jgrapht.create_graph(directed=True, weighted=False) for i in range(self.k)] counter_bad_vertices = np.zeros((self.k, )) cnt = 0 for body_idx,body in enumerate(self.clustered_bodies): idxs_leafs = np.arange(body.shape[0]) idxs_roots = np.arange(body.shape[0]) idxs_all_others = np.arange(body.shape[0]) for i in range(idx_shift, idx_shift + body.shape[0]): graphs[body_idx].add_vertex(i-idx_shift) g_all.add_vertex(i) for i, point in enumerate(body): temp = body-point[np.newaxis, :] norms = np.linalg.norm(temp, axis=1)[:, np.newaxis] if is_full: norms = norms.flatten() neighbors = np.where(np.logical_and(norms.flatten() <= np.sqrt(2), norms.flatten() > 0))[0] norms = norms.flatten()[neighbors][:, np.newaxis] temp = temp[neighbors,:] else: norms = norms.flatten() min_dist = self.attainDiameterOfSetOfPoints(body) * self.epsilon_body neighbors = np.where(np.logical_and(norms.flatten() <= min_dist, norms.flatten() > 0))[0] norms = norms.flatten()[neighbors][:, np.newaxis] temp = temp[neighbors, :] dots = np.clip(np.dot(np.multiply(temp, np.divide(1, norms, out=np.zeros_like(norms), where=norms != 0)), self.grid[tuple(point)] / np.linalg.norm(self.grid[tuple(point)])), -1,1) vals = np.arccos(dots) normal = null_space((self.grid[tuple(point)] / np.linalg.norm(self.grid[tuple(point)]))[np.newaxis, :]) vals2 = np.linalg.norm(np.dot(np.multiply(temp, np.divide(1, norms, out=np.zeros_like(norms), where=norms != 0)), normal), axis=1) try: if not self.containedInMap(point): counter_bad_vertices[body_idx] += 1 idxs_roots = np.delete(idxs_roots, np.where(idxs_roots ==i)) idxs_all_others = np.delete(idxs_all_others, np.where(idxs_all_others == i)) raise ValueError('Will not consider coordinates {} as root.'.format(point)) idxs = np.where(np.logical_and(dots >= 0, np.logical_and(vals <= (15 * np.pi/180), vals2 <= 0.3)))[0] if idxs.size == 0: raise ValueError('Continue to next point') sign_temp = np.sign(temp[idxs]) idxs = idxs[np.where(sign_temp.dot(np.sign(self.grid[tuple(point)])) == point.size)[0]] idxs = idxs[np.argsort(vals[idxs])[:min(1, idxs.shape[0])]] if not is_full: if not enable_all: l = [np.argmin(vals[idxs.astype("int")])] # take all the points that might be reached from # current vertex via the dominating direction # of the body else: l = np.arange(idxs.shape[0]).astype("int") idxs = np.unique(self.avoidRedundantConnection(point, body[neighbors[idxs], :], neighbors[idxs])) for j in idxs: edge_endpoint = j graphs[body_idx].add_edge(int(i), int(edge_endpoint)) idxs_leafs = np.delete(idxs_leafs, np.where(idxs_leafs == i)) idxs_roots = np.delete(idxs_roots, np.where(idxs_roots == edge_endpoint)) g_all.add_edge(int(i+idx_shift), int(edge_endpoint+idx_shift)) cnt+=1 else: if enable_weights: for j in idxs: # This requires a graph with weights edge_endpoint = neighbors[j] graphs[body_idx].add_edge(int(i), int(edge_endpoint)) idxs_leafs = np.delete(idxs_leafs, np.where(idxs_leafs == (i+idx_shift))) idxs_roots = np.delete(idxs_roots, np.where(idxs_roots == (edge_endpoint + idx_shift))) g_all.add_edge(int(i + idx_shift), int(edge_endpoint + idx_shift)) else: if not enable_all: l = np.argmin(vals[idxs]) else: l = np.arange(idxs.shape[0]).astype("int") for j in l: edge_endpoint = neighbors[idxs[j]] graphs[body_idx].add_edge(int(i), int(edge_endpoint)) idxs_leafs = np.delete(idxs_leafs, np.where(idxs_leafs == (i + idx_shift))) idxs_roots = np.delete(idxs_roots, np.where(idxs_roots == (edge_endpoint + idx_shift))) g_all.add_edge(int(i + idx_shift), int(edge_endpoint + idx_shift)) except: continue idx_shift += body.shape[0] idxs_leafs = np.array(list(set(idxs_leafs) - set(idxs_roots))) idxs_all_others = np.array(list(set(idxs_all_others) - (set(idxs_leafs).union(set(idxs_roots))))) leaves.append(deepcopy(idxs_leafs)) roots.append(deepcopy(idxs_roots)) all_others.append(deepcopy(idxs_all_others)) roots_all = np.hstack((roots_all, idxs_roots+idx_shift)) leaves_all = np.hstack((leaves_all, idxs_leafs+idx_shift)) print(bcolors.BOLD + "Graph {} contains {} vertices and {} edges".format(body_idx, graphs[body_idx].number_of_vertices, graphs[body_idx].number_of_edges)) print(bcolors.NORMAL) shifts = np.cumsum([x.shape[0] for x in self.clustered_bodies]) connections = [] for i in range(len(graphs)): for j in range(len(graphs)): if i == j: continue else: from_roots = np.array(np.meshgrid(roots[i], np.unique(np.hstack((roots[j], leaves[j], all_others[j]))))).T.reshape(-1, 2) from_leaves = np.array(np.meshgrid(leaves[i], np.unique(np.hstack((roots[j], leaves[j], all_others[j]))))).T.reshape(-1, 2) from_others = np.array(np.meshgrid(all_others[i], np.unique(np.hstack((roots[j], leaves[j],all_others[j]))))).T.reshape(-1, 2) g_all, roots_all, _, connections= \ self.addConnections(from_roots, g_all, i,j,roots_all, shift_idx_root=(0 if i == 0 else shifts[i-1]), shift_idx_leaf=(0 if j == 0 else shifts[j-1]), enable_weights=enable_weights, connections=connections) g_all, roots_all, leaves_all, connections = \ self.addConnections(from_leaves, g_all, i,j,roots_all, shift_idx_root=(0 if i == 0 else shifts[i-1]), shift_idx_leaf=(0 if j == 0 else shifts[j-1]), is_leaf=leaves_all, enable_weights=enable_weights, connections=connections) g_all, roots_all, leaves_all, connections = \ self.addConnections(from_others, g_all, i,j, roots_all, shift_idx_root=(0 if i == 0 else shifts[i-1]), shift_idx_leaf=(0 if j == 0 else shifts[j-1]), enable_weights=enable_weights, connections=connections) np.savez('{}Graphs_{}.npz'.format(self.save_path, self.file_prefix), g_all=jgrapht.io.exporters.generate_csv(g_all), graphs=[jgrapht.io.exporters.generate_csv(x) for x in graphs], leaves=leaves, roots=roots, roots_all=roots_all, leaves_all=leaves_all, connections=connections) return g_all, graphs, roots, leaves, roots_all, leaves_all, connections def findTheStartingVertexOfLongestPathInGraph(self, graph=None, return_all=False): all_paths_alg = johnson_allpairs(self.g if graph is None else graph) path_lengths = [] all_paths = [] for root in (self.g if graph is None else graph).vertices: longest_path_len = 0 longest_path = None for leaf in (self.g if graph is None else graph).vertices: if root == leaf: continue path = all_paths_alg.get_path(root, leaf) if path is not None: all_paths.append((path.vertices, len(path.vertices))) if path is not None and longest_path_len <= len(path.vertices): longest_path,longest_path_len = path.vertices, len(path.vertices) if longest_path_len > 0: path_lengths.append((longest_path, longest_path_len)) if not return_all: i = np.argmax(np.array([x[1] for x in path_lengths])) return path_lengths[i][0][0], all_paths else: return all_paths,path_lengths def saveFile(self, file_name, data): with open(file_name, 'wb') as outfile: pickle.dump(data, outfile, protocol=pickle.HIGHEST_PROTOCOL) def loadFile(self, file_name): with open(file_name, 'rb') as outfile: return pickle.load(outfile) def plotResults(self): x_min, x_max, y_min, y_max = 31.0583, 33.6917, 31.5100, 35.4300 ax = plotMap(self.grid, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max) if self.epsilon_body > 0: bodies = self.bodies else: bodies = self.full_bodies colors = pl.cm.jet(np.linspace(0, 1, len(bodies))) for i in range(len(bodies)): if bodies[i].ndim > 1: ax.scatter(bodies[i][:, 0] / (self.grid.shape[0] - 1) * (x_max - x_min) + x_min, bodies[i][:, 1]/ (self.grid.shape[1] - 1) * (y_max - y_min) + y_min, color=colors[i]) else: ax.scatter(bodies[i][0]/ (self.grid.shape[0] - 1) * (x_max - x_min) + x_min, bodies[i][1]/ (self.grid.shape[1] - 1) * (y_max - y_min) + y_min, color=colors[i]) plt.xticks(np.arange(31.5, 34 , 0.5)) plt.yticks(np.arange(32, 35.5 , 0.5)) plt.xlabel('Latitude') plt.ylabel('Longitude') plt.gcf().tight_layout() plt.savefig('{}Segmentation_{}.png'.format(self.save_path,self.file_prefix)) # plot clustering ax = plotMap(self.grid, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max) colors = pl.cm.jet(np.linspace(0, 1, self.k)) for i in range(self.k): ax.scatter(self.clustered_bodies[i][:,0]/ (self.grid.shape[0] - 1) * (x_max - x_min) + x_min, self.clustered_bodies[i][:,1]/ (self.grid.shape[1] - 1) * (y_max - y_min) + y_min, color=colors[i]) plt.xticks(np.arange(31.5, 34 , 0.5)) plt.yticks(np.arange(32, 35.5 , 0.5)) plt.xlabel('Latitude') plt.ylabel('Longitude') plt.gcf().tight_layout() plt.savefig('{}Clustering_{}.png'.format(self.save_path,self.file_prefix)) # close all figures plt.close('all') def findSubOptimalPlacing(self, continue_from=-1): if continue_from == -1 and not self.show: start_ellip = timer() points = self.polynomialGridSearch() for point in tqdm(points,ncols=100): if np.linalg.norm(self.grid[tuple(point)]) > 0 and not self.checkIfContained(point): self.IOCS(point) end_ellip = timer() print(bcolors.BOLD + bcolors.OKGREEN + 'IOCS ended in {} seconds'.format(end_ellip - start_ellip)) print(bcolors.NORMAL) self.saveFile(file_name=('{}Ellipsoids_{}.dat'.format(self.save_path, self.file_prefix)), data=dict(zip(['ellipsoids','bodies','full_bodies'], [self.ellipsoids, self.bodies, self.full_bodies]))) else: temp = self.loadFile(file_name=('{}Ellipsoids_{}.dat'.format(self.save_path, self.file_prefix))) self.ellipsoids = temp['ellipsoids'] self.bodies = temp['bodies'] self.full_bodies = temp['full_bodies'] start_clustering = timer() blobs, assignments_per_blob, assignments_per_point = self.clusterWaves(continue_from) self.clustered_bodies = [] for idx in range(self.k): cluster_idx = np.where(assignments_per_blob == idx)[0].astype("int") self.clustered_bodies.append(np.unique(np.vstack([(x.P[:, [0, 1]] / FORCE_NEIGHBORING).astype("int") for x in blobs[cluster_idx]]), axis=0)) print(bcolors.BOLD + bcolors.OKGREEN + 'Total time for clustering WC is {} seconds'.format(timer() - start_clustering)) print(bcolors.NORMAL) self.plotResults() if self.show: exit(-9) start_graph_based = timer() if continue_from < 3: g_all, graphs, roots, leaves, roots_all, leaves_all, connections = self.generateGraph(enable_all=True, is_full=(self.epsilon_body == 0.0)) else: G = np.load('{}Graphs_{}.npz'.format(self.save_path,self.file_prefix), allow_pickle=True) g_all = jgrapht.create_graph(directed=True, weighted=False) graphs_strings = G['graphs'] graphs = [jgrapht.create_graph(directed=True,weighted=False) for i in range(self.k)] jgrapht.io.importers.parse_csv(g_all, str(G['g_all'])) for i in range(self.k): jgrapht.io.importers.parse_csv(graphs[i], str(graphs_strings[i])) roots = G['roots'].tolist() leaves = G['leaves'].tolist() roots_all = G['roots_all'].tolist() leaves_all = G['leaves_all'].tolist() connections = G['connections'].tolist() # retrieve only $k$ largest paths where for any two paths, no path is a subpath of the other positions = np.empty((3,self.k, self.d)) if continue_from < 4: # Heuristic choice for i,body in enumerate(self.clustered_bodies): A = np.vstack([self.grid[tuple(x)] for x in body]) u_vecs, counts = np.unique(np.sign(A), return_counts=True, axis=0) dominating_vec = u_vecs[np.argmax(counts)] / np.linalg.norm(u_vecs[np.argmax(counts)]) idxs = np.where(np.sign(A).dot(np.sign(dominating_vec)) == dominating_vec.shape[0])[0] vecs = body[idxs] - np.mean(body[idxs], axis=0) vals = np.dot(vecs, dominating_vec) positions[0, i, :] = body[idxs[int(np.argmin(vals))]] print(bcolors.OKGREEN + 'Finished computing initial positions for drifters via heuristical methods' + bcolors.ENDC) # Find longest path in each graph seperately paths_in_graph = [[] for i in range(len(graphs))] for i,graph in enumerate(graphs): idx, paths_in_graph[i] = self.findTheStartingVertexOfLongestPathInGraph(graph=graph, return_all=False) positions[1, i, :] = self.clustered_bodies[i][idx] print(bcolors.OKGREEN + 'Finished computing initial positions for drifters via graph based methods' + bcolors.ENDC) np.savez('{}paths_in_graphs_{}.npz'.format(self.save_path, self.file_prefix), positions=positions, paths_in_graph=paths_in_graph) # Find k longest paths in the combined graph # old technique else: temp = np.load('{}paths_in_graphs_{}.npz'.format(self.save_path, self.file_prefix), allow_pickle=True) positions = temp['positions'] paths_in_graph = temp['paths_in_graph'].tolist() print(bcolors.BOLD + 'Starting to compute initial positions for drifters via inter-connected graphs' + bcolors.ENDC) if continue_from < 5: parsed_paths = [item for sublist in paths_in_graph for item in sublist] johnson_graphs = [johnson_allpairs(x) for x in graphs] shift_idxs = np.hstack((0,np.cumsum([x.number_of_vertices for x in graphs]))) unified_paths = [] for connection in connections: i, vertex_i, j, vertex_j = connection temp_paths_from_j = [x for x in paths_in_graph[j] if x[0][0] == vertex_j] temp_paths_to_i = [x for x in paths_in_graph[i] if x[0][-1] == vertex_i] unified_temp_paths_to_i = [] # shift indices for list_i in range(len(temp_paths_to_i)): if len(temp_paths_to_i) > 0: temp_paths_to_i[list_i] = ([x + shift_idxs[i] for x in temp_paths_to_i[list_i][0]], temp_paths_to_i[list_i][1]) for list_j in range(len(temp_paths_from_j)): if len(temp_paths_from_j) > 0: temp_paths_from_j[list_j] = ([x + shift_idxs[j] for x in temp_paths_from_j[list_j][0]], temp_paths_from_j[list_j][1]) # check if there are inter_graph paths including vertex_i temp_paths_to_i = [x for x in paths_in_graph[i] if x[0][-1] == vertex_i] if len(unified_paths) > 0: unified_temp_paths_to_i = [x for x in unified_paths if x[0][-1] == (vertex_i + shift_idxs[i])] if len(temp_paths_to_i) > 0 and len(temp_paths_from_j) > 0: temp = getAllPossiblePaths(temp_paths_to_i, temp_paths_from_j) unified_paths.extend(copy.deepcopy(temp)) if len(unified_temp_paths_to_i) > 0: temp2 = getAllPossiblePaths(unified_temp_paths_to_i, temp) print('Length of temp_2 is {}'.format(len(temp2))) unified_paths.extend(copy.deepcopy(temp2)) unified_paths.sort(key = lambda x: x[1]) i = 0 if False: while True: advance_i = True if i < (len(unified_paths) - 1): for j in range(i+1, len(unified_paths)): if set(unified_paths[i][0]).issubset(unified_paths[j][0]): advance_i = False del(unified_paths[i]) break if advance_i: i += 1 else: break else: print('Removing Inclusions has been initiated') unified_paths = removeInclusions(unified_paths, self.save_path, self.file_prefix) print('Number of possibe paths is {}'.format(len(unified_paths))) np.save('{}unified_paths_{}.npy'.format(self.save_path, self.file_prefix), unified_paths) print('Saved unified paths') else: temp = np.load('{}unified_paths_{}.npy'.format(self.save_path, self.file_prefix), allow_pickle=True) unified_paths = temp.tolist() print('length of Connections is {}'.format(len(connections))) print('length of Unified Paths are {}'.format(len(unified_paths))) if False: unified_graph = johnson_allpairs(g_all) paths = [] for root in roots_all: for leaf in leaves_all: try: path = unified_graph.get_path(int(root), int(leaf)) except: continue dont = False replace_idx = None if path is not None: if len(paths) > 0: if np.any([set(path.vertices).issubset(x[0]) for x in paths]): dont = True if np.any([set(x[0]).issubset(path.vertices) for x in paths]): replace_idx = np.where([set(x[0]).issubset(path.vertices) for x in paths])[0][0] if not dont: if replace_idx is None: paths.append((path.vertices, len(path.vertices))) else: paths[replace_idx] = (path.vertices, len(path.vertices)) # make sure that paths chosen that start from different nodes temp = copy.deepcopy(unified_paths) while True: len_paths = np.array([len(x) for x in temp]) sorted_idxs = np.argsort((-1) * len_paths) idxs = sorted_idxs[:self.k].astype("int") initials = [temp[x][0] for x in idxs] to_delete = [] for i in range(self.k): for j in range(i+1, self.k): if initials[i] == initials[j]: to_delete.append(temp[idxs[j]]) if len(to_delete) == 0 or len(len_paths) == self.k: break else: for element in to_delete: try: temp.remove(element) except: continue unified_paths = copy.deepcopy(temp) len_paths = np.array([len(x) for x in unified_paths]) sorted_idxs = np.argsort((-1) * len_paths) sizes = np.cumsum([x.shape[0] for x in self.clustered_bodies]) idxs = sorted_idxs[:self.k].astype("int") raw_paths = [unified_paths[x] for x in idxs] raw_paths_initial_pos = [x[0] for x in raw_paths] print('raw paths initial are {}'.format(raw_paths_initial_pos)) print('Sizes are {}'.format(sizes)) for i in range(len(raw_paths_initial_pos)): idx_shift = np.where(raw_paths_initial_pos[i] < sizes)[0][0] if self.clustered_bodies[idx_shift].shape[0] == (raw_paths_initial_pos[i] -sizes[idx_shift-1]): idx_shift += 1 positions[2, i, :] = self.clustered_bodies[idx_shift][0] else: positions[2, i, :] = self.clustered_bodies[idx_shift][raw_paths_initial_pos[i] - (0 if idx_shift == 0 else sizes[idx_shift-1])] print(bcolors.BOLD + 'Finished computing initial positions for drifters via inter-connected graphs' + bcolors.ENDC) np.save('{}initial_locations_{}.npy'.format(self.save_path,self.file_prefix), positions) print(bcolors.BOLD + bcolors.OKGREEN + 'Time for finding suboptimal dropping positions is {} seconds'.format(timer() - start_graph_based)) print(bcolors.NORMAL) return positions def plotEllipsoid(self, ellipsoid, center): """ This function serves only for plotting a 2D ellipsoid. :param ellipsoid: An orthogonal matrix representing the ellipsoid's axes lenghts and rotation :param center: The center of ellipsoid represented by a numpy array. :return: None. """ N = 10000 # numer of points on the boundary of the ellipsoid. _, D, V = np.linalg.svd(ellipsoid, full_matrices=True) # attain the axes lengthes and rotation of the ellipsoid a = 1.0 / D[0] b = 1.0 / D[1] theta = np.expand_dims(np.arange(start=0, step=1.0 / N, stop=2.0*np.pi + 1.0/N), 1).T state = np.vstack((a * np.cos(theta), b * np.sin(theta))) X = np.dot(V, state) + center[:,np.newaxis] plt.plot(X[0, :], X[1, :], color='blue') def plotMap(grid, indices=None, x_min=None, x_max=None, y_min=None, y_max=None): positions = np.indices((grid.shape[0], grid.shape[1])).T.reshape(-1, 2) fig, ax = plt.subplots() idxs = [i for i in range(positions.shape[0]) if np.linalg.norm(grid[tuple(positions[i])]) > 0] if indices is None: if x_min is None: q = ax.quiver(positions[idxs,0], positions[idxs,1], grid[positions[idxs,0], positions[idxs,1],0], grid[positions[idxs,0], positions[idxs,1],1], angles='xy') else: q = ax.quiver(positions[idxs,0] / (grid.shape[0] - 1) * (x_max - x_min) + x_min, positions[idxs,1] / (grid.shape[1] - 1) * (y_max - y_min) + y_min, grid[positions[idxs,0], positions[idxs,1],0], grid[positions[idxs,0], positions[idxs,1],1], angles='xy') else: q = ax.quiver(indices[:, 0], indices[:, 1], grid[indices[:, 0], indices[:, 1],0], grid[indices[:,0], indices[:, 1], 1], angles='xy') return ax def main(data_folder, preprocess=True, file_type='.dat', number_of_files=1, eps_g=None, eps_b=0, k=10, coreset_sample_size=1000, over_time=False, tol=0.02, resume=False, show=False): paths = [x for x in os.walk(data_folder)] done = [] if resume: with open("resume_from_maps_init.pkl", "rb") as open_file: paths = pickle.load(open_file) for i, file_path_tuple in enumerate(paths): for file_name in file_path_tuple[-1]: if file_name.endswith(file_type): if file_type =='.nc': with open('resume_from_maps_init.pkl', "wb") as open_file: pickle.dump(paths[i:], open_file) start_main = timer() print(bcolors.WARNING + '****************************************************************************') print(bcolors.BOLD + bcolors.WARNING + "Proccessing File: {}".format(file_name)) print(bcolors.NORMAL) U, V = readNetCDFFile(file_path_tuple[0]+'/'+file_name, over_time=over_time) if not over_time: preprocessed_files = [ndi.correlate(np.mean(x,0), np.full((3, 3), 1 / 9)).T[None] for x in [U,V]] preprocessed_files_2 = [np.mean(x,0).T[None] for x in [U,V]] grid = np.append(*preprocessed_files, axis=0).T grid2 = np.append(*preprocessed_files_2, axis=0).T saveVels(grid, file_path=file_path_tuple[0]+'/', smoothed=True) saveVels(grid2, file_path=file_path_tuple[0]+'/', smoothed=False) if eps_g is None: eps_g = np.around(10 / grid.shape[0], 2) drifter_placer = CurrentEstimation(grid, epsilon_grid=eps_g, k=k, epsilon_body=eps_b, coreset_sample_size=coreset_sample_size, tolerance=tol, save_path=file_path_tuple[0]+'/', show=show) drifter_placer.findSubOptimalPlacing(continue_from=-1) end_main = timer() print(bcolors.HEADER + bcolors.OKGREEN + 'Whole program took {} seconds'.format(end_main - start_main)) print(bcolors.NORMAL)
np.save(file_path_tuple[0] + '/' + 'Time.npy', end_main - start_main)
numpy.save
# # # Test of convergence diagnostics # # from __future__ import with_statement from numpy.testing import assert_equal, assert_array_equal from numpy.testing import assert_approx_equal, TestCase import unittest import nose import numpy as np import pymc import pymc.examples.weibull_fit as model import os import warnings import copy
np.random.seed(467)
numpy.random.seed
import os import sys import time import skimage import numpy as np import scipy.io as sio from tqdm import trange import tensorflow as tf from sklearn.manifold import TSNE from sklearn.decomposition import PCA import matplotlib.pyplot as plt from sklearn.utils import shuffle from contextlib import redirect_stdout from Tools import * from Networks import * from flip_gradient import flip_gradient class Models(): def __init__(self, args, dataset): self.args = args # Initializing the placeholders #Changing the seed at any run tf.set_random_seed(int(time.time())) tf.reset_default_graph() self.learning_rate = tf.placeholder(tf.float32, [], name="learning_rate") if self.args.compute_ndvi: self.data = tf.placeholder(tf.float32, [None, self.args.patches_dimension, self.args.patches_dimension, 2 * self.args.image_channels + 2], name = "data") else: self.data = tf.placeholder(tf.float32, [None, self.args.patches_dimension, self.args.patches_dimension, 2 * self.args.image_channels], name = "data") self.label = tf.placeholder(tf.float32, [None, self.args.num_classes], name = "label") self.label_d = tf.placeholder(tf.float32, [None, 2], name = "label_d") self.mask_c = tf.placeholder(tf.float32, [None,], name="labeled_samples") self.L = tf.placeholder(tf.float32, [], name="L" ) # Initializing the network class self.classifier = EF_CNN(self.args) # Initializing the models individually if self.args.FE_Architecture == 'Mabel_Arch': Encoder_Outputs = self.classifier.build_Mabel_Arch(self.data, reuse = False, name = "FE") elif self.args.FE_Architecture == 'Ganin_Arch': Encoder_Outputs = self.classifier.build_Ganin_Arch(self.data, reuse = False, name = "FE") #Defining the classifier Classifier_Outputs = self.classifier.build_MLP_1hidden_cl(Encoder_Outputs[-1], reuse = False, name = "MLP_Cl") self.logits_c = Classifier_Outputs[-2] self.prediction_c = Classifier_Outputs[-1] self.features_c = Encoder_Outputs[-1] if self.args.training_type == 'domain_adaptation': if 'DR' in self.args.da_type: flip_feature = flip_gradient(self.features_c, self.L) self.DR = Domain_Regressors(self.args) DR_Ouputs = self.DR.build_Domain_Classifier_Arch(flip_feature, name = 'FC_Domain_Classifier') self.logits_d = DR_Ouputs[-2] if self.args.phase == 'train': self.summary(Encoder_Outputs, 'Encoder:') self.summary(Classifier_Outputs, 'Classifier:') self.dataset_s = dataset[0] self.dataset_t = dataset[1] #Defining losses temp = tf.nn.softmax_cross_entropy_with_logits(logits = self.logits_c, labels = self.label) self.classifier_loss = tf.reduce_sum(self.mask_c * temp) / tf.reduce_sum(self.mask_c) if self.args.training_type == 'classification': self.total_loss = self.classifier_loss else: if 'DR' in self.args.da_type: self.summary(DR_Ouputs, "Domain_Regressor: ") self.domainregressor_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = self.logits_d, labels = self.label_d)) self.total_loss = self.classifier_loss + self.domainregressor_loss else: self.total_loss = self.classifier_loss #Defining the Optimizers self.training_optimizer = tf.train.MomentumOptimizer(self.learning_rate, self.args.beta1).minimize(self.total_loss) self.saver = tf.train.Saver(max_to_keep=5) self.sess=tf.Session() self.sess.run(tf.initialize_all_variables()) elif self.args.phase == 'test': self.dataset = dataset self.saver = tf.train.Saver(max_to_keep=5) self.sess=tf.Session() self.sess.run(tf.initialize_all_variables()) print('[*]Loading the feature extractor and classifier trained models...') mod = self.load(self.args.trained_model_path) if mod: print(" [*] Load with SUCCESS") else: print(" [!] Load failed...") sys.exit() def Learning_rate_decay(self): lr = self.args.lr / (1. + 10 * self.p)**0.75 return lr def summary(self, net, name): print(net) f = open(self.args.save_checkpoint_path + "Architecture.txt","a") f.write(name + "\n") for i in range(len(net)): print(net[i].get_shape().as_list()) f.write(str(net[i].get_shape().as_list()) + "\n") f.close() def Train(self): pat = 0 best_val_dr = 0 best_val_fs = 0 if self.args.balanced_tr: # Shuffling the data and labels central_pixels_coor_tr = self.dataset_s.central_pixels_coor_tr.copy() y_train = self.dataset_s.y_train.copy() central_pixels_coor_tr, y_train = shuffle(central_pixels_coor_tr, y_train, random_state=0) positive_coordinates = np.transpose(np.array(np.where(y_train == 1))) negative_coordinates = np.transpose(np.array(np.where(y_train == 0))) positive_coordinates = positive_coordinates[:,0] negative_coordinates = negative_coordinates[:,0] positive_central_pixels_coor_tr = central_pixels_coor_tr[positive_coordinates, :] if self.args.data_augmentation: positive_central_pixels_coor_tr, _ = Data_Augmentation_Definition(positive_central_pixels_coor_tr, np.ones((len(positive_coordinates),1))) #Taking the same amount of negative samples as positive negative_coordinates = negative_coordinates[:positive_central_pixels_coor_tr.shape[0]] if self.args.data_augmentation: negative_central_pixels_coor_tr = np.concatenate((central_pixels_coor_tr[negative_coordinates, :], np.zeros((len(negative_coordinates),1))),axis=1) else: negative_central_pixels_coor_tr = central_pixels_coor_tr[negative_coordinates, :] positive_y_train = np.ones((positive_central_pixels_coor_tr.shape[0],1)) negative_y_train = np.zeros((negative_central_pixels_coor_tr.shape[0],1)) central_pixels_coor_tr = np.concatenate((positive_central_pixels_coor_tr, negative_central_pixels_coor_tr), axis=0) y_train = np.concatenate((positive_y_train, negative_y_train), axis=0) # Shuffling again central_pixels_coor_tr_s, y_train_s = shuffle(central_pixels_coor_tr, y_train,random_state=0) if self.args.balanced_vl: central_pixels_coor_vl = self.dataset_s.central_pixels_coor_vl.copy() y_valid = self.dataset_s.y_valid.copy() # Shuffling the data and labels central_pixels_coor_vl, y_valid = shuffle(central_pixels_coor_vl, y_valid,random_state=0) positive_coordinates = np.transpose(np.array(np.where(y_valid == 1))) negative_coordinates = np.transpose(np.array(np.where(y_valid == 0))) positive_coordinates = positive_coordinates[:,0] negative_coordinates = negative_coordinates[:,0] positive_central_pixels_coor_vl = central_pixels_coor_vl[positive_coordinates, :] if self.args.data_augmentation: positive_central_pixels_coor_vl, _ = Data_Augmentation_Definition(positive_central_pixels_coor_vl, np.ones((len(positive_coordinates),1))) #Taking the same amount of negative samples as positive negative_coordinates = negative_coordinates[:positive_central_pixels_coor_vl.shape[0]] if self.args.data_augmentation: negative_central_pixels_coor_vl = np.concatenate((central_pixels_coor_vl[negative_coordinates, :] , np.zeros((len(negative_coordinates),1))), axis=1) else: negative_central_pixels_coor_vl = central_pixels_coor_vl[negative_coordinates, :] positive_y_valid = np.ones((positive_central_pixels_coor_vl.shape[0],1)) negative_y_valid = np.zeros((negative_central_pixels_coor_vl.shape[0],1)) central_pixels_coor_vl = np.concatenate((positive_central_pixels_coor_vl, negative_central_pixels_coor_vl), axis=0) y_valid = np.concatenate((positive_y_valid, negative_y_valid), axis=0) # Shuffling again central_pixels_coor_vl_s, y_valid_s = shuffle(central_pixels_coor_vl, y_valid,random_state=0) print('Source sets dimensions') print(np.shape(central_pixels_coor_tr_s)) print(np.shape(central_pixels_coor_vl_s)) print(
np.shape(y_train_s)
numpy.shape
""" Kravatte Achouffe Cipher Suite: Encryption, Decryption, and Authentication Tools based on the Farfalle modes Copyright 2018 <NAME> see LICENSE file """ from multiprocessing import Pool from math import floor, ceil, log2 from typing import Tuple from os import cpu_count from ctypes import memset import numpy as np KravatteTagOutput = Tuple[bytes, bytes] KravatteValidatedOutput = Tuple[bytes, bool] class Kravatte(object): """Implementation of the Farfalle Pseudo-Random Function (PRF) construct utilizing the Keccak-1600 permutation. """ KECCAK_BYTES = 200 '''Number of Bytes in Keccak-1600 state''' KECCAK_LANES = 25 '''Number of 8-Byte lanes in Keccak-1600 state''' KECCAK_PLANES_SLICES = 5 ''' Size of x/y dimensions of Keccak lane array ''' THETA_REORDER = ((4, 0, 1, 2, 3), (1, 2, 3, 4, 0)) IOTA_CONSTANTS = np.array([0x000000000000800A, 0x800000008000000A, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008], dtype=np.uint64) '''Iota Step Round Constants For Keccak-p(1600, 4) and Keccak-p(1600, 6)''' RHO_SHIFTS = np.array([[0, 36, 3, 41, 18], [1, 44, 10, 45, 2], [62, 6, 43, 15, 61], [28, 55, 25, 21, 56], [27, 20, 39, 8, 14]], dtype=np.uint64) '''Lane Shifts for Rho Step''' CHI_REORDER = ((1, 2, 3, 4, 0), (2, 3, 4, 0, 1)) '''Lane Re-order Mapping for Chi Step''' PI_ROW_REORDER = np.array([[0, 3, 1, 4, 2], [1, 4, 2, 0, 3], [2, 0, 3, 1, 4], [3, 1, 4, 2, 0], [4, 2, 0, 3, 1]]) '''Row Re-order Mapping for Pi Step''' PI_COLUMN_REORDER = np.array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4]]) '''Column Re-order Mapping for Pi Step''' COMPRESS_ROW_REORDER = np.array([[0, 0, 0, 0, 1], [1, 1, 1, 1, 2], [2, 2, 2, 2, 3], [3, 3, 3, 3, 4], [4, 4, 4, 4, 0]]) '''Row Re-order Mapping for Compress Step''' COMPRESS_COLUMN_REORDER = np.array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) '''Column Re-order Mapping for Compress Step''' EXPAND_ROW_REORDER = np.array([[0, 0, 0, 1, 1], [1, 1, 1, 2, 2], [2, 2, 2, 3, 3], [3, 3, 3, 4, 4], [4, 4, 4, 0, 0]]) '''Row Re-order Mapping for Expand Step''' EXPAND_COLUMN_REORDER = np.array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 4, 4]]) '''Column Re-order Mapping for Expand Step''' def __init__(self, key: bytes=b'', workers: int=None, mp_input: bool=True, mp_output: bool=True): """ Initialize Kravatte with user key Inputs: key (bytes): encryption/authentication key workers (int): parallel processes to use in compression/expansion operations mp_input (bool): Enable multi-processing for calculations on input data mp_output (bool): Enable multi-processing for calculations on output data """ self.update_key(key) self.reset_state() # Enable Standard or Optimized Multi-process codepaths if workers is not None: self.collect_message = self._collect_message_mp if mp_input else self._collect_message_sp self.generate_digest = self._generate_digest_mp if mp_output else self._generate_digest_sp self.workers = cpu_count() if workers == 0 else workers else: self.collect_message = self._collect_message_sp self.generate_digest = self._generate_digest_sp self.workers = None def update_key(self, key: bytes) -> None: """ Pad and compute new Kravatte base key from bytes source. Inputs: key (bytes): user provided bytes to be padded (if necessary) and computed into Kravatte base key """ key_pad = self._pad_10_append(key, self.KECCAK_BYTES) key_array = np.frombuffer(key_pad, dtype=np.uint64, count=self.KECCAK_LANES, offset=0).reshape([self.KECCAK_PLANES_SLICES, self.KECCAK_PLANES_SLICES], order='F') self.kra_key = self._keccak(key_array) def reset_state(self) -> None: """ Clear existing Farfalle/Kravatte state and prepares for new input message collection. Elements reset include: - Message block collector - Rolling key - Currently stored output digest - Digest Active and New Collector Flags Inputs: None """ self.roll_key = np.copy(self.kra_key) self.collector = np.zeros([5, 5], dtype=np.uint64) self.digest = bytearray(b'') self.digest_active = False self.new_collector = True def _generate_absorb_queue(self, absorb_steps: int, kra_msg: bytes): """ Generator for Keccak-sized blocks of input message for Farfalle compression Inputs: absorb_steps (int): Number of blocks to generate for absorption kra_msg (bytes): padded input message ready for slicing into input blocks """ for msg_block in range(absorb_steps): yield (np.frombuffer(kra_msg, dtype=np.uint64, count=25, offset=msg_block * self.KECCAK_BYTES).reshape([5, 5], order='F') ^ self.roll_key) self.roll_key = self._kravatte_roll_compress(self.roll_key) def _collect_message_sp(self, message: bytes, append_bits: int=0, append_bit_count: int=0) -> None: """ Pad and Process Blocks of Message into Kravatte collector state Inputs: message (bytes): arbitrary number of bytes to be padded into Keccak blocks and absorbed into the collector append_bits (int): bits to append to the message before padding. Required for more advanced Kravatte modes. append_bit_count (int): number of bits to append """ if self.digest_active: self.reset_state() if self.new_collector: self.new_collector = False else: self.roll_key = self._kravatte_roll_compress(self.roll_key) # Pad Message msg_len = len(message) kra_msg = self._pad_10_append(message, msg_len + (self.KECCAK_BYTES - (msg_len % self.KECCAK_BYTES)), append_bits, append_bit_count) absorb_steps = len(kra_msg) // self.KECCAK_BYTES # Absorb into Collector for msg_block in range(absorb_steps): m = np.frombuffer(kra_msg, dtype=np.uint64, count=25, offset=msg_block * self.KECCAK_BYTES).reshape([5, 5], order='F') m_k = m ^ self.roll_key self.roll_key = self._kravatte_roll_compress(self.roll_key) self.collector = self.collector ^ self._keccak(m_k) def _collect_message_mp(self, message: bytes, append_bits: int=0, append_bit_count: int=0) -> None: """ Pad and Process Blocks of Message into Kravatte collector state - Multi-process Aware Variant Inputs: message (bytes): arbitrary number of bytes to be padded into Keccak blocks and absorbed into the collector append_bits (int): bits to append to the message before padding. Required for more advanced Kravatte modes. append_bit_count (int): number of bits to append """ if self.digest_active: self.reset_state() if self.new_collector: self.new_collector = False else: self.roll_key = self._kravatte_roll_compress(self.roll_key) # Pad Message msg_len = len(message) kra_msg = self._pad_10_append(message, msg_len + (self.KECCAK_BYTES - (msg_len % self.KECCAK_BYTES)), append_bits, append_bit_count) absorb_steps = len(kra_msg) // self.KECCAK_BYTES workload = 1 if (absorb_steps // self.workers) == 0 else (absorb_steps // self.workers) with Pool(processes=self.workers) as kravatte_pool: for output_element in kravatte_pool.imap_unordered(self._keccak, self._generate_absorb_queue(absorb_steps, kra_msg), chunksize=workload): self.collector ^= output_element def _generate_digest_sp(self, output_size: int, short_kravatte: bool=False) -> None: """ Squeeze an arbitrary number of bytes from collector state Inputs: output_size (int): Number of bytes to generate and store in Kravatte digest parameter short_kravatte (bool): Enable disable short kravatte required for other Kravatte modes """ if not self.digest_active: self.collector = self.collector if short_kravatte else self._keccak(self.collector) self.roll_key = self._kravatte_roll_compress(self.roll_key) self.digest_active = True self.digest = bytearray(b'') full_output_size = output_size + (200 - (output_size % 200)) if output_size % 200 else output_size generate_steps = full_output_size // 200 for _ in range(generate_steps): collector_squeeze = self._keccak(self.collector) self.collector = self._kravatte_roll_expand(self.collector) self.digest.extend((collector_squeeze ^ self.roll_key).tobytes('F')) self.digest = self.digest[:output_size] def _generate_squeeze_queue(self, generate_steps: int): """ Generator for Keccak-sized blocks of expanded collector state for output squeezing Inputs: generate_steps (int): Number of blocks to generate and for absorb """ for _ in range(generate_steps): yield self.collector self.collector = self._kravatte_roll_expand(self.collector) def _generate_digest_mp(self, output_size: int, short_kravatte: bool=False) -> None: """ Squeeze an arbitrary number of bytes from collector state - Multi-process Aware Variant Inputs: output_size (int): Number of bytes to generate and store in Kravatte digest parameter short_kravatte (bool): Enable disable short kravatte required for other Kravatte modes """ if not self.digest_active: self.collector = self.collector if short_kravatte else self._keccak(self.collector) self.roll_key = self._kravatte_roll_compress(self.roll_key) self.digest_active = True self.digest = bytearray(b'') full_output_size = output_size + (200 - (output_size % 200)) if output_size % 200 else output_size generate_steps = full_output_size // 200 workload = 1 if (generate_steps // self.workers) == 0 else (generate_steps // self.workers) with Pool(processes=self.workers) as kravatte_pool: for digest_block in kravatte_pool.imap(self._keccak_xor_key, self._generate_squeeze_queue(generate_steps), chunksize=workload): self.digest.extend(digest_block.tobytes('F')) self.digest = self.digest[:output_size] def _keccak(self, input_array): """ Implementation of Keccak-1600 PRF defined in FIPS 202 Inputs: input_array (numpy array): Keccak compatible state array: 200-byte as 5x5 64-bit lanes Return: numpy array: Keccak compatible state array: 200-byte as 5x5 64-bit lanes """ state = np.copy(input_array) for round_num in range(6): # theta_step: # Exclusive-or each slice-lane by state based permutation value array_shift = state << 1 | state >> 63 state ^= np.bitwise_xor.reduce(state[self.THETA_REORDER[0], ], 1, keepdims=True) ^ np.bitwise_xor.reduce(array_shift[self.THETA_REORDER[1], ], 1, keepdims=True) # rho_step: # Left Rotate each lane by pre-calculated value state = state << self.RHO_SHIFTS | state >> np.uint64(64 - self.RHO_SHIFTS) # pi_step: # Shuffle lanes to pre-calculated positions state = state[self.PI_ROW_REORDER, self.PI_COLUMN_REORDER] # chi_step: # Exclusive-or each individual lane based on and/invert permutation state ^= ~state[self.CHI_REORDER[0], ] & state[self.CHI_REORDER[1], ] # iota_step: # Exclusive-or first lane of state with round constant state[0, 0] ^= self.IOTA_CONSTANTS[round_num] return state def _keccak_xor_key(self, input_array): """ Implementation of Keccak-1600 PRF defined in FIPS 202 plus an XOR with the current key state Inputs: input_array (numpy array): Keccak compatible state array: 200-byte as 5x5 64-bit lanes Return: numpy array: Keccak compatible state array: 200-byte as 5x5 64-bit lanes """ state = np.copy(input_array) for round_num in range(6): # theta_step: # Exclusive-or each slice-lane by state based permutation value array_shift = state << 1 | state >> 63 state ^= np.bitwise_xor.reduce(state[self.THETA_REORDER[0], ], 1, keepdims=True) ^ np.bitwise_xor.reduce(array_shift[self.THETA_REORDER[1], ], 1, keepdims=True) # rho_step: # Left Rotate each lane by pre-calculated value state = state << self.RHO_SHIFTS | state >> np.uint64(64 - self.RHO_SHIFTS) # pi_step: # Shuffle lanes to pre-calculated positions state = state[self.PI_ROW_REORDER, self.PI_COLUMN_REORDER] # chi_step: # Exclusive-or each individual lane based on and/invert permutation state ^= ~state[self.CHI_REORDER[0], ] & state[self.CHI_REORDER[1], ] # iota_step: # Exclusive-or first lane of state with round constant state[0, 0] ^= self.IOTA_CONSTANTS[round_num] return state ^ self.roll_key def scrub(self): """ Explicitly zero out both the key and collector array states. Use prior to reinitialization of key or when finished with object to help avoid leaving secret/interim data in memory. WARNING: Does not guarantee other copies of these arrays are not present elsewhere in memory Not applicable in multi-process mode. Inputs: None Return: None """ # Clear collector array collector_location = self.collector.ctypes.data memset(collector_location, 0x00, self.KECCAK_BYTES) # Clear Kravatte base key array key_location = self.kra_key.ctypes.data memset(key_location, 0x00, self.KECCAK_BYTES) # Clear Kravatte rolling key array key_location = self.roll_key.ctypes.data memset(key_location, 0x00, self.KECCAK_BYTES) def _kravatte_roll_compress(self, input_array): """ Kravatte defined roll function for compression side of Farfalle PRF Inputs: input_array (numpy array): Keccak compatible state array: 200-byte as 5x5 64-bit lanes Return: numpy array: Keccak compatible state array: 200-byte as 5x5 64-bit lanes """ state = input_array[self.COMPRESS_ROW_REORDER, self.COMPRESS_COLUMN_REORDER] state[4, 4] = ((state[4, 4] << np.uint64(7)) | (state[4, 4] >> np.uint64(57))) ^ \ (state[0, 4]) ^ \ (state[0, 4] >> np.uint64(3)) return state def _kravatte_roll_expand(self, input_array): """ Kravatte defined roll function for expansion side of Farfalle PRF Inputs: input_array (numpy array): Keccak compatible state array: 200-byte as 5x5 64-bit lanes Return: numpy array: Keccak compatible state array: 200-byte as 5x5 64-bit lanes """ state = input_array[self.EXPAND_ROW_REORDER, self.EXPAND_COLUMN_REORDER] state[4, 4] = ((input_array[0, 3] << np.uint64(7)) | (input_array[0, 3] >> np.uint64(57))) ^ \ ((input_array[1, 3] << np.uint64(18)) | (input_array[1, 3] >> np.uint64(46))) ^ \ ((input_array[1, 3] >> np.uint64(1)) & input_array[2, 3]) return state @staticmethod def _pad_10_append(input_bytes: bytes, desired_length: int, append_bits: int=0, append_bit_count: int=0) -> bytes: """ Farfalle defined padding function. Limited to byte divisible inputs only Inputs: input_bytes (bytes): Collection of bytes desired_length (int): Number of bytes to pad input len out to append_bits (int): one or more bits to be inserted before the padding starts. Allows "appending" bits as required by several Kravatte modes append_bit_count (int): number of bits to append Return: bytes: input bytes with padding applied """ start_len = len(input_bytes) if start_len == desired_length: return input_bytes head_pad_byte = bytes([(0b01 << append_bit_count) | (((2**append_bit_count) - 1) & append_bits)]) pad_len = desired_length - (start_len % desired_length) padded_bytes = input_bytes + head_pad_byte + (b'\x00' * (pad_len - 1)) return padded_bytes @staticmethod def compare_bytes(a: bytes, b: bytes) -> bool: """ Time Constant Byte Comparison Function Inputs: a (bytes): first set of bytes b (bytes): second set of bytes Return: boolean """ compare = True if len(a) != len(b): return False for (element_a, element_b) in zip(a, b): compare = compare and (element_a == element_b) return compare def mac(key: bytes, message: bytes, output_size: int, workers: int=None, mp_input: bool=True, mp_output: bool=True) -> bytearray: """ Kravatte Message Authentication Code Generation of given length from a message based on a user provided key Args: key (bytes): User authentication key (0 - 200 bytes) message (bytes): User message output_size (int): Size of authenticated digest in bytes workers (int): parallel processes to use in compression/expansion operations mp_input (bool): Enable multi-processing for calculations on input data mp_output (bool): Enable multi-processing for calculations on output data Returns: bytes: message authentication bytes of length output_size """ kravatte_mac_gen = Kravatte(key, workers=workers, mp_input=mp_input, mp_output=mp_output) kravatte_mac_gen.collect_message(message) kravatte_mac_gen.generate_digest(output_size) kravatte_mac_gen.scrub() return kravatte_mac_gen.digest def siv_wrap(key: bytes, message: bytes, metadata: bytes, tag_size: int=32, workers: int=None, mp_input: bool=True, mp_output: bool=True) -> KravatteTagOutput: """ Authenticated Encryption with Associated Data (AEAD) of a provided plaintext using a key and metadata using the Synthetic Initialization Vector method described in the Farfalle/Kravatte spec. Generates ciphertext (of equivalent length to the plaintext) and verification tag. Inverse of siv_unwrap function. Args: key (bytes): Encryption key; 0-200 bytes in length message (bytes): Plaintext message for encryption metadata (bytes): Nonce/Seed value for authenticated encryption tag_size (int, optional): The tag size in bytes. Defaults to 32 bytes as defined in the Kravatte spec workers (int): parallel processes to use in compression/expansion operations mp_input (bool): Enable multi-processing for calculations on input data mp_output (bool): Enable multi-processing for calculations on output data Returns: tuple (bytes, bytes): Bytes of ciphertext and tag """ # Initialize Kravatte kravatte_siv_wrap = Kravatte(key, workers=workers, mp_input=mp_input, mp_output=mp_output) # Generate Tag From Metadata and Plaintext kravatte_siv_wrap.collect_message(metadata) kravatte_siv_wrap.collect_message(message) kravatte_siv_wrap.generate_digest(tag_size) siv_tag = kravatte_siv_wrap.digest # Generate Key Stream kravatte_siv_wrap.collect_message(metadata) kravatte_siv_wrap.collect_message(siv_tag) kravatte_siv_wrap.generate_digest(len(message)) ciphertext = bytes([p_text ^ key_stream for p_text, key_stream in zip(message, kravatte_siv_wrap.digest)]) kravatte_siv_wrap.scrub() return ciphertext, siv_tag def siv_unwrap(key: bytes, ciphertext: bytes, siv_tag: bytes, metadata: bytes, workers: int=None, mp_input: bool=True, mp_output: bool=True) -> KravatteValidatedOutput: """ Decryption of Synthetic Initialization Vector method described in the Farfalle/Kravatte spec. Given a key, metadata, and validation tag, generates plaintext (of equivalent length to the ciphertext) and validates message based on included tag, metadata, and key. Inverse of siv_wrap function. Args: key (bytes): Encryption key; 0-200 bytes in length ciphertext (bytes): Ciphertext SIV Message siv_tag (bytes): Authenticating byte string metadata (bytes): Metadata used to encrypt message and generate tag workers (int): parallel processes to use in compression/expansion operations mp_input (bool): Enable multi-processing for calculations on input data mp_output (bool): Enable multi-processing for calculations on output data Returns: tuple (bytes, boolean): Bytes of plaintext and message validation boolean """ # Initialize Kravatte kravatte_siv_unwrap = Kravatte(key, workers=workers, mp_input=mp_input, mp_output=mp_output) # Re-Generate Key Stream kravatte_siv_unwrap.collect_message(metadata) kravatte_siv_unwrap.collect_message(siv_tag) kravatte_siv_unwrap.generate_digest(len(ciphertext)) siv_plaintext = bytes([p_text ^ key_stream for p_text, key_stream in zip(ciphertext, kravatte_siv_unwrap.digest)]) # Re-Generate Tag From Metadata and Recovered Plaintext kravatte_siv_unwrap.collect_message(metadata) kravatte_siv_unwrap.collect_message(siv_plaintext) kravatte_siv_unwrap.generate_digest(len(siv_tag)) generated_tag = kravatte_siv_unwrap.digest # Check if tag matches provided tag matches reconstituted tag valid_tag = kravatte_siv_unwrap.compare_bytes(siv_tag, generated_tag) kravatte_siv_unwrap.scrub() return siv_plaintext, valid_tag class KravatteSAE(Kravatte): """ An authenticated encryption mode designed to track a session consisting of a series of messages and an initialization nonce. ** DEPRECATED in favor of KravatteSANE ** """ TAG_SIZE = 16 OFFSET = TAG_SIZE def __init__(self, nonce: bytes, key: bytes=b'', workers: int=None, mp_input: bool=True, mp_output: bool=True): """ Initialize KravatteSAE with user key and nonce Args: nonce (bytes) - random unique value to initialize the session with key (bytes) - secret key for encrypting session messages workers (int): parallel processes to use in compression/expansion operations mp_input (bool): Enable multi-processing for calculations on input data mp_output (bool): Enable multi-processing for calculations on output data """ super(KravatteSAE, self).__init__(key, workers, mp_input, mp_output) self.initialize_history(nonce) def initialize_history(self, nonce: bytes) -> None: """ Initialize session history by storing Keccak collector state and current internal key Args: key (bytes): user provided bytes to be padded (if necessary) and computed into Kravatte base key """ self.collect_message(nonce) self.history_collector = np.copy(self.collector) self.history_key = np.copy(self.roll_key) self.generate_digest(self.TAG_SIZE) self.tag = self.digest.copy() def wrap(self, plaintext: bytes, metadata: bytes) -> KravatteTagOutput: """ Encrypt an arbitrary plaintext message using the included metadata as part of an on-going session. Creates authentication tag for validation during decryption. Args: plaintext (bytes): user plaintext of arbitrary length metadata (bytes): associated data to ensure a unique encryption permutation Returns: (bytes, bytes): encrypted cipher text and authentication tag """ # Restore Kravatte State to When Latest History was Absorbed self.collector = np.copy(self.history_collector) self.roll_key = np.copy(self.history_key) self.digest = bytearray(b'') self.digest_active = False # Generate/Apply Key Stream self.generate_digest(len(plaintext) + self.OFFSET) ciphertext = bytes([p_text ^ key_stream for p_text, key_stream in zip(plaintext, self.digest[self.OFFSET:])]) # Update History if len(metadata) > 0 or len(plaintext) == 0: self._append_to_history(metadata, 0) if len(plaintext) > 0: self._append_to_history(ciphertext, 1) self.history_collector = np.copy(self.collector) self.history_key = np.copy(self.roll_key) # Generate Tag self.generate_digest(self.TAG_SIZE) return ciphertext, self.digest def unwrap(self, ciphertext: bytes, metadata: bytes, validation_tag: bytes) -> KravatteValidatedOutput: """ Decrypt an arbitrary ciphertext message using the included metadata as part of an on-going session. Creates authentication tag for validation during decryption. Args: ciphertext (bytes): user ciphertext of arbitrary length metadata (bytes): associated data from encryption validation_tag (bytes): collection of bytes that authenticates the decrypted plaintext as being encrypted with the same secret key Returns: (bytes, bool): decrypted plaintext and boolean indicating in decryption was authenticated against secret key """ # Restore Kravatte State to When Latest History was Absorbed self.collector = np.copy(self.history_collector) self.roll_key =
np.copy(self.history_key)
numpy.copy
""" test chemkin_io.calculator.mechanism """ from __future__ import unicode_literals from builtins import open import os import numpy import chemkin_io def _read_file(file_name): with open(file_name, encoding='utf8', errors='ignore') as file_obj: file_str = file_obj.read() return file_str # Set paths PATH = os.path.dirname(os.path.realpath(__file__)) DATA_PATH = os.path.join(PATH, 'data') FAKE1_MECH_NAME = 'fake1_mech.txt' # Read mechanism files FAKE1_MECH_STR = _read_file( os.path.join(DATA_PATH, FAKE1_MECH_NAME)) # Build the reactions blocks and data strings FAKE1_REACTION_BLOCK = chemkin_io.parser.mechanism.reaction_block( FAKE1_MECH_STR) FAKE1_REACTION_STRS = chemkin_io.parser.reaction.data_strings( FAKE1_REACTION_BLOCK) FAKE1_REACTION_DCT = chemkin_io.parser.reaction.data_dct( FAKE1_REACTION_BLOCK) # Set the reactions to elements of the string, use dct to have DUPs together GROUPED_REACTION_STRS = list(FAKE1_REACTION_DCT.values()) HIGHP_REACTION = GROUPED_REACTION_STRS[0] DUP_HIGHP_REACTION = GROUPED_REACTION_STRS[1] LINDEMANN_REACTION = GROUPED_REACTION_STRS[2] TROE_REACTION = GROUPED_REACTION_STRS[3] PLOG_REACTION = GROUPED_REACTION_STRS[5] DUP_PLOG_REACTION = GROUPED_REACTION_STRS[6] CHEBYSHEV_REACTION = GROUPED_REACTION_STRS[7] # Set temperatures and pressures T_REF = 1.0 UNITS = ('cal/mole', 'moles') TEMPS = numpy.array([500.0, 1000.0, 1500.0, 2000.0]) PRESSURES = [1.0, 5.0, 10.0] PRESSURES2 = [0.0100, 0.0700, 0.987] PRESSURES3 = [0.1, 0.5, 2] PRESSURES4 = ['high'] def test__high_p_rate_constants(): """ test chemkin_io.calculator.rates.reaction for a reaction with only high-pressure params """ ktp_dct1 = chemkin_io.calculator.rates.reaction( HIGHP_REACTION, UNITS, T_REF, TEMPS, pressures=PRESSURES4) ktp_dct2 = chemkin_io.calculator.rates.reaction( DUP_HIGHP_REACTION, UNITS, T_REF, TEMPS, pressures=PRESSURES4) assert ktp_dct1.keys() == ktp_dct2.keys() == ['high'] rates1 = ktp_dct1['high'] rates2 = ktp_dct2['high'] ref_rates1 = numpy.array( [4.43369728e+11, 3.26882402e+12, 6.36209341e+12, 8.87573427e+12]) ref_rates2 = numpy.array( [1.31390851e+12, 3.43989296e+12, 8.18869558e+12, 1.37943670e+13]) assert
numpy.allclose(rates1, ref_rates1, atol=0.0001)
numpy.allclose
import logging import numpy as np from torch import nn from core.config import cfg # import utils.boxes as box_utils import utils.boxes_3d as box_utils_3d logger = logging.getLogger(__name__) class GenerateProposalsOp_3d(nn.Module): def __init__(self, anchors, spatial_scale): super().__init__() self._anchors = anchors self._num_anchors = self._anchors.shape[0] self._feat_stride = 1. / spatial_scale def forward(self, rpn_cls_prob, rpn_bbox_pred, im_info): """Op for generating RPN porposals. blobs_in: - 'rpn_cls_probs': 5D tensor of shape (N, A, S, H, W), where N is the number of minibatch images, A is the number of anchors per locations, and (S, H, W) is the spatial size of the prediction grid. Each value represents a "probability of object" rating in [0, 1]. - 'rpn_bbox_pred': 5D tensor of shape (N, 4 * A, S, H, W) of predicted deltas for transformation anchor boxes into RPN proposals. - 'im_info': 2D tensor of shape (N, 4) where the four columns encode the input image's [slices, height, width, scale]. Slices, height and width are for the input to the network, not the original image; scale is the scale factor used to scale the original image to the network input size. blobs_out: - 'rpn_rois': 2D tensor of shape (R, 7), for R RPN proposals where the five columns encode [batch ind, x1, y1, z1, x2, y2, z2]. The boxes are w.r.t. the network input, which is a *scaled* version of the original image; these proposals must be scaled by 1 / scale (where scale comes from im_info; see above) to transform it back to the original input image coordinate system. - 'rpn_roi_probs': 1D tensor of objectness probability scores (extracted from rpn_cls_probs; see above). """ # 1. for each location i in a (S, H, W) grid: # generate A anchor boxes centered on cell i # apply predicted bbox deltas to each of the A anchors at cell i # 2. clip predicted boxes to image # 3. remove predicted boxes with either height or width or slices < threshold # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take the top pre_nms_topN proposals before NMS # 6. apply NMS with a loose threshold (0.7) to the remaining proposals # 7. take after_nms_topN proposals after NMS # 8. return the top proposals """Type conversion""" # predicted probability of fg object for each RPN anchor scores = rpn_cls_prob.data.cpu().numpy() # predicted achors transformations bbox_deltas = rpn_bbox_pred.data.cpu().numpy() # input image (height, width, scale), in which scale is the scale factor # applied to the original dataset image to get the network input image im_info = im_info.data.cpu().numpy() # 1. Generate proposals from bbox deltas and shifted anchors slices, height, width = scores.shape[-3:] # Enumerate all shifted positions on the (S, H, W) grid shift_x =
np.arange(0, width)
numpy.arange
import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import math as m import numpy as np import pandas as pd import tensorflow_probability as tfp import matplotlib.pyplot as plt import math from tensorflow import keras from tensorflow.keras import layers from random import shuffle from keras import backend as K import numpy as np import keras.datasets from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.models import Sequential from sklearn import model_selection import scipy import time from footprints_and_cutouts import preprocess_scenes (train_cutouts_blended_allScenes, train_cutouts_unblended_allScenes, train_blended_mag_filters_allScenes, train_unblended_mag_filters_allScenes) = preprocess_scenes(train=True,use_pipeline_segmap=True) (test_cutouts_blended_allScenes, test_cutouts_unblended_allScenes, test_blended_mag_filters_allScenes, test_unblended_mag_filters_allScenes) = preprocess_scenes(train=False,use_pipeline_segmap=True) train_cutouts_allScenes = [] train_cutouts_labels = [] train_mag_filter = [] count=0 for i in train_cutouts_unblended_allScenes: train_cutouts_allScenes.append(i) train_cutouts_labels.append([1,0]) if train_unblended_mag_filters_allScenes[21.5][count]: train_mag_filter.append(21.5) elif train_unblended_mag_filters_allScenes[22.5][count]: train_mag_filter.append(22.5) elif train_unblended_mag_filters_allScenes[23.5][count]: train_mag_filter.append(23.5) elif train_unblended_mag_filters_allScenes[24.5][count]: train_mag_filter.append(24.5) elif train_unblended_mag_filters_allScenes[25.5][count]: train_mag_filter.append(25.5) elif train_unblended_mag_filters_allScenes[26.5][count]: train_mag_filter.append(26.5) else: train_mag_filter.append(0) count+=1 count = 0 for i in train_cutouts_blended_allScenes: train_cutouts_allScenes.append(i) train_cutouts_labels.append([0,1]) if train_blended_mag_filters_allScenes[21.5][count]: train_mag_filter.append(21.5) elif train_blended_mag_filters_allScenes[22.5][count]: train_mag_filter.append(22.5) elif train_blended_mag_filters_allScenes[23.5][count]: train_mag_filter.append(23.5) elif train_blended_mag_filters_allScenes[24.5][count]: train_mag_filter.append(24.5) elif train_blended_mag_filters_allScenes[25.5][count]: train_mag_filter.append(25.5) elif train_blended_mag_filters_allScenes[26.5][count]: train_mag_filter.append(26.5) else: train_mag_filter.append(0) count+=1 test_cutouts_allScenes = [] test_cutouts_labels = [] test_mag_filter = [] count=0 for i in test_cutouts_unblended_allScenes: test_cutouts_allScenes.append(i) test_cutouts_labels.append([1,0]) if test_unblended_mag_filters_allScenes[21.5][count]: test_mag_filter.append(21.5) elif test_unblended_mag_filters_allScenes[22.5][count]: test_mag_filter.append(22.5) elif test_unblended_mag_filters_allScenes[23.5][count]: test_mag_filter.append(23.5) elif test_unblended_mag_filters_allScenes[24.5][count]: test_mag_filter.append(24.5) elif test_unblended_mag_filters_allScenes[25.5][count]: test_mag_filter.append(25.5) elif test_unblended_mag_filters_allScenes[26.5][count]: test_mag_filter.append(26.5) else: test_mag_filter.append(0) count+=1 count = 0 for i in test_cutouts_blended_allScenes: test_cutouts_allScenes.append(i) test_cutouts_labels.append([0,1]) if test_blended_mag_filters_allScenes[21.5][count]: test_mag_filter.append(21.5) elif test_blended_mag_filters_allScenes[22.5][count]: test_mag_filter.append(22.5) elif test_blended_mag_filters_allScenes[23.5][count]: test_mag_filter.append(23.5) elif test_blended_mag_filters_allScenes[24.5][count]: test_mag_filter.append(24.5) elif test_blended_mag_filters_allScenes[25.5][count]: test_mag_filter.append(25.5) elif test_blended_mag_filters_allScenes[26.5][count]: test_mag_filter.append(26.5) else: test_mag_filter.append(0) count+=1 for _ in np.arange(23): trainx,testx,trainy,testy,trainmag,testmag = train_cutouts_allScenes,test_cutouts_allScenes,train_cutouts_labels,test_cutouts_labels,train_mag_filter,test_mag_filter trainx2 = np.log10(np.array(trainx)+10**-8) testx2 = np.log10(np.array(testx)+10**-8) trainxnorm = (trainx2 - np.min(trainx2))/(np.max(trainx2)-np.min(trainx2)) testxnorm = (testx2 - np.min(testx2))/(np.max(testx2)-np.min(testx2)) input_shape = (23, 23, 1) num_classes=2 model = keras.Sequential() model.add(Conv2D(128, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(800,activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(400,activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(200,activation = 'relu')) model.add(Dense(num_classes, activation="softmax")) epochs=20 model.compile(loss="binary_crossentropy", optimizer='adam', metrics=["accuracy"]) time_start = time.time() model.fit(np.reshape(trainxnorm,(len(trainx),23,23,1)), np.array(trainy), epochs=15,verbose=True,batch_size=200,validation_split = .1) train_time = time.time()-time_start mean_loss_xxx = model.evaluate(np.array(np.reshape(testxnorm,(len(testx),23,23,1))),np.array(testy)) bce=[] count = 0 for i in testxnorm: bce.append(model.evaluate(np.array(np.reshape(i,(1,23,23,1))),np.array([testy[count]]))[0]) count+=1 standard_error_bce = scipy.stats.sem(bce) classified = [] blended_predict = [] count = [] for i in model.predict(np.reshape(testxnorm,(len(testx),23,23,1))): if i[0]>i[1]: classified.append([1,0]) else: classified.append([0,1]) blended_predict.append(i[1]) blended_predict arr_21 = [] arr_22 = [] arr_23 = [] arr_24 = [] arr_25 = [] arr_26 = [] count = 0 for i in np.array(testy)==classified: if testmag[count] == 21.5: arr_21.append([i[0],testy[count]]) if testmag[count] == 22.5: arr_22.append([i[0],testy[count]]) if testmag[count] == 23.5: arr_23.append([i[0],testy[count]]) if testmag[count] == 24.5: arr_24.append([i[0],testy[count]]) if testmag[count] == 25.5: arr_25.append([i[0],testy[count]]) if testmag[count] == 26.5: arr_26.append([i[0],testy[count]]) count+=1 arr_21_unblended = [] arr_21_blended = [] for i in arr_21: if i[1] == [1,0]: arr_21_unblended.append(i[0]) else: arr_21_blended.append(i[0]) arr_22_unblended = [] arr_22_blended = [] for i in arr_22: if i[1] == [1,0]: arr_22_unblended.append(i[0]) else: arr_22_blended.append(i[0]) arr_23_unblended = [] arr_23_blended = [] for i in arr_23: if i[1] == [1,0]: arr_23_unblended.append(i[0]) else: arr_23_blended.append(i[0]) arr_24_unblended = [] arr_24_blended = [] for i in arr_24: if i[1] == [1,0]: arr_24_unblended.append(i[0]) else: arr_24_blended.append(i[0]) arr_25_unblended = [] arr_25_blended = [] for i in arr_25: if i[1] == [1,0]: arr_25_unblended.append(i[0]) else: arr_25_blended.append(i[0]) arr_26_unblended = [] arr_26_blended = [] for i in arr_26: if i[1] == [1,0]: arr_26_unblended.append(i[0]) else: arr_26_blended.append(i[0]) unblended = [['accuracy','# of samples', 'variance of # of accurately classified samples'],[np.count_nonzero(arr_21_unblended)/len(arr_21_unblended),len(arr_21_unblended)], [np.count_nonzero(arr_22_unblended)/len(arr_22_unblended),len(arr_22_unblended)], [np.count_nonzero(arr_23_unblended)/len(arr_23_unblended),len(arr_23_unblended)], [np.count_nonzero(arr_24_unblended)/len(arr_24_unblended),len(arr_24_unblended)], [np.count_nonzero(arr_25_unblended)/len(arr_25_unblended),len(arr_25_unblended)], [np.count_nonzero(arr_26_unblended)/len(arr_26_unblended),len(arr_26_unblended)]] blended = [['accuracy','# of samples', 'variance of # of accurately classified samples'],[np.count_nonzero(arr_21_blended)/len(arr_21_blended),len(arr_21_blended)], [np.count_nonzero(arr_22_blended)/len(arr_22_blended),len(arr_22_blended)], [np.count_nonzero(arr_23_blended)/len(arr_23_blended),len(arr_23_blended)], [np.count_nonzero(arr_24_blended)/len(arr_24_blended),len(arr_24_blended)], [np.count_nonzero(arr_25_blended)/len(arr_25_blended),len(arr_25_blended)], [np.count_nonzero(arr_26_blended)/len(arr_26_blended),len(arr_26_blended)]] for i in unblended[1:]: i.append(np.sqrt(i[0]*i[1]*(1-i[0]))) for i in blended[1:]: i.append(np.sqrt(i[0]*i[1]*(1-i[0]))) unblended = np.array(unblended) blended = np.array(blended) overall_blended_accuracy = np.sum(i[0].astype(float)*i[1].astype(float) for i in blended[1:].astype(float))/np.sum(i[1].astype(float) for i in blended[1:].astype(float)) overall_unblended_accuracy = np.sum(i[0].astype(float)*i[1].astype(float) for i in unblended[1:].astype(float))/np.sum(i[1].astype(float) for i in unblended[1:].astype(float)) blended_predict_0 = [] blended_predict_1 = [] blended_predict_2 = [] blended_predict_3 = [] blended_predict_4 = [] blended_predict_5 = [] blended_predict_6 = [] blended_predict_7 = [] blended_predict_8 = [] blended_predict_9 = [] count = 0 for i in blended_predict: if i <.1: blended_predict_0.append([[0,1]==testy[count],blended_predict[count]]) if i >=.1 and i<.2: blended_predict_1.append([[0,1]==testy[count],blended_predict[count]]) if i >=.2 and i<.3: blended_predict_2.append([[0,1]==testy[count],blended_predict[count]]) if i >=.3 and i<.4: blended_predict_3.append([[0,1]==testy[count],blended_predict[count]]) if i >=.4 and i<.5: blended_predict_4.append([[0,1]==testy[count],blended_predict[count]]) if i >=.5 and i<.6: blended_predict_5.append([[0,1]==testy[count],blended_predict[count]]) if i >=.6 and i<.7: blended_predict_6.append([[0,1]==testy[count],blended_predict[count]]) if i >=.7 and i<.8: blended_predict_7.append([[0,1]==testy[count],blended_predict[count]]) if i >=.8 and i<.9: blended_predict_8.append([[0,1]==testy[count],blended_predict[count]]) if i >=.9: blended_predict_9.append([[0,1]==testy[count],blended_predict[count]]) count+=1 blended_predict_0 = np.array(blended_predict_0) blended_predict_1 = np.array(blended_predict_1) blended_predict_2 = np.array(blended_predict_2) blended_predict_3 = np.array(blended_predict_3) blended_predict_4 = np.array(blended_predict_4) blended_predict_5 = np.array(blended_predict_5) blended_predict_6 = np.array(blended_predict_6) blended_predict_7 = np.array(blended_predict_7) blended_predict_8 = np.array(blended_predict_8) blended_predict_9 = np.array(blended_predict_9) cal_0 = np.count_nonzero(blended_predict_0[:,0])/len(blended_predict_0) cal_1 = np.count_nonzero(blended_predict_1[:,0])/len(blended_predict_1) cal_2 = np.count_nonzero(blended_predict_2[:,0])/len(blended_predict_2) cal_3 = np.count_nonzero(blended_predict_3[:,0])/len(blended_predict_3) cal_4 = np.count_nonzero(blended_predict_4[:,0])/len(blended_predict_4) cal_5 = np.count_nonzero(blended_predict_5[:,0])/len(blended_predict_5) cal_6 = np.count_nonzero(blended_predict_6[:,0])/len(blended_predict_6) cal_7 = np.count_nonzero(blended_predict_7[:,0])/len(blended_predict_7) cal_8 = np.count_nonzero(blended_predict_8[:,0])/len(blended_predict_8) cal_9 = np.count_nonzero(blended_predict_9[:,0])/len(blended_predict_9) mean_0 = np.mean(blended_predict_0[:,1]) mean_1 = np.mean(blended_predict_1[:,1]) mean_2 = np.mean(blended_predict_2[:,1]) mean_3 = np.mean(blended_predict_3[:,1]) mean_4 = np.mean(blended_predict_4[:,1]) mean_5 =
np.mean(blended_predict_5[:,1])
numpy.mean
import os from glob import glob import pandas as pd import matplotlib.pyplot as plt import numpy as np plt.rcParams.update({'font.size': 5}) plt.rcParams.update({'lines.linewidth':0.35}) plt.rcParams.update({'axes.linewidth':0.35}) plt.rcParams.update({'lines.markersize':2.5}) plt.rcParams.update({'axes.labelpad':1.5}) fig = plt.figure(figsize=(7.2,6)) grid = plt.GridSpec(18, 10, wspace=4, hspace=15) ax = fig.add_subplot(grid[:9, :5]) ax.text(0.025, 0.966, 'a', transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') var_dir = '/home/atom/ongoing/work_worldwide/variance' region_list = os.listdir(var_dir) region_nmad = [] region_nsamp = [] for region in region_list: list_fn_csv = [os.path.join(var_dir,region,f) for f in os.listdir(os.path.join(var_dir,region))] list_nmad = [] list_nsamp = [] for fn_csv in list_fn_csv: df = pd.read_csv(fn_csv) list_nmad.append(df.nmad.values) list_nsamp.append(df.nsamp.values) nmad_all = np.stack(list_nmad,axis=1) nsamp_all = np.stack(list_nsamp,axis=1) nan_mask = np.all(np.logical_or(np.isnan(nmad_all),nmad_all==0),axis=1) nmad_final = np.nansum(nmad_all * nsamp_all,axis=1) / np.nansum(nsamp_all,axis=1) nsamp_final = np.nansum(nsamp_all,axis=1) nmad_final[nan_mask] = np.nan nsamp_final[nan_mask] = 0 region_nmad.append(nmad_final) region_nsamp.append(nsamp_final) # ax.figure(figsize=(16,9)) slope = df.bin_slope.values corr = df.bin_corr.values bin_slope = sorted(list(set(list(slope)))) bin_corr = sorted(list(set(list(corr)))) nb_slope = len(bin_slope) nb_corr = len(bin_corr) color_list = ['tab:orange','tab:blue','tab:olive','tab:cyan','tab:red','tab:purple','tab:brown','tab:pink','tab:gray','tab:olive'] ls_list = ['solid','dashed','dotted'] # model_var = np.sqrt(3**2 + (20 * np.tan(np.array(5) * np.pi / 180))**2) + (((100-np.array(bin_corr))/100)*20)**1.25 # # for i in range(len(region_nmad)): # i = 0 # for j in range(nb_slope-2): # # nmad = region_nmad[i] # # ax.plot(corr[1:nb_corr],nmad[j*nb_corr+1:j*nb_corr+nb_corr],label='Slope category: '+str(bin_slope[j]-5)+'-'+str(bin_slope[j]+5)+' degrees',color=color_list[j],linestyle=ls_list[i]) # # # # ax.plot(bin_corr,model_var,label='model',linewidth=2) # # ax.xlabel('Correlation (percent)') # ax.ylabel('Stable terrain NMAD (m)') # ax.ylim([0,50]) # ax.legend() # x_slope = np.arange(5,45,0.1) model_var = np.sqrt(3**2 + (40 * np.tan(np.array(x_slope) * np.pi / 180))**2.5 + (((100-np.array(50))/100)*20)**2) i=0 # for i in range(len(region_nmad)-1): u=0 for j in
np.arange(1,nb_corr,2)
numpy.arange
# Intermediate Python for Data Science on DataCamp ####################################### # Part 1: matplotlib ####################################### ## Line plot (1) # Print the last item from year and pop print(year[-1]) print(pop[-1]) # Import matplotlib.pyplot as plt import matplotlib.pyplot as plt # Make a line plot: year on the x-axis, pop on the y-axis plt.plot(year, pop) plt.show() # Print the last item of gdp_cap and life_exp print(life_exp[-1]) print(gdp_cap[-1]) ## Line plot (3) # Make a line plot, gdp_cap on the x-axis, life_exp on the y-axis plt.show() # Display the plot plt.plot(gdp_cap, life_exp) ## Scatter Plot (1) # Change the line plot below to a scatter plot plt.plot(gdp_cap, life_exp) # Put the x-axis on a logarithmic scale plt.xscale('log') plt.scatter(gdp_cap, life_exp) # Show plot plt.show() ## Scatter plot (2) # Import package import matplotlib.pyplot as plt # Build Scatter plot plt.scatter(pop, life_exp) # Show plot plt.show() ## Build a histogram (1) # Create histogram of life_exp data plt.hist(life_exp) # Display histogram plt.show() ## Build a histogram (2): bins # Build histogram with 5 bins plt.hist(life_exp, bins = 5) # Show and clean up plot plt.show() plt.clf() # Build histogram with 20 bins plt.hist(life_exp, bins = 20) # Show and clean up again plt.show() plt.clf() ## Build a histogram (3): compare # Histogram of life_exp, 15 bins plt.hist(life_exp, bins = 15) # Show and clear plot plt.show() plt.clf() # Histogram of life_exp1950, 15 bins plt.hist(life_exp1950, bins = 15) # Show and clear plot again plt.show() plt.clf() ## Labels # Basic scatter plot, log scale plt.scatter(gdp_cap, life_exp) plt.xscale('log') # Strings xlab = 'GDP per Capita [in USD]' ylab = 'Life Expectancy [in years]' title = 'World Development in 2007' # Add axis labels plt.xlabel(xlab) plt.ylabel(ylab) # Add title plt.title(title) # After customizing, display the plot plt.show() ## Ticks # Scatter plot plt.scatter(gdp_cap, life_exp) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') # Definition of tick_val and tick_lab tick_val = [1000,10000,100000] tick_lab = ['1k','10k','100k'] # Adapt the ticks on the x-axis plt.xticks(tick_val, tick_lab) # After customizing, display the plot plt.show() ## Sizes # Import numpy as np import numpy as np # Store pop as a numpy array: np_pop np_pop = np.array(pop) # Double np_pop np_pop = np_pop * 2 # Update: set s argument to np_pop plt.scatter(gdp_cap, life_exp, s = np_pop) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000, 10000, 100000],['1k', '10k', '100k']) # Display the plot plt.show() ## Colors # Specify c and alpha inside plt.scatter() plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000,10000,100000], ['1k','10k','100k']) # Show the plot plt.show() ## Additional Customizations # Scatter plot plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000,10000,100000], ['1k','10k','100k']) # Additional customizations plt.text(1550, 71, 'India') plt.text(5700, 80, 'China') # Add grid() call plt.grid(True) # Show the plot plt.show() ####################################### # Part 2: Dictionaries and Pandas ####################################### ## Motivation for dictionaries # Definition of countries and capital countries = ['spain', 'france', 'germany', 'norway'] capitals = ['madrid', 'paris', 'berlin', 'oslo'] # Get index of 'germany': ind_ger ind_ger = countries.index("germany") # Use ind_ger to print out capital of Germany print(capitals[ind_ger]) ## Create dictionary # Definition of countries and capital countries = ['spain', 'france', 'germany', 'norway'] capitals = ['madrid', 'paris', 'berlin', 'oslo'] # From string in countries and capitals, create dictionary europe europe = { "spain": "madrid", "france": "paris", "germany": "berlin", "norway": "oslo" } # Print europe print(europe) ## Access dictionary # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' } # Print out the keys in europe print(europe.keys()) # Print out value that belongs to key 'norway' print(europe['norway']) ## Dictionary Manipulation (1) # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' } # Add italy to europe europe['italy'] = 'rome' # Print out italy in europe print('italy' in europe) # Add poland to europe europe['poland'] = 'warsaw' # Print europe print(europe) ## Dictionary Manipulation (2) # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'bonn', 'norway':'oslo', 'italy':'rome', 'poland':'warsaw', 'australia':'vienna' } # Update capital of germany europe['germany'] = 'berlin' # Remove australia del(europe['australia']) # Print europe print(europe) ## Dictionariception # Dictionary of dictionaries europe = { 'spain': { 'capital':'madrid', 'population':46.77 }, 'france': { 'capital':'paris', 'population':66.03 }, 'germany': { 'capital':'berlin', 'population':80.62 }, 'norway': { 'capital':'oslo', 'population':5.084 } } # Print out the capital of France print(europe['france']['capital']) # Create sub-dictionary data data = {'capital':'rome', 'population':59.83} # Add data to europe under key 'italy' europe['italy'] = data # Print europe print(europe) ## Dictionary to DataFrame (1) # Pre-defined lists names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt'] dr = [True, False, False, False, True, True, True] cpc = [809, 731, 588, 18, 200, 70, 45] # Import pandas as pd import pandas as pd # Create dictionary my_dict with three key:value pairs: my_dict my_dict = { 'country': names, 'drives_right': dr, 'cars_per_cap': cpc } # Build a DataFrame cars from my_dict: cars cars = pd.DataFrame(my_dict) # Print cars print(cars) ## Dictionary to DataFrame (2) # Build cars DataFrame names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt'] dr = [True, False, False, False, True, True, True] cpc = [809, 731, 588, 18, 200, 70, 45] dict = { 'country':names, 'drives_right':dr, 'cars_per_cap':cpc } cars = pd.DataFrame(dict) print(cars) # Definition of row_labels row_labels = ['US', 'AUS', 'JAP', 'IN', 'RU', 'MOR', 'EG'] # Specify row labels of cars cars.index = row_labels # Print cars again print(cars) ## CSV to DataFrame (1) # Import the cars.csv data: cars cars = pd.read_csv("cars.csv") # Print out cars print(cars) ## CSV to DataFrame (2) # Fix import by including index_col cars = pd.read_csv('cars.csv', index_col = 0) # Print out cars print(cars) ## Square Brackets (1) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out country column as Pandas Series print(cars['country']) # Print out country column as Pandas DataFrame print(cars[['country']]) # Print out DataFrame with country and drives_right columns print(cars[['country', 'drives_right']]) ## Square Brackets (2) # Print out first 3 observations print(cars[0:3]) # Print out fourth, fifth and sixth observation print(cars[3:6]) ## loc and iloc (1) # Print out observation for Japan print(cars.loc['JAP']) # Print out observations for Australia and Egypt print(cars.loc[['AUS', 'EG']]) ## loc and iloc (2) # Print out drives_right value of Morocco print(cars.loc['MOR', 'drives_right']) # Print sub-DataFrame print(cars.loc[['RU', 'MOR'], ['country', 'drives_right']]) ## loc and iloc (3) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out drives_right column as Series print(cars.loc[:, 'drives_right']) # Print out drives_right column as DataFrame print(cars.loc[:, ['drives_right']]) # Print out cars_per_cap and drives_right as DataFrame print(cars.loc[:, ['cars_per_cap', 'drives_right']]) ####################################### # Part 3: Logic, Control Flow and Filters ####################################### ## Equality # Comparison of booleans print(True == False) # Comparison of integers print(-5 * 15 != 75) # Comparison of strings print("pyscript" == "PyScript") # Compare a boolean with an integer print(True == 1) ## Greater and less than # Comparison of integers x = -3 * 6 print(x >= -10) # Comparison of strings y = "test" print("test" <= y) # Comparison of booleans print(True > False) ## Compare arrays # Create arrays import numpy as np my_house = np.array([18.0, 20.0, 10.75, 9.50]) your_house = np.array([14.0, 24.0, 14.25, 9.0]) # my_house greater than or equal to 18 print(my_house >= 18) # my_house less than your_house print(my_house < your_house) ## and, or, not (1) # Define variables my_kitchen = 18.0 your_kitchen = 14.0 # my_kitchen bigger than 10 and smaller than 18? print(my_kitchen > 10 and my_kitchen < 18) # my_kitchen smaller than 14 or bigger than 17? print(my_kitchen < 14 or my_kitchen > 17) # Double my_kitchen smaller than triple your_kitchen? print(my_kitchen*2 < your_kitchen*3) ## Boolean operators with Numpy # Create arrays import numpy as np my_house = np.array([18.0, 20.0, 10.75, 9.50]) your_house = np.array([14.0, 24.0, 14.25, 9.0]) # my_house greater than 18.5 or smaller than 10 print(np.logical_or(my_house > 18.5, my_house < 10)) # Both my_house and your_house smaller than 11 print(np.logical_and(my_house < 11, your_house < 11)) ## if # Define variables room = "kit" area = 14.0 # if statement for room if room == "kit" : print("looking around in the kitchen.") # if statement for area if area > 15: print("big place!") ## Add else # if-else construct for room if room == "kit" : print("looking around in the kitchen.") else : print("looking around elsewhere.") # if-else construct for area if area > 15 : print("big place!") else: print("pretty small.") ## Customize further: elif # Define variables room = "bed" area = 14.0 # if-elif-else construct for room if room == "kit" : print("looking around in the kitchen.") elif room == "bed": print("looking around in the bedroom.") else : print("looking around elsewhere.") # if-elif-else construct for area if area > 15 : print("big place!") elif area > 10: print("medium size, nice!") else : print("pretty small.") ## Driving right (1) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Extract drives_right column as Series: dr dr = cars.loc[:, "drives_right"] # Use dr to subset cars: sel sel = cars[dr] # Print sel print(sel) ## Driving right (2) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Convert code to a one-liner sel = cars[cars['drives_right']] # Print sel print(sel) ## Cars per capita (1) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Create car_maniac: observations that have a cars_per_cap over 500 cpc = cars['cars_per_cap'] many_cars = cpc > 500 car_maniac = cars[many_cars] # Print car_maniac print(car_maniac) ## Cars per capita (2) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Import numpy, you'll need this import numpy as np # Create medium: observations with cars_per_cap between 100 and 500 cpc = cars['cars_per_cap'] between = np.logical_and(cpc > 100, cpc < 500) medium = cars[between] # Print medium print(medium) ####################################### # Part 4: Loops ####################################### ## Basic while loop # Initialize offset offset = 8 # Code the while loop while offset != 0: print("correcting...") offset = offset - 1 print(offset) ## Add conditionals # Initialize offset offset = -6 # Code the while loop while offset != 0 : print("correcting...") if offset > 0: offset = offset - 1 else: offset = offset + 1 print(offset) ## Loop over a list # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Code the for loop for i in areas: print(i) ## Indexes and values (1) # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Change for loop to use enumerate() for index, a in enumerate(areas) : print("room " + str(index) + ": " + str(a)) ## Indexes and values (2) # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Code the for loop for index, area in enumerate(areas) : print("room " + str(index + 1) + ": " + str(area)) ## Loop over list of lists # house list of lists house = [["hallway", 11.25], ["kitchen", 18.0], ["living room", 20.0], ["bedroom", 10.75], ["bathroom", 9.50]] # Build a for loop from scratch for area in house : print("the " + str(area[0]) + " is " + str(area[1]) + " sqm") ## Loop over dictionary # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'bonn', 'norway':'oslo', 'italy':'rome', 'poland':'warsaw', 'australia':'vienna' } # Iterate over europe for key, value in europe.items() : print("the capital of " + key + " is " + str(value)) ## Loop over Numpy array # Import numpy as np import numpy as np # For loop over np_height for h in np_height: print(str(h) + " inches") # For loop over np_baseball for x in np.nditer(np_baseball): print(x) ## Loop over DataFrame (1) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Iterate over rows of cars for lab, row in cars.iterrows() : print(lab) print(row) ## Loop over DataFrame (2) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Adapt for loop for lab, row in cars.iterrows() : print(lab + ": " + str(row['cars_per_cap'])) ## Add column (1) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Code for loop that adds COUNTRY column for lab, row in cars.iterrows() : cars.loc[lab, "COUNTRY"] = row["country"].upper() # Print cars print(cars) ## Add column (2) # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Use .apply(str.upper) cars["COUNTRY"] = cars["country"].apply(str.upper) print(cars) ####################################### # Part 5: Case Study: Hacker Statistics ####################################### ## Random float # Import numpy as np import numpy as np # Set the seed np.random.seed(123) # Generate and print random float print(np.random.rand()) ## Roll the dice # Import numpy and set seed import numpy as np np.random.seed(123) # Use randint() to simulate a dice print(np.random.randint(1,7)) # Use randint() again print(np.random.randint(1,7)) ## Determine your next move # Import numpy and set seed import numpy as np np.random.seed(123) # Starting step step = 50 # Roll the dice dice = np.random.randint(1,7) # Finish the control construct if dice <= 2 : step = step - 1 elif dice <= 5 : step = step + 1 else : step = step + np.random.randint(1,7) # Print out dice and step print(dice) print(step) ## The next step # Import numpy and set seed import numpy as np np.random.seed(123) # Initialize random_walk random_walk = [0] # Complete the ___ for x in range(100) : # Set step: last element in random_walk step = random_walk[-1] # Roll the dice dice = np.random.randint(1,7) # Determine next step if dice <= 2: step = step - 1 elif dice <= 5: step = step + 1 else: step = step + np.random.randint(1,7) # append next_step to random_walk random_walk.append(step) # Print random_walk print(random_walk) ## How low can you go? # Import numpy and set seed import numpy as np np.random.seed(123) # Initialize random_walk random_walk = [0] for x in range(100) : step = random_walk[-1] dice = np.random.randint(1,7) if dice <= 2: # Replace below: use max to make sure step can't go below 0 step = max(0, step - 1) elif dice <= 5: step = step + 1 else: step = step + np.random.randint(1,7) random_walk.append(step) print(random_walk) ## Visualize the walk # Initialization import numpy as np
np.random.seed(123)
numpy.random.seed
import os import scipy from sklearn import preprocessing from sklearn.covariance import OAS os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from tensorflow.keras import layers, models from nas.src import config from brainflow import BoardShim from tensorflow.keras.optimizers import Adam class Classifier: """ A class that classifies login EEG data. :param login_data: Login EEG data. List of login data time windows. :type login_data: list :param reg_data: Registration EEG data. List of registration data time windows. :type reg_data: list :param reg_data_types: Registration data time windows types. :type reg_data_types: list """ def __init__(self, login_data, reg_data, reg_data_types, login_data_types, user_ids=None): self.login_data = login_data self.reg_data = reg_data self.reg_data_types = reg_data_types self.login_data_types = login_data_types self.user_ids = user_ids # LDA input self.fit_data = [] self.predict_data = [] self.fit_data_types = [] self.predict_data_types = [] # CNN input self.training_samples = None self.predicting_samples = None self.training_samples_types = [] self.predicting_samples_types = [] # Result self.result = None def prepare_cnn_data(self): """ Data preparation for CNN. """ training_samples = [] predicting_samples = [] predict_data_types = [] training_data_types = [] for i in range(len(self.reg_data)): epoch = [] norm_data_0 = preprocessing.normalize(np.array([self.reg_data[i][0]])) norm_data_1 = preprocessing.normalize(np.array([self.reg_data[i][1]])) norm_data_2 = preprocessing.normalize(np.array([self.reg_data[i][2]])) norm_data_3 = preprocessing.normalize(np.array([self.reg_data[i][3]])) epoch = np.array([[norm_data_0[0], norm_data_1[0], norm_data_2[0], norm_data_3[0]]]) training_samples.append(epoch) training_data_types.append(self.reg_data_types[i]) for i in range(len(self.login_data)): epoch = [] norm_data_0 = preprocessing.normalize(np.array([self.login_data[i][0]])) norm_data_1 = preprocessing.normalize(np.array([self.login_data[i][1]])) norm_data_2 = preprocessing.normalize(np.array([self.login_data[i][2]])) norm_data_3 = preprocessing.normalize(np.array([self.login_data[i][3]])) epoch = np.array([[norm_data_0[0], norm_data_1[0], norm_data_2[0], norm_data_3[0]]]) predicting_samples.append(epoch) predict_data_types.append(self.login_data_types[i]) training_samples = np.array(training_samples) predicting_samples = np.array(predicting_samples) training_data_types = np.array(training_data_types) predict_data_types = np.array(predict_data_types) num_of_x = round(BoardShim.get_sampling_rate(config.BOARD_TYPE) * 0.8) training_samples = training_samples.reshape(len(training_samples), 4, num_of_x, 1) predicting_samples = predicting_samples.reshape(len(predicting_samples), 4, num_of_x, 1) self.training_samples = training_samples self.training_samples_types = training_data_types self.predicting_samples = predicting_samples self.predicting_samples_types = predict_data_types def classify(self, classification_method): """ Classify login EEG data. :param classification_method: Method of classification. :type classification_method: string :return: Result of classification. :rtype: list """ if classification_method == "LDA" or classification_method == "BOTH": model = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=0.924) model.fit(self.fit_data, self.fit_data_types) self.result = model.predict(self.predict_data) if classification_method == "CNN" or classification_method == "BOTH": num_of_x = round(BoardShim.get_sampling_rate(config.BOARD_TYPE) * 0.8) model = models.Sequential([ layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same', input_shape=(4, num_of_x, 1), use_bias=True), layers.MaxPooling2D(pool_size=(1, 4), strides=1), layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same', use_bias=True), layers.MaxPooling2D(pool_size=(1, 4), strides=1), layers.Flatten(), layers.Dense(units=500, activation='relu'), layers.BatchNormalization(), layers.Dropout(0.2), layers.Dense(units=100, activation='relu'), layers.Dense(units=2, activation='softmax'), ]) model.compile(optimizer=Adam(learning_rate=0.002), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x=self.training_samples, y=self.reg_data_types, batch_size=10, epochs=30, verbose=0, shuffle=True) result = model.predict(x=self.predicting_samples, batch_size=1, verbose=0) result = np.round(result) result = result[:, 0] self.result = result def prepare_lda_data(self): """ Data preparation for LDA. """ fit_data = [] fit_data_types = [] predict_data = [] predict_data_types = [] for i in range(len(self.reg_data)): epoch = [] norm_data_0 = preprocessing.normalize(np.array([self.reg_data[i][0]])) norm_data_1 = preprocessing.normalize(np.array([self.reg_data[i][1]])) norm_data_2 = preprocessing.normalize(np.array([self.reg_data[i][2]])) norm_data_3 = preprocessing.normalize(np.array([self.reg_data[i][3]])) avg = (norm_data_0 + norm_data_1 + norm_data_2 + norm_data_3) / 4 epoch = avg[0] fit_data.append(epoch) for i in range(len(self.login_data)): epoch = [] norm_data_0 = preprocessing.normalize(
np.array([self.login_data[i][0]])
numpy.array
# -*- coding: utf-8 -*- """Copia di Classification.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/19w462hZ5-StoAmR7fA-GquAcs-hibbSU """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from matplotlib.ticker import AutoMinorLocator from matplotlib import gridspec #scaling, normalization from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler from sklearn import metrics from google.colab import files #caricamento del dataset df = pd.read_csv('words_glasgow.csv') #faccio una copia del dataset in caso di manipolazione dati dfcopy= df.copy() df2 = df.copy() df2["perceivability"] = df2[["imageability", "concreteness"]].mean(axis=1) df_perc=df2.drop(["concreteness","imageability"], axis=1) dfprepro= df_perc.copy() dfprepro=dfprepro.rename(columns={"gender": "masculinity"}) dfprepro.loc[(dfprepro['web_corpus_freq'].isnull() == True), 'web_corpus_freq'] = dfprepro['web_corpus_freq'].mean() dfprepro["web_corpus_log"] = pd.qcut(dfprepro["web_corpus_freq"], 10) #taglio la variabile web_corpus_freq in 10 gruppi dataframe = [dfprepro] for dataset in dataframe: dataset.loc[(dataset["web_corpus_freq"] > 10000) & (dataset["web_corpus_freq"] <= 100000), "web_corpus_freq"] = 4 dataset.loc[(dataset["web_corpus_freq"] > 100000) & (dataset["web_corpus_freq"] <= 1000000), "web_corpus_freq"] = 5 dataset.loc[(dataset["web_corpus_freq"] > 1000000) & (dataset["web_corpus_freq"] <= 10000000), "web_corpus_freq"] = 6 dataset.loc[(dataset["web_corpus_freq"] > 10000000) & (dataset["web_corpus_freq"] <= 100000000), "web_corpus_freq"] = 7 dataset.loc[(dataset["web_corpus_freq"] > 100000000) & (dataset["web_corpus_freq"] <= 1000000000), "web_corpus_freq"] = 8 dataset.loc[dataset["web_corpus_freq"] > 1000000000, "web_corpus_freq"] = 9 dfprepro = dfprepro.drop(["web_corpus_log","word"], axis=1) """# Preprocess for classification""" # per il decision tree from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split # visualizzarlo from sklearn import tree import pydotplus from IPython.display import Image # evaluazione from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, f1_score, classification_report from sklearn.metrics import roc_curve, auc, roc_auc_score # hyperparameter tuning from sklearn.model_selection import RandomizedSearchCV, GridSearchCV # cross-validation from sklearn.model_selection import cross_val_score from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier df_class_ref = dfprepro.copy() var_to_scale=['aoa',"arousal","valence","dominance","familiarity","semsize","masculinity","perceivability"] features = df_class_ref[var_to_scale] scaler = MinMaxScaler().fit(features.values) features = scaler.transform(features.values) df_class_ref[var_to_scale] = features """#Decision Tree (mostly) and comparison with other methods (binary varaibles only) ### Arousal """ refvar="arousal" taglio=0.55 X=df_class_ref.drop(refvar,axis=1).copy() y=df_class_ref[refvar].copy() y_up_index = y >= taglio y[y_up_index]=1 y_zero_index = y < taglio y[y_zero_index]=0 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) plt.figure(figsize=(15,7.5)) from sklearn.tree import plot_tree plot_tree(clf_dt, filled=True, rounded=True, class_names=["not aroused","aroused"], feature_names=X.columns) from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import cross_val_score plot_confusion_matrix(clf_dt, X_test, y_test, display_labels=["not aroused","aroused"]) y_pred = clf_dt.predict(X_train) y_pred = clf_dt.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred, average=None)) print(classification_report(y_test, y_pred)) y_score = clf_dt.predict_proba(X_test) fpr, tpr, th = roc_curve(y_test, y_score[:,1]) roc_auc = auc(fpr, tpr) print(roc_auc) plt.figure(figsize=(8,5)) plt.plot(fpr, tpr, label='$AUC$ = %.3f' % (roc_auc)) plt.legend(loc="lower right", fontsize=14, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] fig, ax =plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas,train_scores, marker ='o',label='train',drawstyle='steps-post') ax.plot(ccp_alphas,test_scores, marker ='o',label='test',drawstyle='steps-post') ax.legend() plt.show() clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=0.003) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) df=pd.DataFrame(data={'tree':range(10), 'accuracy':scores}) df.plot(x='tree', y='accuracy',marker='o',linestyle='--') alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) alpha_results.plot(x='alpha', y='mean_accuracy', marker='o', linestyle='--') alpha_results[(alpha_results['alpha']>0.001) & (alpha_results['alpha']<0.005)] indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) clf_dt_pruned = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) plot_confusion_matrix(clf_dt_pruned, X_test, y_test, display_labels=['not aroused','aroused']) plt.figure(figsize=(15,7.5)) from sklearn.tree import plot_tree plot_tree(clf_dt_pruned, filled=True, rounded=True, class_names=["not aroused","aroused"], feature_names=X.columns) y_pred = clf_dt_pruned.predict(X_train) y_pred = clf_dt_pruned.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred,average='weighted')) print(classification_report(y_test, y_pred)) y_score = clf_dt_pruned.predict_proba(X_test) fpr_0, tpr_0, th_0 = roc_curve(y_test, y_score[:,1]) roc_auc_0 = auc(fpr_0, tpr_0) #Entropy clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy',random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) print(ideal_ccp_alpha) clf_dt_pruned = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) y_score = clf_dt_pruned.predict_proba(X_test) fpr_en, tpr_en, th_en = roc_curve(y_test, y_score[:,1]) roc_auc_en = auc(fpr_en, tpr_en) y_pred = clf_dt_pruned.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred,average='weighted')) print(classification_report(y_test, y_pred)) #KNN, find best score acc = [] # Will take some time for i in range(1,40): neigh = KNeighborsClassifier(n_neighbors = i).fit(X_train,y_train) yhat = neigh.predict(X_test) acc.append(metrics.accuracy_score(y_test, yhat)) clf_knn = KNeighborsClassifier(n_neighbors=acc.index(max(acc))) clf_knn.fit(X, y) y_pred = clf_knn.predict(X_train) y_score = clf_knn.predict_proba(X_test) fpr_KNN, tpr_KNN, th_KNN = roc_curve(y_test, y_score[:,1]) roc_auc_KNN = auc(fpr_KNN, tpr_KNN) y_pred = clf_knn.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred,average='weighted')) print(classification_report(y_test, y_pred)) # Instantiate model with 380 decision trees model = RandomForestClassifier(n_estimators = 380, random_state = 42) # Train the model on training data ra=model.fit(X_train, y_train) y_score = model.predict_proba(X_test) fpr_RF, tpr_RF, th_RF = roc_curve(y_test, y_score[:,1]) roc_auc_RF = auc(fpr_RF, tpr_RF) y_pred = model.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred,average='weighted')) print(classification_report(y_test, y_pred)) #Grid Search clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) param_list = {'max_depth': [None] + [2, 3, 4,5,6,7], 'min_samples_split': [2, 5, 10, 15, 20,30,50,60,70,80,90,100], 'min_samples_leaf': [1, 5, 10, 20,25,30,40,50] } grid_search = GridSearchCV(clf_dt, param_grid=param_list, scoring='f1') grid_search.fit(X, y) res = grid_search.cv_results_ def report(results, n_top=3): for i in range(1, n_top + 1): candidates = np.flatnonzero(results['rank_test_score'] == i) for candidate in candidates: print("Model with rank: {0}".format(i)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( results['mean_test_score'][candidate], results['std_test_score'][candidate])) print("Parameters: {0}".format(results['params'][candidate])) print("") report(res, n_top=3) clf_dt_pruned = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=40,random_state=42) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) y_score = clf_dt_pruned.predict_proba(X_test) fpr_c, tpr_c, th_c = roc_curve(y_test, y_score[:,1]) roc_auc_c = auc(fpr_c, tpr_c) y_pred = clf_dt_pruned.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred,average='weighted')) print(classification_report(y_test, y_pred)) plt.figure(figsize=(15,7.5)) from sklearn.tree import plot_tree plot_tree(clf_dt_pruned, filled=True, rounded=True, class_names=["not aroused","aroused"], feature_names=X.columns) plt.figure(figsize=(8,5)) plt.plot(fpr_0, tpr_0,lw=3,label='$GINI_{AUC}$ = %.3f' % (roc_auc_0)) plt.plot(fpr_en, tpr_en,lw=3,label='$ENT_{AUC}$ = %.3f' % (roc_auc_en)) plt.plot(fpr_KNN, tpr_KNN,lw=3,label='$KNN_{AUC}$ = %.3f' % (roc_auc_KNN)) plt.plot(fpr_RF, tpr_RF,lw=3,label='$RAF_{AUC}$ = %.3f' % (roc_auc_RF)) #plt.plot(fpr_c, tpr_c,lw=3,label='$GR_{AUC}$ = %.3f' % (roc_auc_c)) plt.legend(loc="lower right", fontsize=18, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() """### Valence""" refvar="valence" taglio=0.67 X=df_class_ref.drop(refvar,axis=1).copy() y=df_class_ref[refvar].copy() y_up_index = y >= taglio y[y_up_index]=1 y_zero_index = y < taglio y[y_zero_index]=0 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] fig, ax =plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas,train_scores, marker ='o',label='train',drawstyle='steps-post') ax.plot(ccp_alphas,test_scores, marker ='o',label='test',drawstyle='steps-post') ax.legend() plt.show() alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) alpha_results.plot(x='alpha', y='mean_accuracy', marker='o', linestyle='--') indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) clf_dt_pruned = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) plt.figure(figsize=(15,7.5)) clf_dt_pruned.classes_ from sklearn.tree import plot_tree plot_tree(clf_dt_pruned, filled=True, rounded=True, class_names=[str(v) for v in clf_dt_pruned.classes_], feature_names=X.columns) y_pred = clf_dt_pruned.predict(X_train) y_pred = clf_dt_pruned.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred,average='weighted')) print(classification_report(y_test, y_pred)) y_score = clf_dt_pruned.predict_proba(X_test) plot_confusion_matrix(clf_dt_pruned, X_test, y_test, display_labels=['not val','val']) fpr, tpr, th = roc_curve(y_test, y_score[:,1]) roc_auc = auc(fpr, tpr) print(roc_auc) plt.figure(figsize=(8,5)) plt.plot(fpr, tpr, label='$AUC$ = %.3f' % (roc_auc)) plt.legend(loc="lower right", fontsize=14, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() #ROC for Decision Tree (Gini) fpr_0, tpr_0, th_0 = roc_curve(y_test, y_score[:,1]) roc_auc_0 = auc(fpr_0, tpr_0) #Entropy clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy',random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) print(ideal_ccp_alpha) clf_dt_pruned = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) y_score = clf_dt_pruned.predict_proba(X_test) fpr_en, tpr_en, th_en = roc_curve(y_test, y_score[:,1]) roc_auc_en = auc(fpr_en, tpr_en) y_pred = clf_dt_pruned.predict(X_test) print(classification_report(y_test, y_pred)) #KNN, find best score acc = [] # Will take some time for i in range(1,40): neigh = KNeighborsClassifier(n_neighbors = i).fit(X_train,y_train) yhat = neigh.predict(X_test) acc.append(metrics.accuracy_score(y_test, yhat)) clf_knn = KNeighborsClassifier(n_neighbors=acc.index(max(acc))) clf_knn.fit(X, y) y_pred = clf_knn.predict(X_train) y_score = clf_knn.predict_proba(X_test) fpr_KNN, tpr_KNN, th_KNN = roc_curve(y_test, y_score[:,1]) roc_auc_KNN = auc(fpr_KNN, tpr_KNN) y_pred = clf_knn.predict(X_test) print(classification_report(y_test, y_pred)) # Instantiate model with 380 decision trees model = RandomForestClassifier(n_estimators = 380, random_state = 42) # Train the model on training data ra=model.fit(X_train, y_train) y_score = model.predict_proba(X_test) fpr_RF, tpr_RF, th_RF = roc_curve(y_test, y_score[:,1]) roc_auc_RF = auc(fpr_RF, tpr_RF) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) plt.figure(figsize=(8,5)) plt.plot(fpr_0, tpr_0,lw=3,label='$GINI_{AUC}$ = %.3f' % (roc_auc_0)) plt.plot(fpr_en, tpr_en,lw=3,label='$ENT_{AUC}$ = %.3f' % (roc_auc_en)) plt.plot(fpr_KNN, tpr_KNN,lw=3,label='$KNN_{AUC}$ = %.3f' % (roc_auc_KNN)) plt.plot(fpr_RF, tpr_RF,lw=3,label='$RAF_{AUC}$ = %.3f' % (roc_auc_RF)) #plt.plot(fpr_c, tpr_c,lw=3,label='$GR_{AUC}$ = %.3f' % (roc_auc_c)) plt.legend(loc="lower right", fontsize=18, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() """### Dominance """ refvar="dominance" taglio=0.57 X=df_class_ref.drop(refvar,axis=1).copy() y=df_class_ref[refvar].copy() y_up_index = y >= taglio y[y_up_index]=1 y_zero_index = y < taglio y[y_zero_index]=0 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] fig, ax =plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas,train_scores, marker ='o',label='train',drawstyle='steps-post') ax.plot(ccp_alphas,test_scores, marker ='o',label='test',drawstyle='steps-post') ax.legend() plt.show() alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=42, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) alpha_results.plot(x='alpha', y='mean_accuracy', marker='o', linestyle='--') indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) clf_dt_pruned = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) plot_confusion_matrix(clf_dt_pruned, X_test, y_test, display_labels=['not dominant','dominant']) plt.figure(figsize=(15,7.5)) from sklearn.tree import plot_tree plot_tree(clf_dt_pruned, filled=True, rounded=True, class_names=["not dominant","dominant"], feature_names=X.columns) y_pred = clf_dt_pruned.predict(X_train) y_pred = clf_dt_pruned.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) y_score = clf_dt_pruned.predict_proba(X_test) fpr, tpr, th = roc_curve(y_test, y_score[:,1]) roc_auc = auc(fpr, tpr) print(roc_auc) plt.figure(figsize=(8,5)) plt.plot(fpr, tpr, label='$AUC$ = %.3f' % (roc_auc)) plt.legend(loc="lower right", fontsize=14, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() #ROC for Decision Tree (Gini) fpr_0, tpr_0, th_0 = roc_curve(y_test, y_score[:,1]) roc_auc_0 = auc(fpr_0, tpr_0) #Entropy clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy',random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) print(ideal_ccp_alpha) clf_dt_pruned = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) y_score = clf_dt_pruned.predict_proba(X_test) fpr_en, tpr_en, th_en = roc_curve(y_test, y_score[:,1]) roc_auc_en = auc(fpr_en, tpr_en) y_pred = clf_dt_pruned.predict(X_test) print(classification_report(y_test, y_pred)) #KNN, find best score acc = [] # Will take some time for i in range(1,40): neigh = KNeighborsClassifier(n_neighbors = i).fit(X_train,y_train) yhat = neigh.predict(X_test) acc.append(metrics.accuracy_score(y_test, yhat)) clf_knn = KNeighborsClassifier(n_neighbors=acc.index(max(acc))) clf_knn.fit(X, y) y_pred = clf_knn.predict(X_train) y_score = clf_knn.predict_proba(X_test) fpr_KNN, tpr_KNN, th_KNN = roc_curve(y_test, y_score[:,1]) roc_auc_KNN = auc(fpr_KNN, tpr_KNN) y_pred = clf_knn.predict(X_test) print(classification_report(y_test, y_pred)) # Instantiate model with 380 decision trees model = RandomForestClassifier(n_estimators = 380, random_state = 42) # Train the model on training data ra=model.fit(X_train, y_train) y_score = model.predict_proba(X_test) fpr_RF, tpr_RF, th_RF = roc_curve(y_test, y_score[:,1]) roc_auc_RF = auc(fpr_RF, tpr_RF) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) plt.figure(figsize=(8,5)) plt.plot(fpr_0, tpr_0,lw=3,label='$GINI_{AUC}$ = %.3f' % (roc_auc_0)) plt.plot(fpr_en, tpr_en,lw=3,label='$ENT_{AUC}$ = %.3f' % (roc_auc_en)) plt.plot(fpr_KNN, tpr_KNN,lw=3,label='$KNN_{AUC}$ = %.3f' % (roc_auc_KNN)) plt.plot(fpr_RF, tpr_RF,lw=3,label='$RAF_{AUC}$ = %.3f' % (roc_auc_RF)) #plt.plot(fpr_c, tpr_c,lw=3,label='$GR_{AUC}$ = %.3f' % (roc_auc_c)) plt.legend(loc="lower right", fontsize=18, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() """### Familiarity""" refvar="familiarity" taglio=0.6 X=df_class_ref.drop(refvar,axis=1).copy() y=df_class_ref[refvar].copy() y_up_index = y >= taglio y[y_up_index]=1 y_zero_index = y < taglio y[y_zero_index]=0 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] fig, ax =plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas,train_scores, marker ='o',label='train',drawstyle='steps-post') ax.plot(ccp_alphas,test_scores, marker ='o',label='test',drawstyle='steps-post') ax.legend() plt.show() alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) alpha_results.plot(x='alpha', y='mean_accuracy', marker='o', linestyle='--') indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) clf_dt_pruned = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) plot_confusion_matrix(clf_dt_pruned, X_test, y_test, display_labels=['not dominant','dominant']) plt.figure(figsize=(15,7.5)) from sklearn.tree import plot_tree plot_tree(clf_dt_pruned, filled=True, rounded=True, class_names=["not familiar","familiar"], feature_names=X.columns, max_depth=3, fontsize=7) y_pred = clf_dt_pruned.predict(X_train) y_pred = clf_dt_pruned.predict(X_test) plt.savefig('plot_of_tree.pdf') print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) y_score = clf_dt_pruned.predict_proba(X_test) fpr, tpr, th = roc_curve(y_test, y_score[:,1]) roc_auc = auc(fpr, tpr) print(roc_auc) plt.figure(figsize=(8,5)) plt.plot(fpr, tpr, label='$AUC$ = %.3f' % (roc_auc)) plt.legend(loc="lower right", fontsize=14, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() #ROC for Decision Tree (Gini) fpr_0, tpr_0, th_0 = roc_curve(y_test, y_score[:,1]) roc_auc_0 = auc(fpr_0, tpr_0) #Entropy clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy',random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) print(ideal_ccp_alpha) clf_dt_pruned = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) y_score = clf_dt_pruned.predict_proba(X_test) fpr_en, tpr_en, th_en = roc_curve(y_test, y_score[:,1]) roc_auc_en = auc(fpr_en, tpr_en) y_pred = clf_dt_pruned.predict(X_test) print(classification_report(y_test, y_pred)) plt.figure(figsize=(15,7.5)) from sklearn.tree import plot_tree plot_tree(clf_dt_pruned, filled=True, rounded=True, class_names=["not familiar","familiar"], feature_names=X.columns, max_depth=3, fontsize=7) #KNN, find best score acc = [] # Will take some time for i in range(1,40): neigh = KNeighborsClassifier(n_neighbors = i).fit(X_train,y_train) yhat = neigh.predict(X_test) acc.append(metrics.accuracy_score(y_test, yhat)) clf_knn = KNeighborsClassifier(n_neighbors=acc.index(max(acc))) clf_knn.fit(X, y) y_pred = clf_knn.predict(X_train) y_score = clf_knn.predict_proba(X_test) fpr_KNN, tpr_KNN, th_KNN = roc_curve(y_test, y_score[:,1]) roc_auc_KNN = auc(fpr_KNN, tpr_KNN) y_pred = clf_knn.predict(X_test) print(classification_report(y_test, y_pred)) # Instantiate model with 380 decision trees model = RandomForestClassifier(n_estimators = 380, random_state = 42) # Train the model on training data ra=model.fit(X_train, y_train) y_score = model.predict_proba(X_test) fpr_RF, tpr_RF, th_RF = roc_curve(y_test, y_score[:,1]) roc_auc_RF = auc(fpr_RF, tpr_RF) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) plt.figure(figsize=(8,5)) plt.plot(fpr_0, tpr_0,lw=3,label='$GINI_{AUC}$ = %.3f' % (roc_auc_0)) plt.plot(fpr_en, tpr_en,lw=3,label='$ENT_{AUC}$ = %.3f' % (roc_auc_en)) plt.plot(fpr_KNN, tpr_KNN,lw=3,label='$KNN_{AUC}$ = %.3f' % (roc_auc_KNN)) plt.plot(fpr_RF, tpr_RF,lw=3,label='$RAF_{AUC}$ = %.3f' % (roc_auc_RF)) #plt.plot(fpr_c, tpr_c,lw=3,label='$GR_{AUC}$ = %.3f' % (roc_auc_c)) plt.legend(loc="lower right", fontsize=18, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() """### Semsize""" refvar="semsize" taglio=0.63 X=df_class_ref.drop(refvar,axis=1).copy() y=df_class_ref[refvar].copy() y_up_index = y >= taglio y[y_up_index]=1 y_zero_index = y < taglio y[y_zero_index]=0 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] fig, ax =plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas,train_scores, marker ='o',label='train',drawstyle='steps-post') ax.plot(ccp_alphas,test_scores, marker ='o',label='test',drawstyle='steps-post') ax.legend() plt.show() alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) alpha_results.plot(x='alpha', y='mean_accuracy', marker='o', linestyle='--') indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) clf_dt_pruned = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) plot_confusion_matrix(clf_dt_pruned, X_test, y_test, display_labels=['small','big']) plt.figure(figsize=(15,7.5)) from sklearn.tree import plot_tree plot_tree(clf_dt_pruned, filled=True, rounded=True, class_names=["small","big"], feature_names=X.columns) y_pred = clf_dt_pruned.predict(X_train) y_pred = clf_dt_pruned.predict(X_test) print('Accuracy %s' % accuracy_score(y_test, y_pred)) print('F1-score %s' % f1_score(y_test, y_pred, average=None)) print(classification_report(y_test, y_pred)) y_score = clf_dt_pruned.predict_proba(X_test) fpr, tpr, th = roc_curve(y_test, y_score[:,1]) roc_auc = auc(fpr, tpr) print(roc_auc) plt.figure(figsize=(8,5)) plt.plot(fpr, tpr, label='$AUC$ = %.3f' % (roc_auc)) plt.legend(loc="lower right", fontsize=14, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() #ROC for Decision Tree (Gini) fpr_0, tpr_0, th_0 = roc_curve(y_test, y_score[:,1]) roc_auc_0 = auc(fpr_0, tpr_0) #Entropy clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy',random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores), np.std(scores)]) alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy','std']) indexmax = alpha_results[['mean_accuracy']].idxmax() maxalpha=alpha_results.loc[indexmax,'alpha'] ideal_ccp_alpha = float(maxalpha) print(ideal_ccp_alpha) clf_dt_pruned = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42, ccp_alpha=ideal_ccp_alpha) clf_dt_pruned = clf_dt_pruned.fit(X_train, y_train) y_score = clf_dt_pruned.predict_proba(X_test) fpr_en, tpr_en, th_en = roc_curve(y_test, y_score[:,1]) roc_auc_en = auc(fpr_en, tpr_en) y_pred = clf_dt_pruned.predict(X_test) print(classification_report(y_test, y_pred)) #KNN, find best score acc = [] # Will take some time for i in range(1,40): neigh = KNeighborsClassifier(n_neighbors = i).fit(X_train,y_train) yhat = neigh.predict(X_test) acc.append(metrics.accuracy_score(y_test, yhat)) clf_knn = KNeighborsClassifier(n_neighbors=acc.index(max(acc))) clf_knn.fit(X, y) y_pred = clf_knn.predict(X_train) y_score = clf_knn.predict_proba(X_test) fpr_KNN, tpr_KNN, th_KNN = roc_curve(y_test, y_score[:,1]) roc_auc_KNN = auc(fpr_KNN, tpr_KNN) y_pred = clf_knn.predict(X_test) print(classification_report(y_test, y_pred)) # Instantiate model with 380 decision trees model = RandomForestClassifier(n_estimators = 380, random_state = 42) # Train the model on training data ra=model.fit(X_train, y_train) y_score = model.predict_proba(X_test) fpr_RF, tpr_RF, th_RF = roc_curve(y_test, y_score[:,1]) roc_auc_RF = auc(fpr_RF, tpr_RF) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) plt.figure(figsize=(8,5)) plt.plot(fpr_0, tpr_0,lw=3,label='$GINI_{AUC}$ = %.3f' % (roc_auc_0)) plt.plot(fpr_en, tpr_en,lw=3,label='$ENT_{AUC}$ = %.3f' % (roc_auc_en)) plt.plot(fpr_KNN, tpr_KNN,lw=3,label='$KNN_{AUC}$ = %.3f' % (roc_auc_KNN)) plt.plot(fpr_RF, tpr_RF,lw=3,label='$RAF_{AUC}$ = %.3f' % (roc_auc_RF)) #plt.plot(fpr_c, tpr_c,lw=3,label='$GR_{AUC}$ = %.3f' % (roc_auc_c)) plt.legend(loc="lower right", fontsize=18, frameon=False) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=22) plt.show() """### Masculinity""" refvar="masculinity" taglio=0.6 X=df_class_ref.drop(refvar,axis=1).copy() y=df_class_ref[refvar].copy() y_up_index = y >= taglio y[y_up_index]=1 y_zero_index = y < taglio y[y_zero_index]=0 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=42) clf_dt = clf_dt.fit(X_train, y_train) path = clf_dt.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clf_dts=[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) clf_dt.fit(X_train, y_train) clf_dts.append(clf_dt) train_scores = [clf_dt.score(X_train, y_train) for clf_dt in clf_dts] test_scores = [clf_dt.score(X_test, y_test) for clf_dt in clf_dts] fig, ax =plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas,train_scores, marker ='o',label='train',drawstyle='steps-post') ax.plot(ccp_alphas,test_scores, marker ='o',label='test',drawstyle='steps-post') ax.legend() plt.show() alpha_loop_values =[] for ccp_alpha in ccp_alphas: clf_dt = DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,random_state=0, ccp_alpha=ccp_alpha) scores= cross_val_score(clf_dt,X_train,y_train, cv=10) alpha_loop_values.append([ccp_alpha,np.mean(scores),
np.std(scores)
numpy.std
from pandas.io.data import DataReader from pylab import legend, xlabel, ylabel, sqrt, ylim,\ cov, sqrt, mean, std, plot, show, figure from numpy import array, zeros, matrix, ones, shape, linspace, hstack from pandas import Series, DataFrame from numpy.linalg import inv # Portfolio class. class Portfolio: def __init__(self, symbols, start=None, end=None, bench='^GSPC'): # Make sure input is a list if type(symbols) != list: symbols = [symbols] # Create distionary to hold assets. self.asset = {} # Retrieve assets from data source (IE. Yahoo) for symbol in symbols: try: self.asset[symbol] = DataReader( symbol, "yahoo", start=start, end=end) except: print("Asset " + str(symbol) + " not found!") # Get Benchmark asset. self.benchmark = DataReader(bench, "yahoo", start=start, end=end) self.benchmark['Return'] = self.benchmark['Adj Close'].diff() # Get returns, beta, alpha, and sharp ratio. for symbol in symbols: # Get returns. self.asset[symbol]['Return'] = \ self.asset[symbol]['Adj Close'].diff() # Get Beta. A = self.asset[symbol]['Return'].fillna(0) B = self.benchmark['Return'].fillna(0) self.asset[symbol]['Beta'] = cov(A, B)[0, 1] / cov(A, B)[1, 1] # Get Alpha self.asset[symbol]['Alpha'] = self.asset[symbol]['Return'] - \ self.asset[symbol]['Beta'] * self.benchmark['Return'] # Get Sharpe Ratio tmp = self.asset[symbol]['Return'] self.asset[symbol]['Sharpe'] = \ sqrt(len(tmp)) * mean(tmp.fillna(0)) / std(tmp.fillna(0)) def nplot(self, symbol, color='b', nval=0): tmp = (self.benchmark if symbol == 'bench' else self.asset[symbol]) ['Adj Close'] tmp = tmp / tmp[nval] tmp.plot(color=color, label=symbol) legend(loc='best', shadow=True, fancybox=True) def betas(self): betas = [v['Beta'][0] for k, v in self.asset.items()] return Series(betas, index=self.asset.keys()) def returns(self): returns = [v['Return'].dropna() for k, v in self.asset.items()] return Series(returns, index=self.asset.keys()) def cov(self): keys, values = self.returns().keys(), self.returns().values() return DataFrame( cov(array(values)), index=keys, columns=keys) def get_w(self, kind='sharpe'): V = self.cov() iV = matrix(inv(V)) if kind == 'characteristic': e = matrix(ones(len(self.asset.keys()))).T elif kind == 'sharpe': suml = [ self.returns()[symbol].sum() for symbol in self.asset.keys()] e = matrix(suml).T else: print('\n *Error: There is no weighting for kind ' + kind) return num = iV * e denom = e.T * iV * e w = array(num / denom).flatten() return Series(w, index=self.asset.keys()) def efficient_frontier_w(self, fp): wc = self.get_w(kind='characteristic') wq = self.get_w(kind='sharpe') fc = self.ret_for_w(wc).sum() fq = self.ret_for_w(wq).sum() denom = fq - fc w = (fq - fp) * wc + (fp - fc) * wq return Series(w / denom, index=self.asset.keys()) def efficient_frontier(self, xi=0.01, xf=4, npts=100, scale=10): frontier = linspace(xi, xf, npts) i = 0 rets = zeros(len(frontier)) sharpe = zeros(len(frontier)) for f in frontier: w = self.efficient_frontier_w(f) tmp = self.ret_for_w(w) rets[i] = tmp.sum() * scale sharpe[i] = mean(tmp) / std(tmp) * sqrt(len(tmp)) i += 1 risk = rets/sharpe return Series(rets, index=risk), sharpe.max() def efficient_frontier_plot(self, xi=0.01, xf=4, npts=100, scale=0.1, col1='b', col2='r', newfig=1, plabel=''): eff, m = self.efficient_frontier() if newfig == 1: figure() plot(array(eff.index), array(eff), col1, linewidth=2, label="Efficient Frontier " + plabel) tmp = zeros(1) plot(hstack((tmp, array(eff.index))), hstack((0, m * array(eff.index))), col2, linewidth=2, label="Max Sharpe Ratio: %6.2g" % m) legend(loc='best', shadow=True, fancybox=True) xlabel('Risk %', fontsize=16) ylabel('Return %', fontsize=16) show() def min_var_w_ret(self, ret): V = self.cov() suml = [self.returns()[symbol].sum() for symbol in self.asset.keys()] e =
matrix(suml)
numpy.matrix
# -*- coding: utf-8 -*- import numpy as np from scipy import constants def B21(A21,nu): '''Returns the Einstein B21 coefficient for stimulated emission, computed from the Einstein A21 coefficient and the frequency nu.''' return constants.c**2/(2*constants.h*nu**3)*A21 def B12(A21,nu,g1,g2): '''Einstein B12 coefficient for absorption, computed from the Einstein A21 coefficient, the frequency nu, statistical weights g2 and g1 of upper and lower level respectively.''' return g2/g1*B21(A21=A21,nu=nu) def B_nu(nu,T): """Planck function Return the value of the Planck function (black body) in [W/m2/Hz/sr]. Parameters ---------- nu : float or numpy.ndarray frequency in Hz T : float or numpy.ndarray temperature in K Returns ------- numpy.ndarray Value of Planck function in [W/m2/Hz/sr] """ T = np.array(T) return (2*constants.h*nu**3/constants.c**2 *(np.exp(constants.h*nu/(constants.k*T))-1)**-1) def generate_CMB_background(z=0): '''generates a function that gives the CMB background at redshift z Parameters ----------- z: float redshift Returns -------- function function giving CMB background in [W/m2/Hz/sr] for an input frequency in [Hz] ''' T_CMB = 2.73*(1+z) def CMB_background(nu): return B_nu(nu=nu,T=T_CMB) return CMB_background def zero_background(nu): '''Zero intensity radiation field Returns zero intensity for any frequency Parameters ------------ nu: array_like frequency in Hz Returns --------------- numpy.ndarray Zero at all requested frequencies''' return np.zeros_like(nu) def FWHM2sigma(FWHM): """Convert FWHM of a Gaussian to standard deviation. Parameters ----------- FWHM: float or numpy.ndarray FWHM of the Gaussian Returns ------------ float or numpy.ndarray the standard deviation of the Gaussian""" return FWHM/(2*np.sqrt(2*np.log(2))) def relative_difference(a,b): """Computes the elementwise relative difference between a and b. In general, return |a-b|/a. Special cases: a=0 and b=0: return 0 a=0 and b!=0: return 1""" abs_diff = np.abs(a-b) with np.errstate(invalid='ignore',divide='ignore'): rel_diff = np.where((a==0) & (b==0),0,np.where(a==0,1,abs_diff/a)) assert not np.any(
np.isnan(rel_diff)
numpy.isnan
# standard libraries import collections import copy import functools import math import numbers import operator import typing # third party libraries import numpy import numpy.fft import scipy import scipy.fftpack import scipy.ndimage import scipy.ndimage.filters import scipy.ndimage.fourier import scipy.signal # local libraries from nion.data import Calibration from nion.data import DataAndMetadata from nion.data import Image from nion.data import ImageRegistration from nion.data import TemplateMatching from nion.utils import Geometry DataRangeType = typing.Tuple[float, float] NormIntervalType = typing.Tuple[float, float] NormChannelType = float NormRectangleType = typing.Tuple[typing.Tuple[float, float], typing.Tuple[float, float]] NormPointType = typing.Tuple[float, float] NormSizeType = typing.Tuple[float, float] NormVectorType = typing.Tuple[NormPointType, NormPointType] def column(data_and_metadata: DataAndMetadata.DataAndMetadata, start: int, stop: int) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = start if start is not None else 0 stop_0 = stop if stop is not None else data_shape(data_and_metadata)[0] start_1 = start if start is not None else 0 stop_1 = stop if stop is not None else data_shape(data_and_metadata)[1] return numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True)[0] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def row(data_and_metadata: DataAndMetadata.DataAndMetadata, start: int, stop: int) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = start if start is not None else 0 stop_0 = stop if stop is not None else data_shape(data_and_metadata)[0] start_1 = start if start is not None else 0 stop_1 = stop if stop is not None else data_shape(data_and_metadata)[1] return numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True)[1] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def radius(data_and_metadata: DataAndMetadata.DataAndMetadata, normalize: bool=True) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = -1 if normalize else -data_shape(data_and_metadata)[0] * 0.5 stop_0 = -start_0 start_1 = -1 if normalize else -data_shape(data_and_metadata)[1] * 0.5 stop_1 = -start_1 icol, irow = numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True) return numpy.sqrt(icol * icol + irow * irow) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def full(shape: DataAndMetadata.ShapeType, fill_value, dtype: numpy.dtype = None) -> DataAndMetadata.DataAndMetadata: """Generate a constant valued image with the given shape. full(4, shape(4, 5)) full(0, data_shape(b)) """ dtype = dtype if dtype else numpy.dtype(numpy.float64) return DataAndMetadata.new_data_and_metadata(numpy.full(shape, DataAndMetadata.extract_data(fill_value), dtype)) def arange(start: int, stop: int=None, step: int=None) -> DataAndMetadata.DataAndMetadata: if stop is None: start = 0 stop = start if step is None: step = 1 return DataAndMetadata.new_data_and_metadata(numpy.linspace(int(start), int(stop), int(step))) def linspace(start: float, stop: float, num: int, endpoint: bool=True) -> DataAndMetadata.DataAndMetadata: return DataAndMetadata.new_data_and_metadata(numpy.linspace(start, stop, num, endpoint)) def logspace(start: float, stop: float, num: int, endpoint: bool=True, base: float=10.0) -> DataAndMetadata.DataAndMetadata: return DataAndMetadata.new_data_and_metadata(numpy.logspace(start, stop, num, endpoint, base)) def apply_dist(data_and_metadata: DataAndMetadata.DataAndMetadata, mean: float, stddev: float, dist, fn) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) return DataAndMetadata.new_data_and_metadata(getattr(dist(loc=mean, scale=stddev), fn)(data_and_metadata.data)) def take_item(data, key): return data[key] def data_shape(data_and_metadata: DataAndMetadata.DataAndMetadata) -> DataAndMetadata.ShapeType: return data_and_metadata.data_shape def astype(data: numpy.ndarray, dtype: numpy.dtype) -> numpy.ndarray: return data.astype(dtype) dtype_map: typing.Mapping[typing.Any, str] = {int: "int", float: "float", complex: "complex", numpy.int16: "int16", numpy.int32: "int32", numpy.int64: "int64", numpy.uint8: "uint8", numpy.uint16: "uint16", numpy.uint32: "uint32", numpy.uint64: "uint64", numpy.float32: "float32", numpy.float64: "float64", numpy.complex64: "complex64", numpy.complex128: "complex128"} dtype_inverse_map = {dtype_map[k]: k for k in dtype_map} def str_to_dtype(str: str) -> numpy.dtype: return dtype_inverse_map.get(str, float) def dtype_to_str(dtype: numpy.dtype) -> str: return dtype_map.get(dtype, "float") def function_fft(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None # scaling: numpy.sqrt(numpy.mean(numpy.absolute(data_copy)**2)) == numpy.sqrt(numpy.mean(numpy.absolute(data_copy_fft)**2)) # see https://gist.github.com/endolith/1257010 if Image.is_data_1d(data): scaling = 1.0 / numpy.sqrt(data_shape[0]) return scipy.fftpack.fftshift(numpy.multiply(scipy.fftpack.fft(data), scaling)) elif Image.is_data_2d(data): if Image.is_data_rgb_type(data): if Image.is_data_rgb(data): data_copy = numpy.sum(data[..., :] * (0.2126, 0.7152, 0.0722), 2) else: data_copy = numpy.sum(data[..., :] * (0.2126, 0.7152, 0.0722, 0.0), 2) else: data_copy = data.copy() # let other threads use data while we're processing scaling = 1.0 / numpy.sqrt(data_shape[1] * data_shape[0]) # note: the numpy.fft.fft2 is faster than scipy.fftpack.fft2, probably either because # our conda distribution compiles numpy for multiprocessing, the numpy version releases # the GIL, or both. return scipy.fftpack.fftshift(numpy.multiply(numpy.fft.fft2(data_copy), scaling)) else: raise NotImplementedError() src_dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or src_dimensional_calibrations is None: return None assert len(src_dimensional_calibrations) == len( Image.dimensional_shape_from_shape_and_dtype(data_shape, data_dtype)) dimensional_calibrations = [Calibration.Calibration((-0.5 - 0.5 * data_shape_n) / (dimensional_calibration.scale * data_shape_n), 1.0 / (dimensional_calibration.scale * data_shape_n), "1/" + dimensional_calibration.units) for dimensional_calibration, data_shape_n in zip(src_dimensional_calibrations, data_shape)] return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=dimensional_calibrations) def function_ifft(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None # scaling: numpy.sqrt(numpy.mean(numpy.absolute(data_copy)**2)) == numpy.sqrt(numpy.mean(numpy.absolute(data_copy_fft)**2)) # see https://gist.github.com/endolith/1257010 if Image.is_data_1d(data): scaling = numpy.sqrt(data_shape[0]) return scipy.fftpack.ifft(scipy.fftpack.ifftshift(data) * scaling) elif Image.is_data_2d(data): data_copy = data.copy() # let other threads use data while we're processing scaling = numpy.sqrt(data_shape[1] * data_shape[0]) return scipy.fftpack.ifft2(scipy.fftpack.ifftshift(data_copy) * scaling) else: raise NotImplementedError() src_dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or src_dimensional_calibrations is None: return None assert len(src_dimensional_calibrations) == len( Image.dimensional_shape_from_shape_and_dtype(data_shape, data_dtype)) def remove_one_slash(s): if s.startswith("1/"): return s[2:] else: return "1/" + s dimensional_calibrations = [Calibration.Calibration(0.0, 1.0 / (dimensional_calibration.scale * data_shape_n), remove_one_slash(dimensional_calibration.units)) for dimensional_calibration, data_shape_n in zip(src_dimensional_calibrations, data_shape)] return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=dimensional_calibrations) def function_autocorrelate(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None if Image.is_data_2d(data): data_copy = data.copy() # let other threads use data while we're processing data_std = data_copy.std(dtype=numpy.float64) if data_std != 0.0: data_norm = (data_copy - data_copy.mean(dtype=numpy.float64)) / data_std else: data_norm = data_copy scaling = 1.0 / (data_norm.shape[0] * data_norm.shape[1]) data_norm = numpy.fft.rfft2(data_norm) return numpy.fft.fftshift(numpy.fft.irfft2(data_norm * numpy.conj(data_norm))) * scaling # this gives different results. why? because for some reason scipy pads out to 1023 and does calculation. # see https://github.com/scipy/scipy/blob/master/scipy/signal/signaltools.py # return scipy.signal.fftconvolve(data_copy, numpy.conj(data_copy), mode='same') return None if data_and_metadata is None: return None return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_crosscorrelate(*args) -> typing.Optional[DataAndMetadata.DataAndMetadata]: if len(args) != 2: return None data_and_metadata1, data_and_metadata2 = args[0], args[1] data_and_metadata1 = DataAndMetadata.promote_ndarray(data_and_metadata1) data_and_metadata2 = DataAndMetadata.promote_ndarray(data_and_metadata2) shape = DataAndMetadata.determine_shape(data_and_metadata1, data_and_metadata2) data_and_metadata1 = DataAndMetadata.promote_constant(data_and_metadata1, shape) data_and_metadata2 = DataAndMetadata.promote_constant(data_and_metadata2, shape) def calculate_data(): data1 = data_and_metadata1.data data2 = data_and_metadata2.data if data1 is None or data2 is None: return None if Image.is_data_2d(data1) and Image.is_data_2d(data2): data_std1 = data1.std(dtype=numpy.float64) if data_std1 != 0.0: norm1 = (data1 - data1.mean(dtype=numpy.float64)) / data_std1 else: norm1 = data1 data_std2 = data2.std(dtype=numpy.float64) if data_std2 != 0.0: norm2 = (data2 - data2.mean(dtype=numpy.float64)) / data_std2 else: norm2 = data2 scaling = 1.0 / (norm1.shape[0] * norm1.shape[1]) return numpy.fft.fftshift(numpy.fft.irfft2(numpy.fft.rfft2(norm1) * numpy.conj(numpy.fft.rfft2(norm2)))) * scaling # this gives different results. why? because for some reason scipy pads out to 1023 and does calculation. # see https://github.com/scipy/scipy/blob/master/scipy/signal/signaltools.py # return scipy.signal.fftconvolve(data1.copy(), numpy.conj(data2.copy()), mode='same') return None if data_and_metadata1 is None or data_and_metadata2 is None: return None return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=data_and_metadata1.dimensional_calibrations) def function_register(xdata1: DataAndMetadata.DataAndMetadata, xdata2: DataAndMetadata.DataAndMetadata, upsample_factor: int, subtract_means: bool, bounds: typing.Union[NormRectangleType, NormIntervalType]=None) -> typing.Tuple[float, ...]: # FUTURE: use scikit.image register_translation xdata1 = DataAndMetadata.promote_ndarray(xdata1) xdata2 = DataAndMetadata.promote_ndarray(xdata2) # data shape and descriptors should match assert xdata1.data_shape == xdata2.data_shape assert xdata1.data_descriptor == xdata2.data_descriptor # get the raw data data1 = xdata1.data data2 = xdata2.data if data1 is None: return tuple() if data2 is None: return tuple() # take the slice if there is one if bounds is not None: d_rank = xdata1.datum_dimension_count shape = data1.shape bounds_pixels = numpy.rint(numpy.array(bounds) * numpy.array(shape)).astype(numpy.int_) bounds_slice: typing.Optional[typing.Union[slice, typing.Tuple[slice, ...]]] if d_rank == 1: bounds_slice = slice(max(0, bounds_pixels[0]), min(shape[0], bounds_pixels[1])) elif d_rank == 2: bounds_slice = (slice(max(0, bounds_pixels[0][0]), min(shape[0], bounds_pixels[0][0]+bounds_pixels[1][0])), slice(max(0, bounds_pixels[0][1]), min(shape[1], bounds_pixels[0][1]+bounds_pixels[1][1]))) else: bounds_slice = None data1 = data1[bounds_slice] data2 = data2[bounds_slice] # subtract the means if desired if subtract_means: data1 = data1 - numpy.average(data1) data2 = data2 - numpy.average(data2) assert data1 is not None assert data2 is not None # adjust the dimensions so 1D data is always nx1 add_before = 0 while len(data1.shape) > 1 and data1.shape[0] == 1: data1 = numpy.squeeze(data1, axis=0) data2 = numpy.squeeze(data2, axis=0) add_before += 1 add_after = 0 while len(data1.shape) > 1 and data1.shape[-1] == 1: data1 = numpy.squeeze(data1, axis=-1) data2 = numpy.squeeze(data2, axis=-1) add_after += 1 do_squeeze = False if len(data1.shape) == 1: data1 = data1[..., numpy.newaxis] data2 = data2[..., numpy.newaxis] do_squeeze = True # carry out the registration result = ImageRegistration.dftregistration(data1, data2, upsample_factor)#[0:d_rank] # adjust results to match input data if do_squeeze: result = result[0:-1] for _ in range(add_before): result = (numpy.zeros_like(result[0]), ) + result for _ in range(add_after): result = result + (numpy.zeros_like(result[0]), ) return result def function_match_template(image_xdata: DataAndMetadata.DataAndMetadata, template_xdata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """ Calculates the normalized cross-correlation for a template with an image. The returned xdata will have the same shape as `image_xdata`. Inputs can be 1D or 2D and the template must be smaller than or the same size as the image. """ image_xdata = DataAndMetadata.promote_ndarray(image_xdata) template_xdata = DataAndMetadata.promote_ndarray(template_xdata) assert image_xdata.is_data_2d or image_xdata.is_data_1d assert template_xdata.is_data_2d or template_xdata.is_data_1d assert image_xdata.data_descriptor == template_xdata.data_descriptor # The template needs to be the smaller of the two if they have different shape assert numpy.less_equal(template_xdata.data_shape, image_xdata.data_shape).all() image = image_xdata.data template = template_xdata.data assert image is not None assert template is not None squeeze = False if image_xdata.is_data_1d: image = image[..., numpy.newaxis] template = template[..., numpy.newaxis] assert image is not None assert template is not None squeeze = True ccorr = TemplateMatching.match_template(image, template) if squeeze: ccorr = numpy.squeeze(ccorr) return DataAndMetadata.new_data_and_metadata(ccorr, dimensional_calibrations=image_xdata.dimensional_calibrations) def function_register_template(image_xdata: DataAndMetadata.DataAndMetadata, template_xdata: DataAndMetadata.DataAndMetadata) -> typing.Tuple[float, typing.Tuple[float, ...]]: """ Calculates and returns the position of a template on an image. The returned values are the intensity if the normalized cross-correlation peak (between -1 and 1) and the sub-pixel position of the template on the image. The sub-pixel position is calculated by fitting a parabola to the tip of the cross-correlation peak. Inputs can be 1D or 2D and the template must be smaller than or the same size as the image. """ image_xdata = DataAndMetadata.promote_ndarray(image_xdata) template_xdata = DataAndMetadata.promote_ndarray(template_xdata) ccorr_xdata = function_match_template(image_xdata, template_xdata) if ccorr_xdata: error, ccoeff, max_pos = TemplateMatching.find_ccorr_max(ccorr_xdata.data) if not error: return ccoeff, tuple(max_pos[i] - image_xdata.data_shape[i] * 0.5 for i in range(len(image_xdata.data_shape))) return 0.0, (0.0, ) * len(image_xdata.data_shape) def function_shift(src: DataAndMetadata.DataAndMetadata, shift: typing.Tuple[float, ...], *, order: int = 1) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if src: src_data = src._data_ex shifted = scipy.ndimage.shift(src_data, shift, order=order, cval=numpy.mean(src_data)) return DataAndMetadata.new_data_and_metadata(numpy.squeeze(shifted)) return None def function_fourier_shift(src: DataAndMetadata.DataAndMetadata, shift: typing.Tuple[float, ...]) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) src_data = numpy.fft.fftn(src.data) do_squeeze = False if len(src_data.shape) == 1: src_data = src_data[..., numpy.newaxis] shift = tuple(shift) + (1,) do_squeeze = True # NOTE: fourier_shift assumes non-fft-shifted data. shifted = numpy.fft.ifftn(scipy.ndimage.fourier_shift(src_data, shift)).real shifted = numpy.squeeze(shifted) if do_squeeze else shifted return DataAndMetadata.new_data_and_metadata(shifted) def function_align(src: DataAndMetadata.DataAndMetadata, target: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Aligns target to src and returns align target, using Fourier space.""" src = DataAndMetadata.promote_ndarray(src) target = DataAndMetadata.promote_ndarray(target) return function_shift(target, function_register(src, target, upsample_factor, True, bounds=bounds)) def function_fourier_align(src: DataAndMetadata.DataAndMetadata, target: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Aligns target to src and returns align target, using Fourier space.""" src = DataAndMetadata.promote_ndarray(src) target = DataAndMetadata.promote_ndarray(target) return function_fourier_shift(target, function_register(src, target, upsample_factor, True, bounds=bounds)) def function_sequence_register_translation(src: DataAndMetadata.DataAndMetadata, upsample_factor: int, subtract_means: bool, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: # measures shift relative to last position in sequence # only works on sequences src = DataAndMetadata.promote_ndarray(src) assert src.is_sequence d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = tuple(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) result = numpy.empty(s_shape + (d_rank, )) previous_data = None src_data = src._data_ex for i in range(c): ii = numpy.unravel_index(i, s_shape) + (Ellipsis, ) if previous_data is None: previous_data = src_data[ii] result[0, ...] = 0 else: current_data = src_data[ii] result[ii] = function_register(previous_data, current_data, upsample_factor, subtract_means, bounds=bounds) previous_data = current_data intensity_calibration = src.dimensional_calibrations[1] # not the sequence dimension return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, data_descriptor=DataAndMetadata.DataDescriptor(True, 0, 1)) def function_sequence_measure_relative_translation(src: DataAndMetadata.DataAndMetadata, ref: DataAndMetadata.DataAndMetadata, upsample_factor: int, subtract_means: bool, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: # measures shift at each point in sequence/collection relative to reference src = DataAndMetadata.promote_ndarray(src) d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = tuple(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) result = numpy.empty(s_shape + (d_rank, )) src_data = src._data_ex for i in range(c): ii = numpy.unravel_index(i, s_shape) current_data = src_data[ii] result[ii] = function_register(ref, current_data, upsample_factor, subtract_means, bounds=bounds) intensity_calibration = src.dimensional_calibrations[1] # not the sequence dimension return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, data_descriptor=DataAndMetadata.DataDescriptor(src.is_sequence, src.collection_dimension_count, 1)) def function_squeeze_measurement(src: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: # squeezes a measurement of a sequence or collection so that it can be sensibly displayed src = DataAndMetadata.promote_ndarray(src) data = src._data_ex descriptor = src.data_descriptor calibrations = list(src.dimensional_calibrations) if descriptor.is_sequence and data.shape[0] == 1: data = numpy.squeeze(data, axis=0) descriptor = DataAndMetadata.DataDescriptor(False, descriptor.collection_dimension_count, descriptor.datum_dimension_count) calibrations.pop(0) for index in reversed(descriptor.collection_dimension_indexes): if data.shape[index] == 1: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(descriptor.is_sequence, descriptor.collection_dimension_count - 1, descriptor.datum_dimension_count) calibrations.pop(index) for index in reversed(descriptor.datum_dimension_indexes): if data.shape[index] == 1: if descriptor.datum_dimension_count > 1: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(descriptor.is_sequence, descriptor.collection_dimension_count, descriptor.datum_dimension_count - 1) calibrations.pop(index) elif descriptor.collection_dimension_count > 0: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(descriptor.is_sequence, 0, descriptor.collection_dimension_count) calibrations.pop(index) elif descriptor.is_sequence: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(False, 0, 1) calibrations.pop(index) intensity_calibration = src.intensity_calibration intensity_calibration.offset = 0.0 return DataAndMetadata.new_data_and_metadata(data, intensity_calibration=intensity_calibration, dimensional_calibrations=calibrations, data_descriptor=descriptor) def function_sequence_align(src: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = list(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) ref = src[numpy.unravel_index(0, s_shape) + (Ellipsis, )] translations = function_sequence_measure_relative_translation(src, ref, upsample_factor, True, bounds=bounds) if not translations: return None result_data = numpy.copy(src.data) for i in range(1, c): ii = numpy.unravel_index(i, s_shape) + (Ellipsis, ) current_xdata = DataAndMetadata.new_data_and_metadata(numpy.copy(result_data[ii])) translation = translations._data_ex[numpy.unravel_index(i, s_shape)] shift_xdata = function_shift(current_xdata, tuple(translation)) if shift_xdata: result_data[ii] = shift_xdata.data return DataAndMetadata.new_data_and_metadata(result_data, intensity_calibration=src.intensity_calibration, dimensional_calibrations=src.dimensional_calibrations, data_descriptor=src.data_descriptor) def function_sequence_fourier_align(src: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = list(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) ref = src[numpy.unravel_index(0, s_shape) + (Ellipsis, )] translations = function_sequence_measure_relative_translation(src, ref, upsample_factor, True, bounds=bounds) if not translations: return None result_data = numpy.copy(src.data) for i in range(1, c): ii = numpy.unravel_index(i, s_shape) + (Ellipsis, ) current_xdata = DataAndMetadata.new_data_and_metadata(numpy.copy(result_data[ii])) translation = translations._data_ex[numpy.unravel_index(i, s_shape)] shift_xdata = function_fourier_shift(current_xdata, tuple(translation)) if shift_xdata: result_data[ii] = shift_xdata.data return DataAndMetadata.new_data_and_metadata(result_data, intensity_calibration=src.intensity_calibration, dimensional_calibrations=src.dimensional_calibrations, data_descriptor=src.data_descriptor) def function_sequence_integrate(src: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None dim = src.data_shape[1:] if len(dim) < 1: return None result = numpy.sum(src._data_ex, axis=0) intensity_calibration = src.intensity_calibration dimensional_calibrations = src.dimensional_calibrations[1:] data_descriptor = DataAndMetadata.DataDescriptor(False, src.data_descriptor.collection_dimension_count, src.data_descriptor.datum_dimension_count) return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_sequence_trim(src: DataAndMetadata.DataAndMetadata, trim_start: int, trim_end: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None c = src.sequence_dimension_shape[0] dim = src.data_shape[1:] if len(dim) < 1: return None cs = max(0, int(trim_start)) ce = min(c, max(cs + 1, int(trim_end))) return src[cs:ce] def function_sequence_insert(src1: DataAndMetadata.DataAndMetadata, src2: DataAndMetadata.DataAndMetadata, position: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src1 = DataAndMetadata.promote_ndarray(src1) src2 = DataAndMetadata.promote_ndarray(src2) if not src1.is_sequence or not src2.is_sequence: return None if src1.data_shape[1:] != src2.data_shape[1:]: return None c = src1.sequence_dimension_shape[0] dim = src1.data_shape[1:] if len(dim) < 1 or len(dim) > 2: return None channel = max(0, min(c, int(position))) result = numpy.vstack([src1._data_ex[:channel], src2._data_ex, src1._data_ex[channel:]]) intensity_calibration = src1.intensity_calibration dimensional_calibrations = src1.dimensional_calibrations data_descriptor = src1.data_descriptor return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_sequence_concatenate(src1: DataAndMetadata.DataAndMetadata, src2: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src1 = DataAndMetadata.promote_ndarray(src1) src2 = DataAndMetadata.promote_ndarray(src2) return function_sequence_insert(src1, src2, src1.data_shape[0]) def function_sequence_join(data_and_metadata_list: typing.Sequence[DataAndMetadata.DataAndMetadata]) -> typing.Optional[DataAndMetadata.DataAndMetadata]: if not data_and_metadata_list: return None data_and_metadata_list = [DataAndMetadata.promote_ndarray(data_and_metadata) for data_and_metadata in data_and_metadata_list] def ensure_sequence(xdata): if xdata.is_sequence: return xdata sequence_data = numpy.reshape(xdata.data, (1,) + xdata.data.shape) dimensional_calibrations = [Calibration.Calibration()] + xdata.dimensional_calibrations data_descriptor = DataAndMetadata.DataDescriptor(True, xdata.collection_dimension_count, xdata.datum_dimension_count) return DataAndMetadata.new_data_and_metadata(sequence_data, dimensional_calibrations=dimensional_calibrations, intensity_calibration=xdata.intensity_calibration, data_descriptor=data_descriptor) sequence_xdata_list = [ensure_sequence(xdata) for xdata in data_and_metadata_list] xdata_0 = sequence_xdata_list[0] non_sequence_shape_0 = xdata_0.data_shape[1:] for xdata in sequence_xdata_list[1:]: if xdata.data_shape[1:] != non_sequence_shape_0: return None return function_concatenate(sequence_xdata_list) def function_sequence_extract(src: DataAndMetadata.DataAndMetadata, position: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None c = src.sequence_dimension_shape[0] dim = src.data_shape[1:] if len(dim) < 1: return None channel = max(0, min(c, int(position))) return src[channel] def function_sequence_split(src: DataAndMetadata.DataAndMetadata) -> typing.Optional[typing.List[DataAndMetadata.DataAndMetadata]]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None dim = src.data_shape[1:] if len(dim) < 1: return None dimensional_calibrations = copy.deepcopy(src.dimensional_calibrations[1:]) data_descriptor = DataAndMetadata.DataDescriptor(False, src.collection_dimension_count, src.datum_dimension_count) return [ DataAndMetadata.new_data_and_metadata(data, dimensional_calibrations=copy.deepcopy(dimensional_calibrations), intensity_calibration=copy.deepcopy(src.intensity_calibration), data_descriptor=copy.copy(data_descriptor)) for data in src._data_ex] def function_make_elliptical_mask(data_shape: DataAndMetadata.ShapeType, center: NormPointType, size: NormSizeType, rotation: float) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_size = Geometry.IntSize.make(data_shape) data_rect = Geometry.FloatRect(origin=Geometry.FloatPoint(), size=Geometry.FloatSize.make(data_size)) center_point = Geometry.map_point(Geometry.FloatPoint.make(center), Geometry.FloatRect.unit_rect(), data_rect) size_size = Geometry.map_size(Geometry.FloatSize.make(size), Geometry.FloatRect.unit_rect(), data_rect) mask = numpy.zeros((data_size.height, data_size.width)) bounds = Geometry.FloatRect.from_center_and_size(center_point, size_size) if bounds.height <= 0 or bounds.width <= 0: return DataAndMetadata.new_data_and_metadata(mask) a, b = bounds.center.y, bounds.center.x y, x = numpy.ogrid[-a:data_size.height - a, -b:data_size.width - b] if rotation: angle_sin = math.sin(rotation) angle_cos = math.cos(rotation) mask_eq = ((x * angle_cos - y * angle_sin) ** 2) / ((bounds.width / 2) * (bounds.width / 2)) + ((y * angle_cos + x * angle_sin) ** 2) / ((bounds.height / 2) * (bounds.height / 2)) <= 1 else: mask_eq = x * x / ((bounds.width / 2) * (bounds.width / 2)) + y * y / ((bounds.height / 2) * (bounds.height / 2)) <= 1 mask[mask_eq] = 1 return DataAndMetadata.new_data_and_metadata(mask) def function_fourier_mask(data_and_metadata: DataAndMetadata.DataAndMetadata, mask_data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) mask_data_and_metadata = DataAndMetadata.promote_ndarray(mask_data_and_metadata) shape = DataAndMetadata.determine_shape(data_and_metadata, mask_data_and_metadata) data_and_metadata = DataAndMetadata.promote_constant(data_and_metadata, shape) mask_data_and_metadata = DataAndMetadata.promote_constant(mask_data_and_metadata, shape) def calculate_data(): data = data_and_metadata.data mask_data = mask_data_and_metadata.data if data is None or mask_data is None: return None if Image.is_data_2d(data) and Image.is_data_2d(mask_data): try: y_half = data.shape[0] // 2 y_half_p1 = y_half + 1 y_half_m1 = y_half - 1 y_low = 0 if data.shape[0] % 2 == 0 else None x_half = data.shape[1] // 2 x_half_p1 = x_half + 1 x_half_m1 = x_half - 1 x_low = 0 if data.shape[1] % 2 == 0 else None fourier_mask_data = numpy.empty_like(mask_data) fourier_mask_data[y_half_p1:, x_half_p1:] = mask_data[y_half_p1:, x_half_p1:] fourier_mask_data[y_half_p1:, x_half_m1:x_low:-1] = mask_data[y_half_p1:, x_half_m1:x_low:-1] fourier_mask_data[y_half_m1:y_low:-1, x_half_m1:x_low:-1] = mask_data[y_half_p1:, x_half_p1:] fourier_mask_data[y_half_m1:y_low:-1, x_half_p1:] = mask_data[y_half_p1:, x_half_m1:x_low:-1] fourier_mask_data[0, :] = mask_data[0, :] fourier_mask_data[:, 0] = mask_data[:, 0] fourier_mask_data[y_half, :] = mask_data[y_half, :] fourier_mask_data[:, x_half] = mask_data[:, x_half] return data * fourier_mask_data except Exception as e: print(e) raise return None return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_sobel(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.sobel(data[..., 0]) rgb[..., 1] = scipy.ndimage.sobel(data[..., 1]) rgb[..., 2] = scipy.ndimage.sobel(data[..., 2]) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.sobel(data[..., 0]) rgba[..., 1] = scipy.ndimage.sobel(data[..., 1]) rgba[..., 2] = scipy.ndimage.sobel(data[..., 2]) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.sobel(data) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_laplace(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.laplace(data[..., 0]) rgb[..., 1] = scipy.ndimage.laplace(data[..., 1]) rgb[..., 2] = scipy.ndimage.laplace(data[..., 2]) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.laplace(data[..., 0]) rgba[..., 1] = scipy.ndimage.laplace(data[..., 1]) rgba[..., 2] = scipy.ndimage.laplace(data[..., 2]) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.laplace(data) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_gaussian_blur(data_and_metadata: DataAndMetadata.DataAndMetadata, sigma: float) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) sigma = float(sigma) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None return scipy.ndimage.gaussian_filter(data, sigma=sigma) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_median_filter(data_and_metadata: DataAndMetadata.DataAndMetadata, size: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) size = max(min(int(size), 999), 1) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.median_filter(data[..., 0], size=size) rgb[..., 1] = scipy.ndimage.median_filter(data[..., 1], size=size) rgb[..., 2] = scipy.ndimage.median_filter(data[..., 2], size=size) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.median_filter(data[..., 0], size=size) rgba[..., 1] = scipy.ndimage.median_filter(data[..., 1], size=size) rgba[..., 2] = scipy.ndimage.median_filter(data[..., 2], size=size) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.median_filter(data, size=size) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_uniform_filter(data_and_metadata: DataAndMetadata.DataAndMetadata, size: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) size = max(min(int(size), 999), 1) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.uniform_filter(data[..., 0], size=size) rgb[..., 1] = scipy.ndimage.uniform_filter(data[..., 1], size=size) rgb[..., 2] = scipy.ndimage.uniform_filter(data[..., 2], size=size) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.uniform_filter(data[..., 0], size=size) rgba[..., 1] = scipy.ndimage.uniform_filter(data[..., 1], size=size) rgba[..., 2] = scipy.ndimage.uniform_filter(data[..., 2], size=size) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.uniform_filter(data, size=size) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_transpose_flip(data_and_metadata: DataAndMetadata.DataAndMetadata, transpose: bool=False, flip_v: bool=False, flip_h: bool=False) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data data_id = id(data) if not Image.is_data_valid(data): return None if transpose: if Image.is_shape_and_dtype_rgb_type(data.shape, data.dtype): data = numpy.transpose(data, [1, 0, 2]) elif len(data_and_metadata.data_shape) == 2: data = numpy.transpose(data, [1, 0]) if flip_h and len(data_and_metadata.data_shape) == 2: data = numpy.fliplr(data) if flip_v and len(data_and_metadata.data_shape) == 2: data = numpy.flipud(data) if id(data) == data_id: # ensure real data, not a view data = data.copy() return data data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype if not Image.is_shape_and_dtype_valid(data_shape, data_dtype): return None if transpose: dimensional_calibrations = list(reversed(data_and_metadata.dimensional_calibrations)) else: dimensional_calibrations = list(data_and_metadata.dimensional_calibrations) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_invert(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb_type(data.shape, data.dtype): if Image.is_data_rgba(data): inverted = 255 - data[:] inverted[...,3] = data[...,3] return inverted else: return 255 - data[:] else: return -data[:] data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype if not Image.is_shape_and_dtype_valid(data_shape, data_dtype): return None dimensional_calibrations = data_and_metadata.dimensional_calibrations return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_crop(data_and_metadata: DataAndMetadata.DataAndMetadata, bounds: NormRectangleType) -> typing.Optional[DataAndMetadata.DataAndMetadata]: bounds_rect = Geometry.FloatRect.make(bounds) data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = Geometry.IntSize.make(data_and_metadata.data_shape) data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations data = data_and_metadata._data_ex if not Image.is_shape_and_dtype_valid(list(data_shape), data_dtype) or dimensional_calibrations is None: return None if not Image.is_data_valid(data): return None oheight = int(data_shape.height * bounds_rect.height) owidth = int(data_shape.width * bounds_rect.width) top = int(data_shape.height * bounds_rect.top) left = int(data_shape.width * bounds_rect.left) height = int(data_shape.height * bounds_rect.height) width = int(data_shape.width * bounds_rect.width) dtop = 0 dleft = 0 dheight = height dwidth = width if top < 0: dheight += top dtop -= top height += top top = 0 if top + height > data_shape.height: dheight -= (top + height - data_shape.height) height = data_shape.height - top if left < 0: dwidth += left dleft -= left width += left left = 0 if left + width > data_shape.width: dwidth -= (left + width- data_shape.width) width = data_shape.width - left data_dtype = data.dtype assert data_dtype is not None if data_and_metadata.is_data_rgb: new_data = numpy.zeros((oheight, owidth, 3), dtype=data_dtype) if height > 0 and width > 0: new_data[dtop:dtop + dheight, dleft:dleft + dwidth] = data[top:top + height, left:left + width] elif data_and_metadata.is_data_rgba: new_data = numpy.zeros((oheight, owidth, 4), dtype=data_dtype) if height > 0 and width > 0: new_data[dtop:dtop + dheight, dleft:dleft + dwidth] = data[top:top + height, left:left + width] else: new_data = numpy.zeros((oheight, owidth), dtype=data_dtype) if height > 0 and width > 0: new_data[dtop:dtop + dheight, dleft:dleft + dwidth] = data[top:top + height, left:left + width] cropped_dimensional_calibrations = list() for index, dimensional_calibration in enumerate(dimensional_calibrations): cropped_calibration = Calibration.Calibration( dimensional_calibration.offset + data_shape[index] * bounds_rect.origin[index] * dimensional_calibration.scale, dimensional_calibration.scale, dimensional_calibration.units) cropped_dimensional_calibrations.append(cropped_calibration) return DataAndMetadata.new_data_and_metadata(new_data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=cropped_dimensional_calibrations) def function_crop_rotated(data_and_metadata: DataAndMetadata.DataAndMetadata, bounds: NormRectangleType, angle: float) -> typing.Optional[DataAndMetadata.DataAndMetadata]: bounds_rect = Geometry.FloatRect.make(bounds) data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = Geometry.IntSize.make(data_and_metadata.data_shape) data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations data = data_and_metadata._data_ex if not Image.is_shape_and_dtype_valid(list(data_shape), data_dtype) or dimensional_calibrations is None: return None if not Image.is_data_valid(data): return None top = round(data_shape.height * bounds_rect.top) left = round(data_shape.width * bounds_rect.left) height = round(data_shape.height * bounds_rect.height) width = round(data_shape.width * bounds_rect.width) x, y = numpy.meshgrid(numpy.arange(-(width // 2), width - width // 2), numpy.arange(-(height // 2), height - height // 2)) angle_sin = math.sin(angle) angle_cos = math.cos(angle) coords = [top + height // 2 + (y * angle_cos - x * angle_sin), left + width // 2 + (x * angle_cos + y * angle_sin)] if data_and_metadata.is_data_rgb: new_data = numpy.zeros(coords[0].shape + (3,), numpy.uint8) new_data[..., 0] = scipy.ndimage.interpolation.map_coordinates(data[..., 0], coords) new_data[..., 1] = scipy.ndimage.interpolation.map_coordinates(data[..., 1], coords) new_data[..., 2] = scipy.ndimage.interpolation.map_coordinates(data[..., 2], coords) elif data_and_metadata.is_data_rgba: new_data =
numpy.zeros(coords[0].shape + (4,), numpy.uint8)
numpy.zeros
import pandas as pd import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from matplotlib import cm, colors from astropy.modeling import models, fitting # Reading in all data files at once import glob path_normal ='/projects/p30137/ageller/testing/EBLSST/add_m5/output_files' allFiles_normal = glob.glob(path_normal + "/*.csv") path_fast = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/output_files' allFiles_fast = glob.glob(path_fast + "/*.csv") path_obsDist = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/obsDist/output_files' allFiles_obsDist = glob.glob(path_obsDist + "/*.csv") N_totalnormal_array = [] N_totalobservablenormal_array = [] N_totalrecoverablenormal_array = [] N_totalnormal_array_03 = [] N_totalobservablenormal_array_03 = [] N_totalrecoverablenormal_array_03 = [] N_totalnormal_array_1 = [] N_totalobservablenormal_array_1 = [] N_totalrecoverablenormal_array_1 = [] N_totalnormal_array_10 = [] N_totalobservablenormal_array_10 = [] N_totalrecoverablenormal_array_10 = [] N_totalnormal_array_30 = [] N_totalobservablenormal_array_30 = [] N_totalrecoverablenormal_array_30 = [] N_totalnormal_array_100 = [] N_totalobservablenormal_array_100 = [] N_totalrecoverablenormal_array_100 = [] N_totalnormal_array_1000 = [] N_totalobservablenormal_array_1000 = [] N_totalrecoverablenormal_array_1000 = [] N_totalnormal22_array = [] N_totalobservablenormal22_array = [] N_totalrecoverablenormal22_array = [] N_totalnormal22_array_03 = [] N_totalobservablenormal22_array_03 = [] N_totalrecoverablenormal22_array_03 = [] N_totalnormal22_array_1 = [] N_totalobservablenormal22_array_1 = [] N_totalrecoverablenormal22_array_1 = [] N_totalnormal22_array_10 = [] N_totalobservablenormal22_array_10 = [] N_totalrecoverablenormal22_array_10 = [] N_totalnormal22_array_30 = [] N_totalobservablenormal22_array_30 = [] N_totalrecoverablenormal22_array_30 = [] N_totalnormal22_array_100 = [] N_totalobservablenormal22_array_100 = [] N_totalrecoverablenormal22_array_100 = [] N_totalnormal22_array_1000 = [] N_totalobservablenormal22_array_1000 = [] N_totalrecoverablenormal22_array_1000 = [] N_totalnormal195_array = [] N_totalobservablenormal195_array = [] N_totalrecoverablenormal195_array = [] N_totalnormal195_array_03 = [] N_totalobservablenormal195_array_03 = [] N_totalrecoverablenormal195_array_03 = [] N_totalnormal195_array_1 = [] N_totalobservablenormal195_array_1 = [] N_totalrecoverablenormal195_array_1 = [] N_totalnormal195_array_10 = [] N_totalobservablenormal195_array_10 = [] N_totalrecoverablenormal195_array_10 = [] N_totalnormal195_array_30 = [] N_totalobservablenormal195_array_30 = [] N_totalrecoverablenormal195_array_30 = [] N_totalnormal195_array_100 = [] N_totalobservablenormal195_array_100 = [] N_totalrecoverablenormal195_array_100 = [] N_totalnormal195_array_1000 = [] N_totalobservablenormal195_array_1000 = [] N_totalrecoverablenormal195_array_1000 = [] N_totalfast_array = [] N_totalobservablefast_array = [] N_totalrecoverablefast_array = [] N_totalfast_array_03 = [] N_totalobservablefast_array_03 = [] N_totalrecoverablefast_array_03 = [] N_totalfast_array_1 = [] N_totalobservablefast_array_1 = [] N_totalrecoverablefast_array_1 = [] N_totalfast_array_10 = [] N_totalobservablefast_array_10 = [] N_totalrecoverablefast_array_10 = [] N_totalfast_array_30 = [] N_totalobservablefast_array_30 = [] N_totalrecoverablefast_array_30 = [] N_totalfast_array_100 = [] N_totalobservablefast_array_100 = [] N_totalrecoverablefast_array_100 = [] N_totalfast_array_1000 = [] N_totalobservablefast_array_1000 = [] N_totalrecoverablefast_array_1000 = [] N_totalfast22_array = [] N_totalobservablefast22_array = [] N_totalrecoverablefast22_array = [] N_totalfast22_array_03 = [] N_totalobservablefast22_array_03 = [] N_totalrecoverablefast22_array_03 = [] N_totalfast22_array_1 = [] N_totalobservablefast22_array_1 = [] N_totalrecoverablefast22_array_1 = [] N_totalfast22_array_10 = [] N_totalobservablefast22_array_10 = [] N_totalrecoverablefast22_array_10 = [] N_totalfast22_array_30 = [] N_totalobservablefast22_array_30 = [] N_totalrecoverablefast22_array_30 = [] N_totalfast22_array_100 = [] N_totalobservablefast22_array_100 = [] N_totalrecoverablefast22_array_100 = [] N_totalfast22_array_1000 = [] N_totalobservablefast22_array_1000 = [] N_totalrecoverablefast22_array_1000 = [] N_totalfast195_array = [] N_totalobservablefast195_array = [] N_totalrecoverablefast195_array = [] N_totalfast195_array_03 = [] N_totalobservablefast195_array_03 = [] N_totalrecoverablefast195_array_03 = [] N_totalfast195_array_1 = [] N_totalobservablefast195_array_1 = [] N_totalrecoverablefast195_array_1 = [] N_totalfast195_array_10 = [] N_totalobservablefast195_array_10 = [] N_totalrecoverablefast195_array_10 = [] N_totalfast195_array_30 = [] N_totalobservablefast195_array_30 = [] N_totalrecoverablefast195_array_30 = [] N_totalfast195_array_100 = [] N_totalobservablefast195_array_100 = [] N_totalrecoverablefast195_array_100 = [] N_totalfast195_array_1000 = [] N_totalobservablefast195_array_1000 = [] N_totalrecoverablefast195_array_1000 = [] N_totalobsDist_array = [] N_totalobservableobsDist_array = [] N_totalrecoverableobsDist_array = [] N_totalobsDist_array_03 = [] N_totalobservableobsDist_array_03 = [] N_totalrecoverableobsDist_array_03 = [] N_totalobsDist_array_1 = [] N_totalobservableobsDist_array_1 = [] N_totalrecoverableobsDist_array_1 = [] N_totalobsDist_array_10 = [] N_totalobservableobsDist_array_10 = [] N_totalrecoverableobsDist_array_10 = [] N_totalobsDist_array_30 = [] N_totalobservableobsDist_array_30 = [] N_totalrecoverableobsDist_array_30 = [] N_totalobsDist_array_100 = [] N_totalobservableobsDist_array_100 = [] N_totalrecoverableobsDist_array_100 = [] N_totalobsDist_array_1000 = [] N_totalobservableobsDist_array_1000 = [] N_totalrecoverableobsDist_array_1000 = [] N_totalobsDist22_array = [] N_totalobservableobsDist22_array = [] N_totalrecoverableobsDist22_array = [] N_totalobsDist22_array_03 = [] N_totalobservableobsDist22_array_03 = [] N_totalrecoverableobsDist22_array_03 = [] N_totalobsDist22_array_1 = [] N_totalobservableobsDist22_array_1 = [] N_totalrecoverableobsDist22_array_1 = [] N_totalobsDist22_array_10 = [] N_totalobservableobsDist22_array_10 = [] N_totalrecoverableobsDist22_array_10 = [] N_totalobsDist22_array_30 = [] N_totalobservableobsDist22_array_30 = [] N_totalrecoverableobsDist22_array_30 = [] N_totalobsDist22_array_100 = [] N_totalobservableobsDist22_array_100 = [] N_totalrecoverableobsDist22_array_100 = [] N_totalobsDist22_array_1000 = [] N_totalobservableobsDist22_array_1000 = [] N_totalrecoverableobsDist22_array_1000 = [] N_totalobsDist195_array = [] N_totalobservableobsDist195_array = [] N_totalrecoverableobsDist195_array = [] N_totalobsDist195_array_03 = [] N_totalobservableobsDist195_array_03 = [] N_totalrecoverableobsDist195_array_03 = [] N_totalobsDist195_array_1 = [] N_totalobservableobsDist195_array_1 = [] N_totalrecoverableobsDist195_array_1 = [] N_totalobsDist195_array_10 = [] N_totalobservableobsDist195_array_10 = [] N_totalrecoverableobsDist195_array_10 = [] N_totalobsDist195_array_30 = [] N_totalobservableobsDist195_array_30 = [] N_totalrecoverableobsDist195_array_30 = [] N_totalobsDist195_array_100 = [] N_totalobservableobsDist195_array_100 = [] N_totalrecoverableobsDist195_array_100 = [] N_totalobsDist195_array_1000 = [] N_totalobservableobsDist195_array_1000 = [] N_totalrecoverableobsDist195_array_1000 = [] def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https:/sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit fbFit= fitRagfb() mbins = np.arange(0,10, 0.1, dtype='float') cutP = 0.10 #condition on recoverability/tolerance for filenormal_ in sorted(allFiles_normal): filename = filenormal_[60:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datnormal = pd.read_csv(filenormal_, sep = ',', header=2) PeriodIn = datnormal['p'] # input period -- 'p' in data file ########################################################## datnormal1 = pd.read_csv(filenormal_, sep = ',', header=0, nrows=1) N_tri = datnormal1["NstarsTRILEGAL"][0] #print("N_tri = ", N_tri) Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datnormal["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datnormal['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datnormal['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datnormal.loc[PeriodOut != -999].index observable_03 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datnormal.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datnormal.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datnormal.loc[PeriodIn <= 0.3].index P1 = datnormal.loc[PeriodIn <= 1].index P10 = datnormal.loc[PeriodIn <= 10].index P30 = datnormal.loc[PeriodIn <= 30].index P100 = datnormal.loc[PeriodIn <= 100].index P1000 = datnormal.loc[PeriodIn <= 1000].index P_22 = datnormal.loc[appMagMean <= 22.].index P03_22 = datnormal.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datnormal.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datnormal.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datnormal.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datnormal.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datnormal.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datnormal.loc[appMagMean <= 19.5].index P03_195 = datnormal.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datnormal.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datnormal.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datnormal.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datnormal.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datnormal.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalnormal_array.append(float(N_all)) N_totalobservablenormal_array.append(float(N_obs)) N_totalrecoverablenormal_array.append(float(N_rec)) N_totalnormal_array_03.append(float(N_all03)) N_totalobservablenormal_array_03.append(float(N_obs03)) N_totalrecoverablenormal_array_03.append(float(N_rec03)) N_totalnormal_array_1.append(float(N_all1)) N_totalobservablenormal_array_1.append(float(N_obs1)) N_totalrecoverablenormal_array_1.append(float(N_rec1)) N_totalnormal_array_10.append(float(N_all10)) N_totalobservablenormal_array_10.append(float(N_obs10)) N_totalrecoverablenormal_array_10.append(float(N_rec10)) N_totalnormal_array_30.append(float(N_all30)) N_totalobservablenormal_array_30.append(float(N_obs30)) N_totalrecoverablenormal_array_30.append(float(N_rec30)) N_totalnormal_array_100.append(float(N_all100)) N_totalobservablenormal_array_100.append(float(N_obs100)) N_totalrecoverablenormal_array_100.append(float(N_rec100)) N_totalnormal_array_1000.append(float(N_all1000)) N_totalobservablenormal_array_1000.append(float(N_obs1000)) N_totalrecoverablenormal_array_1000.append(float(N_rec1000)) N_totalnormal22_array.append(float(N_all_22)) N_totalobservablenormal22_array.append(float(N_obs_22)) N_totalrecoverablenormal22_array.append(float(N_rec_22)) N_totalnormal22_array_03.append(float(N_all03_22)) N_totalobservablenormal22_array_03.append(float(N_obs03_22)) N_totalrecoverablenormal22_array_03.append(float(N_rec03_22)) N_totalnormal22_array_1.append(float(N_all1_22)) N_totalobservablenormal22_array_1.append(float(N_obs1_22)) N_totalrecoverablenormal22_array_1.append(float(N_rec1_22)) N_totalnormal22_array_10.append(float(N_all10_22)) N_totalobservablenormal22_array_10.append(float(N_obs10_22)) N_totalrecoverablenormal22_array_10.append(float(N_rec10_22)) N_totalnormal22_array_30.append(float(N_all30_22)) N_totalobservablenormal22_array_30.append(float(N_obs30_22)) N_totalrecoverablenormal22_array_30.append(float(N_rec30_22)) N_totalnormal22_array_100.append(float(N_all100_22)) N_totalobservablenormal22_array_100.append(float(N_obs100_22)) N_totalrecoverablenormal22_array_100.append(float(N_rec100_22)) N_totalnormal22_array_1000.append(float(N_all1000_22)) N_totalobservablenormal22_array_1000.append(float(N_obs1000_22)) N_totalrecoverablenormal22_array_1000.append(float(N_rec1000_22)) N_totalnormal195_array.append(float(N_all_195)) N_totalobservablenormal195_array.append(float(N_obs_195)) N_totalrecoverablenormal195_array.append(float(N_rec_195)) N_totalnormal195_array_03.append(float(N_all03_195)) N_totalobservablenormal195_array_03.append(float(N_obs03_195)) N_totalrecoverablenormal195_array_03.append(float(N_rec03_195)) N_totalnormal195_array_1.append(float(N_all1_195)) N_totalobservablenormal195_array_1.append(float(N_obs1_195)) N_totalrecoverablenormal195_array_1.append(float(N_rec1_195)) N_totalnormal195_array_10.append(float(N_all10_195)) N_totalobservablenormal195_array_10.append(float(N_obs10_195)) N_totalrecoverablenormal195_array_10.append(float(N_rec10_195)) N_totalnormal195_array_30.append(float(N_all30_195)) N_totalobservablenormal195_array_30.append(float(N_obs30_195)) N_totalrecoverablenormal195_array_30.append(float(N_rec30_195)) N_totalnormal195_array_100.append(float(N_all100_195)) N_totalobservablenormal195_array_100.append(float(N_obs100_195)) N_totalrecoverablenormal195_array_100.append(float(N_rec100_195)) N_totalnormal195_array_1000.append(float(N_all1000_195)) N_totalobservablenormal195_array_1000.append(float(N_obs1000_195)) N_totalrecoverablenormal195_array_1000.append(float(N_rec1000_195)) N_totalnormal = np.sum(N_totalnormal_array) N_totalnormal_03 = np.sum(N_totalnormal_array_03) N_totalnormal_1 = np.sum(N_totalnormal_array_1) N_totalnormal_10 = np.sum(N_totalnormal_array_10) N_totalnormal_30 = np.sum(N_totalnormal_array_30) N_totalnormal_100 = np.sum(N_totalnormal_array_100) N_totalnormal_1000 = np.sum(N_totalnormal_array_1000) N_totalobservablenormal = np.sum(N_totalobservablenormal_array) N_totalobservablenormal_03 = np.sum(N_totalobservablenormal_array_03) N_totalobservablenormal_1 = np.sum(N_totalobservablenormal_array_1) N_totalobservablenormal_10 = np.sum(N_totalobservablenormal_array_10) N_totalobservablenormal_30 = np.sum(N_totalobservablenormal_array_30) N_totalobservablenormal_100 = np.sum(N_totalobservablenormal_array_100) N_totalobservablenormal_1000 = np.sum(N_totalobservablenormal_array_1000) N_totalrecoverablenormal = np.sum(N_totalrecoverablenormal_array) N_totalrecoverablenormal_03 = np.sum(N_totalrecoverablenormal_array_03) N_totalrecoverablenormal_1 = np.sum(N_totalrecoverablenormal_array_1) N_totalrecoverablenormal_10 = np.sum(N_totalrecoverablenormal_array_10) N_totalrecoverablenormal_30 = np.sum(N_totalrecoverablenormal_array_30) N_totalrecoverablenormal_100 = np.sum(N_totalrecoverablenormal_array_100) N_totalrecoverablenormal_1000 = np.sum(N_totalrecoverablenormal_array_1000) N_totalnormal22 = np.sum(N_totalnormal22_array) N_totalnormal22_03 = np.sum(N_totalnormal22_array_03) N_totalnormal22_1 = np.sum(N_totalnormal22_array_1) N_totalnormal22_10 = np.sum(N_totalnormal22_array_10) N_totalnormal22_30 = np.sum(N_totalnormal22_array_30) N_totalnormal22_100 = np.sum(N_totalnormal22_array_100) N_totalnormal22_1000 = np.sum(N_totalnormal22_array_1000) N_totalobservablenormal22 = np.sum(N_totalobservablenormal22_array) N_totalobservablenormal22_03 = np.sum(N_totalobservablenormal22_array_03) N_totalobservablenormal22_1 = np.sum(N_totalobservablenormal22_array_1) N_totalobservablenormal22_10 = np.sum(N_totalobservablenormal22_array_10) N_totalobservablenormal22_30 = np.sum(N_totalobservablenormal22_array_30) N_totalobservablenormal22_100 = np.sum(N_totalobservablenormal22_array_100) N_totalobservablenormal22_1000 = np.sum(N_totalobservablenormal22_array_1000) N_totalrecoverablenormal22 = np.sum(N_totalrecoverablenormal22_array) N_totalrecoverablenormal22_03 = np.sum(N_totalrecoverablenormal22_array_03) N_totalrecoverablenormal22_1 = np.sum(N_totalrecoverablenormal22_array_1) N_totalrecoverablenormal22_10 = np.sum(N_totalrecoverablenormal22_array_10) N_totalrecoverablenormal22_30 = np.sum(N_totalrecoverablenormal22_array_30) N_totalrecoverablenormal22_100 = np.sum(N_totalrecoverablenormal22_array_100) N_totalrecoverablenormal22_1000 = np.sum(N_totalrecoverablenormal22_array_1000) N_totalnormal195 = np.sum(N_totalnormal195_array) N_totalnormal195_03 = np.sum(N_totalnormal195_array_03) N_totalnormal195_1 = np.sum(N_totalnormal195_array_1) N_totalnormal195_10 = np.sum(N_totalnormal195_array_10) N_totalnormal195_30 = np.sum(N_totalnormal195_array_30) N_totalnormal195_100 = np.sum(N_totalnormal195_array_100) N_totalnormal195_1000 = np.sum(N_totalnormal195_array_1000) N_totalobservablenormal195 = np.sum(N_totalobservablenormal195_array) N_totalobservablenormal195_03 = np.sum(N_totalobservablenormal195_array_03) N_totalobservablenormal195_1 = np.sum(N_totalobservablenormal195_array_1) N_totalobservablenormal195_10 = np.sum(N_totalobservablenormal195_array_10) N_totalobservablenormal195_30 = np.sum(N_totalobservablenormal195_array_30) N_totalobservablenormal195_100 = np.sum(N_totalobservablenormal195_array_100) N_totalobservablenormal195_1000 = np.sum(N_totalobservablenormal195_array_1000) N_totalrecoverablenormal195 = np.sum(N_totalrecoverablenormal195_array) N_totalrecoverablenormal195_03 = np.sum(N_totalrecoverablenormal195_array_03) N_totalrecoverablenormal195_1 = np.sum(N_totalrecoverablenormal195_array_1) N_totalrecoverablenormal195_10 = np.sum(N_totalrecoverablenormal195_array_10) N_totalrecoverablenormal195_30 = np.sum(N_totalrecoverablenormal195_array_30) N_totalrecoverablenormal195_100 = np.sum(N_totalrecoverablenormal195_array_100) N_totalrecoverablenormal195_1000 = np.sum(N_totalrecoverablenormal195_array_1000) wholerecoverypercent_normal = (N_totalrecoverablenormal/N_totalobservablenormal)*100 wholerecoverypercent_normal_03 = (N_totalrecoverablenormal_03/N_totalobservablenormal_03)*100 wholerecoverypercent_normal_1 = (N_totalrecoverablenormal_1/N_totalobservablenormal_1)*100 wholerecoverypercent_normal_10 = (N_totalrecoverablenormal_10/N_totalobservablenormal_10)*100 wholerecoverypercent_normal_30 = (N_totalrecoverablenormal_30/N_totalobservablenormal_30)*100 wholerecoverypercent_normal_100 = (N_totalrecoverablenormal_100/N_totalobservablenormal_100)*100 wholerecoverypercent_normal_1000 = (N_totalrecoverablenormal_1000/N_totalobservablenormal_1000)*100 sigmanormal = ((N_totalrecoverablenormal**(1/2))/N_totalobservablenormal)*100 sigmanormal_03 = ((N_totalrecoverablenormal_03**(1/2))/N_totalobservablenormal_03)*100 sigmanormal_1 = ((N_totalrecoverablenormal_1**(1/2))/N_totalobservablenormal_1)*100 sigmanormal_10 = ((N_totalrecoverablenormal_10**(1/2))/N_totalobservablenormal_10)*100 sigmanormal_30 = ((N_totalrecoverablenormal_30**(1/2))/N_totalobservablenormal_30)*100 sigmanormal_100 = ((N_totalrecoverablenormal_100**(1/2))/N_totalobservablenormal_100)*100 sigmanormal_1000 = ((N_totalrecoverablenormal_1000**(1/2))/N_totalobservablenormal_1000)*100 overallrecoverypercent_normal = (N_totalrecoverablenormal/N_totalnormal)*100 overallrecoverypercent_normal_03 = (N_totalrecoverablenormal_03/N_totalnormal_03)*100 overallrecoverypercent_normal_1 = (N_totalrecoverablenormal_1/N_totalnormal_1)*100 overallrecoverypercent_normal_10 = (N_totalrecoverablenormal_10/N_totalnormal_10)*100 overallrecoverypercent_normal_30 = (N_totalrecoverablenormal_30/N_totalnormal_30)*100 overallrecoverypercent_normal_100 = (N_totalrecoverablenormal_100/N_totalnormal_100)*100 overallrecoverypercent_normal_1000 = (N_totalrecoverablenormal_1000/N_totalnormal_1000)*100 overallsigmanormal = ((N_totalrecoverablenormal**(1/2))/N_totalnormal)*100 overallsigmanormal_03 = ((N_totalrecoverablenormal_03**(1/2))/N_totalnormal_03)*100 overallsigmanormal_1 = ((N_totalrecoverablenormal_1**(1/2))/N_totalnormal_1)*100 overallsigmanormal_10 = ((N_totalrecoverablenormal_10**(1/2))/N_totalnormal_10)*100 overallsigmanormal_30 = ((N_totalrecoverablenormal_30**(1/2))/N_totalnormal_30)*100 overallsigmanormal_100 = ((N_totalrecoverablenormal_100**(1/2))/N_totalnormal_100)*100 overallsigmanormal_1000 = ((N_totalrecoverablenormal_1000**(1/2))/N_totalnormal_1000)*100 wholerecoverypercent_normal22 = (N_totalrecoverablenormal22/N_totalobservablenormal22)*100 wholerecoverypercent_normal22_03 = (N_totalrecoverablenormal22_03/N_totalobservablenormal22_03)*100 wholerecoverypercent_normal22_1 = (N_totalrecoverablenormal22_1/N_totalobservablenormal22_1)*100 wholerecoverypercent_normal22_10 = (N_totalrecoverablenormal22_10/N_totalobservablenormal22_10)*100 wholerecoverypercent_normal22_30 = (N_totalrecoverablenormal22_30/N_totalobservablenormal22_30)*100 wholerecoverypercent_normal22_100 = (N_totalrecoverablenormal22_100/N_totalobservablenormal22_100)*100 wholerecoverypercent_normal22_1000 = (N_totalrecoverablenormal22_1000/N_totalobservablenormal22_1000)*100 sigmanormal22 = ((N_totalrecoverablenormal22**(1/2))/N_totalobservablenormal22)*100 sigmanormal22_03 = ((N_totalrecoverablenormal22_03**(1/2))/N_totalobservablenormal22_03)*100 sigmanormal22_1 = ((N_totalrecoverablenormal22_1**(1/2))/N_totalobservablenormal22_1)*100 sigmanormal22_10 = ((N_totalrecoverablenormal22_10**(1/2))/N_totalobservablenormal22_10)*100 sigmanormal22_30 = ((N_totalrecoverablenormal22_30**(1/2))/N_totalobservablenormal22_30)*100 sigmanormal22_100 = ((N_totalrecoverablenormal22_100**(1/2))/N_totalobservablenormal22_100)*100 sigmanormal22_1000 = ((N_totalrecoverablenormal22_1000**(1/2))/N_totalobservablenormal22_1000)*100 overallrecoverypercent_normal22 = (N_totalrecoverablenormal22/N_totalnormal22)*100 overallrecoverypercent_normal22_03 = (N_totalrecoverablenormal22_03/N_totalnormal22_03)*100 overallrecoverypercent_normal22_1 = (N_totalrecoverablenormal22_1/N_totalnormal22_1)*100 overallrecoverypercent_normal22_10 = (N_totalrecoverablenormal22_10/N_totalnormal22_10)*100 overallrecoverypercent_normal22_30 = (N_totalrecoverablenormal22_30/N_totalnormal22_30)*100 overallrecoverypercent_normal22_100 = (N_totalrecoverablenormal22_100/N_totalnormal22_100)*100 overallrecoverypercent_normal22_1000 = (N_totalrecoverablenormal22_1000/N_totalnormal22_1000)*100 overallsigmanormal22 = ((N_totalrecoverablenormal22**(1/2))/N_totalnormal22)*100 overallsigmanormal22_03 = ((N_totalrecoverablenormal22_03**(1/2))/N_totalnormal22_03)*100 overallsigmanormal22_1 = ((N_totalrecoverablenormal22_1**(1/2))/N_totalnormal22_1)*100 overallsigmanormal22_10 = ((N_totalrecoverablenormal22_10**(1/2))/N_totalnormal22_10)*100 overallsigmanormal22_30 = ((N_totalrecoverablenormal22_30**(1/2))/N_totalnormal22_30)*100 overallsigmanormal22_100 = ((N_totalrecoverablenormal22_100**(1/2))/N_totalnormal22_100)*100 overallsigmanormal22_1000 = ((N_totalrecoverablenormal22_1000**(1/2))/N_totalnormal22_1000)*100 wholerecoverypercent_normal195 = (N_totalrecoverablenormal195/N_totalobservablenormal195)*100 wholerecoverypercent_normal195_03 = (N_totalrecoverablenormal195_03/N_totalobservablenormal195_03)*100 wholerecoverypercent_normal195_1 = (N_totalrecoverablenormal195_1/N_totalobservablenormal195_1)*100 wholerecoverypercent_normal195_10 = (N_totalrecoverablenormal195_10/N_totalobservablenormal195_10)*100 wholerecoverypercent_normal195_30 = (N_totalrecoverablenormal195_30/N_totalobservablenormal195_30)*100 wholerecoverypercent_normal195_100 = (N_totalrecoverablenormal195_100/N_totalobservablenormal195_100)*100 wholerecoverypercent_normal195_1000 = (N_totalrecoverablenormal195_1000/N_totalobservablenormal195_1000)*100 sigmanormal195 = ((N_totalrecoverablenormal195**(1/2))/N_totalobservablenormal195)*100 sigmanormal195_03 = ((N_totalrecoverablenormal195_03**(1/2))/N_totalobservablenormal195_03)*100 sigmanormal195_1 = ((N_totalrecoverablenormal195_1**(1/2))/N_totalobservablenormal195_1)*100 sigmanormal195_10 = ((N_totalrecoverablenormal195_10**(1/2))/N_totalobservablenormal195_10)*100 sigmanormal195_30 = ((N_totalrecoverablenormal195_30**(1/2))/N_totalobservablenormal195_30)*100 sigmanormal195_100 = ((N_totalrecoverablenormal195_100**(1/2))/N_totalobservablenormal195_100)*100 sigmanormal195_1000 = ((N_totalrecoverablenormal195_1000**(1/2))/N_totalobservablenormal195_1000)*100 overallrecoverypercent_normal195 = (N_totalrecoverablenormal195/N_totalnormal195)*100 overallrecoverypercent_normal195_03 = (N_totalrecoverablenormal195_03/N_totalnormal195_03)*100 overallrecoverypercent_normal195_1 = (N_totalrecoverablenormal195_1/N_totalnormal195_1)*100 overallrecoverypercent_normal195_10 = (N_totalrecoverablenormal195_10/N_totalnormal195_10)*100 overallrecoverypercent_normal195_30 = (N_totalrecoverablenormal195_30/N_totalnormal195_30)*100 overallrecoverypercent_normal195_100 = (N_totalrecoverablenormal195_100/N_totalnormal195_100)*100 overallrecoverypercent_normal195_1000 = (N_totalrecoverablenormal195_1000/N_totalnormal195_1000)*100 overallsigmanormal195 = ((N_totalrecoverablenormal195**(1/2))/N_totalnormal195)*100 overallsigmanormal195_03 = ((N_totalrecoverablenormal195_03**(1/2))/N_totalnormal195_03)*100 overallsigmanormal195_1 = ((N_totalrecoverablenormal195_1**(1/2))/N_totalnormal195_1)*100 overallsigmanormal195_10 = ((N_totalrecoverablenormal195_10**(1/2))/N_totalnormal195_10)*100 overallsigmanormal195_30 = ((N_totalrecoverablenormal195_30**(1/2))/N_totalnormal195_30)*100 overallsigmanormal195_100 = ((N_totalrecoverablenormal195_100**(1/2))/N_totalnormal195_100)*100 overallsigmanormal195_1000 = ((N_totalrecoverablenormal195_1000**(1/2))/N_totalnormal195_1000)*100\ print("N_totalnormal = ", N_totalnormal, "and in log = ", np.log10(N_totalnormal), "**** N_totalobservablenormal = ", N_totalobservablenormal, "and in log = ", np.log10(N_totalobservablenormal), "**** N_totalrecoverablenormal = ", N_totalrecoverablenormal, "and in log = ", np.log10(N_totalrecoverablenormal)) print("N_totalnormal_03 = ", N_totalnormal_03, "and in log = ", np.log10(N_totalnormal_03), "**** N_totalobservablenormal_03 = ", N_totalobservablenormal_03, "and in log = ", np.log10(N_totalobservablenormal_03), "**** N_totalrecoverablenormal_03 = ", N_totalrecoverablenormal_03, "and in log = ", np.log10(N_totalrecoverablenormal_03)) print("N_totalnormal_1 = ", N_totalnormal_1, "and in log = ", np.log10(N_totalnormal_1), "**** N_totalobservablenormal_1 = ", N_totalobservablenormal_1, "and in log = ", np.log10(N_totalobservablenormal_1), "**** N_totalrecoverablenormal_1 = ", N_totalrecoverablenormal_1, "and in log = ", np.log10(N_totalrecoverablenormal_1)) print("N_totalnormal_10 = ", N_totalnormal_10, "and in log = ", np.log10(N_totalnormal_10), "**** N_totalobservablenormal_10 = ", N_totalobservablenormal_10, "and in log = ", np.log10(N_totalobservablenormal_10), "**** N_totalrecoverablenormal_10 = ", N_totalrecoverablenormal_10, "and in log = ", np.log10(N_totalrecoverablenormal_10)) print("N_totalnormal_30 = ", N_totalnormal_30, "and in log = ", np.log10(N_totalnormal_30), "**** N_totalobservablenormal_30 = ", N_totalobservablenormal_30, "and in log = ", np.log10(N_totalobservablenormal_30), "**** N_totalrecoverablenormal_30 = ", N_totalrecoverablenormal_30, "and in log = ", np.log10(N_totalrecoverablenormal_30)) print("N_totalnormal_100 = ", N_totalnormal_100, "and in log = ", np.log10(N_totalnormal_100), "**** N_totalobservablenormal_100 = ", N_totalobservablenormal_100, "and in log = ", np.log10(N_totalobservablenormal_100), "**** N_totalrecoverablenormal_100 = ", N_totalrecoverablenormal_100, "and in log = ", np.log10(N_totalrecoverablenormal_100)) print("N_totalnormal_1000 = ", N_totalnormal_1000, "and in log = ", np.log10(N_totalnormal_1000), "**** N_totalobservablenormal_1000 = ", N_totalobservablenormal_1000, "and in log = ", np.log10(N_totalobservablenormal_1000), "**** N_totalrecoverablenormal_1000 = ", N_totalrecoverablenormal_1000, "and in log = ", np.log10(N_totalrecoverablenormal_1000)) print("********************************") print("wholerecoverypercent_normal = $", wholerecoverypercent_normal, "/pm", sigmanormal, "$") print("wholerecoverypercent_normal_03 = $", wholerecoverypercent_normal_03, "/pm", sigmanormal_03, "$") print("wholerecoverypercent_normal_1 = $", wholerecoverypercent_normal_1, "/pm", sigmanormal_1, "$") print("wholerecoverypercent_normal_10 = $", wholerecoverypercent_normal_10, "/pm", sigmanormal_10, "$") print("wholerecoverypercent_normal_30 = $", wholerecoverypercent_normal_30, "/pm", sigmanormal_30, "$") print("wholerecoverypercent_normal_100 = $", wholerecoverypercent_normal_100, "/pm", sigmanormal_100, "$") print("wholerecoverypercent_normal_1000 = $", wholerecoverypercent_normal_1000, "/pm", sigmanormal_1000, "$") print("********************************") print("overallrecoverypercent_normal = $", overallrecoverypercent_normal, "/pm", overallsigmanormal) print("overallrecoverypercent_normal_03 = $", overallrecoverypercent_normal_03, "/pm", overallsigmanormal_03) print("overallrecoverypercent_normal_1 = $", overallrecoverypercent_normal_1, "/pm", overallsigmanormal_1) print("overallrecoverypercent_normal_10 = $", overallrecoverypercent_normal_10, "/pm", overallsigmanormal_10) print("overallrecoverypercent_normal_30 = $", overallrecoverypercent_normal_30, "/pm", overallsigmanormal_30) print("overallrecoverypercent_normal_100 = $", overallrecoverypercent_normal_100, "/pm", overallsigmanormal_100) print("overallrecoverypercent_normal_1000 = $", overallrecoverypercent_normal_1000, "/pm", overallsigmanormal_1000) print("################################") print("N_totalnormal22 = ", N_totalnormal22, "and in log = ", np.log10(N_totalnormal22), "**** N_totalobservablenormal22 = ", N_totalobservablenormal22, "and in log = ", np.log10(N_totalobservablenormal22), "**** N_totalrecoverablenormal22 = ", N_totalrecoverablenormal22, "and in log = ", np.log10(N_totalrecoverablenormal22)) print("N_totalnormal22_03 = ", N_totalnormal22_03, "and in log = ", np.log10(N_totalnormal22_03), "**** N_totalobservablenormal22_03 = ", N_totalobservablenormal22_03, "and in log = ", np.log10(N_totalobservablenormal22_03), "**** N_totalrecoverablenormal22_03 = ", N_totalrecoverablenormal22_03, "and in log = ", np.log10(N_totalrecoverablenormal22_03)) print("N_totalnormal22_1 = ", N_totalnormal22_1, "and in log = ", np.log10(N_totalnormal22_1), "**** N_totalobservablenormal22_1 = ", N_totalobservablenormal22_1, "and in log = ", np.log10(N_totalobservablenormal22_1), "**** N_totalrecoverablenormal22_1 = ", N_totalrecoverablenormal22_1, "and in log = ", np.log10(N_totalrecoverablenormal22_1)) print("N_totalnormal22_10 = ", N_totalnormal22_10, "and in log = ", np.log10(N_totalnormal22_10), "**** N_totalobservablenormal22_10 = ", N_totalobservablenormal22_10, "and in log = ", np.log10(N_totalobservablenormal22_10), "**** N_totalrecoverablenormal22_10 = ", N_totalrecoverablenormal22_10, "and in log = ", np.log10(N_totalrecoverablenormal22_10)) print("N_totalnormal22_30 = ", N_totalnormal22_30, "and in log = ", np.log10(N_totalnormal22_30), "**** N_totalobservablenormal22_30 = ", N_totalobservablenormal22_30, "and in log = ", np.log10(N_totalobservablenormal22_30), "**** N_totalrecoverablenormal22_30 = ", N_totalrecoverablenormal22_30, "and in log = ", np.log10(N_totalrecoverablenormal22_30)) print("N_totalnormal22_100 = ", N_totalnormal22_100, "and in log = ", np.log10(N_totalnormal22_100), "**** N_totalobservablenormal22_100 = ", N_totalobservablenormal22_100, "and in log = ", np.log10(N_totalobservablenormal22_100), "**** N_totalrecoverablenormal22_100 = ", N_totalrecoverablenormal22_100, "and in log = ", np.log10(N_totalrecoverablenormal22_100)) print("N_totalnormal22_1000 = ", N_totalnormal22_1000, "and in log = ", np.log10(N_totalnormal22_1000), "**** N_totalobservablenormal22_1000 = ", N_totalobservablenormal22_1000, "and in log = ", np.log10(N_totalobservablenormal22_1000), "**** N_totalrecoverablenormal22_1000 = ", N_totalrecoverablenormal22_1000, "and in log = ", np.log10(N_totalrecoverablenormal22_1000)) print("********************************") print("wholerecoverypercent_normal22 = $", wholerecoverypercent_normal22, "/pm", sigmanormal22, "$") print("wholerecoverypercent_normal22_03 = $", wholerecoverypercent_normal22_03, "/pm", sigmanormal22_03, "$") print("wholerecoverypercent_normal22_1 = $", wholerecoverypercent_normal22_1, "/pm", sigmanormal22_1, "$") print("wholerecoverypercent_normal22_10 = $", wholerecoverypercent_normal22_10, "/pm", sigmanormal22_10, "$") print("wholerecoverypercent_normal22_30 = $", wholerecoverypercent_normal22_30, "/pm", sigmanormal22_30, "$") print("wholerecoverypercent_normal22_100 = $", wholerecoverypercent_normal22_100, "/pm", sigmanormal22_100, "$") print("wholerecoverypercent_normal22_1000 = $", wholerecoverypercent_normal22_1000, "/pm", sigmanormal22_1000, "$") print("********************************") print("overallrecoverypercent_normal22 = $", overallrecoverypercent_normal22, "/pm", overallsigmanormal22, "$") print("overallrecoverypercent_normal22_03 = $", overallrecoverypercent_normal22_03, "/pm", overallsigmanormal22_03, "$") print("overallrecoverypercent_normal22_1 = $", overallrecoverypercent_normal22_1, "/pm", overallsigmanormal22_1, "$") print("overallrecoverypercent_normal22_10 = $", overallrecoverypercent_normal22_10, "/pm", overallsigmanormal22_10, "$") print("overallrecoverypercent_normal22_30 = $", overallrecoverypercent_normal22_30, "/pm", overallsigmanormal22_30, "$") print("overallrecoverypercent_normal22_100 = $", overallrecoverypercent_normal22_100, "/pm", overallsigmanormal22_100, "$") print("overallrecoverypercent_normal22_1000 = $", overallrecoverypercent_normal22_1000, "/pm", overallsigmanormal22_1000, "$") print("###############################") print("N_totalnormal195 = ", N_totalnormal195, "and in log = ", np.log10(N_totalnormal195), "**** N_totalobservablenormal195 = ", N_totalobservablenormal195, "and in log = ", np.log10(N_totalobservablenormal195), "**** N_totalrecoverablenormal195 = ", N_totalrecoverablenormal195, "and in log = ", np.log10(N_totalrecoverablenormal195)) print("N_totalnormal195_03 = ", N_totalnormal195_03, "and in log = ", np.log10(N_totalnormal195_03), "**** N_totalobservablenormal195_03 = ", N_totalobservablenormal195_03, "and in log = ", np.log10(N_totalobservablenormal195_03), "**** N_totalrecoverablenormal195_03 = ", N_totalrecoverablenormal195_03, "and in log = ", np.log10(N_totalrecoverablenormal195_03)) print("N_totalnormal195_1 = ", N_totalnormal195_1, "and in log = ", np.log10(N_totalnormal195_1), "**** N_totalobservablenormal195_1 = ", N_totalobservablenormal195_1, "and in log = ", np.log10(N_totalobservablenormal195_1), "**** N_totalrecoverablenormal195_1 = ", N_totalrecoverablenormal195_1, "and in log = ", np.log10(N_totalrecoverablenormal195_1)) print("N_totalnormal195_10 = ", N_totalnormal195_10, "and in log = ", np.log10(N_totalnormal195_10), "**** N_totalobservablenormal195_10 = ", N_totalobservablenormal195_10, "and in log = ", np.log10(N_totalobservablenormal195_10), "**** N_totalrecoverablenormal195_10 = ", N_totalrecoverablenormal195_10, "and in log = ", np.log10(N_totalrecoverablenormal195_10)) print("N_totalnormal195_30 = ", N_totalnormal195_30, "and in log = ", np.log10(N_totalnormal195_30), "**** N_totalobservablenormal195_30 = ", N_totalobservablenormal195_30, "and in log = ", np.log10(N_totalobservablenormal195_30), "**** N_totalrecoverablenormal195_30 = ", N_totalrecoverablenormal195_30, "and in log = ", np.log10(N_totalrecoverablenormal195_30)) print("N_totalnormal195_100 = ", N_totalnormal195_100, "and in log = ", np.log10(N_totalnormal195_100), "**** N_totalobservablenormal195_100 = ", N_totalobservablenormal195_100, "and in log = ", np.log10(N_totalobservablenormal195_100), "**** N_totalrecoverablenormal195_100 = ", N_totalrecoverablenormal195_100, "and in log = ", np.log10(N_totalrecoverablenormal195_100)) print("N_totalnormal195_1000 = ", N_totalnormal195_1000, "and in log = ", np.log10(N_totalnormal195_1000), "**** N_totalobservablenormal195_1000 = ", N_totalobservablenormal195_1000, "and in log = ", np.log10(N_totalobservablenormal195_1000), "**** N_totalrecoverablenormal195_1000 = ", N_totalrecoverablenormal195_1000, "and in log = ", np.log10(N_totalrecoverablenormal195_1000)) print("********************************") print("wholerecoverypercent_normal195 = $", wholerecoverypercent_normal195, "/pm", sigmanormal195, "$") print("wholerecoverypercent_normal195_03 = $", wholerecoverypercent_normal195_03, "/pm", sigmanormal195_03, "$") print("wholerecoverypercent_normal195_1 = $", wholerecoverypercent_normal195_1, "/pm", sigmanormal195_1, "$") print("wholerecoverypercent_normal195_10 = $", wholerecoverypercent_normal195_10, "/pm", sigmanormal195_10, "$") print("wholerecoverypercent_normal195_30 = $", wholerecoverypercent_normal195_30, "/pm", sigmanormal195_30, "$") print("wholerecoverypercent_normal195_100 = $", wholerecoverypercent_normal195_100, "/pm", sigmanormal195_100, "$") print("wholerecoverypercent_normal195_1000 = $", wholerecoverypercent_normal195_1000, "/pm", sigmanormal195_1000, "$") print("********************************") print("overallrecoverypercent_normal195 = $", overallrecoverypercent_normal195, "/pm", overallsigmanormal195, "$") print("overallrecoverypercent_normal195_03 = $", overallrecoverypercent_normal195_03, "/pm", overallsigmanormal195_03, "$") print("overallrecoverypercent_normal195_1 = $", overallrecoverypercent_normal195_1, "/pm", overallsigmanormal195_1, "$") print("overallrecoverypercent_normal195_10 = $", overallrecoverypercent_normal195_10, "/pm", overallsigmanormal195_10, "$") print("overallrecoverypercent_normal195_30 = $", overallrecoverypercent_normal195_30, "/pm", overallsigmanormal195_30, "$") print("overallrecoverypercent_normal195_100 = $", overallrecoverypercent_normal195_100, "/pm", overallsigmanormal195_100, "$") print("overallrecoverypercent_normal195_1000 = $", overallrecoverypercent_normal195_1000, "/pm", overallsigmanormal195_1000, "$") print("#############################") print("binarypercent_22 = $", (N_totalnormal22/N_totalnormal)*100, "/pm", ((N_totalnormal22**(1/2))/N_totalnormal)*100, "$") print("binarypercent_195 = $", (N_totalnormal195/N_totalnormal)*100, "/pm", ((N_totalnormal195**(1/2))/N_totalnormal)*100, "$") print("binarypercent_03 = $", (N_totalnormal_03/N_totalnormal)*100, "/pm", ((N_totalnormal_03**(1/2))/N_totalnormal)*100, "$") print("binarypercent_1 = $", (N_totalnormal_1/N_totalnormal)*100, "/pm", ((N_totalnormal_1**(1/2))/N_totalnormal)*100, "$") print("binarypercent_10 = $", (N_totalnormal_10/N_totalnormal)*100, "/pm", ((N_totalnormal_10**(1/2))/N_totalnormal)*100, "$") print("binarypercent_30 = $", (N_totalnormal_30/N_totalnormal)*100, "/pm", ((N_totalnormal_30**(1/2))/N_totalnormal)*100, "$") print("binarypercent_100 = $", (N_totalnormal_100/N_totalnormal)*100, "/pm", ((N_totalnormal_100**(1/2))/N_totalnormal)*100, "$") print("binarypercent_1000 = $", (N_totalnormal_1000/N_totalnormal)*100, "/pm", ((N_totalnormal_1000**(1/2))/N_totalnormal)*100, "$") print("observablepercent_03 = $", (N_totalobservablenormal_03/N_totalnormal_03)*100, "/pm", ((N_totalobservablenormal_03**(1/2))/N_totalnormal_03)*100, "$") print("observablepercent_1 = $", (N_totalobservablenormal_1/N_totalnormal_1)*100, "/pm", ((N_totalobservablenormal_1**(1/2))/N_totalnormal_1)*100, "$") print("observablepercent_10 = $", (N_totalobservablenormal_10/N_totalnormal_10)*100, "/pm", ((N_totalobservablenormal_10**(1/2))/N_totalnormal_10)*100, "$") print("observablepercent_30 = $", (N_totalobservablenormal_30/N_totalnormal_30)*100, "/pm", ((N_totalobservablenormal_30**(1/2))/N_totalnormal_30)*100, "$") print("observablepercent_100 = $", (N_totalobservablenormal_100/N_totalnormal_100)*100, "/pm", ((N_totalobservablenormal_100**(1/2))/N_totalnormal_100)*100, "$") print("observablepercent_1000 = $", (N_totalobservablenormal_1000/N_totalnormal_1000)*100, "/pm", ((N_totalobservablenormal_1000**(1/2))/N_totalnormal_1000)*100, "$") print("observablepercent = $", (N_totalobservablenormal/N_totalnormal)*100, "/pm", ((N_totalobservablenormal**(1/2))/N_totalnormal)*100, "$") print("observablepercent22 = $", (N_totalobservablenormal22/N_totalnormal22)*100, "/pm", ((N_totalobservablenormal22**(1/2))/N_totalnormal22)*100, "$") print("observablepercent195 = $", (N_totalobservablenormal195/N_totalnormal195)*100, "/pm", ((N_totalobservablenormal195**(1/2))/N_totalnormal195)*100, "$") for filefast_ in sorted(allFiles_fast): filename = filefast_[69:] #when file path no longer has /old in it, will be filefast_[65:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datfast = pd.read_csv(filefast_, sep = ',', header=2) PeriodIn = datfast['p'] # input period -- 'p' in data file ########################################################## datfast1 = pd.read_csv(filefast_, sep = ',', header=0, nrows=1) N_tri = datfast1["NstarsTRILEGAL"][0] Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datfast["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datfast['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datfast['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datfast.loc[PeriodOut != -999].index observable_03 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datfast.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datfast.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datfast.loc[PeriodIn <= 0.3].index P1 = datfast.loc[PeriodIn <= 1].index P10 = datfast.loc[PeriodIn <= 10].index P30 = datfast.loc[PeriodIn <= 30].index P100 = datfast.loc[PeriodIn <= 100].index P1000 = datfast.loc[PeriodIn <= 1000].index P_22 = datfast.loc[appMagMean <= 22.].index P03_22 = datfast.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datfast.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datfast.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datfast.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datfast.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datfast.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datfast.loc[appMagMean <= 19.5].index P03_195 = datfast.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datfast.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datfast.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datfast.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datfast.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datfast.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalfast_array.append(float(N_all)) N_totalobservablefast_array.append(float(N_obs)) N_totalrecoverablefast_array.append(float(N_rec)) N_totalfast_array_03.append(float(N_all03)) N_totalobservablefast_array_03.append(float(N_obs03)) N_totalrecoverablefast_array_03.append(float(N_rec03)) N_totalfast_array_1.append(float(N_all1)) N_totalobservablefast_array_1.append(float(N_obs1)) N_totalrecoverablefast_array_1.append(float(N_rec1)) N_totalfast_array_10.append(float(N_all10)) N_totalobservablefast_array_10.append(float(N_obs10)) N_totalrecoverablefast_array_10.append(float(N_rec10)) N_totalfast_array_30.append(float(N_all30)) N_totalobservablefast_array_30.append(float(N_obs30)) N_totalrecoverablefast_array_30.append(float(N_rec30)) N_totalfast_array_100.append(float(N_all100)) N_totalobservablefast_array_100.append(float(N_obs100)) N_totalrecoverablefast_array_100.append(float(N_rec100)) N_totalfast_array_1000.append(float(N_all1000)) N_totalobservablefast_array_1000.append(float(N_obs1000)) N_totalrecoverablefast_array_1000.append(float(N_rec1000)) N_totalfast22_array.append(float(N_all_22)) N_totalobservablefast22_array.append(float(N_obs_22)) N_totalrecoverablefast22_array.append(float(N_rec_22)) N_totalfast22_array_03.append(float(N_all03_22)) N_totalobservablefast22_array_03.append(float(N_obs03_22)) N_totalrecoverablefast22_array_03.append(float(N_rec03_22)) N_totalfast22_array_1.append(float(N_all1_22)) N_totalobservablefast22_array_1.append(float(N_obs1_22)) N_totalrecoverablefast22_array_1.append(float(N_rec1_22)) N_totalfast22_array_10.append(float(N_all10_22)) N_totalobservablefast22_array_10.append(float(N_obs10_22)) N_totalrecoverablefast22_array_10.append(float(N_rec10_22)) N_totalfast22_array_30.append(float(N_all30_22)) N_totalobservablefast22_array_30.append(float(N_obs30_22)) N_totalrecoverablefast22_array_30.append(float(N_rec30_22)) N_totalfast22_array_100.append(float(N_all100_22)) N_totalobservablefast22_array_100.append(float(N_obs100_22)) N_totalrecoverablefast22_array_100.append(float(N_rec100_22)) N_totalfast22_array_1000.append(float(N_all1000_22)) N_totalobservablefast22_array_1000.append(float(N_obs1000_22)) N_totalrecoverablefast22_array_1000.append(float(N_rec1000_22)) N_totalfast195_array.append(float(N_all_195)) N_totalobservablefast195_array.append(float(N_obs_195)) N_totalrecoverablefast195_array.append(float(N_rec_195)) N_totalfast195_array_03.append(float(N_all03_195)) N_totalobservablefast195_array_03.append(float(N_obs03_195)) N_totalrecoverablefast195_array_03.append(float(N_rec03_195)) N_totalfast195_array_1.append(float(N_all1_195)) N_totalobservablefast195_array_1.append(float(N_obs1_195)) N_totalrecoverablefast195_array_1.append(float(N_rec1_195)) N_totalfast195_array_10.append(float(N_all10_195)) N_totalobservablefast195_array_10.append(float(N_obs10_195)) N_totalrecoverablefast195_array_10.append(float(N_rec10_195)) N_totalfast195_array_30.append(float(N_all30_195)) N_totalobservablefast195_array_30.append(float(N_obs30_195)) N_totalrecoverablefast195_array_30.append(float(N_rec30_195)) N_totalfast195_array_100.append(float(N_all100_195)) N_totalobservablefast195_array_100.append(float(N_obs100_195)) N_totalrecoverablefast195_array_100.append(float(N_rec100_195)) N_totalfast195_array_1000.append(float(N_all1000_195)) N_totalobservablefast195_array_1000.append(float(N_obs1000_195)) N_totalrecoverablefast195_array_1000.append(float(N_rec1000_195)) N_totalfast = np.sum(N_totalfast_array) N_totalfast_03 = np.sum(N_totalfast_array_03) N_totalfast_1 = np.sum(N_totalfast_array_1) N_totalfast_10 = np.sum(N_totalfast_array_10) N_totalfast_30 = np.sum(N_totalfast_array_30) N_totalfast_100 = np.sum(N_totalfast_array_100) N_totalfast_1000 = np.sum(N_totalfast_array_1000) N_totalobservablefast = np.sum(N_totalobservablefast_array) N_totalobservablefast_03 = np.sum(N_totalobservablefast_array_03) N_totalobservablefast_1 = np.sum(N_totalobservablefast_array_1) N_totalobservablefast_10 = np.sum(N_totalobservablefast_array_10) N_totalobservablefast_30 = np.sum(N_totalobservablefast_array_30) N_totalobservablefast_100 = np.sum(N_totalobservablefast_array_100) N_totalobservablefast_1000 = np.sum(N_totalobservablefast_array_1000) N_totalrecoverablefast = np.sum(N_totalrecoverablefast_array) N_totalrecoverablefast_03 = np.sum(N_totalrecoverablefast_array_03) N_totalrecoverablefast_1 = np.sum(N_totalrecoverablefast_array_1) N_totalrecoverablefast_10 = np.sum(N_totalrecoverablefast_array_10) N_totalrecoverablefast_30 = np.sum(N_totalrecoverablefast_array_30) N_totalrecoverablefast_100 = np.sum(N_totalrecoverablefast_array_100) N_totalrecoverablefast_1000 = np.sum(N_totalrecoverablefast_array_1000) N_totalfast22 = np.sum(N_totalfast22_array) N_totalfast22_03 = np.sum(N_totalfast22_array_03) N_totalfast22_1 = np.sum(N_totalfast22_array_1) N_totalfast22_10 = np.sum(N_totalfast22_array_10) N_totalfast22_30 = np.sum(N_totalfast22_array_30) N_totalfast22_100 = np.sum(N_totalfast22_array_100) N_totalfast22_1000 = np.sum(N_totalfast22_array_1000) N_totalobservablefast22 = np.sum(N_totalobservablefast22_array) N_totalobservablefast22_03 = np.sum(N_totalobservablefast22_array_03) N_totalobservablefast22_1 = np.sum(N_totalobservablefast22_array_1) N_totalobservablefast22_10 = np.sum(N_totalobservablefast22_array_10) N_totalobservablefast22_30 = np.sum(N_totalobservablefast22_array_30) N_totalobservablefast22_100 = np.sum(N_totalobservablefast22_array_100) N_totalobservablefast22_1000 = np.sum(N_totalobservablefast22_array_1000) N_totalrecoverablefast22 = np.sum(N_totalrecoverablefast22_array) N_totalrecoverablefast22_03 = np.sum(N_totalrecoverablefast22_array_03) N_totalrecoverablefast22_1 = np.sum(N_totalrecoverablefast22_array_1) N_totalrecoverablefast22_10 = np.sum(N_totalrecoverablefast22_array_10) N_totalrecoverablefast22_30 = np.sum(N_totalrecoverablefast22_array_30) N_totalrecoverablefast22_100 = np.sum(N_totalrecoverablefast22_array_100) N_totalrecoverablefast22_1000 = np.sum(N_totalrecoverablefast22_array_1000) N_totalfast195 = np.sum(N_totalfast195_array) N_totalfast195_03 = np.sum(N_totalfast195_array_03) N_totalfast195_1 = np.sum(N_totalfast195_array_1) N_totalfast195_10 = np.sum(N_totalfast195_array_10) N_totalfast195_30 = np.sum(N_totalfast195_array_30) N_totalfast195_100 = np.sum(N_totalfast195_array_100) N_totalfast195_1000 = np.sum(N_totalfast195_array_1000) N_totalobservablefast195 = np.sum(N_totalobservablefast195_array) N_totalobservablefast195_03 = np.sum(N_totalobservablefast195_array_03) N_totalobservablefast195_1 = np.sum(N_totalobservablefast195_array_1) N_totalobservablefast195_10 = np.sum(N_totalobservablefast195_array_10) N_totalobservablefast195_30 = np.sum(N_totalobservablefast195_array_30) N_totalobservablefast195_100 = np.sum(N_totalobservablefast195_array_100) N_totalobservablefast195_1000 = np.sum(N_totalobservablefast195_array_1000) N_totalrecoverablefast195 = np.sum(N_totalrecoverablefast195_array) N_totalrecoverablefast195_03 = np.sum(N_totalrecoverablefast195_array_03) N_totalrecoverablefast195_1 = np.sum(N_totalrecoverablefast195_array_1) N_totalrecoverablefast195_10 = np.sum(N_totalrecoverablefast195_array_10) N_totalrecoverablefast195_30 = np.sum(N_totalrecoverablefast195_array_30) N_totalrecoverablefast195_100 = np.sum(N_totalrecoverablefast195_array_100) N_totalrecoverablefast195_1000 = np.sum(N_totalrecoverablefast195_array_1000) wholerecoverypercent_fast = (N_totalrecoverablefast/N_totalobservablefast)*100 wholerecoverypercent_fast_03 = (N_totalrecoverablefast_03/N_totalobservablefast_03)*100 wholerecoverypercent_fast_1 = (N_totalrecoverablefast_1/N_totalobservablefast_1)*100 wholerecoverypercent_fast_10 = (N_totalrecoverablefast_10/N_totalobservablefast_10)*100 wholerecoverypercent_fast_30 = (N_totalrecoverablefast_30/N_totalobservablefast_30)*100 wholerecoverypercent_fast_100 = (N_totalrecoverablefast_100/N_totalobservablefast_100)*100 wholerecoverypercent_fast_1000 = (N_totalrecoverablefast_1000/N_totalobservablefast_1000)*100 sigmafast = ((N_totalrecoverablefast**(1/2))/N_totalobservablefast)*100 sigmafast_03 = ((N_totalrecoverablefast_03**(1/2))/N_totalobservablefast_03)*100 sigmafast_1 = ((N_totalrecoverablefast_1**(1/2))/N_totalobservablefast_1)*100 sigmafast_10 = ((N_totalrecoverablefast_10**(1/2))/N_totalobservablefast_10)*100 sigmafast_30 = ((N_totalrecoverablefast_30**(1/2))/N_totalobservablefast_30)*100 sigmafast_100 = ((N_totalrecoverablefast_100**(1/2))/N_totalobservablefast_100)*100 sigmafast_1000 = ((N_totalrecoverablefast_1000**(1/2))/N_totalobservablefast_1000)*100 overallrecoverypercent_fast = (N_totalrecoverablefast/N_totalfast)*100 overallrecoverypercent_fast_03 = (N_totalrecoverablefast_03/N_totalfast_03)*100 overallrecoverypercent_fast_1 = (N_totalrecoverablefast_1/N_totalfast_1)*100 overallrecoverypercent_fast_10 = (N_totalrecoverablefast_10/N_totalfast_10)*100 overallrecoverypercent_fast_30 = (N_totalrecoverablefast_30/N_totalfast_30)*100 overallrecoverypercent_fast_100 = (N_totalrecoverablefast_100/N_totalfast_100)*100 overallrecoverypercent_fast_1000 = (N_totalrecoverablefast_1000/N_totalfast_1000)*100 overallsigmafast = ((N_totalrecoverablefast**(1/2))/N_totalfast)*100 overallsigmafast_03 = ((N_totalrecoverablefast_03**(1/2))/N_totalfast_03)*100 overallsigmafast_1 = ((N_totalrecoverablefast_1**(1/2))/N_totalfast_1)*100 overallsigmafast_10 = ((N_totalrecoverablefast_10**(1/2))/N_totalfast_10)*100 overallsigmafast_30 = ((N_totalrecoverablefast_30**(1/2))/N_totalfast_30)*100 overallsigmafast_100 = ((N_totalrecoverablefast_100**(1/2))/N_totalfast_100)*100 overallsigmafast_1000 = ((N_totalrecoverablefast_1000**(1/2))/N_totalfast_1000)*100 wholerecoverypercent_fast22 = (N_totalrecoverablefast22/N_totalobservablefast22)*100 wholerecoverypercent_fast22_03 = (N_totalrecoverablefast22_03/N_totalobservablefast22_03)*100 wholerecoverypercent_fast22_1 = (N_totalrecoverablefast22_1/N_totalobservablefast22_1)*100 wholerecoverypercent_fast22_10 = (N_totalrecoverablefast22_10/N_totalobservablefast22_10)*100 wholerecoverypercent_fast22_30 = (N_totalrecoverablefast22_30/N_totalobservablefast22_30)*100 wholerecoverypercent_fast22_100 = (N_totalrecoverablefast22_100/N_totalobservablefast22_100)*100 wholerecoverypercent_fast22_1000 = (N_totalrecoverablefast22_1000/N_totalobservablefast22_1000)*100 sigmafast22 = ((N_totalrecoverablefast22**(1/2))/N_totalobservablefast22)*100 sigmafast22_03 = ((N_totalrecoverablefast22_03**(1/2))/N_totalobservablefast22_03)*100 sigmafast22_1 = ((N_totalrecoverablefast22_1**(1/2))/N_totalobservablefast22_1)*100 sigmafast22_10 = ((N_totalrecoverablefast22_10**(1/2))/N_totalobservablefast22_10)*100 sigmafast22_30 = ((N_totalrecoverablefast22_30**(1/2))/N_totalobservablefast22_30)*100 sigmafast22_100 = ((N_totalrecoverablefast22_100**(1/2))/N_totalobservablefast22_100)*100 sigmafast22_1000 = ((N_totalrecoverablefast22_1000**(1/2))/N_totalobservablefast22_1000)*100 overallrecoverypercent_fast22 = (N_totalrecoverablefast22/N_totalfast22)*100 overallrecoverypercent_fast22_03 = (N_totalrecoverablefast22_03/N_totalfast22_03)*100 overallrecoverypercent_fast22_1 = (N_totalrecoverablefast22_1/N_totalfast22_1)*100 overallrecoverypercent_fast22_10 = (N_totalrecoverablefast22_10/N_totalfast22_10)*100 overallrecoverypercent_fast22_30 = (N_totalrecoverablefast22_30/N_totalfast22_30)*100 overallrecoverypercent_fast22_100 = (N_totalrecoverablefast22_100/N_totalfast22_100)*100 overallrecoverypercent_fast22_1000 = (N_totalrecoverablefast22_1000/N_totalfast22_1000)*100 overallsigmafast22 = ((N_totalrecoverablefast22**(1/2))/N_totalfast22)*100 overallsigmafast22_03 = ((N_totalrecoverablefast22_03**(1/2))/N_totalfast22_03)*100 overallsigmafast22_1 = ((N_totalrecoverablefast22_1**(1/2))/N_totalfast22_1)*100 overallsigmafast22_10 = ((N_totalrecoverablefast22_10**(1/2))/N_totalfast22_10)*100 overallsigmafast22_30 = ((N_totalrecoverablefast22_30**(1/2))/N_totalfast22_30)*100 overallsigmafast22_100 = ((N_totalrecoverablefast22_100**(1/2))/N_totalfast22_100)*100 overallsigmafast22_1000 = ((N_totalrecoverablefast22_1000**(1/2))/N_totalfast22_1000)*100 wholerecoverypercent_fast195 = (N_totalrecoverablefast195/N_totalobservablefast195)*100 wholerecoverypercent_fast195_03 = (N_totalrecoverablefast195_03/N_totalobservablefast195_03)*100 wholerecoverypercent_fast195_1 = (N_totalrecoverablefast195_1/N_totalobservablefast195_1)*100 wholerecoverypercent_fast195_10 = (N_totalrecoverablefast195_10/N_totalobservablefast195_10)*100 wholerecoverypercent_fast195_30 = (N_totalrecoverablefast195_30/N_totalobservablefast195_30)*100 wholerecoverypercent_fast195_100 = (N_totalrecoverablefast195_100/N_totalobservablefast195_100)*100 wholerecoverypercent_fast195_1000 = (N_totalrecoverablefast195_1000/N_totalobservablefast195_1000)*100 sigmafast195 = ((N_totalrecoverablefast195**(1/2))/N_totalobservablefast195)*100 sigmafast195_03 = ((N_totalrecoverablefast195_03**(1/2))/N_totalobservablefast195_03)*100 sigmafast195_1 = ((N_totalrecoverablefast195_1**(1/2))/N_totalobservablefast195_1)*100 sigmafast195_10 = ((N_totalrecoverablefast195_10**(1/2))/N_totalobservablefast195_10)*100 sigmafast195_30 = ((N_totalrecoverablefast195_30**(1/2))/N_totalobservablefast195_30)*100 sigmafast195_100 = ((N_totalrecoverablefast195_100**(1/2))/N_totalobservablefast195_100)*100 sigmafast195_1000 = ((N_totalrecoverablefast195_1000**(1/2))/N_totalobservablefast195_1000)*100 overallrecoverypercent_fast195 = (N_totalrecoverablefast195/N_totalfast195)*100 overallrecoverypercent_fast195_03 = (N_totalrecoverablefast195_03/N_totalfast195_03)*100 overallrecoverypercent_fast195_1 = (N_totalrecoverablefast195_1/N_totalfast195_1)*100 overallrecoverypercent_fast195_10 = (N_totalrecoverablefast195_10/N_totalfast195_10)*100 overallrecoverypercent_fast195_30 = (N_totalrecoverablefast195_30/N_totalfast195_30)*100 overallrecoverypercent_fast195_100 = (N_totalrecoverablefast195_100/N_totalfast195_100)*100 overallrecoverypercent_fast195_1000 = (N_totalrecoverablefast195_1000/N_totalfast195_1000)*100 overallsigmafast195 = ((N_totalrecoverablefast195**(1/2))/N_totalfast195)*100 overallsigmafast195_03 = ((N_totalrecoverablefast195_03**(1/2))/N_totalfast195_03)*100 overallsigmafast195_1 = ((N_totalrecoverablefast195_1**(1/2))/N_totalfast195_1)*100 overallsigmafast195_10 = ((N_totalrecoverablefast195_10**(1/2))/N_totalfast195_10)*100 overallsigmafast195_30 = ((N_totalrecoverablefast195_30**(1/2))/N_totalfast195_30)*100 overallsigmafast195_100 = ((N_totalrecoverablefast195_100**(1/2))/N_totalfast195_100)*100 overallsigmafast195_1000 = ((N_totalrecoverablefast195_1000**(1/2))/N_totalfast195_1000)*100\ print("N_totalfast = ", N_totalfast, "and in log = ", np.log10(N_totalfast), "**** N_totalobservablefast = ", N_totalobservablefast, "and in log = ", np.log10(N_totalobservablefast), "**** N_totalrecoverablefast = ", N_totalrecoverablefast, "and in log = ", np.log10(N_totalrecoverablefast)) print("N_totalfast_03 = ", N_totalfast_03, "and in log = ", np.log10(N_totalfast_03), "**** N_totalobservablefast_03 = ", N_totalobservablefast_03, "and in log = ", np.log10(N_totalobservablefast_03), "**** N_totalrecoverablefast_03 = ", N_totalrecoverablefast_03, "and in log = ", np.log10(N_totalrecoverablefast_03)) print("N_totalfast_1 = ", N_totalfast_1, "and in log = ", np.log10(N_totalfast_1), "**** N_totalobservablefast_1 = ", N_totalobservablefast_1, "and in log = ", np.log10(N_totalobservablefast_1), "**** N_totalrecoverablefast_1 = ", N_totalrecoverablefast_1, "and in log = ", np.log10(N_totalrecoverablefast_1)) print("N_totalfast_10 = ", N_totalfast_10, "and in log = ", np.log10(N_totalfast_10), "**** N_totalobservablefast_10 = ", N_totalobservablefast_10, "and in log = ", np.log10(N_totalobservablefast_10), "**** N_totalrecoverablefast_10 = ", N_totalrecoverablefast_10, "and in log = ", np.log10(N_totalrecoverablefast_10)) print("N_totalfast_30 = ", N_totalfast_30, "and in log = ", np.log10(N_totalfast_30), "**** N_totalobservablefast_30 = ", N_totalobservablefast_30, "and in log = ", np.log10(N_totalobservablefast_30), "**** N_totalrecoverablefast_30 = ", N_totalrecoverablefast_30, "and in log = ", np.log10(N_totalrecoverablefast_30)) print("N_totalfast_100 = ", N_totalfast_100, "and in log = ", np.log10(N_totalfast_100), "**** N_totalobservablefast_100 = ", N_totalobservablefast_100, "and in log = ", np.log10(N_totalobservablefast_100), "**** N_totalrecoverablefast_100 = ", N_totalrecoverablefast_100, "and in log = ", np.log10(N_totalrecoverablefast_100)) print("N_totalfast_1000 = ", N_totalfast_1000, "and in log = ", np.log10(N_totalfast_1000), "**** N_totalobservablefast_1000 = ", N_totalobservablefast_1000, "and in log = ", np.log10(N_totalobservablefast_1000), "**** N_totalrecoverablefast_1000 = ", N_totalrecoverablefast_1000, "and in log = ", np.log10(N_totalrecoverablefast_1000)) print("********************************") print("wholerecoverypercent_fast = $", wholerecoverypercent_fast, "/pm", sigmafast, "$") print("wholerecoverypercent_fast_03 = $", wholerecoverypercent_fast_03, "/pm", sigmafast_03, "$") print("wholerecoverypercent_fast_1 = $", wholerecoverypercent_fast_1, "/pm", sigmafast_1, "$") print("wholerecoverypercent_fast_10 = $", wholerecoverypercent_fast_10, "/pm", sigmafast_10, "$") print("wholerecoverypercent_fast_30 = $", wholerecoverypercent_fast_30, "/pm", sigmafast_30, "$") print("wholerecoverypercent_fast_100 = $", wholerecoverypercent_fast_100, "/pm", sigmafast_100, "$") print("wholerecoverypercent_fast_1000 = $", wholerecoverypercent_fast_1000, "/pm", sigmafast_1000, "$") print("********************************") print("overallrecoverypercent_fast = $", overallrecoverypercent_fast, "/pm", overallsigmafast, "$") print("overallrecoverypercent_fast_03 = $", overallrecoverypercent_fast_03, "/pm", overallsigmafast_03, "$") print("overallrecoverypercent_fast_1 = $", overallrecoverypercent_fast_1, "/pm", overallsigmafast_1, "$") print("overallrecoverypercent_fast_10 = $", overallrecoverypercent_fast_10, "/pm", overallsigmafast_10, "$") print("overallrecoverypercent_fast_30 = $", overallrecoverypercent_fast_30, "/pm", overallsigmafast_30, "$") print("overallrecoverypercent_fast_100 = $", overallrecoverypercent_fast_100, "/pm", overallsigmafast_100, "$") print("overallrecoverypercent_fast_1000 = $", overallrecoverypercent_fast_1000, "/pm", overallsigmafast_1000, "$") print("################################") print("N_totalfast22 = ", N_totalfast22, "and in log = ", np.log10(N_totalfast22), "**** N_totalobservablefast22 = ", N_totalobservablefast22, "and in log = ", np.log10(N_totalobservablefast22), "**** N_totalrecoverablefast22 = ", N_totalrecoverablefast22, "and in log = ", np.log10(N_totalrecoverablefast22)) print("N_totalfast22_03 = ", N_totalfast22_03, "and in log = ", np.log10(N_totalfast22_03), "**** N_totalobservablefast22_03 = ", N_totalobservablefast22_03, "and in log = ", np.log10(N_totalobservablefast22_03), "**** N_totalrecoverablefast22_03 = ", N_totalrecoverablefast22_03, "and in log = ", np.log10(N_totalrecoverablefast22_03)) print("N_totalfast22_1 = ", N_totalfast22_1, "and in log = ", np.log10(N_totalfast22_1), "**** N_totalobservablefast22_1 = ", N_totalobservablefast22_1, "and in log = ", np.log10(N_totalobservablefast22_1), "**** N_totalrecoverablefast22_1 = ", N_totalrecoverablefast22_1, "and in log = ", np.log10(N_totalrecoverablefast22_1)) print("N_totalfast22_10 = ", N_totalfast22_10, "and in log = ", np.log10(N_totalfast22_10), "**** N_totalobservablefast22_10 = ", N_totalobservablefast22_10, "and in log = ", np.log10(N_totalobservablefast22_10), "**** N_totalrecoverablefast22_10 = ", N_totalrecoverablefast22_10, "and in log = ", np.log10(N_totalrecoverablefast22_10)) print("N_totalfast22_30 = ", N_totalfast22_30, "and in log = ", np.log10(N_totalfast22_30), "**** N_totalobservablefast22_30 = ", N_totalobservablefast22_30, "and in log = ", np.log10(N_totalobservablefast22_30), "**** N_totalrecoverablefast22_30 = ", N_totalrecoverablefast22_30, "and in log = ", np.log10(N_totalrecoverablefast22_30)) print("N_totalfast22_100 = ", N_totalfast22_100, "and in log = ", np.log10(N_totalfast22_100), "**** N_totalobservablefast22_100 = ", N_totalobservablefast22_100, "and in log = ", np.log10(N_totalobservablefast22_100), "**** N_totalrecoverablefast22_100 = ", N_totalrecoverablefast22_100, "and in log = ", np.log10(N_totalrecoverablefast22_100)) print("N_totalfast22_1000 = ", N_totalfast22_1000, "and in log = ", np.log10(N_totalfast22_1000), "**** N_totalobservablefast22_1000 = ", N_totalobservablefast22_1000, "and in log = ", np.log10(N_totalobservablefast22_1000), "**** N_totalrecoverablefast22_1000 = ", N_totalrecoverablefast22_1000, "and in log = ", np.log10(N_totalrecoverablefast22_1000)) print("********************************") print("wholerecoverypercent_fast22 = $", wholerecoverypercent_fast22, "/pm", sigmafast22, "$") print("wholerecoverypercent_fast22_03 = $", wholerecoverypercent_fast22_03, "/pm", sigmafast22_03, "$") print("wholerecoverypercent_fast22_1 = $", wholerecoverypercent_fast22_1, "/pm", sigmafast22_1, "$") print("wholerecoverypercent_fast22_10 = $", wholerecoverypercent_fast22_10, "/pm", sigmafast22_10, "$") print("wholerecoverypercent_fast22_30 = $", wholerecoverypercent_fast22_30, "/pm", sigmafast22_30, "$") print("wholerecoverypercent_fast22_100 = $", wholerecoverypercent_fast22_100, "/pm", sigmafast22_100, "$") print("wholerecoverypercent_fast22_1000 = $", wholerecoverypercent_fast22_1000, "/pm", sigmafast22_1000, "$") print("********************************") print("overallrecoverypercent_fast22 = $", overallrecoverypercent_fast22, "/pm", overallsigmafast22, "$") print("overallrecoverypercent_fast22_03 = $", overallrecoverypercent_fast22_03, "/pm", overallsigmafast22_03, "$") print("overallrecoverypercent_fast22_1 = $", overallrecoverypercent_fast22_1, "/pm", overallsigmafast22_1, "$") print("overallrecoverypercent_fast22_10 = $", overallrecoverypercent_fast22_10, "/pm", overallsigmafast22_10, "$") print("overallrecoverypercent_fast22_30 = $", overallrecoverypercent_fast22_30, "/pm", overallsigmafast22_30, "$") print("overallrecoverypercent_fast22_100 = $", overallrecoverypercent_fast22_100, "/pm", overallsigmafast22_100, "$") print("overallrecoverypercent_fast22_1000 = $", overallrecoverypercent_fast22_1000, "/pm", overallsigmafast22_1000, "$") print("###############################") print("N_totalfast195 = ", N_totalfast195, "and in log = ", np.log10(N_totalfast195), "**** N_totalobservablefast195 = ", N_totalobservablefast195, "and in log = ", np.log10(N_totalobservablefast195), "**** N_totalrecoverablefast195 = ", N_totalrecoverablefast195, "and in log = ", np.log10(N_totalrecoverablefast195)) print("N_totalfast195_03 = ", N_totalfast195_03, "and in log = ", np.log10(N_totalfast195_03), "**** N_totalobservablefast195_03 = ", N_totalobservablefast195_03, "and in log = ", np.log10(N_totalobservablefast195_03), "**** N_totalrecoverablefast195_03 = ", N_totalrecoverablefast195_03, "and in log = ", np.log10(N_totalrecoverablefast195_03)) print("N_totalfast195_1 = ", N_totalfast195_1, "and in log = ", np.log10(N_totalfast195_1), "**** N_totalobservablefast195_1 = ", N_totalobservablefast195_1, "and in log = ", np.log10(N_totalobservablefast195_1), "**** N_totalrecoverablefast195_1 = ", N_totalrecoverablefast195_1, "and in log = ", np.log10(N_totalrecoverablefast195_1)) print("N_totalfast195_10 = ", N_totalfast195_10, "and in log = ", np.log10(N_totalfast195_10), "**** N_totalobservablefast195_10 = ", N_totalobservablefast195_10, "and in log = ", np.log10(N_totalobservablefast195_10), "**** N_totalrecoverablefast195_10 = ", N_totalrecoverablefast195_10, "and in log = ", np.log10(N_totalrecoverablefast195_10)) print("N_totalfast195_30 = ", N_totalfast195_30, "and in log = ", np.log10(N_totalfast195_30), "**** N_totalobservablefast195_30 = ", N_totalobservablefast195_30, "and in log = ", np.log10(N_totalobservablefast195_30), "**** N_totalrecoverablefast195_30 = ", N_totalrecoverablefast195_30, "and in log = ", np.log10(N_totalrecoverablefast195_30)) print("N_totalfast195_100 = ", N_totalfast195_100, "and in log = ", np.log10(N_totalfast195_100), "**** N_totalobservablefast195_100 = ", N_totalobservablefast195_100, "and in log = ", np.log10(N_totalobservablefast195_100), "**** N_totalrecoverablefast195_100 = ", N_totalrecoverablefast195_100, "and in log = ", np.log10(N_totalrecoverablefast195_100)) print("N_totalfast195_1000 = ", N_totalfast195_1000, "and in log = ", np.log10(N_totalfast195_1000), "**** N_totalobservablefast195_1000 = ", N_totalobservablefast195_1000, "and in log = ", np.log10(N_totalobservablefast195_1000), "**** N_totalrecoverablefast195_1000 = ", N_totalrecoverablefast195_1000, "and in log = ", np.log10(N_totalrecoverablefast195_1000)) print("********************************") print("wholerecoverypercent_fast195 = $", wholerecoverypercent_fast195, "/pm", sigmafast195, "$") print("wholerecoverypercent_fast195_03 = $", wholerecoverypercent_fast195_03, "/pm", sigmafast195_03, "$") print("wholerecoverypercent_fast195_1 = $", wholerecoverypercent_fast195_1, "/pm", sigmafast195_1, "$") print("wholerecoverypercent_fast195_10 = $", wholerecoverypercent_fast195_10, "/pm", sigmafast195_10, "$") print("wholerecoverypercent_fast195_30 = $", wholerecoverypercent_fast195_30, "/pm", sigmafast195_30, "$") print("wholerecoverypercent_fast195_100 = $", wholerecoverypercent_fast195_100, "/pm", sigmafast195_100, "$") print("wholerecoverypercent_fast195_1000 = $", wholerecoverypercent_fast195_1000, "/pm", sigmafast195_1000, "$") print("********************************") print("overallrecoverypercent_fast195 = $", overallrecoverypercent_fast195, "/pm", overallsigmafast195, "$") print("overallrecoverypercent_fast195_03 = $", overallrecoverypercent_fast195_03, "/pm", overallsigmafast195_03, "$") print("overallrecoverypercent_fast195_1 = $", overallrecoverypercent_fast195_1, "/pm", overallsigmafast195_1, "$") print("overallrecoverypercent_fast195_10 = $", overallrecoverypercent_fast195_10, "/pm", overallsigmafast195_10, "$") print("overallrecoverypercent_fast195_30 = $", overallrecoverypercent_fast195_30, "/pm", overallsigmafast195_30, "$") print("overallrecoverypercent_fast195_100 = $", overallrecoverypercent_fast195_100, "/pm", overallsigmafast195_100, "$") print("overallrecoverypercent_fast195_1000 = $", overallrecoverypercent_fast195_1000, "/pm", overallsigmafast195_1000, "$") print("#############################") print("binarypercent_22 = $", (N_totalfast22/N_totalfast)*100, "/pm", ((N_totalfast22**(1/2))/N_totalfast)*100, "$") print("binarypercent_195 = $", (N_totalfast195/N_totalfast)*100, "/pm", ((N_totalfast195**(1/2))/N_totalfast)*100, "$") print("binarypercent_03 = $", (N_totalfast_03/N_totalfast)*100, "/pm", ((N_totalfast_03**(1/2))/N_totalfast)*100, "$") print("binarypercent_1 = $", (N_totalfast_1/N_totalfast)*100, "/pm", ((N_totalfast_1**(1/2))/N_totalfast)*100, "$") print("binarypercent_10 = $", (N_totalfast_10/N_totalfast)*100, "/pm", ((N_totalfast_10**(1/2))/N_totalfast)*100, "$") print("binarypercent_30 = $", (N_totalfast_30/N_totalfast)*100, "/pm", ((N_totalfast_30**(1/2))/N_totalfast)*100, "$") print("binarypercent_100 = $", (N_totalfast_100/N_totalfast)*100, "/pm", ((N_totalfast_100**(1/2))/N_totalfast)*100, "$") print("binarypercent_1000 = $", (N_totalfast_1000/N_totalfast)*100, "/pm", ((N_totalfast_1000**(1/2))/N_totalfast)*100, "$") print("observablepercent_03 = $", (N_totalobservablefast_03/N_totalfast_03)*100, "/pm", ((N_totalobservablefast_03**(1/2))/N_totalfast_03)*100, "$") print("observablepercent_1 = $", (N_totalobservablefast_1/N_totalfast_1)*100, "/pm", ((N_totalobservablefast_1**(1/2))/N_totalfast_1)*100, "$") print("observablepercent_10 = $", (N_totalobservablefast_10/N_totalfast_10)*100, "/pm", ((N_totalobservablefast_10**(1/2))/N_totalfast_10)*100, "$") print("observablepercent_30 = $", (N_totalobservablefast_30/N_totalfast_30)*100, "/pm", ((N_totalobservablefast_30**(1/2))/N_totalfast_30)*100, "$") print("observablepercent_100 = $", (N_totalobservablefast_100/N_totalfast_100)*100, "/pm", ((N_totalobservablefast_100**(1/2))/N_totalfast_100)*100, "$") print("observablepercent_1000 = $", (N_totalobservablefast_1000/N_totalfast_1000)*100, "/pm", ((N_totalobservablefast_1000**(1/2))/N_totalfast_1000)*100, "$") print("observablepercent = $", (N_totalobservablefast/N_totalfast)*100, "/pm", ((N_totalobservablefast**(1/2))/N_totalfast)*100, "$") print("observablepercent22 = $", (N_totalobservablefast22/N_totalfast22)*100, "/pm", ((N_totalobservablefast22**(1/2))/N_totalfast22)*100, "$") print("observablepercent195 = $", (N_totalobservablefast195/N_totalfast195)*100, "/pm", ((N_totalobservablefast195**(1/2))/N_totalfast195)*100, "$") for fileobsDist_ in sorted(allFiles_obsDist): filename = fileobsDist_[77:] #when file path no longer has /old in it, will be fileobsDist_[73:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datobsDist = pd.read_csv(fileobsDist_, sep = ',', header=2) PeriodIn = datobsDist['p'] # input period -- 'p' in data file ########################################################## datobsDist1 = pd.read_csv(fileobsDist_, sep = ',', header=0, nrows=1) N_tri = datobsDist1["NstarsTRILEGAL"][0] Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datobsDist["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datobsDist['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datobsDist['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datobsDist.loc[PeriodOut != -999].index observable_03 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datobsDist.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datobsDist.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datobsDist.loc[PeriodIn <= 0.3].index P1 = datobsDist.loc[PeriodIn <= 1].index P10 = datobsDist.loc[PeriodIn <= 10].index P30 = datobsDist.loc[PeriodIn <= 30].index P100 = datobsDist.loc[PeriodIn <= 100].index P1000 = datobsDist.loc[PeriodIn <= 1000].index P_22 = datobsDist.loc[appMagMean <= 22.].index P03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datobsDist.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datobsDist.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datobsDist.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datobsDist.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datobsDist.loc[appMagMean <= 19.5].index P03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datobsDist.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datobsDist.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datobsDist.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datobsDist.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalobsDist_array.append(float(N_all)) N_totalobservableobsDist_array.append(float(N_obs)) N_totalrecoverableobsDist_array.append(float(N_rec)) N_totalobsDist_array_03.append(float(N_all03)) N_totalobservableobsDist_array_03.append(float(N_obs03)) N_totalrecoverableobsDist_array_03.append(float(N_rec03)) N_totalobsDist_array_1.append(float(N_all1)) N_totalobservableobsDist_array_1.append(float(N_obs1)) N_totalrecoverableobsDist_array_1.append(float(N_rec1)) N_totalobsDist_array_10.append(float(N_all10)) N_totalobservableobsDist_array_10.append(float(N_obs10)) N_totalrecoverableobsDist_array_10.append(float(N_rec10)) N_totalobsDist_array_30.append(float(N_all30)) N_totalobservableobsDist_array_30.append(float(N_obs30)) N_totalrecoverableobsDist_array_30.append(float(N_rec30)) N_totalobsDist_array_100.append(float(N_all100)) N_totalobservableobsDist_array_100.append(float(N_obs100)) N_totalrecoverableobsDist_array_100.append(float(N_rec100)) N_totalobsDist_array_1000.append(float(N_all1000)) N_totalobservableobsDist_array_1000.append(float(N_obs1000)) N_totalrecoverableobsDist_array_1000.append(float(N_rec1000)) N_totalobsDist22_array.append(float(N_all_22)) N_totalobservableobsDist22_array.append(float(N_obs_22)) N_totalrecoverableobsDist22_array.append(float(N_rec_22)) N_totalobsDist22_array_03.append(float(N_all03_22)) N_totalobservableobsDist22_array_03.append(float(N_obs03_22)) N_totalrecoverableobsDist22_array_03.append(float(N_rec03_22)) N_totalobsDist22_array_1.append(float(N_all1_22)) N_totalobservableobsDist22_array_1.append(float(N_obs1_22)) N_totalrecoverableobsDist22_array_1.append(float(N_rec1_22)) N_totalobsDist22_array_10.append(float(N_all10_22)) N_totalobservableobsDist22_array_10.append(float(N_obs10_22)) N_totalrecoverableobsDist22_array_10.append(float(N_rec10_22)) N_totalobsDist22_array_30.append(float(N_all30_22)) N_totalobservableobsDist22_array_30.append(float(N_obs30_22)) N_totalrecoverableobsDist22_array_30.append(float(N_rec30_22)) N_totalobsDist22_array_100.append(float(N_all100_22)) N_totalobservableobsDist22_array_100.append(float(N_obs100_22)) N_totalrecoverableobsDist22_array_100.append(float(N_rec100_22)) N_totalobsDist22_array_1000.append(float(N_all1000_22)) N_totalobservableobsDist22_array_1000.append(float(N_obs1000_22)) N_totalrecoverableobsDist22_array_1000.append(float(N_rec1000_22)) N_totalobsDist195_array.append(float(N_all_195)) N_totalobservableobsDist195_array.append(float(N_obs_195)) N_totalrecoverableobsDist195_array.append(float(N_rec_195)) N_totalobsDist195_array_03.append(float(N_all03_195)) N_totalobservableobsDist195_array_03.append(float(N_obs03_195)) N_totalrecoverableobsDist195_array_03.append(float(N_rec03_195)) N_totalobsDist195_array_1.append(float(N_all1_195)) N_totalobservableobsDist195_array_1.append(float(N_obs1_195)) N_totalrecoverableobsDist195_array_1.append(float(N_rec1_195)) N_totalobsDist195_array_10.append(float(N_all10_195)) N_totalobservableobsDist195_array_10.append(float(N_obs10_195)) N_totalrecoverableobsDist195_array_10.append(float(N_rec10_195)) N_totalobsDist195_array_30.append(float(N_all30_195)) N_totalobservableobsDist195_array_30.append(float(N_obs30_195)) N_totalrecoverableobsDist195_array_30.append(float(N_rec30_195)) N_totalobsDist195_array_100.append(float(N_all100_195)) N_totalobservableobsDist195_array_100.append(float(N_obs100_195)) N_totalrecoverableobsDist195_array_100.append(float(N_rec100_195)) N_totalobsDist195_array_1000.append(float(N_all1000_195)) N_totalobservableobsDist195_array_1000.append(float(N_obs1000_195)) N_totalrecoverableobsDist195_array_1000.append(float(N_rec1000_195)) N_totalobsDist = np.sum(N_totalobsDist_array) N_totalobsDist_03 = np.sum(N_totalobsDist_array_03) N_totalobsDist_1 = np.sum(N_totalobsDist_array_1) N_totalobsDist_10 = np.sum(N_totalobsDist_array_10) N_totalobsDist_30 = np.sum(N_totalobsDist_array_30) N_totalobsDist_100 = np.sum(N_totalobsDist_array_100) N_totalobsDist_1000 = np.sum(N_totalobsDist_array_1000) N_totalobservableobsDist = np.sum(N_totalobservableobsDist_array) N_totalobservableobsDist_03 = np.sum(N_totalobservableobsDist_array_03) N_totalobservableobsDist_1 = np.sum(N_totalobservableobsDist_array_1) N_totalobservableobsDist_10 = np.sum(N_totalobservableobsDist_array_10) N_totalobservableobsDist_30 = np.sum(N_totalobservableobsDist_array_30) N_totalobservableobsDist_100 = np.sum(N_totalobservableobsDist_array_100) N_totalobservableobsDist_1000 = np.sum(N_totalobservableobsDist_array_1000) N_totalrecoverableobsDist = np.sum(N_totalrecoverableobsDist_array) N_totalrecoverableobsDist_03 = np.sum(N_totalrecoverableobsDist_array_03) N_totalrecoverableobsDist_1 = np.sum(N_totalrecoverableobsDist_array_1) N_totalrecoverableobsDist_10 = np.sum(N_totalrecoverableobsDist_array_10) N_totalrecoverableobsDist_30 = np.sum(N_totalrecoverableobsDist_array_30) N_totalrecoverableobsDist_100 = np.sum(N_totalrecoverableobsDist_array_100) N_totalrecoverableobsDist_1000 = np.sum(N_totalrecoverableobsDist_array_1000) N_totalobsDist22 = np.sum(N_totalobsDist22_array) N_totalobsDist22_03 = np.sum(N_totalobsDist22_array_03) N_totalobsDist22_1 = np.sum(N_totalobsDist22_array_1) N_totalobsDist22_10 = np.sum(N_totalobsDist22_array_10) N_totalobsDist22_30 = np.sum(N_totalobsDist22_array_30) N_totalobsDist22_100 = np.sum(N_totalobsDist22_array_100) N_totalobsDist22_1000 = np.sum(N_totalobsDist22_array_1000) N_totalobservableobsDist22 = np.sum(N_totalobservableobsDist22_array) N_totalobservableobsDist22_03 = np.sum(N_totalobservableobsDist22_array_03) N_totalobservableobsDist22_1 = np.sum(N_totalobservableobsDist22_array_1) N_totalobservableobsDist22_10 = np.sum(N_totalobservableobsDist22_array_10) N_totalobservableobsDist22_30 = np.sum(N_totalobservableobsDist22_array_30) N_totalobservableobsDist22_100 = np.sum(N_totalobservableobsDist22_array_100) N_totalobservableobsDist22_1000 = np.sum(N_totalobservableobsDist22_array_1000) N_totalrecoverableobsDist22 = np.sum(N_totalrecoverableobsDist22_array) N_totalrecoverableobsDist22_03 = np.sum(N_totalrecoverableobsDist22_array_03) N_totalrecoverableobsDist22_1 = np.sum(N_totalrecoverableobsDist22_array_1) N_totalrecoverableobsDist22_10 = np.sum(N_totalrecoverableobsDist22_array_10) N_totalrecoverableobsDist22_30 = np.sum(N_totalrecoverableobsDist22_array_30) N_totalrecoverableobsDist22_100 = np.sum(N_totalrecoverableobsDist22_array_100) N_totalrecoverableobsDist22_1000 = np.sum(N_totalrecoverableobsDist22_array_1000) N_totalobsDist195 = np.sum(N_totalobsDist195_array) N_totalobsDist195_03 = np.sum(N_totalobsDist195_array_03) N_totalobsDist195_1 = np.sum(N_totalobsDist195_array_1) N_totalobsDist195_10 = np.sum(N_totalobsDist195_array_10) N_totalobsDist195_30 = np.sum(N_totalobsDist195_array_30) N_totalobsDist195_100 = np.sum(N_totalobsDist195_array_100) N_totalobsDist195_1000 = np.sum(N_totalobsDist195_array_1000) N_totalobservableobsDist195 = np.sum(N_totalobservableobsDist195_array) N_totalobservableobsDist195_03 = np.sum(N_totalobservableobsDist195_array_03) N_totalobservableobsDist195_1 = np.sum(N_totalobservableobsDist195_array_1) N_totalobservableobsDist195_10 = np.sum(N_totalobservableobsDist195_array_10) N_totalobservableobsDist195_30 = np.sum(N_totalobservableobsDist195_array_30) N_totalobservableobsDist195_100 = np.sum(N_totalobservableobsDist195_array_100) N_totalobservableobsDist195_1000 = np.sum(N_totalobservableobsDist195_array_1000) N_totalrecoverableobsDist195 = np.sum(N_totalrecoverableobsDist195_array) N_totalrecoverableobsDist195_03 = np.sum(N_totalrecoverableobsDist195_array_03) N_totalrecoverableobsDist195_1 = np.sum(N_totalrecoverableobsDist195_array_1) N_totalrecoverableobsDist195_10 = np.sum(N_totalrecoverableobsDist195_array_10) N_totalrecoverableobsDist195_30 = np.sum(N_totalrecoverableobsDist195_array_30) N_totalrecoverableobsDist195_100 = np.sum(N_totalrecoverableobsDist195_array_100) N_totalrecoverableobsDist195_1000 = np.sum(N_totalrecoverableobsDist195_array_1000) wholerecoverypercent_obsDist = (N_totalrecoverableobsDist/N_totalobservableobsDist)*100 wholerecoverypercent_obsDist_03 = (N_totalrecoverableobsDist_03/N_totalobservableobsDist_03)*100 wholerecoverypercent_obsDist_1 = (N_totalrecoverableobsDist_1/N_totalobservableobsDist_1)*100 wholerecoverypercent_obsDist_10 = (N_totalrecoverableobsDist_10/N_totalobservableobsDist_10)*100 wholerecoverypercent_obsDist_30 = (N_totalrecoverableobsDist_30/N_totalobservableobsDist_30)*100 wholerecoverypercent_obsDist_100 = (N_totalrecoverableobsDist_100/N_totalobservableobsDist_100)*100 wholerecoverypercent_obsDist_1000 = (N_totalrecoverableobsDist_1000/N_totalobservableobsDist_1000)*100 sigmaobsDist = ((N_totalrecoverableobsDist**(1/2))/N_totalobservableobsDist)*100 sigmaobsDist_03 = ((N_totalrecoverableobsDist_03**(1/2))/N_totalobservableobsDist_03)*100 sigmaobsDist_1 = ((N_totalrecoverableobsDist_1**(1/2))/N_totalobservableobsDist_1)*100 sigmaobsDist_10 = ((N_totalrecoverableobsDist_10**(1/2))/N_totalobservableobsDist_10)*100 sigmaobsDist_30 = ((N_totalrecoverableobsDist_30**(1/2))/N_totalobservableobsDist_30)*100 sigmaobsDist_100 = ((N_totalrecoverableobsDist_100**(1/2))/N_totalobservableobsDist_100)*100 sigmaobsDist_1000 = ((N_totalrecoverableobsDist_1000**(1/2))/N_totalobservableobsDist_1000)*100 overallrecoverypercent_obsDist = (N_totalrecoverableobsDist/N_totalobsDist)*100 overallrecoverypercent_obsDist_03 = (N_totalrecoverableobsDist_03/N_totalobsDist_03)*100 overallrecoverypercent_obsDist_1 = (N_totalrecoverableobsDist_1/N_totalobsDist_1)*100 overallrecoverypercent_obsDist_10 = (N_totalrecoverableobsDist_10/N_totalobsDist_10)*100 overallrecoverypercent_obsDist_30 = (N_totalrecoverableobsDist_30/N_totalobsDist_30)*100 overallrecoverypercent_obsDist_100 = (N_totalrecoverableobsDist_100/N_totalobsDist_100)*100 overallrecoverypercent_obsDist_1000 = (N_totalrecoverableobsDist_1000/N_totalobsDist_1000)*100 overallsigmaobsDist = ((N_totalrecoverableobsDist**(1/2))/N_totalobsDist)*100 overallsigmaobsDist_03 = ((N_totalrecoverableobsDist_03**(1/2))/N_totalobsDist_03)*100 overallsigmaobsDist_1 = ((N_totalrecoverableobsDist_1**(1/2))/N_totalobsDist_1)*100 overallsigmaobsDist_10 = ((N_totalrecoverableobsDist_10**(1/2))/N_totalobsDist_10)*100 overallsigmaobsDist_30 = ((N_totalrecoverableobsDist_30**(1/2))/N_totalobsDist_30)*100 overallsigmaobsDist_100 = ((N_totalrecoverableobsDist_100**(1/2))/N_totalobsDist_100)*100 overallsigmaobsDist_1000 = ((N_totalrecoverableobsDist_1000**(1/2))/N_totalobsDist_1000)*100 wholerecoverypercent_obsDist22 = (N_totalrecoverableobsDist22/N_totalobservableobsDist22)*100 wholerecoverypercent_obsDist22_03 = (N_totalrecoverableobsDist22_03/N_totalobservableobsDist22_03)*100 wholerecoverypercent_obsDist22_1 = (N_totalrecoverableobsDist22_1/N_totalobservableobsDist22_1)*100 wholerecoverypercent_obsDist22_10 = (N_totalrecoverableobsDist22_10/N_totalobservableobsDist22_10)*100 wholerecoverypercent_obsDist22_30 = (N_totalrecoverableobsDist22_30/N_totalobservableobsDist22_30)*100 wholerecoverypercent_obsDist22_100 = (N_totalrecoverableobsDist22_100/N_totalobservableobsDist22_100)*100 wholerecoverypercent_obsDist22_1000 = (N_totalrecoverableobsDist22_1000/N_totalobservableobsDist22_1000)*100 sigmaobsDist22 = ((N_totalrecoverableobsDist22**(1/2))/N_totalobservableobsDist22)*100 sigmaobsDist22_03 = ((N_totalrecoverableobsDist22_03**(1/2))/N_totalobservableobsDist22_03)*100 sigmaobsDist22_1 = ((N_totalrecoverableobsDist22_1**(1/2))/N_totalobservableobsDist22_1)*100 sigmaobsDist22_10 = ((N_totalrecoverableobsDist22_10**(1/2))/N_totalobservableobsDist22_10)*100 sigmaobsDist22_30 = ((N_totalrecoverableobsDist22_30**(1/2))/N_totalobservableobsDist22_30)*100 sigmaobsDist22_100 = ((N_totalrecoverableobsDist22_100**(1/2))/N_totalobservableobsDist22_100)*100 sigmaobsDist22_1000 = ((N_totalrecoverableobsDist22_1000**(1/2))/N_totalobservableobsDist22_1000)*100 overallrecoverypercent_obsDist22 = (N_totalrecoverableobsDist22/N_totalobsDist22)*100 overallrecoverypercent_obsDist22_03 = (N_totalrecoverableobsDist22_03/N_totalobsDist22_03)*100 overallrecoverypercent_obsDist22_1 = (N_totalrecoverableobsDist22_1/N_totalobsDist22_1)*100 overallrecoverypercent_obsDist22_10 = (N_totalrecoverableobsDist22_10/N_totalobsDist22_10)*100 overallrecoverypercent_obsDist22_30 = (N_totalrecoverableobsDist22_30/N_totalobsDist22_30)*100 overallrecoverypercent_obsDist22_100 = (N_totalrecoverableobsDist22_100/N_totalobsDist22_100)*100 overallrecoverypercent_obsDist22_1000 = (N_totalrecoverableobsDist22_1000/N_totalobsDist22_1000)*100 overallsigmaobsDist22 = ((N_totalrecoverableobsDist22**(1/2))/N_totalobsDist22)*100 overallsigmaobsDist22_03 = ((N_totalrecoverableobsDist22_03**(1/2))/N_totalobsDist22_03)*100 overallsigmaobsDist22_1 = ((N_totalrecoverableobsDist22_1**(1/2))/N_totalobsDist22_1)*100 overallsigmaobsDist22_10 = ((N_totalrecoverableobsDist22_10**(1/2))/N_totalobsDist22_10)*100 overallsigmaobsDist22_30 = ((N_totalrecoverableobsDist22_30**(1/2))/N_totalobsDist22_30)*100 overallsigmaobsDist22_100 = ((N_totalrecoverableobsDist22_100**(1/2))/N_totalobsDist22_100)*100 overallsigmaobsDist22_1000 = ((N_totalrecoverableobsDist22_1000**(1/2))/N_totalobsDist22_1000)*100 wholerecoverypercent_obsDist195 = (N_totalrecoverableobsDist195/N_totalobservableobsDist195)*100 wholerecoverypercent_obsDist195_03 = (N_totalrecoverableobsDist195_03/N_totalobservableobsDist195_03)*100 wholerecoverypercent_obsDist195_1 = (N_totalrecoverableobsDist195_1/N_totalobservableobsDist195_1)*100 wholerecoverypercent_obsDist195_10 = (N_totalrecoverableobsDist195_10/N_totalobservableobsDist195_10)*100 wholerecoverypercent_obsDist195_30 = (N_totalrecoverableobsDist195_30/N_totalobservableobsDist195_30)*100 wholerecoverypercent_obsDist195_100 = (N_totalrecoverableobsDist195_100/N_totalobservableobsDist195_100)*100 wholerecoverypercent_obsDist195_1000 = (N_totalrecoverableobsDist195_1000/N_totalobservableobsDist195_1000)*100 sigmaobsDist195 = ((N_totalrecoverableobsDist195**(1/2))/N_totalobservableobsDist195)*100 sigmaobsDist195_03 = ((N_totalrecoverableobsDist195_03**(1/2))/N_totalobservableobsDist195_03)*100 sigmaobsDist195_1 = ((N_totalrecoverableobsDist195_1**(1/2))/N_totalobservableobsDist195_1)*100 sigmaobsDist195_10 = ((N_totalrecoverableobsDist195_10**(1/2))/N_totalobservableobsDist195_10)*100 sigmaobsDist195_30 = ((N_totalrecoverableobsDist195_30**(1/2))/N_totalobservableobsDist195_30)*100 sigmaobsDist195_100 = ((N_totalrecoverableobsDist195_100**(1/2))/N_totalobservableobsDist195_100)*100 sigmaobsDist195_1000 = ((N_totalrecoverableobsDist195_1000**(1/2))/N_totalobservableobsDist195_1000)*100 overallrecoverypercent_obsDist195 = (N_totalrecoverableobsDist195/N_totalobsDist195)*100 overallrecoverypercent_obsDist195_03 = (N_totalrecoverableobsDist195_03/N_totalobsDist195_03)*100 overallrecoverypercent_obsDist195_1 = (N_totalrecoverableobsDist195_1/N_totalobsDist195_1)*100 overallrecoverypercent_obsDist195_10 = (N_totalrecoverableobsDist195_10/N_totalobsDist195_10)*100 overallrecoverypercent_obsDist195_30 = (N_totalrecoverableobsDist195_30/N_totalobsDist195_30)*100 overallrecoverypercent_obsDist195_100 = (N_totalrecoverableobsDist195_100/N_totalobsDist195_100)*100 overallrecoverypercent_obsDist195_1000 = (N_totalrecoverableobsDist195_1000/N_totalobsDist195_1000)*100 overallsigmaobsDist195 = ((N_totalrecoverableobsDist195**(1/2))/N_totalobsDist195)*100 overallsigmaobsDist195_03 = ((N_totalrecoverableobsDist195_03**(1/2))/N_totalobsDist195_03)*100 overallsigmaobsDist195_1 = ((N_totalrecoverableobsDist195_1**(1/2))/N_totalobsDist195_1)*100 overallsigmaobsDist195_10 = ((N_totalrecoverableobsDist195_10**(1/2))/N_totalobsDist195_10)*100 overallsigmaobsDist195_30 = ((N_totalrecoverableobsDist195_30**(1/2))/N_totalobsDist195_30)*100 overallsigmaobsDist195_100 = ((N_totalrecoverableobsDist195_100**(1/2))/N_totalobsDist195_100)*100 overallsigmaobsDist195_1000 = ((N_totalrecoverableobsDist195_1000**(1/2))/N_totalobsDist195_1000)*100\ print("N_totalobsDist = ", N_totalobsDist, "and in log = ", np.log10(N_totalobsDist), "**** N_totalobservableobsDist = ", N_totalobservableobsDist, "and in log = ", np.log10(N_totalobservableobsDist), "**** N_totalrecoverableobsDist = ", N_totalrecoverableobsDist, "and in log = ", np.log10(N_totalrecoverableobsDist)) print("N_totalobsDist_03 = ", N_totalobsDist_03, "and in log = ", np.log10(N_totalobsDist_03), "**** N_totalobservableobsDist_03 = ", N_totalobservableobsDist_03, "and in log = ", np.log10(N_totalobservableobsDist_03), "**** N_totalrecoverableobsDist_03 = ", N_totalrecoverableobsDist_03, "and in log = ", np.log10(N_totalrecoverableobsDist_03)) print("N_totalobsDist_1 = ", N_totalobsDist_1, "and in log = ", np.log10(N_totalobsDist_1), "**** N_totalobservableobsDist_1 = ", N_totalobservableobsDist_1, "and in log = ", np.log10(N_totalobservableobsDist_1), "**** N_totalrecoverableobsDist_1 = ", N_totalrecoverableobsDist_1, "and in log = ", np.log10(N_totalrecoverableobsDist_1)) print("N_totalobsDist_10 = ", N_totalobsDist_10, "and in log = ", np.log10(N_totalobsDist_10), "**** N_totalobservableobsDist_10 = ", N_totalobservableobsDist_10, "and in log = ", np.log10(N_totalobservableobsDist_10), "**** N_totalrecoverableobsDist_10 = ", N_totalrecoverableobsDist_10, "and in log = ", np.log10(N_totalrecoverableobsDist_10)) print("N_totalobsDist_30 = ", N_totalobsDist_30, "and in log = ",
np.log10(N_totalobsDist_30)
numpy.log10
import numpy as np import matplotlib.pyplot as plt from scipy import interpolate from matplotlib.colors import LinearSegmentedColormap from mpl_toolkits.axes_grid1.inset_locator import ( inset_axes, Bbox, BboxConnector, BboxPatch, TransformedBbox) import src.visualization.grid_viz as grid_viz def time_evol_ling(ling_props_dict, x_data, idx_data_to_plot=None, idx_ling_to_plot=None, figsize=None, bottom_ylim=0, ax=None, fig_save_path=None, show=True, color_cycle=None, legend=True, **scatter_kwargs): ''' Plot the time evolution of the proportions of each ling group whose order in `ling_props_dict` is contained in `idx_ling_to_plot`. The times are given by `x_data`, and the indices of the selected data points are in `idx_ling_to_plot`. ''' if ax is None: fig, ax = plt.subplots(1, figsize=figsize) ling_labels = list(ling_props_dict.keys()) if idx_data_to_plot is None: idx_data_to_plot = np.arange(0, len(ling_props_dict[ling_labels[0]])) if idx_ling_to_plot is None: idx_ling_to_plot = range(len(ling_labels)) if color_cycle is None: # This selects the default color cycle. color_cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] x_plot = x_data[idx_data_to_plot] for i in idx_ling_to_plot: ling_label = ling_labels[i] y_plot = np.array(ling_props_dict[ling_label])[idx_data_to_plot] # By using the ith element of the color_cycle, we ensure that if we plot # multiple graphs, a given language will have a consistent colour. ax.scatter(x_plot, y_plot, label=ling_label, c=(color_cycle[i],), **scatter_kwargs) if len(ling_props_dict) > 1: ax.set_ylim(bottom=bottom_ylim) if legend: ax.legend() ax.set_xlabel('step') ax.set_ylabel(r'$p_{L}$') if fig_save_path: fig.savefig(fig_save_path) if show: fig.show() return ax def scatter_inset(x_data, ling_props_dict, bbox_to_anchor, inset_interval, idx_grp_inset, save_path=None, show=True, figsize=None, ax=None, fig=None, color_cycle=None, top_ylim=None, inset_left=True): ''' Makes a scatter plot of the proportions for each group contained in `ling_props_dict` over the times `x_data`, and adds an inset zooming over the time interval `inset_interval` of the `idx_grp_inset`-th group. The inset is placed within `bbox_to_anchor`. ''' if ax is None: fig, ax = plt.subplots(1, figsize=figsize) if color_cycle is None: color_cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] ling_labels = list(ling_props_dict.keys()) len_data = len(ling_props_dict[ling_labels[0]]) idx_data_to_plot =
np.arange(0, len_data)
numpy.arange
from chart import bar, histogram, scatter from chart.preprocessing import NumberBinarizer from chart.preprocessing import RangeScaler # Example 1A from chart import bar x = [500, 200, 900, 400] y = ['marc', 'mummify', 'chart', 'sausagelink'] bar(x, y) # Example 1B from chart import bar import pandas as pd df = pd.DataFrame({ 'artist': ['<NAME>', '<NAME>', 'The Knocks'], 'listens': [8_456_831, 18_185_245, 2_556_448] }) bar(df.listens, df.artist, width=20, label_width=11, mark='🔊') # Example 2A from chart import histogram x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2] histogram(x) # Example 2B from chart import histogram import scipy.stats as stats import numpy as np
np.random.seed(14)
numpy.random.seed
# %% from functools import partial import logging import numpy as np import torch import colorsys from torchvtk.utils import make_5d, tex_from_pts # Persistent Homology peak extraction class Peak: def __init__(self, startidx): self.born = self.left = self.right = startidx self.died = None def get_persistence(self, seq): return seq[self.born] if self.died is None else seq[self.born] - seq[self.died] def get_persistent_homology(seq): peaks = [] # Maps indices to peaks idxtopeak = [None for s in seq] # Sequence indices sorted by values indices = range(len(seq)) indices = sorted(indices, key = lambda i: seq[i], reverse=True) # Process each sample in descending order for idx in indices: lftdone = (idx > 0 and idxtopeak[idx-1] is not None) rgtdone = (idx < len(seq)-1 and idxtopeak[idx+1] is not None) il = idxtopeak[idx-1] if lftdone else None ir = idxtopeak[idx+1] if rgtdone else None # New peak born if not lftdone and not rgtdone: peaks.append(Peak(idx)) idxtopeak[idx] = len(peaks)-1 # Directly merge to next peak left if lftdone and not rgtdone: peaks[il].right += 1 idxtopeak[idx] = il # Directly merge to next peak right if not lftdone and rgtdone: peaks[ir].left -= 1 idxtopeak[idx] = ir # Merge left and right peaks if lftdone and rgtdone: # Left was born earlier: merge right to left if seq[peaks[il].born] > seq[peaks[ir].born]: peaks[ir].died = idx peaks[il].right = peaks[ir].right idxtopeak[peaks[il].right] = idxtopeak[idx] = il else: peaks[il].died = idx peaks[ir].left = peaks[il].left idxtopeak[peaks[ir].left] = idxtopeak[idx] = ir # This is optional convenience return sorted(peaks, key=lambda p: p.get_persistence(seq), reverse=True) def distinguishable_color_generator(): ''' Generates distinguishable colors, compare http://alumni.media.mit.edu/~wad/color/numbers.html ''' colors = np.array([ [173, 35, 35], [42, 75, 215], [29, 105, 20], [129, 74, 25], [129, 38, 192], [160, 160, 160], [129, 197, 122], [157, 175, 255], [41, 208, 208], [255, 146, 51], [255, 238, 51], [255, 205, 243], [255, 255, 255] ], dtype=np.float32) / 255.0 np.random.shuffle(colors) for color in colors: yield color def random_color_generator(): ''' Generates random colors ''' while True: h, s, l = np.random.rand(), 0.2 + np.random.rand() * 0.8, 0.35 + np.random.rand() * 0.3 yield np.array([float(255*i) for i in colorsys.hls_to_rgb(h,l,s)], dtype=np.float32) / 255.0 def fixed_color_generator(color=(180, 170, 170.0)): while True: yield np.array(color).astype(np.float32) / 255.0 def get_histogram_peaks(data, bins=1024, skip_outlier=True): vals, ranges = np.histogram(data, bins) peaks = get_persistent_homology(vals) ret = np.array(list(map(lambda p: ( (ranges[p.born] + ranges[p.born+1])/2.0, # intensity value p.get_persistence(vals)), peaks # persistence for peak importance ))) return np.stack([ret[:, 0], ret[:, 1] / peaks[0].get_persistence(vals)], axis=1) def overlaps_trapeze(trap, ts): for t in ts: if trap[0,0] < t[5,0] and trap[5,0] > t[0,0]: return True return False def includes_maxvalue(trap, vol=None): return trap[5, 0] >= (1.0 if vol is None else vol.max()) def includes_minvalue(trap, vol=None, eps=1e-2): return trap[0, 0] <= (eps if vol is None else vol.min() + eps) def flatten_clip_sort_peaks(peaks): if len(peaks) == 0: peaks = np.zeros((1,5)) arr = np.clip(np.stack(peaks).reshape((-1, 5)), 0, 1) idx = np.argsort(arr[:, 0]) return arr[idx] def colorize_trapeze(t, color): res = np.zeros((t.shape[0], 5)) res[:, 0] = t[:, 0] res[:, 1:4] = color res[:, 4] = t[:, 1] return res def make_trapezoid(c, top_height, bot_width, fixed_shape=False): # bot_width = bot_width * c + 1e-2 # allow for wider peaks in higher density # int_contrib = np.clip(c * (1/0.6), 0, 1) # higher opacity on higher density (usually bones, which are often occluded) # top_height = (int_contrib + top_height) / 2.0 # allow for mostly low peaks on skin, higher peaks on bones if fixed_shape: bot_height = top_height top_width = bot_width else: bot_height = np.random.rand(1).item() * top_height top_width = np.random.rand(1).item() * bot_width return np.stack([ np.array([c - bot_width/2 -2e-2, 0]), # left wall ____________ __ top_height np.array([c - bot_width/2, bot_height]), # bottom left / top_width \ np.array([c - top_width/2, top_height]), # top left /__ bot_width __\__ bot_height np.array([c + top_width/2, top_height]), # top right | | np.array([c + bot_width/2, bot_height]), # bottom right | right wall ->| np.array([c + bot_width/2 +2e-2, 0]) # right wall |<- left wall | ]) def get_tf_pts_from_peaks(peaks, colors='random', height_range=(0.1, 0.9), width_range=(0.02, 0.2), peak_center_noise_std=0.05, max_num_peaks=5, peak_valid_fn=None, fixed_shape=False): ''' Compute transfer function with non-overlapping trapezoids around given peaks Args: peaks (np.array of [intensity, persistence]): The histogram peaks colors (str): Either "distinguishable", "random" or "fixed" height_range (tuple of floats): Range in which to draw trapezoid height (=opacity). Max range is (0, 1) width_range (tuple of floats): Range in which to draw trapezoid width around peak. Max range is (0, 1) peak_center_noise_std (float): Standard deviation of the Gaussian noise applied to peak centers, to shift those randomly. max_num_peaks (int): Maximum number of peaks in the histogram. The number will be drawn as U(1, max_num_peaks) peak_valid_fn (func): Function that gets the old TF without a new peak and the TF with the new peak and decides wether to add the peak (return True) or not (return False). fixed_shape (bool): If True produces a classic ramp peak, if False it has random double ramps Returns: [ np.array [x, y] ]: List of TF primitives (List of coordinates [0,1]²) to be lerped ''' if peak_valid_fn is None: peak_valid_fn = lambda a, b: True if max_num_peaks is None: n_peaks = len(peaks) elif isinstance(max_num_peaks, (tuple, list)) and len(max_num_peaks) == 2: n_peaks = np.random.randint(max_num_peaks[0], max_num_peaks[1] + 1) else: n_peaks = np.random.randint(1, max_num_peaks+1) height_range_len = height_range[1] - height_range[0] width_range_len = width_range[1] - width_range[0] if colors == 'distinguishable': color_gen = distinguishable_color_generator() elif colors == 'random': color_gen = random_color_generator() elif colors == 'fixed': color_gen = fixed_color_generator() else: raise Exception(f'Invalid colors argument ({colors}). Use either "distinguishable" or "random".') # | c |__ 0 if peaks is None: peaks = np.random.rand(100, 2) peaks = np.stack([np.linspace(0.05, 0.75, 15)]*2, axis=1) trapezes = [make_trapezoid(c + np.random.randn() * peak_center_noise_std, # Center of peak top_height= height_range_len *
np.random.rand(1)
numpy.random.rand
""" Test script for PE analysis. """ import os import numpy as np import pytest from bilby.core.prior import PriorDict from cwinpy.data import HeterodynedData from cwinpy.pe.pe import PERunner, pe class TestPE(object): @classmethod def setup_class(cls): """ Create data set files for use. """ seed = 88523 # random seed start = 1000000000 # GPS start end = 1000086400 # GPS end step = 60 # time step size # time stamp array cls.times = np.arange(start, end, step) size = len(cls.times) # create pulsar parameter file cls.f0 = 100.1 # frequency parcontent = ( "PSRJ J0341-1253\n" "F0 {}\n" "F1 6.5e-12\n" "RAJ 03:41:00.0\n" "DECJ -12:53:00.0\n" "PEPOCH 56789" ) cls.parfile = "pe_test.par" with open(cls.parfile, "w") as fp: fp.write(parcontent.format(cls.f0)) # set random seed np.random.seed(seed) # create simulated H1 data (at 1 and 2f) cls.H1data = [] cls.H1file = [] cls.H1fileh5 = [] H1sigma = 1e-24 for i in [1, 2]: cls.H1data.append( np.vstack( ( cls.times, H1sigma * np.random.randn(size), H1sigma * np.random.randn(size), ) ).T ) cls.H1file.append("H1data{}f.txt".format(i)) np.savetxt(cls.H1file[-1], cls.H1data[-1]) # create HDF5 version of data cls.H1fileh5.append("H1data{}f.hdf5".format(i)) hd = HeterodynedData(data=cls.H1data[-1], detector="H1", par=cls.parfile) hd.write(cls.H1fileh5[-1]) # create simulated L1 data cls.L1data = [] cls.L1file = [] cls.L1fileh5 = [] L1sigma = 0.7e-24 for i in [1, 2]: cls.L1data.append( np.vstack( ( cls.times, L1sigma * np.random.randn(size), L1sigma * np.random.randn(size), ) ).T ) cls.L1file.append("L1data{}f.txt".format(i)) np.savetxt(cls.L1file[-1], cls.L1data[-1]) # create HDF5 version of data cls.L1fileh5.append("L1data{}f.hdf5".format(i)) hd = HeterodynedData(data=cls.L1data[-1], detector="L1", par=cls.parfile) hd.write(cls.L1fileh5[-1]) # create a pulsar parameter file containing GW signal parameters # (for comparison with lalapps_pulsar_parameter_estimation_nested) parcontent = ( "PSRJ J0341-1253\n" "F0 {}\n" "F1 6.5e-12\n" "RAJ 03:41:00.0\n" "DECJ -12:53:00.0\n" "PEPOCH 56789\n" "C21 6.2e-24\n" "C22 3.4e-25\n" "PHI21 0.4\n" "PHI22 1.3\n" "PSI 1.1\n" "IOTA 0.9\n" "UNITS TCB" ) cls.parfilesig = "pe_test_sig.par" with open(cls.parfilesig, "w") as fp: fp.write(parcontent.format(cls.f0)) # set data pre-produced using lalapps_pulsar_parameter_estimation_nested # with the same parameter file cls.sigH11f = np.loadtxt( os.path.join( os.path.dirname(os.path.realpath(__file__)), "data", "inj_test.txt_H1_1.0_signal_only", ) ) cls.sigL11f = np.loadtxt( os.path.join( os.path.dirname(os.path.realpath(__file__)), "data", "inj_test.txt_L1_1.0_signal_only", ) ) cls.sigH12f = np.loadtxt( os.path.join( os.path.dirname(os.path.realpath(__file__)), "data", "inj_test.txt_H1_2.0_signal_only", ) ) cls.sigL12f = np.loadtxt( os.path.join( os.path.dirname(os.path.realpath(__file__)), "data", "inj_test.txt_L1_2.0_signal_only", ) ) # create a prior file cls.priorfile = "pe_test.prior" cls.priormin = 0.0 cls.priormax = 1e-22 priorcontent = "h0 = Uniform(name='h0', minimum={}, maximum={})" with open(cls.priorfile, "w") as fp: fp.write(priorcontent.format(cls.priormin, cls.priormax)) cls.priorbilby = PriorDict(cls.priorfile) @classmethod def teardown_class(cls): """ Remove data set files. """ for dfile in cls.H1file + cls.L1file + cls.H1fileh5 + cls.L1fileh5: os.remove(dfile) os.remove(cls.parfile) os.remove(cls.parfilesig) os.remove(cls.priorfile) def test_pe_runner_input(self): """ Test the PERunner class fails as expected for wrong input types. """ for inputs in [1.0, "hello", 1, True]: with pytest.raises(TypeError): PERunner(inputs) def test_data_input(self): """ Test input data """ # single detector and single data file config = "par-file = {}\ndata-file = {}\nprior = {}\ndata-kwargs={}" configfile = "config_test.ini" datafile = self.H1file[1] datakwargs = {"remove_outliers": False} with open(configfile, "w") as fp: fp.write(config.format(self.parfile, datafile, self.priorfile, datakwargs)) # no detector specified with pytest.raises(ValueError): pe(config=configfile) with pytest.raises(ValueError): pe(par_file=self.parfile, data_file=datafile) # not prior file specified with pytest.raises(ValueError): pe(par_file=self.parfile, data_file=datafile, detector="H1") # comparisons # pass as keyword arguments (detector as keyword) t1kw1 = pe( par_file=self.parfile, data_file=datafile, detector="H1", prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file string) t1kw2 = pe( par_file=self.parfile, data_file="{}:{}".format("H1", datafile), prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file dict) t1kw3 = pe( par_file=self.parfile, data_file={"H1": datafile}, prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as config file config = ( "par-file = {}\ndata-file = {}\nprior = {}\ndetector = H1\ndata-kwargs = {}" ) with open(configfile, "w") as fp: fp.write(config.format(self.parfile, datafile, self.priorfile, datakwargs)) t1c1 = pe(config=configfile) # use the data_file_2f option instead t1kw4 = pe( par_file=self.parfile, data_file_2f=datafile, detector="H1", prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file string) t1kw5 = pe( par_file=self.parfile, data_file_2f="{}:{}".format("H1", datafile), prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file dict) t1kw6 = pe( par_file=self.parfile, data_file_2f={"H1": datafile}, prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as config file config = "par-file = {}\ndata-file-2f = {}\nprior = {}\ndetector = H1\ndata-kwargs = {}" with open(configfile, "w") as fp: fp.write(config.format(self.parfile, datafile, self.priorfile, datakwargs)) t1c2 = pe(config=configfile) # perform consistency checks for tv in [t1kw1, t1kw2, t1kw3, t1c1, t1kw4, t1kw5, t1kw6, t1c2]: assert len(tv.hetdata) == 1 assert tv.hetdata["H1"][0].par["F"][0] == self.f0 assert tv.hetdata.detectors[0] == "H1" assert tv.hetdata.freq_factors[0] == 2 assert np.allclose(tv.hetdata["H1"][0].data.real, self.H1data[1][:, 1]) assert np.allclose(tv.hetdata["H1"][0].data.imag, self.H1data[1][:, 2]) assert np.allclose(tv.hetdata["H1"][0].times.value, self.times) assert PriorDict(tv.prior) == self.priorbilby # now pass two detectors # pass as keyword arguments (detector as keyword) t2kw1 = pe( par_file=self.parfile, data_file=[self.H1file[1], self.L1file[1]], detector=["H1", "L1"], prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file string) t2kw2 = pe( par_file=self.parfile, data_file=[ "{}:{}".format("H1", self.H1file[1]), "{}:{}".format("L1", self.L1file[1]), ], prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file dict) t2kw3 = pe( par_file=self.parfile, data_file={"H1": self.H1file[1], "L1": self.L1file[1]}, prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as config file config = ( "par-file = {}\n" "data-file = [{}, {}]\n" "prior = {}\n" "detector = [H1, L1]\n" "data-kwargs = {}" ) with open(configfile, "w") as fp: fp.write( config.format( self.parfile, self.H1file[1], self.L1file[1], self.priorfile, datakwargs, ) ) t2c1 = pe(config=configfile) # use the data_file_2f option instead t2kw4 = pe( par_file=self.parfile, data_file_2f=[self.H1file[1], self.L1file[1]], detector=["H1", "L1"], prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file string) t2kw5 = pe( par_file=self.parfile, data_file_2f=[ "{}:{}".format("H1", self.H1file[1]), "{}:{}".format("L1", self.L1file[1]), ], prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file dict) t2kw6 = pe( par_file=self.parfile, data_file_2f={"H1": self.H1file[1], "L1": self.L1file[1]}, prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as config file config = ( "par-file = {}\n" "data-file-2f = [{}, {}]\n" "prior = {}\n" "detector = [H1, L1]\n" "data-kwargs = {}" ) with open(configfile, "w") as fp: fp.write( config.format( self.parfile, self.H1file[1], self.L1file[1], self.priorfile, datakwargs, ) ) t2c2 = pe(config=configfile) # perform consistency checks for tv in [t2kw1, t2kw2, t2kw3, t2c1, t2kw4, t2kw5, t2kw6, t2c2]: assert len(tv.hetdata) == 2 for i, det, data in zip( range(2), ["H1", "L1"], [self.H1data[1], self.L1data[1]] ): assert tv.hetdata.detectors[i] == det assert tv.hetdata.freq_factors[0] == 2 assert tv.hetdata[det][0].par["F"][0] == self.f0 assert np.allclose(tv.hetdata[det][0].data.real, data[:, 1]) assert np.allclose(tv.hetdata[det][0].data.imag, data[:, 2]) assert np.allclose(tv.hetdata[det][0].times.value, self.times) assert PriorDict(tv.prior) == self.priorbilby # pass data at 1f datafile = self.H1file[0] t3kw1 = pe( par_file=self.parfile, data_file_1f=datafile, detector="H1", prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file string) t3kw2 = pe( par_file=self.parfile, data_file_1f="{}:{}".format("H1", datafile), prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file dict) t3kw3 = pe( par_file=self.parfile, data_file_1f={"H1": datafile}, prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as config file config = "par-file = {}\ndata-file-1f = {}\nprior = {}\ndetector = H1\ndata-kwargs = {}" with open(configfile, "w") as fp: fp.write(config.format(self.parfile, datafile, self.priorfile, datakwargs)) t3c1 = pe(config=configfile) # perform consistency checks for tv in [t3kw1, t3kw2, t3kw3, t3c1]: assert len(tv.hetdata) == 1 assert tv.hetdata.detectors[0] == "H1" assert tv.hetdata.freq_factors[0] == 1 assert tv.hetdata["H1"][0].par["F"][0] == self.f0 assert np.allclose(tv.hetdata["H1"][0].data.real, self.H1data[0][:, 1]) assert np.allclose(tv.hetdata["H1"][0].data.imag, self.H1data[0][:, 2]) assert np.allclose(tv.hetdata["H1"][0].times.value, self.times) assert PriorDict(tv.prior) == self.priorbilby # test with two detectors and two frequencies # pass as keyword arguments (detector as keyword) t4kw1 = pe( par_file=self.parfile, data_file_1f=[self.H1file[0], self.L1file[0]], data_file_2f=[self.H1file[1], self.L1file[1]], detector=["H1", "L1"], prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file string) t4kw2 = pe( par_file=self.parfile, data_file_1f=[ "{}:{}".format("H1", self.H1file[0]), "{}:{}".format("L1", self.L1file[0]), ], data_file_2f=[ "{}:{}".format("H1", self.H1file[1]), "{}:{}".format("L1", self.L1file[1]), ], prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as keyword arguments (detector in data file dict) t4kw3 = pe( par_file=self.parfile, data_file_1f={"H1": self.H1file[0], "L1": self.L1file[0]}, data_file_2f={"H1": self.H1file[1], "L1": self.L1file[1]}, prior=self.priorbilby, data_kwargs=datakwargs, ) # pass as config file config = ( "par-file = {}\n" "data-file-1f = [{}, {}]\n" "data-file-2f = [{}, {}]\n" "prior = {}\n" "detector = [H1, L1]\n" "data-kwargs = {}" ) with open(configfile, "w") as fp: fp.write( config.format( self.parfile, self.H1file[0], self.L1file[0], self.H1file[1], self.L1file[1], self.priorfile, datakwargs, ) ) t4c1 = pe(config=configfile) # perform consistency checks for tv in [t4kw1, t4kw2, t4kw3, t4c1]: assert len(tv.hetdata) == 4 for i, det, data1f, data2f in zip( range(2), ["H1", "L1"], [self.H1data[0], self.L1data[0]], [self.H1data[1], self.L1data[1]], ): assert tv.hetdata.detectors[i] == det assert tv.hetdata[det][0].freq_factor == 1.0 assert tv.hetdata[det][1].freq_factor == 2.0 assert tv.hetdata[det][0].par["F"][0] == self.f0 assert np.allclose(tv.hetdata[det][0].data.real, data1f[:, 1]) assert
np.allclose(tv.hetdata[det][0].data.imag, data1f[:, 2])
numpy.allclose
from des_model import DES_model from des_simulator import DES_simulator import numpy as np import matplotlib.pyplot as plt # build model d = np.array([[320.0e3]]) # port-terminal distance (m) tu = np.array([[4 * 3600.0]]) # unloading time (s) tl = np.array([[8 * 3600.0]]) # loading time (s) v = np.array([40 / 3.6]) # train speed (m/s) L = np.array([5.0e6]) # train load (kg) ntmax = 8 # maximum number of trains tc = tu[0][0] + tl[0][0] + 2 * d[0][0] / v[0] ntm = tc / tl[0][0] # simulate model T = 50 * 24 * 3600 # time horizon (s) Pn = [0] # numerical productivity (kg/s) Pa = [0] # analytical productivity (kg/s) tq = [0] # queue time (s) n = [0] # number of trains for i in range(1, ntmax): # model nt = np.array([i], dtype=int) # train count of each model model = DES_model(d, tu, tl, nt, v, L) # simulation simulator = DES_simulator() simulator.simulate(model, T) Pt, P, t = model.productivity() # [kg/s], [kg], [s] tq.append(model.queue_time()) # log n.append(i) Pn.append(Pt[-1]) Pa.append(min(nt[0], ntm) * L[0] / tc) # line command output print('\n Numerical productivity {:.0f}'.format(Pt[-1] * 3.6)) print('Analytical productivity {:.0f}'.format(Pa[-1] * 3.6)) # graphical output if False: hf, ha = plt.subplots() plt.plot(t / 3600, Pt * 3.6) plt.xlabel('time (hours)') plt.ylabel('productivity (ton/hour)') plt.title('{} trains'.format(i)) # graphical ouptut hf, ha = plt.subplots() plt.plot(np.array(n),
np.array(Pn)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Plot ranks of top 100 users in the cyberbullying dataset Usage: python plot_fig4_top_entities.py Input data files: ../data/[app_name]_out/complete_user_[app_name].txt, ../data/[app_name]_out/user_[app_name]_all.txt Time: ~8M """ import sys, os, platform from collections import defaultdict from datetime import datetime import numpy as np from scipy.stats import entropy, kendalltau import matplotlib as mpl if platform.system() == 'Linux': mpl.use('Agg') # no UI backend import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from utils.helper import Timer, melt_snowflake from utils.metrics import mean_absolute_percentage_error as mape cm = plt.cm.get_cmap('RdBu') def write_to_file(filepath, header, datalist): with open(filepath, 'w') as fout: for user_idx, user_id in enumerate(header): fout.write('{0}\t{1}\t{2}\n'.format(user_id, sum(datalist[user_idx]), ','.join(map(str, datalist[user_idx])))) def read_from_file(filepath, dtype=0): datalist = [] with open(filepath, 'r') as fin: for line in fin: user_id, total, records = line.rstrip().split('\t') if dtype == 0: records = list(map(int, records.split(','))) else: records = list(map(float, records.split(','))) datalist.append(records) return datalist def main(): timer = Timer() timer.start() app_name = 'cyberbullying' hours_in_day = 24 minutes_in_hour = 60 seconds_in_minute = 60 ms_in_second = 1000 num_bins = 100 width = ms_in_second // num_bins num_top = 500 fig, axes = plt.subplots(1, 2, figsize=(7.2, 4.8), gridspec_kw={'width_ratios': [2.75, 3]}) axes = axes.ravel() confusion_sampling_rate = np.load('../data/{0}_out/{0}_confusion_sampling_rate.npy'.format(app_name)) confusion_sampling_rate = np.nan_to_num(confusion_sampling_rate) load_external_data = True if not load_external_data: sample_entity_stats = defaultdict(int) with open('../data/{0}_out/user_{0}_all.txt'.format(app_name), 'r') as fin: for line in fin: split_line = line.rstrip().split(',') sample_entity_stats[split_line[1]] += 1 # == == == == == == Part 2: Plot entity rank == == == == == == # print('>>> found top {0} users in sample set...'.format(num_top)) sample_top = [kv[0] for kv in sorted(sample_entity_stats.items(), key=lambda x: x[1], reverse=True)[:num_top]] # == == == == == == Part 1: Find tweets appearing in complete set == == == == == == # complete_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)] complete_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)] complete_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)] complete_post_lists_10ms = [[0] * num_bins for _ in range(num_top)] complete_entity_stats = defaultdict(int) with open('../data/{0}_out/complete_user_{0}.txt'.format(app_name), 'r') as fin: for line in fin: split_line = line.rstrip().split(',') user_id = split_line[1] if user_id in sample_top: complete_entity_stats[user_id] += 1 user_idx = sample_top.index(user_id) tweet_id = split_line[0] timestamp_ms = melt_snowflake(tweet_id)[0] dt_obj = datetime.utcfromtimestamp(timestamp_ms // 1000) hour = dt_obj.hour minute = dt_obj.minute second = dt_obj.second millisec = timestamp_ms % 1000 ms_idx = (millisec-7) // width if millisec >= 7 else (1000 + millisec-7) // width complete_post_lists_hour[user_idx][hour] += 1 complete_post_lists_min[user_idx][minute] += 1 complete_post_lists_sec[user_idx][second] += 1 complete_post_lists_10ms[user_idx][ms_idx] += 1 write_to_file('./complete_post_lists_hour.txt', sample_top, complete_post_lists_hour) write_to_file('./complete_post_lists_min.txt', sample_top, complete_post_lists_min) write_to_file('./complete_post_lists_sec.txt', sample_top, complete_post_lists_sec) write_to_file('./complete_post_lists_10ms.txt', sample_top, complete_post_lists_10ms) print('>>> finish dumping complete lists...') timer.stop() # == == == == == == Part 2: Find appearing tweets in sample set == == == == == == # sample_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)] sample_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)] sample_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)] sample_post_lists_10ms = [[0] * num_bins for _ in range(num_top)] estimated_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)] estimated_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)] estimated_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)] estimated_post_lists_10ms = [[0] * num_bins for _ in range(num_top)] hourly_conversion = np.mean(confusion_sampling_rate, axis=(1, 2, 3)) minutey_conversion = np.mean(confusion_sampling_rate, axis=(2, 3)) secondly_conversion = np.mean(confusion_sampling_rate, axis=(3)) with open('../data/{0}_out/user_{0}_all.txt'.format(app_name), 'r') as fin: for line in fin: split_line = line.rstrip().split(',') user_id = split_line[1] if user_id in sample_top: user_idx = sample_top.index(user_id) tweet_id = split_line[0] timestamp_ms = melt_snowflake(tweet_id)[0] dt_obj = datetime.utcfromtimestamp(timestamp_ms // 1000) hour = dt_obj.hour minute = dt_obj.minute second = dt_obj.second millisec = timestamp_ms % 1000 ms_idx = (millisec-7) // width if millisec >= 7 else (1000 + millisec-7) // width sample_post_lists_hour[user_idx][hour] += 1 sample_post_lists_min[user_idx][minute] += 1 sample_post_lists_sec[user_idx][second] += 1 sample_post_lists_10ms[user_idx][ms_idx] += 1 estimated_post_lists_hour[user_idx][hour] += 1 / hourly_conversion[hour] estimated_post_lists_min[user_idx][minute] += 1 / minutey_conversion[hour, minute] estimated_post_lists_sec[user_idx][second] += 1 / secondly_conversion[hour, minute, second] estimated_post_lists_10ms[user_idx][ms_idx] += 1 / confusion_sampling_rate[hour, minute, second, ms_idx] write_to_file('./sample_post_lists_hour.txt', sample_top, sample_post_lists_hour) write_to_file('./sample_post_lists_min.txt', sample_top, sample_post_lists_min) write_to_file('./sample_post_lists_sec.txt', sample_top, sample_post_lists_sec) write_to_file('./sample_post_lists_10ms.txt', sample_top, sample_post_lists_10ms) write_to_file('./estimated_post_lists_hour.txt', sample_top, estimated_post_lists_hour) write_to_file('./estimated_post_lists_min.txt', sample_top, estimated_post_lists_min) write_to_file('./estimated_post_lists_sec.txt', sample_top, estimated_post_lists_sec) write_to_file('./estimated_post_lists_10ms.txt', sample_top, estimated_post_lists_10ms) print('>>> finish dumping sample and estimated lists...') timer.stop() else: sample_top = [] complete_post_lists_hour = [] with open('./complete_post_lists_hour.txt', 'r') as fin: for line in fin: user_id, total, records = line.rstrip().split('\t') sample_top.append(user_id) records = list(map(int, records.split(','))) complete_post_lists_hour.append(records) sample_post_lists_hour = read_from_file('./sample_post_lists_hour.txt', dtype=0) sample_post_lists_min = read_from_file('./sample_post_lists_min.txt', dtype=0) sample_post_lists_sec = read_from_file('./sample_post_lists_sec.txt', dtype=0) sample_post_lists_10ms = read_from_file('./sample_post_lists_10ms.txt', dtype=0) estimated_post_lists_hour = read_from_file('./estimated_post_lists_hour.txt', dtype=1) estimated_post_lists_min = read_from_file('./estimated_post_lists_min.txt', dtype=1) estimated_post_lists_sec = read_from_file('./estimated_post_lists_sec.txt', dtype=1) estimated_post_lists_10ms = read_from_file('./estimated_post_lists_10ms.txt', dtype=1) # == == == == == == Part 3: Find the best estimation by comparing JS distance == == == == == == # ret = {} num_estimate_list = [] num_sample_list = [] num_complete_list = [] sample_entity_stats = {user_id: sum(sample_post_lists_hour[user_idx]) for user_idx, user_id in enumerate(sample_top)} complete_entity_stats = {user_id: sum(complete_post_lists_hour[user_idx]) for user_idx, user_id in enumerate(sample_top)} min_mat = np.array([], dtype=np.int64).reshape(0, 60) sec_mat = np.array([], dtype=np.int64).reshape(0, 60) for user_idx, user_id in enumerate(sample_top): num_sample = sample_entity_stats[user_id] num_complete = complete_entity_stats[user_id] hour_entropy = entropy(sample_post_lists_hour[user_idx], base=hours_in_day) min_entropy = entropy(sample_post_lists_min[user_idx], base=minutes_in_hour) sec_entropy = entropy(sample_post_lists_sec[user_idx], base=seconds_in_minute) ms10_entropy = entropy(sample_post_lists_10ms[user_idx], base=num_bins) min_mat = np.vstack((min_mat, np.array(sample_post_lists_min[user_idx]).reshape(1, -1))) sec_mat = np.vstack((sec_mat, np.array(sample_post_lists_sec[user_idx]).reshape(1, -1))) min_entropy, min_entropy_idx = min((min_entropy, min_entropy_idx) for (min_entropy_idx, min_entropy) in enumerate([hour_entropy, min_entropy, sec_entropy])) if ms10_entropy < 0.87: min_entropy_idx = 3 else: min_entropy_idx = 2 # # if they are all very large # if min_entropy >= msly_entropy_benchmark: # min_entropy_idx = 2 num_estimate = sum([estimated_post_lists_hour[user_idx], estimated_post_lists_min[user_idx], estimated_post_lists_sec[user_idx], estimated_post_lists_10ms[user_idx]][min_entropy_idx]) num_estimate_list.append(num_estimate) num_sample_list.append(num_sample) num_complete_list.append(num_complete) ret[user_id] = (num_sample, num_complete, num_estimate, min_entropy_idx) np.savetxt('min_sample.npy', min_mat, delimiter=',') np.savetxt('sec_sample.npy', sec_mat, delimiter=',') rank_by_sample = [k for k, v in sorted(ret.items(), key=lambda item: item[1][0], reverse=True)] rank_by_complete = [k for k, v in sorted(ret.items(), key=lambda item: item[1][1], reverse=True)] rank_by_estimated = [k for k, v in sorted(ret.items(), key=lambda item: item[1][2], reverse=True)] for user_idx, user_id in enumerate(sample_top): print(user_id, ret[user_id][:-1], (rank_by_sample.index(user_id)+1, rank_by_complete.index(user_id)+1, rank_by_estimated.index(user_id)+1)) print(ret[user_id][0]/ret[user_id][1], mape(ret[user_id][1], ret[user_id][2])[0], rank_by_sample.index(user_id)-rank_by_complete.index(user_id), rank_by_estimated.index(user_id)-rank_by_complete.index(user_id)) print(np.sum(np.array(sample_post_lists_min[user_idx]) > 0), np.sum(np.array(sample_post_lists_sec[user_idx]) > 0), np.sum(
np.array(sample_post_lists_10ms[user_idx])
numpy.array
''' Created by SJWANG 07/21/2018 For refuge image segmentation ''' # from __future__ import print_function from keras.preprocessing.image import ImageDataGenerator import numpy as np import os import glob import skimage.io as io import skimage.transform as trans import cv2 from skimage.transform import rotate from keras.preprocessing import image import scipy from PIL import Image from skimage.measure import label, regionprops from keras.applications import imagenet_utils from matplotlib.pyplot import imshow, imsave import math from Utils.random_eraser import get_random_eraser import random from keras.preprocessing import image from skimage.transform import rotate, resize from skimage.measure import label, regionprops from skimage.exposure import adjust_log, equalize_adapthist from skimage.filters.rank import median from skimage.morphology import disk from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter eraser = get_random_eraser() def pro_process(temp_img, input_size): img = np.asarray(temp_img).astype('float32') img = scipy.misc.imresize(img, (input_size, input_size, 3)) return img def elastic_transform(image, label, alpha, sigma, random_state=None): """Elastic deformation of images as described in [Simard2003]_. .. [Simard2003] <NAME> Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. """ seed = random.random() if seed > 0.5: assert len(image.shape) == 3 if random_state is None: random_state = np.random.RandomState(None) shape = image.shape[0:2] dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij') indices = np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1)) transformed_image = np.zeros(image.shape) transformed_label = np.zeros(image.shape) for i in range(image.shape[-1]): transformed_image[:, :, i] = map_coordinates(image[:, :, i], indices, order=1).reshape(shape) if label is not None: transformed_label[:, :, i] = map_coordinates(label[:, :, i], indices, order=1).reshape(shape) else: transformed_label = None transformed_image = transformed_image.astype(np.uint8) if label is not None: transformed_label = transformed_label.astype(np.uint8) return transformed_image, transformed_label else: return image, label def add_salt_pepper_noise(image): # Need to produce a copy as to not modify the original image X_imgs_copy = image.copy() row, col, _ = image.shape salt_vs_pepper = 0.2 amount = 0.004 num_salt = np.ceil(amount * X_imgs_copy.size * salt_vs_pepper) num_pepper = np.ceil(amount * X_imgs_copy.size * (1.0 - salt_vs_pepper)) seed = random.random() if seed > 0.75: # Add Salt noise coords = [np.random.randint(0, i - 1, int(num_salt)) for i in X_imgs_copy.shape] X_imgs_copy[coords[0], coords[1], :] = 1 elif seed > 0.5: # Add Pepper noise coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in X_imgs_copy.shape] X_imgs_copy[coords[0], coords[1], :] = 0 else: return image return X_imgs_copy def adjust_light(image): seed = random.random() if seed > 0.5: gamma = random.random() * 3 + 0.5 invGamma = 1.0 / gamma table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype(np.uint8) image = cv2.LUT(image.astype(np.uint8), table).astype(np.uint8) return image def adjust_contrast(image): seed = random.random() if seed > 0.5: image = adjust_log(image, 1) return image def ad_blur(image): seed = random.random() if seed > 0.5: image = image / 127.5 - 1 image[:,:,0] = median(image[:,:,0], disk(3)) image[:,:,1] = median(image[:,:,1], disk(3)) image[:,:,2] = median(image[:,:,2], disk(3)) image = (image + 1) * 127.5 image = image.astype(np.uint8) return image def data_augmentation(img, mask=None, flip=True, ifrotate=True, ifelastic=True, scale=True, noise=True, light=True, erasing=True, ad_contrast=False, clahe=False, blur=False): if mask is not None: if scale: seed = random.random() if seed > 0.5: img_ = np.zeros([img.shape[0], img.shape[1], img.shape[2]]) mask_ =
np.zeros([mask.shape[0], mask.shape[1], mask.shape[2]])
numpy.zeros
#!/usr/bin/env python ''' Diffraction functions require for fitting and analyzing data. mkak 2017.02.06 (originally written spring 2016) ''' ########################################################################## # IMPORT PYTHON PACKAGES import math import numpy as np from numpy import cos, sin, arcsin, degrees from ..utils.physical_constants import PLANCK_HC, TAU, DEG2RAD, RAD2DEG import re import os import cmath ########################################################################## # FUNCTIONS def d_from_q(q): ''' Converts q axis into d (returned units inverse of provided units) d = 2*PI/q ''' return TAU/q def d_from_twth(twth,wavelength,ang_units='degrees'): ''' Converts 2th axis into d (returned units same as wavelength units) d = lambda/[2*sin(2th/2)] ang_unit : default in degrees; will convert from 'rad' if given ''' if not ang_units.startswith('rad'): twth = DEG2RAD*twth return wavelength/(2*sin(twth/2.)) def twth_from_d(d,wavelength,ang_units='degrees'): ''' Converts d axis into 2th (d and wavelength must be in same units) 2th = 2*sin^-1(lambda/[2*d]) ang_unit : default in degrees; will convert to 'rad' if given ''' twth = 2*arcsin(wavelength/(2.*d)) if ang_units.startswith('rad'): return twth else: return RAD2DEG*twth def twth_from_q(q,wavelength,ang_units='degrees'): ''' Converts q axis into 2th (q and wavelength will have inverse units) 2th = 2*sin^-1(lambda/[2*d]) ang_unit : default in degrees; will convert to 'rad' if given ''' twth = 2*arcsin((q*wavelength)/(2*TAU)) if ang_units.startswith('rad'): return twth else: return RAD2DEG*twth def q_from_d(d): ''' Converts d axis into q (returned units inverse of provided units) q = 2*PI/d ''' return TAU/d def q_from_twth(twth, wavelength, ang_units='degrees'): ''' Converts 2th axis into q (q returned in inverse units of wavelength) q = [(4*PI)/lamda]*sin(2th/2) ang_unit : default in degrees; will convert from 'rad' if given ''' if not ang_units.startswith('rad'): twth = DEG2RAD*twth return ((2*TAU)/wavelength)*sin(twth/2.) def qv_from_hkl(hklall, a, b, c, alpha, beta, gamma): qv = np.zeros(np.shape(hklall)) uvol = unit_cell_volume(a,b,c,alpha,beta,gamma) alpha, beta, gamma = DEG2RAD*alpha, DEG2RAD*beta, DEG2RAD*gamma q0 = [(b*c*sin(alpha))/uvol,(c*a*sin(beta))/uvol,(a*b*sin(gamma))/uvol] for i, hkl in enumerate(hklall): qv[i] = [TAU*hkl[0]*q0[0], TAU*hkl[1]*q0[1], TAU*hkl[2]*q0[2]] return qv def d_from_hkl(hkl, a, b, c, alpha, beta, gamma): h, k, l = hkl[:, 0], hkl[:, 1], hkl[:, 2] alpha, beta, gamma = DEG2RAD*alpha, DEG2RAD*beta, DEG2RAD*gamma x = 1-cos(alpha)**2 - cos(beta)**2 - cos(gamma)**2 \ + 2*cos(alpha)*cos(beta)*cos(gamma) y = (h*sin(alpha)/a)**2 + 2*k*l*(cos(beta)*cos(gamma)-cos(alpha))/(b*c) + \ (k*sin(beta)/b)**2 + 2*l*h*(cos(gamma)*cos(alpha)-cos(beta))/(c*a) + \ (l*sin(gamma)/c)**2 + 2*h*k*(cos(alpha)*cos(beta)-cos(gamma))/(a*b) d = np.sqrt(x/y) return d def d_from_hkl_orig(hklall, a, b, c, alpha, beta, gamma): d = np.zeros(len(hklall)) alpha, beta, gamma = DEG2RAD*alpha, DEG2RAD*beta, DEG2RAD*gamma for i,hkl in enumerate(hklall): h,k,l = hkl x = 1-cos(alpha)**2 - cos(beta)**2 - cos(gamma)**2 \ + 2*cos(alpha)*
cos(beta)
numpy.cos
# Author : <NAME> <EMAIL> (2012) # License : BSD 3-clause # Parts of this code were copied from NiTime http://nipy.sourceforge.net/nitime import operator import numpy as np from scipy import linalg from ..parallel import parallel_func from ..utils import sum_squared, warn, verbose, logger def tridisolve(d, e, b, overwrite_b=True): """Symmetric tridiagonal system solver, from Golub and Van Loan p157. .. note:: Copied from NiTime. Parameters ---------- d : ndarray main diagonal stored in d[:] e : ndarray superdiagonal stored in e[:-1] b : ndarray RHS vector Returns ------- x : ndarray Solution to Ax = b (if overwrite_b is False). Otherwise solution is stored in previous RHS vector b """ N = len(b) # work vectors dw = d.copy() ew = e.copy() if overwrite_b: x = b else: x = b.copy() for k in range(1, N): # e^(k-1) = e(k-1) / d(k-1) # d(k) = d(k) - e^(k-1)e(k-1) / d(k-1) t = ew[k - 1] ew[k - 1] = t / dw[k - 1] dw[k] = dw[k] - t * ew[k - 1] for k in range(1, N): x[k] = x[k] - ew[k - 1] * x[k - 1] x[N - 1] = x[N - 1] / dw[N - 1] for k in range(N - 2, -1, -1): x[k] = x[k] / dw[k] - ew[k] * x[k + 1] if not overwrite_b: return x def tridi_inverse_iteration(d, e, w, x0=None, rtol=1e-8): """Perform an inverse iteration. This will find the eigenvector corresponding to the given eigenvalue in a symmetric tridiagonal system. ..note:: Copied from NiTime. Parameters ---------- d : ndarray main diagonal of the tridiagonal system e : ndarray offdiagonal stored in e[:-1] w : float eigenvalue of the eigenvector x0 : ndarray initial point to start the iteration rtol : float tolerance for the norm of the difference of iterates Returns ------- e: ndarray The converged eigenvector """ eig_diag = d - w if x0 is None: x0 = np.random.randn(len(d)) x_prev = np.zeros_like(x0) norm_x = np.linalg.norm(x0) # the eigenvector is unique up to sign change, so iterate # until || |x^(n)| - |x^(n-1)| ||^2 < rtol x0 /= norm_x while np.linalg.norm(np.abs(x0) - np.abs(x_prev)) > rtol: x_prev = x0.copy() tridisolve(eig_diag, e, x0) norm_x = np.linalg.norm(x0) x0 /= norm_x return x0 def dpss_windows(N, half_nbw, Kmax, low_bias=True, interp_from=None, interp_kind='linear'): """Compute Discrete Prolate Spheroidal Sequences. Will give of orders [0,Kmax-1] for a given frequency-spacing multiple NW and sequence length N. .. note:: Copied from NiTime. Parameters ---------- N : int Sequence length half_nbw : float, unitless Standardized half bandwidth corresponding to 2 * half_bw = BW*f0 = BW*N/dt but with dt taken as 1 Kmax : int Number of DPSS windows to return is Kmax (orders 0 through Kmax-1) low_bias : Bool Keep only tapers with eigenvalues > 0.9 interp_from : int (optional) The dpss can be calculated using interpolation from a set of dpss with the same NW and Kmax, but shorter N. This is the length of this shorter set of dpss windows. interp_kind : str (optional) This input variable is passed to scipy.interpolate.interp1d and specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the order of the spline interpolator to use. Returns ------- v, e : tuple, v is an array of DPSS windows shaped (Kmax, N) e are the eigenvalues Notes ----- Tridiagonal form of DPSS calculation from: <NAME>. Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: The discrete case. Bell System Technical Journal, Volume 57 (1978), 1371430 """ from scipy import interpolate from ..filter import next_fast_len # This np.int32 business works around a weird Windows bug, see # gh-5039 and https://github.com/scipy/scipy/pull/8608 Kmax = np.int32(operator.index(Kmax)) N = np.int32(operator.index(N)) W = float(half_nbw) / N nidx = np.arange(N, dtype='d') # In this case, we create the dpss windows of the smaller size # (interp_from) and then interpolate to the larger size (N) if interp_from is not None: if interp_from > N: e_s = 'In dpss_windows, interp_from is: %s ' % interp_from e_s += 'and N is: %s. ' % N e_s += 'Please enter interp_from smaller than N.' raise ValueError(e_s) dpss = [] d, e = dpss_windows(interp_from, half_nbw, Kmax, low_bias=False) for this_d in d: x = np.arange(this_d.shape[-1]) tmp = interpolate.interp1d(x, this_d, kind=interp_kind) d_temp = tmp(np.linspace(0, this_d.shape[-1] - 1, N, endpoint=False)) # Rescale: d_temp = d_temp / np.sqrt(sum_squared(d_temp)) dpss.append(d_temp) dpss = np.array(dpss) else: # here we want to set up an optimization problem to find a sequence # whose energy is maximally concentrated within band [-W,W]. # Thus, the measure lambda(T,W) is the ratio between the energy within # that band, and the total energy. This leads to the eigen-system # (A - (l1)I)v = 0, where the eigenvector corresponding to the largest # eigenvalue is the sequence with maximally concentrated energy. The # collection of eigenvectors of this system are called Slepian # sequences, or discrete prolate spheroidal sequences (DPSS). Only the # first K, K = 2NW/dt orders of DPSS will exhibit good spectral # concentration # [see http://en.wikipedia.org/wiki/Spectral_concentration_problem] # Here I set up an alternative symmetric tri-diagonal eigenvalue # problem such that # (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1) # the main diagonal = ([N-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,N-1] # and the first off-diagonal = t(N-t)/2, t=[1,2,...,N-1] # [see Percival and Walden, 1993] diagonal = ((N - 1 - 2 * nidx) / 2.) ** 2 * np.cos(2 * np.pi * W) off_diag = np.zeros_like(nidx) off_diag[:-1] = nidx[1:] * (N - nidx[1:]) / 2. # put the diagonals in LAPACK "packed" storage ab = np.zeros((2, N), 'd') ab[1] = diagonal ab[0, 1:] = off_diag[:-1] # only calculate the highest Kmax eigenvalues w = linalg.eigvals_banded(ab, select='i', select_range=(N - Kmax, N - 1)) w = w[::-1] # find the corresponding eigenvectors via inverse iteration t = np.linspace(0, np.pi, N) dpss = np.zeros((Kmax, N), 'd') for k in range(Kmax): dpss[k] = tridi_inverse_iteration(diagonal, off_diag, w[k], x0=np.sin((k + 1) * t)) # By convention (Percival and Walden, 1993 pg 379) # * symmetric tapers (k=0,2,4,...) should have a positive average. # * antisymmetric tapers should begin with a positive lobe fix_symmetric = (dpss[0::2].sum(axis=1) < 0) for i, f in enumerate(fix_symmetric): if f: dpss[2 * i] *= -1 # rather than test the sign of one point, test the sign of the # linear slope up to the first (largest) peak pk = np.argmax(np.abs(dpss[1::2, :N // 2]), axis=1) for i, p in enumerate(pk): if np.sum(dpss[2 * i + 1, :p]) < 0: dpss[2 * i + 1] *= -1 # Now find the eigenvalues of the original spectral concentration problem # Use the autocorr sequence technique from Percival and Walden, 1993 pg 390 # compute autocorr using FFT (same as nitime.utils.autocorr(dpss) * N) rxx_size = 2 * N - 1 n_fft = next_fast_len(rxx_size) dpss_fft = np.fft.rfft(dpss, n_fft) dpss_rxx = np.fft.irfft(dpss_fft * dpss_fft.conj(), n_fft) dpss_rxx = dpss_rxx[:, :N] r = 4 * W * np.sinc(2 * W * nidx) r[0] = 2 * W eigvals = np.dot(dpss_rxx, r) if low_bias: idx = (eigvals > 0.9) if not idx.any(): warn('Could not properly use low_bias, keeping lowest-bias taper') idx = [np.argmax(eigvals)] dpss, eigvals = dpss[idx], eigvals[idx] assert len(dpss) > 0 # should never happen assert dpss.shape[1] == N # old nitime bug return dpss, eigvals def _psd_from_mt_adaptive(x_mt, eigvals, freq_mask, max_iter=150, return_weights=False): r"""Use iterative procedure to compute the PSD from tapered spectra. .. note:: Modified from NiTime. Parameters ---------- x_mt : array, shape=(n_signals, n_tapers, n_freqs) The DFTs of the tapered sequences (only positive frequencies) eigvals : array, length n_tapers The eigenvalues of the DPSS tapers freq_mask : array Frequency indices to keep max_iter : int Maximum number of iterations for weight computation return_weights : bool Also return the weights Returns ------- psd : array, shape=(n_signals, np.sum(freq_mask)) The computed PSDs weights : array shape=(n_signals, n_tapers, np.sum(freq_mask)) The weights used to combine the tapered spectra Notes ----- The weights to use for making the multitaper estimate, such that :math:`S_{mt} = \sum_{k} |w_k|^2S_k^{mt} / \sum_{k} |w_k|^2` """ n_signals, n_tapers, n_freqs = x_mt.shape if len(eigvals) != n_tapers: raise ValueError('Need one eigenvalue for each taper') if n_tapers < 3: raise ValueError('Not enough tapers to compute adaptive weights.') rt_eig = np.sqrt(eigvals) # estimate the variance from an estimate with fixed weights psd_est = _psd_from_mt(x_mt, rt_eig[np.newaxis, :, np.newaxis]) x_var = np.trapz(psd_est, dx=np.pi / n_freqs) / (2 * np.pi) del psd_est # allocate space for output psd = np.empty((n_signals, np.sum(freq_mask))) # only keep the frequencies of interest x_mt = x_mt[:, :, freq_mask] if return_weights: weights =
np.empty((n_signals, n_tapers, psd.shape[1]))
numpy.empty
""" This file contains all helper utility functions. """ import os import sys import math import importlib from scipy.optimize import linear_sum_assignment import torch import numpy as np import trimesh, configparser from pyquaternion import Quaternion import h5py def worker_init_fn(worker_id): """ The function is designed for pytorch multi-process dataloader. Note that we use the pytorch random generator to generate a base_seed. Please try to be consistent. References: https://pytorch.org/docs/stable/notes/faq.html#dataloader-workers-random-seed """ base_seed = torch.IntTensor(1).random_().item() #print(worker_id, base_seed) np.random.seed(base_seed + worker_id) def save_checkpoint(models, model_names, dirname, epoch=None, prepend_epoch=False, optimizers=None, optimizer_names=None): if len(models) != len(model_names) or (optimizers is not None and len(optimizers) != len(optimizer_names)): raise ValueError('Number of models, model names, or optimizers does not match.') for model, model_name in zip(models, model_names): filename = f'net_{model_name}.pth' if prepend_epoch: filename = f'{epoch}_' + filename torch.save(model.state_dict(), os.path.join(dirname, filename)) if optimizers is not None: filename = 'checkpt.pth' if prepend_epoch: filename = f'{epoch}_' + filename checkpt = {'epoch': epoch} for opt, optimizer_name in zip(optimizers, optimizer_names): checkpt[f'opt_{optimizer_name}'] = opt.state_dict() torch.save(checkpt, os.path.join(dirname, filename)) def load_checkpoint(models, model_names, dirname, epoch=None, device="cuda:0", optimizers=None, optimizer_names=None, strict=True): if len(models) != len(model_names) or (optimizers is not None and len(optimizers) != len(optimizer_names)): raise ValueError('Number of models, model names, or optimizers does not match.') for model, model_name in zip(models, model_names): filename = f'net_{model_name}.pth' if epoch is not None: filename = f'{epoch}_' + filename state_dict = torch.load(os.path.join(dirname, filename), map_location=torch.device(device)) current_state_dict = model.state_dict() firstkey = [k for k in current_state_dict.keys()] if firstkey[0].find('module.')>=0: from collections import OrderedDict new_state_dict = OrderedDict() # state_dict = torch.load(os.path.join(dirname, filename)) for k, v in state_dict.items(): name = 'module.' + k # remove `module.` new_state_dict[name] = v model.load_state_dict(new_state_dict, strict=strict) else: model.load_state_dict(state_dict, strict=strict) start_epoch = 0 if optimizers is not None: filename = 'checkpt.pth' if epoch is not None: filename = f'{epoch}_' + filename filename = os.path.join(dirname, filename) if os.path.exists(filename): checkpt = torch.load(filename) start_epoch = checkpt['epoch'] for opt, optimizer_name in zip(optimizers, optimizer_names): opt.load_state_dict(checkpt[f'opt_{optimizer_name}']) print(f'resuming from checkpoint {filename}') else: response = input(f'Checkpoint {filename} not found for resuming, refine saved models instead? (y/n) ') if response != 'y': sys.exit() return start_epoch def optimizer_to_device(optimizer, device): for state in optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.to(device) def optimizer_to_device1(optimizer, device): for state in optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda(device) def vrrotvec2mat(rotvector): s = math.sin(rotvector[3]) c = math.cos(rotvector[3]) t = 1 - c x = rotvector[0] y = rotvector[1] z = rotvector[2] m = rotvector.new_tensor([[t*x*x+c, t*x*y-s*z, t*x*z+s*y], [t*x*y+s*z, t*y*y+c, t*y*z-s*x], [t*x*z-s*y, t*y*z+s*x, t*z*z+c]]) return m def get_model_module(model_version): importlib.invalidate_caches() return importlib.import_module(model_version) # row_counts, col_counts: row and column counts of each distance matrix (assumed to be full if given) def linear_assignment(distance_mat, row_counts=None, col_counts=None): batch_ind = [] row_ind = [] col_ind = [] for i in range(distance_mat.shape[0]): # print(f'{i} / {distance_mat.shape[0]}') dmat = distance_mat[i, :, :] if row_counts is not None: dmat = dmat[:row_counts[i], :] if col_counts is not None: dmat = dmat[:, :col_counts[i]] rind, cind = linear_sum_assignment(dmat.to('cpu').detach().numpy()) rind = list(rind) cind = list(cind) # print(dmat) # print(rind) # print(cind) if len(rind) > 0: rind, cind = zip(*sorted(zip(rind, cind))) rind = list(rind) cind = list(cind) # complete the assignemnt for any remaining non-active elements (in case row_count or col_count was given), # by assigning them randomly #if len(rind) < distance_mat.shape[1]: # rind.extend(set(range(distance_mat.shape[1])).difference(rind)) # cind.extend(set(range(distance_mat.shape[1])).difference(cind)) batch_ind += [i]*len(rind) row_ind += rind col_ind += cind return batch_ind, row_ind, col_ind def object_batch_boxes(objects, max_box_num): box_num = [] boxes = torch.zeros(len(objects), 12, max_box_num) for oi, obj in enumerate(objects): obj_boxes = obj.boxes() box_num.append(len(obj_boxes)) if box_num[-1] > max_box_num: print(f'WARNING: too many boxes in object, please use a dataset that does not have objects with too many boxes, clipping the object for now.') box_num[-1] = max_box_num obj_boxes = obj_boxes[:box_num[-1]] obj_boxes = [o.view(-1, 1) for o in obj_boxes] boxes[oi, :, :box_num[-1]] = torch.cat(obj_boxes, dim=1) return boxes, box_num # out shape: (label_count, in shape) def one_hot(inp, label_count): out = torch.zeros(label_count, inp.numel(), dtype=torch.uint8, device=inp.device) out[inp.view(-1), torch.arange(out.shape[1])] = 1 out = out.view((label_count,) + inp.shape) return out def collate_feats(b): return list(zip(*b)) def export_ply_with_label(out, v, l): num_colors = len(colors) with open(out, 'w') as fout: fout.write('ply\n') fout.write('format ascii 1.0\n') fout.write('element vertex '+str(v.shape[0])+'\n') fout.write('property float x\n') fout.write('property float y\n') fout.write('property float z\n') fout.write('property uchar red\n') fout.write('property uchar green\n') fout.write('property uchar blue\n') fout.write('end_header\n') for i in range(v.shape[0]): cur_color = colors[l[i]%num_colors] fout.write('%f %f %f %d %d %d\n' % (v[i, 0], v[i, 1], v[i, 2], \ int(cur_color[0]*255), int(cur_color[1]*255), int(cur_color[2]*255))) def load_pts(fn): with open(fn, 'r') as fin: lines = [item.rstrip() for item in fin] pts = np.array([[float(line.split()[0]), float(line.split()[1]), float(line.split()[2])] for line in lines], dtype=np.float32) return pts def export_pts(out, v): with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('%f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) def load_obj(fn): fin = open(fn, 'r') lines = [line.rstrip() for line in fin] fin.close() vertices = []; faces = []; for line in lines: if line.startswith('v '): vertices.append(np.float32(line.split()[1:4])) elif line.startswith('f '): faces.append(np.int32([item.split('/')[0] for item in line.split()[1:4]])) f = np.vstack(faces) v = np.vstack(vertices) return v, f def export_obj(out, v, f): with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('v %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) for i in range(f.shape[0]): fout.write('f %d %d %d\n' % (f[i, 0], f[i, 1], f[i, 2])) def color2mtl(colorfile): from vis_utils import load_semantic_colors from datav1 import Tree filepath, fullflname = os.path.split(colorfile) fname, ext = os.path.splitext(fullflname) Tree.load_category_info(fname) sem_colors = load_semantic_colors(filename=colorfile) for sem in sem_colors: sem_colors[sem] = (float(sem_colors[sem][0]) / 255.0, float(sem_colors[sem][1]) / 255.0, float(sem_colors[sem][2]) / 255.0) mtl_fid = open(os.path.join(filepath, fname + '.mtl'), 'w') for i in range(len(Tree.part_id2name)): partname = Tree.part_id2name[i + 1] color = sem_colors[partname] mtl_fid.write('newmtl m_%s\nKd %f %f %f\nKa 0 0 0\n' % (partname.replace('/', '-'), color[0], color[1], color[2])) mtl_fid.close() def qrot(q, v): """ Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 assert v.shape[-1] == 3 assert q.shape[:-1] == v.shape[:-1] original_shape = list(v.shape) q = q.view(-1, 4) v = v.view(-1, 3) qvec = q[:, 1:] uv = torch.cross(qvec, v, dim=1) uuv = torch.cross(qvec, uv, dim=1) return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) # pc is N x 3, feat is 10-dim def transform_pc(pc, feat): num_point = pc.size(0) center = feat[:3] shape = feat[3:6] quat = feat[6:] pc = pc * shape.repeat(num_point, 1) pc = qrot(quat.repeat(num_point, 1), pc) pc = pc + center.repeat(num_point, 1) return pc # pc is N x 3, feat is B x 10-dim def transform_pc_batch(pc, feat, anchor=False): batch_size = feat.size(0) num_point = pc.size(0) pc = pc.repeat(batch_size, 1, 1) center = feat[:, :3].unsqueeze(dim=1).repeat(1, num_point, 1) shape = feat[:, 3:6].unsqueeze(dim=1).repeat(1, num_point, 1) quat = feat[:, 6:].unsqueeze(dim=1).repeat(1, num_point, 1) if not anchor: pc = pc * shape pc = qrot(quat.view(-1, 4), pc.view(-1, 3)).view(batch_size, num_point, 3) if not anchor: pc = pc + center return pc def get_surface_reweighting(xyz, cube_num_point): x = xyz[0] y = xyz[1] z = xyz[2] assert cube_num_point % 6 == 0, 'ERROR: cube_num_point %d must be dividable by 6!' % cube_num_point np = cube_num_point // 6 out = torch.cat([(x*y).repeat(np*2), (y*z).repeat(np*2), (x*z).repeat(np*2)]) out = out / (out.sum() + 1e-12) return out def get_surface_reweighting_batch(xyz, cube_num_point): x = xyz[:, 0] y = xyz[:, 1] z = xyz[:, 2] assert cube_num_point % 6 == 0, 'ERROR: cube_num_point %d must be dividable by 6!' % cube_num_point np = cube_num_point // 6 out = torch.cat([(x*y).unsqueeze(dim=1).repeat(1, np*2), \ (y*z).unsqueeze(dim=1).repeat(1, np*2), \ (x*z).unsqueeze(dim=1).repeat(1, np*2)], dim=1) out = out / (out.sum(dim=1).unsqueeze(dim=1) + 1e-12) return out def gen_obb_mesh(obbs): # load cube cube_v, cube_f = load_obj('cube.obj') all_v = []; all_f = []; vid = 0; for pid in range(obbs.shape[0]): p = obbs[pid, :] center = p[0: 3] lengths = p[3: 6] dir_1 = p[6: 9] dir_2 = p[9: ] dir_1 = dir_1/np.linalg.norm(dir_1) dir_2 = dir_2/np.linalg.norm(dir_2) dir_3 = np.cross(dir_1, dir_2) dir_3 = dir_3/np.linalg.norm(dir_3) v = np.array(cube_v, dtype=np.float32) f = np.array(cube_f, dtype=np.int32) rot = np.vstack([dir_1, dir_2, dir_3]) v *= lengths v = np.matmul(v, rot) v += center all_v.append(v) all_f.append(f+vid) vid += v.shape[0] all_v = np.vstack(all_v) all_f = np.vstack(all_f) return all_v, all_f def sample_pc(v, f, n_points=2048): mesh = trimesh.Trimesh(vertices=v, faces=f-1) points, __ = trimesh.sample.sample_surface(mesh=mesh, count=n_points) return points def set_requires_grad(nets, requires_grad=False): """Set requies_grad=Fasle for all the networks to avoid unnecessary computations Parameters: nets (network list) -- a list of networks requires_grad (bool) -- whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad def argpaser2file(args, name='example.ini'): d = args.__dict__ cfpar = configparser.ConfigParser() cfpar['default'] = {} for key in sorted(d.keys()): cfpar['default'][str(key)]=str(d[key]) print('%s = %s'%(key,d[key])) with open(name, 'w') as configfile: cfpar.write(configfile) def inifile2args(args, ininame='example.ini'): config = configparser.ConfigParser() config.read(ininame) defaults = config['default'] result = dict(defaults) # print(result) # print('\n') # print(args) args1 = vars(args) # print(args1) args1.update({k: v for k, v in result.items() if v is not None}) # Update if v is not None # print(args1) args.__dict__.update(args1) # print(args) return args def neighbour2vdiff(neighbour, ref_V): neighbour = neighbour - 1 pointnum = neighbour.shape[0] maxdim = neighbour.shape[1] vdiff = np.zeros((pointnum, maxdim, 3), dtype=np.float32) for point_i in range(pointnum): for j in range(maxdim): curneighbour = neighbour[point_i][j] if curneighbour == -1: break vdiff[point_i][j] = ref_V[point_i] - ref_V[curneighbour] return vdiff # ----------------------------------------------------------- ICP ------------------------------------------------------------- def best_fit_transform(A, B): ''' Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions Input: A: Nxm numpy array of corresponding points B: Nxm numpy array of corresponding points Returns: T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B R: mxm rotation matrix t: mx1 translation vector ''' #print(A.shape, B.shape) assert A.shape == B.shape # get number of dimensions m = A.shape[1] # translate points to their centroids centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) AA = A - centroid_A BB = B - centroid_B # rotation matrix H = np.dot(AA.T, BB) U, S, Vt = np.linalg.svd(H) R = np.dot(Vt.T, U.T) # special reflection case if np.linalg.det(R) < 0: Vt[m-1,:] *= -1 R = np.dot(Vt.T, U.T) # translation t = centroid_B.T - np.dot(R,centroid_A.T) # homogeneous transformation T = np.identity(m+1) T[:m, :m] = R T[:m, m] = t return T, R, t def nearest_neighbor(src, dst): ''' Find the nearest (Euclidean) neighbor in dst for each point in src Input: src: Nxm array of points dst: Nxm array of points Output: distances: Euclidean distances of the nearest neighbor indices: dst indices of the nearest neighbor ''' assert src.shape == dst.shape neigh = NearestNeighbors(n_neighbors=1) neigh.fit(dst) distances, indices = neigh.kneighbors(src, return_distance=True) return distances.ravel(), indices.ravel() def icp(A, B, init_pose=None, max_iterations=20, tolerance=0.001): ''' The Iterative Closest Point method: finds best-fit transform that maps points A on to points B Input: A: Nxm numpy array of source mD points B: Nxm numpy array of destination mD point init_pose: (m+1)x(m+1) homogeneous transformation max_iterations: exit algorithm after max_iterations tolerance: convergence criteria Output: T: final homogeneous transformation that maps A on to B distances: Euclidean distances (errors) of the nearest neighbor i: number of iterations to converge ''' assert A.shape == B.shape # get number of dimensions m = A.shape[1] # make points homogeneous, copy them to maintain the originals src = np.ones((m+1,A.shape[0])) dst = np.ones((m+1,B.shape[0])) src[:m,:] = np.copy(A.T) dst[:m,:] = np.copy(B.T) # apply the initial pose estimation if init_pose is not None: src = np.dot(init_pose, src) prev_error = 0 for i in range(max_iterations): # find the nearest neighbors between the current source and destination points distances, indices = nearest_neighbor(src[:m,:].T, dst[:m,:].T) # compute the transformation between the current source and nearest destination points T,_,_ = best_fit_transform(src[:m,:].T, dst[:m,indices].T) # update the current source src = np.dot(T, src) # check error mean_error = np.mean(distances) if np.abs(prev_error - mean_error) < tolerance: break prev_error = mean_error # calculate final transformation T,_,_ = best_fit_transform(A, src[:m,:].T) return T, distances, i class ConcatDataset(torch.utils.data.Dataset): def __init__(self, *datasets): self.datasets = datasets def __getitem__(self, i): return tuple(d[i] for d in self.datasets) def __len__(self): return min(len(d) for d in self.datasets) class MeshDataLoader(): def __init__(self, data_path): meshfile = os.path.join(data_path, '..', 'cube_meshinfo.mat') if os.path.exists(meshfile): print(meshfile) meshdata = h5py.File(meshfile, mode = 'r') self.num_point = meshdata['neighbour'].shape[0] self.edge_index = np.array(meshdata['edge_index']).astype('int64') self.reconmatrix = np.array(meshdata['recon']).astype('float32') self.ref_V = np.array(meshdata['ref_V']).astype('float32') self.ref_F = np.array(meshdata['ref_F']).astype('int64') self.vdiff = np.array(meshdata['vdiff']).astype('float32') self.nb =
np.array(meshdata['neighbour'])
numpy.array
''' ''' import os import sys import numpy as np import matplotlib.pyplot as plt import astropy.coordinates as coordinates import astropy.units as units if sys.version_info.major == 2: fmap = map elif sys.version_info.major == 3: fmap = lambda x, *args: list(map(x, *args)) xrange = range ON = "ON" OFF = "OFF" class Calibrator(object): def __init__(self, freqs, S, Serr=None, pol_type='Coherence', fd_poln='LIN', verbose=True): self.pol_type = pol_type self.freqs = np.array(freqs) self.S = np.array(S) if Serr is None: Serr = np.zeros(4, dtype=np.float32) self.Serr = np.array(Serr) self.verbose = verbose if self.pol_type == 'Coherence' or self.pol_type == 'AABBCRCI': A, B, C, D = S Aerr, Berr, Cerr, Derr = Serr if fd_poln == 'LIN': S0 = A+B #I S1 = A-B #Q S2 = 2*C #U S3 = 2*D #V S0err = np.sqrt(Aerr**2 + Berr**2) S1err = S0err S2err = 2*Cerr S3err = 2*Derr elif self.pol_type == 'Stokes' or self.pol_type == 'IQUV': S0, S1, S2, S3 = S S0err, S1err, S2err, S3err = Serr else: raise SystemExit self.I = S0 self.Q = S1 self.U = S2 self.V = S3 self.Ierr = S0err self.Qerr = S1err self.Uerr = S2err self.Verr = S3err def pacv(self): ''' Emulates pacv <archive> See More/Polarimetry/SingleAxisSolver.C ''' dG = 2*self.Q/self.I dpsi = np.arctan2(self.V, self.U) plt.subplot(311) plt.plot(dpsi, 'k.') plt.subplot(312) plt.plot(100*dG, 'k.') plt.subplot(313) U_0 = self.U/np.cos(dpsi) #plot(self.I) #plot(np.sqrt(self.U**2+self.V**2)/U_0, 'k.') plt.show() def pacv_csu(self): ''' Emulates pacv -n csu <archive> ''' plt.errorbar(self.freqs, self.I, yerr=self.Ierr, fmt='k.') plt.errorbar(self.freqs, self.Q, yerr=self.Qerr, fmt='r.') plt.errorbar(self.freqs, self.U, yerr=self.Uerr, fmt='g.') plt.errorbar(self.freqs, self.V, yerr=self.Verr, fmt='b.') plt.xlabel('Frequency') plt.ylabel('Calibrator Stokes') plt.show() def applyFluxcal(self, fluxcalonar, fluxcaloffar=None): if fluxcaloffar is None: #The fluxcalon file contains both ON and OFF observations pass else: fluxcalonfreqs, fluxcalondatalow, fluxcalondatahigh, fluxcalonerrslow, fluxcalonerrshigh = fluxcalonar.getLevels() fluxcalofffreqs, fluxcaloffdatalow, fluxcaloffdatahigh, fluxcalofferrslow, fluxcalofferrshigh = fluxcaloffar.getLevels() source = fluxcalonar.getName() if source != fluxcaloffar.getName(): raise ValueError("Mismatch in fluxcal names") config = CalibratorConfig() calflux = config.calculateCalibratorFlux(source, self.freqs) # Flux calibrator amplitudes, the difference between on and off source without the noise diode operational. S_cal = fluxcalondatalow - fluxcaloffdatalow #print np.shape(calflux), np.shape(S_cal) #self.I = self.I def applyCalibration(self, ar): M_PAs = [] PAR_ANG = ar.getSubintinfo('PAR_ANG') if PAR_ANG is None: POS_ANG = ar.getSubintinfo('POS_ANG') if POS_ANG is None: print("No parallactic/position angle information") elif self.verbose: print("Calibrating using position angles") PAR_ANG = POS_ANG elif self.verbose: print("Calibrating using parallactic angles") if PAR_ANG is not None: PAR_ANG *= np.pi/180 #check if degrees! dG = 2*self.Q/self.I dpsi = np.arctan2(self.V, self.U) data = ar.getData(squeeze=False) #perform checks here # Remove baselines? POL_TYPE = ar.subintheader['POL_TYPE'] I = xrange(ar.getNsubint()) J = xrange(ar.getNchan()) K = xrange(ar.getNbin()) calibrated_data = np.zeros_like(data) for i in I: print(i) if PAR_ANG is not None: M_PA = self.buildMuellerMatrixPA(PAR_ANG[i]) for j in J: M_differential = self.buildMuellerMatrixDifferential((dG[j], dpsi[j])) # must match exactly if PAR_ANG is not None: M = np.dot(M_differential, M_PA) else: M = M_differential Minv = np.linalg.inv(M) for k in K: S = self.convertPolarization(data[i, :, j, k], POL_TYPE, "IQUV") #print np.shape(Minv), np.shape(S), np.shape(calibrated_data[i, :, j, k]) calibrated_data[i, :, j, k] = self.convertPolarization(np.dot(Minv, S), "IQUV", POL_TYPE) # reset baseline #if i == 5 and j == 50: # plot(calibrated_data[i, 0, j, :]) # show() #imshow(calibrated_data[i, 1, :, :]) #show() #imshow(calibrated_data[i, 2, :, :]) #show() #imshow(calibrated_data[i, 3, :, :]) #show() # raise SystemExit #calibrated_data[i, :, j, :] -= np.mean(calibrated_data[i, :, j, ar.opw]) #if i == 10: # imshow(calibrated_data[i, 0, :, :]) # show() # raise SystemExit #print np.mean(calibrated_data[5, :, 25, :]) ar.setData(calibrated_data) def buildMuellerMatrixPA(self, PA): if PA is None: M_PA = np.identity(4) else: cos = np.cos(2*PA) sin = np.sin(2*PA) M_PA = [[1, 0, 0, 0], [0, cos, sin, 0], [0, -sin, cos, 0], [0, 0, 0, 1]] return M_PA def buildMuellerMatrixDifferential(self, differential): if differential is None: M_differential = np.identity(4) else: dG, dpsi = differential cos = np.cos(dpsi) sin = np.sin(dpsi) M_differential = [[1, dG/2.0, 0, 0], [dG/2.0, 1, 0, 0], [0, 0, cos, -sin], [0, 0, sin, cos]] return M_differential def convertPolarization(self, S, intype, outtype, linear=True): if intype == outtype: return S elif intype == "AABBCRCI" and outtype == "IQUV": # Coherence -> Stokes A, B, C, D = S if linear: I = A+B Q = A-B U = 2*C V = 2*D else: I = A+B Q = 2*C U = 2*D V = A-B outS = [I, Q, U, V] elif intype == "IQUV" and outtype == "AABBCRCI": # Stokes -> Coherence I, Q, U, V = S if linear: pass A = (I+Q)/2.0 B = (I-Q)/2.0 C = U/2.0 D = V/2.0 else: A = (I+V)/2.0 B = (I-V)/2.0 C = Q/2.0 D = U/2.0 outS = [A, B, C, D] if isinstance(S, np.ndarray): return np.array(outS) elif isinstance(S, list): return outS def buildMuellerMatrix(self, PA=None, feed=None, CC=None, differential=None): """ Following Lorimer & Kramer methodology PA = parallactic angle (scalar) feed = CC = cross coupling (4-vector of ) differential = differential gain and phase (2-vector) """ if PA is None: M_PA = np.identity(4) else: cos = np.cos(2*PA) sin = np.sin(2*PA) M_PA = [[1, 0, 0, 0], [0, cos, sin, 0], [0, -sin, cos, 0], [0, 0, 0, 1]] if feed is None: M_feed = np.identity(4) else: cos = np.cos(2*feed) sin = np.sin(2*feed) M_feed = [[1, 0, 0, 0], [0, cos, 0, sin], [0, 0, 1, 0], [0, -sin, 0, cos]] if CC is None: M_CC = np.identity(4) else: M_CC = np.identity(4) #NOT YET IMPLEMENTED if differential is None: M_differential = np.identity(4) else: dG, dpsi = differential cos = np.cos(dpsi) sin =
np.sin(dpsi)
numpy.sin
#!/usr/bin/env python # Test QP solver against Maros Mezaros Benchmark suite from __future__ import print_function import sys import scipy.io as spio import scipy.sparse as spspa import scipy as sp import numpy as np import ipdb import mathprogbasepy as mpbpy import mathprogbasepy.quadprog.problem as mpbpy_prob def load_maros_meszaros_problem(f): # Load file m = spio.loadmat(f) # Convert matrices P = m['Q'].astype(float) n = P.shape[0] q = m['c'].T.flatten().astype(float) A = m['A'].astype(float) A = spspa.vstack([A, spspa.eye(n)]) u = np.append(m['ru'].T.flatten().astype(float), m['ub'].T.flatten().astype(float)) l = np.append(m['rl'].T.flatten().astype(float), m['lb'].T.flatten().astype(float)) # Define problem p = mpbpy.QuadprogProblem(P, q, A, l, u) return p def main(): sp.random.seed(1) # Possible ops: {'small1', 'small2', 'random', # 'primal_infeasible', 'random_primal_infeasible', # 'maros_meszaros', 'lp', 'dual_infeasible_lp', # 'dual_infeasible_qp'} example = 'random_primal_infeasible' if example == 'maros_meszaros': # Maros Meszaros Examples # f = 'tests/maros_meszaros/CVXQP2_S.mat' # f = 'tests/maros_meszaros/CVXQP1_S.mat' # f = 'tests/maros_meszaros/AUG2D.mat' f = 'maros_meszaros/CONT-200.mat' # f = 'tests/maros_meszaros/PRIMAL3.mat' # f = 'tests/maros_meszaros/QBANDM.mat' p = load_maros_meszaros_problem(f) elif example == 'small1': # Our Examples # Small Example 1 P = spspa.csc_matrix(np.array([[4., 1.], [1., 2.]])) q = np.ones(2) A = spspa.vstack([spspa.csc_matrix(np.ones((1, 2))), spspa.eye(P.shape[0])]).tocsc() l = np.array([1.0, 0.0, 0.0]) u = np.array([1.0, 0.7, 0.7]) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'small2': # Small Example 2 P = spspa.csc_matrix(np.array([[11., 0.], [0., 0.]])) q = np.array([3, 4]) A = spspa.csc_matrix(np.array([[-1, 0], [0, -1], [-1, -3], [2, 5], [3, 4]])) u = np.array([0., 0., -15, 100, 80]) l = -np.inf * np.ones(len(u)) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'primal_infeasible': # primal_infeasible example # P = spspa.eye(2) P = spspa.csc_matrix((2, 2)) q = np.ones(2) A = spspa.csc_matrix(np.array([[1, 0], [0, 1], [1, 1]])) l = np.array([0., 0., -1.]) u = np.array([np.inf, np.inf, -1.]) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'random_primal_infeasible': # Random Example n = 50 m = 500 # Generate random Matrices Pt = sp.randn(n, n) P = spspa.csc_matrix(np.dot(Pt.T, Pt)) q = sp.randn(n) A = spspa.csc_matrix(sp.randn(m, n)) u = 3 + sp.randn(m) # l = u l = -3 + sp.randn(m) # Make random problem primal_infeasible A[int(n/2), :] = A[int(n/2)+1, :] l[int(n/2)] = u[int(n/2)+1] + 100 * sp.rand() u[int(n/2)] = l[int(n/2)] + 0.5 # l[int(n/3)] = u[int(n/3)] + 100 * sp.rand() # l[int(n/4)] = u[int(n/4)] + 50. * sp.rand() p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'dual_infeasible_lp': # Dual infeasible example P = spspa.csc_matrix((2, 2)) q = np.array([2, -1]) A = spspa.eye(2) l = np.array([0., 0.]) u = np.array([np.inf, np.inf]) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'dual_infeasible_qp': # Dual infeasible example P = spspa.csc_matrix(np.diag(np.array([4., 0.]))) q = np.array([0, 2]) A = spspa.csc_matrix([[1., 1.], [-1., 1.]]) l =
np.array([-np.inf, -np.inf])
numpy.array
from __future__ import print_function from __future__ import division from tensorflow.python.util import compat import numpy as np import tensorflow as tf from ._layers_common import add_const, identity, make_tensor, skip, _get_const_tensor_value from . import _shape_sensitive_layers as ss_layers _SKIP_OP_TYPES = ['NoOp', 'ExpandDims', 'Cast', 'Squeeze'] def _compare(a, b, encoding="utf8"): #type: (Text, Text, Text) -> bool if isinstance(a, bytes): a = a.decode(encoding) if isinstance(b, bytes): b = b.decode(encoding) return a == b def _is_skip_type(op): return op.type in _SKIP_OP_TYPES def _backtrace_skip_ops(start_op): # if start_op is skippable, trace down its path to an unskippable op. op = start_op if not _is_skip_type(op): return op pred = None if len(op.inputs) == 0 else op.inputs[0].op while pred is not None and (_is_skip_type(pred)): op = pred pred = None if len(op.inputs) == 0 else op.inputs[0].op return pred def add_tensor_sub(builder, name, x_name, y_name, output_name): y_out_name = 'negated_' + y_name + '_' + output_name builder.add_activation(y_out_name, 'LINEAR', y_name, y_out_name, [-1.0, 0]) builder.add_elementwise(name, [x_name, y_out_name], output_name, 'ADD') def add_tensor_div(builder, name, x_name, y_name, output_name): y_out_name = 'inversed_' + y_name + '_' + output_name builder.add_unary(y_out_name, y_name, y_out_name, 'inverse') builder.add_elementwise(name, [x_name, y_out_name], output_name, 'MULTIPLY') def _update_padding_and_crop_values_2D(pad_values, crop_values, params): def _new_pad_crop_1D(p1,p2,c1,c2,k,s,n1): n2 = np.floor((n1+p1+p2-k)/s) + 1 if 1+c1*s <= p1: p1 -= c1*s c1 = 0 if k+(n2-c2-1)*s > p1+n1: p2 = k + (n2-c2-1) - (p1+n1) c2 = 0 return p1,p2,c1,c2 p1,p2,c1,c2 = _new_pad_crop_1D(pad_values[2],pad_values[3], crop_values[2],crop_values[3], params['kh'],params['sh'],params['Hin']) pad_values[2:] =
np.array([p1,p2],dtype=np.int)
numpy.array
import h5py import numpy import scipy.stats from sklearn.metrics import confusion_matrix from crowdastro.experiment.results import Results from crowdastro.crowd.raykar import RaykarClassifier def raykar_params(crowdastro_path, results_path, method, n_annotators=50): results = Results.from_path(results_path) n_splits = results.n_splits assert method in results.methods alphas = [] betas = [] for split_id in range(n_splits): model = results.get_model(method, split_id) rc = RaykarClassifier.unserialise(model) alphas.append(rc.a_) betas.append(rc.b_) alphas = numpy.array(alphas) betas = numpy.array(betas) print('estimated alphas:', alphas.mean(axis=0)) print('stdevs:', alphas.std(axis=0)) print('estimated betas:', betas.mean(axis=0)) print('stdevs:', betas.std(axis=0)) # Get the "true" alpha/beta. with h5py.File(crowdastro_path, 'r') as f: norris = f['/wise/cdfs/norris_labels'].value labels = numpy.ma.MaskedArray( f['/wise/cdfs/rgz_raw_labels'], mask=f['/wise/cdfs/rgz_raw_labels_mask']) annotator_accuracies = [] true_alphas = [] true_betas = [] for t in range(labels.shape[0]): cm = confusion_matrix(norris[~labels[t].mask], labels[t][~labels[t].mask]) if cm.shape[0] == 1: continue tp = cm[1, 1] n, p = cm.sum(axis=1) tn = cm[0, 0] if not n or not p or p + n < 700: annotator_accuracies.append(0) true_alphas.append(tp / p) true_betas.append(tn / n) continue ba = (tp / p + tn / n) / 2 annotator_accuracies.append(ba) true_alphas.append(tp / p) true_betas.append(tn / n) assert len(annotator_accuracies) == len(true_alphas) ranked_annotators = numpy.argsort(annotator_accuracies) top_n_annotators = ranked_annotators[-n_annotators:] true_alphas = numpy.array(true_alphas)[top_n_annotators] true_betas =
numpy.array(true_betas)
numpy.array
import matplotlib.pyplot as plt import matplotlib.dates as mpldates from datetime import datetime from floodsystem.analysis import polyfit from .flood import flood_risk, increase_rate import numpy as np import matplotlib.patches as mpatches def plot_water_levels(station_levels_list): '''plots water level data and typical low and high for up to 6 different stations. must be fed a list of (station,dates,levels) tuples''' locations = [321,322,323,324,325,326] for entry in station_levels_list: station = entry[0] dates = entry[1] levels = entry[2] plt.subplot(locations[station_levels_list.index(entry)]) typical_low = [station.typical_range[0]]*len(dates) typical_high = [station.typical_range[1]]*len(dates) dates =
np.array(dates)
numpy.array
''' Created on Sep 24, 2013 @author: fan ''' """ ax1 = plt.subplot2grid((3,3), (0,0), colspan=3) ax2 = plt.subplot2grid((3,3), (1,0), colspan=2) ax3 = plt.subplot2grid((3,3), (1, 2), rowspan=2) ax4 = plt.subplot2grid((3,3), (2, 0)) ax5 = plt.subplot2grid((3,3), (2, 1)) """ import logging logger = logging.getLogger(__name__) import matplotlib # matplotlib.use('Agg') # matplotlib.use('qt5agg') # import matplotlib.pyplot as pylab import pylab as pylab # import matplotlib.pyplot as plt import numpy as np from scipy.stats import gaussian_kde # from matplotlib.mlab import griddata import mpl_toolkits.mplot3d.axes3d as p3 import itertools from matplotlib.patches import Polygon from matplotlib import cm import seaborn as sns # =============================================================================== # pylab.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) # pylab.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) # =============================================================================== def contourAnd3D(xData, yData, zData, xLabStr, yLabStr, zLabStr, graphTitleDisp, graphTitleSave, savedpi=125, angleType=[1, [1, 2, 3]], drawContour=False, draw3D=True, draw3DSurf=False, contourXres=100, contourYres=100, s=20, alpha=0.6, subplot=None, fig=None): if (fig == None): fig = pylab.figure() ''' Contour ''' if (drawContour == True): try: pylab.clf() if (subplot is not None): pylab.subplot(subplot['rows'], subplot['cols'], subplot['cur']) xN, yN, zN = grid(xData, yData, zData, resX=contourXres, resY=contourYres) pylab.contour(xN, yN, zN) pylab.xlabel(xLabStr) pylab.ylabel(yLabStr) pylab.title(graphTitleDisp) pylab.grid() # pylab.show() pylab.savefig(graphTitleSave + '_contour', dpi=savedpi, papertype='a1') except: pass ''' 3D ''' if (draw3D == True): try: pylab.clf() if (subplot is not None): pylab.subplot(subplot['rows'], subplot['cols'], subplot['cur']) ax = p3.Axes3D(fig) ax.scatter3D(xData, yData, zData, marker='o', s=s, c=np.ravel(zData), alpha=alpha) tripleAngle3dSave(ax, graphTitleDisp, xLabStr, yLabStr, zLabStr, graphTitleSave + '_3D', savedpi=savedpi, angleType=angleType) except: pass if (draw3DSurf == True): try: # pylab.clf() if (subplot is not None): ax = fig.add_subplot(subplot['rows'], subplot['cols'], subplot['cur'], projection='3d') else: ax = p3.Axes3D(fig) ax.plot_surface(xData, yData, zData, cmap=cm.coolwarm, linewidth=0, antialiased=False) tripleAngle3dSave(ax, graphTitleDisp, xLabStr, yLabStr, zLabStr, graphTitleSave + '_3DS', savedpi=savedpi, angleType=angleType) except: pass return fig # pylab.close(fig) """ angleType: [1, [1, 2, 3]] this menas """ def tripleAngle3dSave(ax, graphTitleDisp, xLabStr, yLabStr, zLabStr, graphTitleSave, savedpi=125, angleType=[1, [1, 2, 3]]): ax.set_title(graphTitleDisp) # pylab.show() # for graphICur in [1, 2, 3]: for graphICur in angleType[1]: ax.set_xlabel(xLabStr) ax.set_ylabel(yLabStr) ax.set_zlabel(zLabStr) if (angleType[0] == 1): if (graphICur == 1): ax.view_init(elev=0, azim=-180) ax.set_xlabel('') if (graphICur == 2): ax.view_init(elev=0, azim=-90) ax.set_ylabel('') if (graphICur == 3): ax.view_init(elev=90, azim=-90) ax.set_zlabel('') if (graphICur == 4): ax.view_init(elev=-90, azim=0) ax.set_ylabel('') if (graphICur == 5): ax.view_init(elev=0, azim=-145) ax.set_ylabel('') if (graphICur == 6): ax.view_init(elev=22., azim=-115) ax.set_ylabel('') if (angleType[0] == 2): if (graphICur == 1): ax.view_init(elev=-90, azim=0) if (graphICur == 2): ax.view_init(elev=0, azim=-145) if (angleType[0] == 3): if (graphICur == 1): ax.view_init(elev=22., azim=-115) pylab.savefig(graphTitleSave + str(graphICur), dpi=savedpi, papertype='a1') # =========================================================================== # # angleColl_elevAndAzim_set1 = [[90,-90],[0,-180],[0,-90]] # angleColl_elevAndAzim_set2 = [[-90,0],[0,-145]] # angleColl_elevAndAzim = [angleColl_elevAndAzim_set1,angleColl_elevAndAzim_set2] # # if (angleColl_elevAndAzim[0] == 1): # ax.set_title(graphTitleDisp) # # pylab.show() # #for graphICur in [1, 2, 3]: # for graphICur in angleType[1]: # ax.set_xlabel(xLabStr) # ax.set_ylabel(yLabStr) # ax.set_zlabel(zLabStr) # (curElev,curAxzim) = angleColl_elevAndAzim[angleType[0]][graphICur] # ax.view_init(elev=curElev, azim=curAxzim) # if (graphICur == 1): # ax.set_zlabel('') # if (graphICur == 2): # ax.set_xlabel('') # if (graphICur == 3): # ax.set_ylabel('') # # pylab.savefig(graphTitleSave+str(graphICur), dpi=savedpi, papertype='a1') # # if (angleType[0] == 2): # ax.view_init(elev=-90, azim=0) # =========================================================================== ''' Essential function for turning scatter 3d plot into contour 3d plot ''' def grid(x, y, z, resX=100, resY=100): "Convert 3 column data to matplotlib grid" xi = np.linspace(min(x), max(x), resX) yi = np.linspace(min(y), max(y), resY) Z = griddata(x, y, z, xi, yi) X, Y = np.meshgrid(xi, yi) return X, Y, Z toGraphHere = False def graph_emaxKCash_Value(soluSupObj, resources, k_vec, emaxValsCur, emaxChoicesCur, emaxChoiceOfMaxCollCur, predictUtil): grapher = graphFunc() pylab.clf() toGraphHere = False if (toGraphHere == True): # fig=pylab.figure() xLabStr = 'Cash on Hand' yLabStr = 'Physical Capital' xData = resources yData = k_vec ''' Resource and K State Space Ranges ''' # =================================================================== # grapher = grpSup.graphFunc() # pylab.clf() # grapher.xyPlotMultiYOneX(yDataMat=resources, saveOrNot=True, showOrNot=False, graphType='hist', # saveDirectory=fobj.support_args['IO'], # saveFileName='ResStateHist'+str(fobj.support_args['cur_round']), # basicTitle='Resource Histogram', basicXLabel='Resource State Points', basicYLabel='Density') # # pylab.clf() # grapher.xyPlotMultiYOneX(yDataMat=k_vec, saveOrNot=True, showOrNot=False, graphType='hist', # saveDirectory=fobj.support_args['IO'], # saveFileName='KStateHist'+str(fobj.support_args['cur_round']), # basicTitle='K Histogram', basicXLabel='K State Points', basicYLabel='Density') # =================================================================== titleStrList = ['Utility', 'Consumption Choice', 'Kapital Choice', 'B Formal Choice', 'B Informal Choice'] titleStringList = ['Informal Borrow', 'Informal Save/Lend', 'Formal Borrow', 'Formal Save', 'Formal and Informal Borrow', 'Formal Borrow and Informal Save/Lend', 'None'] titleStringList = ['Inf Borr', 'Inf Save', 'For Borr', 'Form Save', 'FB+IB', 'FB+IS', 'None'] drawHere2DGraph = True drawHere3DGraph = False """ 3D and Contour """ curRound = str(soluSupObj.sa['cur_round']) if (int(curRound) % 1 == 0): """ Look over Value and Choices """ # for curCol in range(0,0): if (drawHere2DGraph == True): pylab.clf() fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = pylab.subplots(2, 3) axisList = [ax1, ax2, ax3, ax4, ax5, ax6] for curCol in range(0, 5): pylab.sca(axisList[curCol]) titlStr = titleStrList[curCol] labelArray_coll = [titlStr] noLabel = True if (titlStr == 'Utility'): zData = emaxValsCur[:, 0] angleType = [1, [1, 2, 3]] else: zData = emaxChoicesCur[:, curCol - 1] angleType = [3, [1]] if (drawHere2DGraph == True): """ Draw Prediction Line """ if (curCol == 0): xDataSortedIdx = np.argsort(xData) xDataSorted = xData[xDataSortedIdx] predictUtilSorted = predictUtil[xDataSortedIdx] grapher.xyPlotMultiYOneX(yDataMat=predictUtilSorted, xData=xDataSorted, labelArray=labelArray_coll, noLabel=noLabel, saveOrNot=False, graphType='plot') """ Draw Choices and Value along resources, scatter, color showing K value """ line45Deg = False if (curCol == 1): line45Deg = True grapher.xyPlotMultiYOneX(yDataMat=zData, xData=xData, colorVar=yData, labelArray=labelArray_coll, noLabel=noLabel, saveOrNot=False, graphType='scatter', scattersize=1, labelLoc1t0=4, basicTitle=titlStr, basicXLabel='Cash on Hand', basicYLabel='Consumption Unit', line45Deg=line45Deg) if (drawHere3DGraph == True and curCol <= 4): graphTitleDisp = titlStr saveTitleFull = soluSupObj.sa['IO'] + 'EmaxApprox_VCKnBn_t' + str(curCol) + 'iter' + curRound graphTitleSave = saveTitleFull zLabStr = 'Choices' contourAnd3D(xData, yData, zData, xLabStr, yLabStr, zLabStr, graphTitleDisp, graphTitleSave, angleType=angleType, drawContour=True, draw3D=True) if (drawHere2DGraph == True): grapher.savingFig(saveDirectory=soluSupObj.sa['IO'], saveFileName='EmaxApprox_VCKnBn_iter' + str(curRound), saveDPI=200, pylabUse=fig) """ Probability of Choices Graphs along 3D """ # for curCol in range(4,4,1): if (drawHere2DGraph == True): pylab.clf() fig, ((ax1, ax2, ax3, ax4), (ax5, ax6, ax7, ax8)) = pylab.subplots(2, 4) axisList = [ax1, ax2, ax3, ax4, ax5, ax6, ax7] maxProb = np.max(emaxChoiceOfMaxCollCur[:, 4:11]) for curCol in range(4, 11, 1): pylab.sca(axisList[curCol - 4]) xLabStr = 'Cash on Hand' yLabStr = 'Physical Capital' titlStr = 'Probability of ' + titleStringList[curCol - 4] zData = emaxChoiceOfMaxCollCur[:, curCol] if (drawHere3DGraph == True): graphTitleDisp = titlStr saveTitleFull = soluSupObj.sa['IO'] + 'EmaxApprox_Prob_t' + str(curCol) + 'iter' + curRound graphTitleSave = saveTitleFull zLabStr = 'Probability of Choice' contourAnd3D(xData, yData, zData, xLabStr, yLabStr, zLabStr, graphTitleDisp, graphTitleSave, angleType=[3, [1]], drawContour=True, draw3D=True) if (drawHere2DGraph == True): grapher.xyPlotMultiYOneX(yDataMat=zData, xData=xData, colorVar=yData, saveOrNot=False, graphType='scatter', scattersize=1, basicTitle=titleStringList[curCol - 4], basicXLabel='Cash on Hand', basicYLabel='Probability', ylim=[-0.05, maxProb], xlim=[0 - 5000, np.max(xData) + 5000]) """ sumProb Should be 1, but maybe not due to code issues, need to check here """ pylab.sca(ax8) sumProb = np.sum((emaxChoiceOfMaxCollCur[:, 4:11]), axis=1) grapher.xyPlotMultiYOneX(yDataMat=sumProb, xData=xData, saveOrNot=False, graphType='scatter', scattersize=1, basicTitle='Sum Prob', basicXLabel='Cash on Hand', basicYLabel='Probability', ylim=[-0.05, 1.05], xlim=[0 - 5000, np.max(xData) + 5000]) if (drawHere2DGraph == True): grapher.savingFig(saveDirectory=soluSupObj.sa['IO'], saveFileName='EmaxApprox_Prob_iter' + str(curRound), saveDPI=200, pylabUse=fig) def OLSEmaxValAndChoicesGraphs(allDataY, allDataX, saveFileSuffix='', yLabelNames=['Emax', 'Choice'], xLabelNames=['Height', 'Weight', 'Income'], saveDirectory='default', saveFileName='default'): # toGraphHere = False if (toGraphHere == True): loopCountY = len(yLabelNames) for graphI in range(0, loopCountY, 1): yData = allDataY[graphI] OLSEmaxGraphs(saveFileSuffix, yVal=yData, allDataX=allDataX, yLabelName=yLabelNames[graphI], xLabelNames=xLabelNames, saveDirectory=saveDirectory, saveFileName=saveFileName) def OLSEmaxGraphs(saveFileSuffix, yVal, allDataX, saveDirectory='default', saveFileName='default', yLabelName='yLabelName', xLabelNames=['Height', 'Weight', 'Income']): if (saveDirectory == 'default'): saveDirectory = 'C:\\Users\\fan\\Documents\\Dropbox\\Height_Production_Function\\Results--HD on HL WL--Linear--Protein and Calorie With Price Instruments\\ProduWithPref\\' saveFileName = saveFileName + '_' + str(yLabelName) + str(saveFileSuffix) if (saveFileName == 'default'): saveFileName = 'EmaxApprox' grapher = graphFunc() pylab.clf() loopCount = len(xLabelNames) for graphI in range(0, loopCount, 1): xData = allDataX[graphI] yDataMat = yVal pylab.subplot(2, loopCount, graphI + 1) basicTitle = xLabelNames[graphI] + ' and ' + yLabelName basicXLabel = xLabelNames[graphI] basicYLabel = yLabelName grapher.xyPlotMultiYOneX(yDataMat=yDataMat, xData=xData, saveOrNot=False, graphType='scatterregline', basicTitle=basicTitle, basicXLabel=basicXLabel, basicYLabel=basicYLabel, noLabel=True, scattersize=0.1) xData = allDataX[graphI] pylab.subplot(2, loopCount, graphI + 1 + loopCount) basicTitle = xLabelNames[graphI] + ' Histogram' basicXLabel = xLabelNames[graphI] basicYLabel = 'Frequency' grapher.xyPlotMultiYOneX(yDataMat=xData, saveOrNot=False, graphType='hist', basicTitle=basicTitle, basicXLabel=basicXLabel, basicYLabel=basicYLabel, noLabel=True, bins=30) pylab.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) pylab.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) grapher.savingFig(saveDirectory=saveDirectory, saveFileName=saveFileName) class graphFunc: points = 200 xData = np.linspace(-1, 1, points) xData =
np.random.normal(10, 2, points)
numpy.random.normal
# Copyright 2020 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import datetime import time import numpy as np import pytest import cirq import cirq.work as cw from cirq.work.observable_measurement_data import ( _check_and_get_real_coef, _obs_vals_from_measurements, _stats_from_measurements, ) from cirq.work.observable_settings import _MeasurementSpec def test_get_real_coef(): q0 = cirq.LineQubit(0) assert _check_and_get_real_coef(cirq.Z(q0) * 2, atol=1e-8) == 2 assert _check_and_get_real_coef(cirq.Z(q0) * complex(2.0), atol=1e-8) == 2 with pytest.raises(ValueError): _check_and_get_real_coef(cirq.Z(q0) * 2.0j, atol=1e-8) def test_obs_vals_from_measurements(): bitstrings = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') qubit_to_index = {a: 0, b: 1} obs = cirq.Z(a) * cirq.Z(b) * 10 vals = _obs_vals_from_measurements(bitstrings, qubit_to_index, obs, atol=1e-8) should_be = [10, -10, -10, 10] np.testing.assert_equal(vals, should_be) def test_stats_from_measurements(): bitstrings = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') qubit_to_index = {a: 0, b: 1} obs = cirq.Z(a) * cirq.Z(b) * 10 mean, err = _stats_from_measurements(bitstrings, qubit_to_index, obs, atol=1e-8) # The mean is zero since our bitstrings have balanced even- and odd- # parity cases. assert mean == 0 # Since we multiplied our observable by 10, the standard deviation is # 10 [each obs val deviates by 10]. The variance is 10**2 and the # squared-standard-error-of-the-mean can be found by dividing by the # number of samples minus 1. assert err == 10**2 / (4 - 1) def test_observable_measured_result(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') omr = cw.ObservableMeasuredResult( setting=cw.InitObsSetting( init_state=cirq.Z(a) * cirq.Z(b), observable=cirq.Y(a) * cirq.Y(b) ), mean=0, variance=5**2, repetitions=4, circuit_params={'phi': 52}, ) assert omr.stddev == 5 assert omr.observable == cirq.Y(a) * cirq.Y(b) assert omr.init_state == cirq.Z(a) * cirq.Z(b) cirq.testing.assert_equivalent_repr(omr) assert omr.as_dict() == { 'init_state': cirq.Z(a) * cirq.Z(b), 'observable': cirq.Y(a) * cirq.Y(b), 'mean': 0, 'variance': 25, 'repetitions': 4, 'param.phi': 52, } omr2 = dataclasses.replace( omr, circuit_params={ 'phi': 52, 'observable': 3.14, # this would be a bad but legal parameter name 'param.phi': -1, }, ) assert omr2.as_dict() == { 'init_state': cirq.Z(a) * cirq.Z(b), 'observable': cirq.Y(a) * cirq.Y(b), 'mean': 0, 'variance': 25, 'repetitions': 4, 'param.phi': 52, 'param.observable': 3.14, 'param.param.phi': -1, } @pytest.fixture() def example_bsa() -> 'cw.BitstringAccumulator': """Test fixture to create an (empty) example BitstringAccumulator""" q0, q1 = cirq.LineQubit.range(2) setting = cw.InitObsSetting( init_state=cirq.KET_ZERO(q0) * cirq.KET_ZERO(q1), observable=cirq.X(q0) * cirq.Y(q1) ) meas_spec = _MeasurementSpec( max_setting=setting, circuit_params={'beta': 0.123, 'gamma': 0.456} ) bsa = cw.BitstringAccumulator( meas_spec=meas_spec, simul_settings=[ setting, cw.InitObsSetting(init_state=setting.init_state, observable=cirq.X(q0)), cw.InitObsSetting(init_state=setting.init_state, observable=cirq.Y(q1)), ], qubit_to_index={q0: 0, q1: 1}, ) return bsa def test_bitstring_accumulator(example_bsa): # test initialization assert example_bsa.bitstrings.shape == (0, 2) assert example_bsa.chunksizes.shape == (0,) assert example_bsa.timestamps.shape == (0,) # test consume_results bitstrings = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.uint8) example_bsa.consume_results(bitstrings) assert example_bsa.bitstrings.shape == (4, 2) assert example_bsa.chunksizes.shape == (1,) assert example_bsa.timestamps.shape == (1,) assert example_bsa.n_repetitions == 4 with pytest.raises(ValueError): example_bsa.consume_results(bitstrings.astype(int)) # test results results = list(example_bsa.results) assert len(results) == 3 for r in results: assert r.repetitions == 4 # test records for r in example_bsa.records: assert isinstance(r, dict) assert 'repetitions' in r assert r['repetitions'] == 4 def test_bitstring_accumulator_strings(example_bsa): bitstrings = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.uint8) example_bsa.consume_results(bitstrings) q0, q1 = cirq.LineQubit.range(2) settings = cw.observables_to_settings( [cirq.X(q0), cirq.Y(q1), cirq.X(q0) * cirq.Y(q1)], qubits=[q0, q1] ) strings_should_be = [ '+Z(q(0)) * +Z(q(1)) → X(q(0)): 0.000 +- 0.577', '+Z(q(0)) * +Z(q(1)) → Y(q(1)): 0.000 +- 0.577', '+Z(q(0)) * +Z(q(1)) → X(q(0))*Y(q(1)): 0.000 +- 0.577', ] for setting, ssb in zip(settings, strings_should_be): assert example_bsa.summary_string(setting) == ssb, ssb assert ( str(example_bsa) == """Accumulator +Z(q(0)) * +Z(q(1)) → X(q(0))*Y(q(1)); 4 repetitions +Z(q(0)) * +Z(q(1)) → X(q(0))*Y(q(1)): 0.000 +- 0.577 +Z(q(0)) * +Z(q(1)) → X(q(0)): 0.000 +- 0.577 +Z(q(0)) * +Z(q(1)) → Y(q(1)): 0.000 +- 0.577""" ) def test_bitstring_accumulator_equality(): et = cirq.testing.EqualsTester() bitstrings = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.uint8) chunksizes = np.asarray([4]) timestamps = np.asarray([datetime.datetime.now()]) a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') qubit_to_index = {a: 0, b: 1} obs = cirq.Z(a) * cirq.Z(b) * 10 setting = cw.InitObsSetting(init_state=cirq.Z(a) * cirq.Z(b), observable=obs) meas_spec = _MeasurementSpec(setting, {}) cirq.testing.assert_equivalent_repr( cw.BitstringAccumulator( meas_spec=meas_spec, simul_settings=[setting], qubit_to_index=qubit_to_index, bitstrings=bitstrings.copy(), chunksizes=chunksizes.copy(), timestamps=timestamps.copy(), ) ) et.add_equality_group( cw.BitstringAccumulator( meas_spec=meas_spec, simul_settings=[setting], qubit_to_index=qubit_to_index, bitstrings=bitstrings.copy(), chunksizes=chunksizes.copy(), timestamps=timestamps.copy(), ), cw.BitstringAccumulator( meas_spec=meas_spec, simul_settings=[setting], qubit_to_index=qubit_to_index, bitstrings=bitstrings.copy(), chunksizes=chunksizes.copy(), timestamps=timestamps.copy(), ), ) time.sleep(1) timestamps = np.asarray([datetime.datetime.now()]) et.add_equality_group( cw.BitstringAccumulator( meas_spec=meas_spec, simul_settings=[setting], qubit_to_index=qubit_to_index, bitstrings=bitstrings, chunksizes=chunksizes, timestamps=timestamps, ) ) et.add_equality_group( cw.BitstringAccumulator( meas_spec=_MeasurementSpec(setting, {'a': 2}), simul_settings=[setting], qubit_to_index=qubit_to_index, bitstrings=bitstrings, chunksizes=chunksizes, timestamps=timestamps, ) ) bitstrings = bitstrings.copy() bitstrings[0] = [1, 1] et.add_equality_group( cw.BitstringAccumulator( meas_spec=meas_spec, simul_settings=[setting], qubit_to_index=qubit_to_index, bitstrings=bitstrings, chunksizes=chunksizes, timestamps=timestamps, ) ) chunksizes = np.asarray([2, 2]) timestamps = np.asarray(list(timestamps) * 2) et.add_equality_group( cw.BitstringAccumulator( meas_spec=meas_spec, simul_settings=[setting], qubit_to_index=qubit_to_index, bitstrings=bitstrings, chunksizes=chunksizes, timestamps=timestamps, ) ) def _get_ZZ_Z_Z_bsa_constructor_args(): bitstrings = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.uint8) chunksizes = np.asarray([4]) timestamps = np.asarray([datetime.datetime.now()]) a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') qubit_to_index = {a: 0, b: 1} settings = list( cw.observables_to_settings( [cirq.Z(a) * cirq.Z(b) * 7, cirq.Z(a) * 5, cirq.Z(b) * 3], qubits=[a, b] ) ) meas_spec = _MeasurementSpec(settings[0], {}) return { 'meas_spec': meas_spec, 'simul_settings': settings, 'qubit_to_index': qubit_to_index, 'bitstrings': bitstrings, 'chunksizes': chunksizes, 'timestamps': timestamps, } def test_bitstring_accumulator_stats(): kwargs = _get_ZZ_Z_Z_bsa_constructor_args() settings = kwargs['simul_settings'] a, b = kwargs['qubit_to_index'] bsa = cw.BitstringAccumulator(**kwargs) # There are three observables, each with mean 0 because # the four 2-bit strings have even numbers of a) ones in the # first position b) ones in the second position c) even parity # pairs. np.testing.assert_allclose([0, 0, 0], bsa.means()) # Covariance: Sum[(x - xbar)(y - ybar)] / (N-1) # where xbar and ybar are 0, per above. Each individual observed # value is +-1, so (x-xbar)(y-bar) is +-1 (neglecting observable coefficients) # For off-diagonal elements, there are two +1 and two -1 terms for each entry # so the total contribution is zero, and the matrix is diagonal should_be = np.array([[4 * 7**2, 0, 0], [0, 4 * 5**2, 0], [0, 0, 4 * 3**2]]) should_be = should_be / (4 - 1) # covariance formula should_be = should_be / 4 # cov of the distribution of sample mean np.testing.assert_allclose(should_be, bsa.covariance()) for setting, var in zip(settings, [4 * 7**2, 4 * 5**2, 4 * 3**2]): np.testing.assert_allclose(0, bsa.mean(setting)) np.testing.assert_allclose(var / 4 / (4 - 1), bsa.variance(setting)) np.testing.assert_allclose(
np.sqrt(var / 4 / (4 - 1))
numpy.sqrt
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num =
N.array([0,1,0])
numpy.array
# Copyright (c) 2020 @ FBK - Fondazione B<NAME> # Author: <NAME> # Project: LUCID: A Practical, Lightweight Deep Learning Solution for DDoS Attack Detection # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import sys import csv import glob import h5py import time import pyshark import socket import pickle import random import hashlib import argparse import ipaddress import numpy as np from lxml import etree from collections import OrderedDict from sklearn.feature_extraction.text import CountVectorizer from sklearn.utils import shuffle as sklearn_shuffle from multiprocessing import Process, Manager, Value, Queue from util_functions import * # Sample commands # split a pcap file into smaller chunks to leverage multi-core CPUs: tcpdump -r dataset.pcap -w dataset-chunk -C 1000 # dataset parsing (first step): python3 lucid_dataset_parser.py --dataset_type SYN2020 --dataset_folder ./sample-dataset/ --packets_per_flow 10 --dataset_id SYN2020 --traffic_type all --time_window 10 # dataset parsing (second step): python3 lucid_dataset_parser.py --preprocess_folder ./sample-dataset/ IDS2018_DDOS_FLOWS = {'attackers': ['192.168.127.12', '192.168.3.11','192.168.127.12','192.168.127.12','192.168.3.11','172.16.17.32','192.168.127.12','172.16.17.32','192.168.3.11','192.168.127.12'], 'victims': ['172.16.17.32','172.31.69.28']} IDS2017_DDOS_FLOWS = {'attackers': ['172.16.0.1'], 'victims': ['192.168.10.50']} CUSTOM_DDOS_SYN = {'attackers': ['11.0.0.' + str(x) for x in range(1,255)], 'victims': ['10.42.0.2']} DDOS_ATTACK_SPECS = { 'IDS2017' : IDS2017_DDOS_FLOWS, 'IDS2018' : IDS2018_DDOS_FLOWS, 'SYN2020' : CUSTOM_DDOS_SYN } vector_proto = CountVectorizer() vector_proto.fit_transform(protocols).todense() random.seed(SEED) np.random.seed(SEED) def get_pkt_direction(srcIP,dstIP): internalIP = "192.168" if internalIP in srcIP and internalIP in dstIP: return 0 elif internalIP in srcIP: return 1 elif internalIP in dstIP: return 2 else: print ("No private address in this flow!!!!") return 3 class packet_features: def __init__(self): self.id_fwd = (0,0,0,0,0) # 5-tuple src_ip_addr, src_port,,dst_ip_addr,dst_port,protocol self.id_bwd = (0,0,0,0,0) # 5-tuple src_ip_addr, src_port,,dst_ip_addr,dst_port,protocol self.features_list = [] def __str__(self): return "{} -> {}".format(self.id_fwd, self.features_list) def get_ddos_flows(attackers,victims): DDOS_FLOWS = {} if '/' in attackers: # subnet DDOS_FLOWS['attackers'] = [str(ip) for ip in list(ipaddress.IPv4Network(attackers).hosts())] else: # single address DDOS_FLOWS['attackers'] = [str(ipaddress.IPv4Address(attackers))] if '/' in victims: # subnet DDOS_FLOWS['victims'] = [str(ip) for ip in list(ipaddress.IPv4Network(victims).hosts())] else: # single address DDOS_FLOWS['victims'] = [str(ipaddress.IPv4Address(victims))] return DDOS_FLOWS # function that build the labels based on the dataset type def parse_labels(dataset_type=None, attackers=None,victims=None): output_dict = {} if attackers is not None and victims is not None: DDOS_FLOWS = get_ddos_flows(attackers, victims) elif dataset_type is not None and dataset_type in DDOS_ATTACK_SPECS: DDOS_FLOWS = DDOS_ATTACK_SPECS[dataset_type] else: return None for attacker in DDOS_FLOWS['attackers']: for victim in DDOS_FLOWS['victims']: ip_src = str(attacker) ip_dst = str(victim) key_fwd = (ip_src, ip_dst) key_bwd = (ip_dst, ip_src) if key_fwd not in output_dict: output_dict[key_fwd] = 1 if key_bwd not in output_dict: output_dict[key_bwd] = 1 return output_dict def parse_packet(pkt): pf = packet_features() tmp_id = [0,0,0,0,0] try: pf.features_list.append(float(pkt.sniff_timestamp)) # timestampchild.find('Tag').text pf.features_list.append(int(pkt.ip.len)) # packet length pf.features_list.append(int(hashlib.sha256(str(pkt.highest_layer).encode('utf-8')).hexdigest(), 16) % 10 ** 8) # highest layer in the packet pf.features_list.append(int(int(pkt.ip.flags, 16))) # IP flags tmp_id[0] = str(pkt.ip.src) # int(ipaddress.IPv4Address(pkt.ip.src)) tmp_id[2] = str(pkt.ip.dst) # int(ipaddress.IPv4Address(pkt.ip.dst)) protocols = vector_proto.transform([pkt.frame_info.protocols]).toarray().tolist()[0] protocols = [1 if i >= 1 else 0 for i in protocols] # we do not want the protocols counted more than once (sometimes they are listed twice in pkt.frame_info.protocols) protocols_value = int(np.dot(np.array(protocols), powers_of_two)) pf.features_list.append(protocols_value) protocol = int(pkt.ip.proto) tmp_id[4] = protocol if pkt.transport_layer != None: if protocol == socket.IPPROTO_TCP: tmp_id[1] = int(pkt.tcp.srcport) tmp_id[3] = int(pkt.tcp.dstport) pf.features_list.append(int(pkt.tcp.len)) # TCP length pf.features_list.append(int(pkt.tcp.ack)) # TCP ack pf.features_list.append(int(pkt.tcp.flags, 16)) # TCP flags pf.features_list.append(int(pkt.tcp.window_size_value)) # TCP window size pf.features_list = pf.features_list + [0, 0] # UDP + ICMP positions elif protocol == socket.IPPROTO_UDP: pf.features_list = pf.features_list + [0, 0, 0, 0] # TCP positions tmp_id[1] = int(pkt.udp.srcport) pf.features_list.append(int(pkt.udp.length)) # UDP length tmp_id[3] = int(pkt.udp.dstport) pf.features_list = pf.features_list + [0] # ICMP position elif protocol == socket.IPPROTO_ICMP: pf.features_list = pf.features_list + [0, 0, 0, 0, 0] # TCP and UDP positions pf.features_list.append(int(pkt.icmp.type)) # ICMP type else: pf.features_list = pf.features_list + [0, 0, 0, 0, 0, 0] # padding for layer3-only packets tmp_id[4] = 0 pf.id_fwd = (tmp_id[0], tmp_id[1], tmp_id[2], tmp_id[3], tmp_id[4]) pf.id_bwd = (tmp_id[2], tmp_id[3], tmp_id[0], tmp_id[1], tmp_id[4]) return pf except AttributeError as e: # ignore packets that aren't TCP/UDP or IPv4 return None # Offline preprocessing of pcap files for model training, validation and testing def process_pcap(pcap_file,dataset_type,in_labels,max_flow_len,labelled_flows,traffic_type='all',time_window=TIME_WINDOW): start_time = time.time() temp_dict = OrderedDict() start_time_window = -1 pcap_name = pcap_file.split("/")[-1] print("Processing file: ", pcap_name) cap = pyshark.FileCapture(pcap_file) for i, pkt in enumerate(cap): if i % 1000 == 0: print(pcap_name + " packet #", i) # start_time_window is used to group packets/flows captured in a time-window if start_time_window == -1 or float(pkt.sniff_timestamp) > start_time_window + time_window: start_time_window = float(pkt.sniff_timestamp) pf = parse_packet(pkt) temp_dict = store_packet(pf, temp_dict, start_time_window, max_flow_len) apply_labels(temp_dict, labelled_flows, in_labels, traffic_type) print('Completed file {} in {} seconds.'.format(pcap_name, time.time() - start_time)) # Transforms live traffic into input samples for inference def process_live_traffic(cap, dataset_type, in_labels, max_flow_len, traffic_type='all',time_window=TIME_WINDOW): start_time = time.time() temp_dict = OrderedDict() labelled_flows = [] start_time_window = start_time time_window = start_time_window + time_window if isinstance(cap, pyshark.LiveCapture) == True: for pkt in cap.sniff_continuously(): if time.time() >= time_window: break pf = parse_packet(pkt) temp_dict = store_packet(pf, temp_dict, start_time_window, max_flow_len) elif isinstance(cap, pyshark.FileCapture) == True: while time.time() < time_window: pkt = cap.next() pf = parse_packet(pkt) temp_dict = store_packet(pf,temp_dict,start_time_window,max_flow_len) apply_labels(temp_dict,labelled_flows, in_labels,traffic_type) return labelled_flows def store_packet(pf,temp_dict,start_time_window, max_flow_len): if pf is not None: if pf.id_fwd in temp_dict and start_time_window in temp_dict[pf.id_fwd] and \ temp_dict[pf.id_fwd][start_time_window].shape[0] < max_flow_len: temp_dict[pf.id_fwd][start_time_window] = np.vstack( [temp_dict[pf.id_fwd][start_time_window], pf.features_list]) elif pf.id_bwd in temp_dict and start_time_window in temp_dict[pf.id_bwd] and \ temp_dict[pf.id_bwd][start_time_window].shape[0] < max_flow_len: temp_dict[pf.id_bwd][start_time_window] = np.vstack( [temp_dict[pf.id_bwd][start_time_window], pf.features_list]) else: if pf.id_fwd not in temp_dict and pf.id_bwd not in temp_dict: temp_dict[pf.id_fwd] = {start_time_window: np.array([pf.features_list]), 'label': 0} elif pf.id_fwd in temp_dict and start_time_window not in temp_dict[pf.id_fwd]: temp_dict[pf.id_fwd][start_time_window] = np.array([pf.features_list]) elif pf.id_bwd in temp_dict and start_time_window not in temp_dict[pf.id_bwd]: temp_dict[pf.id_bwd][start_time_window] = np.array([pf.features_list]) return temp_dict def apply_labels(flows, labelled_flows, labels, traffic_type): for five_tuple, flow in flows.items(): if labels is not None: short_key = (five_tuple[0], five_tuple[2]) # for IDS2017/IDS2018 dataset the labels have shorter keys flow['label'] = labels.get(short_key, 0) for flow_key, packet_list in flow.items(): # relative time wrt the time of the first packet in the flow if flow_key != 'label': amin = np.amin(packet_list,axis=0)[0] packet_list[:, 0] = packet_list[:, 0] - amin if traffic_type == 'ddos' and flow['label'] == 0: # we only want malicious flows from this dataset continue elif traffic_type == 'benign' and flow['label'] > 0: # we only want benign flows from this dataset continue else: labelled_flows.append((five_tuple,flow)) # returns the total number of flows def count_flows(preprocessed_flows): ddos_flows = 0 total_flows = len(preprocessed_flows) ddos_fragments = 0 total_fragments = 0 for flow in preprocessed_flows: flow_fragments = len(flow[1]) - 1 total_fragments += flow_fragments if flow[1]['label'] > 0: ddos_flows += 1 ddos_fragments += flow_fragments # the label does not count return (total_flows, ddos_flows, total_flows - ddos_flows), (total_fragments, ddos_fragments, total_fragments-ddos_fragments) # balance the dataset based on the number of benign and malicious fragments of flows def balance_dataset(flows,total_fragments=float('inf')): new_flow_list = [] _,(_, ddos_fragments, benign_fragments) = count_flows(flows) if ddos_fragments == 0 or benign_fragments == 0: min_fragments = total_fragments else: min_fragments = min(total_fragments/2,ddos_fragments,benign_fragments) random.shuffle(flows) new_benign_fragments = 0 new_ddos_fragments = 0 for flow in flows: if flow[1]['label'] == 0 and (new_benign_fragments < min_fragments ): new_benign_fragments += len(flow[1]) - 1 new_flow_list.append(flow) elif flow[1]['label'] == 1 and (new_ddos_fragments < min_fragments): new_ddos_fragments += len(flow[1]) - 1 new_flow_list.append(flow) return new_flow_list, new_benign_fragments, new_ddos_fragments # convert the dataset from dictionaries with 5-tuples keys into a list of flow fragments and another list of labels def dataset_to_list_of_fragments(dataset): keys = [] X = [] y = [] for flow in dataset: tuple = flow[0] flow_data = flow[1] label = flow_data['label'] for key, fragment in flow_data.items(): if key != 'label': X.append(fragment) y.append(label) keys.append(tuple) return X,y,keys def train_test_split(flow_list,train_size=TRAIN_SIZE, shuffle=True): test_list = [] _,(total_examples,_,_) = count_flows(flow_list) test_examples = total_examples - total_examples*train_size if shuffle == True: random.shuffle(flow_list) current_test_examples = 0 while current_test_examples < test_examples: flow = flow_list.pop(0) test_list.append(flow) current_test_examples += len(flow[1])-1 return flow_list,test_list def main(argv): command_options = " ".join(str(x) for x in argv[1:]) help_string = 'Usage[0]: python3 lucid_dataset_parser.py --dataset_type <dataset_name> --dataset_folder <folder path> --dataset_id <dataset identifier> --packets_per_flow <n> --time_window <t>\n' \ 'Usage[1]: python3 lucid_dataset_parser.py --preprocess_folder <folder path>' manager = Manager() parser = argparse.ArgumentParser( description='Dataset parser', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-d', '--dataset_folder', nargs='+', type=str, help='Folder with the dataset') parser.add_argument('-o', '--output_folder', nargs='+', type=str, help='Output folder') parser.add_argument('-f', '--traffic_type', default='all', nargs='+', type=str, help='Type of flow to process (all, benign, ddos)') parser.add_argument('-p', '--preprocess_folder', nargs='+', type=str, help='Folder with preprocessed data') parser.add_argument('--preprocess_file', nargs='+', type=str, help='File with preprocessed data') parser.add_argument('-b', '--balance_folder', nargs='+', type=str, help='Folder where balancing datasets') parser.add_argument('-n', '--packets_per_flow', nargs='+', type=str, help='Packet per flow sample') parser.add_argument('-s', '--samples', default=float('inf'), type=int, help='Number of training samples in the reduced output') parser.add_argument('-i', '--dataset_id', nargs='+', type=str, help='String to append to the names of output files') parser.add_argument('-t', '--dataset_type', nargs='+', type=str, help='Type of the dataset. Available options are: IDS2017, IDS2018, SYN2020') parser.add_argument('-w', '--time_window', nargs='+', type=str, help='Length of the time window') parser.add_argument('--no_split', help='Do not split the dataset', action='store_true') args = parser.parse_args() if args.packets_per_flow is not None: max_flow_len = int(args.packets_per_flow[0]) else: max_flow_len = MAX_FLOW_LEN if args.time_window is not None: time_window = float(args.time_window[0]) else: time_window = TIME_WINDOW if args.dataset_id is not None: dataset_id = str(args.dataset_id[0]) else: dataset_id = '' if args.traffic_type is not None: traffic_type = str(args.traffic_type[0]) else: traffic_type = 'all' if args.dataset_folder is not None and args.dataset_type is not None: process_list = [] flows_list = [] if args.output_folder is not None and os.path.isdir(args.output_folder[0]) is True: output_folder = args.output_folder[0] else: output_folder = args.dataset_folder[0] filelist = glob.glob(args.dataset_folder[0]+ '/*.pcap') in_labels = parse_labels(args.dataset_type[0],args.dataset_folder[0]) start_time = time.time() for file in filelist: try: flows = manager.list() p = Process(target=process_pcap,args=(file,args.dataset_type[0],in_labels,max_flow_len,flows,traffic_type,time_window)) process_list.append(p) flows_list.append(flows) except FileNotFoundError as e: continue for p in process_list: p.start() for p in process_list: p.join() np.seterr(divide='ignore', invalid='ignore') preprocessed_flows = list(flows_list[0]) #concatenation of the features for results in flows_list[1:]: preprocessed_flows = preprocessed_flows + list(results) process_time = time.time()-start_time if dataset_id == '': dataset_id = str(args.dataset_type[0]) filename = str(int(time_window)) + 't-' + str(max_flow_len) + 'n-' + dataset_id + '-preprocess' output_file = output_folder + '/' + filename output_file = output_file.replace("//", "/") # remove double slashes when needed with open(output_file + '.data', 'wb') as filehandle: # store the data as binary data stream pickle.dump(preprocessed_flows, filehandle) (total_flows, ddos_flows, benign_flows), (total_fragments, ddos_fragments, benign_fragments) = count_flows(preprocessed_flows) log_string = time.strftime("%Y-%m-%d %H:%M:%S") + " | dataset_type:" + args.dataset_type[0] + \ " | flows (tot,ben,ddos):(" + str(total_flows) + "," + str(benign_flows) + "," + str(ddos_flows) + \ ") | fragments (tot,ben,ddos):(" + str(total_fragments) + "," + str(benign_fragments) + "," + str(ddos_fragments) + \ ") | options:" + command_options + " | process_time:" + str(process_time) + " |\n" print (log_string) # saving log file with open(output_folder + '/history.log', "a") as myfile: myfile.write(log_string) if args.preprocess_folder is not None or args.preprocess_file is not None: if args.preprocess_folder is not None: output_folder = args.output_folder[0] if args.output_folder is not None else args.preprocess_folder[0] filelist = glob.glob(args.preprocess_folder[0] + '/*.data') else: output_folder = args.output_folder[0] if args.output_folder is not None else os.path.dirname(os.path.realpath(args.preprocess_file[0])) filelist = args.preprocess_file # obtain time_window and flow_len from filename and ensure that all files have the same values time_window = None max_flow_len = None dataset_id = None for file in filelist: filename = file.split('/')[-1].strip() current_time_window = int(filename.split('-')[0].strip().replace('t','')) current_max_flow_len = int(filename.split('-')[1].strip().replace('n','')) current_dataset_id = str(filename.split('-')[2].strip()) if time_window != None and current_time_window != time_window: print ("Incosistent time windows!!") exit() else: time_window = current_time_window if max_flow_len != None and current_max_flow_len != max_flow_len: print ("Incosistent flow lengths!!") exit() else: max_flow_len = current_max_flow_len if dataset_id != None and current_dataset_id != dataset_id: dataset_id = "IDS201X" else: dataset_id = current_dataset_id preprocessed_flows = [] for file in filelist: with open(file, 'rb') as filehandle: # read the data as binary data stream preprocessed_flows = preprocessed_flows + pickle.load(filehandle) # balance samples and redux the number of samples when requested preprocessed_flows, benign_fragments, ddos_fragments = balance_dataset(preprocessed_flows,args.samples) if len(preprocessed_flows) == 0: print("Empty dataset!") exit() preprocessed_train, preprocessed_test = train_test_split(preprocessed_flows,train_size=TRAIN_SIZE, shuffle=True) preprocessed_train, preprocessed_val = train_test_split(preprocessed_train, train_size=TRAIN_SIZE, shuffle=True) X_train, y_train, _ = dataset_to_list_of_fragments(preprocessed_train) X_val, y_val, _ = dataset_to_list_of_fragments(preprocessed_val) X_test, y_test, _ = dataset_to_list_of_fragments(preprocessed_test) # normalization and padding X_full = X_train + X_val + X_test y_full = y_train + y_val + y_test mins,maxs = static_min_max(time_window=time_window) total_examples = len(y_full) total_ddos_examples = sum(y_full) total_benign_examples = len(y_full) - sum(y_full) output_file = output_folder + '/' + str(time_window) + 't-' + str(max_flow_len) + 'n-' + dataset_id + '-dataset' if args.no_split == True: # don't split the dataset norm_X_full = normalize_and_padding(X_full, mins, maxs, max_flow_len) #norm_X_full = padding(X_full,max_flow_len) # only padding norm_X_full_np = np.array(norm_X_full) y_full_np = np.array(y_full) hf = h5py.File(output_file + '-full.hdf5', 'w') hf.create_dataset('set_x', data=norm_X_full_np) hf.create_dataset('set_y', data=y_full_np) hf.close() [full_packets] = count_packets_in_dataset([norm_X_full_np]) log_string = time.strftime("%Y-%m-%d %H:%M:%S") + " | Total examples (tot,ben,ddos):(" + str(total_examples) + "," + str(total_benign_examples) + "," + str(total_ddos_examples) + \ ") | Total packets:(" + str(full_packets) + \ ") | options:" + command_options + " |\n" else: norm_X_train = normalize_and_padding(X_train,mins,maxs,max_flow_len) norm_X_val = normalize_and_padding(X_val, mins, maxs, max_flow_len) norm_X_test = normalize_and_padding(X_test, mins, maxs, max_flow_len) norm_X_train_np = np.array(norm_X_train) y_train_np = np.array(y_train) norm_X_val_np = np.array(norm_X_val) y_val_np = np.array(y_val) norm_X_test_np = np.array(norm_X_test) y_test_np = np.array(y_test) hf = h5py.File(output_file + '-train.hdf5', 'w') hf.create_dataset('set_x', data=norm_X_train_np) hf.create_dataset('set_y', data=y_train_np) hf.close() hf = h5py.File(output_file + '-val.hdf5', 'w') hf.create_dataset('set_x', data=norm_X_val_np) hf.create_dataset('set_y', data=y_val_np) hf.close() hf = h5py.File(output_file + '-test.hdf5', 'w') hf.create_dataset('set_x', data=norm_X_test_np) hf.create_dataset('set_y', data=y_test_np) hf.close() [train_packets, val_packets, test_packets] = count_packets_in_dataset([norm_X_train_np, norm_X_val_np, norm_X_test_np]) log_string = time.strftime("%Y-%m-%d %H:%M:%S") + " | examples (tot,ben,ddos):(" + str(total_examples) + "," + str(total_benign_examples) + "," + str(total_ddos_examples) + \ ") | Train/Val/Test sizes: (" + str(norm_X_train_np.shape[0]) + "," + str(norm_X_val_np.shape[0]) + "," + str(norm_X_test_np.shape[0]) + \ ") | Packets (train,val,test):(" + str(train_packets) + "," + str(val_packets) + "," + str(test_packets) + \ ") | options:" + command_options + " |\n" print(log_string) # saving log file with open(output_folder + '/history.log', "a") as myfile: myfile.write(log_string) if args.balance_folder is not None and args.output_folder is not None: output_folder = args.output_folder[0] if args.output_folder is not None else args.balance_folder[0] datasets = [] for folder in args.balance_folder: datasets += glob.glob(folder + '/*.hdf5') train_filelist = {} val_filelist = {} test_filelist = {} min_samples_train = float('inf') min_samples_val = float('inf') min_samples_test = float('inf') output_filename_prefix = None for file in datasets: filename = file.split('/')[-1].strip() dataset = h5py.File(file, "r") X = np.array(dataset["set_x"][:]) # features Y = np.array(dataset["set_y"][:]) # labels if 'train' in filename: key = filename.split('dataset')[0].strip() + 'dataset-balanced-train.hdf5' if output_filename_prefix ==None: output_filename_prefix = filename.split('IDS')[0].strip() else: if filename.split('IDS')[0].strip() != output_filename_prefix: print ("Inconsistent datasets!") exit() train_filelist[key] = (X,Y) if X.shape[0] < min_samples_train: min_samples_train = X.shape[0] elif 'val' in filename: key = filename.split('dataset')[0].strip() + 'dataset-balanced-val.hdf5' if output_filename_prefix ==None: output_filename_prefix = filename.split('IDS')[0].strip() else: if filename.split('IDS')[0].strip() != output_filename_prefix: print ("Inconsistent datasets!") exit() val_filelist[key] = (X,Y) if X.shape[0] < min_samples_val: min_samples_val = X.shape[0] elif 'test' in filename: key = filename.split('dataset')[0].strip() + 'dataset-balanced-test.hdf5' if output_filename_prefix ==None: output_filename_prefix = filename.split('IDS')[0].strip() else: if filename.split('IDS')[0].strip() != output_filename_prefix: print ("Inconsistent datasets!") exit() test_filelist[key] = (X, Y) if X.shape[0] < min_samples_test: min_samples_test = X.shape[0] final_X = {'train':None,'val':None,'test':None} final_y = {'train':None,'val':None,'test':None} for key,value in train_filelist.items(): X_short = value[0][:min_samples_train,...] y_short = value[1][:min_samples_train,...] if final_X['train'] is None: final_X['train'] = X_short final_y['train'] = y_short else: final_X['train'] = np.vstack((final_X['train'],X_short)) final_y['train'] = np.hstack((final_y['train'],y_short)) for key,value in val_filelist.items(): X_short = value[0][:min_samples_val,...] y_short = value[1][:min_samples_val,...] if final_X['val'] is None: final_X['val'] = X_short final_y['val'] = y_short else: final_X['val'] = np.vstack((final_X['val'],X_short)) final_y['val'] = np.hstack((final_y['val'],y_short)) for key,value in test_filelist.items(): X_short = value[0][:min_samples_test,...] y_short = value[1][:min_samples_test,...] if final_X['test'] is None: final_X['test'] = X_short final_y['test'] = y_short else: final_X['test'] =
np.vstack((final_X['test'],X_short))
numpy.vstack
from __future__ import print_function, division import os, sys, warnings, platform from time import time import numpy as np #if "PyPy" not in platform.python_implementation(): # from scipy.io import loadmat, savemat from Kuru.Tensor import unique2d, itemfreq, in2d, makezero #from Florence.Utils import insensitive #from .vtk_writer import write_vtu #try: # import meshpy.triangle as triangle # has_meshpy = True #except ImportError: # has_meshpy = False from .HigherOrderMeshing import * from .NodeArrangement import * #from .GeometricPath import * from warnings import warn from copy import deepcopy """ Mesh class providing most of the pre-processing functionalities of the Core module <NAME> - 13/06/2015 """ class Mesh(object): """Mesh class provides the following functionalities: 1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes 2. Generating linear tri and tet meshes based on meshpy back-end 3. Generating linear tri meshes based on distmesh back-end 4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator 5. Reading Salome meshes in binary (.dat/.txt/etc) format 6. Reading gmsh files .msh 7. Checking for node numbering order of elements and fixing it if desired 8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats, including high order elements """ def __init__(self, element_type=None): super(Mesh, self).__init__() # self.faces and self.edges ARE BOUNDARY FACES # AND BOUNDARY EDGES, RESPECTIVELY self.degree = None self.ndim = None self.edim = None self.nelem = None self.nnode = None self.elements = None self.points = None self.corners = None self.edges = None self.faces = None self.element_type = element_type self.face_to_element = None self.edge_to_element = None self.boundary_edge_to_element = None self.boundary_face_to_element = None self.all_faces = None self.all_edges = None self.interior_faces = None self.interior_edges = None # TYPE OF BOUNDARY FACES/EDGES self.boundary_element_type = None # FOR GEOMETRICAL CURVES/SURFACES self.edge_to_curve = None self.face_to_surface = None self.spatial_dimension = None self.reader_type = None self.reader_type_format = None self.reader_type_version = None self.writer_type = None self.filename = None self.element_to_set = None def GetEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetEdgesTri() elif self.element_type == "quad": self.GetEdgesQuad() elif self.element_type == "pent": self.GetEdgesPent() elif self.element_type == "tet": self.GetEdgesTet() elif self.element_type == "hex": self.GetEdgesHex() else: raise ValueError('Type of element not understood') return self.all_edges def GetBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetBoundaryEdgesTri() elif self.element_type == "quad": self.GetBoundaryEdgesQuad() elif self.element_type == "pent": self.GetBoundaryEdgesPent() elif self.element_type == "tet": self.GetBoundaryEdgesTet() elif self.element_type == "hex": self.GetBoundaryEdgesHex() else: raise ValueError('Type of element not understood') return self.edges def GetEdgesQuad(self): """Find the all edges of a quadrilateral mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesHex import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesHex": self.all_edges = edges return edges def GetBoundaryEdgesQuad(self): """Find boundary edges (lines) of a quadrilateral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetBoundaryEdgesHex(self): """Find boundary edges (lines) of hexahedral mesh. """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "quad" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesQuad() @property def Bounds(self): """Returns bounds of a mesh i.e. the minimum and maximum coordinate values in every direction """ assert self.points is not None if self.points.shape[1] == 3: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1]), np.min(self.points[:,2])], [np.max(self.points[:,0]), np.max(self.points[:,1]), np.max(self.points[:,2])]]) makezero(bounds) return bounds elif self.points.shape[1] == 2: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1])], [np.max(self.points[:,0]), np.max(self.points[:,1])]]) makezero(bounds) return bounds elif self.points.shape[1] == 1: bounds = np.array([[np.min(self.points[:,0])], [np.max(self.points[:,0])]]) makezero(bounds) return bounds else: raise ValueError("Invalid dimension for mesh coordinates") def GetElementsEdgeNumberingQuad(self): """Finds edges of elements and their flags saying which edge they are [0,1,2,3]. At most a quad can have all its four edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesQuad() p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) # edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetFacesTet() elif self.element_type == "hex": self.GetFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.all_faces def GetBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetBoundaryFacesTet() elif self.element_type == "hex": self.GetBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.faces def GetBoundaryFacesHex(self): """Find boundary faces (surfaces) of a hexahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 4 and p > 1: pass else: return node_arranger = NodeArrangementHex(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetElementsWithBoundaryEdgesQuad(self): """Finds elements which have edges on the boundary. At most a quad can have all its four edges on the boundary. output: boundary_edge_to_element: [2D array] array containing elements which have face on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(self.edges.dtype) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.boundary_edge_to_element = boundary_edge_to_element return self.boundary_edge_to_element def GetElementsWithBoundaryFacesHex(self): """Finds elements which have faces on the boundary. At most a hexahedral can have all its 8 faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None if self.boundary_face_to_element is not None: return self.boundary_face_to_element # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementHex(C)[0] all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:4],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:4].astype(np.int64) - self.faces[:,:4].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Kuru.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:4],self.faces[:,:4],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetFacesHex(self): """Find all faces (surfaces) in the hexahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 4 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementHex(p-1)[0] fsize = int((p+1)**3) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetHighOrderMesh(self,p=1, silent=True, **kwargs): """Given a linear tri, tet, quad or hex mesh compute high order mesh based on it. This is a static method linked to the HigherOrderMeshing module""" if not isinstance(p,int): raise ValueError("p must be an integer") else: if p < 1: raise ValueError("Value of p={} is not acceptable. Provide p>=1.".format(p)) if self.degree is None: self.InferPolynomialDegree() C = p-1 if 'C' in kwargs.keys(): if kwargs['C'] != p - 1: raise ValueError("Did not understand the specified interpolation degree of the mesh") del kwargs['C'] # DO NOT COMPUTE IF ALREADY COMPUTED FOR THE SAME ORDER if self.degree == None: self.degree = self.InferPolynomialDegree() if self.degree == p: return # SITUATIONS WHEN ANOTHER HIGH ORDER MESH IS REQUIRED, WITH ONE HIGH # ORDER MESH ALREADY AVAILABLE if self.degree != 1 and self.degree - 1 != C: dum = self.GetLinearMesh(remap=True) self.__dict__.update(dum.__dict__) if not silent: print('Generating p = '+str(C+1)+' mesh based on the linear mesh...') t_mesh = time() # BUILD A NEW MESH BASED ON THE LINEAR MESH if self.element_type == 'line': nmesh = HighOrderMeshLine(C,self,**kwargs) if self.element_type == 'tri': if self.edges is None: self.GetBoundaryEdgesTri() # nmesh = HighOrderMeshTri(C,self,**kwargs) nmesh = HighOrderMeshTri_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'tet': # nmesh = HighOrderMeshTet(C,self,**kwargs) nmesh = HighOrderMeshTet_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'quad': if self.edges is None: self.GetBoundaryEdgesTri() nmesh = HighOrderMeshQuad(C,self,**kwargs) elif self.element_type == 'hex': nmesh = HighOrderMeshHex(C,self,**kwargs) self.points = nmesh.points self.elements = nmesh.elements.astype(np.uint64) if isinstance(self.corners,np.ndarray): # NOT NECESSARY BUT GENERIC self.corners = nmesh.corners.astype(np.uint64) if isinstance(self.edges,np.ndarray): self.edges = nmesh.edges.astype(np.uint64) if isinstance(self.faces,np.ndarray): if isinstance(nmesh.faces,np.ndarray): self.faces = nmesh.faces.astype(np.uint64) self.nelem = nmesh.nelem self.nnode = self.points.shape[0] self.element_type = nmesh.info self.degree = C+1 self.ChangeType() if not silent: print('Finished generating the high order mesh. Time taken', time()-t_mesh,'sec') def Line(self, left_point=0., right_point=1., n=10, p=1): """Creates a mesh of on a line for 1D rods/beams""" self.__reset__() assert p > 0 if not isinstance(left_point,float): if not isinstance(left_point,int): raise ValueError("left_point must be a number") if not isinstance(right_point,float): if not isinstance(right_point,int): raise ValueError("right_point must be a number") left_point = float(left_point) right_point = float(right_point) n = int(n) if n <= 0: raise ValueError("Number of discretisation cannot be zero or negative: n={}".format(n)) self.element_type = "line" self.points = np.linspace(left_point,right_point,p*n+1)[:,None] self.elements = np.zeros((n,p+1),dtype=np.int64) for i in range(p+1): self.elements[:,i] = p*np.arange(0,n)+i self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] def Rectangle(self,lower_left_point=(0,0), upper_right_point=(2,1), nx=5, ny=5, element_type="tri"): """Creates a quad/tri mesh of a rectangle""" if element_type != "tri" and element_type != "quad": raise ValueError("Element type should either be tri or quad") if self.elements is not None and self.points is not None: self.__reset__() if (lower_left_point[0] > upper_right_point[0]) or \ (lower_left_point[1] > upper_right_point[1]): raise ValueError("Incorrect coordinate for lower left and upper right vertices") nx, ny = int(nx), int(ny) if nx <= 0 or ny <= 0: raise ValueError("Number of discretisation cannot be zero or negative: nx={} ny={}".format(nx,ny)) from scipy.spatial import Delaunay x=np.linspace(lower_left_point[0],upper_right_point[0],nx+1) y=np.linspace(lower_left_point[1],upper_right_point[1],ny+1) X,Y = np.meshgrid(x,y) coordinates = np.dstack((X.ravel(),Y.ravel()))[0,:,:] if element_type == "tri": tri_func = Delaunay(coordinates) self.element_type = "tri" self.elements = tri_func.simplices self.nelem = self.elements.shape[0] self.points = tri_func.points self.nnode = self.points.shape[0] self.GetBoundaryEdgesTri() elif element_type == "quad": self.nelem = int(nx*ny) elements = np.zeros((self.nelem,4),dtype=np.int64) dum_0 = np.arange((nx+1)*ny) dum_1 = np.array([(nx+1)*i+nx for i in range(ny)]) col0 = np.delete(dum_0,dum_1) elements[:,0] = col0 elements[:,1] = col0 + 1 elements[:,2] = col0 + nx + 2 elements[:,3] = col0 + nx + 1 self.nnode = int((nx+1)*(ny+1)) self.element_type = "quad" self.elements = elements self.points = coordinates self.nnode = self.points.shape[0] self.GetBoundaryEdgesQuad() self.GetEdgesQuad() def GetNodeCommonality(self): """Finds the elements sharing a node. The return values are linked lists [list of numpy of arrays]. Each numpy array within the list gives the elements that contain a given node. As a result the size of the linked list is nnode outputs: els: [list of numpy arrays] element numbers containing nodes pos: [list of numpy arrays] elemental positions of the nodes res_flat: [list of numpy arrays] position of nodes in the flattened element connectivity. """ self.__do_essential_memebers_exist__() elements = self.elements.ravel() idx_sort = np.argsort(elements) sorted_elements = elements[idx_sort] vals, idx_start = np.unique(sorted_elements, return_index=True) # Sets of indices flat_pos = np.split(idx_sort, idx_start[1:]) els = np.split(idx_sort // int(self.elements.shape[1]), idx_start[1:]) pos = np.split(idx_sort % int(self.elements.shape[1]), idx_start[1:]) # In case one wants to return only the duplicates i.e. filter keeping only items occurring more than once # vals, idx_start, count = np.unique(sorted_elements, return_counts=True, return_index=True) # vals = vals[count > 1] # res = filter(lambda x: x.size > 1, res) return els, pos, flat_pos def Read(self, filename=None, element_type="tri", reader_type=None, reader_type_format=None, reader_type_version=None, order=0, read_surface_info=False, read_curve_info=False, **kwargs): """Convenience mesh reader method to dispatch call to subsequent apporpriate methods""" if not isinstance(filename,str): raise ValueError("filename must be a string") return if reader_type is not None: if not isinstance(filename,str): raise ValueError("filename must be a string") return if reader_type is None: if filename.split('.')[-1] == "msh": reader_type = "gmsh" elif filename.split('.')[-1] == "obj": reader_type = "obj" elif filename.split('.')[-1] == "unv": reader_type = "unv" elif filename.split('.')[-1] == "fro": reader_type = "fro" elif filename.split('.')[-1] == "dat": for key in kwargs.keys(): inkey = insensitive(key) if "connectivity" in inkey and "delimiter" not in inkey: reader_type = "read_separate" break if reader_type is None: raise ValueError("Mesh file format was not undertood. Please specify it using reader_type keyword") self.filename = filename self.reader_type = reader_type self.reader_type_format = reader_type_format self.reader_type_version = reader_type_version if self.reader_type is 'salome': #self.ReadSalome(filename, element_type=element_type, read_surface_info=read_surface_info) raise ValueError("Reader not implemented yet") elif reader_type is 'GID': #self.ReadGIDMesh(filename, element_type, order) raise ValueError("Reader not implemented yet") elif self.reader_type is 'gmsh': self.ReadGmsh(filename, element_type=element_type, read_surface_info=read_surface_info, read_curve_info=read_curve_info) elif self.reader_type is 'obj': self.ReadOBJ(filename, element_type=element_type, read_surface_info=read_surface_info) elif self.reader_type is 'fenics': #self.ReadFenics(filename, element_type) raise ValueError("Reader not implemented yet") elif self.reader_type is 'vtu': self.ReadVTK(filename) elif self.reader_type is 'abaqus': self.ReadAbaqus(filename) elif self.reader_type is 'unv': #self.ReadUNV(filename, element_type) raise ValueError("Reader not implemented yet") elif self.reader_type is 'fro': #self.ReadFRO(filename, element_type) raise ValueError("Reader not implemented yet") elif self.reader_type is 'read_separate': # READ MESH FROM SEPARATE FILES FOR CONNECTIVITY AND COORDINATES raise ValueError("Reader not implemented yet") from Kuru.Utils import insensitive # return insensitive(kwargs.keys()) #for key in kwargs.keys(): # inkey = insensitive(key) # if "connectivity" in inkey and "delimiter" not in inkey: # connectivity_file = kwargs.get(key) # if "coordinate" in insensitive(key) and "delimiter" not in inkey: # coordinates_file = kwargs.get(key) #self.ReadSeparate(connectivity_file,coordinates_file,element_type, # delimiter_connectivity=',',delimiter_coordinates=',') elif self.reader_type is 'ReadHDF5': #self.ReadHDF5(filename) raise ValueError("Reader not implemented yet") self.nnode = self.points.shape[0] # MAKE SURE MESH DATA IS CONTIGUOUS self.points = np.ascontiguousarray(self.points) self.elements = np.ascontiguousarray(self.elements) return def ReadVTK(self, filename, element_type=None): """Read mesh from a vtu file""" try: import vtk except IOError: raise IOError("vtk is not installed. Please install it first using 'pip install vtk'") self.__reset__() reader = vtk.vtkXMLUnstructuredGridReader() reader.SetFileName(filename) reader.Update() vmesh = reader.GetOutput() npieces = vmesh.GetNumberOfPieces() if npieces > 1: raise IOError("VTK reader is not prepare to read more than one piece.") piece = vmesh.GetPiece() flat_elements, celltypes, element_to_set = [], [], [] for cellid in range(vmesh.GetNumberOfCells()): cell = vmesh.GetCell(cellid) celltypes.append(vmesh.GetCellType(cellid)) element_to_set.append(piece) for ptid in range(cell.GetNumberOfPoints()): flat_elements.append(cell.GetPointId(ptid)) celltypes = np.array(celltypes, copy=True) flat_elements = np.array(flat_elements, copy=True) if not np.all(celltypes == celltypes[0]): raise IOError("Cannot read VTK files with hybrid elements") cellflag = celltypes[0] if cellflag == 5: self.element_type = "tri" divider = 3 elif cellflag == 9: self.element_type = "quad" divider = 4 elif cellflag == 10: self.element_type = "tet" divider = 4 elif cellflag == 12: self.element_type = "hex" divider = 8 elif cellflag == 3: self.element_type = "line" divider = 2 else: raise IOError("VTK element type not understood") if element_type is not None: if self.element_type != element_type: raise ValueError("VTK file does not contain {} elements".format(element_type)) points = np.array([vmesh.GetPoint(ptid) for ptid in range(vmesh.GetNumberOfPoints())]) self.elements = np.ascontiguousarray(flat_elements.reshape(int(flat_elements.shape[0]/divider),divider), dtype=np.uint64) self.points = np.ascontiguousarray(points, dtype=np.float64) self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() # SET OF SETS TO EACH ELEMENTS element_to_set = np.array(element_to_set, dtype=np.int64, copy=True).flatten() self.element_to_set = element_to_set return def ReadAbaqus(self, filename, element_type=None): """Read INP file meshes from Abaqus""" try: fid = open(filename, "r") except IOError: print("File '%s' not found." % (filename)) sys.exit() fid.close() #FAST READER head_node, head_elem = int(1e09), int(1e09) tail_node, tail_elem = int(1e09), int(1e09) head_elset, tail_elset = [], [] open_set = False for line_counter, line in enumerate(open(filename)): item = line.rstrip() plist = item.split(",") if plist[0] == "*End Part": break if plist[0] == "*Node": head_node = line_counter continue elif plist[0] == "*Element": tail_node = line_counter head_elem = line_counter elem_flag = plist[1][-4:] continue elif head_elem != int(1e09) and tail_elem == int(1e09) and plist[0][0] == "*": tail_elem = line_counter continue elif plist[0] == "*Elset": open_set = True head_elset.append(line_counter) continue elif plist[0][0] == "*" and open_set: open_set = False tail_elset.append(line_counter) continue if elem_flag == "C3D8": self.element_type = "hex" else: raise IOError("Abaqus element type not understood") points, elements = [], [] element_set_list = [[] for j in range(len(head_elset))] # RE-READ for line_counter, line in enumerate(open(filename)): item = line.rstrip() plist = item.split(",") if line_counter > head_node and line_counter < tail_node: points.append([float(i) for i in plist[1:]]) if line_counter > head_elem and line_counter < tail_elem: elements.append([int(i) for i in plist[-8:]]) for j in range(len(head_elset)): if line_counter > head_elset[j] and line_counter < tail_elset[j]: element_set_list[j].extend([int(i) for i in plist]) self.points = np.array(points,copy=True) self.elements = np.array(elements,copy=True) - 1 # CORRECT self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.nelem == 0: raise ValueError("mesh file does not contain {} elements".format(element_type)) if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() ## SET OF SETS TO EACH ELEMENTS element_to_set = np.zeros(self.elements.shape[0], dtype=np.int64) element_set = [[] for j in range(len(head_elset))] for j in range(len(head_elset)): element_set[j] = np.array(element_set_list[j],dtype=np.int64,copy=True).flatten() - 1 element_to_set[element_set[j]] = j self.element_to_set = element_to_set return def ReadGmsh(self, filename, element_type, read_surface_info=False,read_curve_info=False): """Read gmsh (.msh) file""" try: fid = open(filename, "r") except IOError: print("File '%s' not found." % (filename)) sys.exit() msh_version = None # CHECK MSH FILE VERSION if "MeshFormat" in fid.readline(): msh_version = int(np.floor(float(fid.readline().split(" ")[0]))) if 4 != msh_version and 2 != msh_version: raise IOError("Only ASCII version 2 and 4 (>=4.1) .msh file formats are supported") if 4 != msh_version and 2 != msh_version: raise IOError("Only ASCII version 2 and 4 (>=4.1) .msh file formats are supported") fid.close() if self.elements is not None and self.points is not None: self.__reset__() self.filename = filename bel = -1 if element_type == "line": el = 1 elif element_type == "tri": el = 2 bel = 2 cel = 1 elif element_type == "quad": el = 3 bel = 3 cel = 1 elif element_type == "tet": el = 4 bel = 2 elif element_type == "hex": el = 5 bel = 3 else: raise ValueError("Element type not understood") # NEW FAST READER var = 0 # for old gmsh versions - needs checks node_blocks, elem_blocks, face_blocks = None, None, None rem_nnode, rem_nelem, rem_faces = int(1e09), int(1e09), int(1e09) face_counter = 0 for line_counter, line in enumerate(open(filename)): item = line.rstrip() plist = item.split() if plist[0] == "Dimension": self.ndim = plist[1] elif plist[0] == "Vertices": rem_nnode = line_counter+1 continue elif plist[0] == "$Nodes": rem_nnode = line_counter+1 continue elif plist[0] == "Triangles": rem_faces = line_counter+1 continue elif plist[0] == "Tetrahedra": rem_nelem = line_counter+1 continue elif plist[0] == "$Elements": rem_nelem = line_counter+1 var = 1 continue if msh_version == 2: if rem_nnode == line_counter: self.nnode = int(plist[0]) if rem_faces == line_counter: face_counter = int(plist[0]) if rem_nelem == line_counter: self.nelem = int(plist[0]) break else: if rem_nnode == line_counter: node_blocks, self.nnode = int(plist[0]), int(plist[1]) if rem_faces == line_counter: face_blocks, face_counter = int(plist[0]), int(plist[1]) if rem_nelem == line_counter: elem_blocks, self.nelem = int(plist[0]), int(plist[1]) break points, elements, element_to_set, faces, face_to_surface, edges, curve = [], [], [], [], [], [], [] if msh_version == 2: # RE-READ ns = self.InferNumberOfNodesPerElement(p=1,element_type=element_type) for line_counter, line in enumerate(open(filename)): item = line.rstrip() plist = item.split() if var == 0: if line_counter > rem_nnode and line_counter < self.nnode+rem_nnode+1: points.append([float(i) for i in plist[:3]]) if line_counter > rem_nelem and line_counter < self.nelem+rem_nelem+1: elements.append([int(i) for i in plist[:4]]) elif var == 1: if line_counter > rem_nnode and line_counter < self.nnode+rem_nnode+1: points.append([float(i) for i in plist[1:]]) if line_counter > rem_nelem and line_counter < self.nelem+rem_nelem+1: if int(plist[1]) == el: elements.append([int(i) for i in plist[-ns:]]) element_to_set.append(int(plist[4])) # READ SURFACE INFO - CERTAINLY ONLY IF SURFACE ELEMENT TYPE IS QUADS/TRIS if read_surface_info: if int(plist[1]) == bel: faces.append([int(i) for i in plist[5:]]) face_to_surface.append(int(plist[4])) elif msh_version == 4: # RE-READ fid = open(filename) content = fid.readlines() # READ NODES nodes_content = content[rem_nnode+1:2*self.nnode+node_blocks+rem_nnode+1] incrementer, line_number = 0, 0 # LOOP OVER BLOCKS for i in range(node_blocks): incrementer = int(nodes_content[line_number].rstrip().split()[3]) # LOOP OVER NODES OF EACH BLOCK for j in range(line_number+1, line_number+2*incrementer+1): plist = nodes_content[j].rstrip().split() if len(plist) == 1: continue points.append([float(plist[k]) for k in range(0,len(plist))]) line_number += 2*incrementer + 1 # READ ELEMENTS elems_content = content[rem_nelem+1:self.nelem+elem_blocks+rem_nelem+1] incrementer, line_number = 0, 0 # LOOP OVER BLOCKS for i in range(elem_blocks): incrementer = int(elems_content[line_number].rstrip().split()[3]) volume_tag = int(elems_content[line_number].rstrip().split()[1]) if el == int(elems_content[line_number].rstrip().split()[2]): # LOOP OVER ELEMENTS OF EACH BLOCK for j in range(line_number+1, line_number+incrementer+1): plist = elems_content[j].rstrip().split() elements.append([int(plist[k]) for k in range(1,len(plist))]) element_to_set.append(volume_tag) line_number += incrementer + 1 if read_surface_info: # READ FACES incrementer, line_number = 0, 0 # LOOP OVER BLOCKS for i in range(elem_blocks): incrementer = int(elems_content[line_number].rstrip().split()[3]) surface_tag = int(elems_content[line_number].rstrip().split()[1]) if bel == int(elems_content[line_number].rstrip().split()[2]): # LOOP OVER FACES OF EACH BLOCK for j in range(line_number+1, line_number+incrementer+1): plist = elems_content[j].rstrip().split() faces.append([int(plist[k]) for k in range(1,len(plist))]) face_to_surface.append(surface_tag) line_number += incrementer + 1 self.points = np.array(points,copy=True) self.elements = np.array(elements,copy=True) - 1 # CORRECT self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.nelem == 0: raise ValueError("msh file does not contain {} elements".format(element_type)) if read_surface_info: self.faces = np.array(faces,copy=True) - 1 self.face_to_surface = np.array(face_to_surface, dtype=np.int64, copy=True).flatten() self.face_to_surface -= 1 # CHECK IF FILLED if isinstance(self.face_to_surface,list): if not self.face_to_surface: self.face_to_surface = None elif isinstance(self.face_to_surface,np.ndarray): if self.face_to_surface.shape[0]==0: self.face_to_surface = None if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) self.element_type = element_type if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() # SET OF SETS TO EACH ELEMENTS element_to_set = np.array(element_to_set, dtype=np.int64, copy=True).flatten() element_to_set -= 1 self.element_to_set = element_to_set return def ReadOBJ(self, filename, element_type="tri"): try: fid = open(filename, "r") except IOError: print("File '%s' not found." % (filename)) sys.exit() if self.elements is not None and self.points is not None: self.__reset__() self.filename = filename bel = -1 if element_type == "line": el = 2 elif element_type == "tri": el = 3 bel = 2 elif element_type == "quad": el = 4 bel = 2 elif element_type == "tet": el = 4 bel = 3 elif element_type == "hex": el = 8 bel = 4 else: raise ValueError("Element type not understood") # Read points, elements, faces = [],[], [] vertex_normal, vertex_texture = [], [] for line_counter, line in enumerate(open(filename)): item = line.rstrip() plist = item.split() if not plist: continue if plist[0] == 'v': points.append([float(i) for i in plist[1:4]]) if plist[0] == 'f' and len(plist) > el: for i in range(1,el+1): if "/" in plist[i]: plist[i] = plist[i].split("//")[0] elements.append([int(i) for i in plist[1:el+1]]) if plist[0] == 'vn': vertex_normal.append([float(i) for i in plist[1:4]]) self.points = np.array(points,copy=True) self.elements = np.array(elements,copy=True) - 1 if not vertex_normal: self.vertex_normal = np.array(vertex_normal,copy=True) # CORRECT self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.nelem == 0: raise ValueError("obj file does not contain {} elements".format(element_type)) if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) self.element_type = element_type ndim = self.InferSpatialDimension() if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() def WriteGmsh(self, filename, write_surface_info=False): """Write mesh to a .msh (gmsh format) file""" self.__do_essential_memebers_exist__() mesh = deepcopy(self) p = self.InferPolynomialDegree() if p > 1: mesh = self.GetLinearMesh(remap=True) element_type = mesh.element_type edim = mesh.InferElementalDimension() # THESE TAGS ARE DIFFERENT FROM THE GMSH READER TAGS bel = -1 if element_type == "line": el = 1 elif element_type == "tri": el = 2 bel = 1 elif element_type == "quad": el = 3 bel = 1 elif element_type == "tet": el = 4 bel = 2 elif element_type == "hex": el = 5 bel = 3 else: raise ValueError("Element type not understood") elements = np.copy(mesh.elements).astype(np.int64) points = mesh.points[np.unique(elements),:] # Take care of a corner case where nnode != points.shape[0] if mesh.nnode != points.shape[0]: mesh.nnode = points.shape[0] if points.shape[1] == 2: points = np.hstack((points,np.zeros((points.shape[0],1)))) points_repr = np.zeros((points.shape[0],points.shape[1]+1), dtype=object) points_repr[:,0] = np.arange(mesh.nnode) + 1 points_repr[:,1:] = points if self.element_to_set is None: element_to_set = 0 else: element_to_set = self.element_to_set elements_repr = np.zeros((elements.shape[0],elements.shape[1]+5), dtype=object) elements_repr[:,0] = np.arange(mesh.nelem) + 1 elements_repr[:,1] = el elements_repr[:,2] = 2 elements_repr[:,3] = 0 elements_repr[:,4] = element_to_set + 1 elements_repr[:,5:] = elements + 1 if write_surface_info: if edim == 3: boundary = np.copy(mesh.faces).astype(np.int64) elif edim == 2: boundary = np.copy(mesh.edges).astype(np.int64) if self.face_to_surface is None: face_to_surface = 0 else: face_to_surface = self.face_to_surface boundary_repr = np.zeros((boundary.shape[0],boundary.shape[1]+5), dtype=object) boundary_repr[:,0] = np.arange(boundary.shape[0]) + 1 boundary_repr[:,1] = bel boundary_repr[:,2] = 2 boundary_repr[:,3] = 0 boundary_repr[:,4] = face_to_surface + 1 boundary_repr[:,5:] = boundary + 1 elements_repr[:,0] += boundary.shape[0] gmsh_nelem = mesh.nelem + boundary.shape[0] else: gmsh_nelem = mesh.nelem with open(filename, 'w') as f: f.write("$MeshFormat\n") f.write("2.2 0 8\n") f.write("$EndMeshFormat\n") f.write("$Nodes\n") f.write(str(mesh.nnode) + "\n") np.savetxt(f, points_repr, fmt="%s") f.write("$EndNodes\n") f.write("$Elements\n") f.write(str(gmsh_nelem) + "\n") if write_surface_info: np.savetxt(f, boundary_repr, fmt="%s") np.savetxt(f, elements_repr, fmt="%s") f.write("$EndElements\n") def WriteOBJ(self, filename): """Write mesh to an obj file. For 3D elements writes the faces only """ self.__do_essential_memebers_exist__() mesh = deepcopy(self) p = self.InferPolynomialDegree() if p > 1: mesh = self.GetLinearMesh(remap=True) edim = mesh.InferElementalDimension() if edim == 2: elements = np.copy(mesh.elements).astype(np.int64) elif edim == 3: elements = np.copy(mesh.faces).astype(np.int64) else: raise RuntimeError("Writing obj file for {} elements not supported".format(mesh.element_type)) points = mesh.points[np.unique(elements),:] if points.shape[1] == 2: points = np.hstack((points,np.zeros((points.shape[0],1)))) points_repr = np.zeros((points.shape[0],points.shape[1]+1), dtype=object) points_repr[:,0] = "v " points_repr[:,1:] = points elements_repr = np.zeros((elements.shape[0],elements.shape[1]+1), dtype=object) elements_repr[:,0] = "f " elements_repr[:,1:] = elements + 1 with open(filename, "w") as f: f.write("# "+ str(mesh.nnode)) f.write('\n') f.write("# "+ str(mesh.nelem)) f.write('\n') np.savetxt(f, points_repr, fmt="%s") f.write('\n') np.savetxt(f, elements_repr, fmt="%s") f.write('\n') def ChangeType(self): """Change mesh data type from signed to unsigned""" self.__do_essential_memebers_exist__() self.points = np.ascontiguousarray(self.points.astype(np.float64)) if isinstance(self.elements,np.ndarray): self.elements = np.ascontiguousarray(self.elements.astype(np.uint64)) if hasattr(self, 'edges'): if isinstance(self.edges,np.ndarray): self.edges = np.ascontiguousarray(self.edges.astype(np.uint64)) if hasattr(self, 'faces'): if isinstance(self.faces,np.ndarray): self.faces = np.ascontiguousarray(self.faces.astype(np.uint64)) @property def IsHighOrder(self): is_high_order = False if self.InferPolynomialDegree() > 1: is_high_order = True return is_high_order def InferPolynomialDegree(self): """Infer the degree of interpolation (p) based on the shape of self.elements returns: [int] polynomial degree """ assert self.element_type is not None assert self.elements is not None if self.degree is not None: if isinstance(self.degree,np.ndarray): self.degree = np.asscalar(self.degree) i = self.degree if self.element_type == "tet" and (i+1)*(i+2)*(i+3)/6==self.elements.shape[1]: return self.degree if self.element_type == "tri" and (i+1)*(i+2)/2==self.elements.shape[1]: return self.degree p = 0 if self.element_type == "tet": for i in range(100): if (i+1)*(i+2)*(i+3)/6==self.elements.shape[1]: p = i break elif self.element_type == "tri": for i in range(100): if (i+1)*(i+2)/2==self.elements.shape[1]: p = i break elif self.element_type == "hex": for i in range(100): if int((i+1)**3)==self.elements.shape[1]: p = i break elif self.element_type == "quad": for i in range(100): if int((i+1)**2)==self.elements.shape[1]: p = i break elif self.element_type == "line": for i in range(100): if int(i+1)==self.elements.shape[1]: p = i break elif self.element_type == "pent": if 5==self.elements.shape[1]: p = 1 else: raise NotImplementedError("High order pentagonal elements are not supported yet") self.degree = p return p def InferNumberOfNodesPerElement(self, p=None, element_type=None): """Infers number of nodes per element. If p and element_type are not None then returns the number of nodes required for the given element type with the given polynomial degree""" if p is not None and element_type is not None: if element_type=="line": return int(p+1) elif element_type=="tri": return int((p+1)*(p+2)/2) elif element_type=="quad": return int((p+1)**2) elif element_type=="tet": return int((p+1)*(p+2)*(p+3)/6) elif element_type=="hex": return int((p+1)**3) else: raise ValueError("Did not understand element type") assert self.elements.shape[0] is not None return self.elements.shape[1] def InferElementalDimension(self): """Infer the actual dimension of the element. This is 3 for tet and hex, 2 for tri and quad, 1 for line etc """ assert self.element_type is not None if self.element_type == "tet" or self.element_type == "hex": self.edim = 3 elif self.element_type == "tri" or self.element_type == "quad" or self.element_type == "pent": self.edim = 2 elif self.element_type == "line": self.edim = 1 else: raise RuntimeError("Could not infer element type") return self.edim def InferNumberOfNodesPerLinearElement(self, element_type=None): """Infers number of nodes per element. If element_type are not None then returns the number of nodes required for the given element type""" if element_type is None and self.element_type is None: raise ValueError("Did not understand element type") if element_type is None: element_type = self.element_type tmp = self.element_type if element_type != self.element_type: self.element_type = element_type nodeperelem = None if element_type=="line": nodeperelem = 2 elif element_type=="tri": nodeperelem = 3 elif element_type=="quad": nodeperelem = 4 elif element_type=="tet": nodeperelem = 4 elif element_type=="hex": nodeperelem = 8 else: raise ValueError("Did not understand element type") self.element_type = tmp return nodeperelem def InferSpatialDimension(self): """Infer the spatial dimension of the mesh""" assert self.points is not None # if self.points.shape[1] == 3: # if self.element_type == "tri" or self.element_type == "quad": # print("3D surface mesh of ", self.element_type) return self.points.shape[1] def InferElementType(self): if self.element_type is not None: return self.element_type assert self.elements is not None assert self.points is not None ndim = self.InferSpatialDimension() nodeperelem = self.InferNumberOfNodesPerElement() nn = 20 if ndim==3: if nodeperelem in [int((i+1)*(i+2)*(i+3)/6) for i in range(1,nn)]: self.element_type = "tet" elif nodeperelem in [int((i+1)**3) for i in range(1,nn)]: self.element_type = "hex" else: if nodeperelem in [int((i+1)*(i+2)/2) for i in range(1,nn)]: self.element_type = "tri" elif nodeperelem in [int((i+1)**2) for i in range(1,nn)]: self.element_type = "quad" else: raise ValueError("Element type not understood") elif ndim==2: if nodeperelem in [int((i+1)*(i+2)/2) for i in range(1,nn)]: self.element_type = "tri" elif nodeperelem in [int((i+1)**2) for i in range(1,nn)]: self.element_type = "quad" else: raise ValueError("Element type not understood") elif ndim==1: self.element_type = "line" else: raise ValueError("Element type not understood") # IF POINTS ARE CO-PLANAR THEN IT IS NOT TET BUT QUAD if ndim == 3 and self.element_type == "tet": a = self.points[self.elements[:,0],:] b = self.points[self.elements[:,1],:] c = self.points[self.elements[:,2],:] d = self.points[self.elements[:,3],:] det_array = np.dstack((a-d,b-d,c-d)) # FIND VOLUME OF ALL THE ELEMENTS volume = 1./6.*np.linalg.det(det_array) if np.allclose(volume,0.0): self.element_type = "quad" return self.element_type def InferBoundaryElementType(self): self.InferElementType() if self.element_type == "hex": self.boundary_element_type = "quad" elif self.element_type == "tet": self.boundary_element_type = "tri" elif self.element_type == "quad" or self.element_type == "tri": self.boundary_element_type = "line" elif self.element_type == "line": self.boundary_element_type = "point" else: raise ValueError("Could not understand element type") return self.boundary_element_type def CreateDummyLowerDimensionalMesh(self): """Create a dummy lower dimensional mesh that would have some specific mesh attributes at least. The objective is that the lower dimensional mesh should have the same element type as the boundary faces/edges of the actual mesh and be the same order""" sys.stdout = open(os.devnull, "w") p = self.InferPolynomialDegree() mesh = Mesh() if self.element_type == "tet": mesh.Rectangle(nx=1,ny=1, element_type="tri") mesh.GetHighOrderMesh(p=p) elif self.element_type == "hex": mesh.Rectangle(nx=1,ny=1, element_type="quad") mesh.GetHighOrderMesh(p=p) elif self.element_type == "tri" or self.element_type == "quad": mesh.Line(n=1, p=p) sys.stdout = sys.__stdout__ return mesh def GetLinearMesh(self, solution=None, remap=False): """Returns the linear mesh from a high order mesh. If mesh is already linear returns the same mesh. Also maps any solution vector/tensor of high order mesh to the linear mesh, if supplied. For safety purposes, always makes a copy""" self.__do_essential_memebers_exist__() ndim = self.InferSpatialDimension() if ndim==2: if self.element_type == "tri" or self.element_type == "quad": assert self.edges is not None elif ndim==3: if self.element_type == "tet" or self.element_type == "hex": assert self.faces is not None if self.IsHighOrder is False: if solution is not None: return deepcopy(self), deepcopy(solution) return deepcopy(self) else: if not remap: # WORKS ONLY IF THE FIST COLUMNS CORRESPOND TO # LINEAR CONNECTIVITY lmesh = Mesh() lmesh.element_type = self.element_type lmesh.degree = 1 if self.element_type == "tri": lmesh.elements = np.copy(self.elements[:,:3]) lmesh.edges = np.copy(self.edges[:,:2]) lmesh.nnode = int(np.max(lmesh.elements)+1) lmesh.points = np.copy(self.points[:lmesh.nnode,:]) elif self.element_type == "tet": lmesh.elements = np.copy(self.elements[:,:4]) lmesh.faces = np.copy(self.faces[:,:3]) lmesh.nnode = int(np.max(lmesh.elements)+1) lmesh.points = np.copy(self.points[:lmesh.nnode,:]) elif self.element_type == "quad": lmesh.elements = np.copy(self.elements[:,:4]) lmesh.edges = np.copy(self.edges[:,:2]) lmesh.nnode = int(np.max(lmesh.elements)+1) lmesh.points = np.copy(self.points[:lmesh.nnode,:]) elif self.element_type == "hex": lmesh.elements =
np.copy(self.elements[:,:8])
numpy.copy
import pytest import numpy as np import reward.utils as U def test_lazy_array_memory_opt(): arr1 = np.arange(10) arr2 = np.arange(10) lazy = U.LazyArray([arr1, arr2]) arr1 += 1 np.testing.assert_equal(U.to_np(lazy), np.array([arr1, arr2])) def test_lazy_array_lazy_transform(): arr1 = np.arange(10) arr2 = np.arange(10) lazy = U.LazyArray([arr1, arr2], transform=lambda x: x * 0) np.testing.assert_equal(U.to_np(lazy), 0) # Original data should not be modified np.testing.assert_equal(arr1, np.arange(10)) np.testing.assert_equal(arr2, np.arange(10)) # LazyArray data should not be modified
np.testing.assert_equal(lazy.data, [arr1, arr2])
numpy.testing.assert_equal
__package__ = "valkyrie_gym_env" import scipy import os, inspect, time from pybullet_utils.bullet_client import BulletClient currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0, parentdir) # from rllab.envs.pybullet.valkyrie_multi_env.utils.util import quat_to_rot, rotX, rotY, rotZ from b3px_gym.b3px_env.parallel.util import quat_to_rot, rotX, rotY, rotZ import gym import copy from gym import spaces from gym.utils import seeding import numpy as np import time import pybullet as pybullet import math from b3px_gym.b3px_env.singleton.valkyrie_gym_env.filter import FilterClass, KalmanFilter, BinaryFilter from b3px_gym.b3px_env.singleton.valkyrie_gym_env.PD_controller import PDController from b3px_gym.b3px_env.singleton.valkyrie_gym_env.sensor_signal_process import calCOP class Valkyrie(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 50 } # def __del__(self): # self._p.disconnect() def __init__(self, max_time=16, # in seconds initial_gap_time=0.01, # in seconds isEnableSelfCollision=False, renders=False, Kp_scale=None, Kd_scale=None, planeId=None, fixed_base=False, time_step=0.005, frame_skip=8, scaling_factor = 1.0, margin_in_degree=1000., # if > 90. then read from urdf useFullDOF=True, regularise_action=True ): self.Kp_scale = dict([ ("rightShoulderPitch", 1), ("rightShoulderRoll", 1), ("rightShoulderYaw", 1), ("rightElbowPitch", 1), ("leftShoulderPitch", 1), ("leftShoulderRoll", 1), ("leftShoulderYaw", 1), ("leftElbowPitch", 1), ("torsoYaw", 1), ("torsoPitch", 1), ("torsoRoll", 1), ("leftHipYaw", 1), ("leftHipRoll", 1), ("leftHipPitch", 1), ("leftKneePitch", 2), ("leftAnklePitch", 2), ("leftAnkleRoll", 1), ("rightHipYaw", 1), ("rightHipRoll", 1), ("rightHipPitch", 1), ("rightKneePitch", 2), ("rightAnklePitch", 2), ("rightAnkleRoll", 1), ]) if Kp_scale is None else Kp_scale self.Kd_scale = dict([ ("rightShoulderPitch", 1), ("rightShoulderRoll", 1), ("rightShoulderYaw", 1), ("rightElbowPitch", 1), ("leftShoulderPitch", 1), ("leftShoulderRoll", 1), ("leftShoulderYaw", 1), ("leftElbowPitch", 1), ("torsoYaw", 1), ("torsoPitch", 1), ("torsoRoll", 1), ("leftHipYaw", 1), ("leftHipRoll", 1), ("leftHipPitch", 1), ("leftKneePitch", 1), ("leftAnklePitch", 1), ("leftAnkleRoll", 1), ("rightHipYaw", 1), ("rightHipRoll", 1), ("rightHipPitch", 1), ("rightKneePitch", 1), ("rightAnklePitch", 1), ("rightAnkleRoll", 1), ]) if Kd_scale is None else Kd_scale self.regularise_action = regularise_action self.useFullDOF= useFullDOF self.timestep = time_step self.frame_skip=frame_skip self.robot_loaded = False self.fixed_base = fixed_base self.planeID = planeId self.jointIdx = {} self.jointNameIdx = {} self.jointLowerLimit = [] self.jointUpperLimit = [] self.total_mass = 0.0 # self._p = p # self._seed() self._envStepCounter = 0 self._renders = renders self._p = BulletClient(connection_mode=pybullet.DIRECT) if not renders else BulletClient(connection_mode=pybullet.GUI) if self.useFullDOF: self.controlled_joints = [ "rightShoulderPitch", "rightShoulderRoll", "rightShoulderYaw", "rightElbowPitch", "leftShoulderPitch", "leftShoulderRoll", "leftShoulderYaw", "leftElbowPitch", "torsoYaw", "torsoPitch", "torsoRoll", "rightHipYaw", "rightHipRoll", "rightHipPitch", "rightKneePitch", "rightAnklePitch", "rightAnkleRoll", "leftHipYaw", "leftHipRoll", "leftHipPitch", "leftKneePitch", "leftAnklePitch", "leftAnkleRoll", ] else: self.controlled_joints = [ "rightHipPitch", "rightKneePitch", "rightAnklePitch", "leftHipPitch", "leftKneePitch", "leftAnklePitch", ] self.nu = len(self.controlled_joints) self.r = -1 self.PD_freq = 1/(self.timestep*self.frame_skip) self.Physics_freq = 1/self.timestep self._actionRepeat = int(self.Physics_freq/self.PD_freq) self._dt_physics = (1./ self.Physics_freq) self._dt_PD = (1. / self.PD_freq) self._dt = self._dt_physics # PD control loop timestep self._dt_filter = self._dt_PD #filter time step self.g = 9.81 self.joint_states = {} self.u_max = dict([("torsoYaw", 190), ("torsoPitch", 150), ("torsoRoll", 150), ("rightShoulderPitch", 190), ("rightShoulderRoll", 190), ("rightShoulderYaw", 65), ("rightElbowPitch", 65), ("rightForearmYaw", 26), ("rightWristRoll", 14), ("rightWristPitch", 14), ("leftShoulderPitch", 190), ("leftShoulderRoll", 190), ("leftShoulderYaw", 65), ("leftElbowPitch", 65), ("leftForearmYaw", 26), ("leftWristRoll", 14), ("leftWristPitch", 14), ("rightHipYaw", 190), ("rightHipRoll", 350), ("rightHipPitch", 350), ("rightKneePitch", 350), ("rightAnklePitch", 205), ("rightAnkleRoll", 205), ("leftHipYaw", 190), ("leftHipRoll", 350), ("leftHipPitch", 350), ("leftKneePitch", 350), ("leftAnklePitch", 205), ("leftAnkleRoll", 205), ("lowerNeckPitch", 50), ("upperNeckPitch", 50), ("neckYaw", 50)]) self.v_max = dict([("torsoYaw", 5.89), ("torsoPitch", 9), ("torsoRoll", 9), ("rightShoulderPitch", 5.89), ("rightShoulderRoll", 5.89), ("rightShoulderYaw", 11.5), ("rightElbowPitch", 11.5), ("leftShoulderPitch", 5.89), ("leftShoulderRoll", 5.89), ("leftShoulderYaw", 11.5), ("leftElbowPitch", 11.5), ("rightHipYaw", 5.89), ("rightHipRoll", 7), ("rightHipPitch", 6.11), ("rightKneePitch", 6.11), ("rightAnklePitch", 11), ("rightAnkleRoll", 11), ("leftHipYaw", 5.89), ("leftHipRoll", 7), ("leftHipPitch", 6.11), ("leftKneePitch", 6.11), ("leftAnklePitch", 11), ("leftAnkleRoll", 11), ("lowerNeckPitch", 5), ("upperNeckPitch", 5), ("neckYaw", 5)]) # nominal joint configuration # self.q_nom = dict([("torsoYaw", 0.0), # ("torsoPitch", 0.0), # ("torsoRoll", 0.0), # ("lowerNeckPitch", 0.0), # ("neckYaw", 0.0), # ("upperNeckPitch", 0.0), # ("rightShoulderPitch", 0.300196631343), # ("rightShoulderRoll", 1.25), # ("rightShoulderYaw", 0.0), # ("rightElbowPitch", 0.785398163397), # ("leftShoulderPitch", 0.300196631343), # ("leftShoulderRoll", -1.25), # ("leftShoulderYaw", 0.0), # ("leftElbowPitch", -0.785398163397), # ("rightHipYaw", 0.0), # ("rightHipRoll", 0.0), # ("rightAnkleRoll", 0.0), # ("leftHipYaw", 0.0), # ("leftHipRoll", 0.0), # # ("rightHipPitch", -0.49), # -0.49 # # ("rightKneePitch", 1.205), # 1.205 # # ("rightAnklePitch", -0.71), # -0.71 # # ("leftHipPitch", -0.49), # -0.49 # # ("leftKneePitch", 1.205), # 1.205 # # ("leftAnklePitch", -0.71), # -0.71 # ("rightHipPitch", -0.49*0.5), # -0.49 # ("rightKneePitch", 1.205*0.5), # 1.205 # ("rightAnklePitch", -0.71*0.5), # -0.71 # ("leftHipPitch", -0.49*0.5), # -0.49 # ("leftKneePitch", 1.205*0.5), # 1.205 # ("leftAnklePitch", -0.71*0.5), # -0.71 # ("leftAnkleRoll", 0.0)]) if self.useFullDOF: self.q_nom = dict([ ("rightHipYaw", 0.0), ("rightHipRoll", -0.1), ("rightHipPitch", -0.45*1.), # -0.49 ("rightKneePitch", 0.944*1.), # 1.205 ("rightAnklePitch", -0.527*1.), # -0.71 ("rightAnkleRoll", 0.1), ("leftHipYaw", 0.0), ("leftHipRoll", 0.1), ("leftHipPitch", -0.45*1.), # -0.49 ("leftKneePitch", 0.944*1.), # 1.205 ("leftAnklePitch", -0.527*1.), # -0.71 ("leftAnkleRoll", -0.1), ("torsoYaw", 0.0), ("torsoPitch", 0.0), ("torsoRoll", 0.0), ("rightShoulderPitch", 0.300196631343), ("rightShoulderRoll", 1.25), ("rightShoulderYaw", 0.0), ("rightElbowPitch", 0.785398163397), ("leftShoulderPitch", 0.300196631343), ("leftShoulderRoll", -1.25), ("leftShoulderYaw", 0.0), ("leftElbowPitch", -0.785398163397), ]) else: self.q_nom = dict([ ("rightHipPitch", -0.45*1.), # -0.49 , -0.49 ("rightKneePitch", 0.944*1.), # 1.205 , 1.205 ("rightAnklePitch", -0.527*1.), # -0.71 , -0.8 ("leftHipPitch", -0.45*1.), # -0.49 , -0.49 ("leftKneePitch", 0.944*1.), # 1.205 , 1.205 ("leftAnklePitch", -0.527*1.), # -0.71 , -0.8 ]) margin = margin_in_degree*3.14/180 # print("MARGIN IN DEG: %.1f" % margin_in_degree) self.margin = margin if self.useFullDOF: self.joint_limits_low = { "rightHipYaw": -margin+self.q_nom["rightHipYaw"], "rightHipRoll": -margin+self.q_nom["rightHipRoll"], "rightHipPitch": -margin+self.q_nom["rightHipPitch"], "rightKneePitch": -margin+self.q_nom["rightKneePitch"], "rightAnklePitch": -margin+self.q_nom["rightAnklePitch"], "rightAnkleRoll": -margin+self.q_nom["rightAnkleRoll"], "leftHipYaw": -margin+self.q_nom["leftHipYaw"], "leftHipRoll": -margin+self.q_nom["leftHipRoll"], "leftHipPitch": -margin+self.q_nom["leftHipPitch"], "leftKneePitch": -margin+self.q_nom["leftKneePitch"], "leftAnklePitch": -margin+self.q_nom["leftAnklePitch"], "leftAnkleRoll": -margin+self.q_nom["leftAnkleRoll"] } self.joint_limits_high = { "rightHipYaw": +margin+self.q_nom["rightHipYaw"], "rightHipRoll": +margin+self.q_nom["rightHipRoll"], "rightHipPitch": +margin+self.q_nom["rightHipPitch"], "rightKneePitch": +margin+self.q_nom["rightKneePitch"], "rightAnklePitch": +margin+self.q_nom["rightAnklePitch"], "rightAnkleRoll": +margin+self.q_nom["rightAnkleRoll"], "leftHipYaw": +margin+self.q_nom["leftHipYaw"], "leftHipRoll": +margin+self.q_nom["leftHipRoll"], "leftHipPitch": +margin+self.q_nom["leftHipPitch"], "leftKneePitch": +margin+self.q_nom["leftKneePitch"], "leftAnklePitch": +margin+self.q_nom["leftAnklePitch"], "leftAnkleRoll": +margin+self.q_nom["leftAnkleRoll"]} else: self.joint_limits_low = { "rightHipPitch": -margin+self.q_nom["rightHipPitch"], "rightKneePitch": -margin+self.q_nom["rightKneePitch"], "rightAnklePitch": -margin+self.q_nom["rightAnklePitch"], "leftHipPitch": -margin+self.q_nom["leftHipPitch"], "leftKneePitch": -margin+self.q_nom["leftKneePitch"], "leftAnklePitch": -margin+self.q_nom["leftAnklePitch"], } self.joint_limits_high = { "rightHipPitch": +margin+self.q_nom["rightHipPitch"], "rightKneePitch": +margin+self.q_nom["rightKneePitch"], "rightAnklePitch": +margin+self.q_nom["rightAnklePitch"], "leftHipPitch": +margin+self.q_nom["leftHipPitch"], "leftKneePitch": +margin+self.q_nom["leftKneePitch"], "leftAnklePitch": +margin+self.q_nom["leftAnklePitch"], } self.linkCOMPos = {} self.linkMass = {} offset = 1. if self.fixed_base else 0. self.base_pos_nom = np.array([0, 0, 1.08+offset]) # 1.175 straight #1.025 bend self.base_orn_nom = np.array([0, 0, 0, 1]) # x,y,z,w self.plane_pos_nom = np.array([0.,0.,0.]) self.plane_orn_nom = np.array([0.,0.,0.,1.]) self._setupSimulation() error_for_full_torque = 10*np.pi/180. kd_fraction = 1/100. self.Kp = {} self.Kd = {} for name in self.controlled_joints: val = self.u_max[name]/error_for_full_torque self.Kp.update({name: val*self.Kp_scale[name]}) self.Kd.update({name: val*kd_fraction*self.Kd_scale[name]}) print("%s: %.1f" % (name, val)) self.q_nom_list = [] for jointName in self.controlled_joints: self.q_nom_list.append(self.q_nom[jointName]) self.q_nom_list = np.array(self.q_nom_list) self.action = self.q_nom_list self._actionDim = len(self.controlled_joints) observationDim = 9+self._actionDim observation_high = np.array([np.finfo(np.float32).max] * observationDim) self.observation_space = spaces.Box(-observation_high, observation_high) self._observationDim = observationDim self.action_space = spaces.Box(np.array(-self.joint_increment), np.array(self.joint_increment)) # print("Action space: ", self.action_space.low) self.getLinkMass() # print("observationDim", self._observationDim, "actionDim", self._actionDim) def getLinkMass(self): self.total_mass = 0 info = self._p.getDynamicsInfo(self.r, -1) # for base link self.linkMass.update({"base": info[0]}) # self.linkMass.update({"pelvisBase": info[0]}) self.total_mass += info[0] for key, value in self.jointIdx.items(): info = self._p.getDynamicsInfo(self.r, value) self.linkMass.update({key: info[0]}) self.total_mass += info[0] def step(self, action): # clip action # print("raw action", action) action = np.clip(action, self.action_space.low, self.action_space.high) # print("Clipped action", action) # print("low", self.action_space.low) # print("high", self.action_space.high) self.action += action self.action = np.clip(self.action, self.jointLowerLimit, self.jointUpperLimit) # self.action = self.getJacobian([0.0, 0.2, 1.1]) # need to clip and perform jacobian here! Filter in loop for _ in range(self._actionRepeat): self.set_pos(self.action) # action = self.getFilteredAction(raw_action) # _ = self.getObservation() # filter is running in here. Thus call getObservation() self._p.stepSimulation() self._observation = self.getExtendedObservation() reward = copy.copy(self.getReward()) done = copy.copy(self.checkFall()) return copy.copy(self._observation), reward, done, {} def render(self, mode='human', close=False, distance=3, yaw=0, pitch=-30, roll=0, ): # p.addUserDebugLine(self.COM_pos + np.array([0, 0, 2]), self.COM_pos + np.array([0, 0, -2]), [1, 0, 0], 5, # 0.1) # TODO rendering to draw COM # p.addUserDebugLine(self.support_polygon_center[0] + np.array([0, 0, 2]), # self.support_polygon_center[0] + np.array([0, 0, -2]), [0, 1, 0], 5, # 0.1) # TODO rendering to draw support polygon # p.addUserDebugLine(self.support_polygon_center[0] + np.array([2, 0, 0]), # self.support_polygon_center[0] + np.array([-2, 0, 0]), [0, 1, 0], 5, # 0.1) # TODO rendering to draw support polygon width = 1600 height = 900 base_pos, base_quat = self._p.getBasePositionAndOrientation(self.r) base_orn = self._p.getEulerFromQuaternion(base_quat) # yaw = base_orn[2]*180/math.pi view_matrix = self._p.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=base_pos, distance=distance, yaw=yaw, pitch=pitch, roll=roll, upAxisIndex=2, ) # # view_matrix = p.computeViewMatrix( # cameraTargetPosition=base_pos, # cameraEyePosition=np.array(base_pos)+np.array([3,-3,2]), # cameraUpVector=np.array(base_pos)+np.array([0,0,1]), # ) proj_matrix = self._p.computeProjectionMatrixFOV( fov=60, aspect=float(width)/height, nearVal=0.1, farVal=100.0, ) # start_time = time.time() (_, _, px, _, _) = self._p.getCameraImage( width=width, height=height, viewMatrix=view_matrix, projectionMatrix=proj_matrix, renderer=self._p.ER_TINY_RENDERER ) #ER_TINY_RENDERER ER_BULLET_HARDWARE_OPENGL rgb_array = np.array(px) rgb_array = rgb_array[:,:,:3] # print("Time it took to get getCameraImage: %.5fs" % (time.time()-start_time)) return rgb_array def reset(self): return self._reset() def _reset(self, base_pos_nom = None, base_orn_nom = None, fixed_base = False, q_nom = None): self.action = self.q_nom_list seed=int((time.time()*1e6)%1e9) np.random.seed(seed=seed) self._p.resetSimulation() self._setupSimulation(base_pos_nom, base_orn_nom, fixed_base, q_nom) self._envStepCounter = 0 self._observation = self.getExtendedObservation() #self._reading = self.getReading() return np.array(self._observation) def get_observation(self): return self.getExtendedObservation() def getExtendedObservation(self): self._observation = self.getFilteredObservation() # filtered observation return self._observation def getReward(self): return self._reward() def applyForce(self, force=[0,0,0], linkName="base"): if linkName == 'base': index = -1 else: index = self.jointIdx[linkName]# frame_flag = self._p.LINK_FRAME pos = [0,0,0] # if linkName is 'base': # pos = self.base_pos # else: # link_state = self._p.getLinkState(self.r, self.jointIdx[linkName]) # pos = link_state[0] self._p.applyExternalForce(self.r, index, forceObj=force, posObj=pos ,#[0, 0.0035, 0], flags=frame_flag) def _reward(self): x_pos_err = 0 - self.base_pos[0] y_pos_err = 0 - self.base_pos[1] z_pos_err = 1.05868 - self.base_pos[2] #1.128 # print("Self pos: %.2f, %.2f, %.2f " % (x_pos_err, y_pos_err, z_pos_err)) # print("Base pos: ", self.base_pos) # print("VEL: ", self.base_vel_yaw) x_vel_err = -self.base_vel_yaw[0] y_vel_err = -self.base_vel_yaw[1] z_vel_err = -self.base_vel_yaw[2] chest_link_state = self._p.getLinkState(self.r, self.jointIdx['torsoRoll'], computeLinkVelocity=1) torso_pitch_err = 0-chest_link_state[1][1] pelvis_pitch_err = 0-self.base_orn[1] torso_roll_err = 0-chest_link_state[1][0] pelvis_roll_err = 0-self.base_orn[0] alpha = 1e-3#1e-2#1e-1 x_pos_reward = math.exp(math.log(alpha)*(x_pos_err/0.7)**2) #1.0 y_pos_reward = math.exp(math.log(alpha)*(y_pos_err/0.7)**2) #1.0 z_pos_reward = math.exp(math.log(alpha)*(z_pos_err/0.7)**2) #1.0 x_vel_reward = math.exp(math.log(alpha)*(x_vel_err/1.0)**2) #4.0 y_vel_reward = math.exp(math.log(alpha)*(y_vel_err/1.0)**2) #4.0 z_vel_reward = math.exp(math.log(alpha)*(z_vel_err/1.0)**2) #2.0 torso_pitch_reward = math.exp(math.log(alpha)*(torso_pitch_err/1.57)**2) pelvis_pitch_reward = math.exp(math.log(alpha)*(pelvis_pitch_err/1.57)**2) torso_roll_reward = math.exp(math.log(alpha)*(torso_roll_err/1.57)**2) pelvis_roll_reward = math.exp(math.log(alpha)*(pelvis_roll_err/1.57)**2) # reward = ( # 1.0 * x_pos_reward + 0.0 * y_pos_reward + 6.0 * z_pos_reward\ # +1.0 * x_vel_reward + 1.0 * y_vel_reward + 1.0 * z_vel_reward \ # +0.0 * torso_pitch_reward + 1.0 * pelvis_pitch_reward \ # +0.0 * torso_roll_reward + 1.0 * pelvis_roll_reward \ # ) \ # * 1 / (1.0 + 0.0 + 6.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 ) # print(self.total_mass) force_targ = -self.total_mass*self.g/2.0 left_foot_force_err = force_targ-self.leftContactForce[2] # Z contact force right_foot_force_err = force_targ-self.rightContactForce[2] left_foot_force_reward = math.exp(math.log(alpha)*(left_foot_force_err/force_targ)**2) right_foot_force_reward = math.exp(math.log(alpha)*(right_foot_force_err/force_targ)**2) if self.regularise_action: velocity_error = 0 torque_error = 0 for idx, key in enumerate(self.controlled_joints): velocity_error += (self.joint_velocity[idx] / self.v_max[key])**2 torque_error += (self.joint_torques[idx]/ self.u_max[key])**2 # print("Foot contact: ", foot_contact_term, "vel: %.2f, torque: %.2f, power: %.2f" % (velocity_penalty, torque_penalty, power_penalty)) velocity_error /= len(self.controlled_joints) torque_error /= len(self.controlled_joints) joint_vel_reward = math.exp(math.log(alpha)*velocity_error) joint_torque_reward = math.exp(math.log(alpha)*velocity_error) else: joint_vel_reward = 0 joint_torque_reward = 0 foot_contact_term = 0 fall_term = 0 if (self.leftFoot_isInContact and self.rightFoot_isInContact): # both feet lost contact foot_contact_term = 2.0#-5 # 1 TODO increase penalty for losing contact with the ground elif (self.leftFoot_isInContact or self.rightFoot_isInContact): # both feet lost contact foot_contact_term = 0.5#-5 # 1 TODO increase penalty for losing contact with the ground # if self.checkFall(): # fall_term -= 10 reward = ( 1.0 * x_pos_reward + 1.0 * y_pos_reward + 4.0 * z_pos_reward\ +1.0 * x_vel_reward + 1.0 * y_vel_reward + 1.0 * z_vel_reward \ +0.5 * torso_pitch_reward + 0.5 * pelvis_pitch_reward \ # +0.5 * torso_roll_reward + 0.5 * pelvis_roll_reward \ +1.0 * left_foot_force_reward + 1.0 * right_foot_force_reward \ +1.0 * joint_vel_reward + 1.0 * joint_torque_reward + 2.0* foot_contact_term ) \ * 10 / (2.0 + 4.0 + 2.0 + 1.0 + 1.0 + 1.0 + 1.0 + 2.0 + 2.0) # penalize reward when joint is moving too fast # velocity_penalty = 0 # torque_penalty = 0 # power_penalty = 0 # if self.regularise_action: # for idx, key in enumerate(self.controlled_joints): # velocity_penalty -= (self.joint_velocity[idx] / self.v_max[key])**2 # torque_penalty -= 0.1 * abs(self.joint_torques[idx]/ self.u_max[key]) # power_penalty -= 0.1 * abs(self.joint_velocity[idx]) * abs(self.joint_torques[idx]) # # print("Foot contact: ", foot_contact_term, "vel: %.2f, torque: %.2f, power: %.2f" % (velocity_penalty, torque_penalty, power_penalty)) # reward += foot_contact_term #+fall_term+velocity_penalty+torque_penalty+power_penalty reward_term = dict([ ("x_pos_reward", x_pos_reward), ("y_pos_reward", y_pos_reward), ("z_pos_reward", z_pos_reward), ("x_vel_reward", x_vel_reward), ("y_vel_reward", y_vel_reward), ("z_vel_reward", z_vel_reward), ("torso_pitch_reward", torso_pitch_reward), ("pelvis_pitch_reward", pelvis_pitch_reward), ("torso_roll_reward", torso_roll_reward), ("pelvis_roll_reward", pelvis_roll_reward), ("left_foot_force_reward", left_foot_force_reward), ("right_foot_force_reward", right_foot_force_reward) ]) # print("Reward: %.4f" % (reward/20)) # print("Reward: ", reward_term) return reward, reward_term def resetJointStates(self, base_pos_nom=None, base_orn_nom=None, q_nom=None): # if base_pos_nom is None: # base_pos_nom = self.base_pos_nom # if base_orn_nom is None: # base_orn_nom = self.base_orn_nom if q_nom is None: q_nom = self.q_nom else: #replace nominal joint angle with target joint angle temp=dict(self.q_nom) for key, value in q_nom.items(): temp[key] = value q_nom = dict(temp) self.q_nom = dict(q_nom) for jointName in q_nom: self._p.resetJointState(self.r, self.jointIdx[jointName], targetValue=q_nom[jointName], targetVelocity=0) # print("Reset %s to %.2f" % (jointName, q_nom[jointName])) # print(base_orn_nom) # self._p.resetBasePositionAndOrientation(self.r, base_pos_nom, base_orn_nom) # self._p.resetBaseVelocity(self.r, [0, 0, 0], [0, 0, 0]) def calcCOM(self): self.linkCOMPos.update({"base": np.array(self.base_pos)}) # base position is the COM of the pelvis self.com_pos = np.zeros((1, 3)) for key, value in self.linkMass.items(): if key != "base": info = self._p.getLinkState(self.r, self.jointIdx[key], computeLinkVelocity=0) self.linkCOMPos.update({key: info[0]}) # print("WTF: %.3f" % value, np.array(self.linkCOMPos[key])) self.com_pos += np.array(self.linkCOMPos[key]) * value # print("KEY: %s, value: %.2f" % (key, value)) self.com_pos /= self.total_mass # self.com_pos /= self.total_mass # update global COM position # self.com_pos = np.array(sum) return self.com_pos def _setupSimulation(self, base_pos_nom=None, base_orn_nom=None, fixed_base=False, q_nom=None): if base_pos_nom is None: base_pos_nom = self.base_pos_nom if base_orn_nom is None: base_orn_nom = self.base_orn_nom self._p.setRealTimeSimulation(0) self._p.setGravity(0, 0, -self.g) #TODO set gravity self._p.setTimeStep(self._dt) self.dir_path = os.path.dirname(os.path.realpath(__file__)) self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 0) plane_urdf = self.dir_path + "/plane/plane.urdf" self.plane = self._p.loadURDF(plane_urdf, basePosition=[0, 0, 0], baseOrientation=[0,0,0,1], useFixedBase=True) if self.useFullDOF: valkyrie_urdf = self.dir_path + "/valkyrie_full_dof.urdf" else: valkyrie_urdf = self.dir_path + "/valkyrie_reduced_fixed.urdf" # print("Fixed: ", self.fixed_base) self.r = self._p.loadURDF(fileName=valkyrie_urdf, basePosition=base_pos_nom, baseOrientation=base_orn_nom, flags=self._p.URDF_USE_INERTIA_FROM_FILE|self._p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS, useFixedBase=self.fixed_base, ) self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 1) jointIds = [] for j in range(self._p.getNumJoints(self.r)): self._p.changeDynamics(self.r, j, linearDamping=0, angularDamping=0) info = self._p.getJointInfo(self.r, j) #print(info) jointName = info[1].decode("utf-8") # print(jointName) jointType = info[2] if (jointType == self._p.JOINT_REVOLUTE): jointIds.append(j) # print("Appending %s" % jointName) self.jointIdx.update({jointName: info[0]}) self.jointNameIdx.update({info[0]: jointName}) self.jointIds = [] for name in self.controlled_joints: _id = self.jointIdx[name] if _id in jointIds: self.jointIds.append(_id) if self.margin > 90*3.14/180: for joint in self.controlled_joints: # print("self joint didx", self.jointIdx) info = self._p.getJointInfo(self.r, self.jointIdx[joint]) self.joint_limits_low.update({joint: (info[8])}) self.joint_limits_high.update({joint: (info[9])}) self.jointLowerLimit = [] self.jointUpperLimit = [] for jointName in self.controlled_joints: self.jointLowerLimit.append(self.joint_limits_low[jointName]) self.jointUpperLimit.append(self.joint_limits_high[jointName]) self.joint_increment = (np.array(self.jointUpperLimit) - np.array(self.jointLowerLimit))/ (25 * 10) self.resetJointStates(base_pos_nom, base_orn_nom, q_nom) def getObservation(self): self.base_pos, self.base_quat = self._p.getBasePositionAndOrientation(self.r) self.base_vel, self.base_orn_vel = self._p.getBaseVelocity(self.r) # print(self.base_pos) # for idx in self.jointNameIdx.keys(): # print("Val: ", self._p.getLinkState(self.r, idx+1)[0]) queried_links = [ "head_imu_joint", "leftElbowPitch", "rightElbowPitch", "left_hand", "right_hand", "torsoYaw", "leftKneePitch", "rightKneePitch", "leftAnklePitch", "rightAnklePitch", ] queried_indices = [] for link in queried_links: queried_indices.append(self.jointIdx[link]) self.linkStates = self._p.getLinkStates(self.r, queried_indices) self.head_pos = self.linkStates[0][0] self.left_elbow_pos = self.linkStates[1][0] self.right_elbow_pos = self.linkStates[2][0] self.left_hand_pos = self.linkStates[3][0] self.right_hand_pos = self.linkStates[4][0] self.torso_pos = self.linkStates[5][0] self.left_knee_pos = self.linkStates[6][0] self.right_knee_pos = self.linkStates[7][0] self.left_foot_pos = self.linkStates[8][0] self.right_foot_pos = self.linkStates[9][0] # self.left_foot_pos = self._p.getLinkState(self.r, self.jointIdx["leftAnklePitch"])[0] # self.right_foot_pos = self._p.getLinkState(self.r, self.jointIdx["rightAnklePitch"])[0] # ankleRollContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['leftAnkleRoll'], -1) # anklePitchContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['leftAnklePitch'], -1) # ankleRollContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['rightAnkleRoll'], -1) # anklePitchContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['rightAnklePitch'], -1) leftContactInfo = self._p.getContactPoints(self.r, self.plane, self.jointIdx["leftAnkleRoll"], -1) rightContactInfo = self._p.getContactPoints(self.r, self.plane, self.jointIdx["rightAnkleRoll"], -1) # print(leftContactInfo) self.leftFoot_isInContact = (len(leftContactInfo) > 0) self.rightFoot_isInContact = (len(rightContactInfo) > 0) # print("LEFT: %d, RIGHT: %d" % (self.leftFoot_isInContact, self.rightFoot_isInContact)) self.leftContactForce = [0, 0, 0] self.rightContactForce = [0, 0, 0] if self.leftFoot_isInContact: for info in leftContactInfo: contactNormal = np.array(info[7]) # contact normal of foot pointing towards plane contactNormal = -contactNormal # contact normal of plane pointing towards foot contactNormalForce =
np.array(info[9])
numpy.array
import numpy as np import matplotlib.pyplot as plt from lmfit.lineshapes import pvoigt from lmfit import Model def ikeda_carpenter(t, alpha, beta, fraction, t0, norm_factor=1): _t = t - t0 # _t = t1[np.logical_not(t1 < 0)] _t[_t < 0] = 0 # t>=0 required # α=vΣ # Σ is the macroscopic neutron scattering cross-section of the moderator # (Σ=1.6 cm-1 for polyethylene in the high energy limit) and # v is the neutron speed part1 = 0.5 * alpha * (alpha*_t)**2 * np.exp(-alpha*_t) part2_1 = alpha**3 * beta / (alpha - beta)**3 # jparc uses alpha**2 instead of alpha**3 in the original function part2_2 = np.exp(-beta*_t) - np.exp(-alpha*_t) * (1 + (alpha - beta) * _t + 0.5 * (alpha - beta)**2 * _t**2) part2 = part2_1 * part2_2 f = ((1 - fraction) * part1 + fraction * part2) * norm_factor return f def ikeda_carpenter_jparc(t, alpha, beta, fraction, t0, norm_factor=1): _t = t - t0 # _t = t1[np.logical_not(t1 < 0)] _t[_t < 0] = 0 # t>=0 required part1 = 0.5 * alpha * (alpha*_t)**2 * np.exp(-alpha*_t) part2_1 = alpha**2 * beta / (alpha - beta)**3 # jparc uses alpha**2 instead of alpha**3 in the original function part2_2 = np.exp(-beta*_t) - np.exp(-alpha*_t) * (1 + (alpha - beta) * _t + 0.5 * (alpha - beta)**2 * _t**2) part2 = part2_1 * part2_2 f = ((1 - fraction) * part1 + fraction * part2) * norm_factor return f def cole_windsor(t, sig1, sig2, gamma, fraction, t0, norm_factor=1): _t = t - t0 f = [] for each_t in _t: # for F1 if each_t <= 0: f1 = np.exp(-0.5 * (each_t / sig1) ** 2) if 0 < each_t <= gamma * sig2 ** 2: f1 = np.exp(-0.5 * (each_t / sig2) ** 2) if gamma * sig2 ** 2 < each_t: f1 = np.exp(0.5 * (gamma * sig2) ** 2 - gamma * each_t) # for F2 if each_t <= 0: f2 = np.exp(-0.5 * (each_t / sig1) ** 2) if 0 < each_t <= gamma * sig2 ** 2: f2 =
np.exp(0.5 * (each_t / sig2) ** 2)
numpy.exp
''' Extensions to Numpy, including finding array elements and smoothing data. Highlights: - ``sc.findinds()``: find indices of an array matching a condition - ``sc.findnearest()``: find nearest matching value - ``sc.smooth()``: simple smoothing of 1D or 2D arrays - ``sc.smoothinterp()``: linear interpolation with smoothing ''' import numpy as np import warnings from . import sc_utils as ut ############################################################################## ### Find and approximation functions ############################################################################## __all__ = ['approx', 'safedivide', 'findinds', 'findfirst', 'findlast', 'findnearest', 'dataindex', 'getvalidinds', 'sanitize', 'getvaliddata', 'isprime'] def approx(val1=None, val2=None, eps=None, **kwargs): ''' Determine whether two scalars (or an array and a scalar) approximately match. Alias for np.isclose() and may be removed in future versions. Args: val1 (number or array): the first value val2 (number): the second value eps (float): absolute tolerance kwargs (dict): passed to np.isclose() **Examples**:: sc.approx(2*6, 11.9999999, eps=1e-6) # Returns True sc.approx([3,12,11.9], 12) # Returns array([False, True, False], dtype=bool) ''' if eps is not None: kwargs['atol'] = eps # Rename kwarg to match np.isclose() output = np.isclose(a=val1, b=val2, **kwargs) return output def safedivide(numerator=None, denominator=None, default=None, eps=None, warn=False): ''' Handle divide-by-zero and divide-by-nan elegantly. **Examples**:: sc.safedivide(numerator=0, denominator=0, default=1, eps=0) # Returns 1 sc.safedivide(numerator=5, denominator=2.0, default=1, eps=1e-3) # Returns 2.5 sc.safedivide(3, np.array([1,3,0]), -1, warn=True) # Returns array([ 3, 1, -1]) ''' # Set some defaults if numerator is None: numerator = 1.0 if denominator is None: denominator = 1.0 if default is None: default = 0.0 # Handle the logic invalid = approx(denominator, 0.0, eps=eps) if ut.isnumber(denominator): # The denominator is a scalar if invalid: output = default else: output = numerator/denominator elif ut.checktype(denominator, 'array'): if not warn: denominator[invalid] = 1.0 # Replace invalid values with 1 output = numerator/denominator output[invalid] = default else: # pragma: no cover # Unclear input, raise exception errormsg = f'Input type {type(denominator)} not understood: must be number or array' raise TypeError(errormsg) return output def findinds(arr, val=None, eps=1e-6, first=False, last=False, die=True, **kwargs): ''' Little function to find matches even if two things aren't eactly equal (eg. due to floats vs. ints). If one argument, find nonzero values. With two arguments, check for equality using eps. Returns a tuple of arrays if val1 is multidimensional, else returns an array. Similar to calling np.nonzero(np.isclose(arr, val))[0]. Args: arr (array): the array to find values in val (float): if provided, the value to match eps (float): the precision for matching (default 1e-6, equivalent to np.isclose's atol) first (bool): whether to return the first matching value last (bool): whether to return the last matching value die (bool): whether to raise an exception if first or last is true and no matches were found kwargs (dict): passed to np.isclose() **Examples**:: sc.findinds(rand(10)<0.5) # returns e.g. array([2, 4, 5, 9]) sc.findinds([2,3,6,3], 3) # returs array([1,3]) sc.findinds([2,3,6,3], 3, first=True) # returns 1 New in version 1.2.3: "die" argument ''' # Handle first or last if first and last: raise ValueError('Can use first or last but not both') elif first: ind = 0 elif last: ind = -1 else: ind = None # Handle kwargs atol = kwargs.pop('atol', eps) # Ensure atol isn't specified twice if 'val1' in kwargs or 'val2' in kwargs: # pragma: no cover arr = kwargs.pop('val1', arr) val = kwargs.pop('val2', val) warnmsg = 'sc.findinds() arguments "val1" and "val2" have been deprecated as of v1.0.0; use "arr" and "val" instead' warnings.warn(warnmsg, category=DeprecationWarning, stacklevel=2) # Calculate matches arr = ut.promotetoarray(arr) if val is None: # Check for equality output = np.nonzero(arr) # If not, just check the truth condition else: if ut.isstring(val): output = np.nonzero(arr==val) try: # Standard usage, use nonzero output = np.nonzero(np.isclose(a=arr, b=val, atol=atol, **kwargs)) # If absolute difference between the two values is less than a certain amount except Exception as E: # pragma: no cover # As a fallback, try simpler comparison output = np.nonzero(abs(arr-val) < atol) if kwargs: # Raise a warning if and only if special settings were passed warnmsg = f'{str(E)}\nsc.findinds(): np.isclose() encountered an exception (above), falling back to direct comparison' warnings.warn(warnmsg, category=RuntimeWarning, stacklevel=2) # Process output try: if arr.ndim == 1: # Uni-dimensional output = output[0] # Return an array rather than a tuple of arrays if one-dimensional if ind is not None: output = output[ind] # And get the first element else: if ind is not None: output = [output[i][ind] for i in range(arr.ndim)] except IndexError as E: if die: errormsg = 'No matching values found; use die=False to return None instead of raising an exception' raise IndexError(errormsg) from E else: output = None return output def findfirst(*args, **kwargs): ''' Alias for findinds(..., first=True). New in version 1.0.0. ''' return findinds(*args, **kwargs, first=True) def findlast(*args, **kwargs): ''' Alias for findinds(..., last=True). New in version 1.0.0. ''' return findinds(*args, **kwargs, last=True) def findnearest(series=None, value=None): ''' Return the index of the nearest match in series to value -- like findinds, but always returns an object with the same type as value (i.e. findnearest with a number returns a number, findnearest with an array returns an array). **Examples**:: findnearest(rand(10), 0.5) # returns whichever index is closest to 0.5 findnearest([2,3,6,3], 6) # returns 2 findnearest([2,3,6,3], 6) # returns 2 findnearest([0,2,4,6,8,10], [3, 4, 5]) # returns array([1, 2, 2]) Version: 2017jan07 ''' series = ut.promotetoarray(series) if ut.isnumber(value): output = np.argmin(abs(series-value)) else: output = [] for val in value: output.append(findnearest(series, val)) output = ut.promotetoarray(output) return output def dataindex(dataarray, index): # pragma: no cover ''' Take an array of data and return either the first or last (or some other) non-NaN entry. This function is deprecated. ''' nrows = np.shape(dataarray)[0] # See how many rows need to be filled (either npops, nprogs, or 1). output = np.zeros(nrows) # Create structure for r in range(nrows): output[r] = sanitize(dataarray[r])[index] # Return the specified index -- usually either the first [0] or last [-1] return output def getvalidinds(data=None, filterdata=None): # pragma: no cover ''' Return the indices that are valid based on the validity of the input data from an arbitrary number of 1-D vector inputs. Warning, closely related to getvaliddata(). This function is deprecated. **Example**:: getvalidinds([3,5,8,13], [2000, nan, nan, 2004]) # Returns array([0,3]) ''' data = ut.promotetoarray(data) if filterdata is None: filterdata = data # So it can work on a single input -- more or less replicates sanitize() then filterdata = ut.promotetoarray(filterdata) if filterdata.dtype=='bool': filterindices = filterdata # It's already boolean, so leave it as is else: filterindices = findinds(~np.isnan(filterdata)) # Else, assume it's nans that need to be removed dataindices = findinds(~np.isnan(data)) # Also check validity of data validindices = np.intersect1d(dataindices, filterindices) return validindices # Only return indices -- WARNING, not consistent with sanitize() def getvaliddata(data=None, filterdata=None, defaultind=0): # pragma: no cover ''' Return the data value indices that are valid based on the validity of the input data. This function is deprecated. **Example**:: getvaliddata(array([3,5,8,13]), array([2000, nan, nan, 2004])) # Returns array([3,13]) ''' data = np.array(data) if filterdata is None: filterdata = data # So it can work on a single input -- more or less replicates sanitize() then filterdata = np.array(filterdata) if filterdata.dtype=='bool': validindices = filterdata # It's already boolean, so leave it as is else: validindices = ~np.isnan(filterdata) # Else, assume it's nans that need to be removed if validindices.any(): # There's at least one data point entered if len(data)==len(validindices): # They're the same length: use for logical indexing validdata = np.array(np.array(data)[validindices]) # Store each year elif len(validindices)==1: # They're different lengths and it has length 1: it's an assumption validdata = np.array([np.array(data)[defaultind]]) # Use the default index; usually either 0 (start) or -1 (end) else: errormsg = f'Array sizes are mismatched: {len(data)} vs. {len(validindices)}' raise ValueError(errormsg) else: validdata = np.array([]) # No valid data, return an empty array return validdata def sanitize(data=None, returninds=False, replacenans=None, die=True, defaultval=None, label=None, verbose=True): ''' Sanitize input to remove NaNs. Warning, does not work on multidimensional data!! **Examples**:: sanitized,inds = sanitize(array([3,4,nan,8,2,nan,nan,nan,8]), returninds=True) sanitized = sanitize(array([3,4,nan,8,2,nan,nan,nan,8]), replacenans=True) sanitized = sanitize(array([3,4,nan,8,2,nan,nan,nan,8]), replacenans=0) ''' try: data = np.array(data,dtype=float) # Make sure it's an array of float type inds = np.nonzero(~np.isnan(data))[0] # WARNING, nonzero returns tuple :( sanitized = data[inds] # Trim data if replacenans is not None: newx = range(len(data)) # Create a new x array the size of the original array if replacenans==True: replacenans = 'nearest' if replacenans in ['nearest','linear']: sanitized = smoothinterp(newx, inds, sanitized, method=replacenans, smoothness=0) # Replace nans with interpolated values else: naninds = inds = np.nonzero(np.isnan(data))[0] sanitized = ut.dcp(data) sanitized[naninds] = replacenans if len(sanitized)==0: if defaultval is not None: sanitized = defaultval else: sanitized = 0.0 if verbose: # pragma: no cover if label is None: label = 'this parameter' print(f'sc.sanitize(): no data entered for {label}, assuming 0') except Exception as E: # pragma: no cover if die: errormsg = f'Sanitization failed on array: "{repr(E)}":\n{data}' raise RuntimeError(errormsg) else: sanitized = data # Give up and just return an empty array inds = [] if returninds: return sanitized, inds else: return sanitized def isprime(n, verbose=False): ''' Determine if a number is prime. From https://stackoverflow.com/questions/15285534/isprime-function-for-python-language **Example**:: for i in range(100): print(i) if sc.isprime(i) else None ''' if n < 2: if verbose: print('Not prime: n<2') return False if n == 2: if verbose: print('Is prime: n=2') return True if n == 3: if verbose: print('Is prime: n=3') return True if n%2 == 0: if verbose: print('Not prime: divisible by 2') return False if n%3 == 0: if verbose: print('Not prime: divisible by 3') return False if n < 9: if verbose: print('Is prime: <9 and not divisible by 2') return True r = int(n**0.5) f = 5 while f <= r: if n%f == 0: if verbose: print(f'Not prime: divisible by {f}') return False if n%(f+2) == 0: if verbose: print(f'Not prime: divisible by {f+2}') return False f +=6 if verbose: print('Is prime!') return True ############################################################################## ### Other functions ############################################################################## __all__ += ['perturb', 'normsum', 'normalize', 'inclusiverange', 'rolling', 'smooth', 'smoothinterp', 'randround', 'cat'] def perturb(n=1, span=0.5, randseed=None, normal=False): ''' Define an array of numbers uniformly perturbed with a mean of 1. Args: n (int): number of points span (float): width of distribution on either side of 1 normal (bool): whether to use a normal distribution instead of uniform **Example**:: sc.perturb(5, 0.3) # Returns e.g. array([0.73852362, 0.7088094 , 0.93713658, 1.13150755, 0.87183371]) ''' if randseed is not None: np.random.seed(int(randseed)) # Optionally reset random seed if normal: output = 1.0 + span*np.random.randn(n) else: output = 1.0 + 2*span*(np.random.rand(n)-0.5) return output def normsum(arr, total=None): ''' Multiply a list or array by some normalizing factor so that its sum is equal to the total. Formerly called sc.scaleratio(). Args: arr (array): array (or list) to normalize total (float): amount to sum to (default 1) **Example**:: normarr = sc.normsum([2,5,3,10], 100) # Scale so sum equals 100; returns [10.0, 25.0, 15.0, 50.0] Renamed in version 1.0.0. ''' if total is None: total = 1.0 origtotal = float(sum(arr)) ratio = float(total)/origtotal out =
np.array(arr)
numpy.array
# Distributed under the MIT License. # See LICENSE.txt for details. import numpy as np # Functions for testing SmoothFlow.cpp def rest_mass_density(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return 1.0 + (density_amplitude * np.sin(np.dot(np.asarray(wave_vector), np.asarray(x) - np.asarray(mean_velocity) * t))) def spatial_velocity(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return np.asarray(mean_velocity) def specific_internal_energy(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return (pressure / ((adiabatic_exponent - 1.0) * rest_mass_density(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude))) def pressure(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return pressure def magnetic_field(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return np.array([0.0,0.0,0.0]) def dt_rest_mass_density(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return (-density_amplitude * np.dot(np.asarray(wave_vector),np.asarray(mean_velocity)) * np.cos(np.dot(np.asarray(wave_vector), np.asarray(x) - np.asarray(mean_velocity) * t))) def dt_spatial_velocity(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return np.array([0.0,0.0,0.0]) def dt_specific_internal_energy(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return (-pressure / ((adiabatic_exponent - 1.0) * rest_mass_density(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude)**2 ) * dt_rest_mass_density(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude)) def dt_pressure(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return 0.0 def dt_magnetic_field(x, t, mean_velocity, wave_vector, pressure, adiabatic_exponent, density_amplitude): return
np.array([0.0,0.0,0.0])
numpy.array
from copy import copy from itertools import cycle, islice import numpy as np import pandas as pd import pytest from napari._tests.utils import check_layer_world_data_extent from napari.layers import Shapes from napari.layers.utils._text_constants import TextMode from napari.utils.colormaps.standardize_color import transform_color def _make_cycled_properties(values, length): """Helper function to make property values Parameters ---------- values The values to be cycled. length : int The length of the resulting property array Returns ------- cycled_properties : np.ndarray The property array comprising the cycled values. """ cycled_properties = np.array(list(islice(cycle(values), 0, length))) return cycled_properties def test_empty_shapes(): shp = Shapes() assert shp.ndim == 2 properties_array = {'shape_type': _make_cycled_properties(['A', 'B'], 10)} properties_list = {'shape_type': list(_make_cycled_properties(['A', 'B'], 10))} @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_properties(properties): shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, properties=copy(properties)) np.testing.assert_equal(layer.properties, properties) current_prop = {'shape_type': np.array(['B'])} assert layer.current_properties == current_prop # test removing shapes layer.selected_data = {0, 1} layer.remove_selected() remove_properties = properties['shape_type'][2::] assert len(layer.properties['shape_type']) == (shape[0] - 2) assert np.all(layer.properties['shape_type'] == remove_properties) # test selection of properties layer.selected_data = {0} selected_annotation = layer.current_properties['shape_type'] assert len(selected_annotation) == 1 assert selected_annotation[0] == 'A' # test adding shapes with properties new_data = np.random.random((1, 4, 2)) new_shape_type = ['rectangle'] layer.add(new_data, shape_type=new_shape_type) add_properties = np.concatenate((remove_properties, ['A']), axis=0) assert np.all(layer.properties['shape_type'] == add_properties) # test copy/paste layer.selected_data = {0, 1} layer._copy_data() assert np.all(layer._clipboard['properties']['shape_type'] == ['A', 'B']) layer._paste_data() paste_properties = np.concatenate((add_properties, ['A', 'B']), axis=0) assert np.all(layer.properties['shape_type'] == paste_properties) # test updating a property layer.mode = 'select' layer.selected_data = {0} new_property = {'shape_type': np.array(['B'])} layer.current_properties = new_property updated_properties = layer.properties assert updated_properties['shape_type'][0] == 'B' @pytest.mark.parametrize("attribute", ['edge', 'face']) def test_adding_properties(attribute): """Test adding properties to an existing layer""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) # add properties properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])} layer.properties = properties np.testing.assert_equal(layer.properties, properties) # add properties as a dataframe properties_df = pd.DataFrame(properties) layer.properties = properties_df np.testing.assert_equal(layer.properties, properties) # add properties as a dictionary with list values properties_list = { 'shape_type': list(_make_cycled_properties(['A', 'B'], shape[0])) } layer.properties = properties_list assert isinstance(layer.properties['shape_type'], np.ndarray) # removing a property that was the _*_color_property should give a warning setattr(layer, f'_{attribute}_color_property', 'shape_type') properties_2 = { 'not_shape_type': _make_cycled_properties(['A', 'B'], shape[0]) } with pytest.warns(RuntimeWarning): layer.properties = properties_2 def test_data_setter_with_properties(): """Test layer data on a layer with properties via the data setter""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])} layer = Shapes(data, properties=properties) # test setting to data with fewer shapes n_new_shapes = 4 new_data = 20 * np.random.random((n_new_shapes, 4, 2)) layer.data = new_data assert len(layer.properties['shape_type']) == n_new_shapes # test setting to data with more shapes n_new_shapes_2 = 6 new_data_2 = 20 * np.random.random((n_new_shapes_2, 4, 2)) layer.data = new_data_2 assert len(layer.properties['shape_type']) == n_new_shapes_2 # test setting to data with same shapes new_data_3 = 20 * np.random.random((n_new_shapes_2, 4, 2)) layer.data = new_data_3 assert len(layer.properties['shape_type']) == n_new_shapes_2 def test_properties_dataframe(): """Test if properties can be provided as a DataFrame""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])} properties_df = pd.DataFrame(properties) properties_df = properties_df.astype(properties['shape_type'].dtype) layer = Shapes(data, properties=properties_df) np.testing.assert_equal(layer.properties, properties) def test_empty_layer_with_text_properties(): """Test initializing an empty layer with text defined""" default_properties = {'shape_type': np.array([1.5], dtype=float)} text_kwargs = {'text': 'shape_type', 'color': 'red'} layer = Shapes( properties=default_properties, text=text_kwargs, ) assert layer.text._mode == TextMode.PROPERTY assert layer.text.values.size == 0 np.testing.assert_allclose(layer.text.color, [1, 0, 0, 1]) # add a shape and check that the appropriate text value was added layer.add(np.random.random((1, 4, 2))) np.testing.assert_equal(layer.text.values, ['1.5']) np.testing.assert_allclose(layer.text.color, [1, 0, 0, 1]) def test_empty_layer_with_text_formatted(): """Test initializing an empty layer with text defined""" default_properties = {'shape_type': np.array([1.5], dtype=float)} layer = Shapes( properties=default_properties, text='shape_type: {shape_type:.2f}', ) assert layer.text._mode == TextMode.FORMATTED assert layer.text.values.size == 0 # add a shape and check that the appropriate text value was added layer.add(np.random.random((1, 4, 2))) np.testing.assert_equal(layer.text.values, ['shape_type: 1.50']) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_text_from_property_value(properties): """Test setting text from a property value""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, properties=copy(properties), text='shape_type') np.testing.assert_equal(layer.text.values, properties['shape_type']) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_text_from_property_fstring(properties): """Test setting text with an f-string from the property value""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes( data, properties=copy(properties), text='type: {shape_type}' ) expected_text = ['type: ' + v for v in properties['shape_type']] np.testing.assert_equal(layer.text.values, expected_text) # test updating the text layer.text = 'type-ish: {shape_type}' expected_text_2 = ['type-ish: ' + v for v in properties['shape_type']] np.testing.assert_equal(layer.text.values, expected_text_2) # copy/paste layer.selected_data = {0} layer._copy_data() layer._paste_data() expected_text_3 = expected_text_2 + ['type-ish: A'] np.testing.assert_equal(layer.text.values, expected_text_3) # add shape layer.selected_data = {0} new_shape = np.random.random((1, 4, 2)) layer.add(new_shape) expected_text_4 = expected_text_3 + ['type-ish: A'] np.testing.assert_equal(layer.text.values, expected_text_4) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_set_text_with_kwarg_dict(properties): text_kwargs = { 'text': 'type: {shape_type}', 'color': [0, 0, 0, 1], 'rotation': 10, 'translation': [5, 5], 'anchor': 'upper_left', 'size': 10, 'visible': True, } shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, properties=copy(properties), text=text_kwargs) expected_text = ['type: ' + v for v in properties['shape_type']] np.testing.assert_equal(layer.text.values, expected_text) for property, value in text_kwargs.items(): if property == 'text': continue layer_value = getattr(layer._text, property) np.testing.assert_equal(layer_value, value) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_text_error(properties): """creating a layer with text as the wrong type should raise an error""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) # try adding text as the wrong type with pytest.raises(TypeError): Shapes(data, properties=copy(properties), text=123) def test_refresh_text(): """Test refreshing the text after setting new properties""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) properties = {'shape_type': ['A'] * shape[0]} layer = Shapes(data, properties=copy(properties), text='shape_type') new_properties = {'shape_type': ['B'] * shape[0]} layer.properties = new_properties
np.testing.assert_equal(layer.text.values, new_properties['shape_type'])
numpy.testing.assert_equal
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Some code is from https://github.com/princeton-vl/pose-ae-train/blob/454d4ba113bbb9775d4dc259ef5e6c07c2ceed54/utils/group.py # Written by <NAME> (<EMAIL>) # Modified by <NAME> (<EMAIL>) # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function from munkres import Munkres import numpy as np import torch #tags.append(tag[i, y, x]) = tags.append(tag[i, y, x]) def py_max_match(scores): m = Munkres() tmp = m.compute(scores) tmp = np.array(tmp).astype(np.int32) return tmp class Params(object): def __init__(self, cfg): self.num_joints = cfg.DATASET.NUM_JOINTS self.max_num_people = cfg.DATASET.MAX_NUM_PEOPLE self.detection_threshold = cfg.TEST.DETECTION_THRESHOLD self.tag_threshold = cfg.TEST.TAG_THRESHOLD self.use_detection_val = cfg.TEST.USE_DETECTION_VAL self.ignore_too_much = cfg.TEST.IGNORE_TOO_MUCH ''' if cfg.DATASET.WITH_CENTER and cfg.TEST.IGNORE_CENTER: self.num_joints -= 1 if cfg.DATASET.WITH_CENTER and not cfg.TEST.IGNORE_CENTER: self.joint_order = [ i-1 for i in [18, 1, 2, 3, 4, 5, 6, 7, 12, 13, 8, 9, 10, 11, 14, 15, 16, 17] ] else: self.joint_order = [ i-1 for i in [1, 2, 3, 4, 5, 6, 7, 12, 13, 8, 9, 10, 11, 14, 15, 16, 17] ] ''' with_hier_refine_val = False def hierarchical_pool(heatmap): ''' this function is copied from DEKR :param heatmap: :return: ''' pool1 = torch.nn.MaxPool2d(3, 1, 1) pool2 = torch.nn.MaxPool2d(5, 1, 2) pool3 = torch.nn.MaxPool2d(7, 1, 3) map_size = (heatmap.shape[1] + heatmap.shape[2]) / 2.0 if map_size > 300: maxm = pool3(heatmap[:, :, :]) elif map_size > 200: maxm = pool2(heatmap[:, :, :]) else: maxm = pool1(heatmap[:, :, :]) return maxm class HeatmapParser(object): def __init__(self, cfg): self.params = Params(cfg) self.tag_per_joint = cfg.MODEL.TAG_PER_JOINT self.pool = torch.nn.MaxPool2d( cfg.TEST.NMS_KERNEL, 1, cfg.TEST.NMS_PADDING ) self.detection_threshold = 0.1 self.rjg = cfg.DATASET.RJG_TAG self.ljg_4 = cfg.DATASET.LJG_WITH_HIER self.ljg_2 = cfg.DATASET.LJG_CENTER_ONLY self.flip = cfg.TEST.FLIP_TEST self.diff_thre = 70. self.mrm_thre = 0.75 def match_by_de(self, dict, params): ''' tag_val(1,num_joints,topk,2) location(1,num_joints,topk,2) heatmap_val(1,num_joints,topk) ''' assert isinstance(params, Params), 'params should be class Params()' tag_t = dict['tag_t'] # [len(rjg)*(thre,2)] off_2, off_4 = dict['off_t'] # [len(ljg_2or4)*(thre,2or4)] loc_t = dict['loc_t'] # [18*(thre,2)] vs location(1,num_joints,topk,2) val_t = dict['val_t'] # [18*(thre)] vs heatmap_val(1,num_joints,topk) default_ = np.zeros((params.num_joints + 1, 3 + 2)) # (30,x+y+val+4+tag+tag_flip)30*5 joint_dict = {} tag_dict = {} center2_key = [] other2_key = [[],[],[],[]] # store the keys of shouler l,shoulder r, hip l, hip r center_array = loc_t[-1] for i,person_center_tag in enumerate(tag_t[-1]): key = person_center_tag[0] joint_dict.setdefault(key, np.copy(default_))[-1] = np.array([loc_t[-1][i][0], loc_t[-1][i][1], val_t[-1][i], key, person_center_tag[1]]) tag_dict[key] = [person_center_tag] center2_key.append(key) # center2_key = np.array(center2_key) if center2_key == []: return np.array([]) for idx_tag, idx in enumerate(self.rjg): tags = tag_t[idx_tag] joints = np.concatenate( (loc_t[idx], val_t[idx][:, None], tags), 1 ) if joints.shape[0] == 0: continue grouped_keys = list(joint_dict.keys())[:params.max_num_people] grouped_tags = [np.mean(tag_dict[i], axis=0) for i in grouped_keys] # print('mean') # print(np.mean(tag_dict[0], axis=0)) if params.ignore_too_much \ and len(grouped_keys) == params.max_num_people: continue # print('joints:', joints.shape) # print('tags:', np.array(grouped_tags)) diff = joints[:, None, 3:] - np.array(grouped_tags)[None, :, :] # joints:(thre,1,tag*2) tags:(1,thre,tag*2) # print('j_tag',joints[:, None, 3:]) diff_normed = np.linalg.norm(diff, ord=2, axis=2) diff_saved = np.copy(diff_normed) if params.use_detection_val: diff_normed = np.round(diff_normed) * 100 - joints[:, 2:3] num_added = diff.shape[0] num_grouped = diff.shape[1] if num_added > num_grouped: diff_normed = np.concatenate( ( diff_normed, np.zeros((num_added, num_added - num_grouped)) + 1e10 ), axis=1 ) pairs = py_max_match(diff_normed) for row, col in pairs: if ( row < num_added and col < num_grouped and diff_saved[row][col] < params.tag_threshold ): key = grouped_keys[col] joint_dict[key][idx] = joints[row] tag_dict[key].append(tags[row]) else: key = tags[row][0] joint_dict.setdefault(key, np.copy(default_))[idx] = \ joints[row] tag_dict[key] = [tags[row]] # other2_key[idx_tag].setdefault(row, key) if idx_tag < 4: other2_key[idx_tag].append(key) # print('joints_cur',joints.shape) # print('keys after once',len(joint_dict.keys())) for idx_off, idx in enumerate(self.ljg_2): center_key = center2_key center_t = center_array.copy() center_towards = loc_t[idx] + off_2[idx_off] joints = np.concatenate( (loc_t[idx], val_t[idx][:, None], off_2[idx_off]), 1 ) while(center_t.shape[0] > 0 and center_towards.shape[0] > 0): diff = np.sum(np.square(center_towards[:, None, :] - center_t[None, :, :]), axis=-1) connection = np.where(diff == diff.min()) if diff[connection[0][0], connection[1][0]] > self.diff_thre ** 2: break key = center_key[connection[1][0]] joint_dict[key][idx] = joints[connection[0][0]] center_key = np.delete(center_key, connection[1][0], axis=0) center_t = np.delete(center_t, connection[1][0], axis=0) center_towards = np.delete(center_towards, connection[0][0], axis=0) joints = np.delete(joints, connection[0][0], axis=0) hier_pre = [[], []] for idx_off, idx in enumerate(self.ljg_4): ident = 0 + idx_off % 2 if idx_off < 4 else 2 + idx_off % 2 hier2_key = other2_key[ident] hier_t = loc_t[idx - 2].copy() if idx_off in [0, 1, 4, 5] else np.array(hier_pre[0 + idx_off % 2]) hier_towards = loc_t[idx] + off_4[idx_off][:, :2] center_towards = loc_t[idx] + off_4[idx_off][:,2:] ''' center_key = center2_key.copy() center_t = center_array.copy() ''' inter_key = [] inter_loc = [] # maintain the relationship between loc with new order and their keys # tag_used = [] joints = np.concatenate( (loc_t[idx], val_t[idx][:, None], off_4[idx_off][:, :2]), 1 ) while(hier_t.shape[0] > 0 and hier_towards.shape[0] > 0): diff = np.sum(np.square(hier_towards[:, None, :] - hier_t[None, :, :]), axis=-1) connection = np.where(diff == diff.min()) key = hier2_key[connection[1][0]] joint_dict[key][idx] = joints[connection[0][0]] inter_key.append(key) inter_loc.append(joints[connection[0][0]][:2]) hier2_key = np.delete(hier2_key, connection[1][0], axis=0) hier_t = np.delete(hier_t, connection[1][0], axis=0) hier_towards = np.delete(hier_towards, connection[0][0], axis=0) joints = np.delete(joints, connection[0][0], axis=0) center_towards = np.delete(center_towards, connection[0][0], axis=0) ''' center_c = np.where(np.array(center_key) == key) center_key = np.delete(center_key, center_c[0], axis=0) center_t = np.delete(center_t, center_c[0], axis=0) ''' left_key = list(set(joint_dict.keys()) ^ set(inter_key)) if not len(left_key)==0: left_key_li = [] for key in left_key: left_key_li.append(joint_dict[key][-1][:2]) center_t = np.stack(left_key_li, axis = 0) while (center_t.shape[0] > 0 and center_towards.shape[0] > 0): diff = np.sum(np.square(center_towards[:, None, :] - center_t[None, :, :]), axis=-1) connection = np.where(diff == diff.min()) if diff[connection[0][0],connection[1][0]] > self.diff_thre ** 2: break key = left_key[connection[1][0]] joint_dict[key][idx] = joints[connection[0][0]] if with_hier_refine_val: # and joints[connection[0][0]][2] >= 0.75: joint_dict[key][idx - 2][:2] = joints[connection[0][0]][:2] + joints[connection[0][0]][3:] joint_dict[key][idx - 2][2] = self.params.detection_threshold inter_key.append(key) inter_loc.append(joints[connection[0][0]][:2]) left_key = np.delete(left_key, connection[1][0], axis=0) center_t = np.delete(center_t, connection[1][0], axis=0) center_towards = np.delete(center_towards, connection[0][0], axis=0) joints = np.delete(joints, connection[0][0], axis=0) hier_pre[0 + idx_off % 2] = inter_loc other2_key[ident] = inter_key ans = [] for i in joint_dict: if np.sum(joint_dict[i][:-1, 2]) > 0: ans.append(joint_dict[i][:-1, :]) ans =
np.array(ans)
numpy.array
import numpy as np from bp.Model import Model # ANN 经典 2 -> 3 -> 6 -> 1 # x = np.linspace(-1,1,20) x =
np.array([[1, 2], [2, 3], [3, 3], [1, 4], [-1, -2], [-1, -1], [-2, -3], [-3, -2]])
numpy.array
import base64 import io import gdown import hmmlearn from hmmlearn import hmm import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle import streamlit as st # load data and cache it @st.cache def load_data(data: str, interval: float = None): """Load data from csv file using pandas.""" df = pd.read_csv(data) if interval is not None: df["lags"] = df["lags"] * interval return df @st.cache def load_model(name: str): """Load model from pickle.""" with open(name, "rb") as f: model = pickle.load(f) return model def myround(x): return np.around(x, 6) def fit_alpha_d( subset: pd.DataFrame, end1: float, end2: float, log=False ) -> pd.DataFrame: """Fit the alpha and D under the 3 different regimes separated by end1 and end2 values.""" subset["loglags"] = np.log10(subset["lags"].values) if not log: subset["logtamsd"] = np.log10(subset["tamsd"].values) else: subset["logtamsd"] = subset["tamsd"].values subset = subset.dropna() r1 = subset[subset["lags"] < end1].copy() r2 = subset[(subset["lags"] >= end1) & (subset["lags"] <= end2)].copy() r3 = subset[subset["lags"] > end2].copy() (a1, d1), cov1 = np.polyfit((r1["loglags"]), (r1["logtamsd"]), 1, cov=True) sda1, sdd1 = np.sqrt(np.diag(cov1)) (a2, d2), cov2 = np.polyfit((r2["loglags"]), (r2["logtamsd"]), 1, cov=True) sda2, sdd2 = np.sqrt(np.diag(cov2)) (a3, d3), cov3 = np.polyfit((r3["loglags"]), (r3["logtamsd"]), 1, cov=True) sda3, sdd3 = np.sqrt(np.diag(cov3)) minimum = np.min(r1["lags"]) maximum = np.max(r3["lags"]) regimes = [f"{minimum}-{end1}", f"{end1}-{end2}", f"{end2}-{maximum}"] alphas = [ f"{myround(a1)} +/- {myround(sda1)}", f"{myround(a2)} +/- {myround(sda2)}", f"{myround(a3)} +/- {myround(sda3)}", ] ds = [ f"{myround(10**d1)} +/- {myround(sdd1 * np.abs(10**d1) * np.log(10))}", f"{myround(10**d2)} +/- {myround(sdd2 * np.abs(10**d2) * np.log(10))}", f"{myround(10**d3)} +/- {myround(sdd3 * np.abs(10**d3) * np.log(10))}", ] df = pd.DataFrame( { "alphas": alphas, "Ds": ds, "Regimes": regimes, } ) return df def sample_specific_systematic_error(data: pd.DataFrame): """Subtract sample specific systematic error.""" for celline in data["cell_line"].unique(): subset = data[data["cell_line"] == celline].copy() try: systematic_error = round( subset[ (subset["induction_time"] == "fixed") & (subset["motion_correction_type"] == "cellIDs_corrected") ] .groupby(["lags"]) .mean()["tamsd"] .values[0], 4, ) except: systematic_error = round( subset[(subset["induction_time"] == "fixed")] .groupby(["lags"]) .mean()["tamsd"] .values[0], 4, ) data.loc[data["cell_line"] == celline, "tamsd"] = data["tamsd"].apply( lambda x: x - systematic_error ) data = data[~(data["induction_time"] == "fixed")] return data def download_plot(download_filename: str, download_link_text: str) -> str: """Generates a link to download a plot. Args: download_filename: filename and extension of file. e.g. myplot.pdf download_link_text: Text to display for download link. """ file = io.BytesIO() plt.savefig(file, format="pdf", bbox_inches="tight") file = base64.b64encode(file.getvalue()).decode("utf-8").replace("\n", "") return f'<a href="data:application/pdf;base64,{file}" download="{download_filename}">{download_link_text}</a>' def download_csv( df: pd.DataFrame, download_filename: str, download_link_text: str ) -> str: """Generates link to download csv of DataFrame. Args: df: DataFrame to download. download_filename: filename and extension of file. e.g. myplot.pdf download_link_text: Text to display for download link. """ csv = df.to_csv().encode() b64 = base64.b64encode(csv).decode() href = f'<a href="data:file/csv;base64,{b64}" download="{download_filename}" target="_blank">{download_link_text}</a>' return href def rle(inarray, full=False): """Run length encoding. Partial credit to R rle function. Multi datatype arrays catered for including non Numpy Returns: tuple (runlengths, startpositions, values)""" ia = np.asarray(inarray) # convert to numpy array n = len(ia) if n == 0: return (None, None, None) else: y = ia[1:] != ia[:-1] # pairwise unequal (string safe) i = np.append(
np.where(y)
numpy.where
import numpy as np coef_ml_drf_0 = np.array([-0.9887517]) vcov_ml_drf_0 = np.array([0.001317148]).reshape(1,1, order='F') cov_re_ml_drf_0 = np.array([0.2522485]).reshape(1,1, order='F') scale_ml_drf_0 = np.array([0.2718486]) loglike_ml_drf_0 = np.array([-240.1254]) ranef_mean_ml_drf_0 = np.array([0.04977167]) ranef_condvar_ml_drf_0 = np.array([0.130841]) coef_reml_drf_0 = np.array([-0.9887533]) vcov_reml_drf_0 = np.array([0.001323559]).reshape(1,1, order='F') cov_re_reml_drf_0 = np.array([0.2524129]).reshape(1,1, order='F') scale_reml_drf_0 = np.array([0.2733467]) loglike_reml_drf_0 = np.array([-242.5214]) ranef_mean_reml_drf_0 = np.array([0.04964696]) ranef_condvar_reml_drf_0 = np.array([0.1312315]) coef_ml_drf_1 = np.array([-0.9115929]) vcov_ml_drf_1 = np.array([0.01340632]).reshape(1,1, order='F') cov_re_ml_drf_1 = np.array([0]).reshape(1,1, order='F') scale_ml_drf_1 = np.array([4.050921]) loglike_ml_drf_1 = np.array([-538.0763]) ranef_mean_ml_drf_1 = np.array([0]) ranef_condvar_ml_drf_1 = np.array([0]) coef_reml_drf_1 = np.array([-0.9115929]) vcov_reml_drf_1 = np.array([0.01345931]).reshape(1,1, order='F') cov_re_reml_drf_1 = np.array([2.839777e-14]).reshape(1,1, order='F') scale_reml_drf_1 = np.array([4.066932]) loglike_reml_drf_1 = np.array([-539.3124]) ranef_mean_reml_drf_1 = np.array([2.424384e-14]) ranef_condvar_reml_drf_1 = np.array([2.839777e-14]) coef_ml_drf_2 = np.array([-1.012044,0.9789052]) vcov_ml_drf_2 = np.array([0.00117849,1.458744e-05,1.458744e-05,0.001054926]).reshape(2,2, order='F') cov_re_ml_drf_2 = np.array([0.1596058]).reshape(1,1, order='F') scale_ml_drf_2 = np.array([0.2129146]) loglike_ml_drf_2 = np.array([-200.319]) ranef_mean_ml_drf_2 = np.array([0.3197174]) ranef_condvar_ml_drf_2 = np.array([0.09122291]) coef_reml_drf_2 = np.array([-1.012137,0.9790792]) vcov_reml_drf_2 = np.array([0.001190455,1.482666e-05,1.482666e-05,0.001066002]).reshape(2,2, order='F') cov_re_reml_drf_2 = np.array([0.1595015]).reshape(1,1, order='F') scale_reml_drf_2 = np.array([0.2154276]) loglike_reml_drf_2 = np.array([-205.275]) ranef_mean_reml_drf_2 = np.array([0.3172978]) ranef_condvar_reml_drf_2 = np.array([0.09164674]) coef_ml_drf_3 = np.array([-1.028053,0.8602685]) vcov_ml_drf_3 = np.array([0.01398831,0.001592619,0.001592619,0.01602274]).reshape(2,2, order='F') cov_re_ml_drf_3 = np.array([0.8130996]).reshape(1,1, order='F') scale_ml_drf_3 = np.array([3.100447]) loglike_ml_drf_3 = np.array([-477.1707]) ranef_mean_ml_drf_3 = np.array([-0.2641747]) ranef_condvar_ml_drf_3 = np.array([0.6441656]) coef_reml_drf_3 = np.array([-1.027583,0.8605714]) vcov_reml_drf_3 = np.array([0.01411922,0.001607343,0.001607343,0.01617574]).reshape(2,2, order='F') cov_re_reml_drf_3 = np.array([0.8117898]).reshape(1,1, order='F') scale_reml_drf_3 = np.array([3.13369]) loglike_reml_drf_3 = np.array([-479.5354]) ranef_mean_reml_drf_3 = np.array([-0.2614875]) ranef_condvar_reml_drf_3 = np.array([0.6447625]) coef_ml_drf_4 = np.array([-1.005151,-0.003657404,1.054786]) vcov_ml_drf_4 = np.array([0.001190639,-5.327162e-05,5.992985e-05,-5.327162e-05,0.001460303,-2.662532e-05,5.992985e-05,-2.662532e-05,0.00148609]).reshape(3,3, order='F') cov_re_ml_drf_4 = np.array([0.1703249]).reshape(1,1, order='F') scale_ml_drf_4 = np.array([0.251763]) loglike_ml_drf_4 = np.array([-231.6389]) ranef_mean_ml_drf_4 = np.array([-0.2063164]) ranef_condvar_ml_drf_4 = np.array([0.0459578]) coef_reml_drf_4 = np.array([-1.005067,-0.003496032,1.054666]) vcov_reml_drf_4 = np.array([0.001206925,-5.4182e-05,6.073475e-05,-5.4182e-05,0.001479871,-2.723494e-05,6.073475e-05,-2.723494e-05,0.001506198]).reshape(3,3, order='F') cov_re_reml_drf_4 = np.array([0.1705659]).reshape(1,1, order='F') scale_reml_drf_4 = np.array([0.2556394]) loglike_reml_drf_4 = np.array([-238.761]) ranef_mean_reml_drf_4 = np.array([-0.2055303]) ranef_condvar_reml_drf_4 = np.array([0.04649027]) coef_ml_drf_5 = np.array([-0.8949725,0.08141558,1.052529]) vcov_ml_drf_5 = np.array([0.01677563,0.0008077524,-0.001255011,0.0008077524,0.01719346,0.0009266736,-0.001255011,0.0009266736,0.01608435]).reshape(3,3, order='F') cov_re_ml_drf_5 = np.array([0.3444677]).reshape(1,1, order='F') scale_ml_drf_5 = np.array([4.103944]) loglike_ml_drf_5 = np.array([-579.4568]) ranef_mean_ml_drf_5 = np.array([0.08254713]) ranef_condvar_ml_drf_5 = np.array([0.3177935]) coef_reml_drf_5 = np.array([-0.8946164,0.08134261,1.052486]) vcov_reml_drf_5 = np.array([0.0169698,0.0008162714,-0.001268635,0.0008162714,0.01739219,0.0009345538,-0.001268635,0.0009345538,0.01627074]).reshape(3,3, order='F') cov_re_reml_drf_5 = np.array([0.3420993]).reshape(1,1, order='F') scale_reml_drf_5 = np.array([4.155737]) loglike_reml_drf_5 = np.array([-582.8377]) ranef_mean_reml_drf_5 = np.array([0.08111449]) ranef_condvar_reml_drf_5 = np.array([0.3160797]) coef_ml_drf_6 = np.array([-0.8885425]) vcov_ml_drf_6 = np.array([0.002443738]).reshape(1,1, order='F') cov_re_ml_drf_6 = np.array([0.2595201,0.04591071,0.04591071,2.204612]).reshape(2,2, order='F') scale_ml_drf_6 = np.array([0.243133]) loglike_ml_drf_6 = np.array([-382.551]) ranef_mean_ml_drf_6 = np.array([-0.0597406,0.6037288]) ranef_condvar_ml_drf_6 = np.array([0.2420741,0.2222169,0.2222169,0.4228908]).reshape(2,2, order='F') coef_reml_drf_6 = np.array([-0.8883881]) vcov_reml_drf_6 = np.array([0.002461581]).reshape(1,1, order='F') cov_re_reml_drf_6 = np.array([0.2595767,0.04590012,0.04590012,2.204822]).reshape(2,2, order='F') scale_reml_drf_6 = np.array([0.2453537]) loglike_reml_drf_6 = np.array([-384.6373]) ranef_mean_reml_drf_6 = np.array([-0.05969892,0.6031793]) ranef_condvar_reml_drf_6 = np.array([0.2421365,0.2221108,0.2221108,0.4244443]).reshape(2,2, order='F') coef_ml_irf_6 = np.array([-0.8874992]) vcov_ml_irf_6 = np.array([0.002445505]).reshape(1,1, order='F') cov_re_ml_irf_6 = np.array([0.2587624,0,0,2.188653]).reshape(2,2, order='F') scale_ml_irf_6 = np.array([0.2432694]) loglike_ml_irf_6 = np.array([-382.6581]) coef_reml_irf_6 = np.array([-0.8873394]) vcov_reml_irf_6 = np.array([0.002463375]).reshape(1,1, order='F') cov_re_reml_irf_6 = np.array([0.2588157,0,0,2.188876]).reshape(2,2, order='F') scale_reml_irf_6 = np.array([0.2454935]) loglike_reml_irf_6 = np.array([-384.7441]) coef_ml_drf_7 = np.array([-0.9645281]) vcov_ml_drf_7 =
np.array([0.01994])
numpy.array
import warnings import numpy as np from numpy.linalg import LinAlgError from scipy.optimize._numdiff import approx_derivative import scipy.stats as stats from refnx.util import ErrorProp as EP from refnx._lib import flatten, approx_hess2 from refnx._lib import unique as f_unique from refnx.dataset import Data1D from refnx.analysis import ( is_parameter, Parameter, possibly_create_parameter, is_parameters, Parameters, Interval, PDF, ) class BaseObjective: """Don't necessarily have to use Parameters, could use np.array""" def __init__( self, p, logl, logp=None, fcn_args=(), fcn_kwds=None, name=None, weighted=True, ): self.name = name self.parameters = p self.nvary = len(p) self._logl = logl self._logp = logp self.fcn_args = fcn_args self.fcn_kwds = {} # give the BaseObjective a default value, so that it can be used in a # GlobalObjective self.weighted = weighted if fcn_kwds is not None: self.fcn_kwds = fcn_kwds def setp(self, pvals): """ Set the parameters from pvals Parameters ---------- pvals : np.ndarray Array containing the values to be tested. """ self.parameters[:] = pvals def nll(self, pvals=None): """ Negative log-likelihood function Parameters ---------- pvals : np.ndarray Array containing the values to be tested. Returns ------- nll : float negative log-likelihood """ vals = self.parameters if pvals is not None: vals = pvals return -self.logl(vals) def logp(self, pvals=None): """ Log-prior probability function Parameters ---------- pvals : np.ndarray Array containing the values to be tested. Returns ------- logp : float log-prior probability """ vals = self.parameters if pvals is not None: vals = pvals if callable(self._logp): return self._logp(vals, *self.fcn_args, **self.fcn_kwds) return 0 def logl(self, pvals=None): """ Log-likelihood probability function Parameters ---------- pvals : np.ndarray Array containing the values to be tested. Returns ------- logl : float log-likelihood probability. """ vals = self.parameters if pvals is not None: vals = pvals return self._logl(vals, *self.fcn_args, **self.fcn_kwds) def logpost(self, pvals=None): """ Log-posterior probability function Parameters ---------- pvals : np.ndarray Array containing the values to be tested. Returns ------- logpost : float log-probability. Notes ----- The log probability is the sum is the sum of the log-prior and log-likelihood probabilities. Does not set the parameter attribute. """ vals = self.parameters if pvals is not None: vals = pvals logpost = self.logp(vals) if not np.isfinite(logpost): return -np.inf logpost += self.logl(vals) return logpost def nlpost(self, pvals=None): """ Negative log-posterior function Parameters ---------- pvals : np.ndarray Array containing the values to be tested. Returns ------- nlpost : float negative log-posterior """ return -self.logpost(pvals) def varying_parameters(self): """ Returns ------- varying_parameters : np.ndarray The parameters varying in this objective function. """ return self.parameters def covar(self, target="nll"): """ Estimates a covariance matrix based on numerical differentiation of either the negative log-likelihood or negative log-posterior probabilities. Parameters ---------- target : str, {"nll", "nlpost"} Returns ------- covar : np.ndarray The covariance matrix for the fitting system Notes ----- Estimation of a covariance matrix can be susceptible to numeric instabilities. Critically evaluate the matrix before further use. """ _pvals = np.array(self.varying_parameters()) if target == "nll": fn = self.nll elif target == "nlpost": fn = self.nlpost try: # from statsmodels # the output from this for the test in test_objective.covar # is very similar to numdifftools.Hessian, or a chained version # of approx_derivative hess = approx_hess2(_pvals, fn) covar = np.linalg.inv(hess) except LinAlgError: sz = np.size(_pvals, 0) covar = np.full((sz, sz), np.inf) finally: self.setp(_pvals) return covar class Objective(BaseObjective): """ Objective function for using with curvefitters such as `refnx.analysis.curvefitter.CurveFitter`. Parameters ---------- model : refnx.analysis.Model the generative model function. One can also provide an object that inherits `refnx.analysis.Model`. data : refnx.dataset.Data1D data to be analysed. lnsigma : float or refnx.analysis.Parameter, optional Used if the experimental uncertainty (`data.y_err`) underestimated by a constant fractional amount. The experimental uncertainty is modified as: `s_n**2 = y_err**2 + exp(lnsigma * 2) * model**2` See `Objective.logl` for more details. use_weights : bool use experimental uncertainty in calculation of residuals and logl, if available. If this is set to False, then you should also set `self.lnsigma.vary = False`, it will have no effect on the fit. transform : callable, optional the model, data and data uncertainty are transformed by this function before calculating the likelihood/residuals. Has the signature `transform(data.x, y, y_err=None)`, returning the tuple (`transformed_y, transformed_y_err`). logp_extra : callable, optional user specifiable log-probability term. This contribution is in addition to the log-prior term of the `model` parameters, and `model.logp`, as well as the log-likelihood of the `data`. Has signature: `logp_extra(model, data)`. The `model` will already possess updated parameters. Beware of including the same log-probability terms more than once. auxiliary_params : {sequence, Parameters}, optional Extra Parameter objects that are involved with curvefitting, but aren't directly included as part of the `model`. See notes for more details. name : str Name for the objective. Notes ----- For parallelisation `logp_extra` needs to be picklable. `auxiliary_params` are included in calculating the `Objective.logp` term, are present in `Objective.varying_parameters()`, and are modified by Curvefitter during an analysis. Their main purpose is to aid in making constraints in models. """ def __init__( self, model, data, lnsigma=None, use_weights=True, transform=None, logp_extra=None, auxiliary_params=(), name=None, ): self.model = model # should be a Data1D instance if isinstance(data, Data1D): self.data = data else: self.data = Data1D(data=data) self.lnsigma = lnsigma if lnsigma is not None: self.lnsigma = possibly_create_parameter(lnsigma, "lnsigma") if isinstance(auxiliary_params, Parameters): self.auxiliary_params = auxiliary_params else: self.auxiliary_params = Parameters(auxiliary_params) self._use_weights = use_weights self.transform = transform self.logp_extra = logp_extra self.name = name if name is None: self.name = id(self) def __str__(self): s = ["{:_>80}".format("")] s.append("Objective - {0}".format(self.name)) # dataset name if self.data.name is None: s.append("Dataset = {0}".format(self.data)) else: s.append("Dataset = {0}".format(self.data.name)) s.append("datapoints = {0}".format(self.npoints)) s.append("chi2 = {0}".format(self.chisqr())) s.append("Weighted = {0}".format(self.weighted)) s.append("Transform = {0}".format(self.transform)) s.append(str(self.parameters)) return "\n".join(s) def __repr__(self): return ( "Objective({model!r}, {data!r}," " lnsigma={lnsigma!r}," " use_weights={_use_weights}," " transform={transform!r}," " logp_extra={logp_extra!r}," " name={name!r})".format(**self.__dict__) ) @property def weighted(self): """ **bool** Does the data have weights (`data.y_err`), and is the objective using them? """ return self.data.weighted and self._use_weights @weighted.setter def weighted(self, use_weights): self._use_weights = bool(use_weights) @property def npoints(self): """ **int** the number of points in the dataset. """ return self.data.y.size def varying_parameters(self): """ Returns ------- varying_parameters : refnx.analysis.Parameters The varying Parameter objects allowed to vary during the fit. """ # create and return a Parameters object because it has the # __array__ method, which allows one to quickly get numerical values. p = Parameters() p.data = list(f_unique(p for p in flatten(self.parameters) if p.vary)) return p def _data_transform(self, model=None): """ Returns ------- y, y_err, model: tuple of np.ndarray The y data, its uncertainties, and the model, all put through the transform. """ x = self.data.x y = self.data.y y_err = 1.0 if self.weighted: y_err = self.data.y_err if self.transform is None: return y, y_err, model else: if model is not None: model, _ = self.transform(x, model) y, y_err = self.transform(x, y, y_err) if self.weighted: return y, y_err, model else: return y, 1, model def generative(self, pvals=None): """ Calculate the generative (dependent variable) function associated with the model. Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- model : np.ndarray """ self.setp(pvals) return self.model(self.data.x, x_err=self.data.x_err) def residuals(self, pvals=None): """ Calculates the residuals for a given fitting system. Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- residuals : np.ndarray Residuals, `(data.y - model) / y_err`. """ self.setp(pvals) model = self.model(self.data.x, x_err=self.data.x_err) # TODO add in varying parameter residuals? (z-scores...) y, y_err, model = self._data_transform(model) if self.lnsigma is not None: s_n = np.sqrt( y_err * y_err + np.exp(2 * float(self.lnsigma)) * model * model ) else: s_n = y_err return (y - model) / s_n def chisqr(self, pvals=None): """ Calculates the chi-squared value for a given fitting system. Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- chisqr : np.ndarray Chi-squared value, `np.sum(residuals**2)`. """ # TODO reduced chisqr? include z-scores for parameters? DOF? self.setp(pvals) res = self.residuals(None) return np.sum(res * res) @property def parameters(self): """ :class:`refnx.analysis.Parameters`, all the Parameters contained in the fitting system. """ if is_parameter(self.lnsigma): return self.lnsigma | self.auxiliary_params | self.model.parameters elif len(self.auxiliary_params): return self.auxiliary_params | self.model.parameters else: return self.model.parameters def setp(self, pvals): """ Set the parameters from pvals. Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters """ if pvals is None: return # set here rather than delegating to a Parameters # object, because it may not necessarily be a # Parameters object _varying_parameters = self.varying_parameters() if len(pvals) == len(_varying_parameters): for idx, param in enumerate(_varying_parameters): param.value = pvals[idx] return # values supplied are enough to specify all parameter values # even those that are repeated flattened_parameters = list(flatten(self.parameters)) if len(pvals) == len(flattened_parameters): for idx, param in enumerate(flattened_parameters): param.value = pvals[idx] return raise ValueError( f"Incorrect number of values supplied ({len(pvals)})" f", supply either the full number of parameters" f" ({len(flattened_parameters)}, or only the varying" f" parameters ({len(_varying_parameters)})." ) def prior_transform(self, u): """ Calculate the prior transform of the system. Transforms uniform random variates in the unit hypercube, `u ~ uniform[0.0, 1.0)`, to the parameter space of interest, according to the priors on the varying parameters. Parameters ---------- u : array-like Size of the varying parameters Returns ------- pvals : array-like Scaled parameter values Notes ----- If a parameter has bounds, `x ~ Unif[-10, 10)` then the scaling from `u` to `x` is done as follows: .. code-block:: python x = 2. * u - 1. # scale and shift to [-1., 1.) x *= 10. # scale to [-10., 10.) """ var_pars = self.varying_parameters() pvals = np.empty(len(var_pars), dtype=np.float64) for i, var_par in enumerate(var_pars): pvals[i] = var_par.bounds.invcdf(u[i]) return pvals def logp(self, pvals=None): """ Calculate the log-prior of the system Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- logp : float log-prior probability Notes ----- The log-prior is calculated as: .. code-block:: python logp = np.sum(param.logp() for param in self.varying_parameters()) """ self.setp(pvals) logp = np.sum( [ param.logp() for param in f_unique( p for p in flatten(self.parameters) if p.vary ) ] ) if not np.isfinite(logp): return -np.inf return logp def logl(self, pvals=None): """ Calculate the log-likelhood of the system The major component of the log-likelhood probability is from the data. Extra potential terms are added on from the Model, `self.model.logp`, and the user specifiable `logp_extra` function. Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- logl : float log-likelihood probability Notes ----- The log-likelihood is calculated as: .. code-block:: python logl = -0.5 * np.sum(((y - model) / s_n)**2 + np.log(2 * pi * s_n**2)) logp += self.model.logp() logp += self.logp_extra(self.model, self.data) where .. code-block:: python s_n**2 = y_err**2 + exp(2 * lnsigma) * model**2 """ self.setp(pvals) model = self.model(self.data.x, x_err=self.data.x_err) logl = 0.0 y, y_err, model = self._data_transform(model) if self.lnsigma is not None: var_y = ( y_err * y_err + np.exp(2 * float(self.lnsigma)) * model * model ) else: var_y = y_err ** 2 # TODO do something sensible if data isn't weighted if self.weighted: logl += np.log(2 * np.pi * var_y) logl += (y - model) ** 2 / var_y # nans play havoc if np.isnan(logl).any(): raise RuntimeError("Objective.logl encountered a NaN.") # add on extra 'potential' terms from the model. extra_potential = self.model.logp() if self.logp_extra is not None: extra_potential += self.logp_extra(self.model, self.data) return -0.5 * np.sum(logl) + extra_potential def nll(self, pvals=None): """ Negative log-likelihood function Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- nll : float negative log-likelihood """ self.setp(pvals) return -self.logl() def logpost(self, pvals=None): """ Calculate the log-probability of the curvefitting system Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- logpost : float log-probability Notes ----- The overall log-probability is the sum of the log-prior and log-likelihood. The log-likelihood is not calculated if the log-prior is impossible (`logp == -np.inf`). """ self.setp(pvals) logpost = self.logp() # only calculate the probability if the parameters have finite # log-prior if not np.isfinite(logpost): return -np.inf logpost += self.logl() return logpost def covar(self, target="residuals"): """ Estimates the covariance matrix of the Objective. Parameters ---------- target : {"residuals", "nll", "nlpost"} Specifies what approach should be used to estimate covariance. Returns ------- covar : np.ndarray Covariance matrix Notes ----- For most purposes the Jacobian of the `'residuals'` should be used to calculate the covariance matrix, estimated as J.T x J. If an Objective cannot calculate residuals then the covariance matrix can be estimated by inverting a Hessian matrix created from either the `'nll'` or `'nlpost'` methods. The default `'residuals'` approach falls back to `'nll'` if a problem is experienced. The default `'residuals'` setting is preferred as the other settings can sometimes experience instabilities during Hessian estimation with numerical differentiation. """ if target == "residuals": try: covar = self._covar_from_residuals() except Exception: # fallback to "nll" target = "nll" if target in ["nll", "nlpost"]: covar = super().covar(target) pvar = np.diagonal(covar).copy() psingular = np.where(pvar == 0)[0] if len(psingular) > 0: var_params = self.varying_parameters() singular_params = [var_params[ps] for ps in psingular] raise LinAlgError( "The following Parameters have no effect on" " Objective.residuals, please consider fixing" " them.\n" + repr(singular_params) ) return covar def _covar_from_residuals(self): _pvals = np.array(self.varying_parameters()) used_residuals_scaler = False def fn_scaler(vals): return np.squeeze(self.residuals(_pvals * vals)) try: # we should be able to calculate a Jacobian for a parameter whose # value is zero. However, the scaling approach won't work. # This will force Jacobian calculation by unscaled parameters if np.any(_pvals == 0): raise FloatingPointError() with np.errstate(invalid="raise"): jac = approx_derivative(fn_scaler, np.ones_like(_pvals)) used_residuals_scaler = True except FloatingPointError: jac = approx_derivative(self.residuals, _pvals) finally: # using approx_derivative changes the state of the objective # parameters have to make sure they're set at the end self.setp(_pvals) # need to create this because GlobalObjective may not have # access to all the datapoints being fitted. n_datapoints = np.size(jac, 0) # covar = J.T x J # from scipy.optimize.minpack.py # eliminates singular parameters _, s, VT = np.linalg.svd(jac, full_matrices=False) threshold = np.finfo(float).eps * max(jac.shape) * s[0] s = s[s > threshold] VT = VT[: s.size] covar = np.dot(VT.T / s ** 2, VT) if used_residuals_scaler: # unwind the scaling. covar = covar * np.atleast_2d(_pvals) * np.atleast_2d(_pvals).T scale = 1.0 # scale by reduced chi2 if experimental uncertainties weren't used. if not (self.weighted): scale = self.chisqr() / ( n_datapoints - len(self.varying_parameters()) ) return covar * scale def pgen(self, ngen=1000, nburn=0, nthin=1): """ Yield random parameter vectors from the MCMC samples. The objective state is not altered. Parameters ---------- ngen : int, optional the number of samples to yield. The actual number of samples yielded is `min(ngen, chain.size)` nburn : int, optional discard this many steps from the start of the chain nthin : int, optional only accept every `nthin` samples from the chain Yields ------ pvec : np.ndarray A randomly chosen parameter vector """ yield from self.parameters.pgen(ngen=ngen, nburn=nburn, nthin=nthin) def plot(self, pvals=None, samples=0, parameter=None, fig=None): """ Plot the data/model. Requires matplotlib be installed. Parameters ---------- pvals : np.ndarray, optional Numeric values for the Parameter's that are varying samples: number If the objective has been sampled, how many samples you wish to plot on the graph. parameter: refnx.analysis.Parameter Creates an interactive plot for the Parameter in Jupyter. Requires ipywidgets be installed. Use with %matplotlib notebook/qt. fig: Figure instance, optional If `fig` is not supplied then a new figure is created. Otherwise the graph is created on the current axes on the supplied figure. Returns ------- fig, ax : :class:`matplotlib.Figure`, :class:`matplotlib.Axes` `matplotlib` figure and axes objects. """ self.setp(pvals) if fig is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) else: ax = fig.gca() y, y_err, model = self._data_transform(model=self.generative()) # add the data (in a transformed fashion) if self.weighted: ax.errorbar( self.data.x, y, y_err, color="blue", label=self.data.name, marker="o", ms=3, lw=0, elinewidth=2, ) else: ax.scatter(self.data.x, y, color="blue", s=3, label=self.data.name) if samples > 0: saved_params = np.array(self.parameters) # Get a number of chains, chosen randomly, set the objective, # and plot the model. for pvec in self.pgen(ngen=samples): y, y_err, model = self._data_transform( model=self.generative(pvec) ) ax.plot(self.data.x, model, color="k", alpha=0.01) # put back saved_params self.setp(saved_params) # add the fit generative_plot = ax.plot(self.data.x, model, color="red", zorder=20) if parameter is None: return fig, ax # create an interactive plot in a Jupyter notebook. def f(val): if parameter is not None: parameter.value = float(val) y, y_err, model = self._data_transform(model=self.generative()) generative_plot[0].set_data(self.data.x, model) fig.canvas.draw() import ipywidgets return fig, ax, ipywidgets.interact(f, val=float(parameter)) def corner(self, **kwds): """ Corner plot of the chains belonging to the Parameters. Requires the `corner` and `matplotlib` packages. Parameters ---------- kwds: dict passed directly to the `corner.corner` function Returns ------- fig : :class:`matplotlib.Figure` object. """ import corner var_pars = self.varying_parameters() chain = np.array([par.chain for par in var_pars]) labels = [par.name for par in var_pars] chain = chain.reshape(len(chain), -1).T kwds["labels"] = labels kwds["quantiles"] = [0.16, 0.5, 0.84] return corner.corner(chain, **kwds) class GlobalObjective(Objective): """ Global Objective function for simultaneous fitting with `refnx.analysis.CurveFitter` Parameters ---------- objectives : list list of :class:`refnx.analysis.Objective` objects """ def __init__(self, objectives): self.objectives = objectives weighted = [objective.weighted for objective in objectives] self._weighted = np.array(weighted, dtype=bool) if len(np.unique(self._weighted)) > 1: raise ValueError( "All the objectives must be either weighted or" " unweighted, you cannot have a mixture." ) def __str__(self): s = ["{:_>80}".format("\n")] s.append("--Global Objective--") for obj in self.objectives: s.append(str(obj)) s.append("\n") return "\n".join(s) def __repr__(self): return "GlobalObjective({0})".format(repr(self.objectives)) @property def weighted(self): """ **bool** do all the datasets have y_err, and are all the objectives wanting to use weights? """ return self._weighted.all() @property def npoints(self): """ **int** number of data points in all the objectives. """ npoints = 0 for objective in self.objectives: npoints += objective.npoints return npoints def residuals(self, pvals=None): """ Concatenated residuals for each of the :meth:`refnx.analysis.Objective.residuals`. Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- residuals : np.ndarray Concatenated :meth:`refnx.analysis.Objective.residuals` """ self.setp(pvals) residuals = [] for objective in self.objectives: residual = objective.residuals() residuals.append(residual) return np.concatenate(residuals) @property def parameters(self): """ :class:`refnx.analysis.Parameters` associated with all the objectives. """ # TODO this is probably going to be slow. # cache and update strategy? p = Parameters(name="global fitting parameters") for objective in self.objectives: p.append(objective.parameters) return p def logp(self, pvals=None): """ Calculate the log-prior of the system Parameters ---------- pvals : array-like or refnx.analysis.Parameters, optional values for the varying or entire set of parameters Returns ------- logp : float log-prior probability """ self.setp(pvals) logp = 0.0 for objective in self.objectives: logp += objective.logp() # shortcut if one of the priors is impossible if not np.isfinite(logp): return -np.inf return logp def logl(self, pvals=None): """ Calculate the log-likelhood of the system Parameters ---------- pvals : array-like or refnx.analysis.Parameters values for the varying or entire set of parameters Returns ------- logl : float log-likelihood probability """ self.setp(pvals) logl = 0.0 for objective in self.objectives: logl += objective.logl() return logl def plot(self, pvals=None, samples=0, parameter=None, fig=None): """ Plot the data/model for all the objectives in the GlobalObjective. Matplotlib must be installed to use this method. Parameters ---------- pvals : np.ndarray, optional Numeric values for the Parameter's that are varying samples: number, optional If the objective has been sampled, how many samples you wish to plot on the graph. parameter: refnx.analysis.Parameter, optional Creates an interactive plot for the Parameter in Jupyter. Requires ipywidgets be installed. Use with %matplotlib notebook/qt. fig: Figure instance, optional If `fig` is not supplied then a new figure is created. Otherwise the graph is created on the current axes on the supplied figure. Returns ------- fig, ax : :class:`matplotlib.Figure`, :class:`matplotlib.Axes` `matplotlib` figure and axes objects. """ self.setp(pvals) if fig is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) else: ax = fig.gca() generative_plots = [] if samples > 0: saved_params = np.array(self.parameters) # Get a number of chains, chosen randomly, set the objectives, # and plot the model. for pvec in self.pgen(ngen=samples): self.setp(pvec) for objective in self.objectives: y, y_err, model = objective._data_transform( model=objective.generative() ) ax.plot(objective.data.x, model, color="k", alpha=0.01) # put back saved_params self.setp(saved_params) for objective in self.objectives: # add the data (in a transformed fashion) y, y_err, model = objective._data_transform( model=objective.generative() ) if objective.weighted: ax.errorbar( objective.data.x, y, y_err, label=objective.data.name, ms=3, lw=0, elinewidth=2, marker="o", ) else: ax.scatter(objective.data.x, y, label=objective.data.name) # add the fit generative_plots.append( ax.plot(objective.data.x, model, color="r", lw=1.5, zorder=20)[ 0 ] ) if parameter is None: return fig, ax # create an interactive plot in a Jupyter notebook. def f(val): if parameter is not None: parameter.value = float(val) for i, objective in enumerate(self.objectives): y, y_err, model = objective._data_transform( model=objective.generative() ) generative_plots[i].set_data(objective.data.x, model) fig.canvas.draw() import ipywidgets return fig, ax, ipywidgets.interact(f, val=float(parameter)) return fig, ax class Transform: r""" Mathematical transforms of numeric data. Parameters ---------- form : None or str One of: - 'lin' No transform is made - 'logY' log10 transform - 'YX4' YX**4 transform - 'YX2' YX**2 transform - None No transform is made Notes ----- You ask for a transform to be carried out by calling the Transform object directly. >>> x = np.linspace(0.01, 0.1, 11) >>> y = np.linspace(100, 1000, 11) >>> y_err = np.sqrt(y) >>> t = Transform('logY') >>> ty, te = t(x, y, y_err) >>> ty array([2. , 2.2787536 , 2.44715803, 2.56820172, 2.66275783, 2.74036269, 2.80617997, 2.86332286, 2.91381385, 2.95904139, 3. ]) """ def __init__(self, form): types = [None, "lin", "logY", "YX4", "YX2"] self.form = None if form in types: self.form = form else: raise ValueError( "The form parameter must be one of [None, 'lin'," " 'logY', 'YX4', 'YX2']" ) def __repr__(self): return "Transform({0})".format(repr(self.form)) def __call__(self, x, y, y_err=None): """ Calculate the transformed data Parameters ---------- x : array-like x-values y : array-like y-values y_err : array-like Uncertainties in `y` (standard deviation) Returns ------- yt, et : tuple The transformed data Examples -------- >>> x = np.linspace(0.01, 0.1, 11) >>> y = np.linspace(100, 1000, 11) >>> y_err = np.sqrt(y) >>> t = Transform('logY') >>> ty, te = t(x, y, y_err) >>> ty array([2. , 2.2787536 , 2.44715803, 2.56820172, 2.66275783, 2.74036269, 2.80617997, 2.86332286, 2.91381385, 2.95904139, 3. ]) """ return self.__transform(x, y, y_err=y_err) def __transform(self, x, y, y_err=None): r""" Transform the data passed in Parameters ---------- x : array-like y : array-like y_err : array-like Returns ------- yt, et : tuple The transformed data """ if y_err is None: etemp = np.ones_like(y) else: etemp = y_err if self.form in ["lin", None]: yt = np.copy(y) et = np.copy(etemp) elif self.form == "logY": yt, et = EP.EPlog10(y, etemp) if not np.isfinite(yt).all(): warnings.warn( "Some of the transformed data was non-finite." " Please check your datasets for points with zero or" " negative values.", RuntimeWarning, ) elif self.form == "YX4": yt = y * np.power(x, 4) et = etemp *
np.power(x, 4)
numpy.power
import matplotlib.pyplot as plt import numpy as np from sklearn.decomposition import PCA from sklearn.cluster import KMeans def fake_data(num_groups, shape): assert len(shape) == 2 # create mean and covariance matrix for each group means = [create_mean(shape[1]) for i in range(num_groups)] covs = [create_cov(shape[1]) for i in range(num_groups)] y = create_target(num_groups, shape[0]) distributions = [] for m, c in zip(means, covs): dist = np.random.multivariate_normal(m, c, shape[0]//num_groups) distributions.append(dist) distributions = tuple(distributions) final_array = np.concatenate(distributions) names = ['group'+str(i) for i in range(num_groups)] return {'data': final_array, 'target': y, 'names': names} def create_target(num_groups, samples): y = [i for i in range(num_groups) for r in range(samples//num_groups)] y = np.array(y) return y def create_mean(dimension): mean = [np.random.rand() for i in range(dimension)] return mean def create_cov(dimension): cov = [] for i in range(dimension): sub_cov = [0 for i in range(dimension)] sub_cov[i] =
np.random.rand()
numpy.random.rand
import numpy as np import tensorflow as tf from scipy.ndimage.interpolation import map_coordinates from scipy.interpolate import interp2d from itertools import product from PIL import Image from multiprocessing import cpu_count from segmentpy.tf114.augmentation import random_aug from segmentpy.tf114.filter import * from segmentpy.tf114.util import load_img, check_raw_gt_pair import os # logging import logging from segmentpy.tf114 import log logger = log.setup_custom_logger(__name__) logger.setLevel(logging.INFO) def inputpipeline_V2(batch_size, ncores=cpu_count(), suffix='', augmentation=False, mode='regression', ): """ tensorflow tf.data input pipeline based helper that return image and label at once input: ------- batch_size: (int) number of images per batch before update parameters output: ------- inputs: (dict) output of this func, but inputs of the neural network. A dictionary of img, label and the iterator initialization operation """ logger.warn('The tf.py_func() will be deprecated at TF2.0, replaced by tf.function() please change later the inputpipeline() in input.py') is_training = True if suffix in ['train', 'cv', 'test'] else False if is_training: # placeholder for list fo files with tf.name_scope('input_pipeline_' + suffix): fnames_ph = tf.placeholder(tf.string, shape=[None], name='fnames_ph') patch_size_ph = tf.placeholder(tf.int32, shape=[None], name='patch_size_ph') x_coord_ph = tf.placeholder(tf.int32, shape=[None], name='x_coord_ph') y_coord_ph = tf.placeholder(tf.int32, shape=[None], name='y_coord_ph') correction_ph = tf.placeholder(tf.float32, shape=[None], name='correction_ph') max_nb_cls_ph = tf.placeholder(tf.int32, shape=[None], name='max_nb_cls_ph') stretch_ph = tf.placeholder(tf.float32, shape=[None], name='stretch_ph') # init and shuffle list of files batch = tf.data.Dataset.from_tensor_slices((fnames_ph, patch_size_ph, x_coord_ph, y_coord_ph, correction_ph, max_nb_cls_ph, stretch_ph)) # batch = batch.shuffle(buffer_size=tf.shape(fnames_ph)[0]) batch = batch.shuffle(buffer_size=tf.cast(tf.shape(fnames_ph)[0], tf.int64)) # tf.print(tf.cast(tf.shape(fnames_ph)[0], tf.int64)) # batch = batch.shuffle(buffer_size=batch_size) # note: above line is no more necessary if we shuffle pythonically the fnames at the beginning of epoch # note: the above line raise 'buffer_size must be greater than zero.' due to the number of image greater than max of int64 # read data if mode == 'regression': raise NotImplementedError('The regression is no more supported') elif mode == 'classification': batch = batch.map(_pyfn_classification_parser_wrapper_V2, num_parallel_calls=ncores) elif mode == 'feature_extractors': batch = batch.map(_pyfn_classification_parser_wrapper_weka, num_parallel_calls=ncores) raise NotImplementedError # random augment data if augmentation: batch = batch.map(_pyfn_aug_wrapper, num_parallel_calls=ncores) # shuffle and prefetch batch batch = batch.shuffle(batch_size).batch(batch_size, drop_remainder=True).prefetch(ncores).repeat() # todo: prefetch_to_device # batch = batch.apply(tf.data.experimental.prefetch_to_device('/device:GPU:0')) # construct iterator it = tf.data.Iterator.from_structure( batch.output_types, batch.output_shapes # (tf.TensorShape([None, None, None, 1]), tf.TensorShape([None, None, None, 3])) ) iter_init_op = it.make_initializer(batch, name='iter_init_op') # get next img and label X_it, y_it = it.get_next() # X_it = tf.reshape(X_it, [batch_size, patch_size, patch_size, 1]) # y_it = tf.reshape(X_it, [batch_size, patch_size, patch_size, 1]) # X_it = tf.reshape(X_it, [batch_size, patch_size, patch_size, -1]) # y_it = tf.reshape(X_it, [batch_size, patch_size, patch_size, -1]) # dict inputs = {'img': X_it, 'label': y_it, 'iterator_init_op': iter_init_op, 'fnames_ph': fnames_ph, 'patch_size_ph': patch_size_ph, 'x_coord_ph': x_coord_ph, 'y_coord_ph': y_coord_ph, 'correction_ph': correction_ph, 'max_nb_cls_ph': max_nb_cls_ph, 'stretch_ph': stretch_ph, } else: raise NotImplementedError('Inference input need to be debugged') return inputs def _pyfn_classification_parser_wrapper_V2(fname, patch_size, x_coord, y_coord, correction, max_nb_cls, stretch): """ input: ------- filename: (tf.data.Dataset) Tensors of strings output: ------- function: (function) tensorflow's pythonic function with its arguements """ return tf.py_func(parse_h5_one_hot_V2, #wrapped pythonic function [fname, patch_size, x_coord, y_coord, correction, max_nb_cls, stretch], #fixme: max number of class should be automatic [tf.float32, tf.int32] #[output, output] dtype ) def _pyfn_classification_parser_wrapper_V3(fname, patch_size, x_coord, y_coord, ): """ input: ------- filename: (tf.data.Dataset) Tensors of strings output: ------- function: (function) tensorflow's pythonic function with its arguements """ return tf.py_func(parse_h5_one_hot_V3, #wrapped pythonic function [fname, patch_size, x_coord, y_coord], [tf.float32, tf.int32] #[output, output] dtype ) def _pyfn_aug_wrapper(X_img, y_img): """ input: ------- filename: (tf.data.Dataset) Tensors of strings output: ------- function: (function) tensorflow's pythonic function with its arguements """ return tf.py_func(random_aug, [X_img, y_img], [tf.float32, tf.int32] #[output, output] dtype ) def parse_h5_one_hot_V2(fname, window_size, x_coord, y_coord, correction=1e3, impose_nb_cls=3, stretch=2.0): try: img = np.asarray(Image.open(fname.decode('utf8'))) label = np.asarray(Image.open(fname.decode('utf8').replace('.tif', '_label.tif'))) except Exception as e: img = np.asarray(Image.open(fname.decode('utf8'))) label = np.asarray(Image.open(fname.decode('utf8').replace('.tif', '_label.tiff'))) logger.debug('fn, ws, x, y: {}, {}, {}, {}'.format(fname, window_size, x_coord, y_coord)) logger.debug('crt, cls, stch: {}, {}, {}'.format(correction, impose_nb_cls, stretch)) logger.debug('img:{}, label:{}'.format(img.shape, label.shape)) assert img.shape == label.shape, 'img and label shape should be equal' assert img.shape[0] >= x_coord + window_size, 'window is out of zone' assert img.shape[1] >= y_coord + window_size, 'window is out of zone' if not stretch: X = np.expand_dims(img[x_coord: x_coord + window_size, y_coord: y_coord + window_size], axis=2) y = np.expand_dims(label[x_coord: x_coord + window_size, y_coord: y_coord + window_size], axis=2) y = _one_hot(y, impose_nb_cls=impose_nb_cls) else: X, y = stretching(img, label=label, x_coord=x_coord, y_coord=y_coord, window_size=window_size, stretch_max=stretch) X = np.expand_dims(X, axis=2) y = np.expand_dims(y, axis=2) y = _one_hot(y, impose_nb_cls=impose_nb_cls) logger.debug('y shape: {}, nb_class: {}'.format(y.shape, y.shape[-1])) # H, W, C # return X, y.astype(np.int32) # return _minmaxscalar(X), y.astype(np.int32) # note: multiplication train more flexible network than minmaxscalar since their might be variation of grayscale return X * correction, y.astype(np.int32) def parse_h5_one_hot_V3(fname, window_size, x_coord, y_coord): img = np.asarray(Image.open(fname)) label = np.asarray(Image.open(fname.decode('utf8').replace('.tif', '_label.tif'))) assert img.shape == label.shape, 'img and label shape should be equal' assert img.shape[0] >= x_coord + window_size, 'window is out of zone' assert img.shape[1] >= y_coord + window_size, 'window is out of zone' logger.debug('fn, ws, x, y: {}, {}, {}, {}'.format(fname, window_size, x_coord, y_coord)) # note: the order of the following list shouldn't be changed either training or testing l_func = [ Gaussian_Blur, Sobel, Hessian, DoG, Gabor, # 'membrane_proj': Membrane_proj, Anisotropic_Diffusion1, #no effect Anisotropic_Diffusion2, #no effect Bilateral, #no effect Median, ] # compute feature maps _X = img[x_coord: x_coord + window_size, y_coord: y_coord + window_size] X = [_X] for func in l_func: X.append(func(_X)) X = np.stack(X, axis=2).astype(np.float32) # y y = np.expand_dims(label[x_coord: x_coord + window_size, y_coord: y_coord + window_size], axis=2) y = _one_hot(y) # logger.debug('y shape: {}, nb_class: {}'.format(y.shape, y.shape[-1])) # B, H, W, C return X, y.astype(np.int32) def _minmaxscalar(ndarray, dtype=np.float32): """ func normalize values of a ndarray into interval of 0 to 1 input: ------- ndarray: (numpy ndarray) input array to be normalized dtype: (dtype of numpy) data type of the output of this function output: ------- scaled: (numpy ndarray) output normalized array """ scaled = np.array((ndarray - np.min(ndarray)) / (np.max(ndarray) - np.min(ndarray)), dtype=dtype) return scaled def _one_hot(tensor, impose_nb_cls=None): ''' (batch, H, W) --> one hot to --> (batch, H, W, nb_class)''' assert isinstance(tensor, np.ndarray), 'Expect input as a np ndarray' # logger.debug('input tensor shape:{}, unique: {}'.format(tensor.shape, np.unique(tensor))) # get how many classes tensor = tensor.astype(np.int32) if impose_nb_cls is not None: nb_classes = impose_nb_cls else: nb_classes = len(np.unique(tensor)) logger.debug('impose: {}, nb_cls: {}'.format(impose_nb_cls, nb_classes)) if tensor.ndim == 4: #note: (Batch, H, W, 1) # one hot out = [] for i in range(nb_classes): tmp = np.zeros_like(tensor) tmp[np.where(tensor == i)] = 1 out.append(tmp) # stack along the last channel out = np.concatenate(out, axis=3) elif tensor.ndim == 3: #note: (H, W, C) no batch size # one hot out = [] for i in range(nb_classes): tmp = np.zeros(tensor.shape) tmp[
np.where(tensor == i)
numpy.where
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile from absl import logging from absl.testing import absltest import matplotlib.pyplot as plt import numpy as np from simulation_research.traffic import point_process_model class PointProcessModelTest(absltest.TestCase): def setUp(self): super(PointProcessModelTest, self).setUp() self.model = point_process_model.PointProcessModel() np.random.seed(0) self._output_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir()) def test_generator_homogeneous_poisson(self): lmbd = 1 time_step_size = 10 rates = np.ones(100000) * lmbd events = self.model.generator(rates, time_step_size) actual_mean = np.mean(events) actual_std = np.std(events) target_mean = lmbd * time_step_size target_std = np.sqrt(target_mean) self.assertAlmostEqual( np.abs(target_mean - actual_mean) / target_mean, 0, places=2) self.assertAlmostEqual( np.abs(target_std - actual_std) / target_std, 0, places=2) def test_model_fitting_homogeneous_poisson(self): lmbd = 1 time_step_size = 10 rates =
np.ones(100000)
numpy.ones
import numpy import scipy.ndimage from . import _deform_grid def deform_random_grid(X, sigma=25, points=3, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None): """ Elastic deformation with a random deformation grid This generates a random, square deformation grid with displacements sampled from from a normal distribution with standard deviation `sigma`. The deformation is then applied to the image or list of images, See ``deform_grid`` for a full description of the parameters. Parameters ---------- X : numpy array or list of arrays image, or list of images of the same size sigma : float standard deviation of the normal distribution points : array number of points of the deformation grid See Also -------- deform_grid : for a full description of the parameters. """ # prepare inputs and axis selection Xs = _normalize_inputs(X) axis, deform_shape = _normalize_axis_list(axis, Xs) if not isinstance(points, (list, tuple)): points = [points] * len(deform_shape) displacement = numpy.random.randn(len(deform_shape), *points) * sigma return deform_grid(X, displacement, order, mode, cval, crop, prefilter, axis) def deform_grid(X, displacement, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None): """ Elastic deformation with a deformation grid The procedure generates a coarse displacement grid with a random displacement for each grid point. This grid is then interpolated to compute a displacement for each pixel in the input image. The input image is then deformed using the displacement vectors and a spline interpolation. Parameters ---------- X : numpy array or list of arrays image, or list of images of the same size If X is a list of images, the values for order, mode and cval can be lists to specify a different value for every image in X. displacement : numpy array displacement vectors for each control point displacement is a NumPy array with displacement vectors for each control points. For example, to deform a 2D image with 3 x 5 control points, provide a displacement matrix of shape 2 x 3 x 5. order : {0, 1, 2, 3, 4} interpolation order mode : ({nearest, wrap, reflect, mirror, constant}) border mode cval : float constant value to be used if mode == 'constant' crop : None or list None, or a list of slice() objects to crop the output crop can be a list of slice() objects to crop the output with. Only very simple slicing is supported: the slice start and stop values must be positive and should not be larger than the output. Note that this parameter is dependent of the axis parameter: if an axis list is given, crop must only contain slice() objects for the dimensions in axis. prefilter : bool if True the input X will be pre-filtered with a spline filter axis : None, int, a list of ints, or a list of lists of ints the axes to deform over axis indicates the axes on which the deformation should be applied. The default (None) is to apply a deformation to all dimensions of the input. Giving a single axis (int) or a tuple of axes will apply the deformation only to those axes. The shape of the displacement must match this number of axes. If multiple inputs are given, axis should be None or a list of tuples with the axes for each input. Returns ------- numpy array or list of arrays The deformed image, or a list of deformed images if a list of inputs is given. Notes ----- See the SciPy documentation for scipy.ndimage.interpolation.map_coordinates for more details on some of the parameters. The elastic deformation approach is found in * Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation" https://arxiv.org/abs/1505.04597 * Cicek et al., "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" https://arxiv.org/abs/1606.06650 Based on a Python implementation by <NAME>. """ # prepare inputs and axis selection Xs = _normalize_inputs(X) axis, deform_shape = _normalize_axis_list(axis, Xs) # prepare output cropping output_shapes, output_offset = _compute_output_shapes(Xs, axis, deform_shape, crop) # prepare other parameters displacement = _normalize_displacement(displacement, Xs, axis) order = _normalize_order(order, Xs) mode = _normalize_mode(mode, Xs) cval = _normalize_cval(cval, Xs) # prefilter inputs Xs_f = [] for i, x in enumerate(Xs): if prefilter and order[i] > 1: x_f = numpy.zeros_like(x) for d in axis[i]: scipy.ndimage.spline_filter1d(x, axis=d, order=order[i], output=x_f) x = x_f Xs_f.append(x_f) else: Xs_f.append(x) # prefilter displacement displacement_f = numpy.zeros_like(displacement) for d in range(1, displacement.ndim): scipy.ndimage.spline_filter1d(displacement, axis=d, order=3, output=displacement_f) displacement = displacement_f # prepare output arrays outputs = [numpy.zeros(os, dtype=x.dtype) for os, x in zip(output_shapes, Xs)] _deform_grid.deform_grid(Xs_f, displacement_f, output_offset, outputs, axis, order, mode, cval) if isinstance(X, list): return outputs else: return outputs[0] def deform_grid_gradient(dY, displacement, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None, X_shape=None): """ Gradient for deform_grid. This method performs the backward operation that returns the gradient of deform_grid with respect to the input. This is similar to performing an inverse deformation on the gradient, but not exactly the same: this function gives an exact gradient that also takes the interpolation into account. The X_shape parameter specifices the shape of the original inputs, and is only necessary if the crop parameter is used. Otherwise, the input shape is the same as the shape of the gradient dY. See the documentation for ``deform_grid``. Parameters ---------- dY : numpy array the input gradient, or list of gradients of the same size displacement : numpy array displacement vectors for each control point order : {0, 1, 2, 3, 4} interpolation order mode : ({nearest, wrap, reflect, mirror, constant}) border mode cval : float constant value to be used if mode == 'constant' crop : None or list None, or a list of slice() objects to crop the output prefilter : bool if True the input X will be pre-filtered with a spline filter axis : None, int, a list of ints, or a list of lists of ints the axes to deform over X_shape: tuple with the shape of the input, or a list of tuples Returns ------- numpy array Returns the gradient with respect to X. """ # prepare inputs dYs = _normalize_inputs(dY) # find input shape if isinstance(X_shape, tuple): X_shape = [X_shape] elif X_shape is None: if crop is not None: raise ValueError("X_shape is required if the crop parameter is given.") X_shape = [dy.shape for dy in dYs] # initialize gradient outputs dXs = [numpy.zeros(s, dy.dtype) for s, dy in zip(X_shape, dYs)] # prepare axis selection axis, deform_shape = _normalize_axis_list(axis, dXs) # prepare cropping output_shapes, output_offset = _compute_output_shapes(dXs, axis, deform_shape, crop) if [tuple(s) for s in output_shapes] != [dy.shape for dy in dYs]: raise ValueError("X_shape does not match output shape and cropping. " "Expected output shape is %s, but %s given." % (str(output_shapes), str([dy.shape for dy in dYs]))) # prepare other parameters displacement = _normalize_displacement(displacement, dYs, axis) order = _normalize_order(order, dYs) mode = _normalize_mode(mode, dYs) cval = _normalize_cval(cval, dYs) # prefilter displacement displacement_f = numpy.zeros_like(displacement) for d in range(1, displacement.ndim): scipy.ndimage.spline_filter1d(displacement, axis=d, order=3, output=displacement_f) displacement = displacement_f _deform_grid.deform_grid_grad(dXs, displacement_f, output_offset, dYs, axis, order, mode, cval) # compute gradient of prefilter operation dXs_f = [] for i, x in enumerate(dXs): if prefilter and order[i] > 1: x_f = numpy.zeros_like(x) for d in axis[i]: _deform_grid.spline_filter1d_grad(x, x_f, d, order[i]) x = x_f dXs_f.append(x_f) else: dXs_f.append(x) if isinstance(dY, list): return dXs_f else: return dXs_f[0] def _normalize_inputs(X): if isinstance(X, numpy.ndarray): Xs = [X] elif isinstance(X, list): Xs = X else: raise Exception('X should be a numpy.ndarray or a list of numpy.ndarrays.') # check X inputs assert len(Xs) > 0, 'You must provide at least one image.' assert all(isinstance(x, numpy.ndarray) for x in Xs), 'All elements of X should be numpy.ndarrays.' return Xs def _normalize_axis_list(axis, Xs): if axis is None: axis = [tuple(range(x.ndim)) for x in Xs] elif isinstance(axis, int): axis = (axis,) if isinstance(axis, tuple): axis = [axis] * len(Xs) assert len(axis) == len(Xs), 'Number of axis tuples should match number of inputs.' input_shapes = [] for x, ax in zip(Xs, axis): assert isinstance(ax, tuple), 'axis should be given as a tuple' assert all(isinstance(a, int) for a in ax), 'axis must contain ints' assert len(ax) == len(axis[0]), 'All axis tuples should have the same length.' assert ax == tuple(set(ax)), 'axis must be sorted and unique' assert all(0 <= a < x.ndim for a in ax), 'invalid axis for input' input_shapes.append(tuple(x.shape[d] for d in ax)) assert len(set(input_shapes)) == 1, 'All inputs should have the same shape.' deform_shape = input_shapes[0] return axis, deform_shape def _compute_output_shapes(Xs, axis, deform_shape, crop): if crop is not None: assert isinstance(crop, (tuple, list)), "crop must be a tuple or a list." assert len(crop) == len(deform_shape) output_shapes = [list(x.shape) for x in Xs] output_offset = [0 for d in range(len(axis[0]))] for d in range(len(axis[0])): if isinstance(crop[d], slice): assert crop[d].step is None start = (crop[d].start or 0) stop = (crop[d].stop or deform_shape[d]) assert start >= 0 assert start < stop and stop <= deform_shape[d] for i in range(len(Xs)): output_shapes[i][axis[i][d]] = stop - start if start > 0: output_offset[d] = start else: raise Exception('Crop must be a slice.') if any(o > 0 for o in output_offset): output_offset = numpy.array(output_offset).astype('int64') else: output_offset = None else: output_shapes = [x.shape for x in Xs] output_offset = None return output_shapes, output_offset def _normalize_displacement(displacement, Xs, axis): assert isinstance(displacement, numpy.ndarray), 'Displacement matrix should be a numpy.ndarray.' assert displacement.ndim == len(axis[0]) + 1, 'Number of dimensions of displacement does not match input.' assert displacement.shape[0] == len(axis[0]), 'First dimension of displacement should match number of input dimensions.' return displacement def _normalize_order(order, Xs): if not isinstance(order, (tuple, list)): order = [order] * len(Xs) assert len(Xs) == len(order), 'Number of order parameters should be equal to number of inputs.' assert all(0 <= o and o <= 5 for o in order), 'order should be 0, 1, 2, 3, 4 or 5.' return numpy.array(order).astype('int64') def _normalize_mode(mode, Xs): if not isinstance(mode, (tuple, list)): mode = [mode] * len(Xs) mode = [_extend_mode_to_code(o) for o in mode] assert len(Xs) == len(mode), 'Number of mode parameters should be equal to number of inputs.' return
numpy.array(mode)
numpy.array
import numpy as np def _get_angle(a, b, c): """ Get angle between vector ba and bc """ ba = a - b bc = c - b cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) *
np.linalg.norm(bc)
numpy.linalg.norm
import numpy as np from matplotlib import pyplot as plt from scipy.stats import uniform from scipy.stats import multivariate_normal as mvnorm class MCMC: def __init__(self, target, step): self.target = target self.step = step self.dim = None self.samples = None self.weights = None self.norms = None def sampling(self, size, initial): self.dim = len(initial) samples = [initial] weights = [1] while len(weights) < size + 2: new = samples[-1] + mvnorm.rvs(mean=np.zeros(self.dim), cov=self.step ** 2) if uniform.rvs() <= self.target(new) / self.target(samples[-1]): samples.append(new) weights.append(1) else: weights[-1] += 1 self.samples = np.array(samples[1:-1]) self.weights = np.array(weights[1:-1]) print('ESS/size/niter: {:.0f}/{}/{}' .format(1 / ((self.weights / self.weights.sum()) ** 2).sum(), size, self.weights.sum())) def dist(self, xi, k): distances = np.abs(np.abs(xi) - self.norms) return np.argsort(distances)[:k] def draw(self, x, k): self.norms = np.sqrt(np.sum(self.samples ** 2, axis=1)) min_norm = self.norms.min() num = np.int64((x[1] - x[0]) / min_norm) print('Number: {}'.format(num)) x = np.linspace(x[0], x[1], num + 1) X = np.zeros([x.size, self.dim]) X[:, 0] = x proposal = self.target(self.samples) / (self.weights / self.weights.mean()) proposalX = np.zeros_like(x) for i, xi in enumerate(x): index = self.dist(xi, k) proposalX[i] = proposal[index].mean() fig, ax = plt.subplots() ax.plot(x, proposalX, c='r', label='proposal') ax.plot(x, self.target(X), c='b', label='target') ax.legend() ax.set_title('{}-D target and MCMC proposal (averaging)'.format(self.dim)) plt.show() def main(dim, step, size): target = mvnorm(mean=np.zeros(dim)).pdf mcmc = MCMC(target, step=step) mcmc.sampling(size=size, initial=
np.zeros(dim)
numpy.zeros
import numpy as np from scipy.special import gamma import matplotlib.pyplot as plt # Define patient arrival rate function def arr_int(time, num_pats, peak_time): # num_pats determines the magnitude of the event (i.e. the number of patients) # peak_time controls when the peak arrival time will be t = time/60 peak_time /= 60 out = num_pats / 60 * (t)**(peak_time-1)*np.exp(-t)/(gamma(peak_time)) return out def generate_times_opt(rate_function, max_t, delta): t = np.arange(delta, max_t, delta) avg_rate = (rate_function(t) + rate_function(t + delta)) / 2.0 avg_prob = 1 - np.exp(-avg_rate * delta) rand_throws = np.random.uniform(size=t.shape[0]) return t[avg_prob >= rand_throws] def sim_walkthrough(): numPatients = 30 # Total number of patients on average odds = 1/3 # Ratio of IMMEDIATE patients to DELAYED patients peakI = 270 # This parameter controls when the peak of arrivals is for IMMEDIATE patients peakD = 150 # This parameter controls when the peak of arrivals is for DELAYED patients # Probabilities of surviving the trip to another hospital probI = .4 probD = .8 # Compute parameters for functions" ratio = odds/(1+odds) cI = numPatients * odds cD = numPatients - cI tp = np.linspace(0, 720, num=1000) def yI(t): return arr_int(t, cI, peakI) def yD(t): return arr_int(t, cD, peakD) red_ind = np.random.binomial(1, ratio) ppI_times = generate_times_opt(yI, 720, .1) ppD_times = generate_times_opt(yD, 720, .1) imm_ind = np.random.binomial(1, ratio) if imm_ind == 1: time = np.random.choice(ppI_times)/720 * 120 col = 'ORANGE' survive = np.random.binomial(1, probI) else: time = np.random.choice(ppD_times)/720 * 120 col = 'BLUE' survive = np.random.binomial(1, probD) print('Grab a ' + col + ' index card from the front and write ' + str(np.round(time, 1)) + ' on the front and ' + str(survive) + ' on the back.') def plot_arr_int(num_pat, peak): # Lets plot a sample of the arrival rate function tp = np.linspace(0, 720, num=1000) plt.plot(tp, arr_int(tp, num_pat, peak), color='black') plt.ylim(0, np.maximum(.5, np.ndarray.max(arr_int(tp, num_pat, peak)))) plt.xlabel('Elapsed Time (min)') plt.ylabel('Intensity of Arrivals (patients/min)') plt.show() def plot_arr_ints(numPatients, odds, peakI, peakD): # Compute parameters for functions ratio = odds/(1+odds) cI = numPatients * odds cD = numPatients - cI # Lets plot the arrival rate functions for both classes of patients tp = np.linspace(0, 720, num=1000) plt.plot(tp, arr_int(tp, cI, peakI), label='IMMEDIATE Patients', color='orange') # First plot for IMMEDIATE patients plt.plot(tp, arr_int(tp, cD, peakD), label='DELAYED Patients', color='blue') # First plot for DELAYED patients plt.ylim(0, np.maximum(.3, np.ndarray.max( np.array([arr_int(tp, cI, peakI), arr_int(tp, cD, peakD)], dtype=float)))) plt.xlabel('Elapsed Time (min)') plt.ylabel('Intensity of Arrivals (patients/min)') plt.legend() plt.show() def plot_arrivals(numPatients, odds, peakI, peakD): tp = np.linspace(0, 720, num=1000) ratio = odds/(1+odds) cI = numPatients * odds cD = numPatients - cI def yI(t): return arr_int(t, cI, peakI) def yD(t): return arr_int(t, cD, peakD) red_ind = np.random.binomial(1, ratio/(1+ratio)) ppI_times = generate_times_opt(yI, 720, .1) ppD_times = generate_times_opt(yD, 720, .1) plt.plot(tp, arr_int(tp, cI, peakI), label='IMMEDIATE Patients', color='orange') # First plot for red patients plt.plot(tp, arr_int(tp, cD, peakD), label='DELAYED Patients', color='blue') # First plot for green patients plt.plot(ppI_times, arr_int(ppI_times, cI, peakI), color='orange', marker='x', linestyle='none') plt.plot(ppD_times, arr_int(ppD_times, cD, peakD), color='blue', marker='x', linestyle='none') plt.ylim(0, np.maximum(.3, np.ndarray.max( np.array([arr_int(tp, cI, peakI), arr_int(tp, cD, peakD)], dtype=float)))) plt.xlabel('Elapsed Time (min)') plt.ylabel('Intensity of Arrivals (patients/min)') plt.legend() plt.show() def simulate(reps, numBeds, numPatients, odds, peakI, peakD, probI, probD): # Compute parameters for functions" ratio = odds/(1+odds) cI = numPatients * odds cD = numPatients - cI tp = np.linspace(0, 720, num=1000) def yI(t): return arr_int(t, cI, peakI) def yD(t): return arr_int(t, cD, peakD) died_FCFS = np.zeros(reps) survived_FCFS = np.zeros(reps) final_beds_FCFS = np.zeros(reps) died_IO = np.zeros(reps) survived_IO = np.zeros(reps) final_beds_IO = np.zeros(reps) for i in range(reps): timesI = generate_times_opt(yI, 720, .1) timesD = generate_times_opt(yD, 720, .1) total_patients = len(timesI) + len(timesD) bedsRemaining_FCFS = numBeds bedsRemaining_IO = numBeds while len(timesI) + len(timesD) > 0: if len(timesI) == 0: t = timesD[0] timesD = timesD[1:] is_I = 0 elif len(timesD) == 0: t = timesI[0] timesI = timesI[1:] is_I = 1 else: t = np.minimum(timesI[0], timesD[0]) if t == timesI[0]: timesI = timesI[1:] is_I = 1 else: timesD = timesD[1:] is_I = 0 # Handle FCFS if bedsRemaining_FCFS > 0: bedsRemaining_FCFS += -1 survived_FCFS[i] += 1 else: if is_I == 1: survived_FCFS[i] += np.random.binomial(1, probI) else: survived_FCFS[i] +=
np.random.binomial(1, probD)
numpy.random.binomial
import cv2 import numpy as np import math import random def __rotateImage(image, angle): rot_mat = cv2.getRotationMatrix2D((image.shape[1]/2,image.shape[0]/2),angle,1) result = cv2.warpAffine(image, rot_mat, (image.shape[1], image.shape[0]),flags=cv2.INTER_LINEAR) return result, rot_mat def rotate(img, gt, angle): img, mat = __rotateImage(img,angle) gt = gt.astype(np.float64) for a in range(0,4): gt[a] = np.dot(mat[...,0:2], gt[a]) + mat[...,2] a=float(angle) * math.pi / 180 # gt[0,0] = gt[3,0] = img.shape[1]*math.sin(float(angle)*math.pi/180)*cos(a) # gt[0,1] = gt[1,1] = R2 math.sin(a) - W*(sin(a)**2) # gt[1,0] = gt[2,0] = gt[0,0]+H # gt[2,1] = gt[3,1] = gt[1,1] + W # gt = gt.astype(np.int32) return img, gt def random_crop(img, gt): ptr1 = (min(gt[0][0], gt[1][0], gt[2][0], gt[3][0]), min(gt[0][1], gt[1][1], gt[2][1], gt[3][1])) ptr2 = ((max(gt[0][0], gt[1][0], gt[2][0], gt[3][0]), max(gt[0][1], gt[1][1], gt[2][1], gt[3][1]))) start_x = np.random.randint(0, int(max(ptr1[0] - 1,1))) start_y = np.random.randint(0, int(max(ptr1[1] - 1,1))) end_x = np.random.randint(int(min(ptr2[0] + 1,img.shape[1]-1)), img.shape[1]) end_y = np.random.randint(int(min(ptr2[1] + 1,img.shape[0]-1)), img.shape[0]) myGt = gt - (start_x, start_y) sum_array = myGt.sum(axis=1) tl_index =
np.argmin(sum_array)
numpy.argmin
# -*- coding: utf-8 -*- # @Time : 2017/7/13 下午8:23 # @Author : play4fun # @File : 47.2-使用SVM进行-手写数据OCR.py # @Software: PyCharm """ 47.2-使用SVM进行-手写数据OCR.py: """ import cv2 import numpy as np SZ = 20 bin_n = 16 # Number of bins affine_flags = cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR # 使用方向梯度直方图Histogram of Oriented Gradients HOG 作为特征向量 def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11'] / m['mu02'] M = np.float32([[1, skew, -0.5 * SZ * skew], [0, 1, 0]]) img = cv2.warpAffine(img, M, (SZ, SZ), flags=affine_flags) return img # 计算图像 X 方向和 Y 方向的 Sobel 导数 def hog(img): gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) mag, ang = cv2.cartToPolar(gx, gy) bins = np.int32(bin_n * ang / (2 * np.pi)) # quantizing binvalues in (0...16) bin_cells = bins[:10, :10], bins[10:, :10], bins[:10, 10:], bins[10:, 10:] mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:] hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] hist = np.hstack(hists) # hist is a 64 bit vector return hist # 最后 和前 一样 我们将大图分割成小图。使用每个数字的前 250 个作 为训练数据 # 后 250 个作为测试数据 img = cv2.imread('../data/digits.png', 0) cells = [np.hsplit(row, 100) for row in np.vsplit(img, 50)] # First half is trainData, remaining is testData train_cells = [i[:50] for i in cells] test_cells = [i[50:] for i in cells] deskewed = [map(deskew, row) for row in train_cells] # deskewed = [deskew(row) for row in train_cells] # deskewed = map(deskew, train_cells) hogdata = [map(hog, row) for row in deskewed] # hogdata = [hog(row) for row in deskewed] # hogdata = map(hog, deskewed) trainData = np.float32(hogdata).reshape(-1, 64) responses = np.float32(np.repeat(np.arange(10), 250)[:, np.newaxis]) svm = cv2.ml.SVM_create() svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, responses) svm.save('svm_data.dat') deskewed = [map(deskew, row) for row in test_cells] hogdata = [map(hog, row) for row in deskewed] testData =
np.float32(hogdata)
numpy.float32
from __future__ import division from __future__ import print_function import os import networkx as nx import sys import glob import time import random import argparse import scipy.sparse as sp from scipy.sparse import coo_matrix import numpy as np from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from utils import load_data, accuracy, normalize_adj from models import GAT, SpGAT from plot_confusion_matrix import plot_confusion_matrix def spy_sparse2torch_sparse(coo): """ :param data: a scipy sparse coo matrix :return: a sparse torch tensor """ values=coo.data indices=np.vstack((coo.row,coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape t = torch.sparse.FloatTensor(i, v, torch.Size(shape)) return t # Training settings parser = argparse.ArgumentParser() parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.') parser.add_argument('--fastmode', action='store_true', default=False, help='Validate during training pass.') parser.add_argument('--sparse', action='store_false', default=True, help='GAT with sparse version or not.') parser.add_argument('--seed', type=int, default=72, help='Random seed.') parser.add_argument('--epochs', type=int, default=10000, help='Number of epochs to train.') parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).') parser.add_argument('--hidden', type=int, default=15, help='Number of hidden units.') parser.add_argument('--nb_heads', type=int, default=8, help='Number of head attentions.') parser.add_argument('--dropout', type=float, default=0.6, help='Dropout rate (1 - keep probability).') parser.add_argument('--alpha', type=float, default=0.2, help='Alpha for the leaky_relu.') parser.add_argument('--patience', type=int, default=20, help='Patience') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() random.seed(args.seed)
np.random.seed(args.seed)
numpy.random.seed
#!/usr/bin/env python # # Author: <NAME> <<EMAIL>> # '''Density expansion on plane waves''' import copy import numpy from pyscf import lib from pyscf import gto from pyscf import dft from pyscf.lib import logger from pyscf.pbc import tools from pyscf.pbc.gto import pseudo, estimate_ke_cutoff, error_for_ke_cutoff from pyscf.pbc.df import ft_ao from pyscf.pbc.df import fft_ao2mo from pyscf.pbc.lib.kpt_misc import is_zero, gamma_point def get_nuc(mydf, kpts=None): cell = mydf.cell if kpts is None: kpts_lst = numpy.zeros((1,3)) else: kpts_lst = numpy.reshape(kpts, (-1,3)) gs = mydf.gs charge = -cell.atom_charges() Gv = cell.get_Gv(gs) SI = cell.get_SI(Gv) rhoG = numpy.dot(charge, SI) coulG = tools.get_coulG(cell, gs=gs, Gv=Gv) vneG = rhoG * coulG vneR = tools.ifft(vneG, mydf.gs).real vne = [lib.dot(aoR.T.conj()*vneR, aoR) for k, aoR in mydf.aoR_loop(gs, kpts_lst)] if kpts is None or numpy.shape(kpts) == (3,): vne = vne[0] return numpy.asarray(vne) def get_pp(mydf, kpts=None): '''Get the periodic pseudotential nuc-el AO matrix, with G=0 removed. ''' cell = mydf.cell if kpts is None: kpts_lst = numpy.zeros((1,3)) else: kpts_lst = numpy.reshape(kpts, (-1,3)) gs = mydf.gs SI = cell.get_SI() Gv = cell.get_Gv(gs) vpplocG = pseudo.get_vlocG(cell, Gv) vpplocG = -numpy.einsum('ij,ij->j', SI, vpplocG) vpplocG[0] = numpy.sum(pseudo.get_alphas(cell)) # from get_jvloc_G0 function ngs = len(vpplocG) # vpploc evaluated in real-space vpplocR = tools.ifft(vpplocG, cell.gs).real vpp = [lib.dot(aoR.T.conj()*vpplocR, aoR) for k, aoR in mydf.aoR_loop(gs, kpts_lst)] # vppnonloc evaluated in reciprocal space fakemol = gto.Mole() fakemol._atm = numpy.zeros((1,gto.ATM_SLOTS), dtype=numpy.int32) fakemol._bas = numpy.zeros((1,gto.BAS_SLOTS), dtype=numpy.int32) ptr = gto.PTR_ENV_START fakemol._env = numpy.zeros(ptr+10) fakemol._bas[0,gto.NPRIM_OF ] = 1 fakemol._bas[0,gto.NCTR_OF ] = 1 fakemol._bas[0,gto.PTR_EXP ] = ptr+3 fakemol._bas[0,gto.PTR_COEFF] = ptr+4 # buf for SPG_lmi upto l=0..3 and nl=3 buf = numpy.empty((48,ngs), dtype=numpy.complex128) def vppnl_by_k(kpt): Gk = Gv + kpt G_rad = lib.norm(Gk, axis=1) aokG = ft_ao.ft_ao(cell, Gv, kpt=kpt) * (ngs/cell.vol) vppnl = 0 for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: continue pp = cell._pseudo[symb] p1 = 0 for l, proj in enumerate(pp[5:]): rl, nl, hl = proj if nl > 0: fakemol._bas[0,gto.ANG_OF] = l fakemol._env[ptr+3] = .5*rl**2 fakemol._env[ptr+4] = rl**(l+1.5)*numpy.pi**1.25 pYlm_part = dft.numint.eval_ao(fakemol, Gk, deriv=0) p0, p1 = p1, p1+nl*(l*2+1) # pYlm is real, SI[ia] is complex pYlm = numpy.ndarray((nl,l*2+1,ngs), dtype=numpy.complex128, buffer=buf[p0:p1]) for k in range(nl): qkl = pseudo.pp._qli(G_rad*rl, l, k) pYlm[k] = pYlm_part.T * qkl #:SPG_lmi = numpy.einsum('g,nmg->nmg', SI[ia].conj(), pYlm) #:SPG_lm_aoG = numpy.einsum('nmg,gp->nmp', SPG_lmi, aokG) #:tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG) #:vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp) if p1 > 0: SPG_lmi = buf[:p1] SPG_lmi *= SI[ia].conj() SPG_lm_aoGs = lib.zdot(SPG_lmi, aokG) p1 = 0 for l, proj in enumerate(pp[5:]): rl, nl, hl = proj if nl > 0: p0, p1 = p1, p1+nl*(l*2+1) hl = numpy.asarray(hl) SPG_lm_aoG = SPG_lm_aoGs[p0:p1].reshape(nl,l*2+1,-1) tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG) vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp) return vppnl * (1./ngs**2) for k, kpt in enumerate(kpts_lst): vppnl = vppnl_by_k(kpt) if gamma_point(kpt): vpp[k] = vpp[k].real + vppnl.real else: vpp[k] += vppnl if kpts is None or numpy.shape(kpts) == (3,): vpp = vpp[0] return numpy.asarray(vpp) class FFTDF(lib.StreamObject): '''Density expansion on plane waves ''' def __init__(self, cell, kpts=numpy.zeros((1,3))): from pyscf.pbc.dft import numint self.cell = cell self.stdout = cell.stdout self.verbose = cell.verbose self.max_memory = cell.max_memory self.kpts = kpts self.gs = cell.gs self.blockdim = 240 # to mimic molecular DF object self.non0tab = None # Not input options self.exxdiv = None # to mimic KRHF/KUHF object in function get_coulG self._numint = numint._KNumInt() self._keys = set(self.__dict__.keys()) def dump_flags(self): logger.info(self, '\n') logger.info(self, '******** %s flags ********', self.__class__) logger.info(self, 'gs = %s', self.gs) logger.info(self, 'len(kpts) = %d', len(self.kpts)) logger.debug1(self, ' kpts = %s', self.kpts) return self def check_sanity(self): lib.StreamObject.check_sanity(self) cell = self.cell if cell.dimension < 3: raise RuntimeError('FFTDF method does not support low-dimension ' 'PBC system. DF, MDF or AFTDF methods should ' 'be used.\nSee also examples/pbc/31-low_dimensional_pbc.py') if not cell.has_ecp(): logger.warn(self, 'FFTDF integrals are found in all-electron ' 'calculation. It often causes huge error.\n' 'Recommended methods are DF or MDF. In SCF calculation, ' 'they can be initialized as\n' ' mf = mf.density_fit()\nor\n' ' mf = mf.mix_density_fit()') if cell.ke_cutoff is None: ke_cutoff = tools.gs_to_cutoff(cell.lattice_vectors(), self.gs).min() else: ke_cutoff = numpy.min(cell.ke_cutoff) ke_guess = estimate_ke_cutoff(cell, cell.precision) if ke_cutoff < ke_guess*.8: gs_guess = tools.cutoff_to_gs(cell.lattice_vectors(), ke_guess) logger.warn(self, 'ke_cutoff/gs (%g / %s) is not enough for FFTDF ' 'to get integral accuracy %g.\nCoulomb integral error ' 'is ~ %.2g Eh.\nRecomended ke_cutoff/gs are %g / %s.', ke_cutoff, self.gs, cell.precision, error_for_ke_cutoff(cell, ke_cutoff), ke_guess, gs_guess) return self def aoR_loop(self, gs=None, kpts=None, kpts_band=None): cell = self.cell if cell.dimension < 3: raise RuntimeError('FFTDF method does not support low-dimension ' 'PBC system. DF, MDF or AFTDF methods should ' 'be used.\nSee also examples/pbc/31-low_dimensional_pbc.py') if kpts is None: kpts = self.kpts kpts = numpy.asarray(kpts) if gs is None: gs = numpy.asarray(self.gs) else: gs = numpy.asarray(gs) if any(gs != self.gs): self.non0tab = None self.gs = gs ni = self._numint coords = cell.gen_uniform_grids(gs) if self.non0tab is None: self.non0tab = ni.make_mask(cell, coords) if kpts_band is None: aoR = ni.eval_ao(cell, coords, kpts, non0tab=self.non0tab) for k in range(len(kpts)): yield k, aoR[k] else: aoR = ni.eval_ao(cell, coords, kpts_band, non0tab=self.non0tab) if kpts_band.ndim == 1: yield 0, aoR else: for k in range(len(kpts_band)): yield k, aoR[k] get_pp = get_pp get_nuc = get_nuc def get_jk(self, dm, hermi=1, kpts=None, kpts_band=None, with_j=True, with_k=True, exxdiv='ewald'): from pyscf.pbc.df import fft_jk if kpts is None: if numpy.all(self.kpts == 0): # Gamma-point calculation by default kpts = numpy.zeros(3) else: kpts = self.kpts else: kpts = numpy.asarray(kpts) vj = vk = None if kpts.shape == (3,): vj, vk = fft_jk.get_jk(self, dm, hermi, kpts, kpts_band, with_j, with_k, exxdiv) else: if with_k: vk = fft_jk.get_k_kpts(self, dm, hermi, kpts, kpts_band, exxdiv) if with_j: vj = fft_jk.get_j_kpts(self, dm, hermi, kpts, kpts_band) return vj, vk get_eri = get_ao_eri = fft_ao2mo.get_eri ao2mo = get_mo_eri = fft_ao2mo.general get_ao_pairs_G = get_ao_pairs = fft_ao2mo.get_ao_pairs_G get_mo_pairs_G = get_mo_pairs = fft_ao2mo.get_mo_pairs_G def update_mf(self, mf): mf = copy.copy(mf) mf.with_df = self return mf ################################################################################ # With this function to mimic the molecular DF.loop function, the pbc gamma # point DF object can be used in the molecular code def loop(self): kpts0 = numpy.zeros((2,3)) coulG = tools.get_coulG(self.cell, numpy.zeros(3), gs=self.gs) ngs = len(coulG) ao_pairs_G = self.get_ao_pairs_G(kpts0, compact=True) ao_pairs_G *= numpy.sqrt(coulG*(self.cell.vol/ngs**2)).reshape(-1,1) Lpq =
numpy.empty((self.blockdim, ao_pairs_G.shape[1]))
numpy.empty
import os, sys from collections import OrderedDict import numpy as np import paddle # paddle.enable_static() import paddle.fluid as fluid import torch from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F SEED = 666 INPUT_SIZE = (1, 3, 488, 488) IN_CHANNELS = INPUT_SIZE[1] OUT_CHANNELS = 16 MODEL_NAME = 'large' SCALE = 1.0 NAME = 'table_mobilenet_v3' DISABLE_SE = True tmp_save_name = '{}.npy'.format(NAME) def print_cmp(inp, name=None): print('{}: shape-{}, sum: {}, mean: {}, max: {}, min: {}'.format(name, inp.shape, np.sum(inp), np.mean(inp),
np.max(inp)
numpy.max
import numpy as np import math import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd import torch.nn.functional as F import pickle from lib.model import * from lib.zfilter import ZFilter from lib.util import * from lib.trpo import trpo_step from lib.data import * import scipy.optimize def trpo_learn(args): #env params env_name, batch_size, vv, als, ex_path, fig_path = args.env_id, args.batch_size, args.vv, args.als, args.ex_path, args.fig_path #trpo params max_kl, cr_lr, cg_step_size, damping = args.max_kl, args.cr_lr, args.cg_step_size, args.damping #data data_n_steps, max_genert_num, gamma, lambd = args.data_n_steps, args.max_genert_num, args.gamma, args.lambd #set up env = gym.make(env_name) env.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) device = torch.device("cuda" if args.use_cuda and torch.cuda.is_available() else "cpu") #device = torch.device("cpu") zflt = ZFilter((env.observation_space.shape[0],), clip=5) dtype = torch.float64 torch.set_default_dtype(dtype) #model and optim policy_model =ModelActor(env.observation_space.shape[0],env.action_space.shape[0]).to(device) print(env.observation_space.shape[0]) critic_model =ModelCritic(env.observation_space.shape[0]).to(device) #opt_policy = optim.Adam(policy_model.parameters(), lr = args.lr_policy) opt_critic = optim.Adam(critic_model.parameters(), lr = args.lr_critic) # data generate gene = generate(policy_model, env, env_name, als, device, data_n_steps, ex_path, fig_path, vv, max_genert_num, zflt) #train ... V_loss, P_loss = [], [] for trj in gene: states, actions, rewards, dones =trj['states'],trj['actions'],trj['rewards'],trj['dones'] states = torch.from_numpy(np.stack(states)).to(dtype).to(device) actions = torch.from_numpy(np.stack(actions)).to(dtype).to(device) rewards = torch.from_numpy(np.stack(rewards)).to(dtype).to(device) dones = torch.from_numpy(np.stack(dones)).to(dtype).to(device) with torch.no_grad(): values = critic_model(states) old_logprob = policy_model.get_log_prob(states, actions) adv, ref = cal_adv_ref(rewards, dones, values, gamma, lambd, device) opt_iter = int(math.ceil(states.shape[0]/batch_size)) V_loss_, P_loss_ = [], [] #for epoch in range(args.ppo_epoches): perm = np.arange(states.shape[0])
np.random.shuffle(perm)
numpy.random.shuffle
import numpy as np import matplotlib.pyplot as plt import matplotlib import bead_util as bu from scipy.optimize import curve_fit import dill as pickle cpath = "/data/20180927/bead1/spinning/1k_valve_of" filesc = bu.find_all_fnames(cpath) freqs = np.fft.rfftfreq(50000, d = 1./5000) def get_dir_data(files, drive_range = [1., 1500.], drive_amp = 5000.): nf = len(files) ns = 50000 nfreq = len(freqs) d_ave = np.zeros((nf, nfreq), dtype = complex) pb = [] pc = [] pp = [] t = [] xs = np.zeros((nf, nfreq), dtype = complex) ys = np.zeros((nf, nfreq), dtype = complex) zs = np.zeros((nf, nfreq), dtype = complex) for i, f in enumerate(files): df = bu.DataFile() df.load(f) df.load_other_data() drive = df.other_data[2] dbool = (np.abs(np.fft.rfft(drive))>drive_amp)*(freqs>drive_range[0])*(freqs<drive_range[1]) if not np.sum(dbool): plt.loglog(freqs, np.abs(
np.fft.rfft(drive)
numpy.fft.rfft
"""Generating templates of ECG and PPG complexes""" import numpy as np from scipy.special import erf from sklearn.preprocessing import MinMaxScaler from scipy import signal import scipy from scipy.signal import argrelextrema from scipy.integrate import solve_ivp from vital_sqi.preprocess.preprocess_signal import squeeze_template def ppg_dual_double_frequency_template(width): """ EXPOSE Generate a PPG template by using 2 sine waveforms. The first waveform double the second waveform frequency :param width: the sample size of the generated waveform :return: a 1-D numpy array of PPG waveform having diastolic peak at the low position """ t = np.linspace(0, 1, width, False) # 1 second sig = np.sin(2 * np.pi * 2 * t - np.pi / 2) + \ np.sin(2 * np.pi * 1 * t - np.pi / 6) sig_scale = MinMaxScaler().fit_transform(np.array(sig).reshape(-1, 1)) return sig_scale.reshape(-1) def skew_func(x, e=0, w=1, a=0): """ handy :param x: input sequence of time points :param e: location :param w: scale :param a: the order :return: a 1-D numpy array of a skewness distribution """ t = (x - e) / w omega = (1 + erf((a * t) / np.sqrt(2))) / 2 gaussian_dist = 1 / (np.sqrt(2 * np.pi)) * np.exp(-(t ** 2) / 2) return 2 / w * gaussian_dist * omega def ppg_absolute_dual_skewness_template(width, e_1=1, w_1=2.5, e_2=3, w_2=3, a=4): """ EXPOSE Generate a PPG template by using 2 skewness distribution. :param width: the sample size of the generated waveform :param e_1: the epsilon location of the first skew distribution :param w_1: the scale of the first skew distribution :param e_2: the epsilon location of the second skew distribution :param w_2: the scale of the second skew distribution :param a: the order :return: a 1-D numpy array of PPG waveform having diastolic peak at the high position """ x = np.linspace(0, 11, width, False) p_1 = skew_func(x, e_1, w_1, a) p_2 = skew_func(x, e_2, w_2, a) p_ = np.max([p_1, p_2], axis=0) sig_scale = MinMaxScaler().fit_transform(np.array(p_).reshape(-1, 1)) return sig_scale.reshape(-1) def ppg_nonlinear_dynamic_system_template(width): """ EXPOSE :param width: :return: """ x1 = 0.15 x2 = 0.15 u = 0.5 beta = 1 gamma1 = -0.25 gamma2 = 0.25 x1_list = [x1] x2_list = [x2] dt = 0.1 for t in np.arange(1, 100, dt): y1 = 0.5 * (np.abs(x1 + 1) - np.abs(x1 - 1)) y2 = 0.5 * (np.abs(x2 + 1) - np.abs(x2 - 1)) dx1 = -x1 + (1 + u) * y1 - beta * y2 + gamma1 dx2 = -x2 + (1 + u) * y2 + beta * y1 + gamma2 x1 = x1 + dx1 * dt x2 = x2 + dx2 * dt x1_list.append(x1) x2_list.append(x2) local_minima = argrelextrema(np.array(x2_list), np.less)[0] s = np.array(x2_list[local_minima[-2]:local_minima[-1] + 1]) rescale_signal = squeeze_template(s, width) window = signal.windows.cosine(len(rescale_signal), 0.5) signal_data_tapered = np.array(window) * \ (rescale_signal - min(rescale_signal)) out_scale = MinMaxScaler().fit_transform( np.array(signal_data_tapered).reshape(-1, 1)) return out_scale.reshape(-1) def interp(ys, mul): """ handy func :param ys: :param mul: :return: """ # linear extrapolation for last (mul - 1) points ys = list(ys) ys.append(2 * ys[-1] - ys[-2]) # make interpolation function xs = np.arange(len(ys)) fn = scipy.interpolate.interp1d(xs, ys, kind="cubic") # call it on desired data points new_xs = np.arange(len(ys) - 1, step=1. / mul) return fn(new_xs) """ Equation (3) from the paper A dynamical model for generating synthetic electrocardiogram signals """ def ecg_dynamic_template(width, sfecg=256, N=256, Anoise=0, hrmean=60, hrstd=1, lfhfratio=0.5, sfint=512, ti=np.array([-70, -15, 0, 15, 100]), ai=np.array([1.2, -5, 30, -7.5, 0.75]), bi=np.array([0.25, 0.1, 0.1, 0.1, 0.4]) ): """ EXPOSE :param width: :param sfecg: :param N: :param Anoise: :param hrmean: :param hrstd: :param lfhfratio: :param sfint: :param ti: :param ai: :param bi: :return: """ # convert to radians ti = ti * np.pi / 180 # adjust extrema parameters for mean heart rate hrfact = np.sqrt(hrmean / 60) hrfact2 = np.sqrt(hrfact) bi = hrfact * bi ti = np.multiply([hrfact2, hrfact, 1, hrfact, hrfact2], ti) flo = 0.1 fhi = 0.25 flostd = 0.01 fhistd = 0.01 # calculate time scales for rr and total output sampfreqrr = 1 trr = 1 / sampfreqrr rrmean = (60 / hrmean) Nrr = 2 ** (np.ceil(np.log2(N * rrmean / trr))) rr0 = rr_process(flo, fhi, flostd, fhistd, lfhfratio, hrmean, hrstd, sampfreqrr, Nrr) # upsample rr time series from 1 Hz to sfint Hz rr = interp(rr0, sfint) dt = 1 / sfint rrn = np.zeros(len(rr)) tecg = 0 i = 0 while i < len(rr): tecg = tecg + rr[i] ip = int(np.round(tecg / dt)) rrn[i: ip + 1] = rr[i] i = ip + 1 Nt = ip x0 = [1, 0, 0.04] tspan = np.arange(0, (Nt - 1) * dt, dt) args = (rrn, sfint, ti, ai, bi) solv_ode = solve_ivp(ordinary_differential_equation, [tspan[0], tspan[-1]], x0, t_eval=np.arange(20.5, 21.5, 0.00001), args=args) Y = (solv_ode.y)[2] # if len(Y) > width: # z = squeeze_template(Y,125) return Y def ordinary_differential_equation(t, x_equations, rr=None, sfint=None, ti=None, ai=None, bi=None): """ handy :param t: :param x_equations: :param rr: :param sfint: :param ti: :param ai: :param bi: :return: """ x = x_equations[0] y = x_equations[1] z = x_equations[2] ta = np.arctan2(y, x) r0 = 1 a0 = 1.0 - np.sqrt(x ** 2 + y ** 2) / r0 ip = int(1 +
np.floor(t * sfint)
numpy.floor
from pathlib import Path import numpy as np import gym from gym import spaces, logger from gym.utils import seeding import matplotlib.pyplot as plt from pycel import ExcelCompiler class Parameters: # (Avoid sampling random variables here: they would not be resampled upon reset()) # problem-specific parameters techs = 3 # number of technologies (Offshore wind power, blue hydrogen, green hydrogen) # fmt: off reward_types = 6 # capital expenditure (capex), operating expenditure (opex), revenue, carbon emissions, total jobs supported, total economic impact steps_per_episode = 20 # number of years in the planning horizon (2031 -> 2050 = 20) # fmt: on # This 'Pathways to Net Zero' environment manipulates a spreadsheet loaded in memory. The following 20 columns correspond to years 2031 to 2050 in tabs named 'Outputs' and 'CCUS': # fmt: off pathways2Net0ColumnInds = np.array(['P','Q','R','S','T','U','V','W','X','Y','Z','AA','AB','AC','AD','AE','AF','AG','AH','AI']) # fmt: on # The following 20 rows correspond to years 2031 to 2050 in tabs named 'BREEZE', 'GALE', and 'STORM': pathways2Net0RowInds = np.arange(36, 36 + steps_per_episode) # pathways2Net0ColumnInds[state.step_count] and pathways2Net0RowInds[state.step_count] will locate the current year's column / row respectively # Multiplicative noise is applied to all costs. The parameters of this randomisation are: noise_mu = 1.0 noise_sigma = 0.1 noise_clipping = 0.5 # (i.e., costs are reduced by 50% at the most) noise_sigma_factor = np.sqrt(0.1) # this factor is applied to make CCUS capex & opex less volatile than other costs # The costs in the Carbon capture utilisation and storage (CCUS) tab to be randomised are capex, opex, and carbon price, with these row numbers: pathways2Net0RandomRowInds_CCUS = np.array([23, 24, 26]) # The costs in the 'Outputs' tab to be randomised are Offshore wind - Devex, Capex, and Opex, Green Hydrogen - Capex, Fixed Opex, and Variable Opex, Blue Hydrogen - price, Gas feedstock price, Capex, Fixed opex, Variable opex, and Natural gas cost, with these row numbers: # fmt: off pathways2Net0RandomRowInds_Outputs = np.array([148, 149, 150, 153, 154, 155, 158, 159, 163, 164, 165, 166]) # fmt: on # multiplicative noise's mu and sigma, and clipping point: noise_mu = 1.0 noise_sigma = 0.1 # or try 0.1, 0.0, np.sqrt(0.001), 0.02, np.sqrt(0.0003), 0.015, 0.01, np.sqrt(0.00001), 0.001 noise_clipping = 0.5 # or try 0.001, 0.1, 0.5 (i.e., original costs are reduced by 50% at the most) noise_sigma_factor = np.sqrt(0.1) # as in https://github.com/rangl-labs/netzerotc/issues/36, CCUS capex & opex (CCUS row 23 and 24) should have smaller standard deviations stochastic_sigma = False # set to False to use one single noise_sigma; set to True to randomly switch between two different std: # noise_sigma_low = 0.001 # noise_sigma_high = np.sqrt(0.00001) # OR, sample a sigma from a uniform distribution centered at noise_sigma with total 2-side range of noise_sigma_range: noise_sigma_range = 0.002 noise_observability = False # set to True to make the observation_space contain randomized costs/prices; set to False to restrict the observation_space to contain only the state.step_count class State: def __init__(self, seed=None, param=Parameters()): np.random.seed(seed=seed) self.initialise_state(param) def initialise_state(self, param): # create local copy of spreadsheet model to be manipulated self.pathways2Net0 = param.pathways2Net0 # create an array of costs for the current year and populate with 2030 costs (column 'O' in 'CCUS' and 'Outputs' tabs): self.randomized_costs = np.ones( len(param.pathways2Net0RandomRowInds_CCUS) + len(param.pathways2Net0RandomRowInds_Outputs) ) for costRowID in np.arange(len(param.pathways2Net0RandomRowInds_CCUS)): self.randomized_costs[costRowID] = param.pathways2Net0.evaluate( "CCUS!O" + str(param.pathways2Net0RandomRowInds_CCUS[costRowID]) ) for costRowID in np.arange(len(param.pathways2Net0RandomRowInds_Outputs)): self.randomized_costs[ len(param.pathways2Net0RandomRowInds_CCUS) + costRowID ] = param.pathways2Net0.evaluate( "Outputs!O" + str(param.pathways2Net0RandomRowInds_Outputs[costRowID]) ) self.noise_observability = param.noise_observability # time variables # NOTE: our convention is to update step_count at the beginning of the gym step() function self.step_count = -1 self.steps_per_episode = param.steps_per_episode # initial jobs supported in 2030 self.jobs = np.float32( 110484 ) # variable to record jobs created each year self.jobs_increment = np.zeros(1, dtype=np.float32) # initialized as 0 # fmt: off # initial economic impact in 2030 self.econoImpact = np.float32(49938.9809739566) # initial technology deployments in 2030 self.deployments = np.array([param.pathways2Net0.evaluate('GALE!P35'), param.pathways2Net0.evaluate('GALE!X35'), param.pathways2Net0.evaluate('GALE!Y35')], dtype=np.float32) # initial CO2 emissions in 2030 self.emission_amount = np.float32(param.pathways2Net0.evaluate('CCUS!O63')) # fmt: on # histories self.observations_all = [] self.actions_all = [] self.rewards_all = [] self.weightedRewardComponents_all = [] self.deployments_all = [] self.emission_amount_all = [] def to_observation(self): observation = (self.step_count,) + tuple( self.randomized_costs ) if self.noise_observability == False: observation = (self.step_count,) return observation def is_done(self): done = bool(self.step_count >= self.steps_per_episode - 1) return done def record(state, action, reward, weightedRewardComponents): state.observations_all.append(state.to_observation()) state.actions_all.append(action) state.rewards_all.append(reward) state.weightedRewardComponents_all.append(weightedRewardComponents) state.deployments_all.append(state.deployments) state.emission_amount_all.append(state.emission_amount) def observation_space(self): obs_low = np.full_like(self.state.to_observation(), 0, dtype=np.float32) obs_low[0] = -1 # first entry of obervation is the timestep obs_high = np.full_like(self.state.to_observation(), 1e5, dtype=np.float32) obs_high[0] = self.param.steps_per_episode # first entry of obervation is the timestep if self.state.noise_observability == True: obs_high[5] = 1e6 obs_high[7] = 1e6 result = spaces.Box(obs_low, obs_high, dtype=np.float32) return result def action_space(self): # action specifies yearly increments in offshore wind power, blue hydrogen, and green hydrogen respectively # lower limit on increments is zero act_low = np.zeros(self.param.techs, dtype=np.float32) # upper limits on increments depend on the technology act_high = np.float32([27, 25, 24]) result = spaces.Box(act_low, act_high, dtype=np.float32) return result def apply_action(action, state, param): # copy model from state to param param.pathways2Net0 = state.pathways2Net0 # each technology gives rewards of various types (ie costs and revenues) # create an array to hold the reward components (aggregated over all technologies): weightedRewardComponents = np.zeros( param.reward_types ) # read in the current deployment for offshore wind power offshoreWind = param.pathways2Net0.evaluate( # "GALE!P" + str(param.pathways2Net0RowInds[state.step_count] - 1) "GALE!S" + str(param.pathways2Net0RowInds[state.step_count] - 1) ) # add the increment of offshore wind for this timestep (specified by the action), imposing a maximum deployment offshoreWind = np.clip(offshoreWind + action[0], offshoreWind, 380) # similarly for blue and green hydrogen blueHydrogen = param.pathways2Net0.evaluate( "GALE!X" + str(param.pathways2Net0RowInds[state.step_count] - 1) ) blueHydrogen = np.clip(blueHydrogen + action[1], blueHydrogen, 270) greenHydrogen = param.pathways2Net0.evaluate( "GALE!Y" + str(param.pathways2Net0RowInds[state.step_count] - 1) ) greenHydrogen =
np.clip(greenHydrogen + action[2], greenHydrogen, 253)
numpy.clip
# MIT License - Copyright <NAME> and contributors # See the LICENSE.md file included in this source code package """The one-line interface to this library. Do not import this module directly, but rather import the main ennemi module. """ from __future__ import annotations import concurrent.futures from typing import Callable, Iterable, Optional, Sequence, Tuple, Type, TypeVar, Union import itertools import math import numpy as np from os import cpu_count import sys from ._entropy_estimators import _estimate_single_mi, _estimate_conditional_mi,\ _estimate_discrete_mi, _estimate_conditional_discrete_mi,\ _estimate_semidiscrete_mi, _estimate_conditional_semidiscrete_mi,\ _estimate_single_entropy, _estimate_discrete_entropy try: import numpy.typing as npt FloatArray = npt.NDArray[np.float64] ArrayLike = npt.ArrayLike except: # Just stop supporting annotations altogether on NumPy 1.20 and below FloatArray = np.ndarray # type: ignore ArrayLike = np.ndarray # type: ignore GenArrayLike = TypeVar("GenArrayLike", Sequence[float], Sequence[Sequence[float]], FloatArray) T = TypeVar("T") def normalize_mi(mi: Union[float, GenArrayLike]) -> GenArrayLike: """Normalize mutual information values to the unit interval. Equivalent to passing `normalize=True` to the estimation methods. The return value matches the correlation coefficient between two Gaussian random variables with unit variance. This coefficient is preserved by all monotonic transformations, including scaling. The value is positive regardless of the sign of the correlation. Negative values are kept as-is. This is because mutual information is always non-negative, but `estimate_mi` may produce negative values. The normalization is not applicable to discrete variables: it is not possible to get coefficient 1.0 even when the variables are completely determined by each other. The formula assumes that the both variables have an infinite amount of entropy. Parameters: --- mi : array_like or float One or more mutual information values (in nats). If this is a Pandas `DataFrame` or `Series`, the columns and indices are preserved. """ # If the parameter is a pandas type, preserve the columns and indices if "pandas" in sys.modules: import pandas if isinstance(mi, (pandas.DataFrame, pandas.Series)): return mi.applymap(_normalize) return np.vectorize(_normalize, otypes=[float])(mi) def _normalize(mi: float) -> float: if mi <= 0.0: return mi else: return np.sqrt(1 - np.exp(-2 * mi)) def estimate_entropy(x: ArrayLike, *, k: int = 3, multidim: bool = False, discrete: bool = False, mask: Optional[ArrayLike] = None, cond: Optional[ArrayLike] = None, drop_nan: bool = False) -> FloatArray: """Estimate the entropy of one or more continuous random variables. Returns the estimated entropy in nats. If `x` is two-dimensional, each marginal variable is estimated separately by default. If the `multidim` parameter is set to True, the array is interpreted as a single n-dimensional random variable. If `x` is a pandas `DataFrame` or `Series`, the result is a `DataFrame`. If the `mask` parameter is set, only those `x` observations with the matching mask element set to `True` are used for estimation. The calculation is described in Kraskov et al. (2004): Estimating mutual information. Physical Review E 69. doi:10.1103/PhysRevE.69.066138 Positional or keyword parameters: --- x : array_like A 1D or 2D array of observations. The interpretation of columns depends on the `multidim` parameter. Optional keyword parameters: --- k : int, default 3 The number of neighbors to consider. multidim : bool, default False If False (the default), each column of `x` is considered a separate variable. If True, the (n x m) array is considered a single m-dimensional variable. discrete : bool, default False If True, the variable and the optional conditioning variable are interpreted as discrete variables. The result will be calculated using the mathematical definition of entropy. mask : array_like or None If specified, an array of booleans that gives the input elements to use for estimation. Use this to exclude some observations from consideration. Currently, the mask must be one-dimensional. cond : array_like or None Optional 1D or 2D array of observations used for conditioning. All variables in a 2D array are used together. The calculation uses the chain rule H(X|Y) = H(X,Y) - H(Y) without any correction for potential estimation bias. drop_nan : bool, default False If True, all NaN (not a number) values in `x` and `cond` are masked out. Not applied to discrete data. """ x_arr = np.asarray(x) # Validate the parameters # Post-masking validation is done just before going to the algorithm if mask is not None: mask = np.asarray(mask) _validate_mask(mask, x_arr.shape[0]) if not 1 <= x_arr.ndim <= 2: raise ValueError("x must be one- or two-dimensional") _validate_k_type(k) if cond is None: result = _estimate_entropy(x_arr, k, multidim, mask, discrete, drop_nan) else: cond_arr = np.asarray(cond) _validate_cond(cond_arr, x_arr.shape[0]) result = _estimate_conditional_entropy(x_arr, cond_arr, k, multidim, mask, discrete, drop_nan) # If the original x array was a pandas data type, return a DataFrame # As an exception, if multidim=True, we still return a NumPy scalar if not multidim and "pandas" in sys.modules: import pandas if isinstance(x, pandas.DataFrame): return pandas.DataFrame(np.atleast_2d(result), columns=x.columns) elif isinstance(x, pandas.Series): return pandas.DataFrame(np.atleast_2d(result), columns=[x.name]) return result def _estimate_entropy(x: FloatArray, k: int, multidim: bool, mask: Optional[ArrayLike], discrete: bool, drop_nan: bool) -> FloatArray: """Strongly typed estimate_entropy().""" if multidim or x.ndim == 1: x = _mask_and_validate_entropy(x, mask, drop_nan, discrete, k) return np.asarray(_call_entropy_func(x, k, discrete)) else: nvar = x.shape[1] result = np.empty(nvar) for i in range(nvar): xs = _mask_and_validate_entropy(x[:,i], mask, drop_nan, discrete, k) result[i] = _call_entropy_func(xs, k, discrete) return result def _mask_and_validate_entropy(x: FloatArray, mask: Optional[ArrayLike], drop_nan: bool, discrete: bool, k: int) -> FloatArray: # Apply the mask and drop NaNs # TODO: Support 2D masks (https://github.com/polsys/ennemi/issues/37) if mask is not None: x = x[mask] if drop_nan and not discrete: if x.ndim > 1: x = x[~np.max(np.isnan(x), axis=1)] else: x = x[~np.isnan(x)] # Validate the x array if k >= x.shape[0]: raise ValueError("k must be smaller than number of observations (after lag and mask)") if not discrete and np.any(np.isnan(x)): raise ValueError("input contains NaNs (after applying the mask), pass drop_nan=True to ignore") return x def _estimate_conditional_entropy(x: FloatArray, cond: FloatArray, k: int, multidim: bool, mask: Optional[ArrayLike], discrete: bool, drop_nan: bool) -> FloatArray: """Conditional entropy by the chain rule: H(X|Y) = H(X,Y) - H(Y).""" # Estimate the entropy of cond by the method above (multidim=True) marginal = _estimate_entropy(cond, k, True, mask, discrete, drop_nan) # The joint entropy depends on multidim and number of dimensions: # In the latter case, the joint entropy is calculated for each x variable if multidim or x.ndim == 1: xs = _mask_and_validate_entropy(np.column_stack((x, cond)), mask, drop_nan, discrete, k) return np.asarray(_call_entropy_func(xs, k, discrete) - marginal) else: nvar = x.shape[1] joint = np.empty(nvar) # type: npt.NDArray[np.float64] for i in range(nvar): xs = _mask_and_validate_entropy(np.column_stack((x[:,i], cond)), mask, drop_nan, discrete, k) joint[i] = _call_entropy_func(xs, k, discrete) return joint - marginal def _call_entropy_func(xs: FloatArray, k: int, discrete: bool) -> float: if discrete: return _estimate_discrete_entropy(xs, k) else: return _estimate_single_entropy(xs, k) def estimate_mi(y: ArrayLike, x: ArrayLike, lag: Union[Sequence[int], ArrayLike, int] = 0, *, k: int = 3, cond: Optional[ArrayLike] = None, cond_lag: Union[Sequence[int], Sequence[Sequence[int]], ArrayLike, int] = 0, mask: Optional[ArrayLike] = None, discrete_y: bool = False, discrete_x: bool = False, preprocess: bool = True, drop_nan: bool = False, normalize: bool = False, max_threads: Optional[int] = None, callback: Optional[Callable[[int, int], None]] = None) -> FloatArray: """Estimate the mutual information between y and each x variable. - Unconditional MI: the default. - Conditional MI: pass a `cond` array. - Discrete-continuous MI: set `discrete_y` to True. Returns the estimated mutual information (in nats) for continuous variables. The result is a 2D `ndarray` where the first index represents `lag` values and the second index represents `x` columns. If `x` is a pandas `DataFrame` or `Series`, the result is a `DataFrame`. The time lag is interpreted as `y(t) ~ x(t - lag) | z(t - cond_lag)`. The time lags are applied to the `x` and `cond` arrays such that the `y` array stays the same every time. This means that `y` is cropped to `y[max(max_lag,0) : N+min(min_lag,0)]`. The `cond_lag` parameter specifies the lag for the `cond` array separately from the `x` lag. If the `mask` parameter is set, only those `y` observations with the matching mask element set to `True` are used for estimation. For accurate results, the variables should be transformed to roughly symmetrical distributions. If `preprocess==True`, the variables are automatically scaled to unit variance. The calculation is based on "Kraskov et al. (2004): Estimating mutual information. Physical Review E 69. doi:10.1103/PhysRevE.69.066138" and derivatives by (Frenzel and Pompe 2007) and (Ross 2014). Positional or keyword parameters: --- y : array_like A 1D array of observations. If `discrete_y` is True, the values may be of any type. Otherwise the values must be numeric. x : array_like A 1D or 2D array where the columns are one or more variables and the rows are observations. The number of rows must be the same as in y. lag : int or array_like, default 0 A time lag or 1D array of time lags to apply. A positive lag means that `y` depends on earlier `x` values and vice versa. Optional keyword parameters: --- k : int, default 3 The number of neighbors to consider. Ignored if both variables are discrete. cond : array_like or None Optional 1D or 2D array of observations used for conditioning. Must have as many observations as y. All variables in a 2D array are used together. If both `discrete_x` and `discrete_y` are set, this is interpreted as a discrete variable. (In future versions, this might be set explicitly.) cond_lag : int or array_like, default 0 Lag applied to the cond array. Must be broadcastable to the size of `lag`. Can be two-dimensional to lag each conditioning variable separately. mask : array_like or None If specified, an array of booleans that gives the `y` elements to use for estimation. Use this to exclude some observations from consideration while preserving the time series structure of the data. Elements of `x` and `cond` are masked with the lags applied. discrete_x : bool, default False discrete_y : bool, default False If True, the respective variable is interpreted as a discrete variable. Values of the variable may be non-numeric. preprocess : bool, default True By default, continuous variables are scaled to unit variance and added with low-amplitude noise. The noise uses a fixed random seed. drop_nan : bool, default False If True, all NaN (not a number) values are masked out. normalize : bool, default False If True, the results will be normalized to correlation coefficient scale. Same as calling `normalize_mi` on the results. The results are sensible only if both variables are continuous. max_threads : int or None The maximum number of threads to use for estimation. By default, the number of CPU cores is used. callback : method or None A method to call when each estimation task is completed. The method must take two integer parameters: `x` variable index and lag value. This method should be very short. Because Python code is not executed concurrently, the callback may slow down other estimation tasks. """ # Convert parameters to consistent types # Keep the original x parameter around for the Pandas data frame check x_arr = np.asarray(x) y_arr = np.asarray(y) if cond is not None: # Make cond 2D cond_arr = np.column_stack((np.asarray(cond),)) ncond = cond_arr.shape[1] else: cond_arr = None ncond = 1 mask_arr = None # type: Optional[npt.NDArray[np.float64]] if mask is not None: mask_arr = np.asarray(mask) # Broadcast cond_lag to be (#lags, #cond vars) in shape lag_arr = np.atleast_1d(lag) cond_lag_arr = np.broadcast_to(np.column_stack((cond_lag,)), (lag_arr.shape[0], ncond)) # Check the parameters and run the estimation result = _estimate_mi(y_arr, x_arr, lag_arr, k, cond_arr, cond_lag_arr, mask_arr, discrete_x, discrete_y, preprocess, drop_nan, max_threads, callback) # Normalize if requested if normalize: result = normalize_mi(result) # If the input was a pandas data frame, set the column names if "pandas" in sys.modules: import pandas if isinstance(x, pandas.DataFrame): return pandas.DataFrame(result, index=lag_arr, columns=x.columns) elif isinstance(x, pandas.Series): return pandas.DataFrame(result, index=lag_arr, columns=[x.name]) return result def _estimate_mi(y: FloatArray, x: FloatArray, lag: FloatArray, k: int, cond: Optional[FloatArray], cond_lag: FloatArray, mask: Optional[FloatArray], discrete_x: bool, discrete_y: bool, preprocess: bool, drop_nan: bool, max_threads: Optional[int], callback: Optional[Callable[[int, int], None]]) -> FloatArray: """This method is strongly typed, estimate_mi() does necessary conversion.""" _check_parameters(x, y, k, cond, mask) # These are used for determining the y range to use min_lag = min(np.min(lag), np.min(cond_lag)) max_lag = max(np.max(lag), np.max(cond_lag)) # Validate that the lag is not too large if max_lag - min_lag >= y.size or max_lag >= y.size or min_lag <= -y.size: raise ValueError("lag is too large, no observations left") if x.ndim == 1: nvar = 1 else: _, nvar = x.shape # Create a list of all variable, time lag combinations # The params map contains tuples for simpler passing into worker function indices = list(itertools.product(range(len(lag)), range(nvar))) if x.ndim == 1: params = list(map(lambda i: (x, y, lag[i[0]], max_lag, min_lag, k, mask, cond, cond_lag[i[0]], discrete_x, discrete_y, preprocess, drop_nan), indices)) else: params = list(map(lambda i: (x[:,i[1]], y, lag[i[0]], max_lag, min_lag, k, mask, cond, cond_lag[i[0]], discrete_x, discrete_y, preprocess, drop_nan), indices)) # Run the estimation, possibly in parallel def wrapped_callback(i: int) -> None: if callback is not None: lag_index, var_index = indices[i] callback(var_index, lag[lag_index]) time_estimate = _get_mi_time_estimate(len(y), cond, k) conc_result = _map_maybe_parallel(_lagged_mi, params, max_threads, time_estimate, wrapped_callback) # Collect the results to a 2D array result = np.empty((len(lag), nvar)) for index, res in zip(indices, conc_result): result[index] = res return result def _check_parameters(x: FloatArray, y: Optional[FloatArray], k: int, cond: Optional[FloatArray], mask: Optional[FloatArray]) -> None: """Does most of parameter checking, but some is still left to _lagged_mi.""" _validate_k_type(k) # Validate the array shapes and lengths if not 1 <= len(x.shape) <= 2: raise ValueError("x must be one- or two-dimensional") if y is not None: if len(y.shape) > 1: raise ValueError("y must be one-dimensional") if (x.shape[0] != y.shape[0]): raise ValueError("x and y must have same length") # Validate the mask and condition if mask is not None: _validate_mask(mask, x.shape[0]) if cond is not None: _validate_cond(cond, x.shape[0]) def _validate_k_type(k: int) -> None: if not isinstance(k, int): raise TypeError("k must be int") if k <= 0: raise ValueError("k must be greater than zero") def _validate_mask(mask: FloatArray, input_len: int) -> None: if len(mask.shape) > 1: raise ValueError("mask must be one-dimensional") if len(mask) != input_len: raise ValueError("mask length does not match input length") if mask.dtype != bool: raise TypeError("mask must contain only booleans") def _validate_cond(cond: FloatArray, input_len: int) -> None: if not 1 <= cond.ndim <= 2: raise ValueError("cond must be one- or two-dimensional") if input_len != len(cond): raise ValueError("x and cond must have same length") def pairwise_mi(data: ArrayLike, *, k: int = 3, cond: Optional[ArrayLike] = None, mask: Optional[ArrayLike] = None, discrete: ArrayLike = False, preprocess: bool = True, drop_nan: bool = False, normalize: bool = False, max_threads: Optional[int] = None, callback: Optional[Callable[[int, int], None]] = None) -> FloatArray: """Estimate the pairwise MI between each variable. Returns a matrix where the (i,j)'th element is the mutual information between the i'th and j'th columns in the data. The values are in nats or in the normalized scale depending on the `normalize` parameter. The diagonal contains NaNs (for better visualization, as the auto-MI should be infinite). Positional or keyword parameters: --- data : array_like A 2D array where the columns represent variables. Optional keyword parameters: --- k : int, default 3 The number of neighbors to consider. Ignored if both variables are discrete. cond : array_like or None Optional 1D or 2D array of observations used for conditioning. Must have as many observations as the data. All variables in a 2D array are used together. mask : array_like or None If specified, an array of booleans that gives the data elements to use for estimation. Use this to exclude some observations from consideration. discrete : bool or array_like, default False Specifies the columns that contain discrete data. Conditioning can be used only if the data is all-continuous or all-discrete (in which case the condition is interpreted as discrete). preprocess : bool, default True By default, continuous variables are scaled to unit variance and added with low-amplitude noise. The noise uses a fixed random seed. drop_nan : bool, default False If True, all NaN (not a number) values in `x` and `cond` are masked out. normalize : bool, default False If True, the MI values will be normalized to correlation coefficient scale. Same as calling `normalize_mi` on the results. The results are sensible only if both variables are continuous. max_threads : int or None The maximum number of threads to use for estimation. By default, the number of CPU cores is used. callback : method or None A method to call when each estimation task is completed. The method must take two integer parameters, representing the variable indices. This method should be very short. Because Python code is not executed concurrently, the callback may slow down other estimation tasks. """ # Convert arrays to consistent type; _lagged_mi assumes cond to be 2D data_arr = np.asarray(data) cond_arr = None # type: Optional[npt.NDArray[np.float64]] mask_arr = None # type: Optional[npt.NDArray[np.float64]] if cond is not None: cond_arr = np.column_stack((np.asarray(cond),)) if mask is not None: mask_arr = np.asarray(mask) # If there is just one variable, return the trivial result if data_arr.ndim == 1 or data_arr.shape[1] == 1: return np.full((1,1), np.nan) discrete_arr = np.broadcast_to(discrete, data_arr.shape[1]) result = _pairwise_mi(data_arr, k, cond_arr, preprocess, drop_nan, mask_arr, discrete_arr, max_threads, callback) # Normalize if asked for if normalize: result = normalize_mi(result) # If data was a pandas DataFrame, return a DataFrame with matching names if "pandas" in sys.modules: import pandas if isinstance(data, pandas.DataFrame): return pandas.DataFrame(result, index=data.columns, columns=data.columns) return result def _pairwise_mi(data: FloatArray, k: int, cond: Optional[FloatArray], preprocess: bool, drop_nan: bool, mask: Optional[FloatArray], discrete: FloatArray, max_threads: Optional[int], callback: Optional[Callable[[int, int], None]]) -> FloatArray: """Strongly typed pairwise MI. The data array is at least 2D.""" _check_parameters(data, None, k, cond, mask) if (not (np.all(discrete) or np.all(~discrete))) and (cond is not None): raise ValueError("Conditioning is not supported with mixed discrete and continuous data. " + "This is a limitation that can be lifted in the future (see " + "https://github.com/polsys/ennemi/issues/87).") nobs, nvar = data.shape # Fake a cond_lag of correct shape for _lagged_mi # TODO: Actually support cond lag (https://github.com/polsys/ennemi/issues/61) if cond is not None: cond_lag = np.full(cond.shape[1], 0) else: cond_lag = np.asarray(0) # Create a list of variable pairs # By symmetry, it suffices to consider a triangular matrix indices = [] params = [] for i in range(nvar): for j in range(i+1, nvar): indices.append((i, j)) params.append((data[:,i], data[:,j], 0, 0, 0, k, mask, cond, cond_lag, discrete[i], discrete[j], preprocess, drop_nan)) # Run the MI estimation for each pair, possibly in parallel def wrapped_callback(i: int) -> None: if callback is not None: callback(*indices[i]) time_estimate = _get_mi_time_estimate(nobs, cond, k) conc_result = _map_maybe_parallel(_lagged_mi, params, max_threads, time_estimate, wrapped_callback) # Collect the results, creating a symmetric matrix now result = np.full((nvar, nvar), np.nan) for (i,j), res in zip(indices, conc_result): result[i,j] = res result[j,i] = res return result def _get_mi_time_estimate(n: int, cond: Optional[FloatArray], k: int) -> float: if cond is None: n_cond = 0 else: # cond is guaranteed to be two-dimensional n_cond = cond.shape[1] # These are determined pretty experimentally on a laptop computer return n**(1.0 + 0.05*n_cond) * (0.9 + 0.1*math.sqrt(k)) * 1e-5 def _map_maybe_parallel(func: Callable[[T], float], params: Sequence[T], max_threads: Optional[int], time_estimate: float, callback: Callable[[int], None]) -> Iterable[float]: # If there is benefit in doing so, and the user has not overridden the # heuristic, execute the estimation in multiple parallel threads. # Multithreading is fine, because the estimator code releases the # Global Interpreter Lock for most of the time. Because the threads are # CPU bound, we should use at most as many threads as there are cores. # If the total execution time is very small, do not bother with threading if len(params) * time_estimate < 0.2: num_threads = 1 else: num_threads = cpu_count() or 1 if max_threads is not None: num_threads = min(num_threads, max_threads) if num_threads > 1: # Submit the individual tasks to thread pool result = [ np.nan ] * len(params) with concurrent.futures.ThreadPoolExecutor(num_threads, "ennemi-work") as executor: tasks = [] # Do some work that would be done by executor.map() so that we can # implement callbacks. The result list must be in the same order # as the params list. # Type comments because type info for Future comes from typeshed; # the class itself is not subscriptable def get_callback(i): # type: (int) -> Callable[[concurrent.futures.Future[float]], None] def done(future): # type: (concurrent.futures.Future[float]) -> None result[i] = future.result() callback(i) return done for (i, p) in enumerate(params): task = executor.submit(func, p) task.add_done_callback(get_callback(i)) tasks.append(task) concurrent.futures.wait(tasks) return result else: # Run the tasks sequentially # To support callbacks, we reimplement map() here too result = [] for (i, p) in enumerate(params): result.append(func(p)) callback(i) return result def _lagged_mi(param_tuple: Tuple[FloatArray, FloatArray, int, int, int, int, Optional[FloatArray], Optional[FloatArray], FloatArray, bool, bool, bool, bool]) -> float: # Unpack the param tuple used for possible cross-thread transfer x, y, lag, max_lag, min_lag, k, mask, cond, cond_lag,\ discrete_x, discrete_y, preprocess, drop_nan = param_tuple # Handle negative lags correctly min_lag = min(min_lag, 0) max_lag = max(max_lag, 0) # The x observations start from max_lag - lag xs = x[max_lag-lag : len(x)-lag+min_lag] # The y observations always start from max_lag ys = y[max_lag : len(y)+min_lag] # The cond observations have their own lag terms if cond is not None: zs = np.column_stack([cond[max_lag-cond_lag[i] : len(cond)-cond_lag[i]+min_lag, i]\ for i in range(len(cond_lag))]) else: zs = None # Apply masks, validate and preprocess the data xs, ys, zs = _apply_masks(xs, ys, zs, mask, min_lag, max_lag, drop_nan) _validate_masked_data(xs, ys, zs, k, discrete_x, discrete_y) if preprocess: xs, ys, zs = _rescale_data(xs, ys, zs, discrete_x, discrete_y) # Apply the relevant estimation method if cond is None: if discrete_x and discrete_y: return _estimate_discrete_mi(xs, ys) elif discrete_x: return _estimate_semidiscrete_mi(ys, xs, k) if discrete_y: return _estimate_semidiscrete_mi(xs, ys, k) else: return _estimate_single_mi(xs, ys, k) else: if discrete_x and discrete_y: return _estimate_conditional_discrete_mi(xs, ys, zs) elif discrete_x: return _estimate_conditional_semidiscrete_mi(ys, xs, zs, k) if discrete_y: return _estimate_conditional_semidiscrete_mi(xs, ys, zs, k) else: return _estimate_conditional_mi(xs, ys, zs, k) def _apply_masks(xs: FloatArray, ys: FloatArray, zs: Optional[FloatArray], mask: Optional[FloatArray], min_lag: int, max_lag: int, drop_nan: bool)\ -> Tuple[FloatArray, FloatArray, Optional[FloatArray]]: # Apply the mask if mask is not None: mask_subset = mask[max_lag : len(mask)+min_lag] xs = xs[mask_subset] ys = ys[mask_subset] if zs is not None: zs = zs[mask_subset] # Drop NaNs if drop_nan: notna = ~(
np.isnan(xs)
numpy.isnan
import torch from torch import nn from torch import distributions import numpy as np import pfrl from pfrl import explorers from pfrl.replay_buffer import high_level_batch_experiences_with_goal from pfrl.agents import HIROHighLevelGoalConditionedTD3, GoalConditionedTD3 from pfrl.nn import ConstantsMult from pfrl.nn.lmbda import Lambda class HRLControllerBase(): def __init__( self, state_dim, goal_dim, action_dim, scale, replay_buffer, actor_lr, critic_lr, expl_noise, policy_noise, noise_clip, gamma, policy_freq, tau, is_low_level, buffer_freq, minibatch_size, gpu, add_entropy, burnin_action_func=None, replay_start_size=2500): self.scale = scale # parameters self.expl_noise = expl_noise self.policy_noise = policy_noise self.noise_clip = noise_clip self.gamma = gamma self.policy_freq = policy_freq self.tau = tau self.is_low_level = is_low_level self.minibatch_size = minibatch_size self.add_entropy = add_entropy # create td3 agent self.device = torch.device(f'cuda:{gpu}') if self.add_entropy: def squashed_diagonal_gaussian_head(x): mean, log_scale = torch.chunk(x, 2, dim=-1) log_scale = torch.clamp(log_scale, -20.0, 2.0) var = torch.exp(log_scale * 2) base_distribution = distributions.Independent( distributions.Normal(loc=mean, scale=torch.sqrt(var)), 1 ) return base_distribution policy = nn.Sequential( nn.Linear(state_dim + goal_dim, 300), nn.ReLU(), nn.Linear(300, 300), nn.ReLU(), nn.Linear(300, action_dim * 2), nn.Tanh(), ConstantsMult(torch.cat((torch.tensor(self.scale), torch.ones(self.scale.size))).float().to(self.device)), # pfrl.policies.DeterministicHead(), Lambda(squashed_diagonal_gaussian_head), ) else: policy = nn.Sequential( nn.Linear(state_dim + goal_dim, 300), nn.ReLU(), nn.Linear(300, 300), nn.ReLU(), nn.Linear(300, action_dim), nn.Tanh(), ConstantsMult(torch.tensor(self.scale).float().to(self.device)), pfrl.policies.DeterministicHead(), ) policy_optimizer = torch.optim.Adam(policy.parameters(), lr=actor_lr) def make_q_func_with_optimizer(): q_func = nn.Sequential( pfrl.nn.ConcatObsAndAction(), nn.Linear(state_dim + goal_dim + action_dim, 300), nn.ReLU(), nn.Linear(300, 300), nn.ReLU(), nn.Linear(300, 1), ) q_func_optimizer = torch.optim.Adam(q_func.parameters(), lr=critic_lr) return q_func, q_func_optimizer q_func1, q_func1_optimizer = make_q_func_with_optimizer() q_func2, q_func2_optimizer = make_q_func_with_optimizer() # TODO - have proper low and high values from action space. # from the hiro paper, the scale is 1.0 explorer = explorers.AdditiveGaussian( scale=self.expl_noise*1.0, low=-self.scale, high=self.scale ) def default_target_policy_smoothing_func(batch_action): """Add noises to actions for target policy smoothing.""" noise = torch.clamp(self.policy_noise * torch.randn_like(batch_action), -self.noise_clip, self.noise_clip) smoothed_action = batch_action + noise smoothed_action = torch.min(smoothed_action, torch.tensor(self.scale).to(self.device).float()) smoothed_action = torch.max(smoothed_action, torch.tensor(-self.scale).to(self.device).float()) return smoothed_action if self.is_low_level: # standard goal conditioned td3 self.agent = GoalConditionedTD3( policy, q_func1, q_func2, policy_optimizer, q_func1_optimizer, q_func2_optimizer, replay_buffer, gamma=gamma, soft_update_tau=tau, explorer=explorer, update_interval=1, policy_update_delay=policy_freq, replay_start_size=replay_start_size, buffer_freq=buffer_freq, minibatch_size=minibatch_size, gpu=gpu, add_entropy=self.add_entropy, burnin_action_func=burnin_action_func, target_policy_smoothing_func=default_target_policy_smoothing_func ) else: self.agent = HIROHighLevelGoalConditionedTD3( policy, q_func1, q_func2, policy_optimizer, q_func1_optimizer, q_func2_optimizer, replay_buffer, gamma=gamma, soft_update_tau=tau, explorer=explorer, update_interval=1, policy_update_delay=policy_freq, replay_start_size=replay_start_size/buffer_freq, buffer_freq=buffer_freq, minibatch_size=minibatch_size, gpu=gpu, add_entropy=self.add_entropy, burnin_action_func=burnin_action_func, target_policy_smoothing_func=default_target_policy_smoothing_func ) self.device = self.agent.device def save(self, directory): """ save the internal state of the TD3 agent. """ self.agent.save(directory) def load(self, directory): """ load the internal state of the TD3 agent. """ self.agent.load(directory) def policy(self, state, goal): """ run the policy (actor). """ action = self.agent.act_with_goal(torch.FloatTensor(state), torch.FloatTensor(goal)) return np.clip(action, a_min=-self.scale, a_max=self.scale) def _observe(self, states, goals, rewards, done, state_arr=None, action_arr=None): """ observe, and train (if we can sample from the replay buffer) """ self.agent.observe_with_goal(torch.FloatTensor(states), torch.FloatTensor(goals), rewards, done, None) def observe(self, states, goals, rewards, done, iterations=1): """ get data from the replay buffer, and train. """ return self._observe(states, goals, rewards, goals, done) # lower controller class LowerController(HRLControllerBase): def __init__( self, state_dim, goal_dim, action_dim, scale, replay_buffer, add_entropy, actor_lr=0.0001, critic_lr=0.001, expl_noise=0.1, policy_noise=0.2, noise_clip=0.5, gamma=0.99, policy_freq=2, tau=0.005, is_low_level=True, buffer_freq=10, minibatch_size=100, gpu=None, burnin_action_func=None): super(LowerController, self).__init__( state_dim=state_dim, goal_dim=goal_dim, action_dim=action_dim, scale=scale, replay_buffer=replay_buffer, actor_lr=actor_lr, critic_lr=critic_lr, expl_noise=expl_noise, policy_noise=policy_noise, noise_clip=noise_clip, gamma=gamma, policy_freq=policy_freq, tau=tau, is_low_level=is_low_level, buffer_freq=buffer_freq, minibatch_size=minibatch_size, gpu=gpu, add_entropy=add_entropy, burnin_action_func=burnin_action_func) def observe(self, n_s, g, r, done): return self._observe(n_s, g, r, done) # higher controller class HigherController(HRLControllerBase): def __init__( self, state_dim, goal_dim, action_dim, scale, replay_buffer, add_entropy, actor_lr=0.0001, critic_lr=0.001, expl_noise=0.1, policy_noise=0.2, noise_clip=0.5, gamma=0.99, policy_freq=2, tau=0.005, is_low_level=False, buffer_freq=10, minibatch_size=100, gpu=None, burnin_action_func=None): super(HigherController, self).__init__( state_dim=state_dim, goal_dim=goal_dim, action_dim=action_dim, scale=scale, replay_buffer=replay_buffer, actor_lr=actor_lr, critic_lr=critic_lr, expl_noise=expl_noise, policy_noise=policy_noise, noise_clip=noise_clip, gamma=gamma, policy_freq=policy_freq, tau=tau, is_low_level=is_low_level, buffer_freq=buffer_freq, minibatch_size=minibatch_size, gpu=gpu, add_entropy=add_entropy, burnin_action_func=burnin_action_func) self.action_dim = action_dim def _off_policy_corrections(self, low_con, batch_size, sgoals, states, actions, candidate_goals=8): """ implementation of the novel off policy correction in the HIRO paper. """ first_s = [s[0] for s in states] # First x last_s = [s[-1] for s in states] # Last x # Shape: (batch_size, 1, subgoal_dim) # diff = 1 # different in goals diff_goal = (np.array(last_s) - np.array(first_s))[:, np.newaxis, :self.action_dim] # Shape: (batch_size, 1, subgoal_dim) # original = 1 # random = candidate_goals original_goal = np.array(sgoals)[:, np.newaxis, :] # select random goals random_goals = np.random.normal(loc=diff_goal, scale=.5*self.scale[None, None, :], size=(batch_size, candidate_goals, original_goal.shape[-1])) random_goals = random_goals.clip(-self.scale, self.scale) # Shape: (batch_size, 10, subgoal_dim) candidates = np.concatenate([original_goal, diff_goal, random_goals], axis=1) # states = np.array(states)[:, :-1, :] actions = np.array(actions) seq_len = len(states[0]) # For ease new_batch_sz = seq_len * batch_size action_dim = actions[0][0].shape obs_dim = states[0][0].shape ncands = candidates.shape[1] true_actions = actions.reshape((new_batch_sz,) + action_dim) observations = states.reshape((new_batch_sz,) + obs_dim) goal_shape = (new_batch_sz, self.action_dim) # observations = get_obs_tensor(observations, sg_corrections=True) # batched_candidates = np.tile(candidates, [seq_len, 1, 1]) # batched_candidates = batched_candidates.transpose(1, 0, 2) policy_actions = np.zeros((ncands, new_batch_sz) + action_dim) low_con.agent.training = False for c in range(ncands): subgoal = candidates[:,c] candidate = (subgoal + states[:, 0, :self.action_dim])[:, None] - states[:, :, :self.action_dim] candidate = candidate.reshape(*goal_shape) policy_actions[c] = low_con.policy(torch.tensor(observations).float(), torch.tensor(candidate).float()) low_con.agent.training = True difference = (policy_actions - true_actions) difference =
np.where(difference != -np.inf, difference, 0)
numpy.where
from ..panels import boxPanel import numpy as np NAME = 'Threshold' DESCRIPTION = 'Identify the CP by thresholding it' DOI = '' import numpy as np class CP(boxPanel): # Threshold def create(self): self.addParameter('Athreshold','float','Align Threshold [nN]',10.0) self.addParameter('deltaX','float','Align left step [nm]',2000.0) self.addParameter('Fthreshold','float','AVG area [nm]',100.0) self.addParameter('shift','float','shift CP [nm]',0) def calculate(self, x,y): yth = self.getValue('Athreshold')*1e-9 if yth > np.max(y) or yth <
np.min(y)
numpy.min
import numpy as np import networkx as nx from networkx.algorithms.traversal.breadth_first_search import bfs_edges from osgeo import gdal, osr from shapely.geometry import Polygon, Point def get_sea_level(year: int, slr_intensity: str = 'low', event_freq: int = None) -> np.float: # Get sea level return period associated with tides, surges, and tsunamis if event_freq is None: sl = 0.951 elif event_freq == 5: sl = 8.2 / 3.281 elif event_freq == 10: sl = 8.4 / 3.281 elif event_freq == 50: sl = 8.9 / 3.281 elif event_freq == 100: sl = 9.2 / 3.281 elif event_freq == 500: sl = 9.7 / 3.281 else: raise NotImplementedError # Add sea level rise. if year == 2000: sl += 0. # Reference year. elif year == 2022: if slr_intensity == 'low': sl += 2 / 39.37 # 2 in elif slr_intensity == 'medium': sl += 4 / 39.37 # 4 in elif slr_intensity == 'high': sl += 7 / 39.37 # 7 in elif year == 2035: if slr_intensity == 'low': sl += 3 / 39.37 # 3 in elif slr_intensity == 'medium': sl += 7 / 39.37 # 7 in elif slr_intensity == 'high': sl += 13 / 39.37 # 13 in elif year == 2050: if slr_intensity == 'low': sl += 4.5 / 39.37 # 4.5 in elif slr_intensity == 'medium': sl += 11.0 / 39.37 # 11 in elif slr_intensity == 'high': sl += 23.8 / 39.37 # 23.8 in elif year == 2070: if slr_intensity == 'low': sl += 8.4 / 39.37 # 8.4 in elif slr_intensity == 'medium': sl += 18.6 / 39.37 # 18.5 in elif slr_intensity == 'high': sl += 38.5 / 39.37 # 38.5 in elif year == 2100: if slr_intensity == 'low': sl += 16.5 / 39.37 # 16.5 in elif slr_intensity == 'medium': sl += 36.0 / 39.37 # 36 in elif slr_intensity == 'high': sl += 66.0 / 39.37 # 66 in else: raise NotImplementedError return sl class WaterBarrier: def __init__(self, boundary_points: list, z: float, r: float = 3.): self.boundary_points = boundary_points self.z = z self.r = r self.polygon = Polygon(boundary_points) self.minx, self.miny, self.maxx, self.maxy = self.polygon.bounds def gaussian_elev(self, d: float, d_max: float = 5) -> float: if abs(d) > abs(d_max): return 0. else: sig = self.r / 3 return self.z * np.exp(-0.5 * (d / sig) ** 2) class ElevatedPad(WaterBarrier): def calculate_elevation(self, point: tuple) -> float: pt = Point(point) if (pt.x < self.minx - 1.5 * self.r or pt.x > self.maxx + 1.5 * self.r or pt.y < self.miny - 1.5 * self.r or pt.y > self.maxy + 1.5 * self.r): elev = 0. elif pt.within(self.polygon): elev = self.z else: d = self.polygon.boundary.distance(pt) elev = self.gaussian_elev(d, d_max=1.5 * self.r) return elev class Berm(WaterBarrier): def calculate_elevation(self, point: tuple) -> float: pt = Point(point) if (pt.x < self.minx - 1.5 * self.r or pt.x > self.maxx + 1.5 * self.r or pt.y < self.miny - 1.5 * self.r or pt.y > self.maxy + 1.5 * self.r): elev = 0. elif pt.within(self.polygon): d = self.polygon.exterior.distance(pt) elev = self.gaussian_elev(d, d_max=1.5 * self.r) else: d = self.polygon.boundary.distance(pt) elev = self.gaussian_elev(d, d_max=1.5 * self.r) return elev class Island: def __init__(self, elev: np.ndarray, x: np.ndarray, y: np.ndarray, epsg: str, sea_ref_level: float, sea_ref_point: tuple): self.elev = elev self.x = x self.y = y self.epsg = epsg self.sea_ref_level = sea_ref_level self.sea_ref_point = sea_ref_point self.land_mask = ~self.calculate_sea_mask(sea_ref_level) self.elev_orig =
np.copy(elev)
numpy.copy
# Runtime on 2.3GHz MacBook Pro with 8 Gb of RAM: ~10 minutes # Requires: a file with limb darkening fit information that includes the intensity values # Outputs: a .npy file with locations and values of the lowest I(mu) / I_1 # and the lowest I'(mu) / I_1 for every (T, g, lambda) # Notes: to obtain the required file, run calc_limbdark with the -s option import numpy as np import pickle import pa.lib.limbdark as limbdark import pa.lib.fit as ft import matplotlib.pyplot as plt from matplotlib import rc # real roots of a polynomial within bounds # input: coefficients, lower bound, upper bound def rts(a, b1, b2): r = np.roots(a) r = np.real(r[ np.isreal(r) ]) r = r[ (b1 <= r) & (r <= b2) ] return r # minimum of a polynomial: (location, value) # inputs: polynomial's coefficients, locations of local suprema and boundary points def minim(a, s, b1, b2): pts = np.concatenate( (np.array([b1, b2]), s) ) val = np.polyval(a, pts) i =
np.argmin(val)
numpy.argmin
# encoding: utf-8 # # @Author: <NAME>, <NAME> # @Date: Nov 15, 2021 # @Filename: ism.py # @License: BSD 3-Clause # @Copyright: <NAME>, <NAME> import os.path from astropy import units as u from astropy import constants as c import numpy as np from astropy.io import fits, ascii from astropy.table import Table from scipy.special import sph_harm from astropy.wcs import WCS from astropy.wcs.utils import proj_plane_pixel_scales from astropy.coordinates import SkyCoord from astropy.modeling.models import Sersic2D from dataclasses import dataclass import sys if (sys.version_info[0]+sys.version_info[1]/10.) < 3.8: from backports.cached_property import cached_property else: from functools import cached_property from scipy.ndimage.interpolation import map_coordinates from scipy.interpolate import interp1d, interp2d import lvmdatasimulator from lvmdatasimulator import log import progressbar from joblib import Parallel, delayed from astropy.convolution import convolve_fft, kernels from lvmdatasimulator.utils import calc_circular_mask, convolve_array, set_default_dict_values, \ ism_extinction, check_overlap, assign_units fluxunit = u.erg / (u.cm ** 2 * u.s * u.arcsec ** 2) velunit = u.km / u.s def brightness_inhomogeneities_sphere(harm_amplitudes, ll, phi_cur, theta_cur, rho, med, radius, thickness): """ Auxiliary function producing the inhomogeneities on the brightness distribution for the Cloud of Bubble objects using the spherical harmonics. """ brt = theta_cur * 0 for m in np.arange(-ll, ll + 1): brt += (harm_amplitudes[m + ll * (ll + 1) - 1] * sph_harm(m, ll, phi_cur, theta_cur).real * med * (1 - np.sqrt(abs(rho.value ** 2 / radius.value ** 2 - (1 - thickness / 2) ** 2)))) return brt def sphere_brt_in_line(brt_3d, rad_3d, rad_model, flux_model): """ Auxiliary function computing the brightness of the Cloud or Bubble at given radii and in given line according to the Cloudy models """ p = interp1d(rad_model, flux_model, fill_value='extrapolate', assume_sorted=True) return p(rad_3d) * brt_3d def interpolate_sphere_to_cartesian(spherical_array, x_grid=None, y_grid=None, z_grid=None, rad_grid=None, theta_grid=None, phi_grid=None, pxscale=1. * u.pc): """ Auxiliary function to project the brightness or velocities from the spherical to cartesian coordinates """ x, y, z = np.meshgrid(x_grid, y_grid, z_grid, indexing='ij') phi_c, theta_c, rad_c = xyz_to_sphere(x, y, z, pxscale=pxscale) ir = interp1d(rad_grid, np.arange(len(rad_grid)), bounds_error=False) ith = interp1d(theta_grid, np.arange(len(theta_grid))) iphi = interp1d(phi_grid, np.arange(len(phi_grid))) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_iphi = iphi(phi_c.ravel()) cart_data = map_coordinates(spherical_array, np.vstack([new_ir, new_ith, new_iphi]), order=1, mode='constant', cval=0) return cart_data.reshape([len(x_grid), len(y_grid), len(z_grid)]).T def limit_angle(value, bottom_limit=0, top_limit=np.pi): """ Auxiliary function to limit the angle values to the range of [0, pi] """ value[value < bottom_limit] += (top_limit - bottom_limit) value[value > top_limit] -= (top_limit - bottom_limit) return value def xyz_to_sphere(x, y, z, pxscale=1. * u.pc): """ Auxiliary function to map the coordinates from cartesian to spherical system """ phi_c = np.arctan2(y, x) rad_c = (np.sqrt(x ** 2 + y ** 2 + z ** 2)) rad_c[rad_c == 0 * u.pc] = 1e-3 * pxscale theta_c = (np.arccos(z / rad_c)) phi_c = limit_angle(phi_c, 0 * u.radian, 2 * np.pi * u.radian) theta_c = limit_angle(theta_c, 0 * u.radian, np.pi * u.radian) return phi_c, theta_c, rad_c def find_model_id(file=lvmdatasimulator.CLOUDY_MODELS, check_id=None, params=lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']): """ Checks the input parameters of the pre-computed Cloudy model and return corresponding index in the grid """ with fits.open(file) as hdu: if check_id is None: if params is None: check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning(f'Default Cloudy model will be used (id = {check_id})') else: summary_table = Table(hdu['Summary'].data) indexes = np.arange(len(summary_table)).astype(int) rec_table = np.ones(shape=len(summary_table), dtype=bool) def closest(rec, prop, val): unique_col = np.unique(summary_table[prop][rec]) if isinstance(val, str): res = unique_col[unique_col == val] if len(res) == 0: return "" return res else: return unique_col[np.argsort(np.abs(unique_col - val))[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue rec_table = rec_table & (summary_table[p] == closest(indexes, p, params[p])) indexes = np.flatnonzero(rec_table) if len(indexes) == 0: break if len(indexes) == 0 or len(indexes) == len(summary_table): check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' 'Default Cloudy model will be used (id = {0})'.format(check_id)) elif len(indexes) == 1: check_id = summary_table['Model_ID'][indexes[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue if params[p] != summary_table[p][indexes[0]]: log.warning(f'Use the closest pre-computed Cloudy model with id = {check_id}') break else: check_id = summary_table['Model_ID'][indexes[0]] log.warning(f'Select one of the closest pre-computed Cloudy model with id = {check_id}') # # for cur_ext in range(len(hdu)): # if cur_ext == 0: # continue # found = False # for p in params: # if p == 'id': # continue # precision = 1 # if p == 'Z': # precision = 2 # if np.round(params[p], precision) != np.round(hdu[cur_ext].header[p], precision): # break # else: # found = True # if found: # return cur_ext, check_id # check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] # log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' # 'Default Cloudy model will be used (id = {0})'.format(check_id)) extension_index = None while extension_index is None: extension_index = [cur_ext for cur_ext in range(len(hdu)) if ( check_id == hdu[cur_ext].header.get('MODEL_ID'))] if len(extension_index) == 0: if check_id == lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use the first one in the grid instead'.format(check_id)) extension_index = 1 else: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use default ({1}) instead'.format(check_id, lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'])) check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] extension_index = None else: extension_index = extension_index[0] return extension_index, check_id @dataclass class Nebula: """ Base class defining properties of every nebula type. By itself it describes the rectangular nebula (e.g. DIG) Constructed nebula has 4 dimensions, where 4th derive its appearance in different lines (if spectrum_id is None, or if it is dark nebula => only one line) """ xc: int = None # Center of the region in the field of view, pix yc: int = None # Center of the region in the field of view, pix x0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix y0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix pix_width: int = None # full width of cartesian grid, pix (should be odd) pix_height: int = None # full height of cartesian grid, pix (should be odd) width: u.pc = 0 * u.pc # width of the nebula in pc (not used if pix_width is set up) height: u.pc = 0 * u.pc # height of the nebula in pc (not used if pix_height is set up) pxscale: u.pc = 0.01 * u.pc # pixel size in pc spectrum_id: int = None # ID of a template Cloudy emission spectrum for this nebula n_brightest_lines: int = None # limit the number of the lines to the first N brightest sys_velocity: velunit = 0 * velunit # Systemic velocity turbulent_sigma: velunit = 10 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF max_brightness: fluxunit = 1e-15 * fluxunit max_extinction: u.mag = 0 * u.mag perturb_scale: int = 0 * u.pc # Spatial scale of correlated perturbations perturb_amplitude: float = 0.1 # Maximal amplitude of perturbations _npix_los: int = 1 # full size along line of sight in pixels nchunks: int = -1 # number of chuncks to use for the convolution. If negative, select automatically vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the nebula vel_pa: u.degree = 0 # Position angle of the kinematical axis (for the velocity gradient or rotation velocity) def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula def _assign_all_units(self): whole_list_properties = ['pxscale', 'sys_velocity', 'turbulent_sigma', 'max_brightness', 'max_extinction', 'perturb_scale', 'radius', 'PA', 'length', 'width', 'vel_gradient', 'r_eff', 'vel_rot', 'expansion_velocity', 'spectral_axis', 'vel_pa'] whole_list_units = [u.pc, velunit, velunit, fluxunit, u.mag, u.pc, u.pc, u.degree, u.pc, u.pc, (velunit / u.pc), u.kpc, velunit, velunit, velunit, u.degree] cur_list_properties = [] cur_list_units = [] for prp, unit in zip(whole_list_properties, whole_list_units): if hasattr(self, prp): cur_list_properties.append(prp) cur_list_units.append(unit) assign_units(self, cur_list_properties, cur_list_units) def _assign_position_params(self, conversion_type='rect'): if conversion_type == 'rect': for v in ['height', 'width']: if self.__getattribute__(f'pix_{v}') is None: val = np.round((self.__getattribute__(v) / self.pxscale).value / 2.).astype(int) * 2 + 1 else: val = np.round(self.__getattribute__(f'pix_{v}') / 2.).astype(int) * 2 + 1 setattr(self, f'pix_{v}', val) elif conversion_type == 'ellipse': self.pix_width = (np.round(np.abs(self.radius / self.pxscale * np.sin(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.radius / self.pxscale * np.cos(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'galaxy': self.pix_width = (np.round(np.abs(self.r_max * np.sin(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.r_max * np.cos(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'cylinder': self.pix_width = (np.ceil((self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value self.pix_height = (np.ceil((self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((self.pix_width - 1) / 2).astype(int) self.y0 = self.yc - np.round((self.pix_height - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((self.pix_width - 1) / 2).astype(int) self.yc = self.y0 + np.round((self.pix_height - 1) / 2).astype(int) @cached_property def _cartesian_x_grid(self): return np.arange(self.pix_width) * self.pxscale @cached_property def _cartesian_y_grid(self): return np.arange(self.pix_height) * self.pxscale @cached_property def _cartesian_z_grid(self): return np.arange(self._npix_los) * self.pxscale @cached_property def _max_density(self): return self.max_extinction * (1.8e21 / (u.cm ** 2 * u.mag)) @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ brt = np.ones(shape=(self.pix_height, self.pix_width, self._npix_los), dtype=float) / self._npix_los if (self.perturb_scale > 0) and (self.perturb_amplitude > 0): pertscale = (self.perturb_scale / self.pxscale).value perturb = np.random.uniform(-1, 1, (self.pix_height, self.pix_width) ) * self.perturb_amplitude / self._npix_los xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) f = np.exp(-2 * (xx ** 2 + yy ** 2) / pertscale) perturb = 4 / np.sqrt(np.pi) / pertscale * np.fft.ifft2(np.fft.fft2(perturb) * np.fft.fft2(f)).real brt += (perturb[:, :, None] - np.median(perturb)) return brt @cached_property def _brightness_4d_cartesian(self): """ Derive the brightness (or density) distribution of the nebula for each emission line in cartesian coordinates """ if self.spectrum_id is None or self.linerat_constant: flux_ratios = np.array([1.]) else: with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: flux_ratios = hdu[self.spectrum_id].data[1:, 1] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(flux_ratios)): indexes_sorted = np.argsort(flux_ratios)[::-1] flux_ratios = flux_ratios[indexes_sorted[: self.n_brightest_lines]] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] return self._brightness_3d_cartesian[None, :, :, :] * flux_ratios[:, None, None, None] @cached_property def brightness_skyplane(self): """ Project the 3D nebula onto sky plane (for emission or continuum sources) """ if self.max_brightness > 0: norm_max = self.max_brightness else: norm_max = 1 map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * norm_max @cached_property def brightness_skyplane_lines(self): """ Project the 3D emission nebula line onto sky plane (return images in each emission line) """ if self.max_brightness > 0: map2d = np.nansum(self._brightness_4d_cartesian, 3) return map2d / np.nanmax(map2d[self._ref_line_id, :, :]) * self.max_brightness else: return None @cached_property def extinction_skyplane(self): """ Project the 3D nebula onto sky plane (for dark clouds) """ if self.max_extinction > 0: map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * self._max_density / (1.8e21 / (u.cm ** 2 * u.mag)) else: return None @cached_property def vel_field(self): return self._get_2d_velocity() # if vel_field is None: # return np.atleast_1d(self.sys_velocity) # else: # return vel_field + self.sys_velocity def _get_2d_velocity(self): if hasattr(self, 'vel_gradient') and (self.vel_gradient is not None) and (self.vel_gradient != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) vel_field = (- (xx - (self.pix_width - 1) / 2) * np.sin(self.vel_pa) + (yy - (self.pix_height - 1) / 2) * np.cos(self.vel_pa)) * self.pxscale * self.vel_gradient return vel_field else: return None # @cached_property # def line_profile(self): # lprf = np.zeros(shape=len(self.los_velocity), dtype=float) # lprf[np.floor(len(lprf) / 2.).astype(int)] = 1. # return lprf @dataclass class Rectangle(Nebula): """ Class defining a simple rectangular component. This is equal to Nebula, but no perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Ellipse(Nebula): """ Class defining a simple elliptical component. No perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF radius: u.pc = 1.0 * u.pc # Radius along the major axis of the ellipse (or radius of the circle) PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 1. # ratio of minor/major axes def __post_init__(self): self._assign_all_units() self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.ones(shape=(self.pix_height, self.pix_width), dtype=np.float32) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value rmin = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 brt[rec] = 0 brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class Circle(Ellipse): """ Class defining a simple circular component. """ def __post_init__(self): self._assign_all_units() self.ax_ratio = 1. self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Filament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth. If it is emission-type filament, then also maximal brightness is required. Velocity gradient also can be set up """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament def __post_init__(self): self._assign_all_units() self._assign_position_params(conversion_type='cylinder') self._npix_los = 1 self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.zeros_like(xx, dtype=np.float32) xct = (xx - (self.pix_width - 1) / 2) * np.cos(self.PA + 90 * u.degree) + \ (yy - (self.pix_height - 1) / 2) * np.sin(self.PA + 90 * u.degree) yct = (xx - (self.pix_width - 1) / 2) * np.sin(self.PA + 90 * u.degree) - \ (yy - (self.pix_height - 1) / 2) * np.cos(self.PA + 90 * u.degree) rad = ((self.width / self.pxscale).value / 2.) len_px = ((self.length / self.pxscale).value / 2.) rec = (np.abs(yct) <= rad) & (np.abs(xct) <= len_px) brt[rec] = np.sqrt(1. - (yct[rec] / rad) ** 2) brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class _ObsoleteFilament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth if it is emission-type filament, then maximal brightness NB: this class is obsolete, but might be considered later in case of implementation of varying line ratios """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the filament (to be added) _theta_bins: int = 50 _rad_bins: int = 0 _h_bins: int = 2 _npix_los: int = 101 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.width.to(u.pc).value / self.pxscale.to(u.pc).value * 5).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.y0 = self.yc - np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.yc = self.y0 + np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _theta_grid(self): return np.linspace(0, 2 * np.pi, self._theta_bins) @cached_property def _h_grid(self): return np.linspace(0, self.length, self._h_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.width / 2, self._rad_bins) @cached_property def _cartesian_y_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.sin(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.cos(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_x_grid(self): return np.linspace(-1.01, 1.01, self._npix_los) * self.width / 2 @cached_property def _brightness_3d_cylindrical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.width / 2] h: float -- height [0, self.length] Returns: 3D cube of normalized brightness in theta-rad-h grid; total brightness = 1 """ rho, theta, h = np.meshgrid(self._rad_grid, self._theta_grid, self._h_grid, indexing='ij') brt = np.ones_like(theta) brt[rho > (self.width / 2)] = 0 norm = np.sum(brt) if norm > 0: brt = brt / np.sum(brt) return brt @cached_property def _brightness_3d_cartesian(self): x, y, z = np.meshgrid(self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, indexing='ij') h_c = -y * np.sin(self.PA) + z * np.cos(self.PA) theta_c = np.arctan2(y * np.cos(self.PA) + z * np.sin(self.PA), x) rad_c = np.sqrt(x ** 2 + (y * np.cos(self.PA) + z * np.sin(self.PA)) ** 2) rad_c[rad_c == 0 * u.pc] = 1e-3 * self.pxscale theta_c = limit_angle(theta_c, 0 * u.radian, 2 * np.pi * u.radian) ir = interp1d(self._rad_grid, np.arange(self._rad_bins), bounds_error=False) ith = interp1d(self._theta_grid, np.arange(self._theta_bins)) ih = interp1d(self._h_grid, np.arange(self._h_bins), bounds_error=False) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_ih = ih(h_c.ravel()) cart_data = map_coordinates(self._brightness_3d_cylindrical, np.vstack([new_ir, new_ith, new_ih]), order=1, mode='constant', cval=0) return cart_data.reshape([len(self._cartesian_x_grid), len(self._cartesian_y_grid), len(self._cartesian_z_grid)]).T @dataclass class Galaxy(Nebula): """ Class defining the galaxy object (set up it as Sersic2D profile assuming it has continuum and emission components) """ PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 0.7 # ratio of minor/major axes r_eff: u.kpc = 1 * u.kpc # Effective radius in kpc rad_lim: float = 3. # Maximum radius for calculations (in R_eff) n: float = 1. # Sersic index vel_rot: velunit = 0 * velunit # Rotational velocity (not implemented yet) def __post_init__(self): self._assign_all_units() self._npix_los = 1 self.r_max = self.r_eff.to(u.pc).value / self.pxscale.to(u.pc).value * self.rad_lim self._assign_position_params(conversion_type='galaxy') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value mod = Sersic2D(amplitude=1, r_eff=(self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value, n=self.n, x_0=(self.pix_width - 1) / 2, y_0=(self.pix_height - 1) / 2, ellip=1 - self.ax_ratio, theta=angle) brt = mod(xx, yy) xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value rmin = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio mask = np.ones_like(brt, dtype=np.float32) rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 mask[rec] = 0 mask = convolve_fft(mask, kernels.Gaussian2DKernel(3.), fill_value=0, allow_huge=True) brt = brt * mask brt = brt.reshape(self.pix_height, self.pix_width, 1) return brt def _get_2d_velocity(self): if hasattr(self, 'vel_rot') and (self.vel_rot is not None) and (self.vel_rot != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rad = np.sqrt(xct ** 2 + yct ** 2) vel_field = np.zeros_like(xx, dtype=np.float32) * velunit rec = rad > 0 vel_field[rec] = self.vel_rot * np.sqrt(1 - self.ax_ratio ** 2) * xct[rec] / rad[rec] return vel_field else: return None @dataclass class DIG(Nebula): """ Class defining the DIG component. For now it is defined just by its brightness (constant) """ max_brightness: fluxunit = 1e-17 * fluxunit vel_gradient: (velunit / u.pc) = 0 @dataclass class Cloud(Nebula): """Class of an isotropic spherical gas cloud without any ionization source. Defined by its position, radius, density, maximal optical depth""" radius: u.pc = 1.0 * u.pc max_brightness: fluxunit = 0 * fluxunit max_extinction: u.mag = 2.0 * u.mag thickness: float = 1.0 perturb_degree: int = 0 # Degree of perturbations (max. degree of spherical harmonics for cloud) linerat_constant: bool = False # True if the ratio of line fluxes shouldn't change across the nebula _phi_bins: int = 90 _theta_bins: int = 90 _rad_bins: int = 0 _npix_los: int = 100 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.radius.to(u.pc).value / self.pxscale.to(u.pc).value * 3).astype(int) delta = np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - delta self.y0 = self.yc - delta elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + delta self.yc = self.y0 + delta self._ref_line_id = 0 @cached_property def _theta_grid(self): return np.linspace(0, np.pi, self._theta_bins) @cached_property def _phi_grid(self): return np.linspace(0, 2 * np.pi, self._phi_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.radius, self._rad_bins) @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.02 * self.radius / self.pxscale).astype(int) return np.linspace(-npix, npix, 2 * npix + 1) * self.pxscale @cached_property def _cartesian_y_grid(self): return self._cartesian_z_grid.copy() @cached_property def _cartesian_x_grid(self): return np.linspace(-1.02, 1.02, self._npix_los) * self.radius @cached_property def _brightness_3d_spherical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 3D cube of normalized brightness in theta-phi-rad grid; total brightness = 1 """ rho, theta, phi = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') brt = np.ones_like(theta) brt[rho < (self.radius * (1 - self.thickness))] = 0 brt[rho > self.radius] = 0 med = np.median(brt[brt > 0]) if self.perturb_degree > 0: phi_cur = limit_angle(phi + np.random.uniform(0, 2 * np.pi, 1), 0, 2 * np.pi) theta_cur = limit_angle(theta + np.random.uniform(0, np.pi, 1), 0, np.pi) harm_amplitudes = self.perturb_amplitude * np.random.randn(self.perturb_degree * (self.perturb_degree + 2)) brt += np.nansum(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(brightness_inhomogeneities_sphere) (harm_amplitudes, ll, phi_cur, theta_cur, rho, med, self.radius, self.thickness) for ll in np.arange(1, self.perturb_degree + 1)), axis=0) brt[brt < 0] = 0 if med > 0: brt = brt / np.nansum(brt) return brt @cached_property def _brightness_4d_spherical(self): """ Method to calculate brightness of the cloud at given theta, phi and radii for each line theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 4D cube of brightness in line-theta-phi-rad grid; normalized to the total brightness in Halpha """ s = self._brightness_3d_spherical.shape if self.spectrum_id is None or self.linerat_constant: return self._brightness_3d_spherical.reshape((1, s[0], s[1], s[2])) rho, _, _ = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: radius = hdu[self.spectrum_id].data[0, 2:] * (self.thickness * self.radius) + \ self.radius * (1 - self.thickness) fluxes = hdu[self.spectrum_id].data[1:, 2:] radius = np.insert(radius, 0, self.radius * (1 - self.thickness)) fluxes = np.insert(fluxes, 0, fluxes[:, 0], axis=1) index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(fluxes)): indexes_sorted = np.argsort(hdu[self.spectrum_id].data[1:, 1])[::-1] fluxes = fluxes[indexes_sorted[:self.n_brightest_lines], :] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] brt = np.array(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(sphere_brt_in_line) (self._brightness_3d_spherical, rho, radius, flux) for flux in fluxes)).reshape((fluxes.shape[0], s[0], s[1], s[2])) return brt / np.nansum(brt[self._ref_line_id]) @cached_property def _brightness_3d_cartesian(self): return interpolate_sphere_to_cartesian(self._brightness_3d_spherical, x_grid=self._cartesian_x_grid, y_grid=self._cartesian_y_grid, z_grid=self._cartesian_z_grid, rad_grid=self._rad_grid, theta_grid=self._theta_grid, phi_grid=self._phi_grid, pxscale=self.pxscale) @cached_property def _brightness_4d_cartesian(self): s = self._brightness_4d_spherical.shape return np.array(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(interpolate_sphere_to_cartesian) (cur_line_array, self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, self._rad_grid, self._theta_grid, self._phi_grid, self.pxscale) for cur_line_array in self._brightness_4d_spherical) ).reshape((s[0], len(self._cartesian_z_grid), len(self._cartesian_y_grid), len(self._cartesian_x_grid))) @dataclass class Bubble(Cloud): """Class of an isotropic thin expanding bubble.""" spectral_axis: velunit = np.arange(-20, 20, 10) * velunit expansion_velocity: velunit = 20 * velunit max_brightness: fluxunit = 1e-15 * fluxunit max_extinction: u.mag = 0 * u.mag thickness: float = 0.2 @cached_property def _velocity_3d_spherical(self) -> velunit: """ Calculate line of sight velocity at given radius, phi, theta V ~ 1/brightness (given that v~1/n_e^2 and brightness~ne^2) """ rho, theta, phi = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') vel_cube = np.zeros_like(self._brightness_3d_spherical) rec = (rho <= self.radius) & (rho >= (self.radius * (1 - self.thickness))) vel_cube[rec] = \
np.sin(theta[rec])
numpy.sin
# Food Bank Problem import sys import importlib import numpy as np from scipy.optimize import minimize import scipy # ## OPT - via Convex Programming # Calculates the optimal solution for the offline problem with convex programming def solve(W, n, k, budget, size): # Objective function in the nash social welfare # Note we take the negative one to turn it into a minimization problem def objective(x, w, n, k, size): X = np.reshape(x, (n,k)) W = np.reshape(w, (n, k)) value = np.zeros(n) for i in range(n): value[i] = np.log(np.dot(X[i,:], W[i,:])) return (-1) * np.dot(size, value) w = W.flatten() obj = lambda x: objective(x, w, n, k, size) # Ensures that the allocations are positive bds = scipy.optimize.Bounds([0 for _ in range(n*k)], [np.inf for _ in range(n*k)]) B = np.zeros((k, n*k)) for i in range(n): B[:,k*i:k*(i+1)] = size[i]*np.eye(k) # print(B) # Enforces the budget constraint constr = scipy.optimize.LinearConstraint(B, np.zeros(k), budget) x0 = np.zeros(n*k) # Initial solution starts out with equal allocation B / S index = 0 for i in range(n): for j in range(k): x0[index] = budget[j] / np.sum(size) index += 1 sol = minimize(obj, x0, bounds=bds, constraints = constr, tol = 10e-8) return sol.x, sol # Calculates the optimal solution for the offline problem with convex programming # Note that this program instead solves for the optimization problem in a different form, where now # the histogram is used directly in the original optimization problem instead of rewriting the problem # as maximizing over types. This was used for investigation, and not as a primary proposed heuristic in the paper. def solve_weights(weight_matrix, weight_distribution, n, k, budget, size): # Similar objective, but now multiplying by the probability agent i has type j def objective(x, weight_matrix, n, k, size, weight_distribution): num_types = weight_distribution.shape[1] X = np.reshape(x, (n,k)) value = np.zeros(n) for i in range(n): value[i] = np.sum([weight_distribution[i,j] * np.log(np.dot(X[i,:], weight_matrix[j,:])) for j in range(num_types)]) return (-1) * np.dot(size, value) obj = lambda x: objective(x, weight_matrix, n, k, size, weight_distribution) # Constraints are the same as before, along with initial solution bds = scipy.optimize.Bounds([0 for _ in range(n*k)], [np.inf for _ in range(n*k)]) B = np.zeros((k, n*k)) for i in range(n): B[:,k*i:k*(i+1)] = size[i]*np.eye(k) constr = scipy.optimize.LinearConstraint(B, np.zeros(k), budget) x0 = np.zeros(n*k) index = 0 for i in range(n): for j in range(k): x0[index] = budget[j] / np.sum(size) index += 1 sol = minimize(obj, x0, bounds=bds, constraints = constr, tol = 10e-8) return sol.x, sol # proportional solution, i.e. equal allocation B / S def proportional_alloc(n, k, budget, size): allocations = np.zeros((n,k)) for i in range(n): allocations[i, :] = budget / np.sum(size) return allocations # Calculates the offline optimal solution just utilizing the distribution and not adapting to realized types def offline_alloc(weight_matrix, weight_distribution, n, k, budget, size): allocations = np.zeros((n,k)) weight_dist = np.asarray([weight_distribution for i in range(n)]) alloc, _ = solve_weights(np.asarray(weight_matrix), np.asarray(weight_dist), n, k, budget, size) allocations = np.reshape(alloc, (n,k)) return allocations # Implements the ET - Online heuristic algorithm def et_online(expected_weights, observed_weights, n, k, budget, size): allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): if i == n-1: # Last agent gets the maximum of earlier allocations or the remaining budget allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] current_budget -= size[i] * allocations[i,:] else: cur_n = n - i # Solves the eisenbergt gale program with future weights taken to be their expectation weights = expected_weights[i:,:] weights[0, :] = observed_weights[i, :] alloc, _ = solve(weights, cur_n, k, current_budget, size[i:]) alloc = np.reshape(alloc, (cur_n, k)) allocations[i, :] = [max(0, min(alloc[0, j], current_budget[j] / size[i])) for j in range(k)] # solves the eisenberg gale current_budget -= size[i]*allocations[i, :] # reduces budget for next iteration return allocations # Implements the ET - Full heuristic algorithm def et_full(expected_weights, observed_weights, n, k, budget, size): allocations = np.zeros((n,k)) current_budget = np.copy(budget) weights = np.copy(expected_weights) for i in range(n): if i == n-1: allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] current_budget -= size[i] * allocations[i,:] else: weights[i, :] = observed_weights[i, :] # Replaces the weights with the observed one alloc, _ = solve(weights, n, k, budget, size) # Solves for the allocation, and makes it alloc = np.reshape(alloc, (n,k)) allocations[i, :] = [max(0, min(current_budget[j] / size[i], alloc[i,j])) for j in range(k)] current_budget -= size[i]*allocations[i,:] # Reduces the budget return allocations # Implements the Hope-Full heuristic algorithm def hope_full(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): size_factors = np.zeros(num_types) # Calculates the number of types and the N_\theta terms for m in range(n): if m <= i: size_factors[observed_types[m]] += size[m] elif m > i: size_factors += size[m] * weight_distribution obs_type = observed_types[i] alloc, _ = solve(weight_matrix, num_types, k, budget, size_factors) # Solves for the allocation alloc = np.reshape(alloc, (num_types, k)) allocations[i,:] = [max(0,min(current_budget[j] / size[i], alloc[obs_type, j])) for j in range(k)] current_budget -= size[i] * allocations[i,:] # Reduces budget return allocations # Implements the Hope-Online heuristic algorithm def hope_online(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): if i == n-1: allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] else: size_factors = np.zeros(num_types) for m in range(n): if m == i: size_factors[observed_types[m]] += size[m] elif m > i: size_factors += size[m] * weight_distribution obs_type = observed_types[i] alloc, _ = solve(weight_matrix, num_types, k, current_budget, size_factors) alloc = np.reshape(alloc, (num_types, k)) allocations[i,:] = [max(0, min(current_budget[j] / size[i], alloc[obs_type, j])) for j in range(k)] current_budget -= size[i] * allocations[i,:] return allocations # Implements the Hope-Full heuristic algorithm of a different form, by solving the original Eisenberg-Gale over agents # taking the expectation of the utility with the histogram on types. def hope_full_v2(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) weight_dist = np.asarray([weight_distribution for i in range(n)]) for i in range(n): weight_dist[i, :] = np.zeros(num_types) weight_dist[i, observed_types[i]] += 1 obs_type = observed_types[i] alloc, _ = solve_weights(weight_matrix, weight_dist, n, k, budget, size) alloc = np.reshape(alloc, (n,k)) allocations[i, :] = [max(0,min(current_budget[j] / size[i], alloc[i, j])) for j in range(k)] current_budget -= size[i] * allocations[i, :] return allocations # Similarly for the Hope-Online heuristic algorithm. def hope_online_v2(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) weight_dist = np.asarray([weight_distribution for i in range(n)]) for i in range(n): weight_dist[i, :] = np.zeros(num_types) weight_dist[i, observed_types[i]] += 1 cur_dist = weight_dist[i:, :] obs_type = observed_types[i] alloc, _ = solve_weights(weight_matrix, cur_dist, n-i, k, budget, size[i:]) alloc = np.reshape(alloc, (n-i,k)) allocations[i, :] = [max(0,min(current_budget[j] / size[i], alloc[0, j])) for j in range(k)] current_budget -= size[i] * allocations[i, :] return allocations ### FAIRNESS MEASURES! # Returns the amount of excress for each resource def excess(allocation, budget, size): true_alloc = np.zeros(allocation.shape[1]) for i in range(allocation.shape[0]): true_alloc += size[i] * allocation[i,:] return (1/allocation.shape[0])*(budget-true_alloc) # Calculates envy-ness for each agent def envy_utility(X, W): n = X.shape[0] envy = np.zeros(n) for i in range(n): u_i = np.dot(X[i,:], W[i,:]) max_env = (-1)*np.inf for j in range(n): if j != i and np.dot(X[j,:], W[i,:]) - u_i > max_env: max_env = np.dot(X[j,:], W[i,:]) - u_i envy[i] = max_env return envy def utility(allocation, observed_weights): n = allocation.shape[0] utility_vec = np.zeros(n) for i in range(n): utility_vec[i] = np.dot(allocation[i,:], observed_weights[i,:]) return utility_vec # Calculates envy to proportional for each agent def proportionality_utility(X, W, size, budget): n = X.shape[0] max_prop =
np.zeros(n)
numpy.zeros
### # This class contains unit and integration tests for lifesci.bed_utils. # The structure of this file is taken from an old blog post here: # http://blog.jameskyle.org/2010/10/nose-unit-testing-quick-start/ ### import collections import matplotlib.pyplot as plt import numpy as np import pandas as pd import lifesci.bed_utils as bed_utils import pyllars.logging_utils as logging_utils import pyllars.math_utils as math_utils from lifesci.bed_utils import interval_overlap from lifesci.bed_utils import transcript_overlap from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_raises from nose.tools import raises class TestBedUtils(object): @classmethod def build_a_b_bed_dfs(self): # these are values for a set of intervals which are either independent # (use ab_info) or grouped into transcripts (use ab_blocks) self.a_starts = [10, 30, 40, 70, 90, 110, 130, 155] self.a_ends = [20, 50, 60, 80, 100, 120, 140, 160] self.a_info = [1, 2, 3, 4, 5, 6, 7, 8] self.a_blocks = [1, 1, 2, 2, 3, 3, 3, 4] self.b_starts = [15, 30, 40, 70, 85, 90, 95, 110, 110, 130, 130, 145] self.b_ends = [20, 50, 60, 80, 100, 100, 115, 120, 120, 140, 140, 155] self.b_info = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] self.b_blocks = [1, 1, 2, 3, 4, 5, 6, 5, 4, 5, 4, 7] # now, build a bed6 data frame for a and b a_df = pd.DataFrame() a_df['start'] = self.a_starts a_df['end'] = self.a_ends a_df['id'] = self.a_blocks a_df['seqname'] = '1' a_df['score'] = 0 a_df['strand'] = '+' self.a_df = a_df # now, build a bed6 data frame for a and b b_df = pd.DataFrame() b_df['start'] = self.b_starts b_df['end'] = self.b_ends b_df['id'] = self.b_blocks b_df['seqname'] = '1' b_df['score'] = 0 b_df['strand'] = '+' self.b_df = b_df a_df['length'] = a_df['end'] - a_df['start'] b_df['length'] = b_df['end'] - b_df['start'] a_groups = self.a_df.groupby('id') a_lengths = a_groups['length'].sum() self.a_lengths_map = a_lengths.to_dict() b_groups = self.b_df.groupby('id') b_lengths = b_groups['length'].sum() self.b_lengths_map = b_lengths.to_dict() # now, build the bed6 data frames for testing subtraction a_starts = np.array([10, 30, 55, 70, 90, 120]) a_ends = np.array([20, 40, 60, 80, 101, 130]) a_ids = np.array([1, 1, 2, 3, 4, 4]) b_starts = np.array([40, 65, 100]) b_ends = np.array([50, 75, 110]) b_ids = np.array([1, 1, 2]) a_bed = pd.DataFrame() a_bed['start'] = a_starts a_bed['end'] = a_ends a_bed['id'] = a_ids a_bed['seqname'] = '1' a_bed['score'] = 0 a_bed['strand'] = '+' b_bed = pd.DataFrame() b_bed['start'] = b_starts b_bed['end'] = b_ends b_bed['id'] = b_ids b_bed['seqname'] = '1' b_bed['score'] = 0 b_bed['strand'] = '+' self.a_diff_df = a_bed self.b_diff_df = b_bed @classmethod def build_complex_bed_entry(self): exon_lengths = np.array([20, 20, 70, 70, 70, 70, 30]) exon_genomic_relative_starts = np.array([0, 40, 90, 190, 290, 390, 490]) exon_lengths_str = ','.join(str(l) for l in exon_lengths) exon_genomic_relative_starts_str = ','.join(str(l) for l in exon_genomic_relative_starts) self.bed_entry = { 'seqname': '1', 'start': 10, 'end': 530, 'id': 'test_me', 'score': 0, 'strand': '+', 'thick_start': 120, 'thick_end': 450, 'color': 0, 'num_exons': 7, 'exon_lengths': exon_lengths_str, 'exon_genomic_relative_starts': exon_genomic_relative_starts_str } @classmethod def setup_class(klass): """This method is run once for each class before any tests are run""" TestBedUtils.build_a_b_bed_dfs() TestBedUtils.build_complex_bed_entry() @classmethod def teardown_class(klass): """This method is run once for each class _after_ all tests are run""" def setUp(self): """This method is run once before _each_ test method is executed""" def teardown(self): """This method is run once after _each_ test method is executed""" def test_get_interval_overlaps(self): overlaps = bed_utils.get_interval_overlaps( self.a_starts, self.a_ends, self.a_info, self.b_starts, self.b_ends, self.b_info) expected_overlaps = [ interval_overlap(a_info=1, b_info=1, overlap=5), interval_overlap(a_info=2, b_info=2, overlap=20), interval_overlap(a_info=2, b_info=3, overlap=10), interval_overlap(a_info=3, b_info=2, overlap=10), interval_overlap(a_info=3, b_info=3, overlap=20), interval_overlap(a_info=4, b_info=4, overlap=10), interval_overlap(a_info=5, b_info=5, overlap=10), interval_overlap(a_info=5, b_info=6, overlap=10), interval_overlap(a_info=5, b_info=7, overlap=5), interval_overlap(a_info=6, b_info=7, overlap=5), interval_overlap(a_info=6, b_info=8, overlap=10), interval_overlap(a_info=6, b_info=9, overlap=10), interval_overlap(a_info=7, b_info=10, overlap=10), interval_overlap(a_info=7, b_info=11, overlap=10) ] assert_equal(overlaps, expected_overlaps) def test_get_transcript_overlaps(self): overlaps = bed_utils.get_interval_overlaps( self.a_starts, self.a_ends, self.a_blocks, self.b_starts, self.b_ends, self.b_blocks) transcript_overlaps = bed_utils.get_transcript_overlaps(overlaps) expected_transcript_overlaps = { (1, 1): 25, (1, 2): 10, (2, 1): 10, (2, 2): 20, (2, 3): 10, (3, 4): 30, (3, 5): 30, (3, 6): 10 } assert_equal(transcript_overlaps, expected_transcript_overlaps) def test_get_transcript_overlap_fractions(self): overlaps = bed_utils.get_interval_overlaps( self.a_starts, self.a_ends, self.a_blocks, self.b_starts, self.b_ends, self.b_blocks) transcript_overlaps = bed_utils.get_transcript_overlaps(overlaps) transcript_fractions = bed_utils.get_transcript_overlap_fractions( transcript_overlaps, self.a_lengths_map, self.b_lengths_map) expected_transcript_fractions = [ transcript_overlap(a_info=1, b_info=2, overlap=10, a_fraction=0.33333333333333331, b_fraction=0.5), transcript_overlap(a_info=2, b_info=3, overlap=10, a_fraction=0.33333333333333331, b_fraction=1.0), transcript_overlap(a_info=3, b_info=6, overlap=10, a_fraction=0.33333333333333331, b_fraction=0.5), transcript_overlap(a_info=2, b_info=2, overlap=20, a_fraction=0.66666666666666663, b_fraction=1.0), transcript_overlap(a_info=3, b_info=4, overlap=30, a_fraction=1.0, b_fraction=0.8571428571428571), transcript_overlap(a_info=1, b_info=1, overlap=25, a_fraction=0.83333333333333337, b_fraction=1.0), transcript_overlap(a_info=2, b_info=1, overlap=10, a_fraction=0.33333333333333331, b_fraction=0.40000000000000002), transcript_overlap(a_info=3, b_info=5, overlap=30, a_fraction=1.0, b_fraction=1.0) ] assert_equal(transcript_fractions, expected_transcript_fractions) def test_get_bed_overlaps(self): bed_overlaps = bed_utils.get_bed_overlaps(self.a_df, self.b_df, min_a_overlap=0.33, min_b_overlap=0.5) expected_bed_overlaps = [ transcript_overlap(a_info=1, b_info=2, overlap=10, a_fraction=0.33333333333333331, b_fraction=0.5), transcript_overlap(a_info=2, b_info=3, overlap=10, a_fraction=0.33333333333333331, b_fraction=1.0), transcript_overlap(a_info=3, b_info=6, overlap=10, a_fraction=0.33333333333333331, b_fraction=0.5), transcript_overlap(a_info=2, b_info=2, overlap=20, a_fraction=0.66666666666666663, b_fraction=1.0), transcript_overlap(a_info=3, b_info=4, overlap=30, a_fraction=1.0, b_fraction=0.8571428571428571), transcript_overlap(a_info=1, b_info=1, overlap=25, a_fraction=0.83333333333333337, b_fraction=1.0), transcript_overlap(a_info=3, b_info=5, overlap=30, a_fraction=1.0, b_fraction=1.0) ] assert_equal(bed_overlaps, expected_bed_overlaps) def test_retain_thick_only(self): thick_only_bed_entry = bed_utils.retain_thick_only(self.bed_entry) expected_exon_lengths = np.array([50, 70, 70, 50]) expected_exon_genomic_relative_starts = np.array([0, 80, 180, 280]) expected_exon_lengths_str = ','.join(str(l) for l in expected_exon_lengths) expected_exon_genomic_relative_starts_str = ','.join(str(l) for l in expected_exon_genomic_relative_starts) expected_bed_entry = { 'seqname': '1', 'start': 120, 'end': 450, 'id': 'test_me', 'score': 0, 'strand': '+', 'thick_start': 120, 'thick_end': 450, 'color': 0, 'num_exons': 4, 'exon_lengths': expected_exon_lengths_str, 'exon_genomic_relative_starts': expected_exon_genomic_relative_starts_str } assert_equal(thick_only_bed_entry, expected_bed_entry) def test_retain_before_thick_only(self): before_thick_only_bed_entry = bed_utils.retain_before_thick_only(self.bed_entry) expected_exon_lengths = np.array([20, 20, 20]) expected_exon_genomic_relative_starts = np.array([0, 40, 90]) expected_exon_lengths_str = ','.join(str(l) for l in expected_exon_lengths) expected_exon_genomic_relative_starts_str = ','.join(str(l) for l in expected_exon_genomic_relative_starts) expected_bed_entry = { 'seqname': '1', 'start': 10, 'end': 120, 'id': 'test_me', 'score': 0, 'strand': '+', 'thick_start': -1, 'thick_end': -1, 'color': 0, 'num_exons': 3, 'exon_lengths': expected_exon_lengths_str, 'exon_genomic_relative_starts': expected_exon_genomic_relative_starts_str } assert_equal(before_thick_only_bed_entry, expected_bed_entry) def test_retain_after_thick_only(self): after_thick_only_bed_entry = bed_utils.retain_after_thick_only(self.bed_entry) expected_exon_lengths = np.array([20, 30]) expected_exon_genomic_relative_starts = np.array([0, 50]) expected_exon_lengths_str = ','.join(str(l) for l in expected_exon_lengths) expected_exon_genomic_relative_starts_str = ','.join(str(l) for l in expected_exon_genomic_relative_starts) expected_bed_entry = { 'seqname': '1', 'start': 450, 'end': 530, 'id': 'test_me', 'score': 0, 'strand': '+', 'thick_start': -1, 'thick_end': -1, 'color': 0, 'num_exons': 2, 'exon_lengths': expected_exon_lengths_str, 'exon_genomic_relative_starts': expected_exon_genomic_relative_starts_str } assert_equal(after_thick_only_bed_entry, expected_bed_entry) def test_subtract_bed(self): # first, check for exact overlaps expected_result = {1, 2} result = bed_utils.subtract_bed(self.a_diff_df, self.b_diff_df) assert_equal(result, expected_result) # now, test requiring some more overlap of A expected_result = {1, 2, 4} min_a_overlap = 0.2 result = bed_utils.subtract_bed(self.a_diff_df, self.b_diff_df, min_a_overlap=min_a_overlap) assert_equal(result, expected_result) # and requiring more substantial overlap of B expected_result = {1, 2, 3, 4} min_b_overlap = 0.3 result = bed_utils.subtract_bed(self.a_diff_df, self.b_diff_df, min_b_overlap=min_b_overlap) assert_equal(result, expected_result) def test_get_entries_with_upstream_overlaps(self): # construct the data a_starts = np.array([20, 50, 60, 65, 58, 60]) a_ends = np.array([30, 60, 70, 75, 63, 78]) a_strands = np.array(['+', '+', '-', '-', '+', '-']) a_ids = np.array([1, 2, 3, 4, 5, 6]) b_starts = np.array([9, 9, 40, 75]) b_ends = np.array([20, 20, 55, 80]) b_strands = np.array(['+', '-', '+', '-']) b_ids = np.array([1, 2, 3, 4]) bed_a = pd.DataFrame() bed_a['start'] = a_starts bed_a['end'] = a_ends bed_a['strand'] = a_strands bed_a['id'] = a_ids bed_a['score'] = 0 bed_a['seqname'] = '1' bed_b = pd.DataFrame() bed_b['start'] = b_starts bed_b['end'] = b_ends bed_b['strand'] = b_strands bed_b['id'] = b_ids bed_b['score'] = 0 bed_b['seqname'] = '1' upstream_window = 5 allow_overlaps = True expected_result = [ bed_utils.transcript_overlap(a_info=1, b_info=1, overlap=5, a_fraction=1.0, b_fraction=0.45454545454545453), bed_utils.transcript_overlap(a_info=2, b_info=3, overlap=5, a_fraction=1.0, b_fraction=0.33333333333333331), bed_utils.transcript_overlap(a_info=4, b_info=4, overlap=5, a_fraction=1.0, b_fraction=1.0), bed_utils.transcript_overlap(a_info=5, b_info=3, overlap=2, a_fraction=0.40000000000000002, b_fraction=0.13333333333333333), bed_utils.transcript_overlap(a_info=6, b_info=4, overlap=2, a_fraction=0.40000000000000002, b_fraction=0.40000000000000002) ] result = bed_utils.get_entries_with_upstream_overlaps(bed_a, bed_b, upstream_window, allow_overlaps=allow_overlaps) assert_equal(expected_result, result) upstream_window = 5 allow_overlaps = False expected_result = [ bed_utils.transcript_overlap(a_info=1, b_info=1, overlap=5, a_fraction=1.0, b_fraction=0.45454545454545453), bed_utils.transcript_overlap(a_info=4, b_info=4, overlap=5, a_fraction=1.0, b_fraction=1.0), bed_utils.transcript_overlap(a_info=5, b_info=3, overlap=2, a_fraction=0.40000000000000002, b_fraction=0.13333333333333333) ] result = bed_utils.get_entries_with_upstream_overlaps(bed_a, bed_b, upstream_window, allow_overlaps=allow_overlaps) assert_equal(expected_result, result) a_starts = np.array([20, 40, 45, 40]) a_ends = np.array([30, 50, 60, 50]) a_strands =
np.array(['+', '+', '-', '+'])
numpy.array
import numpy as np try: import dgl import torch.nn as nn import torch.nn.functional as F from dgl.nn.pytorch import GraphConv except ImportError: pass from photonai_graph.NeuralNets.dgl_base import DGLRegressorBaseModel, DGLClassifierBaseModel class GCNClassifier(nn.Module): def __init__(self, in_dim, hidden_dim, n_classes, hidden_layers, allow_zero_in_degree): super(GCNClassifier, self).__init__() self.layers = nn.ModuleList() # input layers self.layers.append(GraphConv(in_dim, hidden_dim, allow_zero_in_degree=allow_zero_in_degree)) # hidden layers for layer in range(1, hidden_layers): self.layers.append(GraphConv(hidden_dim, hidden_dim, allow_zero_in_degree=allow_zero_in_degree)) self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g): # Use node degree as the initial node feature. For undirected graphs, the in-degree # is the same as the out_degree. h = g.in_degrees().view(-1, 1).float() # Perform graph convolution and activation function. for i, gnn in enumerate(self.layers): h = F.relu(gnn(g, h)) g.ndata['h'] = h # Calculate graph representation by averaging all the node representations. hg = dgl.mean_nodes(g, 'h') return self.classify(hg) class GCNClassifierModel(DGLClassifierBaseModel): def __init__(self, in_dim: int = 1, hidden_layers: int = 2, hidden_dim: int = 256, nn_epochs: int = 200, learning_rate: float = 0.001, batch_size: int = 32, adjacency_axis: int = 0, feature_axis: int = 1, add_self_loops: bool = True, allow_zero_in_degree: bool = False, logs: str = ''): """ Graph Attention Network for graph classification. GCN Layers from Kipf & Welling, 2017. Implementation based on dgl & pytorch. Parameters ---------- in_dim: int,default=1 input dimension hidden_layers: int,default=2 number of hidden layers used by the model hidden_dim: int,default=256 dimensions in the hidden layers """ super(GCNClassifierModel, self).__init__(nn_epochs=nn_epochs, learning_rate=learning_rate, batch_size=batch_size, adjacency_axis=adjacency_axis, feature_axis=feature_axis, add_self_loops=add_self_loops, allow_zero_in_degree=allow_zero_in_degree, logs=logs) self.in_dim = in_dim self.hidden_dim = hidden_dim self.hidden_layers = hidden_layers def _init_model(self, X=None, y=None): self.model = GCNClassifier(self.in_dim, self.hidden_dim, len(
np.unique(y)
numpy.unique
# -*- coding: utf-8 -*- """ Created on Thu Mar 8 15:53:33 2018 @author: <NAME> """ import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt # wavelenths sampled Wavelenghts = np.linspace(300, 700, 701 - 300, dtype=float) # vector of ratios Acdom/Anap r = np.array([1 / 16., 1 / 8., 1 / 4., 1 / 2., 1., 2., 4., 8., 16.]) # vector of cdom 'slopes' [1/nm] scdom = np.array([0.01, 0.001, 0.026]) # vector of nap 'slopes' [1/nm] snap = np.array([0.008, 0.001, 0.018]) r2 = np.zeros(shape=(np.size(scdom), np.size(snap), np.size(r))) rmse = np.zeros(shape=(
np.size(scdom)
numpy.size
""" ========================== Selecting multiple objects ========================== Here we show how to select objects in the 3D world. In this example all objects to be picked are part of a single actor. FURY likes to bundle objects in a few actors to reduce code and increase speed. Nonetheless the method works for multiple actors too. The difference with the picking tutorial is that here we will be able to select more than one object. In addition we can select interactively many vertices or faces. In summary, we will create an actor with thousands of cubes and then interactively we will be moving a rectangular box by hovering the mouse and making transparent everything that is behind that box. """ import numpy as np from fury import actor, window, utils, pick ############################################################################### # Adding many cubes of different sizes and colors num_cubes = 50000 centers = 10000 * (np.random.rand(num_cubes, 3) - 0.5) colors = np.random.rand(num_cubes, 4) colors[:, 3] = 1.0 radii = 100 * np.random.rand(num_cubes) + 0.1 ############################################################################### # Keep track of total number of triangle faces # Note that every quad of each cube has 2 triangles # and each cube has 6 quads in total. num_faces = num_cubes * 6 * 2 ############################################################################### # Build scene and add an actor with many objects. scene = window.Scene() ############################################################################### # Build the actor containing all the cubes cube_actor = actor.cube(centers, directions=(1, 0, 0), colors=colors, scales=radii) ############################################################################### # Access the memory of the vertices of all the cubes vertices = utils.vertices_from_actor(cube_actor) num_vertices = vertices.shape[0] num_objects = centers.shape[0] ############################################################################### # Access the memory of the colors of all the cubes vcolors = utils.colors_from_actor(cube_actor, 'colors') ############################################################################### # Create a rectangular 2d box as a texture rgba = 255 * np.ones((100, 200, 4)) rgba[1:-1, 1:-1] = np.zeros((98, 198, 4)) + 100 texa = actor.texture_2d(rgba.astype(np.uint8)) scene.add(cube_actor) scene.add(texa) scene.reset_camera() scene.zoom(3.) ############################################################################### # Create the Selection Manager selm = pick.SelectionManager(select='faces') ############################################################################### # Tell Selection Manager to avoid selecting specific actors selm.selectable_off(texa) ############################################################################### # Let's make the callback which will be called # when we hover the mouse def hover_callback(_obj, _event): event_pos = selm.event_position(showm.iren) # updates rectangular box around mouse texa.SetPosition(event_pos[0] - 200//2, event_pos[1] - 100//2) # defines selection region and returns information from selected objects info = selm.select(event_pos, showm.scene, (200//2, 100//2)) for node in info.keys(): if info[node]['face'] is not None: if info[node]['actor'] is cube_actor: for face_index in info[node]['face']: # generates an object_index to help with coloring # by dividing by the number of faces of each cube (6 * 2) object_index = face_index // 12 sec = int(num_vertices / num_objects) color_change =
np.array([150, 0, 0, 255], dtype='uint8')
numpy.array
#!/usr/bin/python ''' Tracks colonies through time in a single imaging field ''' import cv2 import itertools import numpy as np import pandas as pd from PIE import image_properties, analysis_configuration class SinglePhaseSinglePosCompiler(object): ''' Compiles and analyzes results for a single experimental phase at a single position ''' def __init__(self, xy_position, analysis_config, postphase_analysis_config = None): self.analysis_config = analysis_config self.analysis_config.set_xy_position(xy_position) self.postphase_analysis_config = postphase_analysis_config if self.postphase_analysis_config is not None: self.postphase_analysis_config.set_xy_position(xy_position) def _perform_fluor_measurements(self, curr_analysis_config, image_analyzer, timepoint): ''' Performs fluorescence measurements using image_analyzer based on data in analysis_config ''' # set up background and colony masks image_analyzer.set_up_fluor_measurements() # loop through fluor channels and analyze each one for fluor_row in \ curr_analysis_config.fluor_channel_df.itertuples(): # retrieve fluorescent image fluor_im, _, _ = \ curr_analysis_config.get_image(timepoint, fluor_row.fluor_channel_label) # measure fluorescences image_analyzer.measure_fluorescence(fluor_im, fluor_row.fluor_channel_column_name, fluor_row.fluor_threshold) def analyze_timepoint_ims(self): ''' Runs colony edge detection on main (brightfield/phase contrast) images from each timepoint, measures any fluorescent data concurrent with those timepoints, populates dataframe of colony properties ''' ### NEEDS UNITTEST colony_prop_across_time_list = [] for timepoint in self.analysis_config.timepoint_list: image, image_name, image_time = \ self.analysis_config.get_image(timepoint, self.analysis_config.main_channel_label) if image is not None: # check that image size is the same for all images if image.shape[0] != self.analysis_config.im_height or \ image.shape[1] != self.analysis_config.im_width: raise ValueError( 'It looks like not all image sizes are the same!' 'Compare ' + image_name + ' with ' + self.analysis_config.size_ref_im) image_analyzer = image_properties.ImageAnalyzer(image, image_name, self.analysis_config.phase_output_path, self.analysis_config.main_channel_imagetype, self.analysis_config.hole_fill_area, self.analysis_config.cleanup, self.analysis_config.max_proportion_exposed_edge, self.analysis_config.cell_intensity_num, self.analysis_config.save_extra_info, max_col_num = self.analysis_config.max_colony_num, write_col_props_file = False) image_analyzer.process_image() # if there are fluorescent channels, loop through them and # measure fluorescence of each colony if not self.analysis_config.fluor_channel_df.empty: self._perform_fluor_measurements(self.analysis_config, image_analyzer, timepoint) # if there's a postphase_analysis_config, perform # postphase fluor measurements (at every timepoint) if self.postphase_analysis_config is not None: self._perform_fluor_measurements( self.postphase_analysis_config, image_analyzer, None) # retrieve colony_property_df colony_property_df = \ image_analyzer.get_colony_property_df_to_save() # fill in info for current timepoint colony_property_df['main_image_name'] = image_name colony_property_df['xy_pos_idx'] = \ self.analysis_config.xy_position_idx colony_property_df['timepoint'] = timepoint colony_property_df['time_in_seconds'] = image_time colony_property_df['phase_num'] = self.analysis_config.phase_num # append current timepoint to combined info colony_prop_across_time_list.append(colony_property_df) # concatenate all colony property dataframes to single list if colony_prop_across_time_list: phase_colony_data_untracked = pd.concat(colony_prop_across_time_list) else: phase_colony_data_untracked = pd.DataFrame() return(phase_colony_data_untracked) class ColonyTracker(object): ''' Generic class for tracking colonies based on dataframe of colony properties in an image and the subsequent image The details of the tracking differ from the original matlab code when it comes to colony splintering/merging, as well as the fact that here, image registration occurs between every consecutive timepoint In addition, dealing with filters by min_growth_time, appearance in first timepoint, etc is outsourced to growth rate functions IMPORTANT: tracking IDs created within this class are only unique for the colony property dataframes being passed to it (which may be only for a single xy position, etc), NOT across the whole experiment ''' def __init__(self): # initialize dictionary for time-tracked col property dfs self.single_phase_col_prop_df_dict = dict() # set proportion of major axis length that satellite must be # from colony center to be considered a satellite self._max_sat_major_axis_prop = .7 def _find_centroid_transform(self, curr_im_data, next_im_data): ''' Takes in dataframes of data for the current image and the following image Returns a rigid-body affine transformation matrix M that transforms centroid positions in curr_im_data to centroid positions in next_im_data ''' # make matrices of centroids curr_centroids = np.float32(curr_im_data[['cX', 'cY']].to_numpy()) next_centroids = np.float32(next_im_data[['cX', 'cY']].to_numpy()) # initialize brute force matcher bf = cv2.BFMatcher() # return top two matches for each point matches = bf.knnMatch(curr_centroids, next_centroids, k=2) # Apply ratio test from https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html # This ensures that only those matches are used for finding the # transformation matrix which match their #1 match much closer # than they match their #2 match; stringency of this requirement # can be increased by decreasing match_ratio_cutoff, at the risk # of ending up with too few match points match_ratio_cutoff = 0.75 good = [] if len(matches)>0 and len(matches[0])>1: for m,n in matches: if m.distance < match_ratio_cutoff * n.distance: good.append(m) if len(good) >= 3: curr_centroids_matching = curr_centroids[[a.queryIdx for a in good]] next_centroids_matching = next_centroids[[a.trainIdx for a in good]] # estimateAffinePartial2D removes outliers in its default state # and returns a mask showing which points it didn't remove, but # we ignore this mask here M, _ = cv2.estimateAffinePartial2D(curr_centroids_matching, next_centroids_matching) else: # can't estimate affine matrix with this few points, assume # no transformation M = np.float64([[1, 0, 0], [0, 1, 0]]) return(M) def _register_images(self, curr_im_data, next_im_data): ''' Finds the rigid affine transform between the centroids from curr_im_data to next_im_data, applies it to the centroids and bounds of curr_im_data, and returns the transformed curr_im_data NB: The bound transformation for rotations is not totally correct, since the bounding box is rotated and a new bounding box encompassing the old, transformed one is created; this is larger (or smaller!) than if a new bounding box were calculated on the warped image, but with low levels of rotation expected in most images, this should not be a big problem for tracking ''' ### !!! NEEDS UNITTEST warp_mat = self._find_centroid_transform(curr_im_data, next_im_data) # id bounding box and centroids data_to_warp = curr_im_data.copy() data_to_warp['bb_x_right'] = \ data_to_warp['bb_width'] + data_to_warp['bb_x_left'] data_to_warp['bb_y_bottom'] = \ data_to_warp['bb_height'] + data_to_warp['bb_y_top'] curr_im_bb_small = \ np.float32(data_to_warp[['bb_x_left', 'bb_y_top']].to_numpy()) curr_im_bb_large = \ np.float32(data_to_warp[['bb_x_right', 'bb_y_bottom']].to_numpy()) curr_im_centroids = np.float32(data_to_warp[['cX', 'cY']].to_numpy()) # warp centroids and bb warped_centroids = \ np.squeeze(np.float32(cv2.transform(curr_im_centroids[np.newaxis], warp_mat))) warped_bb_small = np.squeeze( np.float32(cv2.transform(curr_im_bb_small[np.newaxis], warp_mat))) warped_bb_large = np.squeeze( np.float32(cv2.transform(curr_im_bb_large[np.newaxis], warp_mat))) # calculate and populate warped current image df warped_curr_im_data = curr_im_data.copy() warped_curr_im_data[['cX', 'cY']] = warped_centroids warped_curr_im_data[['bb_x_left', 'bb_y_top']] = \ np.round(warped_bb_small).astype(int) warped_curr_im_data[['bb_width', 'bb_height']] = \ np.round(warped_bb_large- warped_bb_small).astype(int) return(warped_curr_im_data) def _get_overlap(self, curr_im_data, next_im_data): ''' Makes overlap df of colonies between two images Identifies pairs of colonies between images for which the centroid of one falls inside the other's bounding box ''' # perform image registration if self.perform_registration: curr_im_data_reg = \ self._register_images(curr_im_data, next_im_data) else: curr_im_data_reg = curr_im_data.copy() # get matrices of absolute differences between x and y # centroids of the colonies in the two images cX_diff_mat = np.abs(np.subtract.outer( curr_im_data_reg['cX'].to_numpy(), next_im_data['cX'].to_numpy())) cY_diff_mat = np.abs(np.subtract.outer( curr_im_data_reg['cY'].to_numpy(), next_im_data['cY'].to_numpy())) # calculate whether the other image's centroid falls # within each respective image's bounding box bounds curr_im_cX_bbox_overlap = (cX_diff_mat.T < curr_im_data_reg['bb_width'].to_numpy()/2).T curr_im_cY_bbox_overlap = (cY_diff_mat.T < curr_im_data_reg['bb_height'].to_numpy()/2).T next_im_cX_bbox_overlap = \ cX_diff_mat < next_im_data['bb_width'].to_numpy()/2 next_im_cY_bbox_overlap = \ cY_diff_mat < next_im_data['bb_height'].to_numpy()/2 # for each image, determine whether bounding box # encapsulates other image's centroid curr_bbox_next_centroid_overlap = \ np.logical_and(curr_im_cX_bbox_overlap, curr_im_cY_bbox_overlap) next_bbox_curr_centroid_overlap = \ np.logical_and(next_im_cX_bbox_overlap, next_im_cY_bbox_overlap) # create matrix of overlaps between images # overlaps occur if a colony's bounding box in either # image includes a colony's centroid in the other # image # this is the incidence matrix in colonies between # subsequent images overlap_mat = np.logical_or(curr_bbox_next_centroid_overlap, next_bbox_curr_centroid_overlap) # convert to dataframe with rows (indices) and columns labeled # with indices of colonies from original colony property df overlap_df = pd.DataFrame(overlap_mat, index = curr_im_data_reg.index, columns = next_im_data.index) return(overlap_df) def _id_colony_match(self, curr_im_data, next_im_data): ''' Identifies colonies from next_im_data that match to colonies in curr_im_data Returns df of matches (by idx in original colony property df) ''' # get df with labeled overlap matrix between current image and # the subsequent one overlap_df = self._get_overlap(curr_im_data, next_im_data) # identify all colony matches (curr_im_idx, next_im_idx) = np.where(overlap_df) match_df = pd.DataFrame( {'curr_im_colony': overlap_df.index[curr_im_idx], 'next_im_colony': overlap_df.columns[next_im_idx]}) return(match_df) def _get_matching_indices(self, df, col_name, val_to_match): ''' Returns list of indices of df where col_name matches val_to_match, even if val_to_match is NaN ''' ### !!! NEEDS UNITTEST if isinstance(val_to_match, float) and np.isnan(val_to_match): match_bool = df[col_name].isnull() else: match_bool = df[col_name] == val_to_match indices = df.index[match_bool].to_list() return(indices) def _match_by_parent(self, match_df, curr_im_data, next_im_data): ''' Removes any matches in which a satellite matches its parent Adds all matches based on shared parentage (i.e. if colony whose parent is A matches a colony whose parent is B, all colonies whose parent is A match all colonies whose parent is B) Returns df of matches (by idx in original colony property df) ''' ### !!! NEEDS UNITTEST match_df_parent = pd.DataFrame( {'curr_im_parent': curr_im_data.loc[match_df.curr_im_colony]['parent_colony'].values, 'next_im_parent': next_im_data.loc[match_df.next_im_colony]['parent_colony'].values}) # remove cases of colonies merging with their parents match_df_parent = match_df_parent[ match_df_parent.curr_im_parent != match_df_parent.next_im_parent ].drop_duplicates() # add all combos of parent-parent and parent-satellite matches # based on parent-parent matches to match_df match_df_list = [] for _, row in match_df_parent.iterrows(): curr_colonies = \ self._get_matching_indices( curr_im_data, self.tracking_col_name, row.curr_im_parent ) next_colonies = \ self._get_matching_indices( next_im_data, self.tracking_col_name, row.next_im_parent ) curr_match_df = pd.DataFrame( list(itertools.product( *[curr_colonies, next_colonies])), columns = ['curr_im_colony', 'next_im_colony']) match_df_list.append(curr_match_df) if len(match_df_list) > 0: match_df_by_parent = pd.concat(match_df_list, sort = False) else: match_df_by_parent = \ pd.DataFrame(columns = ['curr_im_colony', 'next_im_colony']) return(match_df_by_parent) def _tag_merged_colonies(self, match_df): ''' Identifes merge events between two subsequent images (When a single colony in subsequent image matches multiple colonies in current image), including both parts of a broken-up colony if one of those parts merges with another colony Set self.tracking_col_name in merged colonies to np.nan This means that if a merged colony is tracked in a subsequent image, it will inherit np.nan as its unique tracking id As a result, merged colonies are no longer tracked, which is the desired behavior ''' ### !!! NEEDS UNITTEST # id colony indices that appear twice in next_im_colony_id # column of match_df, i.e. colonies in the next image that # match to two different colonies in the current image [next_im_col_matching, next_match_count] = \ np.unique(match_df['next_im_colony'], return_counts=True) merged_colonies_direct = next_im_col_matching[next_match_count > 1] # if a colony breaks into two, and then one part of it merges # with another colony, we want to tag both the merged and # non-merged part as merged colonies_that_merge = \ match_df.curr_im_colony[ match_df['next_im_colony'].isin(merged_colonies_direct)] colonies_that_merge_bool = \ match_df['curr_im_colony'].isin(colonies_that_merge) merged_colonies = match_df.next_im_colony[colonies_that_merge_bool] # set self.tracking_col_name and parent_colony to NaN for merged # colonies in self.active_col_prop_df self.active_col_prop_df.loc[ merged_colonies, self.tracking_col_name] = np.nan self.active_col_prop_df.loc[ merged_colonies, 'parent_colony'] = np.nan # return a version of match_df that is missing merged colonies match_df_nonmerging = match_df[~colonies_that_merge_bool] return(match_df_nonmerging) def _resolve_splits(self, match_df_nonmerging): ''' If a single colony in the current image matches with two colonies in the subsequent image (e.g. due to breaking up), treat the largest of the next image colonies as the matching colony This step should be done *after* removing merging colonies ''' ### !!! NEEDS UNITTEST # id colony indices that appear twice in curr_im_colony_id # column of match_df_nonmerging, i.e. colonies in the current # image that match to two different colonies in the next # image [curr_im_col_matching, curr_match_count] = \ np.unique(match_df_nonmerging['curr_im_colony'], return_counts=True) split_colonies = curr_im_col_matching[curr_match_count > 1] # create a dataframe that excludes split colonies match_df_no_splits = \ match_df_nonmerging[ ~match_df_nonmerging.curr_im_colony.isin(split_colonies)] # loop through split colonies and add the match that has # the largest area in the next image to match_df_filtered split_colony_match_list = [match_df_no_splits] for curr_colony in split_colonies: curr_match_df = \ match_df_nonmerging[match_df_nonmerging.curr_im_colony == curr_colony].copy() current_match_areas = self.active_col_prop_df.loc[ curr_match_df.next_im_colony.to_list(), 'area'].to_numpy() curr_match_df['area'] = current_match_areas match_to_keep = \ curr_match_df[curr_match_df.area == curr_match_df.area.max()] # in case two areas of split colonies are identical, # keep the first match_to_keep = match_to_keep.iloc[[0]] split_colony_match_list.append( match_to_keep.drop(columns = ['area'])) # combine selected split colonies with # match_df_no_splits into single df match_df_filtered = \ pd.concat(split_colony_match_list, sort = False) return(match_df_filtered) def _find_satellites_by_dist(self, parent_candidate_df, sat_candidate_df): ''' Returns df with indices of sat_candidate_df rows in which satellite colony is within self._max_sat_major_axis_prop of a single colony from parent_candidate_df, and indices of corresponding parent colonies ''' # create distance matrix with parent colonies along columns # and satellite colonies along rows if parent_candidate_df.shape[0] == 0 or sat_candidate_df.shape[0] == 0: sat_indices = [] parent_indices = [] else: x_dist = \ parent_candidate_df.cX.to_numpy() - \ sat_candidate_df.cX.to_numpy()[np.newaxis].T y_dist = \ parent_candidate_df.cY.to_numpy() - \ sat_candidate_df.cY.to_numpy()[np.newaxis].T dist_mat = np.sqrt(x_dist**2 + y_dist**2) # find positions in dist_mat within # self._max_sat_major_axis_prop of major_axis_length of parent cutoff_dist_array = \ parent_candidate_df.major_axis_length.to_numpy()*\ self._max_sat_major_axis_prop within_cutoff_mat = dist_mat <= cutoff_dist_array # find the number of 'parents' each satellite matches to parent_colony_num = np.sum(within_cutoff_mat, axis = 1) # only real 'satellites' are colonies that match a single parent real_sat_pos_list = parent_colony_num == 1 # find position corresponding to parent of each real satellite parent_pos_list = \ np.argmax(within_cutoff_mat[real_sat_pos_list,:], axis = 1) sat_indices = sat_candidate_df.index[real_sat_pos_list] parent_indices = parent_candidate_df.index[parent_pos_list] parent_sat_df = pd.DataFrame( {'satellite_idx': sat_indices, 'parent_idx': parent_indices}) return(parent_sat_df) def _id_satellites(self, next_im_data, match_df_filtered): ''' Identifies colonies in next_im_data that are satellites of other colonies Must be fone after tagging merged colonies and resolving splits Satellites are colonies that: - first appear in next_im_data (i.e. have no match in match_df_filtered, and have not been removed due to merging) - are within self._max_sat_major_axis_prop of only one other colony ''' # find colonies in next_im_data with no match (post-removing # minor colony split products) in previous timepoint and that # have not been filtered out as merge products unmatched_colonies = next_im_data.loc[ ~next_im_data.index.isin(match_df_filtered.next_im_colony) & ~pd.isnull(self.active_col_prop_df.loc[ next_im_data.index][self.tracking_col_name]) ] # for now, allow all colonies that are not satellite candidates # to be parent candidates; afterwards, filter out parents that # were not successfully tracked from the previous timepoint parent_candidates = next_im_data[ ~next_im_data.index.isin(unmatched_colonies.index)] # get dataframe of parent-satellite pair indices from # self.active_col_prop_df parent_sat_df = \ self._find_satellites_by_dist( parent_candidates, unmatched_colonies ) # remove any parent colonies that are satellites to colonies # that weren't matched successfully to previous timepoint (e.g. # merged colonies) parent_sat_df_filt = parent_sat_df[ parent_sat_df.parent_idx.isin(match_df_filtered.next_im_colony)] return(parent_sat_df_filt) def _replace_vals_by_keydict(self, replace_keys, replace_vals, col_to_replace): ''' Replaces replace_keys in col_to_replace of self.active_col_prop_df with replace_vals ''' if len(replace_keys) > 0 and len(replace_vals) > 0: replace_dict = pd.Series( replace_vals, index=replace_keys ).to_dict() else: replace_dict = dict() self.active_col_prop_df.replace( {col_to_replace: replace_dict}, inplace = True) def _replace_tracking_col_by_match(self, match_df, curr_im_data, next_im_data): ''' Uses match_df to replace tracking_col_name and parent_coloy in self.active_col_prop_df from every timepoint that have the values in match_df.next_im_colony with values from match_df.curr_im_colony ''' ### !!! NEEDS UNITTEST # replace tracking id values based on match_df replace_vals_track = \ curr_im_data.loc[match_df.curr_im_colony.values]\ [self.tracking_col_name].to_list() replace_keys_track = \ next_im_data.loc[match_df.next_im_colony.values]\ [self.tracking_col_name].to_list() self._replace_vals_by_keydict( replace_keys_track, replace_vals_track, self.tracking_col_name) # replace parent_colony values based on match_df replace_vals_parent = \ curr_im_data.loc[match_df.curr_im_colony.values]\ ['parent_colony'].to_list() replace_keys_parent = \ next_im_data.loc[match_df.next_im_colony.values]\ ['parent_colony'].to_list() self._replace_vals_by_keydict( replace_keys_parent, replace_vals_parent, 'parent_colony') def _replace_parent_for_sat(self, parent_sat_df): ''' Uses parent_sat_df to replace parent_colony in self.active_col_prop_df from every timepoint that have the values in parent_sat_df.satellite_idx with values from parent_sat_df.parent_idx ''' ### !!! NEEDS UNITTEST replace_vals = \ self.active_col_prop_df.loc[ parent_sat_df.parent_idx.values ]['parent_colony'].to_list() replace_keys = \ self.active_col_prop_df.loc[ parent_sat_df.satellite_idx.values ]['parent_colony'].to_list() self._replace_vals_by_keydict( replace_keys, replace_vals, 'parent_colony') def _track_single_im_pair(self, curr_im_data, next_im_data): ''' Performs full tracking between curr_im_data and next_im_data, and records results in self.active_col_prop_df ''' # identify all matches between colonies in the two images match_df = self._id_colony_match(curr_im_data, next_im_data) # modify matches so that all colonies with shared parent share # matches, and matches between colonies with same parent are # removed match_df_by_parent = \ self._match_by_parent(match_df, curr_im_data, next_im_data) # set self.tracking_col_name in merged colonies to NaN, and get # back match_df without colonies that merge into others match_df_nonmerging = self._tag_merged_colonies(match_df_by_parent) # for colonies that break into multiple pieces, track the # largest piece as the main colony match_df_filtered = self._resolve_splits(match_df_nonmerging) # identify satellite colonies and their parents in next_im_data parent_sat_df_filt = \ self._id_satellites(next_im_data, match_df_filtered) # for colonies with a direct match between subsequent # images, set self.tracking_col_name in all images to the # self.tracking_col_name from current_im_data self._replace_tracking_col_by_match(match_df_filtered, curr_im_data, next_im_data) # for colonies in next_im that are a satellite, set the # parent_colony of every colony that shares their parent_colony # to the matching parent value from parent_sat_df_filt # This is important in cross-phase tracking, when a colony that # has already been tracked independently across multiple # timepoints turns out to be a satellite based on tracking from # a previous phase (in this case, these satellites will not # receive independent growth rates in the corresponding # phase's growth rate analysis) self._replace_parent_for_sat(parent_sat_df_filt) def _set_up_satellite_track(self): ''' Sets up columns necessary for tracking satellites ''' # initialize parent_colony column self.active_col_prop_df['parent_colony'] = \ self.active_col_prop_df[self.tracking_col_name] def _aggregate_by_parent(self): ''' Aggregates data in self.active_col_prop_df by parent in the following way: - label across all colonies sharing same parent gets joined with semicolon - area is summed across all colonies sharing same parent - all other colony properties are taken from the parent - parent_colony column is dropped ''' # set aside parent colonies only parent_property_df = \ self.active_col_prop_df.loc[ self.active_col_prop_df['parent_colony'] == self.active_col_prop_df[self.tracking_col_name] ].copy() # remove properties to be aggregated parent_property_df.drop( columns=['label', 'area'], inplace = True) # set up df for aggregated properties agg_property_df_group = \ self.active_col_prop_df[[ 'phase_num', 'timepoint', 'parent_colony', 'xy_pos_idx', 'label', 'area'] ].groupby( ['phase_num', 'timepoint', 'parent_colony', 'xy_pos_idx'] ) agg_property_df = agg_property_df_group.agg({ 'label': ';'.join, 'area': np.sum }) property_df = parent_property_df.join(agg_property_df, on = ['phase_num', 'timepoint', 'parent_colony', 'xy_pos_idx']) property_df.drop(columns = ['parent_colony'], inplace = True) return(property_df) def match_and_track_across_time(self, phase_num, colony_prop_df, perform_registration = True): ''' Identifies matching colonies between subsequent timepoints Performs equivalent role to ColonyAreas_mod in original matlab code, but with image registration; see comments on class for differences ''' self.perform_registration = perform_registration ### !!! NEEDS UNITTEST # set the tracking column we'll be using to track across time self.tracking_col_name = 'time_tracking_id' # set active_col_prop_df to colony_prop_df self.active_col_prop_df = colony_prop_df.copy() # reset indices in self.active_col_prop_df to be consecutive # integers, to make sure each row has a unique index that can be # used as an identifier self.active_col_prop_df.reset_index(inplace = True, drop=True) # identify xy positions _xy_positions = \ np.sort(np.unique(self.active_col_prop_df.xy_pos_idx)) # identify timepoints _curr_phase_timepts = \ np.sort(np.unique(self.active_col_prop_df.timepoint)) # populate tracking column with unique IDs self.active_col_prop_df[self.tracking_col_name] = \ ["phase_{}_xy{}_col{}".format(phase_num, xy_pos, col_id) for \ phase_num, xy_pos, col_id in \ zip(self.active_col_prop_df.phase_num, self.active_col_prop_df.xy_pos_idx, self.active_col_prop_df.index)] # set up columns for tracking satellites self._set_up_satellite_track() if len(_curr_phase_timepts) > 1: # loop through xy positions for curr_xy_pos in _xy_positions: # loop through timepoints for curr_timepoint, next_timepoint in \ zip(_curr_phase_timepts[:-1], _curr_phase_timepts[1:]): # get df of which colony in curr_timepoint matches # which colony in next_timepoint ### # get colony properties at current timepoint curr_im_data = \ self.active_col_prop_df[ (self.active_col_prop_df.timepoint == curr_timepoint) & (self.active_col_prop_df.xy_pos_idx == curr_xy_pos)] # get colony properties at next timepoint next_im_data = \ self.active_col_prop_df[ (self.active_col_prop_df.timepoint == next_timepoint) & (self.active_col_prop_df.xy_pos_idx == curr_xy_pos)] self._track_single_im_pair(curr_im_data, next_im_data) # convert time tracking id column to categorical self.active_col_prop_df[self.tracking_col_name] = \ self.active_col_prop_df[self.tracking_col_name].astype( 'category') # aggregate data by parent_colony parent_agg_prop_df = self._aggregate_by_parent() # add data for this phase to dict self.single_phase_col_prop_df_dict[phase_num] = \ parent_agg_prop_df return(parent_agg_prop_df) def match_and_track_across_phases(self, perform_registration = True): ''' Identifies matching colonies between last timepoint of each phase and the first timepoint of the subsequent phase Performs equivalent role to ColonyAreas_mod in original matlab code, but see comments on class for differences ''' ### !!! NEEDS UNITTEST self.perform_registration = perform_registration # concatenate time-tracked colony property dfs to create df for # tracking colonies across phases indiv_phase_dfs = list(self.single_phase_col_prop_df_dict.values()) if indiv_phase_dfs: self.active_col_prop_df = pd.concat(indiv_phase_dfs, sort = False) # set the tracking column we'll be using to track across phases self.tracking_col_name = 'cross_phase_tracking_id' # reset indices in self.active_col_prop_df to be consecutive # integers, to make sure each row has a unique index that can be # used as an identifier self.active_col_prop_df.reset_index(inplace = True, drop=True) # identify xy positions _xy_positions = \ np.sort(np.unique(self.active_col_prop_df.xy_pos_idx)) # identify phases phase_list = \ np.sort(np.array(list( self.single_phase_col_prop_df_dict.keys()))) # check that phases are unique if np.unique(phase_list).size < phase_list.size: raise IndexError('phase list contains non-unique items: ' +
np.array_str(phase_list)
numpy.array_str
# Copyrighrt 2020, by the California Institute of Technology. # ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged. # Any commercial use must be negotiated with the Office of Technology Transfer at the California Institute of Technology. # This software may be subject to U.S. export control laws. # By accepting this software, the user agrees to comply with all applicable U.S. export laws and regulations. # User has the responsibility to obtain export licenses, or other export authority as may be required before exporting # such information to foreign countries or providing access to foreign persons. # Codes last tested 05 April 2020 by MW and IF import uuid import urllib3 import os import xarray as xr import numpy as np import netCDF4 as nc4 import imp import datetime import swath_references as ref from bs4 import BeautifulSoup ######################################################################################################################## # these are some tools to help generate the metadata ######################################################################################################################## #step 1: read in the variables from the regridded file def read_regridded_swath(filePath): print(' Opening ' + str(filePath)) if filePath.exists(): data = xr.open_dataset(str(filePath)) else: print(' regridded swath file not found! aborting!') exit() variables = [] variableNames = [] coordinates = [] coordinateNames = [] for data_var in data.data_vars.keys(): if np.size(np.array(data[data_var])) > 1: variables.append(np.array(data[data_var])) variableNames.append(data_var) for coord in data.coords.keys(): coordinates.append(np.array(data[coord])) coordinateNames.append(coord) projection = data['projection'].attrs['EPSG'] return(variables,variableNames,coordinates,coordinateNames,projection) ######################################################################################################################## #step 2: generate a new swath with the variable and coordinates def generate_new_dataset(variables,variableNames,coordinates,coordinateNames,projection,addGeoid): data_vars = {} coords = {} for vv in range(len(variables)): if variableNames[vv] == 'elevation': elevation = variables[vv] elevation[np.isnan(elevation)] = nc4.default_fillvals['f8'] data_vars['elevation'] = (['y', 'x'], elevation) for vv in range(len(variables)): if variableNames[vv] == 'count': count = variables[vv] data_vars['elevation_count'] = (['y', 'x'], count) if variableNames[vv] == 'standard_deviation': standard_deviation = variables[vv] standard_deviation[np.isnan(standard_deviation)] = nc4.default_fillvals['f8'] standard_deviation[elevation == nc4.default_fillvals['f8']] = nc4.default_fillvals['f8'] data_vars['elevation_standardDeviation'] = (['y', 'x'], standard_deviation) if variableNames[vv] == 'longitude': longitude = variables[vv] data_vars['longitude'] = (['y', 'x'], longitude) if variableNames[vv] == 'latitude': latitude = variables[vv] data_vars['latitude'] = (['y', 'x'], latitude) if variableNames[vv] == 'geoid': if addGeoid: geoid = variables[vv] data_vars['geoid'] = (['y', 'x'], geoid) if addGeoid: quality_flag = np.zeros_like(elevation, dtype=np.int8) indices1=np.logical_and(elevation-geoid>-5,standard_deviation>20) quality_flag[indices1] = 1 indices2 = np.logical_and(elevation - geoid < -5, standard_deviation < 20) quality_flag[indices2] = 2 indices3 = np.logical_and(elevation - geoid < -5, standard_deviation > 20) quality_flag[indices3] = 3 quality_flag[count==0] = 4 else: quality_flag = np.zeros_like(elevation, dtype=np.int8) quality_flag[standard_deviation>20]=1 quality_flag[count==0]=2 # quality_flag = quality_flag.astype(np.int8) data_vars['elevation_qualityFlag'] = (['y', 'x'], quality_flag) data_vars['projection'] = chr(0) for cc in range(len(coordinates)): if coordinateNames[cc] in ['x']: x = coordinates[cc] coords[coordinateNames[cc]] = x if coordinateNames[cc] in ['y']: y = coordinates[cc] coords[coordinateNames[cc]] = y dataset = xr.Dataset(data_vars=data_vars, coords=coords) return(dataset) ######################################################################################################################## #step 3: add in the global metadata values def read_timespan_from_metadata(dataFolder,fileID): swathID=ref.fileNameToSwathID(fileID) year='20'+swathID.split('_')[2][:2] metadataFile=os.path.join(dataFolder,'Raw',year,'Metadata',swathID+'_metadata.txt') f=open(metadataFile) lines=f.read() f.close() lines=lines.split('\n') for line in lines: if 'Start Time of Acquisition' in line: date=line.split()[-3] yr=date.split('-')[2] mo = date.split('-')[1] if mo=='Mar': mo='03' if mo=='Apr': mo='04' dy = date.split('-')[0] dy = '{:02d}'.format(int(dy)) time=line.split()[-2] minTime=yr+'-'+mo+'-'+dy+'T'+time+'Z' if 'Stop Time of Acquisition' in line: date = line.split()[-3] yr = date.split('-')[2] mo = date.split('-')[1] if mo == 'Mar': mo = '03' if mo == 'Apr': mo = '04' dy = date.split('-')[0] dy = '{:02d}'.format(int(dy)) time = line.split()[-2] maxTime = yr + '-' + mo + '-' + dy + 'T' + time + 'Z' ymd = minTime.split('T')[0] hms = minTime.split('T')[1][:-1] startTime = datetime.datetime(int(ymd.split('-')[0]), int(ymd.split('-')[1]), int(ymd.split('-')[2]), int(hms.split(':')[0]), int(hms.split(':')[1]), int(hms.split(':')[2])) ymd = maxTime.split('T')[0] hms = maxTime.split('T')[1][:-1] endTime = datetime.datetime(int(ymd.split('-')[0]), int(ymd.split('-')[1]), int(ymd.split('-')[2]), int(hms.split(':')[0]), int(hms.split(':')[1]), int(hms.split(':')[2])) duration = endTime - startTime duration_in_s = duration.total_seconds() days = divmod(duration_in_s, 86400) hours = divmod(days[1], 3600) minutes = divmod(hours[1], 60) seconds = divmod(minutes[1], 1) durationString = 'P0Y0M0DT' + str(int(hours[0])) + 'H' + str(int(minutes[0])) + 'M' + str(int(seconds[0])) + 'S' return(minTime,maxTime,durationString) def main_attribute_dictionary(dataFolder,regridded_filepath,resolution,elevation,longitude,latitude,projection): minLon = float(np.min(
np.min(longitude)
numpy.min