prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np import numpy.testing as npt import pandas as pd from stumpy import maamped, config import pytest from dask.distributed import Client, LocalCluster import naive @pytest.fixture(scope="module") def dask_cluster(): cluster = LocalCluster(n_workers=2, threads_per_worker=2) yield cluster cluster.close() test_data = [ (np.array([[584, -11, 23, 79, 1001, 0, -19]], dtype=np.float64), 3), (np.random.uniform(-1000, 1000, [5, 20]).astype(np.float64), 5), ] substitution_locations = [slice(0, 0), 0, -1, slice(1, 3), [0, 3]] def test_maamped_int_input(dask_cluster): with pytest.raises(TypeError): with Client(dask_cluster) as dask_client: maamped(dask_client, np.arange(20).reshape(2, 10), 5) @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T, m", test_data) def test_maamped(T, m, dask_cluster): with Client(dask_cluster) as dask_client: excl_zone = int(np.ceil(m / 4)) ref_P, ref_I = naive.maamp(T, m, excl_zone) comp_P, comp_I = maamped(dask_client, T, m) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T, m", test_data) def test_maamped_include(T, m, dask_cluster): with Client(dask_cluster) as dask_client: for width in range(T.shape[0]): for i in range(T.shape[0] - width): include = np.asarray(range(i, i + width + 1)) excl_zone = int(np.ceil(m / 4)) ref_P, ref_I = naive.maamp(T, m, excl_zone, include) comp_P, comp_I = maamped(dask_client, T, m, include) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T, m", test_data) def test_maamped_discords(T, m, dask_cluster): with Client(dask_cluster) as dask_client: excl_zone = int(np.ceil(m / 4)) ref_P, ref_I = naive.maamp(T, m, excl_zone, discords=True) comp_P, comp_I = maamped(dask_client, T, m, discords=True) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T, m", test_data) def test_maamped_include_discords(T, m, dask_cluster): with Client(dask_cluster) as dask_client: for width in range(T.shape[0]): for i in range(T.shape[0] - width): include = np.asarray(range(i, i + width + 1)) excl_zone = int(np.ceil(m / 4)) ref_P, ref_I = naive.maamp(T, m, excl_zone, include, discords=True) comp_P, comp_I = maamped(dask_client, T, m, include, discords=True) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T, m", test_data) def test_maamped_df(T, m, dask_cluster): with Client(dask_cluster) as dask_client: excl_zone = int(np.ceil(m / 4)) ref_P, ref_I = naive.maamp(T, m, excl_zone) df = pd.DataFrame(T.T) comp_P, comp_I = maamped(dask_client, df, m) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") def test_maamped_constant_subsequence_self_join(dask_cluster): with Client(dask_cluster) as dask_client: T_A = np.concatenate( (np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64)) ) T = np.array([T_A, T_A, np.random.rand(T_A.shape[0])]) m = 3 excl_zone = int(np.ceil(m / 4)) ref_P, ref_I = naive.maamp(T, m, excl_zone) comp_P, comp_I = maamped(dask_client, T, m) npt.assert_almost_equal(ref_P, comp_P) # ignore indices @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") def test_maamped_identical_subsequence_self_join(dask_cluster): with Client(dask_cluster) as dask_client: identical = np.random.rand(8) T_A = np.random.rand(20) T_A[1 : 1 + identical.shape[0]] = identical T_A[11 : 11 + identical.shape[0]] = identical T = np.array([T_A, T_A, np.random.rand(T_A.shape[0])]) m = 3 excl_zone = int(
np.ceil(m / 4)
numpy.ceil
from collections import OrderedDict import astropy.coordinates as coord import astropy.units as u # import mpl_toolkits.basemap as bm import numpy as np import pandas as pd import spherical_geometry.polygon as sp from gbmgeometry.position_interpolator import PositionInterpolator from gbmgeometry.utils.gbm_time import GBMTime from gbmgeometry.utils.plotting import SphericalCircle, skyplot from .gbm_detector import ( BGO0, BGO1, NaI0, NaI1, NaI2, NaI3, NaI4, NaI5, NaI6, NaI7, NaI8, NaI9, NaIA, NaIB, ) from .gbm_frame import GBMFrame # import seaborn as sns _det_color_cycle = np.linspace(0, 1, 12) class GBM(object): def __init__(self, quaternion, sc_pos=None, gbm_time=None): """ :param quaternion: :param sc_pos: :param gbm_time: :returns: :rtype: """ if gbm_time is not None: if isinstance(gbm_time, str): self._gbm_time = GBMTime.from_UTC_fits(gbm_time) else: # assuming MET self._gbm_time = GBMTime.from_MET(gbm_time) else: self._gbm_time = None self._quaternion = quaternion self._sc_pos = sc_pos if sc_pos is not None: self._earth_pos_norm = self.geo_to_gbm( -self._sc_pos / np.linalg.norm(self._sc_pos) ) scxn, scyn, sczn = self._earth_pos_norm earth_theta = np.arccos( sczn / np.sqrt(scxn * scxn + scyn * scyn + sczn * sczn) ) earth_phi = np.arctan2(scyn, scxn) earth_ra = np.rad2deg(earth_phi) if earth_ra < 0: earth_ra = earth_ra + 360 earth_dec = 90 - np.rad2deg(earth_theta) # earth as SkyCoord self._earth_position = coord.SkyCoord( lon=earth_ra * u.deg, lat=earth_dec * u.deg, unit="deg", frame=GBMFrame( quaternion_1=quaternion[0], quaternion_2=quaternion[1], quaternion_3=quaternion[2], quaternion_4=quaternion[3], sc_pos_X=sc_pos[0], sc_pos_Y=sc_pos[1], sc_pos_Z=sc_pos[2], ), ) if self._gbm_time is not None: self.n0 = NaI0(quaternion, sc_pos, self._gbm_time.time) self.n1 = NaI1(quaternion, sc_pos, self._gbm_time.time) self.n2 = NaI2(quaternion, sc_pos, self._gbm_time.time) self.n3 = NaI3(quaternion, sc_pos, self._gbm_time.time) self.n4 = NaI4(quaternion, sc_pos, self._gbm_time.time) self.n5 = NaI5(quaternion, sc_pos, self._gbm_time.time) self.n6 = NaI6(quaternion, sc_pos, self._gbm_time.time) self.n7 = NaI7(quaternion, sc_pos, self._gbm_time.time) self.n8 = NaI8(quaternion, sc_pos, self._gbm_time.time) self.n9 = NaI9(quaternion, sc_pos, self._gbm_time.time) self.na = NaIA(quaternion, sc_pos, self._gbm_time.time) self.nb = NaIB(quaternion, sc_pos, self._gbm_time.time) self.b0 = BGO0(quaternion, sc_pos, self._gbm_time.time) self.b1 = BGO1(quaternion, sc_pos, self._gbm_time.time) else: self.n0 = NaI0(quaternion, sc_pos, None) self.n1 = NaI1(quaternion, sc_pos, None) self.n2 = NaI2(quaternion, sc_pos, None) self.n3 = NaI3(quaternion, sc_pos, None) self.n4 = NaI4(quaternion, sc_pos, None) self.n5 = NaI5(quaternion, sc_pos, None) self.n6 = NaI6(quaternion, sc_pos, None) self.n7 = NaI7(quaternion, sc_pos, None) self.n8 = NaI8(quaternion, sc_pos, None) self.n9 = NaI9(quaternion, sc_pos, None) self.na = NaIA(quaternion, sc_pos, None) self.nb = NaIB(quaternion, sc_pos, None) self.b0 = BGO0(quaternion, sc_pos, None) self.b1 = BGO1(quaternion, sc_pos, None) self._detectors = OrderedDict( n0=self.n0, n1=self.n1, n2=self.n2, n3=self.n3, n4=self.n4, n5=self.n5, n6=self.n6, n7=self.n7, n8=self.n8, n9=self.n9, na=self.na, nb=self.nb, b0=self.b0, b1=self.b1, ) @classmethod def from_position_interpolator( cls, pos_interp: PositionInterpolator, time: float = 0 ): """ Create a GBM directly from an interpolator """ met = pos_interp.met(time) return cls(pos_interp.quaternion(time), pos_interp.sc_pos(time), gbm_time=met) def set_quaternion(self, quaternion): """FIXME! briefly describe function :param quaternion: :returns: :rtype: """ for key in self._detectors.keys(): self._detectors[key].set_quaternion(quaternion) self._quaternion = quaternion def set_sc_pos(self, sc_pos): """FIXME! briefly describe function :param sc_pos: :returns: :rtype: """ for key in self._detectors.keys(): self._detectors[key].set_sc_pos(sc_pos) self._sc_pos = sc_pos def get_good_detectors(self, point, fov): """ Returns a list of detectors containing the point in the FOV Parameters ---------- point fov Returns ------- """ good_detectors = self._contains_point(point, fov) return good_detectors def get_fov(self, radius, fermi_frame=False): """ Parameters ---------- fermi_frame radius """ polys = [] for key in self._detectors.keys(): if key[0] == "b": this_rad = 90 else: this_rad = radius polys.append(self._detectors[key].get_fov(this_rad, fermi_frame)) polys = np.array(polys) return polys def get_good_fov(self, point, radius, fermi_frame=False): """ Returns the detectors that contain the given point for the given angular radius Parameters ---------- point radius """ good_detectors = self._contains_point(point, radius) polys = [] for key in good_detectors: polys.append(self._detectors[key].get_fov(radius, fermi_frame)) return [polys, good_detectors] def get_sun_angle(self, keys=None): """ Returns ------- """ angles = [] if keys is None: for key in self._detectors.keys(): angles.append(self._detectors[key].sun_angle) else: for key in keys: angles.append(self._detectors[key].sun_angle) return angles def get_centers(self, keys=None): """ Returns ------- """ centers = [] if keys is None: for key in self._detectors.keys(): centers.append(self._detectors[key].get_center()) else: for key in keys: centers.append(self._detectors[key].get_center()) return centers def get_separation(self, source): """ Get the andular separation of the detectors from a point Parameters """ out = {} for k, v in self._detectors.items(): out[k] = v.get_center().separation(source).deg return pd.Series(out) def get_earth_points(self, fermi_frame=False): """ Returns ------- """ if self._sc_pos is not None: self._calc_earth_points(fermi_frame) return self._earth_points else: print("No spacecraft position set") def _calc_earth_points(self, fermi_frame): xyz_position = coord.SkyCoord( x=self._sc_pos[0], y=self._sc_pos[1], z=self._sc_pos[2], frame="icrs", representation="cartesian", ) earth_radius = 6371.0 * u.km fermi_radius = np.sqrt((self._sc_pos ** 2).sum()) horizon_angle = 90 - np.rad2deg( np.arccos((earth_radius / fermi_radius).to(u.dimensionless_unscaled)).value ) horizon_angle = (180 - horizon_angle) * u.degree num_points = 300 ra_grid_tmp = np.linspace(0, 360, num_points) dec_range = [-90, 90] cosdec_min = np.cos(np.deg2rad(90.0 + dec_range[0])) cosdec_max = np.cos(np.deg2rad(90.0 + dec_range[1])) v = np.linspace(cosdec_min, cosdec_max, num_points) v = np.arccos(v) v = np.rad2deg(v) v -= 90.0 dec_grid_tmp = v ra_grid = np.zeros(num_points ** 2) dec_grid = np.zeros(num_points ** 2) itr = 0 for ra in ra_grid_tmp: for dec in dec_grid_tmp: ra_grid[itr] = ra dec_grid[itr] = dec itr += 1 if fermi_frame: all_sky = coord.SkyCoord( Az=ra_grid, Zen=dec_grid, frame=GBMFrame(quaternion=self._quaternion), unit="deg", ) else: all_sky = coord.SkyCoord(ra=ra_grid, dec=dec_grid, frame="icrs", unit="deg") condition = all_sky.separation(xyz_position) > horizon_angle # self.seps = all_sky.separation(xyz_position) self._earth_points = all_sky[condition] @property def detectors(self): return self._detectors def _contains_point(self, point, radius): """ returns detectors that contain a points """ condition = [] steps = 500 for key in self._detectors.keys(): if key[0] == "b": this_rad = 90 else: this_rad = radius j2000 = self._detectors[key]._center.icrs poly = sp.SphericalPolygon.from_cone( j2000.ra.value, j2000.dec.value, this_rad, steps=steps ) if poly.contains_point(point.cartesian.xyz.value): condition.append(key) return condition def plot_detector_pointings(self, ax=None, fov=None, show_earth=True, **kwargs): if ax is None: skymap_kwargs = {} if "projection" in kwargs: skymap_kwargs["projection"] = kwargs.pop("projection") if "center" in kwargs: skymap_kwargs["center"] = kwargs.pop("center") if "radius" in kwargs: skymap_kwargs["radius"] = kwargs.pop("radius") ax = skyplot(**skymap_kwargs) _defaults = dict(edgecolor="#13ED9B", lw=1, facecolor="#13ED9B", alpha=0.3) for k, v in _defaults.items(): if k not in kwargs: kwargs[k] = v for k, v in self._detectors.items(): v.plot_pointing(ax=ax, fov=fov, **kwargs) if show_earth: circle = SphericalCircle( self._earth_position.icrs.ra, self._earth_position.icrs.dec, 67, vertex_unit=u.deg, resolution=5000, # edgecolor=color, transform=ax.get_transform("icrs"), edgecolor="none", facecolor="#13ACED", alpha=0.1, zorder=-3000, ) ax.add_patch(circle) return ax.get_figure() def geo_to_gbm(self, pos_geo): """ Compute the transformation from heliocentric Sgr coordinates to spherical Galactic. """ q1, q2, q3, q4 = self._quaternion # q1,q2,q3,q4 sc_matrix =
np.zeros((3, 3))
numpy.zeros
# RUN: SUPPORTLIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s from string import Template import numpy as np import os import sys import tempfile _SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) sys.path.append(_SCRIPT_PATH) from tools import mlir_pytaco from tools import testing_utils as testing_utils # Define the aliases to shorten the code. _COMPRESSED = mlir_pytaco.ModeFormat.COMPRESSED _DENSE = mlir_pytaco.ModeFormat.DENSE def _init_3d(T, I, J, K): for i in range(I): for j in range(J): for k in range(K): T.insert([i, j, k], i + j + k + 1) def _init_2d(T, I, J): for i in range(I): for j in range(J): T.insert([i, j], i + j + 1) def _init_1d_with_value(T, I, v): for i in range(I): T.insert([i], v) def test_expect_error(name, code, error): """Executes the code then verifies the expected error message.""" try: exec(code) except ValueError as e: passed = "passed" if (str(e).startswith(error)) else "failed" print(f"test_{name}: {passed}") # CHECK-LABEL: test_tensor_dtype @testing_utils.run_test def test_tensor_dtype(): passed = mlir_pytaco.DType(mlir_pytaco.Type.INT16).is_int() passed += mlir_pytaco.DType(mlir_pytaco.Type.INT32).is_int() passed += mlir_pytaco.DType(mlir_pytaco.Type.INT64).is_int() passed += mlir_pytaco.DType(mlir_pytaco.Type.FLOAT32).is_float() passed += mlir_pytaco.DType(mlir_pytaco.Type.FLOAT64).is_float() # CHECK: Number of passed: 5 print("Number of passed:", passed) # CHECK: test_mode_ordering_not_int: passed test_expect_error("mode_ordering_not_int", "m = mlir_pytaco.ModeOrdering(['x'])", "Ordering must be a list of integers") # CHECK: test_mode_ordering_not_permutation: passed test_expect_error("mode_ordering_not_permutation", "m = mlir_pytaco.ModeOrdering([2, 1])", "Invalid ordering") # CHECK: test_mode_format_invalid: passed test_expect_error("mode_format_invalid", "m = mlir_pytaco.ModeFormatPack(['y'])", "Formats must be a list of ModeFormat") # CHECK: test_expect_mode_format_pack: passed test_expect_error("expect_mode_format_pack", (""" mode_ordering = mlir_pytaco.ModeOrdering([0, 1, 2]) f = mlir_pytaco.Format(["x"], mode_ordering) """), "Expected a list of ModeFormat") # CHECK: test_expect_mode_ordering: passed test_expect_error("expect_mode_ordering", (""" mode_format_pack = mlir_pytaco.ModeFormatPack([_COMPRESSED, _COMPRESSED]) f = mlir_pytaco.Format(mode_format_pack, "x") """), "Expected ModeOrdering") # CHECK: test_inconsistent_mode_format_pack_and_mode_ordering: passed test_expect_error("inconsistent_mode_format_pack_and_mode_ordering", (""" mode_format_pack = mlir_pytaco.ModeFormatPack([_COMPRESSED, _COMPRESSED]) mode_ordering = mlir_pytaco.ModeOrdering([0, 1, 2]) f = mlir_pytaco.Format(mode_format_pack, mode_ordering) """), "Inconsistent ModeFormatPack and ModeOrdering") # CHECK-LABEL: test_format_default_ordering @testing_utils.run_test def test_format_default_ordering(): f = mlir_pytaco.Format([_COMPRESSED, _COMPRESSED]) passed = 0 passed += np.array_equal(f.ordering.ordering, [0, 1]) # CHECK: Number of passed: 1 print("Number of passed:", passed) # CHECK-LABEL: test_format_explicit_ordering @testing_utils.run_test def test_format_explicit_ordering(): f = mlir_pytaco.Format([_COMPRESSED, _DENSE], [1, 0]) passed = 0 passed += np.array_equal(f.ordering.ordering, [1, 0]) # CHECK: Number of passed: 1 print("Number of passed:", passed) # CHECK-LABEL: test_index_var @testing_utils.run_test def test_index_var(): i = mlir_pytaco.IndexVar() j = mlir_pytaco.IndexVar() passed = (i.name != j.name) vars = mlir_pytaco.get_index_vars(10) passed += (len(vars) == 10) passed += (all([isinstance(e, mlir_pytaco.IndexVar) for e in vars])) # CHECK: Number of passed: 3 print("Number of passed:", passed) # CHECK: test_tensor_invalid_first_argument: passed test_expect_error("tensor_invalid_first_argument", "t = mlir_pytaco.Tensor('f')", "Invalid first argument") # CHECK: test_tensor_inconsistent_shape_and_format: passed test_expect_error("tensor_inconsistent_shape_and_format", (""" mode_format_pack = mlir_pytaco.ModeFormatPack([_COMPRESSED, _COMPRESSED]) mode_ordering = mlir_pytaco.ModeOrdering([0, 1]) f = mlir_pytaco.Format(mode_format_pack, mode_ordering) t = mlir_pytaco.Tensor([3], f) """), "Inconsistent shape and format") # CHECK: test_tensor_invalid_format: passed test_expect_error("tensor_invalid_format", "t = mlir_pytaco.Tensor([3], 'f')", "Invalid format argument") # CHECK: test_tensor_insert_nonlist_coordinate: passed test_expect_error("tensor_insert_nonlist_coordinate", (""" t = mlir_pytaco.Tensor([3]) t.insert(1, 0) """), "Non list coordinate detected") # CHECK: test_tensor_insert_too_much_coordinate: passed test_expect_error("tensor_insert_too_much_coordinate", (""" t = mlir_pytaco.Tensor([3]) t.insert([0, 0], 0) """), "Invalid coordinate") # CHECK: test_tensor_insert_coordinate_outof_range: passed test_expect_error("tensor_insert_coordinate_outof_range", (""" t = mlir_pytaco.Tensor([1, 1]) t.insert([1, 0], 0) """), "Invalid coordinate") # CHECK: test_tensor_insert_coordinate_nonint: passed test_expect_error("tensor_insert_coordinate_nonint", (""" t = mlir_pytaco.Tensor([1, 1]) t.insert([0, "xy"], 0) """), "Non integer coordinate detected") # CHECK: test_tensor_insert_invalid_value: passed test_expect_error("tensor_insert_invalid_value", (""" t = mlir_pytaco.Tensor([1, 1]) t.insert([0, 0], "x") """), "Value is neither int nor float") # CHECK: test_access_non_index_var_index: passed test_expect_error("access_non_index_var_index", (""" t = mlir_pytaco.Tensor([5, 6]) i = mlir_pytaco.IndexVar() a = mlir_pytaco.Access(t, (i, "j")) """), "Indices contain non IndexVar") # CHECK: test_access_inconsistent_rank_indices: passed test_expect_error("access_inconsistent_rank_indices", (""" t = mlir_pytaco.Tensor([5, 6]) i = mlir_pytaco.IndexVar() a = mlir_pytaco.Access(t, (i,)) """), "Invalid indices for rank") # CHECK: test_access_invalid_indices_for_rank: passed test_expect_error("access_invalid_indices_for_rank", (""" t = mlir_pytaco.Tensor([5, 6]) i, j, k = mlir_pytaco.get_index_vars(3) a = mlir_pytaco.Access(t, (i,j, k)) """), "Invalid indices for rank") # CHECK: test_invalid_indices: passed test_expect_error("invalid_indices", (""" i, j = mlir_pytaco.get_index_vars(2) A = mlir_pytaco.Tensor([2, 3]) B = mlir_pytaco.Tensor([2, 3]) C = mlir_pytaco.Tensor([2, 3], _DENSE) C[i, j] = A[1, j] + B[i, j] """), "Expected IndexVars") # CHECK: test_invalid_operation: passed test_expect_error("invalid_operation", (""" i, j = mlir_pytaco.get_index_vars(2) A = mlir_pytaco.Tensor([2, 3]) C = mlir_pytaco.Tensor([2, 3], _DENSE) C[i, j] = A[i, j] + i """), "Expected IndexExpr") # CHECK: test_inconsistent_rank_indices: passed test_expect_error("inconsistent_rank_indices", (""" i, j = mlir_pytaco.get_index_vars(2) A = mlir_pytaco.Tensor([2, 3]) C = mlir_pytaco.Tensor([2, 3], _DENSE) C[i, j] = A[i] """), "Invalid indices for rank") # CHECK: test_destination_index_not_used_in_source: passed test_expect_error("destination_index_not_used_in_source", (""" i, j = mlir_pytaco.get_index_vars(2) A = mlir_pytaco.Tensor([3]) C = mlir_pytaco.Tensor([3], _DENSE) C[j] = A[i] C.evaluate() """), "Destination IndexVar not used in the source expression") # CHECK: test_destination_dim_not_consistent_with_source: passed test_expect_error("destination_dim_not_consistent_with_source", (""" i = mlir_pytaco.IndexVar() A = mlir_pytaco.Tensor([3]) C = mlir_pytaco.Tensor([5], _DENSE) C[i] = A[i] C.evaluate() """), "Inconsistent destination dimension for IndexVar") # CHECK: test_inconsistent_source_dim: passed test_expect_error("inconsistent_source_dim", (""" i = mlir_pytaco.IndexVar() A = mlir_pytaco.Tensor([3]) B = mlir_pytaco.Tensor([5]) C = mlir_pytaco.Tensor([3], _DENSE) C[i] = A[i] + B[i] C.evaluate() """), "Inconsistent source dimension for IndexVar") # CHECK-LABEL: test_tensor_all_dense_sparse @testing_utils.run_test def test_tensor_all_dense_sparse(): a = mlir_pytaco.Tensor([4], [_DENSE]) passed = (not a.is_dense()) passed += (a.order == 1) passed += (a.shape[0] == 4) # CHECK: Number of passed: 3 print("Number of passed:", passed) # CHECK-LABEL: test_tensor_true_dense @testing_utils.run_test def test_tensor_true_dense(): a = mlir_pytaco.Tensor.from_array(np.random.uniform(size=5)) passed = a.is_dense() passed += (a.order == 1) passed += (a.shape[0] == 5) # CHECK: Number of passed: 3 print("Number of passed:", passed) # CHECK-LABEL: test_tensor_copy @testing_utils.run_test def test_tensor_copy(): i, j = mlir_pytaco.get_index_vars(2) I = 2 J = 3 A = mlir_pytaco.Tensor([I, J]) A.insert([0, 1], 5.0) A.insert([1, 2], 6.0) B = mlir_pytaco.Tensor([I, J]) B[i, j] = A[i, j] passed = (B._assignment is not None) passed += (B._engine is None) try: B.compute() except ValueError as e: passed += (str(e).startswith("Need to invoke compile")) B.compile() passed += (B._engine is not None) B.compute() passed += (B._assignment is None) passed += (B._engine is None) indices, values = B.get_coordinates_and_values() passed += np.array_equal(indices, [[0, 1], [1, 2]]) passed += np.allclose(values, [5.0, 6.0]) # No temporary tensor is used. passed += (B._stats.get_total() == 0) # CHECK: Number of passed: 9 print("Number of passed:", passed) # CHECK-LABEL: test_tensor_trivial_reduction @testing_utils.run_test def test_tensor_trivial_reduction(): i, j = mlir_pytaco.get_index_vars(2) I = 2 J = 3 A = mlir_pytaco.Tensor([I, J]) A.insert([0, 1], 5.0) A.insert([0, 2], 3.0) A.insert([1, 2], 6.0) B = mlir_pytaco.Tensor([I]) B[i] = A[i, j] indices, values = B.get_coordinates_and_values() passed = np.array_equal(indices, [[0], [1]]) passed += np.allclose(values, [8.0, 6.0]) # No temporary tensor is used. passed += (B._stats.get_total() == 0) # CHECK: Number of passed: 3 print("Number of passed:", passed) # CHECK-LABEL: test_binary_add @testing_utils.run_test def test_binary_add(): i = mlir_pytaco.IndexVar() A = mlir_pytaco.Tensor([4]) B = mlir_pytaco.Tensor([4]) C = mlir_pytaco.Tensor([4]) A.insert([1], 10) A.insert([2], 1) B.insert([3], 20) B.insert([2], 2) C[i] = A[i] + B[i] indices, values = C.get_coordinates_and_values() passed = np.array_equal(indices, [[1], [2], [3]]) passed += np.array_equal(values, [10., 3., 20.]) # No temporary tensor is used. passed += (C._stats.get_total() == 0) # CHECK: Number of passed: 3 print("Number of passed:", passed) # CHECK-LABEL: test_binary_add_sub @testing_utils.run_test def test_binary_add_sub(): i = mlir_pytaco.IndexVar() j = mlir_pytaco.IndexVar() A = mlir_pytaco.Tensor([2, 3]) B = mlir_pytaco.Tensor([2, 3]) C = mlir_pytaco.Tensor([2, 3]) D = mlir_pytaco.Tensor([2, 3]) A.insert([0, 1], 10) A.insert([1, 2], 40) B.insert([0, 0], 20) B.insert([1, 2], 30) C.insert([0, 1], 5) C.insert([1, 2], 7) D[i, j] = A[i, j] + B[i, j] - C[i, j] indices, values = D.get_coordinates_and_values() passed = np.array_equal(indices, [[0, 0], [0, 1], [1, 2]]) passed +=
np.array_equal(values, [20., 5., 63.])
numpy.array_equal
# -*- coding=utf-8 -*- import numpy as np from sklearn.cluster import KMeans, SpectralClustering from sklearn.mixture import GaussianMixture from skimage.measure import label def net_center_posprocessing(pred, centers, pixel_wise_feature, gt): ''' 根据net维护的center,得到seg的结果 :param pred: [512, 512] :param centers: [2, 256] :param pixel_wise_feature: [512, 512, 256] :param gt: [512, 512] :return: ''' # print(np.shape(pred), np.shape(centers), np.shape(pixel_wise_feature), np.shape(gt)) from metrics import dice distances1 = np.sum((pixel_wise_feature - centers[0]) ** 2, axis=2, keepdims=True) distances2 = np.sum((pixel_wise_feature - centers[1]) ** 2, axis=2, keepdims=True) distances = np.concatenate([distances1, distances2], axis=2) optimized_pred =
np.argmin(distances, axis=2)
numpy.argmin
# -*- coding: utf-8 -*- import matplotlib.patches as mpatches import matplotlib.lines as mlines import seaborn as sns import pandas as pd import copy import matplotlib.pyplot as plt from ..enumerations import AssayRole, SampleType import numpy import plotly.graph_objs as go from ..enumerations import VariableType def plotSpectraInteractive(dataset, samples=None, xlim=None, featureNames=None, sampleLabels='Sample ID', nmrDataset=True): """ Plot spectra from *dataset*. #:param Dataset dataset: Dataset to plot from :param samples: Index of samples to plot, if ``None`` plot all spectra :type samples: None or list of int :param xlim: Tuple of (minimum value, maximum value) defining a feature range to plot :type xlim: (float, float) """ if not dataset.VariableType == VariableType.Spectral: raise TypeError('Variables in dataset must be continuous.') if featureNames is None: featureNames = dataset.Attributes['Feature Names'] elif featureNames not in dataset.featureMetadata.columns: raise KeyError('featureNames=%s is not a column in dataset.featureMetadata.' % (featureNames)) if sampleLabels not in dataset.sampleMetadata.columns: raise KeyError('sampleLabels=%s is not a column in dataset.sampleMetadata.' % (sampleLabels)) ## # Filter features ## featureMask = dataset.featureMask if xlim is not None: featureMask = (dataset.featureMetadata[featureNames].values > xlim[0]) & \ (dataset.featureMetadata[featureNames].values < xlim[1]) & \ featureMask features = dataset.featureMetadata.loc[featureMask, 'ppm'].values.squeeze() X = dataset.intensityData[:, featureMask] ## # Filter samples ## sampleMask = dataset.sampleMask if samples is None: samples = numpy.arange(X.shape[0])[sampleMask] elif isinstance(samples, int): samples = [samples] elif isinstance(samples, numpy.ndarray): sampleMask = sampleMask & samples samples = numpy.arange(dataset.noSamples)[sampleMask] data = list() if X.ndim == 1: trace = go.Scattergl( x = features, y = X, name = dataset.sampleMetadata.loc[samples, sampleLabels], mode = 'lines', ) data.append(trace) else: for i in samples: trace = go.Scattergl( x = features, y = X[i, :], name = str(dataset.sampleMetadata.loc[i, sampleLabels]), mode = 'lines', ) data.append(trace) if nmrDataset: autorange = 'reversed' else: autorange = True layout = go.Layout( # title='', legend=dict( orientation="h"), hovermode = "closest", xaxis=dict( autorange=autorange ), yaxis = dict( showticklabels=False ), ) figure = go.Figure(data=data, layout=layout) return figure def plotPW(nmrData, savePath=None, title='', figureFormat='png', dpi=72, figureSize=(11,7)): """ plotPW(nmrData, savePath=None, figureFormat='png', dpi=72, figureSize=(11,7)) Visualise peak width values as box plot :param nmrData nmrdataset Dataset object :param title string Text for the figure title :param savePath None or str If None, plot interactively, otherwise attempt to save at this path :param format str Format to save figure :param dpi int Resolution to draw at :param figureSize tuple Specify size of figure """ # Load toolbox wide color scheme if 'sampleTypeColours' in nmrData.Attributes.keys(): sTypeColourDict = copy.deepcopy(nmrData.Attributes['sampleTypeColours']) for stype in SampleType: if stype.name in sTypeColourDict.keys(): sTypeColourDict[stype] = sTypeColourDict.pop(stype.name) else: sTypeColourDict = {SampleType.StudySample: 'b', SampleType.StudyPool: 'g', SampleType.ExternalReference: 'r', SampleType.MethodReference: 'm', SampleType.ProceduralBlank: 'c', 'Other': 'grey', 'Study Sample': 'b', 'Study Reference': 'g', 'Long-Term Reference': 'r', 'Method Reference': 'm', 'Blank': 'c', 'Unspecified SampleType or AssayRole': 'grey'} sns.set_color_codes(palette='deep') fig, ax = plt.subplots(1, figsize=figureSize, dpi=dpi) # Masks for different sample categories SSmask = (nmrData.sampleMetadata['SampleType'] == SampleType.StudySample) & (nmrData.sampleMetadata['AssayRole'] == AssayRole.Assay) SPmask = (nmrData.sampleMetadata['SampleType'] == SampleType.StudyPool) & (nmrData.sampleMetadata['AssayRole'] == AssayRole.PrecisionReference) ERmask = (nmrData.sampleMetadata['SampleType'] == SampleType.ExternalReference) & (nmrData.sampleMetadata['AssayRole'] == AssayRole.PrecisionReference) SRDmask = (nmrData.sampleMetadata['SampleType'] == SampleType.StudyPool) & (nmrData.sampleMetadata['AssayRole'] == AssayRole.LinearityReference) Blankmask = nmrData.sampleMetadata['SampleType'] == SampleType.ProceduralBlank UnclearRolemask = (SSmask==False) & (SPmask==False) & (ERmask==False) & (SRDmask == False) & (Blankmask==False) #all the pw values pw_ER = nmrData.sampleMetadata[ERmask]['Line Width (Hz)'] pw_SP = nmrData.sampleMetadata[SPmask]['Line Width (Hz)'] pw_SS = nmrData.sampleMetadata[SSmask]['Line Width (Hz)'] pw_SRD = nmrData.sampleMetadata[SRDmask]['Line Width (Hz)'] pw_Blank = nmrData.sampleMetadata[Blankmask]['Line Width (Hz)'] pw_Unknown = nmrData.sampleMetadata[UnclearRolemask]['Line Width (Hz)'] tempDF = pd.concat([pw_SS, pw_SP, pw_ER, pw_SRD, pw_Blank, pw_Unknown], axis=1)#put them all together in a new df tempDF.columns = ['Study Sample', 'Study Reference', 'Long-Term Reference', 'Serial Dilution', 'Blank', 'Unspecified SampleType or AssayRole'] tempDF.dropna(axis='columns', how='all', inplace=True) # remove empty columns #all the outliers only pw_ER = pw_ER.where(pw_ER>nmrData.Attributes['LWFailThreshold'], numpy.nan) #anything smaller than pw threshold set to NaN so doesnt plot pw_SP = pw_SP.where(pw_SP>nmrData.Attributes['LWFailThreshold'], numpy.nan) pw_SS = pw_SS.where(pw_SS>nmrData.Attributes['LWFailThreshold'], numpy.nan) pw_SRD = pw_SRD.where(pw_SRD>nmrData.Attributes['LWFailThreshold'], numpy.nan) pw_Blank = pw_Blank.where(pw_Blank>nmrData.Attributes['LWFailThreshold'], numpy.nan) pw_Unknown = pw_Unknown.where(pw_Unknown>nmrData.Attributes['LWFailThreshold'], numpy.nan) tempDF_outliers = pd.concat([pw_SS, pw_SP, pw_ER, pw_SRD, pw_Blank, pw_Unknown], axis=1)#put them all together in a new df tempDF_outliers.columns = ['Study Sample', 'Study Reference', 'Long-Term Reference', 'Serial Dilution', 'Blank', 'Unspecified SampleType or AssayRole'] tempDF_outliers.dropna(axis='columns', how='all', inplace=True) # remove empty columns #plot fail threshold line only if there exists values greater than the fail (normally 1.4 set in SOP) if
numpy.max(nmrData.sampleMetadata['Line Width (Hz)'])
numpy.max
import os import numpy as np import itertools from numpy.core.shape_base import _block_slicing import prody as pr import datetime from scipy.sparse.csr import csr_matrix from scipy.sparse import lil_matrix from scipy.sparse.sputils import matrix from ..basic import hull from ..basic import utils from ..basic.filter import Search_filter from ..basic.constant import one_letter_code from .graph import Graph from .comb_info import CombInfo from sklearn.neighbors import NearestNeighbors, radius_neighbors_graph import multiprocessing as mp from multiprocessing.dummy import Pool as ThreadPool ''' test_matrix = np.array( [[0, 0, 1, 1], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]], dtype = bool ) test_paths = calc_adj_matrix_paths(test_matrix, num_iter) paths = calc_adj_matrix_paths(m_adj_matrix) for i in range(len(ss.vdms)): if '5od1' in ss.vdms[i].query.getTitle(): print(i) print(ss.vdms[i].query.getTitle()) index = [3776, 4387*1+2865, 4387*2+2192] index == [3776, 7252, 10966] all_vdms = [] for i in range(len(wins)): all_vdms.extend(ss.vdms) all_vdms[7252].query.getTitle() adj_matrix[3776, 7252] adj_matrix[3776, 10966] adj_matrix[7252, 10966] win_mask[3776, 7252] win_mask[3776, 10966] win_mask[7252, 10966] paths = calc_adj_matrix_paths(m_adj_matrix) ''' def calc_adj_matrix_paths(m_adj_matrix, num_iter =3): paths = [] for r in range(m_adj_matrix.shape[0]): inds = m_adj_matrix.rows[r] if len(inds) < num_iter-1: continue for _comb in itertools.combinations(inds, num_iter-1): comb = [r] comb.extend(_comb) valid = calc_adj_matrix_paths_helper(m_adj_matrix, comb, num_iter, 1) if valid: #print(comb) paths.append(comb) return paths def calc_adj_matrix_paths_helper( m_adj_matrix, comb, num_iter, iter): if iter >= num_iter -1: return True r_curr = comb[iter] for r_next in comb[iter+1:]: if not m_adj_matrix[r_curr, r_next]: return False return calc_adj_matrix_paths_helper(m_adj_matrix, comb, num_iter, iter +1) def neighbor_generate_nngraph(ss): ''' Instead of doing this in a pairwise way as the function 'search.neighbor_generate_pair_dict'. Here we calc one nearest neighbor object and graph. ss is the search.Search_vdM object. ''' wins = sorted(list(ss.neighbor_query_dict.keys())) metal_vdm_size = len(ss.all_metal_vdm.get_metal_mem_coords()) #calc radius_neighbors_graph all_coords = [] win_labels = [] vdm_inds = [] for inx in range(len(wins)): wx = wins[inx] win_labels.extend([wx]*metal_vdm_size) n_x = ss.neighbor_query_dict[wx].get_metal_mem_coords() all_coords.extend(n_x) vdm_inds.extend(range(metal_vdm_size)) #nbrs = NearestNeighbors(radius= ss.metal_metal_dist).fit(all_coords) #adj_matrix = nbrs.radius_neighbors_graph(all_coords).astype(bool) adj_matrix = radius_neighbors_graph(all_coords, radius= ss.metal_metal_dist).astype(bool) #print(adj_matrix.shape) #metal_clashing with bb bb_coords = ss.target.select('name N C CA O').getCoords() nbrs_bb = NearestNeighbors(radius= 3.5).fit(all_coords) adj_matrix_bb = nbrs_bb.radius_neighbors_graph(bb_coords).astype(bool) #print(adj_matrix_bb.shape) # #create mask # mask = generate_filter_mask(ss, wins, win_labels, metal_vdm_size, adj_matrix_bb) # #calc modified adj matrix # m_adj_matrix = adj_matrix.multiply(mask) m_adj_matrix = filter_adj_matrix(ss, wins, metal_vdm_size, adj_matrix, adj_matrix_bb) return m_adj_matrix, win_labels, vdm_inds def generate_filter_mask(ss, wins, win_labels, metal_vdm_size, adj_matrix_bb): ''' One issue for the mask method is that the matrix is sparse, there will be a lot of unnecessary calculation. For example, filter phi psi, if a vdm is never be in any neighbor, there is no need to calc it. ''' wins = sorted(list(ss.neighbor_query_dict.keys())) metal_vdm_size = len(ss.all_metal_vdm.get_metal_mem_coords()) win_mask = np.ones((len(win_labels), len(win_labels)), dtype=bool) win_mask = np.triu(win_mask) # win filter: vdm on the same position don't connect. for inx in range(len(wins)): win_mask[inx*metal_vdm_size:(inx+1)*metal_vdm_size, inx*metal_vdm_size:(inx+1)*metal_vdm_size] = 0 # Metal bb Clashing filter. metal_clashing_vec = np.ones(len(win_labels), dtype=bool) for i in range(adj_matrix_bb.shape[0]): metal_clashing_vec *= ~(adj_matrix_bb[i].toarray().reshape(len(win_labels),)) labels_m = np.broadcast_to(metal_clashing_vec, (len(wins)*metal_vdm_size, len(wins)*metal_vdm_size)) win_mask *= labels_m.T win_mask *= labels_m # Modify mask with aa filter. if ss.validateOriginStruct: v_aa = np.array([v.aa_type for v in ss.vdms]) ress = [one_letter_code[ss.target.select('name CA and resindex ' + str(wx)).getResnames()[0]] for wx in wins] labels = np.zeros(len(wins)*metal_vdm_size, dtype=bool) for inx in range(len(wins)): labels[inx*metal_vdm_size:(inx+1)*metal_vdm_size] = v_aa == ress[inx] labels_m = np.broadcast_to(labels, (len(wins)*metal_vdm_size, len(wins)*metal_vdm_size)) win_mask *= labels_m.T win_mask *= labels_m if ss.search_filter.filter_abple: v_abples =
np.array([v.abple for v in ss.vdms])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([-1,0,0,0,-1,0,0,0,-1])
numpy.array
from networkunit.tests.test_correlation_matrix_test import correlation_matrix_test from networkunit.capabilities.cap_ProducesSpikeTrains import ProducesSpikeTrains from networkunit.plots.plot_correlation_matrix import correlation_matrix as plot_correlation_matrix from networkunit.plots import alpha as _alpha from elephant.spike_train_correlation import corrcoef, cch import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from matplotlib import colors, colorbar import seaborn as sns from copy import copy from abc import ABCMeta, abstractmethod from quantities import ms, Quantity import numpy as np class generalized_correlation_matrix_test(correlation_matrix_test): """ Test to compare the different kinds of correlation matrices of a set of spiking neurons in a network. The statistical testing method needs to be set in form of a sciunit.Score as score_type. Parameters (in dict params) ---------- binsize: quantity, None (default: 2*ms) Size of bins used to calculate the correlation coefficients. num_bins: int, None (default: None) Number of bins within t_start and t_stop used to calculate the correlation coefficients. t_start: quantity, None Start of time window used to calculate the correlation coefficients. t_stop: quantity, None Stop of time window used to calculate the correlation coefficients. nan_to_num: bool If true, np.nan are set to 0, and np.inf to largest finite float. binary: bool If true, the binned spike trains are set to be binary. cluster_matrix : bool If true, the matrix is clustered by the hierarchical cluster algorithm scipy.cluster.hierachy.linkage() with 'method' determined by the cluster_method. cluster_method : string (default: 'ward') Method for the hierarchical clustering if cluster_matrix=True remove_autocorr: bool If true, the diagonal values of the matrix are set to 0. edge_threshold: float Passed to draw_graph() and determines the threshold above which edges are draw in the graph corresponding to the matrix. maxlag : int Maximum shift (in number of bins) between spike trains which should still be considered in the calculating the correlation measure. time_reduction: 'sum', 'max', 'threshold x.x' Method how to include lagged correlations between spike trains. sum - calculates the sum of the normalized CCH within +- maxlag max - takes the maximum of the CCH within +- maxlag threshold x.x - sums up the part of the CCH above the threshold x.x and within +- maxlag """ required_capabilities = (ProducesSpikeTrains, ) params = {'maxlag': 100, # in bins 'binsize': 2*ms, 'time_reduction': 'threshold 0.13' } def generate_cc_matrix(self, spiketrains, binary=False, model=None, **kwargs): if hasattr(model, 'cch_array')\ and 'binsize{}_maxlag{}'.format(self.params['binsize'],self.params['maxlag'])\ in model.cch_array: cch_array = model.cch_array['binsize{}_maxlag{}'\ .format(self.params['binsize'],self.params['maxlag'])] else: cch_array = self.generate_cch_array(spiketrains=spiketrains, **self.params) if model is not None: if not hasattr(model, 'cch_array'): model.cch_array = {} model.cch_array['binsize{}_maxlag{}'\ .format(self.params['binsize'], self.params['maxlag'])] = cch_array pairs_idx = np.triu_indices(len(spiketrains), 1) pairs = [[i, j] for i, j in zip(pairs_idx[0], pairs_idx[1])] if 'time_reduction' not in self.params: raise KeyError("A method for 'time_reduction' needs to be set!") return self.generalized_cc_matrix(cch_array, pairs, self.params['time_reduction']) def generalized_cc_matrix(self, cch_array, pair_ids, time_reduction, rescale=False, **kwargs): B = len(np.squeeze(cch_array)[0]) if time_reduction == 'sum': cc_array = np.sum(np.squeeze(cch_array), axis=1) if rescale: cc_array = cc_array / float(B) if time_reduction == 'max': cc_array = np.amax(np.squeeze(cch_array), axis=1) if time_reduction[:3] == 'lag': lag = int(time_reduction[3:]) cc_array = np.squeeze(cch_array)[:, B/2 + lag] if time_reduction[:9] == 'threshold': th = float(time_reduction[10:]) th_cch_array = np.array([a[a>th] for a in np.squeeze(cch_array)]) if rescale: cc_array = np.array([np.sum(cch)/float(len(cch)) if len(cch) else np.sum(cch) for cch in th_cch_array]) else: cc_array = np.array([np.sum(cch) for cch in th_cch_array]) N = len(cc_array) dim = .5*(1 + np.sqrt(8.*N + 1)) assert not dim - int(dim) dim = int(dim) cc_mat = np.ones((dim,dim)) for count, (i,j) in enumerate(pair_ids): cc_mat[i,j] = cc_array[count] cc_mat[j,i] = cc_array[count] return cc_mat def generate_cch_array(self, spiketrains, maxlag=None, model=None, **kwargs): if 'binsize' in self.params: binsize = self.params['binsize'] elif 'num_bins' in self.params: t_lims = [(st.t_start, st.t_stop) for st in spiketrains] tmin = min(t_lims, key=lambda f: f[0])[0] tmax = max(t_lims, key=lambda f: f[1])[1] T = tmax - tmin binsize = T / float(self.params['num_bins']) else: raise AttributeError("Neither bin size or number of bins was set!") if maxlag is None: maxlag = self.params['maxlag'] else: self.params['maxlag'] = maxlag if type(maxlag) == Quantity: maxlag = int(float(maxlag.rescale('ms')) / float(binsize.rescale('ms'))) if hasattr(model, 'cch_array') and \ 'binsize{}_maxlag{}'.format(binsize, maxlag) in model.cch_array: cch_array = model.cch_array['binsize{}_maxlag{}'.format(binsize, maxlag)] else: try: from mpi4py import MPI mpi = True except: mpi = False N = len(spiketrains) B = 2 * maxlag + 1 pairs_idx = np.triu_indices(N, 1) pairs = [[i, j] for i, j in zip(pairs_idx[0], pairs_idx[1])] if mpi: comm = MPI.COMM_WORLD rank = comm.Get_rank() Nnodes = comm.Get_size() print('Using MPI with {} node'.format(Nnodes)) comm.Barrier() if rank == 0: split = np.array_split(pairs, Nnodes) else: split = None pair_per_node = int(np.ceil(float(len(pairs)) / Nnodes)) split_pairs = comm.scatter(split, root=0) else: split_pairs = pairs pair_per_node = len(pairs) cch_array = np.zeros((pair_per_node, B)) max_cc = 0 for count, (i, j) in enumerate(split_pairs): binned_sts_i = self.robust_BinnedSpikeTrain(spiketrains[i], binsize=binsize) binned_sts_j = self.robust_BinnedSpikeTrain(spiketrains[j], binsize=binsize) cch_array[count] = np.squeeze(cch(binned_sts_i, binned_sts_j, window=[-maxlag, maxlag], cross_corr_coef=True, )[0]) max_cc = max([max_cc, max(cch_array[count])]) if mpi: pop_cch = comm.gather(cch_array, root=0) pop_max_cc = comm.gather(max_cc, root=0) if rank == 0: cch_array = pop_cch max_cc = pop_max_cc# if model is not None: if not hasattr(model, 'cch_array'): model.cch_array = {} model.cch_array['binsize{}_maxlag{}'.format(binsize, maxlag)] = cch_array return cch_array def _calc_color_array(self, cch_array, threshold=.5, **kwargs): # save as array with only >threshold value # and a second array with their (i,j,t) squeezed_cch_array = np.squeeze(cch_array) N = len(squeezed_cch_array) B = len(squeezed_cch_array[0]) dim = int(.5 * (1 + np.sqrt(8. * N + 1))) pairs = np.triu_indices(dim, 1) pair_ids = [[i, j] for i, j in zip(pairs[0], pairs[1])] binnums = np.arange(B) try: from mpi4py import MPI mpi = True except: mpi = False if mpi: comm = MPI.COMM_WORLD rank = comm.Get_rank() Nnodes = comm.Get_size() print('rank', rank, 'and size (Nnodes)', Nnodes) comm.Barrier() if rank == 0: split = np.array_split(squeezed_cch_array, Nnodes) else: split = None cch_per_node = int(np.ceil(float(len(squeezed_cch_array)) / Nnodes)) split_cchs = comm.scatter(split, root=0) else: split_cchs = squeezed_cch_array pair_per_node = len(squeezed_cch_array) # color_array_inst = np.zeros((cch_per_node, B), dtype=int) color_array_inst = np.array([], dtype=int) pair_tau_ids = np.array([0,0,0], dtype=int) for count, cch in enumerate(split_cchs): mask = (cch >= threshold) int_color_cch = (cch[mask] - threshold) / (1. - threshold) * 10. i,j = pair_ids[count] if binnums[mask].size: pair_tau_ids = np.vstack((pair_tau_ids, np.array([(i,j,t) for t in binnums[mask]]))) color_array_inst = np.append(color_array_inst, int_color_cch.astype(int)) if mpi: color_array = comm.gather(color_array_inst, root=0) if rank == 0: pop_color_array = color_array else: pop_color_array = color_array_inst return pop_color_array, pair_tau_ids[1:] def plot_cch_space(self, model, threshold=.05, palette=sns.cubehelix_palette(10, start=.3, rot=.6), alpha=False, **kwargs): # color_array is an sparse int array of the thresholded cchs # transformed to [0..9] -> 0 is transparent, 1-9 is used for indexing the # color palette. Since the color_cch is rescaled there is exactly one # element with value 10, which always projected to k cch_array = self.generate_cch_array(model.spiketrains, maxlag=None, model=model, **kwargs) color_array, pair_tau_ids = self._calc_color_array(cch_array, threshold=threshold, **kwargs) colorarray = np.squeeze(color_array) N = len(model.spiketrains) B = len(model.spiketrains[0]) max_cc = np.max(cch_array) palette = palette + [[0, 0, 0]] # single max value is black binsize = self.params['binsize'] fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlabel('Neuron i') ax.set_xlim3d(0, N) ax.set_ylabel(r'$\tau$ [ms]') ax.set_ylim3d(-B / 2 * float(binsize), B / 2 * float(binsize)) ax.set_zlabel('Neuron j') ax.set_zlim3d(0, N) tau = (np.arange(B) - B / 2) * float(binsize) for count, (i, j, t) in enumerate(pair_tau_ids): if alpha: color = _alpha(palette[colorarray[count]], 1. - colorarray[count] / 10.) else: color = palette[colorarray[count]] if t < 1: t = 1 print('border value shifted') elif t == B - 1: t = B - 2 print('border value shifted') try: ax.plot([j, j], tau[t - 1:t + 1], [i, i], c=color) except: print('value dropped') # expects the outer most values for tau not to be significant cax = plt.gcf().add_subplot(222, aspect=10, anchor=(1.1, .5)) cmap = colors.ListedColormap(palette) # ticks = np.around(np.linspace(threshold, max_cc, 11)) cb = colorbar.ColorbarBase(cax, cmap=cmap, orientation='vertical') cax.yaxis.set_visible(True) cax.yaxis.set_ticks([0,1]) print(max_cc) cax.set_yticklabels(['{:.2f}'.format(threshold), '{:.2f}'.format(max_cc)]) return ax, palette def draw_pop_cch(self, model, hist_filter=None, color=None, bins=100, figsize=8, **kwargs): if color is None: color = sns.color_palette()[0] cch_array = self.generate_cch_array(model.spiketrains, maxlag=None, model=model, **kwargs) ccharray = copy(np.squeeze(cch_array)) N = len(ccharray) B = len(ccharray[0]) binsize = self.params['binsize'] w = B / 2 * float(binsize) tau = np.array(list(
np.linspace(-w, w, B / 2 * 2 + 1)
numpy.linspace
import matplotlib.pyplot as plt import numpy as np import pandas as pd import os from fracdiff import fast_frac_diff if __name__ == '__main__': x = np.arange(0, 30, 1) for i, d in enumerate(np.arange(-1, 1.01, 0.01)): print(i) fracs = fast_frac_diff(x, d=d) a = pd.DataFrame(data=np.transpose([
np.array(fracs)
numpy.array
import os import cv2 import glob import shutil import scipy.misc import numpy as np import pandas as pd from PIL import Image import matplotlib.pyplot as plt import matplotlib.patches as patches import xml.etree.ElementTree as ET from ray.util.multiprocessing import Pool def f(index): return index def get_transform(center, scale, res, pad_scale=2, rot=0): """ General image processing functions """ # Generate transformation matrix h = 200 * scale t =
np.zeros((3, 3))
numpy.zeros
# Created by woochanghwang at 18/11/2020 import sys, time import pandas as pd import numpy import networkx, random import mygene import multiprocessing as mp def check_has_path(G,node_from,node_to): return(networkx.has_path(G,node_from,node_to)) def get_shortest_path_length_between(G, source_id, target_id): return networkx.shortest_path_length(G, source_id, target_id) def calculate_closest_distance(network, nodes_from, nodes_to, lengths=None): values_outer = [] if lengths is None: for node_from in nodes_from: values = [] for node_to in nodes_to: # print("from - to", node_from, node_to) if not check_has_path(network,node_from,node_to): continue val = get_shortest_path_length_between(network, node_from, node_to) values.append(val) if len(values) == 0: continue d = min(values) # print (d) values_outer.append(d) else: for node_from in nodes_from: values = [] vals = lengths[node_from] for node_to in nodes_to: val = vals[node_to] values.append(val) d = min(values) values_outer.append(d) d =
numpy.mean(values_outer)
numpy.mean
from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from scipy import stats from sklearn import preprocessing from .geometry import Geometry from .sampler import sample class Hypercube(Geometry): def __init__(self, xmin, xmax): if len(xmin) != len(xmax): raise ValueError("Dimensions of xmin and xmax do not match.") if np.any(np.array(xmin) >= np.array(xmax)): raise ValueError("xmin >= xmax") self.xmin, self.xmax = np.array(xmin), np.array(xmax) self.side_length = self.xmax - self.xmin super(Hypercube, self).__init__( len(xmin), (self.xmin, self.xmax), np.linalg.norm(self.side_length) ) self.volume = np.prod(self.side_length) def inside(self, x): return np.logical_and( np.all(x >= self.xmin, axis=-1), np.all(x <= self.xmax, axis=-1) ) def on_boundary(self, x): _on_boundary = np.logical_or( np.any(np.isclose(x, self.xmin), axis=-1), np.any(np.isclose(x, self.xmax), axis=-1), ) return np.logical_and(self.inside(x), _on_boundary) def boundary_normal(self, x): _n = np.isclose(x, self.xmin) * -1.0 + np.isclose(x, self.xmax) * 1.0 # For vertices, the normal is averaged for all directions idx = np.count_nonzero(_n, axis=-1) > 1 if
np.any(idx)
numpy.any
""" Code based on random_transform in keras.processing.image from 2016. (https://github.com/fchollet/keras) Keras copyright: All contributions by <NAME>: Copyright (c) 2015, <NAME>. All contributions by Google: Copyright (c) 2015, Google, Inc. All contributions by Microsoft: Copyright (c) 2017, Microsoft, Inc. All other contributions: Copyright (c) 2015-2017, the respective contributors. (All rights reserved by copyright holders of all contributions.) Modified: Copyright 2017, <NAME> Copyright 2016, <NAME> Copyright 2016, <NAME> """ import os import numpy as np import scipy.ndimage as ndi import SimpleITK as sitk """ Apply data augmentation to all images in an N-dimensional stack. Assumes the final two axes are spatial axes (not considering the channel axis). Arguments are as defined for image_random_transform. """ def image_stack_random_transform(x, *args, y=None, channel_axis=1, **kwargs): # Make sure these are numpy arrays. x_arr = np.array(x) if y is not None: y_arr = np.array(y) x_shape = list(x_arr.shape) y_shape = list(y_arr.shape) x_shape[channel_axis] = None y_shape[channel_axis] = None if x_shape!=y_shape: raise ValueError("Error: inputs x and y to " "image_stack_random_transform must have the same " "shape. Shapes are {} and {} for x, y." "".format(x_arr.shape, y_arr.shape)) # Move channel axis to just before spatial axes. std_channel_axis = x_arr.ndim-1-2 if channel_axis!=std_channel_axis: x_arr = np.moveaxis(x_arr, source=channel_axis, destination=std_channel_axis) if y is not None: x_arr = np.moveaxis(y_arr, source=channel_axis, destination=std_channel_axis) # Compute indices to iterate over (everything except channel and spatial). x_indices = np.ndindex(x_arr.shape[:-3]) if y is not None: y_indices = np.ndindex(y_arr.shape[:-3]) # Random transform on each value. x_out, y_out = None, None if y is not None: for idx_x, idx_y in zip(np.ndindex(x_arr.shape[:-3]), np.ndindex(y_arr.shape[:-3])): xt, yt = image_random_transform(x_arr[idx_x], y_arr[idx_y], *args, channel_axis=0, **kwargs) out_shape_x = x_arr.shape[:-2]+xt.shape[-2:] out_shape_y = y_arr.shape[:-2]+xt.shape[-2:] if x_out is None: x_out = np.zeros(out_shape_x, dtype=np.float32) if y_out is None: y_out = np.zeros(out_shape_y, dtype=np.float32) x_out[idx_x], y_out[idx_y] = xt, yt else: for idx_x in np.ndindex(x_arr.shape[:-3]): xt = image_random_transform(x_arr[idx_x], *args, channel_axis=0, **kwargs) out_shape = x_arr.shape[:-2]+xt.shape[-2:] if x_out is None: x_out = np.zeros(out_shape, dtype=np.float32) x_out[idx_x] = xt # Move channel axis back to where it was. if channel_axis!=std_channel_axis: x_out = np.moveaxis(x_out, source=std_channel_axis, destination=channel_axis) if y is not None: y_out = np.moveaxis(y_out, source=std_channel_axis, destination=channel_axis) if y is not None: return x_out, y_out return x_out """ Data augmentation for 2D images using random image transformations. This code handles on input images alone or jointly on input images and their corresponding output images (eg. input images and corresponding segmentation masks). x : A single 2D input image (ndim=3, channel and 2 spatial dims). y : A single output image or mask. rotation_range : Positive degree value, specifying the maximum amount to rotate the image in any direction about its center. width_shift_range : Float specifying the maximum distance by which to shift the image horizontally, as a fraction of the image's width. height_shift_range : Float specifying the maximum distance by which to shift the image vertically, as a fraction of the image's height. shear_range : Positive degree value, specifying the maximum horizontal sheer of the image. zoom_range : The maximum absolute deviation of the image scale from one. (I.e. zoom_range of 0.2 allows zooming the image to scales within the range [0.8, 1.2]). intensity_shift_range : The maximum absolute value by which to shift image intensities up or down. fill_mode : Once an image is spatially transformed, fill any empty space with the 'nearest', 'reflect', or 'constant' strategy. Mode 'nearest' fills the space with the values of the nearest pixels; mode 'reflect' fills the space with a mirror image of the image along its nearest border or corner; 'constant' fills it with the constant value defined in `cval`. cval : The constant value with which to fill any empty space in a transformed input image when using `fill_mode='constant'`. cvalMask : The constant value with which to fill any empty space in a transformed target image when using `fill_mode='constant'`. horizontal_flip : Boolean, whether to randomly flip images horizontally. vertical_flip : Boolean, whether to randomly flip images vertically. spline_warp : Boolean, whether to apply a b-spline nonlineary warp. warp_sigma : Standard deviation of control point jitter in spline warp. warp_grid_size : Integer s specifying an a grid with s by s control points. crop_size : Tuple specifying the size of random crops taken of transformed images. Crops are always taken from within the transformed image, with no padding. channel_axis : The axis in the input images that corresponds to the channel. Remaining axes are the two spatial axes. rng : A numpy random number generator. """ def image_random_transform(x, y=None, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., intensity_shift_range=0., fill_mode='nearest', cval_x=0., cval_y=0., horizontal_flip=False, vertical_flip=False, spline_warp=False, warp_sigma=0.1, warp_grid_size=3, crop_size=None, channel_axis=0, n_warp_threads=None, rng=None): # Set random number generator if rng is None: rng = np.random.RandomState() # x is a single image, so we don't have batch dimension assert(x.ndim == 3) if y is not None: assert(y.ndim == 3) img_row_index = 1 img_col_index = 2 img_channel_index = channel_axis # Nonlinear spline warping if spline_warp: if n_warp_threads is None: n_warp_threads = os.cpu_count() warp_field = _gen_warp_field(shape=x.shape[-2:], sigma=warp_sigma, grid_size=warp_grid_size, n_threads=n_warp_threads, rng=rng) x = _apply_warp(x, warp_field, interpolator=sitk.sitkNearestNeighbor, fill_mode=fill_mode, cval=cval_x, n_threads=n_warp_threads) if y is not None: y = np.round(_apply_warp(y, warp_field, interpolator=sitk.sitkNearestNeighbor, fill_mode=fill_mode, cval=cval_y, n_threads=n_warp_threads)) # use composition of homographies to generate final transform that needs # to be applied if np.isscalar(zoom_range): zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: zoom_range = [zoom_range[0], zoom_range[1]] else: raise Exception('zoom_range should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = rng.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) if rotation_range: theta = np.pi / 180 * rng.uniform(-rotation_range, rotation_range) else: theta = 0 rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) if height_shift_range: tx = rng.uniform(-height_shift_range, height_shift_range) \ * x.shape[img_row_index] else: tx = 0 if width_shift_range: ty = rng.uniform(-width_shift_range, width_shift_range) \ * x.shape[img_col_index] else: ty = 0 translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) if shear_range: shear = np.pi / 180 * rng.uniform(-shear_range, shear_range) else: shear = 0 shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, shear_matrix), translation_matrix), zoom_matrix) h, w = x.shape[img_row_index], x.shape[img_col_index] transform_matrix = _transform_matrix_offset_center(transform_matrix, h, w) x = _apply_transform_matrix(x, transform_matrix, img_channel_index, fill_mode=fill_mode, cval=cval_x) if y is not None: y = _apply_transform_matrix(y, transform_matrix, img_channel_index, fill_mode=fill_mode, cval=cval_y) if intensity_shift_range != 0: x = _random_intensity_shift(x, intensity_shift_range, img_channel_index, rng=rng) if horizontal_flip: if rng.random_sample() < 0.5: x = _flip_axis(x, img_col_index) if y is not None: y = _flip_axis(y, img_col_index) if vertical_flip: if rng.random_sample() < 0.5: x = _flip_axis(x, img_row_index) if y is not None: y = _flip_axis(y, img_row_index) # Crop crop = list(crop_size) if crop_size else None if crop: h, w = x.shape[img_row_index], x.shape[img_col_index] if crop[0] < h: top = rng.randint(h - crop[0]) else: print('Data augmentation: Crop height >= image size') top, crop[0] = 0, h if crop[1] < w: left = rng.randint(w - crop[1]) else: print('Data augmentation: Crop width >= image size') left, crop[1] = 0, w x = x[:, top:top+crop[0], left:left+crop[1]] if y is not None: y = y[:, top:top+crop[0], left:left+crop[1]] if y is None: return x else: return x, y def _transform_matrix_offset_center(matrix, x, y): o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix def _apply_transform_matrix(x, transform_matrix, channel_index=0, fill_mode='nearest', cval=0.): x_ = np.copy(x) x_ = np.rollaxis(x_, channel_index, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(\ x_channel, final_affine_matrix, final_offset, order=0, mode=fill_mode, cval=cval)\ for x_channel in x_] x_out = np.stack(channel_images, axis=0) x_out = np.rollaxis(x_out, 0, channel_index+1) return x_out def _random_intensity_shift(x, intensity, channel_index=0, rng=None): x_ = np.copy(x) x_ = np.rollaxis(x_, channel_index, 0) channel_images = [np.clip(x_channel + \ rng.uniform(-intensity, intensity), np.min(x_), np.max(x_)) for x_channel in x_] x_out = np.stack(channel_images, axis=0) x_out = np.rollaxis(x_out, 0, channel_index+1) return x_out def _flip_axis(x, axis): x_ = np.copy(x) x_ = np.asarray(x_).swapaxes(axis, 0) x_ = x_[::-1, ...] x_ = x_.swapaxes(0, axis) x_out = x_ return x_out def _gen_warp_field(shape, sigma=0.1, grid_size=3, n_threads=1, rng=None): # Initialize bspline transform args = shape+(sitk.sitkFloat32,) ref_image = sitk.Image(*args) tx = sitk.BSplineTransformInitializer(ref_image, [grid_size, grid_size]) # Initialize shift in control points: # mesh size = number of control points - spline order p = sigma * rng.randn(grid_size+3, grid_size+3, 2) # Anchor the edges of the image p[:, 0, :] = 0 p[:, -1:, :] = 0 p[0, :, :] = 0 p[-1:, :, :] = 0 # Set bspline transform parameters to the above shifts tx.SetParameters(p.flatten()) # Compute deformation field displacement_filter = sitk.TransformToDisplacementFieldFilter() displacement_filter.SetReferenceImage(ref_image) displacement_filter.SetNumberOfThreads(n_threads) displacement_field = displacement_filter.Execute(tx) return displacement_field def _pad_image(x, pad_amount, mode='reflect', cval=0.): e = pad_amount assert(len(x.shape)>=2) shape = list(x.shape) shape[:2] += 2*e if mode == 'constant': x_padded = np.ones(shape, dtype=np.float32)*cval x_padded[e:-e, e:-e] = x.copy() else: x_padded = np.zeros(shape, dtype=np.float32) x_padded[e:-e, e:-e] = x.copy() if mode == 'reflect': x_padded[:e, e:-e] = np.flipud(x[:e, :]) # left edge x_padded[-e:, e:-e] = np.flipud(x[-e:, :]) # right edge x_padded[e:-e, :e] = np.fliplr(x[:, :e]) # top edge x_padded[e:-e, -e:] = np.fliplr(x[:, -e:]) # bottom edge x_padded[:e, :e] = np.fliplr(np.flipud(x[:e, :e])) # top-left corner x_padded[-e:, :e] = np.fliplr(np.flipud(x[-e:, :e])) # top-right x_padded[:e, -e:] = np.fliplr(np.flipud(x[:e, -e:])) # bottom-left x_padded[-e:, -e:] = np.fliplr(np.flipud(x[-e:, -e:])) # bottom-right elif mode == 'zero' or mode == 'constant': pass elif mode == 'nearest': x_padded[:e, e:-e] = x[[0], :] # left edge x_padded[-e:, e:-e] = x[[-1], :] # right edge x_padded[e:-e, :e] = x[:, [0]] # top edge x_padded[e:-e, -e:] = x[:, [-1]] # bottom edge x_padded[:e, :e] = x[[0], [0]] # top-left corner x_padded[-e:, :e] = x[[-1], [0]] # top-right corner x_padded[:e, -e:] = x[[0], [-1]] # bottom-left corner x_padded[-e:, -e:] = x[[-1], [-1]] # bottom-right corner else: raise ValueError("Unsupported padding mode \"{}\"".format(mode)) return x_padded def _apply_warp(x, warp_field, fill_mode='reflect', interpolator=sitk.sitkLinear, cval=0, channel_index=0, n_threads=1): # Expand deformation field (and later the image), padding for the largest # deformation warp_field_arr = sitk.GetArrayFromImage(warp_field) max_deformation = np.max(
np.abs(warp_field_arr)
numpy.abs
# -*- coding: utf-8 -*- # # wavファイルの一部の区間をフーリエ変換し, # 振幅スペクトルをプロットします. # # wavデータを読み込むためのモジュール(wave)をインポート import wave # 数値演算用モジュール(numpy)をインポート import numpy as np # プロット用モジュール(matplotlib)をインポート import matplotlib.pyplot as plt # # メイン関数 # if __name__ == "__main__": # 開くwavファイル wav_file = '../data/wav/BASIC5000_0001.wav' # 分析する時刻.BASIC5000_0001.wav では, # 以下の時刻は音素"o"を発話している target_time = 0.58 # FFT(高速フーリエ変換)を行う範囲のサンプル数 # 2のべき乗である必要がある fft_size = 1024 # プロットを出力するファイル(pngファイル) out_plot = './pre_emphasis.png' # wavファイルを開き、以降の処理を行う with wave.open(wav_file) as wav: # サンプリング周波数 [Hz] を取得 sampling_frequency = wav.getframerate() # wavデータを読み込む waveform = wav.readframes(wav.getnframes()) # 読み込んだデータはバイナリ値(16bit integer) # なので,数値(整数)に変換する waveform = np.frombuffer(waveform, dtype=np.int16) # 分析する時刻をサンプル番号に変換 target_index =
np.int(target_time * sampling_frequency)
numpy.int
from typing import Tuple import numpy as np import pandas as pd from scipy import interpolate _YOUNG_MODULES = { 'concrete': 2.05e4, 'steel': 2.05e5 } def get_results(mode, condition, bottom_condition, material, diameter, length, level, force, soil_data, div_num) -> dict: diameter = float(diameter) # mm length = float(length) * 1e3 # to mm level = float(level) * 1e3 # to mm force = float(force) * 1e3 # to N div_num = int(div_num) div_size = length / div_num x = np.linspace(-level, length - level, div_num + 1) kh0s = kh_by_soil_data(diameter, x, soil_data) stiffness = pile_stiffness(diameter, diameter, 0, material) k0 = top_condition_to_stiffness(mode, condition, bottom_condition, div_num, div_size, stiffness, diameter, kh0s, force) y, dec = solve_y(mode, bottom_condition, div_num, div_size, stiffness, diameter, kh0s, k0, force) t = np.gradient(y, div_size) # solve degree m = -np.gradient(t, div_size) * stiffness # solve moment q = np.gradient(m, div_size) # solve shear q[2] = -force return dict( x=x / 1e3, # m dec=dec, kh0s=kh0s * 1e6, # kN/m3 (低減前の地盤反力係数) y=y[2:-2], # mm t=t[2:-2] * 1e3, # x10^3 rad m=m[2:-2] / 1e6, # kNm q=q[2:-2] / 1e3 # kN ) def kh_by_soil_data(diameter: float, x: np.ndarray, soil_data: dict): depth = np.array(soil_data.get('depth')) * 1e3 alpha = np.array(soil_data.get('alpha')) beta = np.array(soil_data.get('adopted_reductions')) E0 = np.array(soil_data.get('E0')) kh = alpha * beta * E0 * (diameter / 10) ** (-3 / 4) fitted = interpolate.interp1d(depth, kh) # 線形補間 fitted_kh = fitted(x) return fitted_kh / 1e6 # N/mm2 def top_condition_to_stiffness(mode, condition, bottom_condition, div_num, div_size, stiffness, diameter, kh0s, force) -> float: condition = float(condition) if condition == 1.0: k0 = np.inf elif condition == 0.0: k0 = 10e-15 else: k0 = half_condition_solver(mode, bottom_condition, condition, div_num, div_size, stiffness, diameter, kh0s, force) return k0 def half_condition_solver(mode, bottom_condition, condition, div_num, div_size, stiffness, diameter, kh0s, force): y_at_fix, _ = solve_y(mode, bottom_condition, div_num, div_size, stiffness, diameter, kh0s, np.inf, force) y_at_pin, _ = solve_y(mode, bottom_condition, div_num, div_size, stiffness, diameter, kh0s, 10e-15, force) moment_at_fix = -np.gradient(np.gradient(y_at_fix, div_size), div_size)[2] * stiffness degree_at_pin = np.gradient(y_at_pin, div_size)[2] condition = float(condition) half_moment = moment_at_fix * condition half_degree = degree_at_pin * (1 - condition) k0 = half_moment / half_degree err = 1.1e6 while err > 1.0e6: y, _ = solve_y(mode, bottom_condition, div_num, div_size, stiffness, diameter, kh0s, k0, force) m = -np.gradient(np.gradient(y, div_size), div_size)[2] * stiffness err = m - half_moment k0 = k0 * half_moment / m return k0 def pile_stiffness(diameter: float, thickness: float, thickness_margin: float, material: str) -> float: sec1 = np.pi * (diameter - thickness_margin * 2) ** 4 / 64 sec2 = np.pi * (diameter - thickness) ** 4 / 64 return (sec1 - sec2) * _YOUNG_MODULES.get(material) def solve_y(mode, bottom_condition, div_num, div_size, stiffness, diameter, kh0s, k0, force): if mode == 'liner': y, dec = deformation_analysis_by_FDM(bottom_condition, div_num, div_size, stiffness, diameter, kh0s, k0, force) elif mode == 'non_liner': y, dec = deformation_analysis_by_non_liner_FDM(bottom_condition, div_num, div_size, stiffness, diameter, kh0s, k0, force) elif mode == 'non_liner_single': y, dec = deformation_analysis_by_non_liner_single_FDM(bottom_condition, div_num, div_size, stiffness, diameter, kh0s, k0, force) else: y, dec = deformation_analysis_by_FDM(bottom_condition, div_num, div_size, stiffness, diameter, kh0s, k0, force) return y, dec def deformation_analysis_by_FDM(bottom_condition, div_num: int, div_size: float, stiffness: float, diameter: float, khs: np.ndarray, k0: float, force: float) -> Tuple[np.ndarray, np.ndarray]: def _left_matrix(bottom_condition, n, h, ei, b, khs, k0): left = np.zeros((n + 5, n + 5)) # head row left[0, 0:5] = [-1, 2, 0, -2, 1] left[1, 0:5] = [0, ei / k0 - h, -2 * ei / k0, ei / k0 + h, 0] # general row c1s = 6 + h ** 4 * khs * b / ei for i in range(2, n + 3): left[i, i - 2:i + 3] = [1, -4, c1s[i - 2], -4, 1] # tail row if bottom_condition == "free": left[-1, -5:] = [-1, 2, 0, -2, 1] left[-2, -5:] = [0, 1, -2, 1, 0] elif bottom_condition == "pin": left[-1, -5:] = [1, 0, 1, 0, 1] left[-2, -5:] = [0, 1, 1, 1, 0] else: left[-1, -5:] = [1, 0, 1, 0, 1] left[-2, -5:] = [0, 1, 1, 1, 0] return left def _right_matrix(n, h, ei, force): right = np.zeros(n + 5) right[0] = -2 * force * h ** 3 / ei return right left = _left_matrix(bottom_condition, div_num, div_size, stiffness, diameter, khs, k0) right = _right_matrix(div_num, div_size, stiffness, force) y = -np.linalg.solve(left, right) # 連立方程式を解く dec = np.ones_like(y) # 低減係数(線形計算の場合は1.0) return y, dec def deformation_analysis_by_non_liner_FDM(bottom_condition, div_num: int, div_size: float, stiffness: float, diameter: float, khs: np.ndarray, k0: float, force: float) -> Tuple[np.ndarray, np.ndarray]: dec_khs = khs y, _ = deformation_analysis_by_FDM(bottom_condition, div_num, div_size, stiffness, diameter, khs, k0, force) # 初期値 err = np.ones_like(khs) dec = err while np.any(err > 0.1): dec = np.where(np.abs(y) > 10, (np.abs(y) / 10) ** (-1 / 2), 1.0) # 地盤の非線形考慮 dec_khs = khs * dec[2:-2] new_y, _ = deformation_analysis_by_FDM(bottom_condition, div_num, div_size, stiffness, diameter, dec_khs, k0, force) err = np.abs(new_y - y) y = new_y return y, dec def deformation_analysis_by_non_liner_single_FDM(bottom_condition, div_num: int, div_size: float, stiffness: float, diameter: float, khs: np.ndarray, k0: float, force: float) -> Tuple[np.ndarray, np.ndarray]: dec_khs = khs y, _ = deformation_analysis_by_FDM(bottom_condition, div_num, div_size, stiffness, diameter, khs, k0, force) # 初期値 err = np.ones_like(khs) dec = err while np.any(err > 0.1): dec = np.where(
np.abs(y)
numpy.abs
#!/usr/bin/env python3 ''' Use custom_utils.sample_cube_surface_points and visualize the sampled points ''' import random from .training_env import make_training_env import numpy as np import pybullet as p import time from .utils import apply_transform, CylinderMarker, VisualCubeOrientation from rrc_simulation import TriFingerPlatform from rrc_simulation.gym_wrapper.envs import cube_env from .training_env.wrappers import RenderWrapper from gym.wrappers import Monitor, TimeLimit import gym from .grasping import Cube, CoulombFriction, Transform, CubePD, get_rotation_between_vecs, Contact, PDController from .save_video import merge_videos from .utils import set_seed, action_type_to import argparse def get_contacts(T): contacts = [Contact(c, T) for c in p.getContactPoints()] # arm body_id = 1, cube_body_id = 4 contacts = [c for c in contacts if c.bodyA == 1 and c.bodyB == 4] return [c for c in contacts if c.linkA % 5 == 0] # just look at tip contacts def get_torque_shrink_coef(org_torque, add_torque): slack = 0.36 - org_torque neg_torque = np.sign(add_torque) == -1 slack[neg_torque] = 0.36 + org_torque[neg_torque] slack[np.isclose(slack, 0.0)] = 0 # avoid numerical instability assert np.all(slack >= 0), f'slack: {slack}' ratio = slack / np.abs(add_torque) return min(1.0, np.min(ratio)) # def get_tip_forces(obs, wrench): # cube = Cube(0.0325, CoulombFriction(mu=1.0)) # T_cube_to_base = Transform(pos=obs['object_position'], # ori=obs['object_orientation']) # R_cube_to_base = Transform(pos=np.zeros(3), ori=obs['object_orientation']) # T_base_to_cube = T_cube_to_base.inverse() # contacts = get_contacts(T_base_to_cube) # if len(contacts) == 0: # return get_tip_forces_back_up(obs, wrench) # forces = cube.solve_for_tip_forces([c.TA for c in contacts], wrench) # if forces is None: # return get_tip_forces_back_up(obs, wrench) # # # print(forces) # tips_cube_frame = T_base_to_cube(obs['robot_tip_positions']) # wrench_at_tips = np.zeros((3, 6)) # for f, c in zip(forces, contacts): # ind = (c.linkA - 1) // 5 # T = Transform(pos=tips_cube_frame[ind] - c.contact_posA, # ori=np.array([0, 0, 0, 1])) # # rotate from contact frame to cube_frame # f[:3] = c.TA.adjoint().dot(f)[:3] # # translate to tip position and rotate to world axes # f = R_cube_to_base(T).adjoint().dot(f) # # # add to tip wrenches # wrench_at_tips[ind] += f # # print(wrench_at_tips) # return wrench_at_tips class Viz(object): def __init__(self): self.goal_viz = None self.cube_viz = None self.initialized = False self.markers = [] def reset(self, obs): if self.goal_viz: del self.goal_viz del self.cube_viz self.goal_viz = VisualCubeOrientation(obs['goal_object_position'], obs['goal_object_orientation']) self.cube_viz = VisualCubeOrientation(obs['object_position'], obs['object_orientation']) if self.markers: for m in self.markers: del m self.markers = [] self.initialized = True def update_cube_orientation(self, obs): self.cube_viz.set_state(obs['object_position'], obs['object_orientation']) def update_tip_force_markers(self, obs, tip_wrenches, force): cube_force = apply_transform(np.zeros(3), obs['object_orientation'], force[None])[0] self._set_markers([w[:3] for w in tip_wrenches], obs['robot_tip_positions'], cube_force, obs['object_position']) def _set_markers(self, forces, tips, cube_force, cube_pos): from const import FORCE_COLOR_RED, FORCE_COLOR_GREEN, FORCE_COLOR_BLUE R = 0.005 L = 0.2 ms = [] cube_force = cube_force / np.linalg.norm(cube_force) force_colors = [FORCE_COLOR_RED, FORCE_COLOR_GREEN, FORCE_COLOR_BLUE] q = get_rotation_between_vecs(np.array([0, 0, 1]), cube_force) if not self.markers: ms.append(CylinderMarker(R, L, cube_pos + 0.5 * L * cube_force, q, color=(0, 0, 1, 0.5))) else: self.markers[0].set_state(cube_pos + 0.5 * L * cube_force, q) ms.append(self.markers[0]) for i, (f, t) in enumerate(zip(forces, tips)): f = f / np.linalg.norm(f) q = get_rotation_between_vecs(np.array([0, 0, 1]), f) if not self.markers: color = force_colors[i] ms.append(CylinderMarker(R, L, t + 0.5 * L * f, q, color=color)) else: self.markers[i+1].set_state(t + 0.5 * L * f, q) ms.append(self.markers[i+1]) self.markers = ms class TipPD(object): def __init__(self, gains, tips_cube_frame, max_force=1.0): self.pd_tip1 = PDController(*gains) self.pd_tip2 = PDController(*gains) self.pd_tip3 = PDController(*gains) self.tips_cube_frame = tips_cube_frame self.max_force = max_force def _scale(self, x, lim): norm = np.linalg.norm(x) if norm > lim: return x * lim / norm return x def __call__(self, obs): tips = obs['robot_tip_positions'] goal_tips = apply_transform(obs['object_position'], obs['object_orientation'], self.tips_cube_frame) f = [self.pd_tip1(goal_tips[0] - tips[0]), self.pd_tip2(goal_tips[1] - tips[1]), self.pd_tip3(goal_tips[2] - tips[2])] return [self._scale(ff, self.max_force) for ff in f] class ForceControlPolicy(object): def __init__(self, env, apply_torques=True, tip_pd=None, mu=1.0, grasp_force=0.0, viz=None, use_inv_dynamics=True): self.cube_pd = CubePD() self.tip_pd = tip_pd self.cube = Cube(0.0325, CoulombFriction(mu=mu)) self.env = env self.apply_torques = apply_torques self.viz = viz self.use_inv_dynamics = use_inv_dynamics self.grasp_force = grasp_force def __call__(self, obs, target_pos=None, target_quat=None): target_pos = obs['goal_object_position'] if target_pos is None else target_pos target_quat = obs['goal_object_orientation'] if target_quat is None else target_quat force, torque = self.cube_pd(target_pos, target_quat, obs['object_position'], obs['object_orientation']) if not self.apply_torques: torque[:] = 0 wrench_cube_frame = np.concatenate([force, torque]) tip_wrenches = self.get_tip_forces(obs, wrench_cube_frame) if self.tip_pd: tip_forces = self.tip_pd(obs) for i in range(3): tip_wrenches[i][:3] += tip_forces[i] if self.viz: self.viz.update_tip_force_markers(obs, tip_wrenches, force) Js = self._calc_jacobians(obs) torque = sum([Js[i].T.dot(tip_wrenches[i]) for i in range(3)]) if self.use_inv_dynamics: stable_torque = self.inverse_dynamics( obs, self.env.platform.simfinger.finger_id) # shrink torque control to be within torque limits if np.any(np.abs(stable_torque + torque) > 0.36): slack = 0.36 - stable_torque neg_torque = np.sign(torque) == -1 slack[neg_torque] = 0.36 + stable_torque[neg_torque] assert np.all(slack > 0) ratio = slack / np.abs(torque) torque = torque * min(1.0, np.min(ratio)) else: stable_torque = np.zeros_like(torque) if np.any(np.abs(torque) > 0.36): torque = torque * 0.36 / np.max(np.abs(torque)) if self.grasp_force != 0: grasp_torque = self.get_grasp_torque(obs, f=self.grasp_force, Js=Js) coef = get_torque_shrink_coef(torque + stable_torque, grasp_torque) grasp_torque = coef * grasp_torque else: grasp_torque = torque * 0 # if coef > 0: # print('grasp torque!!', coef) return torque + stable_torque + grasp_torque def get_tip_forces(self, obs, wrench): T_cube_to_base = Transform(pos=obs['object_position'], ori=obs['object_orientation']) tips = obs['robot_tip_positions'] tips_cube_frame = T_cube_to_base.inverse()(tips) contacts = [self.cube.contact_from_tip_position(tip) for tip in tips_cube_frame] tip_forces = self.cube.solve_for_tip_forces(contacts, wrench) if tip_forces is None: tip_forces = np.zeros((3, 6)) # Rotate forces to world frame axes. for i, (f, c) in enumerate(zip(tip_forces, contacts)): tip_forces[i][:3] = T_cube_to_base(c).adjoint().dot(f)[:3] return tip_forces def inverse_dynamics(self, obs, id): torque = p.calculateInverseDynamics(id, list(obs['robot_position']), list(obs['robot_velocity']), [0. for _ in range(9)]) return np.array(torque) def get_grasp_torque(self, obs, f, Js=None): if Js is None: Js = self._calc_jacobians(obs) tip_to_center = obs['object_position'] - obs['robot_tip_positions'] inward_force_vec = f * (tip_to_center /
np.linalg.norm(obs['robot_tip_positions'] - obs['object_position'], axis=1)
numpy.linalg.norm
# -*- coding: utf-8 -*- """ This is the main python script containing the training loop. Input hyperparameters can be set up through argparse. Based on the work: Deep Flow Prediction - <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (TUM) @author: <NAME> - <EMAIL> """ import os, random, argparse, numpy as np, pandas as pd, scipy.io as sio from pathlib import Path from os.path import normpath from itertools import product from skimage.draw import disk import torch import torch.nn as nn from torch.utils.data import TensorDataset, DataLoader import torch.optim as optim from hyperdash import Experiment #%% Parse arguments def parseArguments(): parser = argparse.ArgumentParser() parser.add_argument("--path", "-p", type=str, default='C:\\Users\\Xabier\\PhD\\Frontiers\\GitHub\\unet', #'D:\\PhD\\Frontiers\\GitHub\\unet', help="Base path with the code and data folders") parser.add_argument("--data", "-d", type=str, default='ECAP', help="Choose dataset to be employed when running the code.") parser.add_argument("--experiment", "-exp", type=str, default='Prueba', help="Choose the name of the experiment to be logged into hyperdash.") parser.add_argument("--data_type", "-dt", nargs='+', type=str, default=['c'], help="Choose data representation. c: Cartesian grid, b: Bullseye plot") parser.add_argument("--folds", "-f", type=int, default=8, help="Number of folds if cross-validation == True (Not list).") parser.add_argument("--num_epoch", "-ep", nargs='+', type=int, default=[300], help="Number of epochs") parser.add_argument("--learn_rate", "-lr", nargs='+', type=float, default=[0.001], help="Learning rate") parser.add_argument("--batch_size", "-bs", nargs='+',type=int, default=[16], help="Number of folds if cross-validation == True") parser.add_argument("--drop_rate", "-dr", nargs='+', type=float, default=[0.1], help="Drop rate") parser.add_argument("--exponential", "-expo", nargs='+', type=int, default=[6], help="Channel exponent to control network size") parser.add_argument("--decaylr", "-dlr", type=bool, default=False, help="If True learning rate decay is employed") parser.add_argument("--split", "-s", nargs='+', type=float, default=[0.8], help="Training-testing split") parser.add_argument("--seed", "-se", nargs='+', type=int, default=[None], help="Random seed") parser.add_argument("--loss_func", "-loss", nargs='+', type=str, default=['L1'], help="Loss function. Options 'L1','SmoothL1','MSE") parser.add_argument("--cross", "-cr", type=bool, default=False, help="Cross-validation or hyperparameter tuning (Not list)") parser.add_argument("--results_by", "-rb", nargs='+', type=str, default=[], help="Activation function. 'elu' or 'relu'") parser.add_argument("--threshold", "-th", nargs='+', type=float, default=[1,2,3,4,5,6,20,30,50], help="Thresholds for binary classification") args = parser.parse_args() return args args = parseArguments() #%% Change dir and import models os.chdir(args.path+'\\code\\') data_path = args.path +'\\data\\' from DfpNet import TurbNetG, weights_init import utils #%% Function definitions def train(loader): # Set the model in training mode: Just affects to dropout and batchnorm model.train() #Epoch loss loss_all = 0 for data in loader: # Get Batch # compute LR decay if decayLr: currLr = utils.computeLR(epoch, num_epoch, lr*0.1, lr) if currLr < lr: for g in optimizer.param_groups: g['lr'] = currLr shape, ecap = data shape, ecap = shape.to(device),ecap.to(device) # Data to GPU batch_len = shape.shape[0] optimizer.zero_grad() # Zero out the gradients output = model(shape) # Forward pass batch if data_type == 'b': filt_temp = torch.tensor(filt_l.repeat(batch_len,0)).float().to(device) ecap,output = torch.mul(ecap,filt_temp), torch.mul(output,filt_temp) filt_rat= filt_ratio.to(device) # Compute the batch loss loss = crit(output, ecap)*filt_rat if data_type == 'b' else crit(output, ecap) #loss = crit(output, ecap)*filt_rat if data_type == 'b' else crit(output, ecap) # Compute the batch loss loss.backward() # Calculate gradients (backpropagation) loss_all += batch_len * loss.item() optimizer.step() # Update weights return loss_all / train_len def evaluate(loader,len_data): #Set the model for evaluation model.eval() loss_all = 0 conf = np.zeros([len(thresholds),4]) with torch.no_grad(): for data in loader: shape, ecap = data shape, ecap = shape.to(device),ecap.to(device) # Data to GPU batch_len = shape.shape[0] pred = model(shape) conf += thresholding(pred, ecap)/(ecap.shape[3]**2*ecap.shape[0]) if not data_type == 'c': filt_temp = torch.tensor(filt_l.repeat(batch_len,0)).float().to(device) ecap,pred = torch.mul(ecap,filt_temp), torch.mul(pred,filt_temp) filt_rat= filt_ratio.to(device) loss = crit(pred, ecap) if data_type == 'c' else crit(pred, ecap)*filt_rat loss_all += batch_len * loss.item() return loss_all/len_data, conf/len_data def predict(loader): #Set the model for evaluation model.eval() predictions = [] labels = [] shape_out = [] with torch.no_grad(): for data in loader: shape, ecap = data shape = shape.to(device) shape_new = shape.detach().squeeze().cpu().numpy()* max_ori + min_ori if data_type == 'b': shape_out.append(np.multiply(shape_new,filt)) else: shape_out.append(shape_new) # Ground truth lab = ecap.detach().squeeze().cpu().numpy() labels.append(lab) # Prediction pred = model(shape).squeeze().detach().cpu().numpy() predictions.append(pred) return np.array(labels),np.array(predictions),
np.array(shape_out)
numpy.array
import pytest import numpy as np import numpy.testing as npt import scipy.stats as st from scipy.special import expit from scipy import linalg import numpy.random as nr import theano import pymc3 as pm from pymc3.distributions.distribution import (draw_values, _DrawValuesContext, _DrawValuesContextBlocker) from .helpers import SeededTest from .test_distributions import ( build_model, Domain, product, R, Rplus, Rplusbig, Runif, Rplusdunif, Unit, Nat, NatSmall, I, Simplex, Vector, PdMatrix, PdMatrixChol, PdMatrixCholUpper, RealMatrix, RandomPdMatrix ) def pymc3_random(dist, paramdomains, ref_rand, valuedomain=Domain([0]), size=10000, alpha=0.05, fails=10, extra_args=None, model_args=None): if model_args is None: model_args = {} model = build_model(dist, valuedomain, paramdomains, extra_args) domains = paramdomains.copy() for pt in product(domains, n_samples=100): pt = pm.Point(pt, model=model) pt.update(model_args) p = alpha # Allow KS test to fail (i.e., the samples be different) # a certain number of times. Crude, but necessary. f = fails while p <= alpha and f > 0: s0 = model.named_vars['value'].random(size=size, point=pt) s1 = ref_rand(size=size, **pt) _, p = st.ks_2samp(np.atleast_1d(s0).flatten(), np.atleast_1d(s1).flatten()) f -= 1 assert p > alpha, str(pt) def pymc3_random_discrete(dist, paramdomains, valuedomain=Domain([0]), ref_rand=None, size=100000, alpha=0.05, fails=20): model = build_model(dist, valuedomain, paramdomains) domains = paramdomains.copy() for pt in product(domains, n_samples=100): pt = pm.Point(pt, model=model) p = alpha # Allow Chisq test to fail (i.e., the samples be different) # a certain number of times. f = fails while p <= alpha and f > 0: o = model.named_vars['value'].random(size=size, point=pt) e = ref_rand(size=size, **pt) o = np.atleast_1d(o).flatten() e = np.atleast_1d(e).flatten() observed = dict(zip(*np.unique(o, return_counts=True))) expected = dict(zip(*np.unique(e, return_counts=True))) for e in expected.keys(): expected[e] = (observed.get(e, 0), expected[e]) k = np.array([v for v in expected.values()]) if np.all(k[:, 0] == k[:, 1]): p = 1. else: _, p = st.chisquare(k[:, 0], k[:, 1]) f -= 1 assert p > alpha, str(pt) class TestDrawValues(SeededTest): def test_draw_scalar_parameters(self): with pm.Model(): y = pm.Normal('y1', mu=0., sigma=1.) mu, tau = draw_values([y.distribution.mu, y.distribution.tau]) npt.assert_almost_equal(mu, 0) npt.assert_almost_equal(tau, 1) def test_draw_dependencies(self): with pm.Model(): x = pm.Normal('x', mu=0., sigma=1.) exp_x = pm.Deterministic('exp_x', pm.math.exp(x)) x, exp_x = draw_values([x, exp_x]) npt.assert_almost_equal(np.exp(x), exp_x) def test_draw_order(self): with pm.Model(): x = pm.Normal('x', mu=0., sigma=1.) exp_x = pm.Deterministic('exp_x', pm.math.exp(x)) # Need to draw x before drawing log_x exp_x, x = draw_values([exp_x, x]) npt.assert_almost_equal(np.exp(x), exp_x) def test_draw_point_replacement(self): with pm.Model(): mu = pm.Normal('mu', mu=0., tau=1e-3) sigma = pm.Gamma('sigma', alpha=1., beta=1., transform=None) y = pm.Normal('y', mu=mu, sigma=sigma) mu2, tau2 = draw_values([y.distribution.mu, y.distribution.tau], point={'mu': 5., 'sigma': 2.}) npt.assert_almost_equal(mu2, 5) npt.assert_almost_equal(tau2, 1 / 2.**2) def test_random_sample_returns_nd_array(self): with pm.Model(): mu = pm.Normal('mu', mu=0., tau=1e-3) sigma = pm.Gamma('sigma', alpha=1., beta=1., transform=None) y = pm.Normal('y', mu=mu, sigma=sigma) mu, tau = draw_values([y.distribution.mu, y.distribution.tau]) assert isinstance(mu, np.ndarray) assert isinstance(tau, np.ndarray) class TestDrawValuesContext: def test_normal_context(self): with _DrawValuesContext() as context0: assert context0.parent is None context0.drawn_vars['root_test'] = 1 with _DrawValuesContext() as context1: assert id(context1.drawn_vars) == id(context0.drawn_vars) assert context1.parent == context0 with _DrawValuesContext() as context2: assert id(context2.drawn_vars) == id(context0.drawn_vars) assert context2.parent == context1 context2.drawn_vars['leaf_test'] = 2 assert context1.drawn_vars['leaf_test'] == 2 context1.drawn_vars['root_test'] = 3 assert context0.drawn_vars['root_test'] == 3 assert context0.drawn_vars['leaf_test'] == 2 def test_blocking_context(self): with _DrawValuesContext() as context0: assert context0.parent is None context0.drawn_vars['root_test'] = 1 with _DrawValuesContext() as context1: assert id(context1.drawn_vars) == id(context0.drawn_vars) assert context1.parent == context0 with _DrawValuesContextBlocker() as blocker: assert id(blocker.drawn_vars) != id(context0.drawn_vars) assert blocker.parent is None blocker.drawn_vars['root_test'] = 2 with _DrawValuesContext() as context2: assert id(context2.drawn_vars) == id(blocker.drawn_vars) assert context2.parent == blocker context2.drawn_vars['root_test'] = 3 context2.drawn_vars['leaf_test'] = 4 assert blocker.drawn_vars['root_test'] == 3 assert 'leaf_test' not in context1.drawn_vars assert context0.drawn_vars['root_test'] == 1 class BaseTestCases: class BaseTestCase(SeededTest): shape = 5 def setup_method(self, *args, **kwargs): super().setup_method(*args, **kwargs) self.model = pm.Model() def get_random_variable(self, shape, with_vector_params=False, name=None): if with_vector_params: params = {key: value * np.ones(self.shape, dtype=np.dtype(type(value))) for key, value in self.params.items()} else: params = self.params if name is None: name = self.distribution.__name__ with self.model: if shape is None: return self.distribution(name, transform=None, **params) else: return self.distribution(name, shape=shape, transform=None, **params) @staticmethod def sample_random_variable(random_variable, size): try: return random_variable.random(size=size) except AttributeError: return random_variable.distribution.random(size=size) @pytest.mark.parametrize('size', [None, 5, (4, 5)], ids=str) def test_scalar_parameter_shape(self, size): rv = self.get_random_variable(None) if size is None: expected = 1, else: expected = np.atleast_1d(size).tolist() actual = np.atleast_1d(self.sample_random_variable(rv, size)).shape assert tuple(expected) == actual @pytest.mark.parametrize('size', [None, 5, (4, 5)], ids=str) def test_scalar_shape(self, size): shape = 10 rv = self.get_random_variable(shape) if size is None: expected = [] else: expected = np.atleast_1d(size).tolist() expected.append(shape) actual = np.atleast_1d(self.sample_random_variable(rv, size)).shape assert tuple(expected) == actual @pytest.mark.parametrize('size', [None, 5, (4, 5)], ids=str) def test_parameters_1d_shape(self, size): rv = self.get_random_variable(self.shape, with_vector_params=True) if size is None: expected = [] else: expected = np.atleast_1d(size).tolist() expected.append(self.shape) actual = self.sample_random_variable(rv, size).shape assert tuple(expected) == actual @pytest.mark.parametrize('size', [None, 5, (4, 5)], ids=str) def test_broadcast_shape(self, size): broadcast_shape = (2 * self.shape, self.shape) rv = self.get_random_variable(broadcast_shape, with_vector_params=True) if size is None: expected = [] else: expected = np.atleast_1d(size).tolist() expected.extend(broadcast_shape) actual = np.atleast_1d(self.sample_random_variable(rv, size)).shape assert tuple(expected) == actual @pytest.mark.parametrize('shape', [(), (1,), (1, 1), (1, 2), (10, 10, 1), (10, 10, 2)], ids=str) def test_different_shapes_and_sample_sizes(self, shape): prefix = self.distribution.__name__ rv = self.get_random_variable(shape, name='%s_%s' % (prefix, shape)) for size in (None, 1, 5, (4, 5)): if size is None: s = [] else: try: s = list(size) except TypeError: s = [size] if s == [1]: s = [] if shape not in ((), (1,)): s.extend(shape) e = tuple(s) a = self.sample_random_variable(rv, size).shape assert e == a class TestNormal(BaseTestCases.BaseTestCase): distribution = pm.Normal params = {'mu': 0., 'tau': 1.} class TestTruncatedNormal(BaseTestCases.BaseTestCase): distribution = pm.TruncatedNormal params = {'mu': 0., 'tau': 1., 'lower':-0.5, 'upper':0.5} class TestSkewNormal(BaseTestCases.BaseTestCase): distribution = pm.SkewNormal params = {'mu': 0., 'sigma': 1., 'alpha': 5.} class TestHalfNormal(BaseTestCases.BaseTestCase): distribution = pm.HalfNormal params = {'tau': 1.} class TestUniform(BaseTestCases.BaseTestCase): distribution = pm.Uniform params = {'lower': 0., 'upper': 1.} class TestTriangular(BaseTestCases.BaseTestCase): distribution = pm.Triangular params = {'c': 0.5, 'lower': 0., 'upper': 1.} class TestWald(BaseTestCases.BaseTestCase): distribution = pm.Wald params = {'mu': 1., 'lam': 1., 'alpha': 0.} class TestBeta(BaseTestCases.BaseTestCase): distribution = pm.Beta params = {'alpha': 1., 'beta': 1.} class TestKumaraswamy(BaseTestCases.BaseTestCase): distribution = pm.Kumaraswamy params = {'a': 1., 'b': 1.} class TestExponential(BaseTestCases.BaseTestCase): distribution = pm.Exponential params = {'lam': 1.} class TestLaplace(BaseTestCases.BaseTestCase): distribution = pm.Laplace params = {'mu': 1., 'b': 1.} class TestLognormal(BaseTestCases.BaseTestCase): distribution = pm.Lognormal params = {'mu': 1., 'tau': 1.} class TestStudentT(BaseTestCases.BaseTestCase): distribution = pm.StudentT params = {'nu': 5., 'mu': 0., 'lam': 1.} class TestPareto(BaseTestCases.BaseTestCase): distribution = pm.Pareto params = {'alpha': 0.5, 'm': 1.} class TestCauchy(BaseTestCases.BaseTestCase): distribution = pm.Cauchy params = {'alpha': 1., 'beta': 1.} class TestHalfCauchy(BaseTestCases.BaseTestCase): distribution = pm.HalfCauchy params = {'beta': 1.} class TestGamma(BaseTestCases.BaseTestCase): distribution = pm.Gamma params = {'alpha': 1., 'beta': 1.} class TestInverseGamma(BaseTestCases.BaseTestCase): distribution = pm.InverseGamma params = {'alpha': 0.5, 'beta': 0.5} class TestChiSquared(BaseTestCases.BaseTestCase): distribution = pm.ChiSquared params = {'nu': 2.} class TestWeibull(BaseTestCases.BaseTestCase): distribution = pm.Weibull params = {'alpha': 1., 'beta': 1.} class TestExGaussian(BaseTestCases.BaseTestCase): distribution = pm.ExGaussian params = {'mu': 0., 'sigma': 1., 'nu': 1.} class TestVonMises(BaseTestCases.BaseTestCase): distribution = pm.VonMises params = {'mu': 0., 'kappa': 1.} class TestGumbel(BaseTestCases.BaseTestCase): distribution = pm.Gumbel params = {'mu': 0., 'beta': 1.} class TestLogistic(BaseTestCases.BaseTestCase): distribution = pm.Logistic params = {'mu': 0., 's': 1.} class TestLogitNormal(BaseTestCases.BaseTestCase): distribution = pm.LogitNormal params = {'mu': 0., 'sigma': 1.} class TestBinomial(BaseTestCases.BaseTestCase): distribution = pm.Binomial params = {'n': 5, 'p': 0.5} class TestBetaBinomial(BaseTestCases.BaseTestCase): distribution = pm.BetaBinomial params = {'n': 5, 'alpha': 1., 'beta': 1.} class TestBernoulli(BaseTestCases.BaseTestCase): distribution = pm.Bernoulli params = {'p': 0.5} class TestDiscreteWeibull(BaseTestCases.BaseTestCase): distribution = pm.DiscreteWeibull params = {'q': 0.25, 'beta': 2.} class TestPoisson(BaseTestCases.BaseTestCase): distribution = pm.Poisson params = {'mu': 1.} class TestNegativeBinomial(BaseTestCases.BaseTestCase): distribution = pm.NegativeBinomial params = {'mu': 1., 'alpha': 1.} class TestConstant(BaseTestCases.BaseTestCase): distribution = pm.Constant params = {'c': 3} class TestZeroInflatedPoisson(BaseTestCases.BaseTestCase): distribution = pm.ZeroInflatedPoisson params = {'theta': 1., 'psi': 0.3} class TestZeroInflatedNegativeBinomial(BaseTestCases.BaseTestCase): distribution = pm.ZeroInflatedNegativeBinomial params = {'mu': 1., 'alpha': 1., 'psi': 0.3} class TestZeroInflatedBinomial(BaseTestCases.BaseTestCase): distribution = pm.ZeroInflatedBinomial params = {'n': 10, 'p': 0.6, 'psi': 0.3} class TestDiscreteUniform(BaseTestCases.BaseTestCase): distribution = pm.DiscreteUniform params = {'lower': 0., 'upper': 10.} class TestGeometric(BaseTestCases.BaseTestCase): distribution = pm.Geometric params = {'p': 0.5} class TestCategorical(BaseTestCases.BaseTestCase): distribution = pm.Categorical params = {'p': np.ones(BaseTestCases.BaseTestCase.shape)} def get_random_variable(self, shape, with_vector_params=False, **kwargs): # don't transform categories return super().get_random_variable(shape, with_vector_params=False, **kwargs) def test_probability_vector_shape(self): """Check that if a 2d array of probabilities are passed to categorical correct shape is returned""" p = np.ones((10, 5)) assert pm.Categorical.dist(p=p).random().shape == (10,) class TestScalarParameterSamples(SeededTest): def test_bounded(self): # A bit crude... BoundedNormal = pm.Bound(pm.Normal, upper=0) def ref_rand(size, tau): return -st.halfnorm.rvs(size=size, loc=0, scale=tau ** -0.5) pymc3_random(BoundedNormal, {'tau': Rplus}, ref_rand=ref_rand) def test_uniform(self): def ref_rand(size, lower, upper): return st.uniform.rvs(size=size, loc=lower, scale=upper - lower) pymc3_random(pm.Uniform, {'lower': -Rplus, 'upper': Rplus}, ref_rand=ref_rand) def test_normal(self): def ref_rand(size, mu, sigma): return st.norm.rvs(size=size, loc=mu, scale=sigma) pymc3_random(pm.Normal, {'mu': R, 'sigma': Rplus}, ref_rand=ref_rand) def test_truncated_normal(self): def ref_rand(size, mu, sigma, lower, upper): return st.truncnorm.rvs((lower-mu)/sigma, (upper-mu)/sigma, size=size, loc=mu, scale=sigma) pymc3_random(pm.TruncatedNormal, {'mu': R, 'sigma': Rplusbig, 'lower':-Rplusbig, 'upper':Rplusbig}, ref_rand=ref_rand) def test_skew_normal(self): def ref_rand(size, alpha, mu, sigma): return st.skewnorm.rvs(size=size, a=alpha, loc=mu, scale=sigma) pymc3_random(pm.SkewNormal, {'mu': R, 'sigma': Rplus, 'alpha': R}, ref_rand=ref_rand) def test_half_normal(self): def ref_rand(size, tau): return st.halfnorm.rvs(size=size, loc=0, scale=tau ** -0.5) pymc3_random(pm.HalfNormal, {'tau': Rplus}, ref_rand=ref_rand) def test_wald(self): # Cannot do anything too exciting as scipy wald is a # location-scale model of the *standard* wald with mu=1 and lam=1 def ref_rand(size, mu, lam, alpha): return st.wald.rvs(size=size, loc=alpha) pymc3_random(pm.Wald, {'mu': Domain([1., 1., 1.]), 'lam': Domain( [1., 1., 1.]), 'alpha': Rplus}, ref_rand=ref_rand) def test_beta(self): def ref_rand(size, alpha, beta): return st.beta.rvs(a=alpha, b=beta, size=size) pymc3_random(pm.Beta, {'alpha': Rplus, 'beta': Rplus}, ref_rand=ref_rand) def test_exponential(self): def ref_rand(size, lam): return nr.exponential(scale=1. / lam, size=size) pymc3_random(pm.Exponential, {'lam': Rplus}, ref_rand=ref_rand) def test_laplace(self): def ref_rand(size, mu, b): return st.laplace.rvs(mu, b, size=size) pymc3_random(pm.Laplace, {'mu': R, 'b': Rplus}, ref_rand=ref_rand) def test_lognormal(self): def ref_rand(size, mu, tau): return np.exp(mu + (tau ** -0.5) * st.norm.rvs(loc=0., scale=1., size=size)) pymc3_random(pm.Lognormal, {'mu': R, 'tau': Rplusbig}, ref_rand=ref_rand) def test_student_t(self): def ref_rand(size, nu, mu, lam): return st.t.rvs(nu, mu, lam**-.5, size=size) pymc3_random(pm.StudentT, {'nu': Rplus, 'mu': R, 'lam': Rplus}, ref_rand=ref_rand) def test_cauchy(self): def ref_rand(size, alpha, beta): return st.cauchy.rvs(alpha, beta, size=size) pymc3_random(pm.Cauchy, {'alpha': R, 'beta': Rplusbig}, ref_rand=ref_rand) def test_half_cauchy(self): def ref_rand(size, beta): return st.halfcauchy.rvs(scale=beta, size=size) pymc3_random(pm.HalfCauchy, {'beta': Rplusbig}, ref_rand=ref_rand) def test_gamma_alpha_beta(self): def ref_rand(size, alpha, beta): return st.gamma.rvs(alpha, scale=1. / beta, size=size) pymc3_random(pm.Gamma, {'alpha': Rplusbig, 'beta': Rplusbig}, ref_rand=ref_rand) def test_gamma_mu_sigma(self): def ref_rand(size, mu, sigma): return st.gamma.rvs(mu**2 / sigma**2, scale=sigma ** 2 / mu, size=size) pymc3_random(pm.Gamma, {'mu': Rplusbig, 'sigma': Rplusbig}, ref_rand=ref_rand) def test_inverse_gamma(self): def ref_rand(size, alpha, beta): return st.invgamma.rvs(a=alpha, scale=beta, size=size) pymc3_random(pm.InverseGamma, {'alpha': Rplus, 'beta': Rplus}, ref_rand=ref_rand) def test_pareto(self): def ref_rand(size, alpha, m): return st.pareto.rvs(alpha, scale=m, size=size) pymc3_random(pm.Pareto, {'alpha': Rplusbig, 'm': Rplusbig}, ref_rand=ref_rand) def test_ex_gaussian(self): def ref_rand(size, mu, sigma, nu): return nr.normal(mu, sigma, size=size) +
nr.exponential(scale=nu, size=size)
numpy.random.exponential
'''Trains a simple convnet on the MNIST dataset. Gets to 99.25% test accuracy after 12 epochs (there is still a lot of margin for parameter tuning). 16 seconds per epoch on a GRID K520 GPU. ''' from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K batch_size = 128 num_classes = 10 epochs = 12 # input image dimensions img_rows, img_cols = 28, 28 # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) # Save model json_string = model.to_json() with open('./model.json', 'w') as f: f.write(json_string) model.save_weights('./last_weight.h5') # Save test data import numpy as np import pickle ids = np.arange(start=0, stop=len(x_test)) with open('./ids.pkl', 'wb') as f: pickle.dump(ids, f) with open('./x_test_10000.pkl', 'wb') as f: pickle.dump(x_test, f) with open('./y_test_10000.tsv', 'w') as f: for label in y_test: f.write(str(label) + '\n') import scipy.misc def images_to_sprite(data): """ Creates the sprite image :param data: [batch_size, height, weight, n_channel] :return data: Sprited image::[height, weight, n_channel] """ if len(data.shape) == 3: data = np.tile(data[..., np.newaxis], (1, 1, 1, 3)) data = data.astype(np.float32) min = np.min(data.reshape((data.shape[0], -1)), axis=1) data = (data.transpose(1, 2, 3, 0) - min).transpose(3, 0, 1, 2) max = np.max(data.reshape((data.shape[0], -1)), axis=1) data = (data.transpose(1, 2, 3, 0) / max).transpose(3, 0, 1, 2) n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, 0)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=0) data = data.reshape((n, n) + data.shape[1:]).transpose( (0, 2, 1, 3) + tuple(range(4, data.ndim + 1)) ) data = data.reshape( (n * data.shape[1], n * data.shape[3]) + data.shape[4:]) data = (data * 255).astype(np.uint8) return data simg = images_to_sprite(x_test) scipy.misc.imsave('./MNIST_sprites.png',
np.squeeze(simg)
numpy.squeeze
import os import warnings from six import BytesIO from six.moves import cPickle import numpy as np from numpy.testing import assert_almost_equal, assert_allclose import pandas as pd import pandas.util.testing as tm import pytest from sm2 import datasets from sm2.regression.linear_model import OLS from sm2.tsa.arima_model import AR, ARMA, ARIMA from sm2.tsa.arima_process import arma_generate_sample from sm2.tools.sm_exceptions import MissingDataError from .results import results_arma, results_arima DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 current_path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(current_path, 'results', 'y_arma_data.csv') y_arma = pd.read_csv(path, float_precision='high').values cpi_dates = pd.PeriodIndex(start='1959q1', end='2009q3', freq='Q') sun_dates = pd.PeriodIndex(start='1700', end='2008', freq='A') cpi_predict_dates = pd.PeriodIndex(start='2009q3', end='2015q4', freq='Q') sun_predict_dates = pd.PeriodIndex(start='2008', end='2033', freq='A') @pytest.mark.not_vetted @pytest.mark.skip(reason="fa, Arma not ported from upstream") def test_compare_arma(): # dummies to avoid flake8 warnings until porting fa = None Arma = None # import statsmodels.sandbox.tsa.fftarma as fa # from statsmodels.tsa.arma_mle import Arma # this is a preliminary test to compare # arma_kf, arma_cond_ls and arma_cond_mle # the results returned by the fit methods are incomplete # for now without random.seed np.random.seed(9876565) famod = fa.ArmaFft([1, -0.5], [1., 0.4], 40) x = famod.generate_sample(nsample=200, burnin=1000) modkf = ARMA(x, (1, 1)) reskf = modkf.fit(trend='nc', disp=-1) dres = reskf modc = Arma(x) resls = modc.fit(order=(1, 1)) rescm = modc.fit_mle(order=(1, 1), start_params=[0.4, 0.4, 1.], disp=0) # decimal 1 corresponds to threshold of 5% difference # still different sign corrected assert_almost_equal(resls[0] / dres.params, np.ones(dres.params.shape), decimal=1) # TODO: Is the next comment still accurate. It is retained from upstream # where there was a commented-out assertion after the comment # rescm also contains variance estimate as last element of params assert_almost_equal(rescm.params[:-1] / dres.params, np.ones(dres.params.shape), decimal=1) @pytest.mark.not_vetted class CheckArmaResultsMixin(object): """ res2 are the results from gretl. They are in results/results_arma. res1 are from sm2 """ decimal_params = DECIMAL_4 def test_params(self): assert_almost_equal(self.res1.params, self.res2.params, self.decimal_params) decimal_aic = DECIMAL_4 def test_aic(self): assert_almost_equal(self.res1.aic, self.res2.aic, self.decimal_aic) decimal_bic = DECIMAL_4 def test_bic(self): assert_almost_equal(self.res1.bic, self.res2.bic, self.decimal_bic) decimal_arroots = DECIMAL_4 def test_arroots(self): assert_almost_equal(self.res1.arroots, self.res2.arroots, self.decimal_arroots) decimal_maroots = DECIMAL_4 def test_maroots(self): assert_almost_equal(self.res1.maroots, self.res2.maroots, self.decimal_maroots) decimal_bse = DECIMAL_2 def test_bse(self): assert_almost_equal(self.res1.bse, self.res2.bse, self.decimal_bse) decimal_cov_params = DECIMAL_4 def test_covparams(self): assert_almost_equal(self.res1.cov_params(), self.res2.cov_params, self.decimal_cov_params) decimal_hqic = DECIMAL_4 def test_hqic(self): assert_almost_equal(self.res1.hqic, self.res2.hqic, self.decimal_hqic) decimal_llf = DECIMAL_4 def test_llf(self): assert_almost_equal(self.res1.llf, self.res2.llf, self.decimal_llf) decimal_resid = DECIMAL_4 def test_resid(self): assert_almost_equal(self.res1.resid, self.res2.resid, self.decimal_resid) decimal_fittedvalues = DECIMAL_4 def test_fittedvalues(self): assert_almost_equal(self.res1.fittedvalues, self.res2.fittedvalues, self.decimal_fittedvalues) decimal_pvalues = DECIMAL_2 def test_pvalues(self): assert_almost_equal(self.res1.pvalues, self.res2.pvalues, self.decimal_pvalues) decimal_t = DECIMAL_2 # only 2 decimal places in gretl output def test_tvalues(self): assert_almost_equal(self.res1.tvalues, self.res2.tvalues, self.decimal_t) decimal_sigma2 = DECIMAL_4 def test_sigma2(self): assert_almost_equal(self.res1.sigma2, self.res2.sigma2, self.decimal_sigma2) @pytest.mark.smoke def test_summary(self): self.res1.summary() @pytest.mark.not_vetted class CheckForecastMixin(object): decimal_forecast = DECIMAL_4 def test_forecast(self): assert_almost_equal(self.res1.forecast_res, self.res2.forecast, self.decimal_forecast) decimal_forecasterr = DECIMAL_4 def test_forecasterr(self): assert_almost_equal(self.res1.forecast_err, self.res2.forecasterr, self.decimal_forecasterr) @pytest.mark.not_vetted class CheckDynamicForecastMixin(object): decimal_forecast_dyn = 4 def test_dynamic_forecast(self): assert_almost_equal(self.res1.forecast_res_dyn, self.res2.forecast_dyn, self.decimal_forecast_dyn) #def test_forecasterr(self): # assert_almost_equal(self.res1.forecast_err_dyn, # self.res2.forecasterr_dyn, # DECIMAL_4) @pytest.mark.not_vetted class CheckArimaResultsMixin(CheckArmaResultsMixin): def test_order(self): assert self.res1.k_diff == self.res2.k_diff assert self.res1.k_ar == self.res2.k_ar assert self.res1.k_ma == self.res2.k_ma decimal_predict_levels = DECIMAL_4 def test_predict_levels(self): assert_almost_equal(self.res1.predict(typ='levels'), self.res2.linear, self.decimal_predict_levels) @pytest.mark.not_vetted class Test_Y_ARMA11_NoConst(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 0] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend='nc', disp=-1) fc_res, fc_err, ci = cls.res1.forecast(10) cls.res1.forecast_res = fc_res cls.res1.forecast_err = fc_err cls.res2 = results_arma.Y_arma11() # TODO: share with test_ar? other test classes? def test_pickle(self): fh = BytesIO() # test wrapped results load save pickle self.res1.save(fh) fh.seek(0, 0) res_unpickled = self.res1.__class__.load(fh) assert type(res_unpickled) is type(self.res1) # noqa:E721 # TODO: Test equality instead of just type equality? @pytest.mark.not_vetted class Test_Y_ARMA14_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 1] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma14() @pytest.mark.not_vetted @pytest.mark.slow class Test_Y_ARMA41_NoConst(CheckArmaResultsMixin, CheckForecastMixin): decimal_maroots = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 2] cls.res1 = ARMA(endog, order=(4, 1)).fit(trend='nc', disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma41() @pytest.mark.not_vetted class Test_Y_ARMA22_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 3] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma22() @pytest.mark.not_vetted class Test_Y_ARMA50_NoConst(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 4] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend='nc', disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma50() @pytest.mark.not_vetted class Test_Y_ARMA02_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 5] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma02() @pytest.mark.not_vetted class Test_Y_ARMA11_Const(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma11c() @pytest.mark.not_vetted class Test_Y_ARMA14_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 7] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma14c() @pytest.mark.not_vetted class Test_Y_ARMA41_Const(CheckArmaResultsMixin, CheckForecastMixin): decimal_cov_params = DECIMAL_3 decimal_fittedvalues = DECIMAL_3 decimal_resid = DECIMAL_3 decimal_params = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 8] cls.res2 = results_arma.Y_arma41c() cls.res1 = ARMA(endog, order=(4, 1)).fit(trend="c", disp=-1, start_params=cls.res2.params) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) @pytest.mark.not_vetted class Test_Y_ARMA22_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 9] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma22c() @pytest.mark.not_vetted class Test_Y_ARMA50_Const(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 10] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma50c() @pytest.mark.not_vetted class Test_Y_ARMA02_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 11] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma02c() # cov_params and tvalues are off still but not as much vs. R @pytest.mark.not_vetted class Test_Y_ARMA11_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 0] cls.res1 = ARMA(endog, order=(1, 1)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma11("css") # better vs. R @pytest.mark.not_vetted class Test_Y_ARMA14_NoConst_CSS(CheckArmaResultsMixin): decimal_fittedvalues = DECIMAL_3 decimal_resid = DECIMAL_3 decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 1] cls.res1 = ARMA(endog, order=(1, 4)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma14("css") # bse, etc. better vs. R # maroot is off because maparams is off a bit (adjust tolerance?) @pytest.mark.not_vetted class Test_Y_ARMA41_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_pvalues = 0 decimal_cov_params = DECIMAL_3 decimal_maroots = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 2] cls.res1 = ARMA(endog, order=(4, 1)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma41("css") # same notes as above @pytest.mark.not_vetted class Test_Y_ARMA22_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_resid = DECIMAL_3 decimal_pvalues = DECIMAL_1 decimal_fittedvalues = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 3] cls.res1 = ARMA(endog, order=(2, 2)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma22("css") # NOTE: gretl just uses least squares for AR CSS # so BIC, etc. is # -2*res1.llf + np.log(nobs)*(res1.q+res1.p+res1.k) # with no adjustment for p and no extra sigma estimate # NOTE: so our tests use x-12 arima results which agree with us and are # consistent with the rest of the models @pytest.mark.not_vetted class Test_Y_ARMA50_NoConst_CSS(CheckArmaResultsMixin): decimal_t = 0 decimal_llf = DECIMAL_1 # looks like rounding error? @classmethod def setup_class(cls): endog = y_arma[:, 4] cls.res1 = ARMA(endog, order=(5, 0)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma50("css") @pytest.mark.not_vetted class Test_Y_ARMA02_NoConst_CSS(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 5] cls.res1 = ARMA(endog, order=(0, 2)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma02("css") # NOTE: our results are close to --x-12-arima option and R @pytest.mark.not_vetted class Test_Y_ARMA11_Const_CSS(CheckArmaResultsMixin): decimal_params = DECIMAL_3 decimal_cov_params = DECIMAL_3 decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma11c("css") @pytest.mark.not_vetted class Test_Y_ARMA14_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_pvalues = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 7] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma14c("css") @pytest.mark.not_vetted class Test_Y_ARMA41_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_cov_params = DECIMAL_1 decimal_maroots = DECIMAL_3 decimal_bse = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 8] cls.res1 = ARMA(endog, order=(4, 1)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma41c("css") @pytest.mark.not_vetted class Test_Y_ARMA22_Const_CSS(CheckArmaResultsMixin): decimal_t = 0 decimal_pvalues = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 9] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma22c("css") @pytest.mark.not_vetted class Test_Y_ARMA50_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_params = DECIMAL_3 decimal_cov_params = DECIMAL_2 @classmethod def setup_class(cls): endog = y_arma[:, 10] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma50c("css") @pytest.mark.not_vetted class Test_Y_ARMA02_Const_CSS(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 11] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma02c("css") @pytest.mark.not_vetted class Test_ARIMA101(CheckArmaResultsMixin): # just make sure this works @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARIMA(endog, (1, 0, 1)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma11c() cls.res2.k_diff = 0 cls.res2.k_ar = 1 cls.res2.k_ma = 1 @pytest.mark.not_vetted class Test_ARIMA111(CheckArimaResultsMixin, CheckForecastMixin, CheckDynamicForecastMixin): decimal_llf = 3 decimal_aic = 3 decimal_bic = 3 decimal_cov_params = 2 # this used to be better? decimal_t = 0 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 1)).fit(disp=-1) cls.res2 = results_arima.ARIMA111() # make sure endog names changes to D.cpi (cls.res1.forecast_res, cls.res1.forecast_err, conf_int) = cls.res1.forecast(25) # TODO: fix the indexing for the end here, I don't think this is right # if we're going to treat it like indexing # the forecast from 2005Q1 through 2009Q4 is indices # 184 through 227 not 226 # note that the first one counts in the count so 164 + 64 is 65 # predictions cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=164 + 63, typ='levels', dynamic=True) def test_freq(self): assert_almost_equal(self.res1.arfreq, [0.0000], 4) assert_almost_equal(self.res1.mafreq, [0.0000], 4) @pytest.mark.not_vetted class Test_ARIMA111CSS(CheckArimaResultsMixin, CheckForecastMixin, CheckDynamicForecastMixin): decimal_forecast = 2 decimal_forecast_dyn = 2 decimal_forecasterr = 3 decimal_arroots = 3 decimal_cov_params = 3 decimal_hqic = 3 decimal_maroots = 3 decimal_t = 1 decimal_fittedvalues = 2 # because of rounding when copying decimal_resid = 2 decimal_predict_levels = DECIMAL_2 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 1)).fit(disp=-1, method='css') cls.res2 = results_arima.ARIMA111(method='css') cls.res2.fittedvalues = - cpi[1:-1] + cls.res2.linear # make sure endog names changes to D.cpi (fc_res, fc_err, conf_int) = cls.res1.forecast(25) cls.res1.forecast_res = fc_res cls.res1.forecast_err = fc_err cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=164 + 63, typ='levels', dynamic=True) @pytest.mark.not_vetted class Test_ARIMA112CSS(CheckArimaResultsMixin): decimal_llf = 3 decimal_aic = 3 decimal_bic = 3 decimal_arroots = 3 decimal_maroots = 2 decimal_t = 1 decimal_resid = 2 decimal_fittedvalues = 3 decimal_predict_levels = DECIMAL_3 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 2)).fit(disp=-1, method='css', start_params=[.905322, -.692425, 1.07366, 0.172024]) cls.res2 = results_arima.ARIMA112(method='css') cls.res2.fittedvalues = - cpi[1:-1] + cls.res2.linear # make sure endog names changes to D.cpi #(cls.res1.forecast_res, # cls.res1.forecast_err, # conf_int) = cls.res1.forecast(25) #cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=226, # typ='levels', # dynamic=True) # TODO: fix the indexing for the end here, I don't think this is right # if we're going to treat it like indexing # the forecast from 2005Q1 through 2009Q4 is indices # 184 through 227 not 226 # note that the first one counts in the count so 164 + 64 is 65 # predictions #cls.res1.forecast_res_dyn = self.predict(start=164, end=164+63, # typ='levels', dynamic=True) # since we got from gretl don't have linear prediction in differences def test_freq(self): assert_almost_equal(self.res1.arfreq, [0.5000], 4) assert_almost_equal(self.res1.mafreq, [0.5000, 0.5000], 4) #class Test_ARIMADates(CheckArmaResults, CheckForecast, CheckDynamicForecast): # @classmethod # def setup_class(cls): # cpi = datasets.macrodata.load_pandas().data['cpi'].values # dates = pd.date_range('1959', periods=203, freq='Q') # cls.res1 = ARIMA(cpi, dates=dates, freq='Q').fit(order=(1, 1, 1), # disp=-1) # cls.res2 = results_arima.ARIMA111() # # make sure endog names changes to D.cpi # cls.decimal_llf = 3 # cls.decimal_aic = 3 # cls.decimal_bic = 3 # (cls.res1.forecast_res, # cls.res1.forecast_err, # conf_int) = cls.res1.forecast(25) @pytest.mark.not_vetted @pytest.mark.slow def test_start_params_bug(): data = np.array([ 1368., 1187, 1090, 1439, 2362, 2783, 2869, 2512, 1804, 1544, 1028, 869, 1737, 2055, 1947, 1618, 1196, 867, 997, 1862, 2525, 3250, 4023, 4018, 3585, 3004, 2500, 2441, 2749, 2466, 2157, 1847, 1463, 1146, 851, 993, 1448, 1719, 1709, 1455, 1950, 1763, 2075, 2343, 3570, 4690, 3700, 2339, 1679, 1466, 998, 853, 835, 922, 851, 1125, 1299, 1105, 860, 701, 689, 774, 582, 419, 846, 1132, 902, 1058, 1341, 1551, 1167, 975, 786, 759, 751, 649, 876, 720, 498, 553, 459, 543, 447, 415, 377, 373, 324, 320, 306, 259, 220, 342, 558, 825, 994, 1267, 1473, 1601, 1896, 1890, 2012, 2198, 2393, 2825, 3411, 3406, 2464, 2891, 3685, 3638, 3746, 3373, 3190, 2681, 2846, 4129, 5054, 5002, 4801, 4934, 4903, 4713, 4745, 4736, 4622, 4642, 4478, 4510, 4758, 4457, 4356, 4170, 4658, 4546, 4402, 4183, 3574, 2586, 3326, 3948, 3983, 3997, 4422, 4496, 4276, 3467, 2753, 2582, 2921, 2768, 2789, 2824, 2482, 2773, 3005, 3641, 3699, 3774, 3698, 3628, 3180, 3306, 2841, 2014, 1910, 2560, 2980, 3012, 3210, 3457, 3158, 3344, 3609, 3327, 2913, 2264, 2326, 2596, 2225, 1767, 1190, 792, 669, 589, 496, 354, 246, 250, 323, 495, 924, 1536, 2081, 2660, 2814, 2992, 3115, 2962, 2272, 2151, 1889, 1481, 955, 631, 288, 103, 60, 82, 107, 185, 618, 1526, 2046, 2348, 2584, 2600, 2515, 2345, 2351, 2355, 2409, 2449, 2645, 2918, 3187, 2888, 2610, 2740, 2526, 2383, 2936, 2968, 2635, 2617, 2790, 3906, 4018, 4797, 4919, 4942, 4656, 4444, 3898, 3908, 3678, 3605, 3186, 2139, 2002, 1559, 1235, 1183, 1096, 673, 389, 223, 352, 308, 365, 525, 779, 894, 901, 1025, 1047, 981, 902, 759, 569, 519, 408, 263, 156, 72, 49, 31, 41, 192, 423, 492, 552, 564, 723, 921, 1525, 2768, 3531, 3824, 3835, 4294, 4533, 4173, 4221, 4064, 4641, 4685, 4026, 4323, 4585, 4836, 4822, 4631, 4614, 4326, 4790, 4736, 4104, 5099, 5154, 5121, 5384, 5274, 5225, 4899, 5382, 5295, 5349, 4977, 4597, 4069, 3733, 3439, 3052, 2626, 1939, 1064, 713, 916, 832, 658, 817, 921, 772, 764, 824, 967, 1127, 1153, 824, 912, 957, 990, 1218, 1684, 2030, 2119, 2233, 2657, 2652, 2682, 2498, 2429, 2346, 2298, 2129, 1829, 1816, 1225, 1010, 748, 627, 469, 576, 532, 475, 582, 641, 605, 699, 680, 714, 670, 666, 636, 672, 679, 446, 248, 134, 160, 178, 286, 413, 676, 1025, 1159, 952, 1398, 1833, 2045, 2072, 1798, 1799, 1358, 727, 353, 347, 844, 1377, 1829, 2118, 2272, 2745, 4263, 4314, 4530, 4354, 4645, 4547, 5391, 4855, 4739, 4520, 4573, 4305, 4196, 3773, 3368, 2596, 2596, 2305, 2756, 3747, 4078, 3415, 2369, 2210, 2316, 2263, 2672, 3571, 4131, 4167, 4077, 3924, 3738, 3712, 3510, 3182, 3179, 2951, 2453, 2078, 1999, 2486, 2581, 1891, 1997, 1366, 1294, 1536, 2794, 3211, 3242, 3406, 3121, 2425, 2016, 1787, 1508, 1304, 1060, 1342, 1589, 2361, 3452, 2659, 2857, 3255, 3322, 2852, 2964, 3132, 3033, 2931, 2636, 2818, 3310, 3396, 3179, 3232, 3543, 3759, 3503, 3758, 3658, 3425, 3053, 2620, 1837, 923, 712, 1054, 1376, 1556, 1498, 1523, 1088, 728, 890, 1413, 2524, 3295, 4097, 3993, 4116, 3874, 4074, 4142, 3975, 3908, 3907, 3918, 3755, 3648, 3778, 4293, 4385, 4360, 4352, 4528, 4365, 3846, 4098, 3860, 3230, 2820, 2916, 3201, 3721, 3397, 3055, 2141, 1623, 1825, 1716, 2232, 2939, 3735, 4838, 4560, 4307, 4975, 5173, 4859, 5268, 4992, 5100, 5070, 5270, 4760, 5135, 5059, 4682, 4492, 4933, 4737, 4611, 4634, 4789, 4811, 4379, 4689, 4284, 4191, 3313, 2770, 2543, 3105, 2967, 2420, 1996, 2247, 2564, 2726, 3021, 3427, 3509, 3759, 3324, 2988, 2849, 2340, 2443, 2364, 1252, 623, 742, 867, 684, 488, 348, 241, 187, 279, 355, 423, 678, 1375, 1497, 1434, 2116, 2411, 1929, 1628, 1635, 1609, 1757, 2090, 2085, 1790, 1846, 2038, 2360, 2342, 2401, 2920, 3030, 3132, 4385, 5483, 5865, 5595, 5485, 5727, 5553, 5560, 5233, 5478, 5159, 5155, 5312, 5079, 4510, 4628, 4535, 3656, 3698, 3443, 3146, 2562, 2304, 2181, 2293, 1950, 1930, 2197, 2796, 3441, 3649, 3815, 2850, 4005, 5305, 5550, 5641, 4717, 5131, 2831, 3518, 3354, 3115, 3515, 3552, 3244, 3658, 4407, 4935, 4299, 3166, 3335, 2728, 2488, 2573, 2002, 1717, 1645, 1977, 2049, 2125, 2376, 2551, 2578, 2629, 2750, 3150, 3699, 4062, 3959, 3264, 2671, 2205, 2128, 2133, 2095, 1964, 2006, 2074, 2201, 2506, 2449, 2465, 2064, 1446, 1382, 983, 898, 489, 319, 383, 332, 276, 224, 144, 101, 232, 429, 597, 750, 908, 960, 1076, 951, 1062, 1183, 1404, 1391, 1419, 1497, 1267, 963, 682, 777, 906, 1149, 1439, 1600, 1876, 1885, 1962, 2280, 2711, 2591, 2411]) with warnings.catch_warnings(): warnings.simplefilter("ignore") ARMA(data, order=(4, 1)).fit(start_ar_lags=5, disp=-1) @pytest.mark.not_vetted def test_arima_predict_mle_dates(): cpi = datasets.macrodata.load_pandas().data['cpi'].values res1 = ARIMA(cpi, (4, 1, 1), dates=cpi_dates, freq='Q').fit(disp=-1) path = os.path.join(current_path, 'results', 'results_arima_forecasts_all_mle.csv') arima_forecasts = pd.read_csv(path).values fc = arima_forecasts[:, 0] fcdyn = arima_forecasts[:, 1] fcdyn2 = arima_forecasts[:, 2] start, end = 2, 51 fv = res1.predict('1959Q3', '1971Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_dates[start:end + 1]) start, end = 202, 227 fv = res1.predict('2009Q3', '2015Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_predict_dates) # make sure dynamic works start, end = '1960q2', '1971q4' fv = res1.predict(start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn[5:51 + 1], DECIMAL_4) start, end = '1965q1', '2015q4' fv = res1.predict(start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn2[24:227 + 1], DECIMAL_4) @pytest.mark.not_vetted def test_arma_predict_mle_dates(): sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values mod = ARMA(sunspots, (9, 0), dates=sun_dates, freq='A') mod.method = 'mle' with pytest.raises(ValueError): mod._get_prediction_index('1701', '1751', True) start, end = 2, 51 mod._get_prediction_index('1702', '1751', False) tm.assert_index_equal(mod.data.predict_dates, sun_dates[start:end + 1]) start, end = 308, 333 mod._get_prediction_index('2008', '2033', False) tm.assert_index_equal(mod.data.predict_dates, sun_predict_dates) @pytest.mark.not_vetted def test_arima_predict_css_dates(): cpi = datasets.macrodata.load_pandas().data['cpi'].values res1 = ARIMA(cpi, (4, 1, 1), dates=cpi_dates, freq='Q').fit(disp=-1, method='css', trend='nc') params = np.array([1.231272508473910, -0.282516097759915, 0.170052755782440, -0.118203728504945, -0.938783134717947]) path = os.path.join(current_path, 'results', 'results_arima_forecasts_all_css.csv') arima_forecasts = pd.read_csv(path).values fc = arima_forecasts[:, 0] fcdyn = arima_forecasts[:, 1] fcdyn2 = arima_forecasts[:, 2] start, end = 5, 51 fv = res1.model.predict(params, '1960Q2', '1971Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_dates[start:end + 1]) start, end = 202, 227 fv = res1.model.predict(params, '2009Q3', '2015Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_predict_dates) # make sure dynamic works start, end = 5, 51 fv = res1.model.predict(params, '1960Q2', '1971Q4', typ='levels', dynamic=True) assert_almost_equal(fv, fcdyn[start:end + 1], DECIMAL_4) start, end = '1965q1', '2015q4' fv = res1.model.predict(params, start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn2[24:227 + 1], DECIMAL_4) @pytest.mark.not_vetted def test_arma_predict_css_dates(): # TODO: GH reference? sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values mod = ARMA(sunspots, (9, 0), dates=sun_dates, freq='A') mod.method = 'css' with pytest.raises(ValueError): mod._get_prediction_index('1701', '1751', False) def test_arima_wrapper(): # test that names get attached to res.params correctly # TODO: GH reference? cpi = datasets.macrodata.load_pandas().data['cpi'] cpi.index = pd.Index(cpi_dates) res = ARIMA(cpi, (4, 1, 1), freq='Q').fit(disp=-1) expected_index = pd.Index(['const', 'ar.L1.D.cpi', 'ar.L2.D.cpi', 'ar.L3.D.cpi', 'ar.L4.D.cpi', 'ma.L1.D.cpi']) assert expected_index.equals(res.params.index) tm.assert_index_equal(res.params.index, expected_index) assert res.model.endog_names == 'D.cpi' @pytest.mark.not_vetted @pytest.mark.smoke def test_1dexog(): # smoke test, this will raise an error if broken dta = datasets.macrodata.load_pandas().data endog = dta['realcons'].values exog = dta['m1'].values.squeeze() with warnings.catch_warnings(): warnings.simplefilter("ignore") mod = ARMA(endog, (1, 1), exog).fit(disp=-1) mod.predict(193, 203, exog[-10:]) # check for dynamic is true and pandas Series see GH#2589 mod.predict(193, 202, exog[-10:], dynamic=True) dta.index = pd.Index(cpi_dates) mod = ARMA(dta['realcons'], (1, 1), dta['m1']) res = mod.fit(disp=-1) res.predict(dta.index[-10], dta.index[-1], exog=dta['m1'][-10:], dynamic=True) mod = ARMA(dta['realcons'], (1, 1), dta['m1']) res = mod.fit(trend='nc', disp=-1) res.predict(dta.index[-10], dta.index[-1], exog=dta['m1'][-10:], dynamic=True) @pytest.mark.not_vetted def test_arima_predict_bug(): # predict_start_date wasn't getting set on start = None # TODO: GH reference? dta = datasets.sunspots.load_pandas().data['SUNACTIVITY'] dta.index = pd.DatetimeIndex(start='1700', end='2009', freq='A')[:309] arma_mod20 = ARMA(dta, (2, 0)).fit(disp=-1) arma_mod20.predict(None, None) # test prediction with time stamp, see GH#2587 predict = arma_mod20.predict(dta.index[-20], dta.index[-1]) assert predict.index.equals(dta.index[-20:]) predict = arma_mod20.predict(dta.index[-20], dta.index[-1], dynamic=True) assert predict.index.equals(dta.index[-20:]) # partially out of sample predict_dates = pd.DatetimeIndex(start='2000', end='2015', freq='A') predict = arma_mod20.predict(predict_dates[0], predict_dates[-1]) assert predict.index.equals(predict_dates) @pytest.mark.not_vetted def test_arima_predict_q2(): # bug with q > 1 for arima predict # TODO: GH reference? inv = datasets.macrodata.load().data['realinv'] arima_mod = ARIMA(np.log(inv), (1, 1, 2)).fit(start_params=[0, 0, 0, 0], disp=-1) fc, stderr, conf_int = arima_mod.forecast(5) # values copy-pasted from gretl assert_almost_equal(fc, [7.306320, 7.313825, 7.321749, 7.329827, 7.337962], 5) @pytest.mark.not_vetted def test_arima_predict_pandas_nofreq(): # GH#712 dates = ["2010-01-04", "2010-01-05", "2010-01-06", "2010-01-07", "2010-01-08", "2010-01-11", "2010-01-12", "2010-01-11", "2010-01-12", "2010-01-13", "2010-01-17"] close = [626.75, 623.99, 608.26, 594.1, 602.02, 601.11, 590.48, 587.09, 589.85, 580.0, 587.62] data = pd.DataFrame(close, index=pd.DatetimeIndex(dates), columns=["close"]) # TODO: fix this names bug for non-string names names arma = ARMA(data, order=(1, 0)).fit(disp=-1) # first check that in-sample prediction works predict = arma.predict() assert predict.index.equals(data.index) # check that this raises an exception when date not on index with pytest.raises(KeyError): arma.predict(start="2010-1-9", end=10) with pytest.raises(KeyError): arma.predict(start="2010-1-9", end="2010-1-17") # raise because end not on index with pytest.raises(KeyError): arma.predict(start="2010-1-4", end="2010-1-10") # raise because end not on index with pytest.raises(KeyError): arma.predict(start=3, end="2010-1-10") predict = arma.predict(start="2010-1-7", end=10) # should be of length 10 assert len(predict) == 8 assert predict.index.equals(data.index[3:10 + 1]) predict = arma.predict(start="2010-1-7", end=14) assert predict.index.equals(pd.Index(range(3, 15))) predict = arma.predict(start=3, end=14) assert predict.index.equals(pd.Index(range(3, 15))) # end can be a date if it's in the sample and on the index # predict dates is just a slice of the dates index then predict = arma.predict(start="2010-1-6", end="2010-1-13") assert predict.index.equals(data.index[2:10]) predict = arma.predict(start=2, end="2010-1-13") assert predict.index.equals(data.index[2:10]) @pytest.mark.not_vetted def test_arima_predict_exog(): # check GH#625 and GH#626 # Note: upstream there is a bunch of commented-out code after this point; # I have not been able to get an explanation as to if/why it is worth # keeping. # TODO: At some point check back to see if it has been addressed. path = os.path.join(current_path, 'results', 'results_arima_exog_forecasts_mle.csv') arima_forecasts = pd.read_csv(path) y = arima_forecasts["y"].dropna() X = np.arange(len(y) + 25) / 20. predict_expected = arima_forecasts["predict"] arma_res = ARMA(y.values, order=(2, 1), exog=X[:100]).fit(trend="c", disp=-1) # params from gretl params = np.array([2.786912485145725, -0.122650190196475, 0.533223846028938, -0.319344321763337, 0.132883233000064]) assert_almost_equal(arma_res.params, params, 5) # no exog for in-sample predict = arma_res.predict() assert_almost_equal(predict, predict_expected.values[:100], 5) # check GH#626 assert len(arma_res.model.exog_names) == 5 # exog for out-of-sample and in-sample dynamic predict = arma_res.model.predict(params, end=124, exog=X[100:]) assert_almost_equal(predict, predict_expected.values, 6) # conditional sum of squares #arima_forecasts = pd.read_csv(current_path + "/results/" # "results_arima_exog_forecasts_css.csv") #predict_expected = arima_forecasts["predict"].dropna() #arma_res = ARMA(y.values, order=(2, 1), exog=X[:100]).fit(trend="c", # method="css", # disp=-1) #params = np.array([2.152350033809826, -0.103602399018814, # 0.566716580421188, -0.326208009247944, # 0.102142932143421]) #predict = arma_res.model.predict(params) # in-sample #assert_almost_equal(predict, predict_expected.values[:98], 6) #predict = arma_res.model.predict(params, end=124, exog=X[100:]) # exog for out-of-sample and in-sample dynamic #assert_almost_equal(predict, predict_expected.values, 3) @pytest.mark.not_vetted def test_arimax(): dta = datasets.macrodata.load_pandas().data dta.index = cpi_dates dta = dta[["realdpi", "m1", "realgdp"]] y = dta.pop("realdpi") # 1 exog #X = dta.iloc[1:]["m1"] #res = ARIMA(y, (2, 1, 1), X).fit(disp=-1) #params = [23.902305009084373, 0.024650911502790, -0.162140641341602, # 0.165262136028113, -0.066667022903974] #assert_almost_equal(res.params.values, params, 6) # 2 exog X = dta res = ARIMA(y, (2, 1, 1), X).fit(disp=False, solver="nm", maxiter=1000, ftol=1e-12, xtol=1e-12) # from gretl; we use the versions from stata below instead # params = [13.113976653926638, -0.003792125069387, 0.004123504809217, # -0.199213760940898, 0.151563643588008, -0.033088661096699] # from stata using double stata_llf = -1076.108614859121 params = [13.1259220104, -0.00376814509403812, 0.00411970083135622, -0.19921477896158524, 0.15154396192855729, -0.03308400760360837] # we can get close assert_almost_equal(res.params.values, params, 4) # This shows that it's an optimizer problem and not a problem in the code assert_almost_equal(res.model.loglike(np.array(params)), stata_llf, 6) X = dta.diff() X.iloc[0] = 0 res = ARIMA(y, (2, 1, 1), X).fit(disp=False) # gretl won't estimate this - looks like maybe a bug on their part, # but we can just fine, we're close to Stata's answer # from Stata params = [19.5656863783347, 0.32653841355833396198, 0.36286527042965188716, -1.01133792126884, -0.15722368379307766206, 0.69359822544092153418] assert_almost_equal(res.params.values, params, 3) @pytest.mark.not_vetted def test_bad_start_params(): # TODO: what is bad about these params?? # TODO: GH reference? endog = np.array([ 820.69093, 781.0103028, 785.8786988, 767.64282267, 778.9837648, 824.6595702, 813.01877867, 751.65598567, 753.431091, 746.920813, 795.6201904, 772.65732833, 793.4486454, 868.8457766, 823.07226547, 783.09067747, 791.50723847, 770.93086347, 835.34157333, 810.64147947, 738.36071367, 776.49038513, 822.93272333, 815.26461227, 773.70552987, 777.3726522, 811.83444853, 840.95489133, 777.51031933, 745.90077307, 806.95113093, 805.77521973, 756.70927733, 749.89091773, 1694.2266924, 2398.4802244, 1434.6728516, 909.73940427, 929.01291907, 769.07561453, 801.1112548, 796.16163313, 817.2496376, 857.73046447, 838.849345, 761.92338873, 731.7842242, 770.4641844]) mod = ARMA(endog, (15, 0)) with pytest.raises(ValueError): mod.fit() inv = datasets.macrodata.load().data['realinv'] arima_mod = ARIMA(np.log(inv), (1, 1, 2)) with pytest.raises(ValueError): # TODO: Upstream this incorrectly re-tries `mod.fit()` arima_mod.fit() @pytest.mark.not_vetted def test_armax_predict_no_trend(): # GH#1123 test ARMAX predict doesn't ignore exog when trend is none arparams = np.array([.75, -.25]) maparams = np.array([.65, .35]) nobs = 20 np.random.seed(12345) y = arma_generate_sample(arparams, maparams, nobs) X = np.random.randn(nobs) y += 5 * X mod = ARMA(y[:-1], order=(1, 0), exog=X[:-1]) res = mod.fit(trend='nc', disp=False) fc = res.forecast(exog=X[-1:]) # results from gretl assert_almost_equal(fc[0], 2.200393, 6) assert_almost_equal(fc[1], 1.030743, 6) assert_almost_equal(fc[2][0, 0], 0.180175, 6) assert_almost_equal(fc[2][0, 1], 4.220611, 6) mod = ARMA(y[:-1], order=(1, 1), exog=X[:-1]) res = mod.fit(trend='nc', disp=False) fc = res.forecast(exog=X[-1:]) assert_almost_equal(fc[0], 2.765688, 6) assert_almost_equal(fc[1], 0.835048, 6) assert_almost_equal(fc[2][0, 0], 1.129023, 6) assert_almost_equal(fc[2][0, 1], 4.402353, 6) # make sure this works to. code looked fishy. mod = ARMA(y[:-1], order=(1, 0), exog=X[:-1]) res = mod.fit(trend='c', disp=False) fc = res.forecast(exog=X[-1:]) assert_almost_equal(fc[0], 2.481219, 6) assert_almost_equal(fc[1], 0.968759, 6) assert_almost_equal(fc[2][0], [0.582485, 4.379952], 6) @pytest.mark.not_vetted def test_small_data(): # GH#1146 y = [-1214.360173, -1848.209905, -2100.918158, -3647.483678, -4711.186773] # refuse to estimate these with pytest.raises(ValueError): ARIMA(y, (2, 0, 3)) with pytest.raises(ValueError): ARIMA(y, (1, 1, 3)) mod = ARIMA(y, (1, 0, 3)) with pytest.raises(ValueError): mod.fit(trend="c") # TODO: mark these as smoke? # try to estimate these...leave it up to the user to check for garbage # and be clear, these are garbage parameters. # X-12 arima will estimate, gretl refuses to estimate likely a problem # in start params regression. mod.fit(trend="nc", disp=0, start_params=[.1, .1, .1, .1]) mod = ARIMA(y, (1, 0, 2)) with warnings.catch_warnings(): warnings.simplefilter("ignore") mod.fit(disp=0, start_params=[np.mean(y), .1, .1, .1]) @pytest.mark.not_vetted class TestARMA00(object): @classmethod def setup_class(cls): sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values cls.y = y = sunspots cls.arma_00_model = ARMA(y, order=(0, 0)) cls.arma_00_res = cls.arma_00_model.fit(disp=-1) def test_parameters(self): params = self.arma_00_res.params assert_almost_equal(self.y.mean(), params) def test_predictions(self): predictions = self.arma_00_res.predict() assert_almost_equal(self.y.mean() * np.ones_like(predictions), predictions) def test_arroots(self): # TODO: Belongs in test_wold? # GH#4559 # regression test; older implementation of arroots returned None # instead of en empty array roots = self.arma_00_res.arroots assert roots.size == 0 def test_maroots(self): # TODO: Belongs in test_wold? # GH#4559 # regression test; older implementation of arroots returned None # instead of en empty array roots = self.arma_00_res.maroots assert roots.size == 0 @pytest.mark.skip(reason=' This test is invalid since the ICs differ due ' 'to df_model differences between OLS and ARIMA') def test_information_criteria(self): # This test is invalid since the ICs differ due to df_model differences # between OLS and ARIMA res = self.arma_00_res y = self.y ols_res = OLS(y, np.ones_like(y)).fit(disp=-1) ols_ic = np.array([ols_res.aic, ols_res.bic]) arma_ic = np.array([res.aic, res.bic]) assert_almost_equal(ols_ic, arma_ic, DECIMAL_4) def test_arma_00_nc(self): arma_00 = ARMA(self.y, order=(0, 0)) with pytest.raises(ValueError): arma_00.fit(trend='nc', disp=-1) def test_css(self): arma = ARMA(self.y, order=(0, 0)) fit = arma.fit(method='css', disp=-1) predictions = fit.predict() assert_almost_equal(self.y.mean() * np.ones_like(predictions), predictions) def test_arima(self): yi = np.cumsum(self.y) arima = ARIMA(yi, order=(0, 1, 0)) fit = arima.fit(disp=-1) assert_almost_equal(np.diff(yi).mean(), fit.params, DECIMAL_4) def test_arma_ols(self): y = self.y y_lead = y[1:] y_lag = y[:-1] T = y_lag.shape[0] X = np.hstack((np.ones((T, 1)), y_lag[:, None])) ols_res = OLS(y_lead, X).fit() arma_res = ARMA(y_lead, order=(0, 0), exog=y_lag).fit(trend='c', disp=-1) assert_almost_equal(ols_res.params, arma_res.params) def test_arma_exog_no_constant(self): y = self.y y_lead = y[1:] y_lag = y[:-1] X = y_lag[:, None] ols_res = OLS(y_lead, X).fit() arma_res = ARMA(y_lead, order=(0, 0), exog=y_lag).fit(trend='nc', disp=-1) assert_almost_equal(ols_res.params, arma_res.params) @pytest.mark.not_vetted def test_arima_dates_startatend(): # TODO: GH reference? np.random.seed(18) x = pd.Series(np.random.random(36), index=pd.DatetimeIndex(start='1/1/1990', periods=36, freq='M')) res = ARIMA(x, (1, 0, 0)).fit(disp=0) pred = res.predict(start=len(x), end=len(x)) assert pred.index[0] == x.index.shift(1)[-1] fc = res.forecast()[0] assert_almost_equal(pred.values[0], fc) @pytest.mark.not_vetted def test_arima_diff2(): dta = datasets.macrodata.load_pandas().data['cpi'] dta.index = cpi_dates mod = ARIMA(dta, (3, 2, 1)).fit(disp=-1) fc, fcerr, conf_int = mod.forecast(10) # forecasts from gretl conf_int_res = [(216.139, 219.231), (216.472, 221.520), (217.064, 223.649), (217.586, 225.727), (218.119, 227.770), (218.703, 229.784), (219.306, 231.777), (219.924, 233.759), (220.559, 235.735), (221.206, 237.709)] fc_res = [217.685, 218.996, 220.356, 221.656, 222.945, 224.243, 225.541, 226.841, 228.147, 229.457] fcerr_res = [0.7888, 1.2878, 1.6798, 2.0768, 2.4620, 2.8269, 3.1816, 3.52950, 3.8715, 4.2099] assert_almost_equal(fc, fc_res, 3) assert_almost_equal(fcerr, fcerr_res, 3) assert_almost_equal(conf_int, conf_int_res, 3) predicted = mod.predict('2008Q1', '2012Q1', typ='levels') predicted_res = [214.464, 215.478, 221.277, 217.453, 212.419, 213.530, 215.087, 217.685, 218.996, 220.356, 221.656, 222.945, 224.243, 225.541, 226.841, 228.147, 229.457] assert_almost_equal(predicted, predicted_res, 3) @pytest.mark.not_vetted def test_arima111_predict_exog_2127(): # regression test for issue GH#2127 ef = [0.03005, 0.03917, 0.02828, 0.03644, 0.03379, 0.02744, 0.03343, 0.02621, 0.03050, 0.02455, 0.03261, 0.03507, 0.02734, 0.05373, 0.02677, 0.03443, 0.03331, 0.02741, 0.03709, 0.02113, 0.03343, 0.02011, 0.03675, 0.03077, 0.02201, 0.04844, 0.05518, 0.03765, 0.05433, 0.03049, 0.04829, 0.02936, 0.04421, 0.02457, 0.04007, 0.03009, 0.04504, 0.05041, 0.03651, 0.02719, 0.04383, 0.02887, 0.03440, 0.03348, 0.02364, 0.03496, 0.02549, 0.03284, 0.03523, 0.02579, 0.03080, 0.01784, 0.03237, 0.02078, 0.03508, 0.03062, 0.02006, 0.02341, 0.02223, 0.03145, 0.03081, 0.02520, 0.02683, 0.01720, 0.02225, 0.01579, 0.02237, 0.02295, 0.01830, 0.02356, 0.02051, 0.02932, 0.03025, 0.02390, 0.02635, 0.01863, 0.02994, 0.01762, 0.02837, 0.02421, 0.01951, 0.02149, 0.02079, 0.02528, 0.02575, 0.01634, 0.02563, 0.01719, 0.02915, 0.01724, 0.02804, 0.02750, 0.02099, 0.02522, 0.02422, 0.03254, 0.02095, 0.03241, 0.01867, 0.03998, 0.02212, 0.03034, 0.03419, 0.01866, 0.02623, 0.02052] ue = [4.9, 5.0, 5.0, 5.0, 4.9, 4.7, 4.8, 4.7, 4.7, 4.6, 4.6, 4.7, 4.7, 4.5, 4.4, 4.5, 4.4, 4.6, 4.5, 4.4, 4.5, 4.4, 4.6, 4.7, 4.6, 4.7, 4.7, 4.7, 5.0, 5.0, 4.9, 5.1, 5.0, 5.4, 5.6, 5.8, 6.1, 6.1, 6.5, 6.8, 7.3, 7.8, 8.3, 8.7, 9.0, 9.4, 9.5, 9.5, 9.6, 9.8, 10., 9.9, 9.9, 9.7, 9.8, 9.9, 9.9, 9.6, 9.4, 9.5, 9.5, 9.5, 9.5, 9.8, 9.4, 9.1, 9.0, 9.0, 9.1, 9.0, 9.1, 9.0, 9.0, 9.0, 8.8, 8.6, 8.5, 8.2, 8.3, 8.2, 8.2, 8.2, 8.2, 8.2, 8.1, 7.8, 7.8, 7.8, 7.9, 7.9, 7.7, 7.5, 7.5, 7.5, 7.5, 7.3, 7.2, 7.2, 7.2, 7.0, 6.7, 6.6, 6.7, 6.7, 6.3, 6.3] ue = np.array(ue) / 100 model = ARIMA(ef, (1, 1, 1), exog=ue) res = model.fit(transparams=False, pgtol=1e-8, iprint=0, disp=0) assert res.mle_retvals['warnflag'] == 0 predicts = res.predict(start=len(ef), end=len(ef) + 10, exog=ue[-11:], typ='levels') # regression test, not verified numbers predicts_res = np.array([ 0.02591095, 0.02321325, 0.02436579, 0.02368759, 0.02389753, 0.02372, 0.0237481, 0.0236738, 0.023644, 0.0236283, 0.02362267]) assert_allclose(predicts, predicts_res, atol=5e-6) @pytest.mark.not_vetted def test_arima_exog_predict(): # TODO: break up giant test # test forecasting and dynamic prediction with exog against Stata dta = datasets.macrodata.load_pandas().data cpi_dates = pd.PeriodIndex(start='1959Q1', end='2009Q3', freq='Q') dta.index = cpi_dates data = dta data['loginv'] = np.log(data['realinv']) data['loggdp'] = np.log(data['realgdp']) data['logcons'] = np.log(data['realcons']) forecast_period = pd.PeriodIndex(start='2008Q2', end='2009Q4', freq='Q') end = forecast_period[0] data_sample = data.loc[dta.index < end] exog_full = data[['loggdp', 'logcons']] # pandas mod = ARIMA(data_sample['loginv'], (1, 0, 1), exog=data_sample[['loggdp', 'logcons']]) with warnings.catch_warnings(): warnings.simplefilter("ignore") res = mod.fit(disp=0, solver='bfgs', maxiter=5000) predicted_arma_fp = res.predict(start=197, end=202, exog=exog_full.values[197:]).values predicted_arma_dp = res.predict(start=193, end=202, exog=exog_full[197:], dynamic=True) # numpy mod2 = ARIMA(np.asarray(data_sample['loginv']), (1, 0, 1), exog=np.asarray(data_sample[['loggdp', 'logcons']])) res2 = mod2.fit(start_params=res.params, disp=0, solver='bfgs', maxiter=5000) exog_full = data[['loggdp', 'logcons']] predicted_arma_f = res2.predict(start=197, end=202, exog=exog_full.values[197:]) predicted_arma_d = res2.predict(start=193, end=202, exog=exog_full[197:], dynamic=True) endog_scale = 100 ex_scale = 1000 # ARIMA(1, 1, 1) ex = ex_scale * np.asarray(data_sample[['loggdp', 'logcons']].diff()) # The first obsevation is not (supposed to be) used, but I get # a Lapack problem # Intel MKL ERROR: Parameter 5 was incorrect on entry to DLASCL. ex[0] = 0 mod111 = ARIMA(100 * np.asarray(data_sample['loginv']), (1, 1, 1), # Stata differences also the exog exog=ex) res111 = mod111.fit(disp=0, solver='bfgs', maxiter=5000) exog_full_d = ex_scale * data[['loggdp', 'logcons']].diff() res111.predict(start=197, end=202, exog=exog_full_d.values[197:]) predicted_arima_f = res111.predict(start=196, end=202, exog=exog_full_d.values[197:], typ='levels') predicted_arima_d = res111.predict(start=193, end=202, exog=exog_full_d.values[197:], typ='levels', dynamic=True) res_f101 = np.array([ 7.73975859954, 7.71660108543, 7.69808978329, 7.70872117504, 7.6518392758, 7.69784279784, 7.70290907856, 7.69237782644, 7.65017785174, 7.66061689028, 7.65980022857, 7.61505314129, 7.51697158428, 7.5165760663, 7.5271053284]) res_f111 = np.array([ 7.74460013693, 7.71958207517, 7.69629561172, 7.71208186737, 7.65758850178, 7.69223472572, 7.70411775588, 7.68896109499, 7.64016249001, 7.64871881901, 7.62550283402, 7.55814609462, 7.44431310053, 7.42963968062, 7.43554675427]) res_d111 = np.array([ 7.74460013693, 7.71958207517, 7.69629561172, 7.71208186737, 7.65758850178, 7.69223472572, 7.71870821151, 7.7299430215, 7.71439447355, 7.72544001101, 7.70521902623, 7.64020040524, 7.5281927191, 7.5149442694, 7.52196378005]) res_d101 = np.array([ 7.73975859954, 7.71660108543, 7.69808978329, 7.70872117504, 7.6518392758, 7.69784279784, 7.72522142662, 7.73962377858, 7.73245950636, 7.74935432862, 7.74449584691, 7.69589103679, 7.5941274688, 7.59021764836, 7.59739267775]) assert_allclose(predicted_arma_dp, res_d101[-len(predicted_arma_d):], atol=1e-4) assert_allclose(predicted_arma_fp, res_f101[-len(predicted_arma_f):], atol=1e-4) assert_allclose(predicted_arma_d, res_d101[-len(predicted_arma_d):], atol=1e-4) assert_allclose(predicted_arma_f, res_f101[-len(predicted_arma_f):], atol=1e-4) assert_allclose(predicted_arima_d / endog_scale, res_d111[-len(predicted_arima_d):], rtol=1e-4, atol=1e-4) assert_allclose(predicted_arima_f / endog_scale, res_f111[-len(predicted_arima_f):], rtol=1e-4, atol=1e-4) # test for forecast with 0 ar fix in GH#2457 numbers again from Stata res_f002 = np.array([ 7.70178181209, 7.67445481224, 7.6715373765, 7.6772915319, 7.61173201163, 7.67913499878, 7.6727609212, 7.66275451925, 7.65199799315, 7.65149983741, 7.65554131408, 7.62213286298, 7.53795983357, 7.53626130154, 7.54539963934]) res_d002 = np.array([ 7.70178181209, 7.67445481224, 7.6715373765, 7.6772915319, 7.61173201163, 7.67913499878, 7.67306697759, 7.65287924998, 7.64904451605, 7.66580449603, 7.66252081172, 7.62213286298, 7.53795983357, 7.53626130154, 7.54539963934]) mod_002 = ARIMA(np.asarray(data_sample['loginv']), (0, 0, 2), exog=np.asarray(data_sample[['loggdp', 'logcons']])) # doesn't converge with default starting values start_params = np.concatenate((res.params[[0, 1, 2, 4]], [0])) res_002 = mod_002.fit(start_params=start_params, disp=0, solver='bfgs', maxiter=5000) # forecast fpredict_002 = res_002.predict(start=197, end=202, exog=exog_full.values[197:]) forecast_002 = res_002.forecast(steps=len(exog_full.values[197:]), exog=exog_full.values[197:]) forecast_002 = forecast_002[0] # TODO: we are not checking the other results assert_allclose(fpredict_002, res_f002[-len(fpredict_002):], rtol=1e-4, atol=1e-6) assert_allclose(forecast_002, res_f002[-len(forecast_002):], rtol=1e-4, atol=1e-6) # dynamic predict dpredict_002 = res_002.predict(start=193, end=202, exog=exog_full.values[197:], dynamic=True) assert_allclose(dpredict_002, res_d002[-len(dpredict_002):], rtol=1e-4, atol=1e-6) # GH#4497 # in-sample dynamic predict should not need exog, #2982 predict_3a = res_002.predict(start=100, end=120, dynamic=True) predict_3b = res_002.predict(start=100, end=120, exog=exog_full.values[100:120], dynamic=True) assert_allclose(predict_3a, predict_3b, rtol=1e-10) # TODO: break this out into a specific non-smoke test # GH#4915 invalid exogs passed to forecast should raise h = len(exog_full.values[197:]) with pytest.raises(ValueError): res_002.forecast(steps=h) with pytest.raises(ValueError): res_002.forecast(steps=h, exog=np.empty((h, 20))) with pytest.raises(ValueError): res_002.forecast(steps=h, exog=np.empty(20)) @pytest.mark.not_vetted def test_arima_fit_multiple_calls(): y = [-1214.360173, -1848.209905, -2100.918158, -3647.483678, -4711.186773] mod = ARIMA(y, (1, 0, 2)) # Make multiple calls to fit with warnings.catch_warnings(record=True): mod.fit(disp=0, start_params=[np.mean(y), .1, .1, .1]) assert mod.exog_names == ['const', 'ar.L1.y', 'ma.L1.y', 'ma.L2.y'] with warnings.catch_warnings(record=True): mod.fit(disp=0, start_params=[np.mean(y), .1, .1, .1]) assert mod.exog_names == ['const', 'ar.L1.y', 'ma.L1.y', 'ma.L2.y'] # test multiple calls when there is only a constant term mod = ARIMA(y, (0, 0, 0)) # Make multiple calls to fit with warnings.catch_warnings(record=True): mod.fit(disp=0, start_params=[np.mean(y)]) assert mod.exog_names == ['const'] with warnings.catch_warnings(record=True): mod.fit(disp=0, start_params=[np.mean(y)]) assert mod.exog_names == ['const'] @pytest.mark.not_vetted def test_long_ar_start_params(): arparams = np.array([1, -.75, .25]) maparams = np.array([1, .65, .35]) nobs = 30 np.random.seed(12345) y = arma_generate_sample(arparams, maparams, nobs) model = ARMA(y, order=(2, 2)) model.fit(method='css', start_ar_lags=10, disp=0) model.fit(method='css-mle', start_ar_lags=10, disp=0) model.fit(method='mle', start_ar_lags=10, disp=0) with pytest.raises(ValueError): model.fit(start_ar_lags=nobs + 5, disp=0) # ---------------------------------------------------------------- # `predict` tests @pytest.mark.not_vetted def test_arima_predict_mle(): cpi = datasets.macrodata.load_pandas().data['cpi'].values res1 = ARIMA(cpi, (4, 1, 1)).fit(disp=-1) # fit the model so that we get correct endog length but use path = os.path.join(current_path, 'results', 'results_arima_forecasts_all_mle.csv') arima_forecasts = pd.read_csv(path).values fc = arima_forecasts[:, 0] fcdyn = arima_forecasts[:, 1] fcdyn2 = arima_forecasts[:, 2] fcdyn3 = arima_forecasts[:, 3] fcdyn4 = arima_forecasts[:, 4] # 0 indicates the first sample-observation below # ie., the index after the pre-sample, these are also differenced once # so the indices are moved back once from the cpi in levels # start < p, end <p 1959q2 - 1959q4 start, end = 1, 3 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start < p, end 0 1959q3 - 1960q1 start, end = 2, 4 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start < p, end >0 1959q3 - 1971q4 start, end = 2, 51 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start < p, end nobs 1959q3 - 2009q3 start, end = 2, 202 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start < p, end >nobs 1959q3 - 2015q4 start, end = 2, 227 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start 0, end >0 1960q1 - 1971q4 start, end = 4, 51 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start 0, end nobs 1960q1 - 2009q3 start, end = 4, 202 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start 0, end >nobs 1960q1 - 2015q4 start, end = 4, 227 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start >p, end >0 1965q1 - 1971q4 start, end = 24, 51 fv = res1.predict(start, end, typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) # start >p, end nobs 1965q1 - 2009q3 start, end = 24, 202 fv = res1.predict(start, end, typ='levels')
assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4)
numpy.testing.assert_almost_equal
import matplotlib.pyplot as plt import matplotlib import numpy as np from matplotlib.pyplot import * from PIL import Image colors = [ 'xkcd:blue', 'xkcd:red', 'xkcd:purple', 'xkcd:orchid', 'xkcd:orange', 'xkcd:grey', 'xkcd:teal', 'xkcd:sienna', 'xkcd:azure', 'xkcd:green', 'xkcd:black', 'xkcd:goldenrod'] def plot_curves(curves, xlabel='% Dataset Labeled\n(ScanNet-5-Recon)', xlim=[4, 36], xticks=
np.arange(5, 35, 5)
numpy.arange
import numpy as np import pyspark.sql.functions as F import pyspark.sql.types as T from pyspark.ml.feature import IDF, Tokenizer, CountVectorizer def isin(element, test_elements, assume_unique=False, invert=False): """ Impliments the numpy function isin() for legacy versions of the library """ element =
np.asarray(element)
numpy.asarray
#!/usr/bin/env python """ @package ion_functions.data.wav_functions @file ion_functions/data/wav_functions.py @author <NAME> @brief Module containing WAVSS wave statistics data-calculations. """ import numpy as np from ion_functions.data.generic_functions import magnetic_declination from ion_functions.utils import fill_value def wav_triaxys_dir_freq(nfreq_nondir, nfreq_dir, freq0, delta_freq): """ FLAG: The variable nfreq_dir put out by the WAVSS instrument and therefore also the data product WAVSTAT-FDS_L1 can vary within each datapacket based solely on measured ocean conditions (with unchanged instrument settings). The numbers of values in the L0 data products WAVSTAT_PDS and WAVSTAT_SDS for each datapacket are also determined by the nfreq_dir values, as is true with the WAVSTAT-DDS_L2 data product (see function def wav_triaxys_correct_directional_wave_direction). Description: Function to compute the WAVSTAT-FDS_L1 data product (frequency values for directional wave spectral bins) for the WAVSS instrument class (TRIAXYS Wave Sensor, manufactured by AXYS Technologies). Implemented by: 2014-04-03: <NAME>. Initial code. Usage: fds = wav_triaxys_dir_freq(nfreq_nondir, nfreq_dir, freq0, delta_freq) where fds = frequency values for directional wave spectral bins (WAVSTAT-FDS_L1) [Hz] nfreq_nondir = number of non-directional wave frequency bins from the value specified in the WAVSS $TSPNA (not $TSPMA) data sentence. nfreq_dir = number of directional wave frequency bins from the value specified in the WAVSS $TSPMA data sentence. freq0 = initial frequency value from the value specified in the WAVSS $TSPMA data sentence. delta_freq = frequency spacing from the value specified in the WAVSS $TSPMA data sentence. References: OOI (2012). Data Product Specification for Wave Statistics. Document Control Number 1341-00450. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00450_Data_Product_WAVE_STATISTICS_OOI.pdf) """ # condition input variables. # all delta_freq and freq0 values will be floats. nfreq_nondir = np.array(nfreq_nondir, ndmin=1) nfreq_dir = np.array(nfreq_dir, ndmin=1) freq0 = np.array(freq0, ndmin=1) delta_freq = np.array(delta_freq, ndmin=1) # each data packet may call for a different number of directional frequency values nfreq_dir. # however, this number will always be <= nfreq_nondir, and all the nfreq_nondir values will be identical. npackets = nfreq_nondir.shape[0] fds = np.zeros((npackets, int(nfreq_nondir[0]))) + fill_value # for the linspace calculation, which is slightly slower than using arange. #freq_end = freq0 + (nfreq_dir - 1) * delta_freq for ii in range(npackets): #fds[ii, 0:nfreq_dir[ii]] = np.linspace(freq0[ii], freq_end[ii], num=nfreq_dir[ii]) fds[ii, 0:nfreq_dir[ii]] = freq0[ii] + np.arange(nfreq_dir[ii]) * delta_freq[ii] ## return a "rank 1 vector" if fds is a 2D row vector #if fds.shape[0] == 1: # fds = np.reshape(fds, (fds.shape[1],)) return fds def wav_triaxys_nondir_freq(nfreq, freq0, delta_freq): """ Description: Function to compute the WAVSTAT-FND_L1 data product (frequency values for non-directional wave spectral bins) for the WAVSS instrument class (TRIAXYS Wave Sensor, manufactured by AXYS Technologies). Implemented by: 2014-04-03: <NAME>. Initial code. Usage: fnd = wav_triaxys_nondir_freq(nfreq, freq0, delta_freq) where fnd = frequency values for non-directional wave spectral bins (WAVSTAT-FND_L1) [Hz] nfreq = number of frequency bins from the value specified in the WAVSS $TSPNA data sentence. freq0 = initial frequency value from the value specified in the WAVSS $TSPNA data sentence. delta_freq = frequency spacing from the value specified in the WAVSS $TSPNA data sentence. References: OOI (2012). Data Product Specification for Wave Statistics. Document Control Number 1341-00450. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00450_Data_Product_WAVE_STATISTICS_OOI.pdf) """ # condition input variables nfreq = np.array(nfreq, ndmin=1) freq0 = np.array(freq0, ndmin=1) delta_freq = np.array(delta_freq, ndmin=1) # each set of data inputs will call for the same number of frequency values nfreq. # therefore can vectorize (without using forloop as had to be done for the # directional frequencies case) by setting up all variables as 2D arrays # of size(npackets, nfreq). npackets = nfreq.shape[0] n_freqs = nfreq[0] # orient arrays such that lead index indexes each set of data inputs freq0_2d = np.tile(freq0, (n_freqs, 1)).transpose() delta_freq_2d = np.tile(delta_freq, (n_freqs, 1)).transpose() steps_2d = np.tile(np.arange(n_freqs), (npackets, 1)) fnd = freq0_2d + steps_2d * delta_freq_2d ## return a "rank 1 vector" if fnd is a 2D row vector #if fnd.shape[0] == 1: # fnd = np.reshape(fnd, (fnd.shape[1],)) return fnd def wav_triaxys_buoymotion_time(ntp_timestamp, ntime, time0, delta_time): """ Description: Function to compute the WAVSTAT-MOTT_L1 data product (time values associated with buoy displacement measurements WAVSTAT-MOT[X,Y,Z]) for the WAVSS instrument class (TRIAXYS Wave Sensor, manufactured by AXYS Technologies). Implemented by: 2014-04-07: <NAME>. Initial code. Usage: mott = wav_triaxys_buoymotion_time(ntp_timestamp, ntime, time0, delta_time): where mott = NTP times corresponding to buoy displacement data measurements (WAVSTAT-MOTT_L1) [secs since 1900-01-01]. ntp_timestamp = NTP time stamp corresponding to the date and time specified in the $TSPHA data sentence [secs since 1900-01-01]. ntime = number of time values from the value specified in the WAVSS $TSPHA data sentence. time0 = time elapsed between ntp_timestamp and time of first WAVSTAT-MOT[XYZ] data point, from the value specified in the WAVSS $TSPHA data sentence ("Initial Time") [sec]. delta_time = time intervals between subsequent buoydisplacement measurement times, from the value specified in the WAVSS $TSPHA data sentence ("Time Spacing") [sec]. References: OOI (2012). Data Product Specification for Wave Statistics. Document Control Number 1341-00450. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00450_Data_Product_WAVE_STATISTICS_OOI.pdf) """ # condition input variables; # make sure time interval is not type integer ntime = np.array(ntime, ndmin=1) time0 = np.array(time0, ndmin=1) delta_time = np.array(delta_time, dtype='float', ndmin=1) # this algorithm is almost identical to that contained in def wav_wavss_nondir_freq above. # these are the dimensions of all the 2D arrays used in the calculation npackets = ntime.shape[0] n_time_values = ntime[0] # orient the lead index to iterate over the data packet number ntp0_2d = np.tile(ntp_timestamp + time0, (n_time_values, 1)).transpose() delta_time_2d = np.tile(delta_time, (n_time_values, 1)).transpose() steps_2d = np.tile(np.arange(n_time_values), (npackets, 1)) mott = ntp0_2d + steps_2d * delta_time_2d ## return a "rank 1 vector" if fnd is a 2D row vector #if mott.shape[0] == 1: # mott = np.reshape(mott, (mott.shape[1],)) return mott def wav_triaxys_correct_mean_wave_direction(dir_raw, lat, lon, ntp_ts): """ Description: Function to compute the WAVSTAT-D_L2 data product (mean wave direction corrected for magnetic declination) for the WAVSS instrument class (TRIAXYS Wave Sensor, manufactured by AXYS Technologies). Implemented by: 2014-04-08: <NAME>. Initial code. Usage: dir_cor = wav_triaxys_correct_mean_wave_direction(dir_raw, lat, lon, ntp_ts) where dir_cor = mean wave direction corrected for magnetic declination (WAVSTAT-D_L2) [deg, [0 360)]. dir_raw = uncorrected mean wave direction (WAVSTAT-D_L0) [deg, [0 360)]. lat = latitude of the instrument [decimal degrees]. North is positive, South negative. lon = longitude of the instrument [decimal degrees]. East is positive, West negative. ntp_ts = NTP time stamp from a data particle [secs since 1900-01-01]. References: OOI (2012). Data Product Specification for Wave Statistics. Document Control Number 1341-00450. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00450_Data_Product_WAVE_STATISTICS_OOI.pdf) """ # calculate the magnetic declination using the WWM2010 model # the WAVSS is a surface wave sensor, so that height above sealevel = 0, # which is the default value used in the magnetic_declination calculation. theta = magnetic_declination(lat, lon, ntp_ts) # directions are [0,360) degrees; and magnetic declinations can be positive or negative dir_cor = np.mod(dir_raw + theta + 360, 360) # return corrected direction return dir_cor def wav_triaxys_correct_directional_wave_direction(dir_raw, lat, lon, ntp_ts): """ FLAG: The numbers of values in the L0 and L2 data product WAVSTAT_DDS for each datapacket are determined by the values of the nfreq_dir variable, which can vary as a function of measured ocean conditions at fixed instrument setting. See also the FLAG note for function def wav_triaxys_dir_freq. Description: Function to compute the WAVSTAT-DDS_L2 data product (directional wave directions corrected for magnetic declination) for the WAVSS instrument class (TRIAXYS Wave Sensor, manufactured by AXYS Technologies). Implemented by: 2014-04-09: <NAME>. Initial code. Usage: dir_cor = wav_triaxys_correct_directional_wave_direction(dir_raw, lat, lon, ntp_ts) where dir_cor = directional waves' directions corrected for magnetic declination (WAVSTAT-DDS_L2) [deg, [0 360)]. dir_raw = uncorrected directional waves' directions (WAVSTAT-DDS_L0) [deg, [0 360)]. lat = latitude of the instrument [decimal degrees]. North is positive, South negative. lon = longitude of the instrument [decimal degrees]. East is positive, West negative. ntp_ts = NTP time stamp from a data particle [secs since 1900-01-01]. References: OOI (2012). Data Product Specification for Wave Statistics. Document Control Number 1341-00450. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00450_Data_Product_WAVE_STATISTICS_OOI.pdf) """ # assume that the dir_raw data product comes in as a 2D numpy array with fill values # appropriately placed to account for the cases in which the number of reported # directional wave frequency bins differs from data packet to data packet (and is # less than the number of reported non-directional frequency bins). dir_raw = np.array(dir_raw, ndmin=2) # change fill values to Nans, so that subsequent array operations will leave the # Nan entries unchanged. dir_raw[dir_raw == fill_value] = np.nan # calculate the magnetic declination using the WWM2010 model # the WAVSS is a surface wave sensor, so that height above sealevel = 0, # which is the default value used in the magnetic_declination calculation. theta = magnetic_declination(lat, lon, ntp_ts) # theta in general will be a vector, so replicate it into a matrix to match the dir_raw dimensions. theta = np.tile(theta, (dir_raw.shape[1], 1)).transpose() # directions are [0,360) degrees; and magnetic declinations can be positive or negative dir_cor = np.mod(dir_raw + theta + 360, 360) # replace Nans with fills dir_cor[np.isnan(dir_cor)] = fill_value # return corrected directions return dir_cor def wav_triaxys_magcor_buoymotion_x(x, y, lat, lon, ntp_timestamp): """ Description: Function to compute the WAVSTAT-MOTX_L1 data product (eastward buoy displacement) for the WAVSS instrument class (TRIAXYS Wave Sensor, manufactured by AXYS Technologies) from the WAVSTAT-MOTX_L0 and WAVSTAT-MOTY_L0 data products. All that is required is to correct for magnetic declination (variation). Implemented by: 2014-04-10: <NAME>. Initial code. Uses magnetic declination values calculated using the WMM 2010 model. WAVSS is a surface sensor, so that the depth variable for calculating declination is 0 (default value for the magnetic_declination function). Usage: motx = wav_triaxys_magcor_buoymotion_x(x, y, lat, lon, ntp_timestamp) where motx = East displacement of the buoy on which the WAVSS is mounted, corrected for magnetic declination (WAVSTAT-MOTX_L1) [m] x = uncorrected eastward displacement (WAVSTAT-MOTX_L0) [m] y = uncorrected northward displacement (WAVSTAT-MOTY_L0) [m] lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] ntp_timestamp = NTP time stamp corresponding to the date and time specified in the $TSPHA data sentence [secs since 1900-01-01]. Note as to the values of ntp_timestamp used in the calculation: The maximum sampling period for this instrument is 35 minutes, during which time the magnetic declination will not change. Therefore, to correct for magnetic declinaton only one timestamp is required for each ensemble of (x,y) values acquired during any given sampling period. All that is necessary, then, is the ntp_timestamp specified above, which is the same input ntp_timestamp parameter used in the function wav_triaxys_buoymotion_time; it is not necessary to use the vector timestamps in the WAVSTAT-MOTT_L1 data product. References: OOI (2012). Data Product Specification for Wave Statistics. Document Control Number 1341-00450. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00450_Data_Product_WAVE_STATISTICS_OOI.pdf) """ # force shapes of inputs to arrays x = np.atleast_2d(x) y = np.atleast_2d(y) lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) ntp_timestamp = np.atleast_1d(ntp_timestamp) # calculate the magnetic declination using the WWM2010 model. # the WAVSS surface wave sensor is at sealevel, which is the default z value for mag dec. theta = magnetic_declination(lat, lon, ntp_timestamp) # correct for declination by rotating coordinates. # the function magnetic_correction_einsum was written to correct (u,v) velocities, but # it also applies to (E,N) coordinates. motx, _ = magnetic_correction_einsum(theta, x, y) # return corrected Eastward buoy displacement(s) return motx def wav_triaxys_magcor_buoymotion_y(x, y, lat, lon, ntp_timestamp): """ Description: Function to compute the WAVSTAT-MOTY_L1 data product (northward buoy displacement) for the WAVSS instrument class (TRIAXYS Wave Sensor, manufactured by AXYS Technologies) from the WAVSTAT-MOTX_L0 and WAVSTAT-MOTY_L0 data products. All that is required is to correct for magnetic declination (variation). Implemented by: 2014-04-10: <NAME>. Initial code. Uses magnetic declination values calculated using the WMM 2010 model. WAVSS is a surface sensor, so that the depth variable for calculating declination is 0 (default value for the magnetic_declination function). Usage: moty = wav_triaxys_magcor_buoymotion_y(x, y, lat, lon, dt) where moty = North displacement of the buoy on which the WAVSS is mounted, corrected for magnetic declination (WAVSTAT-MOTY_L1) [m] x = uncorrected eastward displacement (WAVSTAT-MOTX_L0) [m] y = uncorrected northward displacement (WAVSTAT-MOTY_L0) [m] lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] ntp_timestamp = NTP time stamp corresponding to the date and time specified in the $TSPHA data sentence [secs since 1900-01-01]. Note as to the values of ntp_timestamp used in the calculation: See Note in Usage section of wav_triaxys_magcor_buoymotion_x. References: OOI (2012). Data Product Specification for Wave Statistics. Document Control Number 1341-00450. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00450_Data_Product_WAVE_STATISTICS_OOI.pdf) """ # force shapes of inputs to arrays x = np.atleast_2d(x) y = np.atleast_2d(y) lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) ntp_timestamp = np.atleast_1d(ntp_timestamp) # calculate the magnetic declination using the WWM2010 model. # the WAVSS surface wave sensor is at sealevel, which is the default z value for mag dec. theta = magnetic_declination(lat, lon, ntp_timestamp) # correct for declination by rotating coordinates. # the function magnetic_correction_einsum was written to correct (u,v) velocities, but # it also applies to (E,N) coordinates. _, moty = magnetic_correction_einsum(theta, x, y) # return corrected Northward buoy displacement(s) return moty def magnetic_correction_einsum(theta, u, v): """ Description: The executable code in this function is identical to that in the function magnetic_correction_vctrzd in the module adcp_functions. At some point in the future the function magnetic_correction in generic_functions may be deprecated and replaced with this vectorized and much faster version. This function corrects velocity profiles for the magnetic variation (declination) at the measurement location. The magnetic declination is obtained from the 2010 World Magnetic Model (WMM2010) provided by NOAA (see wmm_declination). This version handles 'vectorized' input variables without using for loops. It was specifically written to handle the case of a 1D array of theta values, theta=f(i), with corresponding sets of 'u' and 'v' values such that u=f(i,j) and v=f(i,j), where there are j 'u' and 'v' values for each theta(i). Implemented by: 2014-04-04: <NAME>. Initial code. This function is used to calculate magnetic corrections by the functions contained in this module instead of the function magnetic_correction found in ion_functions.data.generic_functions. Usage: u_cor, v_cor = magnetic_correction(theta, u, v) where u_cor = eastward velocity profiles, in earth coordinates, with the correction for magnetic variation applied. v_cor = northward velocity profiles, in earth coordinates, with the correction for magnetic variation applied. theta = magnetic variation based on location (latitude, longitude and altitude) and date; units of theta are [degrees] u = uncorrected eastward velocity profiles in earth coordinates v = uncorrected northward velocity profiles in earth coordinates References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) OOI (2013). Data Product Specification for Turbulent Velocity Profile and Echo Intensity. Document Control Number 1341-00760. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00760_Data_Product_SPEC_VELPROF_OOI.pdf) """ # force shapes of inputs to arrays theta = np.atleast_1d(theta) uv = np.atleast_2d(u) v =
np.atleast_2d(v)
numpy.atleast_2d
# coding=utf-8 # Copyright 2021 The init2winit Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trainer for the init2winit project.""" import collections import functools import itertools import json import os import struct import time from typing import Any, Dict, Optional, Sequence from absl import flags from absl import logging from flax import jax_utils from init2winit import callbacks from init2winit import checkpoint from init2winit import hyperparameters from init2winit import schedules from init2winit import utils from init2winit.dataset_lib import data_utils from init2winit.dataset_lib import datasets from init2winit.init_lib import initializers from init2winit.model_lib import model_utils from init2winit.model_lib import models from init2winit.optimizer_lib import optimizers import jax from jax import lax import jax.numpy as jnp import numpy as np import optax from tensorflow.io import gfile FLAGS = flags.FLAGS _GRAD_CLIP_EPS = 1e-6 def evaluate( params, batch_stats, batch_iter, evaluate_batch_pmapped): """Compute aggregated metrics on the given data iterator. WARNING: The caller is responsible for synchronizing the batch norm statistics before calling this function! Assumed API of evaluate_batch_pmapped: metrics = evaluate_batch_pmapped(params, batch_stats, batch) where batch is yielded by the batch iterator, and metrics is a dictionary mapping metric name to a vector of per example measurements. The metric 'denominator' must also be defined. evaluate will aggregate (by summing) all per example measurements and divide by the aggregated denominator. For each given metric we compute 1/N sum_{b in batch_iter} metric(b). Where N will be the sum of 'denominator' over all batches. See classification_metrics.py for a definition of evaluate_batch. Args: params: a dict of trainable model parameters. Passed as {'params': params} into flax_module.apply(). batch_stats: a dict of non-trainable model state. Passed as {'batch_stats': batch_stats} into flax_module.apply(). batch_iter: Generator which yields batches. Must support the API for b in batch_iter: evaluate_batch_pmapped: A function with API evaluate_batch_pmapped(params, batch_stats, batch). Returns a dictionary mapping keys to the summed metric across the sharded batch. The key 'denominator' is required, as this indicates how many real samples were in the sharded batch. Returns: A dictionary of aggregated metrics. The keys will match the keys returned by evaluate_batch_pmapped. """ # TODO(gilmer) Currently we only support metrics of the form 1/N sum f(x_i). # May need a more general framework to stuff like precision and recall. # np allows for the total_losses += syntax to work (array assignment). total_metrics = collections.defaultdict(float) for batch in batch_iter: batch = data_utils.shard(batch) computed_metrics = evaluate_batch_pmapped( params=params, batch_stats=batch_stats, batch=batch) for key in computed_metrics: # The shape of computed_metrics[key] is [n_local_devices]. However, # because evaluate_batch_pmapped has a psum, we have already summed # across the whole sharded batch, and what's returned is n_local_devices # copies of the same summed metric. So here we just grab the 0'th entry. total_metrics[key] += np.float32(computed_metrics[key][0]) # For data splits with no data (e.g. Imagenet no test set) no values # will appear for that split. for key in total_metrics: # Convert back to numpy if np.isnan(total_metrics[key]): raise utils.TrainingDivergedError('NaN detected in {}'.format(key)) if key != 'denominator': total_metrics[key] = total_metrics[key] / np.float32( total_metrics['denominator']) return total_metrics def _inject_learning_rate(optimizer_state, lr): """Inject the given LR into any optimizer state that will accept it.""" # The optimizer state should always be an InjectHyperparamsState, and we # inject the learning rate into all states that will accept it. We need to do # this to allow arbitrary (non-jittable) LR schedules. if isinstance(optimizer_state, optax.InjectHyperparamsState): if 'learning_rate' in optimizer_state.hyperparams: optimizer_state.hyperparams['learning_rate'] = lr else: raise ValueError( 'Unsupported optimizer_state type given when trying to inject the ' 'learning rate:\n\n{}.'.format(optimizer_state)) def update( optimizer_state, params, batch_stats, batch, step, lr, rng, local_device_index, training_metrics_grabber, training_cost, grad_clip, optimizer_update_fn): """Single step of the training loop. Args: optimizer_state: the optax optimizer state. params: a dict of trainable model parameters. Passed into training_cost(...) which then passes into flax_module.apply() as {'params': params} as part of the variables dict. batch_stats: a dict of non-trainable model state. Passed into training_cost(...) which then passes into flax_module.apply() as {'batch_stats': batch_stats} as part of the variables dict. batch: the per-device batch of data to process. step: the current global step of this update. Used to fold in to `rng` to produce a unique per-device, per-step RNG. lr: the floating point learning rate for this step. rng: the RNG used for calling the model. `step` and `local_device_index` will be folded into this to produce a unique per-device, per-step RNG. local_device_index: an integer that is unique to this device amongst all devices on this host, usually in the range [0, jax.local_device_count()]. It is folded in to `rng` to produce a unique per-device, per-step RNG. training_metrics_grabber: See the TrainingMetricsGrabber in utils.py training_cost: a function used to calculate the training objective that will be differentiated to generate updates. Takes (`params`, `batch`, `batch_stats`, `dropout_rng`) as inputs. grad_clip: Clip the l2 norm of the gradient at the specified value. For minibatches with gradient norm ||g||_2 > grad_clip, we rescale g to the value g / ||g||_2 * grad_clip. If None, then no clipping will be applied. optimizer_update_fn: the optimizer update function. Returns: A tuple of the new optimizer, the new batch stats, the scalar training cost, and the updated metrics_grabber. """ # `jax.random.split` is very slow outside the train step, so instead we do a # `jax.random.fold_in` here. rng = jax.random.fold_in(rng, step) rng = jax.random.fold_in(rng, local_device_index) _inject_learning_rate(optimizer_state, lr) def opt_cost(params): return training_cost( params, batch=batch, batch_stats=batch_stats, dropout_rng=rng) grad_fn = jax.value_and_grad(opt_cost, has_aux=True) (cost_value, new_batch_stats), grad = grad_fn(params) new_batch_stats = new_batch_stats.get('batch_stats', None) cost_value, grad = lax.pmean((cost_value, grad), axis_name='batch') grad_norm = jnp.sqrt(model_utils.l2_regularization(grad, 0)) # TODO(znado): move to inside optax gradient clipping. if grad_clip: scaled_grad = jax.tree_map( lambda x: x / (grad_norm + _GRAD_CLIP_EPS) * grad_clip, grad) grad = jax.lax.cond(grad_norm > grad_clip, lambda _: scaled_grad, lambda _: grad, None) model_updates, new_optimizer_state = optimizer_update_fn( grad, optimizer_state, params=params, batch=batch, batch_stats=new_batch_stats) new_params = optax.apply_updates(params, model_updates) new_metrics_grabber = None if training_metrics_grabber: new_metrics_grabber = training_metrics_grabber.update( grad, params, new_params) return (new_optimizer_state, new_params, new_batch_stats, cost_value, new_metrics_grabber, grad_norm) def _merge_and_apply_prefix(d1, d2, prefix): d1 = d1.copy() for key in d2: d1[prefix+key] = d2[key] return d1 @utils.timed def eval_metrics(params, batch_stats, dataset, eval_num_batches, eval_train_num_batches, evaluate_batch_pmapped): """Evaluates the given network on the train, validation, and test sets. WARNING: we assume that `batch_stats` has already been synchronized across devices before being passed to this function! See `_maybe_sync_batchnorm_stats`. The metric names will be of the form split/measurement for split in the set {train, valid, test} and measurement in the set {loss, error_rate}. Args: params: a dict of trainable model parameters. Passed as {'params': params} into flax_module.apply(). batch_stats: a dict of non-trainable model state. Passed as {'batch_stats': batch_stats} into flax_module.apply(). dataset: Dataset returned from datasets.get_dataset. train, validation, and test sets. eval_num_batches: (int) The batch size used for evaluating on validation, and test sets. Set to None to evaluate on the whole test set. eval_train_num_batches: (int) The batch size used for evaluating on train set. Set to None to evaluate on the whole training set. evaluate_batch_pmapped: Computes the metrics on a sharded batch. Returns: A dictionary of all computed metrics. """ train_iter = dataset.eval_train_epoch(eval_train_num_batches) valid_iter = dataset.valid_epoch(eval_num_batches) test_iter = dataset.test_epoch(eval_num_batches) metrics = {} for split_iter, split_name in zip([train_iter, valid_iter, test_iter], ['train', 'valid', 'test']): split_metrics = evaluate(params, batch_stats, split_iter, evaluate_batch_pmapped) metrics = _merge_and_apply_prefix(metrics, split_metrics, (split_name + '/')) return metrics def initialize(flax_module, initializer, loss_fn, input_shape, output_shape, hps, rng, metrics_logger, fake_batch=None): """Run the given initializer. We initialize in 3 phases. First we run the default initializer that is specified by the model constructor. Next we apply any rescaling as specified by hps.layer_rescale_factors. Finally we run the black box initializer provided by the initializer arg (the default is noop). Args: flax_module: The Flax nn.Module. initializer: An initializer defined in init_lib. loss_fn: A loss function. input_shape: The input shape of a single data example. output_shape: The output shape of a single data example. hps: A dictionary specifying the model and initializer hparams. rng: An rng key to seed the initialization. metrics_logger: Used for black box initializers that have learning curves. fake_batch: Fake input used to intialize the network or None if using init_by_shape. Returns: A tuple (model, batch_stats), where model is the initialized flax.nn.Model and batch_stats is the collection used for batch norm. """ model_dtype = utils.dtype_from_str(hps.model_dtype) # init_by_shape should either pass in a tuple or a list of tuples. # For example, for vision tasks typically input_shape is (image_shape) # For seq2seq tasks, shape can be a list of two tuples corresponding to # input_sequence_shape for encoder and output_sequence_shape for decoder. # TODO(gilmer,ankugarg): Support initializers for list of tuples. # # Note that this fake input batch will be optimized away because the init # function is jitted. However, this can still cause memory issues if it is # large because it is passed in as an XLA argument. Therefore we use a fake # batch size of 2 (we do not want to use 1 in case there is any np.squeeze # calls that would remove it), because we assume that there is no dependence # on the batch size with the model (batch norm reduces across a batch dim of # any size). This is similar to how the Flax examples initialize models: # https://github.com/google/flax/blob/44ee6f2f4130856d47159dc58981fb26ea2240f4/examples/imagenet/train.py#L70. if fake_batch: fake_input_batch = fake_batch elif isinstance(input_shape, list): # Typical case for seq2seq models fake_input_batch = [
np.zeros((2, *x), model_dtype)
numpy.zeros
# -*- coding: utf-8 -*- #以捕捉手指上系的蓝色便签条为例 #摄像头480p,ubuntu 18.10 #macbook air BIG SUR #拍摄图片中不能出现其他作为标志色的物品啦。 import random import time import cv2 import numpy as np #import matplotlib.pyplot as plt from turtle import * from time import ctime,sleep #import threading delay(delay=None) color('red', 'blue') cap = cv2.VideoCapture(0) # 或传入0,使用摄像头 def getpicture(): # 读取一帧 _, frame = cap.read() # 把 BGR 转为 HSV hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # HSV中标记色范围 lower_mark =
np.array([100,90,99])
numpy.array
"""Definitions for the `Kernel` class.""" from collections import OrderedDict import numpy as np from six import string_types from mosfit.constants import ANG_CGS, C_CGS from mosfit.modules.arrays.array import Array # Important: Only define one ``Module`` class per file. class Kernel(Array): """Calculate the kernel for use in computing the likelihood score.""" MIN_COV_TERM = 1.0e-30 def __init__(self, **kwargs): """Initialize module.""" super(Kernel, self).__init__(**kwargs) self._times = np.array([]) self._codeltatime = -1 self._codeltalambda = -1 self._type = kwargs.get('type', False) def process(self, **kwargs): """Process module.""" self.preprocess(**kwargs) ret = OrderedDict() # If we are trying to krig between observations, we need an array with # dimensions equal to the number of intermediate observations. if self._type == 'full': kskey = 'kfmat' elif self._type == 'oa': kskey = 'koamat' elif self._type == 'ao': kskey = 'kaomat' else: kskey = 'kmat' # Get band variances self._variance = kwargs.get(self.key('variance'), 0.0) # Get array of real observations. self._observations = np.array([ ct if (t == 'countrate' or t == 'magcount') else y if ( t == 'magnitude') else fd if t == 'fluxdensity' else None for y, ct, fd, t in zip( self._mags, self._cts, self._fds, self._o_otypes) ]) # Get array of model observations. self._model_observations = kwargs.get('model_observations', []) # Handle band-specific variances if that option is enabled. self._band_v_vars = OrderedDict() for key in kwargs: if key.startswith('variance-band-'): self._band_v_vars[key.split('-')[-1]] = kwargs[key] if self._variance_bands: self._o_variance_bands = [ self._variance_bands[i] for i in self._all_band_indices] self._band_vs = np.array([ self._band_v_vars.get(i, self._variance) if isinstance(i, string_types) else (i[0] * self._band_v_vars.get(i[1][0], self._variance) + (1.0 - i[0]) * self._band_v_vars.get( i[1][0], self._variance)) for i in self._o_variance_bands]) else: self._band_vs = np.full( len(self._all_band_indices), self._variance) # Compute relative errors for count-based observations. self._band_vs[self._count_inds] = ( 10.0 ** (self._band_vs[self._count_inds] / 2.5) - 1.0 ) * self._model_observations[self._count_inds] self._o_band_vs = self._band_vs[self._observed] if self._type == 'full': self._band_vs_1 = self._band_vs self._band_vs_2 = self._band_vs elif self._type == 'oa': self._band_vs_1 = self._o_band_vs self._band_vs_2 = self._band_vs elif self._type == 'ao': self._band_vs_1 = self._band_vs self._band_vs_2 = self._o_band_vs else: self._band_vs_1 = self._o_band_vs self._band_vs_2 = self._o_band_vs if self._codeltatime >= 0 or self._codeltalambda >= 0: kmat = np.outer(self._band_vs_1, self._band_vs_2) if self._codeltatime >= 0: kmat *= np.exp(self._dt2mat / self._codeltatime ** 2) if self._codeltalambda >= 0: kmat *= np.exp(self._dl2mat / self._codeltalambda ** 2) ret[kskey] = kmat else: ret['abandvs'] = self._band_vs ret['obandvs'] = self._o_band_vs return ret def receive_requests(self, **requests): """Receive requests from other ``Module`` objects.""" self._average_wavelengths = requests.get('average_wavelengths', []) self._variance_bands = requests.get('variance_bands', []) def preprocess(self, **kwargs): """Construct kernel distance arrays.""" new_times = np.array(kwargs.get('all_times', []), dtype=float) self._codeltatime = kwargs.get(self.key('codeltatime'), -1) self._codeltalambda = kwargs.get(self.key('codeltalambda'), -1) if np.array_equiv(new_times, self._times) and self._preprocessed: return self._times = new_times self._all_band_indices = kwargs.get('all_band_indices', []) self._are_bands =
np.array(self._all_band_indices)
numpy.array
# code to calculate fundamental stellar parameters and distances using # a "direct method", i.e. adopting a fixed reddening map and bolometric # corrections import astropy.units as units from astropy.coordinates import SkyCoord import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import RegularGridInterpolator import pdb def distance_likelihood(plx, plxe, ds): """Distance Likelihood Likelihood of distance given measured parallax Args: plx (float): parallax plxe (float): parallax uncertainty ds (array): distance in parsecs Returns: array: likelihood (not log-likelihood) """ lh = ((1.0/(np.sqrt(2.0*np.pi)*plxe)) * np.exp( (-1.0/(2.0*plxe**2))*(plx - 1.0/ds)**2)) return lh def distance_prior(ds, L): """Distance prior Exponetial decreasing vol density prior Returns: array: prior probability (not log-prior) """ prior = ds**2/(2.0*L**3.0)*np.exp(-ds/L) return prior def stparas(input, dnumodel=-99, bcmodel=-99, dustmodel=-99, dnucor=-99, useav=-99, plot=0, band='k', ext=-99): # IAU XXIX Resolution, Mamajek et al. (2015) r_sun = 6.957e10 gconst = 6.67408e-8 gm = 1.3271244e26 m_sun = gm/gconst rho_sun = m_sun/(4./3.*np.pi*r_sun**3) g_sun = gconst*m_sun/r_sun**2. # solar constants numaxsun = 3090. dnusun = 135.1 teffsun = 5777. Msun = 4.74 # NB this is fixed to MESA BCs! # assumed uncertainty in bolometric corrections err_bc=0.02 # assumed uncertainty in extinction err_ext=0.02 # object containing output values out = resdata() ## extinction coefficients extfactors=ext if (len(band) == 4): bd=band[0:1] else: bd=band[0:2] ###################################### # case 1: input is parallax + colors # ###################################### #with h5py.File(bcmodel,'r') as h5: teffgrid = bcmodel['teffgrid'][:] logggrid = bcmodel['logggrid'][:] fehgrid = bcmodel['fehgrid'][:] avgrid = bcmodel['avgrid'][:] bc_band = bcmodel['bc_'+bd][:] if ((input.plx > 0.)): # load up bolometric correction grid # only K-band for now points = (teffgrid,logggrid,fehgrid,avgrid) values = bc_band interp = RegularGridInterpolator(points,values) ### Monte Carlo starts here # number of samples nsample = int(1e5) # length scale for exp decreasing vol density prior in pc L = 1350.0 # maximum distance to sample (in pc) maxdis = 1e5 # get a rough maximum and minimum distance tempdis = 1.0/input.plx tempdise = input.plxe/input.plx**2 maxds = tempdis + 5.0*tempdise minds = tempdis - 5.0*tempdise ds = np.arange(1.0, maxdis, 1.0) lh = distance_likelihood(input.plx, input.plxe, ds) prior = distance_prior(ds, L) dis = lh*prior dis2 = dis/np.sum(dis) norm = dis2/np.max(dis2) # Deal with negative and positive parallaxes differently: if tempdis > 0: # Determine maxds based on posterior: um = np.where((ds > tempdis) & (norm < 0.001))[0] # Determine minds just like maxds: umin = np.where((ds < tempdis) & (norm < 0.001))[0] else: # Determine maxds based on posterior, taking argmax # instead of tempdis which is wrong: um = np.where((ds > np.argmax(norm)) & (norm < 0.001))[0] # Determine minds just like maxds: umin = np.where((ds < np.argmax(norm)) & (norm < 0.001))[0] if (len(um) > 0): maxds = np.min(ds[um]) else: maxds = 1e5 if (len(umin) > 0): minds = np.max(ds[umin]) else: minds = 1.0 print('using max distance:', maxds) print('using min distance:', minds) ds = np.linspace(minds,maxds,nsample) lh = distance_likelihood(input.plx, input.plxe, ds) prior = distance_prior(ds, L) dis = lh*prior dis2=dis/np.sum(dis) # sample distances following the discrete distance posterior np.random.seed(seed=10) dsamp = np.random.choice(ds, p=dis2, size=nsample) # interpolate dustmodel dataframe to determine values of reddening. if (isinstance(dustmodel,pd.DataFrame) == False): ebvs = np.zeros(len(dsamp)) avs = ebvs else: xp = np.concatenate( ([0.0], np.array(dustmodel.columns[2:].str[3:], dtype='float')) ) fp = np.concatenate(([0.0],np.array(dustmodel.iloc[0][2:]))) ebvs=np.interp(x=dsamp, xp=xp, fp=fp) avs = extfactors['av']*ebvs # NB the next line means that useav is not actually working yet if (useav > -99): ebvs = np.zeros(len(dsamp)) + useav ext = extfactors['a'+bd]*ebvs map = input.mag mape = input.mage np.random.seed(seed=12) map_samp = map + np.random.randn(nsample)*mape # NB no extinction correction here yet since it is either: # - already taken into account in ATLAS BCs below # - corrected for M dwarfs further below absmag = -5.0*np.log10(dsamp) + map_samp + 5. # assume solar metallicity if no input feh is provided if (input.feh == -99.0): feh = 0.0 else: feh = input.feh # if no Teff is provided, use color-Teff relations: ### A and earlier: Flower et al. ### FGK dwarfs: Casagrande et al. 2010 ### M dwarfs: Mann et al. 2015 if (input.teff == -99.0): if ((input.bmag > -99.0) & (input.vmag > -99.0)): bvmag = ((input.bmag-np.median(ebvs*extfactors['ab'])) - (input.vmag-np.median(ebvs*extfactors['av']))) print(bvmag) col=((input.bmag-ebvs*extfactors['ab'])-(input.vmag-ebvs*extfactors['av'])) #pdb.set_trace() if ((bvmag >= 0.18) & (bvmag <= 1.29)): input.teff=casagrande_bv(bvmag,feh) print('using Casagrande B-V for Teff') if (bvmag < 0.19): input.teff=torres_bv(bvmag,feh) print('using Flower/Torres B-V for Teff') print(input.teff) if ((input.btmag > -99.0) & (input.vtmag > -99.0)): bvtmag = ((input.btmag-np.median(ebvs*extfactors['abt'])) - (input.vtmag-np.median(ebvs*extfactors['avt']))) if ((bvmag >= 0.19) & (bvmag <= 1.49)): input.teff = casagrande_bvt(bvtmag, feh) print('using Casagrande Bt-Vt for Teff') if ((input.jmag > -99.0) & (input.kmag > -99.0)): jkmag = ((input.jmag-np.median(ebvs*extfactors['aj'])) - (input.kmag-np.median(ebvs*extfactors['ak']))) if ((jkmag >= 0.07) & (jkmag <= 0.8)): input.teff=casagrande_jk(jkmag,feh) print('using Casagrande J-K for Teff') if (jkmag > 0.8): input.teff=mist_jk(jkmag) print('using MIST J-K for Teff') input.teffe = input.teff*0.02 # M dwarfs if ((input.jmag > -99.0) & (input.bpmag > -99.0) & (input.hmag > -99.0)): if (input.bpmag-input.rpmag > 1.5) & (np.median(absmag - ext) > 3.): bprpmag=input.bpmag-input.rpmag jhmag=((input.jmag-np.median(ebvs*extfactors['aj'])) - (input.hmag-np.median(ebvs*extfactors['ah']))) input.teff = mann_bprpjh(bprpmag, jhmag) input.teffe = np.sqrt(49.**2 + 60.**2) print('using Mann Bp-Rp,J-H for Teff') if ((input.jmag > -99.0) & (input.vmag > -99.0) & (input.hmag > -99.0)): if (input.vmag-input.jmag > 2.7) & (np.median(absmag - ext) > 3.): vjmag=((input.vmag-np.median(ebvs*extfactors['av'])) - (input.jmag-np.median(ebvs*extfactors['aj']))) jhmag=((input.jmag-np.median(ebvs*extfactors['aj'])) - (input.hmag-np.median(ebvs*extfactors['ah']))) input.teff = mann_vjh(vjmag, jhmag) input.teffe = np.sqrt(48.**2 + 60.**2) print('using Mann V-J,J-H for Teff') if ((input.jmag > -99.0) & (input.rmag > -99.0) & (input.hmag > -99.0)): if (input.rmag-input.jmag > 2.0) & (np.median(absmag - ext) > 3.): rjmag=((input.rmag-np.median(ebvs*extfactors['ar'])) - (input.jmag-np.median(ebvs*extfactors['aj']))) jhmag=((input.jmag-np.median(ebvs*extfactors['aj'])) - (input.hmag-np.median(ebvs*extfactors['ah']))) input.teff = mann_rjh(rjmag, jhmag) input.teffe = np.sqrt(52.**2 + 60.**2) print('using Mann r-J,J-H for Teff') if (input.teff == -99.0): print('no valid Teff provided or calculated, skipping') return out np.random.seed(seed=11) teffsamp = input.teff + np.random.randn(nsample)*input.teffe # hack to avoid crazy Teff samples teffsamp[teffsamp < 1000.0] = 1000.0 # if no logg is provided, take guess from absolute mag-logg # fit to solar-metallicity MIST isochrones NB these coeffs are # dodgy in Mv, but pretty good in Mk if (input.logg == -99.): if ((band == 'vmag') | (band == 'vtmag')): fitv = np.poly1d( [ 0.00255731, -0.07991211, 0.85140418, 1.82465197] ) input.logg = fitv(np.median(absmag-ext)) print('no input logg provided, guessing (using Mv):', input.logg) #pdb.set_trace() # should really be done filter by filter with a dictionary; TODO else: fitk = np.poly1d([-0.01234736, 0.36684517, 3.1477089 ]) input.logg = fitk(np.median(absmag-ext)) msg = 'no input logg provided, guessing (using Mk): {}'.format( input.logg ) print(msg) # ATLAS BCs are inaccurate for M dwarfs; use Mann et al. 2015 # Mks-R relation instead if ((input.teff < 4100.) & (np.median(absmag-ext) > 3.)): sampMabs = absmag - ext if (input.feh > -99.): rad = ((1.9305 - 0.3466*(absmag-ext) + 0.01647*(absmag-ext)**2) * (1.+0.04458*input.feh)) else: rad = 1.9515 - 0.3520*(absmag - ext) + 0.01680*(absmag - ext)**2 # add 3% scatter in Mks-R relation rad = rad + np.random.randn(len(rad))*np.median(rad)*0.03 lum = rad**2 * (teffsamp/teffsun)**4 # Also compute M-dwarf masses: sampMabsZP = sampMabs - 7.5 #7.5 is the ZP defined in Mann et al. (2019) if (input.feh > -99.): mass = (1. - 0.0035*input.feh) * 10.**(-0.647 - 0.207 * (sampMabsZP) - 6.53*10**(-4) * (sampMabsZP)**2 + 7.13*10**(-3) * (sampMabsZP)**3 + 1.84*10**(-4) * (sampMabsZP)**4 - 1.60*10**(-4) * (sampMabsZP)**5) else: mass = 10.**(-0.647 - 0.207 * (sampMabsZP) - 6.53*10**(-4) * (sampMabsZP)**2 + 7.13*10**(-3) * (sampMabsZP)**3 + 1.84*10**(-4) * (sampMabsZP)**4 - 1.60*10**(-4) * (sampMabsZP)**5) # Add 4% scatter in Mks-M relation mass = mass + np.random.randn(len(mass))*np.median(mass)*0.04 # Now compute density with the mass and radius relations given here: rho = mass/rad**3 # Output mass and densities: out.mass,out.massep,out.massem = getstat(mass) out.rho,out.rhoep,out.rhoem = getstat(rho) # for everything else, interpolate ATLAS BCs else: if (input.teff < np.min(teffgrid)): return out if (input.teff > np.max(teffgrid)): return out if ((input.logg > -99.0) & (input.logg < np.min(logggrid))): return out if ((input.logg > -99.0) & (input.logg > np.max(logggrid))): return out if ((input.feh > -99.0) & (input.feh < np.min(fehgrid))): return out if ((input.feh > -99.0) & (input.feh >
np.max(fehgrid)
numpy.max
import numpy as np from scipy import signal from scipy import ndimage import preprocessing.image2D.preprocess_2D as pre import preprocessing.image2D.convolution as conv import preprocessing.image2D.iterative_point_processing as itproc def fl_linear(data, kernel): return signal.convolve2d(data, kernel, 'same') def fl_isotropic(data, c, its): for _ in range(its): grad_x =
np.gradient(data, axis=0)
numpy.gradient
import sys import os import string import math from math import pi from matplotlib import pyplot as plt import numpy as nm from datetime import datetime import array script_dir=os.path.dirname(os.path.abspath(__file__)); auto_time=[]; auto_time2=[]; auto_time_raw=[]; # offset time; create_time=[]; create_time.append(0); auto_x=[]; # X pose in each step; auto_y=[]; auto_h=[]; auto_x1=[]; # X pose in each step; auto_y1=[]; auto_h1=[]; last_time_offset = 0; start_time=datetime.now(); end_time=start_time; init_time=start_time; last_time=start_time; heading_imu=[]; heading_odom=[]; imu_time=[]; data=[]; data_time=[]; data_time_str=[] data_x=[]; # xError in follower; data_x_raw=[]; # current Pose data_y=[]; data_y_raw=[] data_h=[]; # headingError data_h_rad=[]; data_h_raw=[]; data_h_raw_rad=[]; data_v_err=[]; data_v_target=[]; data_v_actual=[]; data_power=[]; power_time=[]; max_power=0; max_x_err=0; max_y_err=0; max_heading_err=0; max_final_x_err=0; max_final_y_err=0; max_final_heading_err=0; max_v=0; p_name='unknown'; max_power_time = 0; print_summary=0; last_x_err=0; last_y_err=0; last_h_err=0; filepath = sys.argv[1]; arg_c = len(sys.argv); if (arg_c>=3): print_summary = 1; def get_time(t): t = t.split(' ') #print(t) t_s = ' '; t_s = t_s.join(t[:2]) #print(t_s) t = datetime.strptime(t_s, '%m-%d %H:%M:%S.%f') return t; with open(filepath) as fp: line = fp.readline() #print(line) while line: line = fp.readline(); #print(line) if ("StandardTrackingWheelLocalizer: using IMU:" in line): t = line.split("StandardTrackingWheelLocalizer"); t = get_time(t[0]); t_delta = t-start_time; imu_time.append(t_delta.total_seconds()); t = line.strip().split('StandardTrackingWheelLocalizer'); t = t[1].split(' '); #print(t) #print(t[12], t[15]); t1 = float(t[5]); t2 = float(t[8]); if (t2>pi): t2 = (-1.0) * (2*pi - t2); #if (t1 < 0): # t1 = t1 + 2 * pi; #heading_imu.append(math.degrees(t1)); #heading_odom.append(math.degrees(t2)); heading_imu.append(t1); heading_odom.append(t2); if (("SampleMecanumDriveBase" in line) or ("BaseClass" in line)) and ("update: x" in line): #print(line) t1 = line.split("update: x"); t2 = t1[1].strip(); t3 = t2.split(' '); t = float(t3[0]); data_x_raw.append(t); curr_time = get_time(t1[0]) delta = curr_time - start_time; data_time.append(delta.total_seconds()); data_time_str.append(curr_time) last_time_offset = delta.total_seconds(); end_time = curr_time; if (("SampleMecanumDriveBase" in line) or ("BaseClass" in line)) and (" y " in line): t1 = line.split(" y "); t2 = t1[1].strip(); t3 = t2.split(' '); t = t3[0]; data_y_raw.append(float(t)); #print("y: ", t); if (("SampleMecanumDriveBase" in line) or ("BaseClass" in line)) and (": heading " in line): t1 = line.split(" heading "); t2 = t1[1].strip(); t3 = t2.split(' '); #print(t3) t = t3[0]; data_h_raw_rad.append(float(t)); data_h_raw.append(math.degrees(float(t))); #print("y: ", t); if (("SampleMecanumDriveBase" in line) or ("BaseClass" in line)) and ("Error" in line): #t = line.strip(); if ("xError" in line): t1 = line.split('xError') #print(t1) t2 = t1[1] t = float(t2) data_x.append(t) last_x_err = t; if t > max_x_err: max_x_err = t; if ("yError" in line): t1 = line.split('yError') t2 = t1[1] t = float(t2) data_y.append(t) last_y_err = t; if t > max_y_err: max_y_err = t; if ("headingError" in line): t1 = line.split('headingError') t2 = t1[1] data_h_rad.append(float(t2)) t = math.degrees(float(t2)); last_h_err = t; data_h.append(t) if t > max_heading_err: max_heading_err = t; ##################################### if ("DriveVelocityPIDTuner: error 0" in line): #print(t); t1 = line.split('error 0'); data_v_err.append(float(t1[1])) if ("DriveVelocityPIDTuner: targetVelocity" in line): t1 = line.split('targetVelocity') data_v_target.append(float(t1[1])) if ("DriveVelocityPIDTuner: velocity 0" in line): t1 = line.split('velocity 0'); t2 = t1[1]; data_v_actual.append(float(t2)) t = float(t2.strip()); t = abs(t) if t > max_v: max_v = t; ############################################# if ("setMotorPowers" in line) and ("leftFront" in line): #print(line) t = line.split('setMotorPowers'); t1 = t[1].strip().split(' '); #print(t1) t2 = t1[1] t3 = float(t2) data_power.append(t3) t_time = get_time(t[0]) d = t_time - start_time; power_time.append(d.total_seconds()); #print(t3) if abs(t3)>abs(max_power): max_power=t3; max_power_time = t_time; t = max_power_time-start_time max_power_delta = t.total_seconds() ########################################### if ("AutonomousPath: start new step: step" in line): #print(line.rstrip()) t = line.split('currentPos ('); t1 = get_time(t[0]); last_time = t1; auto_time_raw.append(t1); t_delta = t1-start_time; auto_time2.append(t_delta.total_seconds()); auto_time.append(last_time_offset); t = t[1].split(', '); #print(t) auto_x.append(float(t[0].rstrip())); auto_y.append(float(t[1].rstrip())); t2 = line.split('errorPos ('); t3 = t2[1].split(', '); #print(t3); auto_x1.append(float(t3[0].rstrip())); auto_y1.append(float(t3[1].rstrip())); t=t[2]; t=t[:-3].strip(); auto_h.append(float(t)); t = line.split("errorPos ("); t = (t[1][:-4]); t = t.split(', '); x = float(t[0]); y = float(t[1]); z = float(t[2]); #print(x, y, z); if (abs(x) > abs(max_final_x_err)): max_final_x_err = x; if (abs(y) > abs(max_final_y_err)): max_final_y_err = y; if (abs(z) > abs(max_final_heading_err)): max_final_heading_err = z; if ("AutonomousPath: drive and builder created, initialized with pose" in line) or ("AutonomousPath: drive and builder reset, initialized with pose" in line): #print(line.rstrip()) t = line.split('AutonomousPath'); t1 = get_time(t[0]); t_delta = t1-last_time #print("drive reset takes: ", t_delta.total_seconds()); create_time.append(t_delta.total_seconds()); ########################################### if ("Robocol : received command: CMD_RUN_OP_MODE" in line): t = line.strip().split(' '); p_name=t[-1] t = line.strip().split('Robotcol') init_time = get_time(t[0]) #print(start_time) if ("received command: CMD_RUN_OP_MODE" in line): t = line.split('CMD_RUN_OP_MODE'); start_time = get_time(t[0]) # print(start_time) if ("RobotCore" in line) and ("STOP - OPMODE" in line): break; for i in range(len(data_x)): if (i%10==0): print("time\t\t\ttime offset\t xErr\t\t\t X \t\t yErr\t\t \t\tY \t\t headingErr\tHeading(degree)\t\t headingErr(rad) \t heading(rad)"); print(data_time_str[i], " ", data_time[i], " ", data_x[i], " ", data_x_raw[i], " ", data_y[i], " ", data_y_raw[i], " ", data_h[i], " ", data_h_raw[i], " ", data_h_rad[i], " ", data_h_raw_rad[i]); print("-----------------moving steps in autonomous------------------------"); for i in range(len(auto_time)): if (i==0): print("time\t\t\ttime offset X\t\tY\theading reset_time duration"); print(auto_time_raw[i], " ", auto_time[i], " ", auto_x[i], " ", auto_y[i], " ", auto_h[i], " ", create_time[i], "\t 0"); else: print(auto_time_raw[i], " ", auto_time[i], " ", auto_x[i], " ", auto_y[i], " ", auto_h[i], " ", create_time[i], "\t", auto_time[i]-auto_time[i-1]); for i in range(len(data_v_err)): if (i%10==0): print("data_v, data_v_target, data_v_actual"); print(data_v_err[i].strip(), " ", data_v_target[i].strip(), " ", data_v_actual[i].strip()); fp.close(); t = len(data_x); if (t!=len(data_y) or t!=len(data_h) or t!=len(data_h_raw)) or (t==0): print("double check the parsing!!!", t, " ", len(data_h_raw), " ", len(data_h), " ", len(data_time)); sys.exit() else: print("parsing looks good, len: ", t); #os.system('cat ' + filepath + ' |grep SampleMecanumDriveBase | grep update |grep x'); print("-----------------moving steps in autonomous------------------------"); with open(filepath) as fp: line = fp.readline() while line: line = fp.readline(); if (("start new step: step" in line) or ("pose correction" in line)): print(line.strip()) fp.close(); ############### better than grep with open(filepath) as fp: line = fp.readline() while line: line = fp.readline(); if ("IMUBufferReader: IMU gyro time delta" in line): print(line.strip()) fp.close(); print("===============summary==========================") t = max_power_time.strftime('%H:%M:%S.%f'); max_power_time = t[:-3]; print("max power to wheel: ", max_power, " timestamp: ", max_power_time, " timeoffset: ", max_power_delta) print("max_x_err (inches): ", max_x_err) print("max_y_err (inches): ", max_y_err) print("max_heading_err (degrees) ", max_heading_err) print("max_velocity : ", max_v) duration = end_time - start_time; print("init time: ", init_time); print("start time: ", start_time, " end time: ", end_time, " run duration(seconds): ", duration.total_seconds()); print("\nDrivetrain parameters:"); print("program : ", p_name) with open(filepath) as fp: line = fp.readline() while line: line = fp.readline(); if (("DriveConstants" in line) and ("maxVel" in line) and ("maxAccel" in line)): print(line.strip()) if (("DriveConstants: Strafing paramters" in line)): print(line.strip()) if (("DriveConstants: test distance" in line)): print(line.strip()) if (("DriveConstants" in line) and ("PID" in line)): print(line.strip()) if (("DriveConstants: using IMU in localizer?" in line)): print(line.strip()) if (("DriveConstants: debug.ftc.brake" in line)): print(line.strip()) if (("DriveConstants: debug.ftc.resetfollow" in line)): print(line.strip()) if (("DriveConstants: using Odometry" in line)): print(line.strip()) if (("currentPos" in line) and ("errorPos" in line)): print(line.strip()) if (("AutonomousPath:" in line) and ("xml" in line)): print(line.strip()) fp.close(); print("max error: ", max_final_x_err, max_final_y_err, max_final_heading_err); print("last error: ", last_x_err, last_y_err, last_h_err); #print("start time(in miliseconds): ", start_time.timestamp() * 1000, " end time: ", end_time.timestamp() * 1000); print(filepath); if print_summary != 0: plt.style.use('ggplot') #plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=3, mode="expand", borderaxespad=0.); plt.plot(data_time, data_x, label="xError"); plt.plot(data_time, data_y, label="yError"); plt.plot(data_time, data_h, label="headingError"); plt.scatter(auto_time, [0 for i in range(len(auto_time))], zorder=2); # mark the drive reset; plt.xlabel('time(seconds)'); plt.ylabel('inches for x, y, degrees for heading'); plt.legend(); plt.figure(); plt.plot(data_time,
nm.add(data_x, data_x_raw)
numpy.add
#!/usr/bin/env python import argparse import os import sys import numpy as np from pprint import pprint import progressbar from utilities import is_valid_path from utilities import ModelData from utilities import TrackData from utilities import get_image import functools if __name__ == "__main__": parser = argparse.ArgumentParser( description="Displays pairs of images and reidentification " + "output.") parser.add_argument("data_dir", type=lambda x: is_valid_path(parser, x), help="Directory containing reidentification data.") parser.add_argument("--data", type=str, default="validate", help="Which data to display, must be 'training' or 'validate'.") args = parser.parse_args() model_data = ModelData(args.data_dir) mean_img = model_data.mean_image() extractor = model_data.appearance_extractor() comparator = model_data.appearance_comparator() if args.data == "validate": test_data = model_data.cnn_validate() elif args.data == "training": test_data = model_data.cnn_training() dir_idx_list = [] idx_list = [] tdata_list = [TrackData(os.path.join(args.data_dir,d)) for d in model_data.track_dirs()] for dir_idx, track_data in enumerate(tdata_list): num_img = track_data.num_detection_images() dir_idx_list += [dir_idx for _ in range(num_img)] idx_list += range(num_img) mapping =
np.transpose([dir_idx_list, idx_list])
numpy.transpose
import time import unittest import numpy as np from cctpy.baseutils import Vectors, Equal, Scalar from cctpy.cuda.cuda_cross import cross from cctpy.cuda.cuda_dot_a_v import dot_a_v from cctpy.cuda.cuda_dot_v_v import dot_v_v from cctpy.cuda.cuda_add3d_local import add3d_local from cctpy.cuda.cuda_add3d import add3d from cctpy.cuda.cuda_neg3d import neg3d from cctpy.cuda.cuda_copy3d import copy3d from cctpy.cuda.cuda_length3d import len3d from cctpy.cuda.cuda_global import use_global from cctpy.cuda.cuda_dB import dB from cctpy.cuda.cuda_magnet_at_point import magnet_at_point from cctpy.cuda.cuda_run_one_line import particle_run_len_one_line from cctpy.cuda.cuda_add3d_local_float_and_double import add3d_local_double, add3d_local_foult from cctpy.cuda.cuda_compute_and_table import sin_sum_tb, sin_sum_compute from cctpy.cct import SoleLayerCct from cctpy.abstract_classes import LocalCoordinateSystem class CudaTest(unittest.TestCase): def test_cross(self): for ig in range(10): a = Vectors.random_float32() b = Vectors.random_float32() ans_d = Vectors.empty_float32() ans_h = Vectors.cross(a, b) cross(a, b, ans_d) self.assertTrue(Equal.equal_vector(ans_h, ans_d, err=1e-5)) def test_dot_a_v(self): for ig in range(10): a = Scalar.random_float32() v = Vectors.random_float32() ans_h = a * v dot_a_v(a, v) self.assertTrue(Equal.equal_vector(ans_h, v, err=1e-5)) def test_dot_v_v(self): for ig in range(10): v1 = Vectors.random_float32() v2 = Vectors.random_float32() a = Scalar.empty_float32() a_h =
np.inner(v1, v2)
numpy.inner
import numpy as np import matplotlib.pyplot as plt from matplotlib import animation import json from tqdm import tqdm from collections import deque from fourier_transform import FourierTransform from epicycle_frame import EpicycleFrame from draw_it_yourself import draw_it_yourself # Draw it yourself diy_or_not = input("Draw image by yourself ? (y/n) ") if diy_or_not == 'y': draw_it_yourself() # Show original sample points fig = plt.figure() ax = fig.add_subplot(111) ax.set_axis_off() ax.set_aspect('equal') # To have symmetric axes # Load coords f = open('input/coords', 'r') coords = json.load(f) f.close() x_list = [coord[0] for coord in coords] x_list = x_list - np.mean(x_list) y_list = [-coord[1] for coord in coords] y_list = y_list -
np.mean(y_list)
numpy.mean
from collections import defaultdict import numpy as np from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double_or_blank) from pyNastran.bdf.field_writer_8 import print_card_8, set_blank_if_default from pyNastran.bdf.cards.base_card import _format_comment class Rods: """intializes the Rods""" def __init__(self, model): self.model = model self.conrod = model.conrod self.crod = model.crod self.ctube = model.ctube self._eids = set() def add(self, eid): if eid not in self._eids: self._eids.add(eid) else: raise RuntimeError('eid=%s is duplicated' % eid) def write_card(self, size=8, is_double=False, bdf_file=None): assert bdf_file is not None if len(self.conrod): self.conrod.write_card(size, is_double, bdf_file) if len(self.crod): self.crod.write_card(size, is_double, bdf_file) if len(self.ctube): self.ctube.write_card(size, is_double, bdf_file) def make_current(self): self.conrod.make_current() self.crod.make_current() self.ctube.make_current() def __len__(self): return len(self.conrod) + len(self.crod) + len(self.ctube) def repr_indent(self, indent=' '): msg = '%s<Rods> : nelements=%s\n' % (indent, len(self)) msg += '%s CONROD: %s\n' % (indent, len(self.conrod)) msg += '%s CROD : %s\n' % (indent, len(self.crod)) msg += '%s CTUBE : %s\n' % (indent, len(self.ctube)) return msg def __repr__(self): return self.repr_indent(indent='') class RodElement: """base class for CONROD, CROD, and CTUBE""" card_name = '' def check_if_current(self, eid, eids): """we split this up to reason about it easier""" if self.is_current: if eid in eids: # card exists, so we use that slot add_card = False else: add_card = True else: add_card = True return add_card def cross_reference(self, model): """does this do anything?""" self.make_current() def __len__(self): """returns the number of elements""" return len(self.eid) + len(self._eid) def repr_indent(self, indent=''): self.make_current() neids = len(self.eid) if neids == 0: return '%s%sv; nelements=%s' % (indent, self.card_name, neids) msg = '%s%sv; nelements=%s\n' % (indent, self.card_name, neids) msg += '%s eid = %s\n' % (indent, self.eid) if hasattr(self, 'pid'): upid = np.unique(self.pid) if len(upid) == 1: msg += '%s upid = %s\n' % (indent, upid) else: msg += '%s pid = %s\n' % (indent, self.pid) else: msg += '%s A = %s\n' % (indent, self.A) msg += '%s j = %s\n' % (indent, self.j) msg += '%s c = %s\n' % (indent, self.c) msg += '%s nsm = %s\n' % (indent, self.nsm) return msg #umcid = np.unique(self.mcid) #if len(umcid) == 1 and umcid[0] == 0: #msg += ' umcid = %s\n' % umcid #else: #msg += ' umcid = %s\n' % umcid #msg += ' mcid = %s\n' % self.mcid #utheta = np.unique(self.theta) #if len(utheta) == 1 and umcid[0] == 0: #msg += ' utheta = %s\n' % utheta #else: #msg += ' theta = %s\n' % self.theta #msg += ' is_theta = %s\n' % self.is_theta #msg += ' nid =\n%s' % self.nid #return msg def __repr__(self): return self.repr_indent(indent='') class CONRODv(RodElement): """ +--------+-----+-----+----+-----+---+---+---+-----+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +========+=====+=====+====+=====+===+===+===+=====+ | CONROD | EID | N1 | N2 | MID | A | J | C | NSM | +--------+-----+-----+----+-----+---+---+---+-----+ """ card_name = 'CONROD' def __init__(self, model): self.model = model self.is_current = True self.eid = np.array([], dtype='int32') self.nids = np.array([], dtype='int32') self.mid = np.array([], dtype='int32') self.A =
np.array([], dtype='float64')
numpy.array
import numpy from . tile_struct import UdimMipAddress class UdimIndirectionBuilder(object): def __init__(self, udim_entries): self._udim_entries = udim_entries self._init_data() self._allocate_mip_indirections() def _init_data(self): # First determine the bounds we're going to need for the UdimInfoStart texture udim_entries_iter = iter(self._udim_entries) entry = next(udim_entries_iter) min_x = entry.udim_xy[0] max_x = entry.udim_xy[0] min_y = entry.udim_xy[1] max_y = entry.udim_xy[1] for entry in udim_entries_iter: x = entry.udim_xy[0] y = entry.udim_xy[1] if x < min_x: min_x = x elif x > max_x: max_x = x if y < min_y: min_y = y elif y > max_y: max_y = y self.udim_offset = (min_x, min_y) self.udim_info_start = numpy.full( ( (max_y-min_y + 1), (max_x-min_x + 1), ), 0xffffffff, dtype=numpy.uint32 ) # Allocate the udim info here (even if it's populated later) # and write back into udim_info_start udim_info = [] self.offset_udim_to_image = {} for entry in self._udim_entries: x = entry.udim_xy[0] - min_x y = entry.udim_xy[1] - min_y self.offset_udim_to_image[(x << 16) | y] = entry self.udim_info_start[y, x] = len(udim_info) image = entry.image width = image.size[0] height = image.size[1] mips = image.mips udim_info.extend((width, height, mips)) udim_info.extend([0] * mips) # If GLSL supported uint16, this could be that # realistically we COULD make this a 1d texture self.udim_info = numpy.array(udim_info, dtype=numpy.uint32) def _allocate_mip_indirections(self): pages = [_UdimPage()] # Add things to the layers, starting from the biggest mips (dimension wise), # to the lowest. # Were doing this by unrolling the mips into a single sequence and sorting them # (there is probably a smarter way to do this) expanded_mips = [] for entry in self._udim_entries: width = entry.image.size[0] height = entry.image.size[1] mips = entry.image.mips for mip in range(entry.image.mips): expanded_mips.append( ( # Store the tile size, not pixel size (width + 63)//64, (height + 63)//64, mip, entry ) ) width = max(1, width >> 1) height = max(1, height >> 1) # Sort by tile count expanded_mips.sort( key = lambda x: x[0] * x[1], reverse = True ) for tile_w, tile_h, mip, entry in expanded_mips: alloc = None layer = 0 for layer, page in enumerate(pages): alloc = page.allocate(tile_w, tile_h) if alloc is not None: break # Need to add a new page if not alloc: page = _UdimPage() layer = len(pages) pages.append(page) alloc = page.allocate(tile_w, tile_h) # Write back to the info table! udim_start = self.udim_info_start[ entry.udim_xy[1] - self.udim_offset[1], entry.udim_xy[0] - self.udim_offset[0], ] self.udim_info[udim_start + 3 + mip] = UdimMipAddress( startX = alloc[0], startY = alloc[1], layer = layer, ).pack() self.mip_indirection_size = ( max(page.max_written_x for page in pages), max(page.max_written_y for page in pages), len(pages) ) class UdimEntry(object): def __init__(self, udim_xy, image): self.udim_xy = udim_xy self.image = image class _UdimPage(object): def __init__(self, max_dimension=4096): # Start off with a 1x1 self._page = numpy.zeros((max_dimension, max_dimension), dtype=numpy.uint8) # Keep track of free space for rows and cols self._space_x = numpy.full(max_dimension, max_dimension) self._space_y =
numpy.full(max_dimension, max_dimension)
numpy.full
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import ABC, abstractmethod import time import pandas as pd import numpy as np import dask.dataframe as dd import dask.array as da from dask.distributed import Client from dask_cuda import LocalCUDACluster import xgboost as xgb import cudf try: import catboost as cat except ImportError: cat = None try: import lightgbm as lgb except (ImportError, OSError): lgb = None try: import dask_xgboost as dxgb except ImportError: dxgb = None try: from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingClassifier as skhgb except ImportError: skhgb = None try: from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingRegressor as skhgb_r except ImportError: skhgb_r = None try: from sklearn.ensemble import GradientBoostingClassifier as skgb except ImportError: skgb = None try: from sklearn.ensemble import GradientBoostingRegressor as skgb_r except ImportError: skgb_r = None try: from sklearn.ensemble import RandomForestClassifier as skrf except ImportError: skrf = None try: from sklearn.ensemble import RandomForestRegressor as skrf_r except ImportError: skrf_r = None try: from cuml.ensemble import RandomForestClassifier as cumlrf except ImportError: cumlrf = None try: from cuml.ensemble import RandomForestRegressor as cumlrf_r except ImportError: cumlrf_r = None from datasets import LearningTask class Timer: def __init__(self): self.start = None self.end = None self.interval = None def __enter__(self): self.start = time.perf_counter() return self def __exit__(self, *args): self.end = time.perf_counter() self.interval = self.end - self.start class Algorithm(ABC): @staticmethod def create(name): # pylint: disable=too-many-return-statements if name == 'xgb-gpu': return XgbGPUHistAlgorithm() if name == 'xgb-gpu-dask': return XgbGPUHistDaskAlgorithm() if name == 'xgb-gpu-dask-old': return XgbGPUHistDaskOldAlgorithm() if name == 'xgb-cpu': return XgbCPUHistAlgorithm() if name == 'lgbm-cpu': return LgbmCPUAlgorithm() if name == 'lgbm-gpu': return LgbmGPUAlgorithm() if name == 'cat-cpu': return CatCPUAlgorithm() if name == 'cat-gpu': return CatGPUAlgorithm() if name == 'skhgb': return SkHistAlgorithm() if name == 'skgb': return SkGradientAlgorithm() if name == 'skrf': return SkRandomForestAlgorithm() if name == 'cumlrf': return CumlRfAlgorithm() raise ValueError("Unknown algorithm: " + name) def __init__(self): self.model = None @abstractmethod def fit(self, data, args): pass @abstractmethod def test(self, data): pass def __enter__(self): pass @abstractmethod def __exit__(self, exc_type, exc_value, traceback): pass # learning parameters shared by all algorithms, using the xgboost convention shared_params = {"max_depth": 8, "learning_rate": 0.1, "reg_lambda": 1} class CumlRfAlgorithm(Algorithm): def configure(self, data, args): params = shared_params.copy() del params["reg_lambda"] del params["learning_rate"] params["n_estimators"] = args.ntrees params.update(args.extra) return params def fit(self, data, args): params = self.configure(data, args) if data.learning_task == LearningTask.REGRESSION: with Timer() as t: self.model = cumlrf_r(**params).fit(data.X_train, data.y_train) return t.interval else: with Timer() as t: self.model = cumlrf(**params).fit(data.X_train, data.y_train) return t.interval def test(self, data): return self.model.predict(data.X_test) def __exit__(self, exc_type, exc_value, traceback): del self.model class XgbAlgorithm(Algorithm): def configure(self, data, args): params = shared_params.copy() params.update({"max_leaves": 256, "nthread": args.cpus}) if data.learning_task == LearningTask.REGRESSION: params["objective"] = "reg:squarederror" elif data.learning_task == LearningTask.CLASSIFICATION: params["objective"] = "binary:logistic" params["scale_pos_weight"] = len(data.y_train) / np.count_nonzero(data.y_train) elif data.learning_task == LearningTask.MULTICLASS_CLASSIFICATION: params["objective"] = "multi:softmax" params["num_class"] = np.max(data.y_test) + 1 params.update(args.extra) return params def fit(self, data, args): dtrain = xgb.DMatrix(data.X_train, data.y_train) params = self.configure(data, args) with Timer() as t: self.model = xgb.train(params, dtrain, args.ntrees) return t.interval def test(self, data): dtest = xgb.DMatrix(data.X_test, data.y_test) return self.model.predict(dtest) def __exit__(self, exc_type, exc_value, traceback): del self.model class XgbGPUHistAlgorithm(XgbAlgorithm): def configure(self, data, args): params = super(XgbGPUHistAlgorithm, self).configure(data, args) params.update({"tree_method": "gpu_hist", "gpu_id": 0}) return params class SkRandomForestAlgorithm(Algorithm): def configure(self, data, args): params = shared_params.copy() del params["reg_lambda"] del params["learning_rate"] params["n_estimators"] = args.ntrees params.update(args.extra) return params def fit(self, data, args): params = self.configure(data, args) if data.learning_task == LearningTask.REGRESSION: with Timer() as t: self.model = skrf_r(**params).fit(data.X_train, data.y_train) return t.interval else: with Timer() as t: self.model = skrf(**params).fit(data.X_train, data.y_train) return t.interval def test(self, data): return self.model.predict(data.X_test) def __exit__(self, exc_type, exc_value, traceback): del self.model class SkGradientAlgorithm(Algorithm): def configure(self, data, args): params = shared_params.copy() del params["reg_lambda"] del params["learning_rate"] params["n_estimators"] = args.ntrees params.update(args.extra) return params def fit(self, data, args): params = self.configure(data, args) if data.learning_task == LearningTask.REGRESSION: with Timer() as t: self.model = skgb_r(**params).fit(data.X_train, data.y_train) return t.interval else: with Timer() as t: self.model = skgb(**params).fit(data.X_train, data.y_train) return t.interval def test(self, data): return self.model.predict(data.X_test) def __exit__(self, exc_type, exc_value, traceback): del self.model class SkHistAlgorithm(Algorithm): def configure(self, data, args): params = shared_params.copy() del params["reg_lambda"] del params["learning_rate"] params["n_estimators"] = args.ntrees params.update(args.extra) return params def fit(self, data, args): params = self.configure(data, args) if data.learning_task == LearningTask.REGRESSION: with Timer() as t: self.model = skhgb_r(**params).fit(data.X_train, data.y_train) return t.interval else: with Timer() as t: self.model = skhgb(**params).fit(data.X_train, data.y_train) return t.interval def test(self, data): return self.model.predict(data.X_test) def __exit__(self, exc_type, exc_value, traceback): del self.model class XgbGPUHistDaskAlgorithm(XgbAlgorithm): def configure(self, data, args): params = super(XgbGPUHistDaskAlgorithm, self).configure(data, args) params.update({"tree_method": "gpu_hist"}) del params['nthread'] # This is handled by dask return params def get_slices(self, n_slices, X, y): n_rows_worker = int(np.ceil(len(y) / n_slices)) indices = [] count = 0 for _ in range(0, n_slices - 1): indices.append(min(count + n_rows_worker, len(y))) count += n_rows_worker return np.split(X, indices), np.split(y, indices) def fit(self, data, args): params = self.configure(data, args) n_workers = None if args.gpus < 0 else args.gpus cluster = LocalCUDACluster(n_workers=n_workers, local_directory=args.root) client = Client(cluster) n_partitions = len(client.scheduler_info()['workers']) X_sliced, y_sliced = self.get_slices(n_partitions, data.X_train, data.y_train) X = da.concatenate([da.from_array(sub_array) for sub_array in X_sliced]) X = X.rechunk((X_sliced[0].shape[0], data.X_train.shape[1])) y = da.concatenate([da.from_array(sub_array) for sub_array in y_sliced]) y = y.rechunk(X.chunksize[0]) dtrain = xgb.dask.DaskDMatrix(client, X, y) with Timer() as t: output = xgb.dask.train(client, params, dtrain, num_boost_round=args.ntrees) self.model = output['booster'] client.close() cluster.close() return t.interval def test(self, data): dtest = xgb.DMatrix(data.X_test, data.y_test) self.model.set_param({'predictor': 'gpu_predictor'}) return self.model.predict(dtest) def __exit__(self, exc_type, exc_value, traceback): del self.model class XgbGPUHistDaskOldAlgorithm(XgbAlgorithm): def configure(self, data, args): params = super(XgbGPUHistDaskOldAlgorithm, self).configure(data, args) params.update({"tree_method": "gpu_hist", "nthread": 1}) return params def fit(self, data, args): params = self.configure(data, args) cluster = LocalCUDACluster(n_workers=None if args.gpus < 0 else args.gpus, local_directory=args.root) client = Client(cluster) partition_size = 1000 if isinstance(data.X_train, np.ndarray): X = dd.from_array(data.X_train, partition_size) y = dd.from_array(data.y_train, partition_size) else: X = dd.from_pandas(data.X_train, partition_size) y = dd.from_pandas(data.y_train, partition_size) X.columns = [str(i) for i in range(0, X.shape[1])] with Timer() as t: self.model = dxgb.train(client, params, X, y, num_boost_round=args.ntrees) client.close() return t.interval def test(self, data): if isinstance(data.X_test, np.ndarray): data.X_test = pd.DataFrame(data=data.X_test, columns=np.arange(0, data.X_test.shape[1]), index=np.arange(0, data.X_test.shape[0])) data.X_test.columns = [str(i) for i in range(0, data.X_test.shape[1])] dtest = xgb.DMatrix(data.X_test, data.y_test) return self.model.predict(dtest) def __exit__(self, exc_type, exc_value, traceback): del self.model class XgbCPUHistAlgorithm(XgbAlgorithm): def configure(self, data, args): params = super(XgbCPUHistAlgorithm, self).configure(data, args) params.update({"tree_method": "hist"}) return params class LgbmAlgorithm(Algorithm): def configure(self, data, args): params = shared_params.copy() params.update({"max_leaves": 256, "nthread": args.cpus}) if data.learning_task == LearningTask.REGRESSION: params["objective"] = "regression" elif data.learning_task == LearningTask.CLASSIFICATION: params["objective"] = "binary" params["scale_pos_weight"] = len(data.y_train) / np.count_nonzero(data.y_train) elif data.learning_task == LearningTask.MULTICLASS_CLASSIFICATION: params["objective"] = "multiclass" params["num_class"] = np.max(data.y_test) + 1 params.update(args.extra) return params def fit(self, data, args): dtrain = lgb.Dataset(data.X_train, data.y_train, free_raw_data=False) params = self.configure(data, args) with Timer() as t: self.model = lgb.train(params, dtrain, args.ntrees) return t.interval def test(self, data): if data.learning_task == LearningTask.MULTICLASS_CLASSIFICATION: prob = self.model.predict(data.X_test) return
np.argmax(prob, axis=1)
numpy.argmax
import time import warnings import numpy as np from scipy import signal from tikreg import models, utils as tikutils from tikreg import models from tikreg import spatial_priors, temporal_priors from fusilib.config import DATA_ROOT def get_peak_info(time, data, sumfunc=np.median): ''' time : 1D np.array data : 1D np.array ''' assert data.ndim == 1 data = np.atleast_2d(data) peak_location = np.argmax(sumfunc(data, 0)) peak_time = time[peak_location] peak_width = signal.peak_widths( sumfunc(data, 0), [peak_location], rel_height=0.5)[0] peak_fwhm = peak_width*0.3 # fUSI dt = 0.3 sec return peak_time, float(peak_fwhm) def summarize_peaks(time, data, **kwargs): ''' ''' peak_time, peak_fwhm = np.asarray( [get_peak_info(time, dat, **kwargs) for dat in data]).T return peak_time, peak_fwhm def MAD(data, axis=0): ''' ''' med = np.median(data, axis=axis, keepdims=True) mad = np.median(np.abs(data - med), axis=axis) return mad def pct_signal_change(data): pct = ((data/data.mean(0)) - 1.0)*100.0 return pct def glob_loader(pattern, **kwargs): ''' subject='CR017', session='2019-11-13', stimulus_condition='kalatsky', block_numbers=None, results_version='results_v03', data_root=DATA_ROOT ''' from fusilib.extras import readers for fl, key in glob_local(pattern, **kwargs): yield readers.hdf_load(fl, key) def load_fusinpx_results(prefix='regression', data_pattern='halfidx-1*weights', time_pattern='halfidx-1*delaysec', area_name='V1', probe_names=['probe00', 'probe01'], res_transform=lambda x: x, flatten=False, verbose=False, **kwargs): ''' Parameters ---------- probe_names : str or None time_pattern : str or none flatten : bool True: Useful when arrays are of different size, (dataset*samples) False: Output shape is (dataset, nsamples) res_transform : function Function applied to each dataset after squeezing. kwargs : dict Passed to glob_pattern() for finer selection: * subject='*' * session='*' * stimulus_condition='*' * block_numbers=None * results_version='results_v03' * exclude_patterns=[('2019-11-26', None)], Available patterns ------------------ `prefix`, followed by relelevant key in `data_pattern` * shuffcoh: {freq, coherence_boot, coherece_median, coherence_mean} * slicesview: {mean,std,tsnr}_methodC.hdf * timecourses: frunits{spksec,zscore,pctchg}_{probe00,probe01}_{fusi,ephys} * regression: {probe00,probe01}_{halfidx0,halfidx-1}_fitl2_{performance,predictions,weights,Ytest}_methodC.hdf * crosscorrelation: {probe00, probe00}_{delaysecs,tpcorr}_methodC.hdf * coherence: {probe00,probe01}_{freq,coherence}_methodC.hdf subject='CR017', session='2019-11-13', stimulus_condition='kalatsky', block_numbers=None, results_version='results_v03', data_root=DATA_ROOT ''' results = [] time = None if probe_names is None: # future-proofing probe_name = '' raise ValueError('Untested for non-probe data') for probe_name in probe_names: matcher = f'*{prefix}*{probe_name}*{data_pattern}*' print(matcher, kwargs) res = list(glob_pattern(matcher, probe_name=probe_name, area_name=area_name, verbose=verbose, do_loading=True, **kwargs)) if len(res) > 0: res = [res_transform(t.squeeze()) for t in res] res = np.asarray(res) if flatten is False else np.hstack(res) results.append(res.squeeze()) if time_pattern is not None and time is None: # Only load time information once time_matcher = f'*{prefix}*{probe_name}*{time_pattern}*' print(time_matcher) time = np.asarray(list(glob_pattern( time_matcher, probe_name=probe_name, area_name=area_name, verbose=verbose, do_loading=True, **kwargs))) if len(time) == 0: raise ValueError('No time info found!') if len(results) == 0: print('Nothing found: %s' % matcher, kwargs) return None, None if len(results) == 1: results = results[0] else: results = np.vstack( results) if flatten is False else np.hstack(results) # time-vector is the same for all if time is not None: assert time.shape[-1] == results.shape[-1] time = time[0] print('shapes: times, data:', time.shape, results.shape) else: print('shapes:', results.shape) return time, results def glob_pattern(pattern, subject='*', session='*', stimulus_condition='*', block_numbers=None, results_version='results_v03', exclude_patterns=None, # [('2019-11-26', None)], data_root=DATA_ROOT, verbose=False, probe_name=None, area_name=None, do_loading=False): ''' Patterns -------- * slicesview: {mean,std,tsnr}_methodC.hdf * timecourses: frunits{spksec,zscore,pctchg}_{probe00,probe01}_{fusi,ephys} * regression: {probe00,probe01}_{halfidx0,halfidx-1}_fitl2_{performance,predictions,weights,Ytest}_methodC.hdf * crosscorrelation: {probe00, probe00}_{delaysecs,tpcorr}_methodC.hdf * coherence: {probe00,probe01}_{freq,coherence}_methodC.hdf subject='CR017', session='2019-11-13', stimulus_condition='kalatsky', block_numbers=None, results_version='results_v03', data_root=DATA_ROOT ''' from fusilib.extras import readers from fusilib import handler2 as handler EXPERIMENTS = {'CR017': ['2019-11-13', '2019-11-14'], 'CR020': ['2019-11-20', '2019-11-21', '2019-11-22'], 'CR019': ['2019-11-26', '2019-11-27'], 'CR022': ['2020-10-07', '2020-10-11'], 'CR024': ['2020-10-29']} if stimulus_condition != '*': assert stimulus_condition in [ 'kalatsky', 'checkerboard', 'spontaneous'] if subject == '*': # Use all subjects pass elif isinstance(subject, (list, str)): # select some subjects EXPERIMENTS = {k: v for k, v in EXPERIMENTS.items() if k in subject} for sub, sessions in EXPERIMENTS.items(): if session == '*': # Use all sesssions pass else: # select requested sessions only sessions = [sess for sess in sessions if sess in session] # iterate thru sessions for sess in sessions: matches = glob_local(pattern, subject=sub, session=sess, stimulus_condition=stimulus_condition, block_numbers=block_numbers, results_version=results_version, probe_name=probe_name, area_name=area_name, exclude_patterns=exclude_patterns, verbose=verbose, data_root=data_root) # iterate thru matches for (fl, key) in matches: if do_loading: if verbose: print('%s : %s' % (fl, key), sub, sess, stimulus_condition) data = readers.hdf_load(fl, key, verbose=False) if np.allclose(data, 0): print('Data is all zeros:', fl, key) yield data else: yield fl, key def glob_local(pattern, subject='CR017', session='2019-11-13', stimulus_condition='kalatsky', block_numbers=None, results_version='results_v03', probe_name=None, area_name=None, exclude_patterns=None, verbose=False, analysis_valid_only=True, data_root=DATA_ROOT): ''' valid_only : bool Use only data defined as good from the subject LOG.INI Example ------- >>> pattern = '*frunitzscore*probe00*ephys*' >>> files = glob_local(pattern) ''' from pathlib import Path from fusilib.extras import readers from fusilib import handler2 as handler path = Path(data_root).joinpath(subject, session, results_version) files = path.glob(pattern) for fl in files: contents = readers.hdf_load(fl, verbose=False) block_mapper = { int(t.split('_')[1].strip('block')): t for t in contents} if block_numbers is not None: # In case we want to restrict to a subset of blocks block_mapper = [b for b in block_mapper if b in block_numbers] if analysis_valid_only: block_mapper = {k: v for k, v in block_mapper.items() if k in handler.MetaSession( subject, session, verbose=False).analysis_blocks} if stimulus_condition is not None and stimulus_condition != '*': block_mapper = {blk_number: key for idx, (blk_number, key) in enumerate(block_mapper.items()) if handler.MetaBlock(subject, session, blk_number, verbose=False).task_name == stimulus_condition} if area_name is not None and area_name != '*': assert probe_name is not None block_mapper = {blk_number: key for idx, (blk_number, key) in enumerate(block_mapper.items()) if (handler.MetaBlock(subject, session, blk_number, verbose=False).fusi_get_probe_allen_mask( probe_name, allen_area_name=area_name) is not None)} for block_number, block_key in sorted(block_mapper.items()): if exclude_patterns is not None: is_valid = True for exclude_fl, exclude_key in exclude_patterns: if (exclude_fl in str(fl)) and (str(exclude_key) in block_key): if verbose: print('Skipping:', exclude_fl, exclude_key) is_valid = False continue if is_valid: yield fl, block_key else: yield fl, block_key def roiwise_pctsignalchange(data, population_mean=False, clip_value=75, trim_beg=0, trim_end=None): '''data is time by units pct signal change per pixel, then mean across pixels ''' data = data[trim_beg:trim_end].mean(-1, keepdims=True) data /= data.mean(0) data -= 1.0 data *= 100 # clip this data = np.clip(data, -75, 75) return data def pixelwise_pctsignalchange_median(data, **kwargs): return pixelwise_pctsignalchange(data, normfunc=np.median, **kwargs) def pixelwise_pctsignalchange(data, population_mean=False, clip_value=None, clip_sd=None, normfunc=np.mean, trim_beg=0, trim_end=None): '''Compute the percent signal change per unit. Parameters ---------- data : np.ndarray, (ntimepoints, ..., nunits) clip_value : scalar Threshold for % signal changes population_mean : bool Mean across last dimension trim_beg, trim_end: Ignore these samples when computing % signal change Returns ------- pct_signal_change : np.ndarray, (ntimepoints, ..., nunits) Signals in units of % (ie 10% not 0.1) in the range (-clip_value, clip_value), mean=0. ''' data /= normfunc(data[trim_beg:trim_end], axis=0) data -= 1.0 data *= 100 # clip this sdvals = data.std(0) if clip_value is not None: data = np.clip(data, -clip_value, clip_value) if clip_sd is not None: data = np.clip(data, -(sdvals*clip_sd), sdvals*clip_sd) if population_mean: data = data.mean(-1, keepdims=True) return data def normalize_fusi(data_matrix): ''' ''' return pct_signal_change(np.sqrt(data_matrix)) def fast_find_between(continuous_times, discrete_times, window=0.050): '''A parallel implementation of:: markers = np.logical_and(continuous_units >= discrete_units[0], continuous_units < discrete_units[0] + window) for all elements of `discrete_units`. Parameters ---------- continuous_units (1D np.ndarray) : (n,) vector of unit sampling (e.g. secs, mm] discrete_units (1D np.ndarray) : (m,) Vector of new unit-stamps window (scalar) : Window of unit after unit (e.g. secs, mm] Returns ------- markers (list of `m` arrays) : Each element of the list contains the mask (n,) Examples -------- >>> fast_ratehz, new_ratehz = 100, 10 >>> times = np.arange(10000)/fast_ratehz + np.random.rand(10000)/fast_ratehz >>> new_times = np.linspace(0, times.max(), len(times)/(fast_ratehz/new_ratehz)) >>> markers = fast_find_times_between(times, new_times, window=1./new_ratehz) ''' from fusilib import mp def find_between(vec, before, window=0.050): ''' ''' matches = np.logical_and(vec >= before, vec < before+window) matches = matches.nonzero()[0] # # Same speed # matches = (vec >= before)*(vec < before+window).nonzero()[0] # # Same speed-ish # greater = (vec >= before).nonzero()[0] # matches = greater[vec[greater] < (before + window)] return matches def func(x): return find_between(continuous_times, x, window=window) res = mp.map(func, discrete_times, procs=10) return res def spikes_at_times(event_times, post_event_time, spike_times, spike_clusters, nclusters=None): ''' ''' from fusilib.mp import map as parallelmap from scipy import sparse if nclusters is None: # use highest cluster index nclusters = spike_clusters.max() + 1 shape = (len(spike_times), nclusters) sparse_spike_matrix = sparse.csr_matrix((np.ones_like(spike_times), (np.arange(len(spike_times)), spike_clusters)), shape, dtype=np.bool) spike_bins = fast_find_between( spike_times, event_times, window=post_event_time) def func(x): return np.asarray( sparse_spike_matrix[x]) # spike counter function spike_matrix = np.asarray(parallelmap( func, spike_bins, procs=10)).squeeze() return spike_matrix def sparse_spike_matrix(spike_times, spike_clusters, nclusters=None): ''' ''' from scipy import sparse if nclusters is None: # use highest cluster index nclusters = spike_clusters.max() + 1 shape = (len(spike_times), nclusters) sparse_spike_matrix = sparse.csr_matrix((np.ones_like(spike_times), (np.arange(len(spike_times)), spike_clusters)), shape, dtype=np.bool) return sparse_spike_matrix def bin_spikes(new_onsets, window, spike_times, spike_clusters, nclusters=None): '''Construct a spike counts matrix at the temporal resolution requested. Parameters ---------- new_onsets : 1D np.ndarray (m,) Times at which to start counting spikes [seconds] window : scalar Bin size in [seconds] spike_times : 1D np.ndarray (n,) Vector of spike time-stamps in [seconds] spike_clusters : 1D np.ndarray (n,) Vector of cluster indexes nclusters (optional) : scalar total number of clusters `k`. if not given, `nclusters = spike_clusters.max() + 1` Returns ------- spike_matrix : 2D np.ndarray (m, k) ''' from fusilib.io import spikes spike_matrix = spikes.time_locked_spike_matrix(spike_times, spike_clusters, new_onsets, window, nclusters=nclusters) return spike_matrix def bin_spikes_turbo(window, spike_times, spike_clusters, nclusters=None, first_bin_onset=0.0): '''Construct a spike counts matrix at the temporal resolution requested. Parameters ---------- window : scalar Bin size in [seconds] spike_times : 1D np.ndarray (n,) Vector of spike time-stamps in [seconds] spike_clusters : 1D np.ndarray (n,) Vector of cluster indexes nclusters (optional) : scalar total number of clusters `k`. if not given, `nclusters = spike_clusters.max() + 1` first_bin_onset : scalar-like Onset of first bin [seconds] Returns ------- spike_matrix : 2D np.ndarray (m, k) ''' from fusilib.mp import map as parallelmap from scipy import sparse if nclusters is None: # use highest cluster index nclusters = spike_clusters.max() + 1 shape = (len(spike_times), nclusters) sparse_spike_matrix = sparse.csr_matrix((np.ones_like(spike_times), (np.arange(len(spike_times)), spike_clusters)), shape, dtype=np.bool) spike_bins = (spike_times - first_bin_onset) // window nbins = int(np.ceil(spike_bins.max())) + 1 unique_bins = np.unique(spike_bins) spike_matrix = np.zeros((nbins, nclusters), dtype=np.int32) def func(uqbin): return np.asarray( sparse_spike_matrix[spike_bins == uqbin, :].sum(0)).squeeze() spike_counts = parallelmap(func, unique_bins) for idx, scount in zip(unique_bins, spike_counts): spike_matrix[int(idx)] = scount matrix_times = np.arange(nbins)*window + first_bin_onset return matrix_times, spike_matrix class Bunch(dict): """A subclass of dictionary with an additional dot syntax.""" def __init__(self, *args, **kwargs): super(Bunch, self).__init__(*args, **kwargs) self.__dict__ = self def copy(self): """Return a new Bunch instance which is a copy of the current Bunch instance.""" return Bunch(super(Bunch, self).copy()) def mk_log_fusi(raw_mean_image): img = raw_mean_image.copy() img -= img.min() img /= img.max() img *= 1000 img = np.log(img + 1) return img def brain_mask(raw_mean_image): ''' ''' from skimage.filters import threshold_otsu thresh = threshold_otsu(img) binary = img > thresh return binary def cvridge_nodelays(Xfull, Yfull, Xtest=None, Ytest=None, ridges=np.logspace(0, 3, 10), chunklen=10, metric='rsquared', population_optimal=False, delays_mean=True, performance=True, weights=False, predictions=False, verbose=2): ''' ''' if Xtest is None and Ytest is None: ntrain = int(Xfull.shape[0]/2) Xtrain, Xtest = Xfull[:ntrain], Xfull[ntrain:] Ytrain, Ytest = Yfull[:ntrain], Yfull[ntrain:] else: Xtrain, Ytrain = Xfull, Yfull nfeatures = Xtrain.shape[1] feature_prior = spatial_priors.SphericalPrior(nfeatures) temporal_prior = temporal_priors.SphericalPrior(delays=[0]) fit_spherical = models.estimate_stem_wmvnp([Xtrain], Ytrain, [Xtest], Ytest, feature_priors=[feature_prior], temporal_prior=temporal_prior, ridges=ridges, folds=(2, 5), verbosity=verbose, performance=performance, weights=weights, predictions=predictions, population_optimal=population_optimal, # pop opt is more stable metric=metric, chunklen=chunklen) # correlation is more stable if weights is True: kernel_weights = np.nan_to_num(fit_spherical['weights']) voxels_ridge = fit_spherical['optima'][:, -1] weights_mean = models.dual2primal_weights_banded(kernel_weights, Xtrain, np.ones_like( voxels_ridge), temporal_prior, delays_mean=delays_mean, verbose=True) fit_spherical['weights'] = weights_mean return fit_spherical def generate_bootstrap_samples(data_size, subsample_size=100, chunk_size=20, nresamples=1000): '''sample 1000 sequences `s` long from the full dataset `data_size` data_size : int n-samples in the full dataset subsample_size : int sample `s` samples from the full dataset chunks_size : int Break data into non-overlapping chunks of this size before bootstrapping samples nresamples : int Number of bootstrap resamples ''' assert data_size < 2**16 # this will be soooo slow dtype = np.uint16 nsplits = int(data_size / chunk_size) nchunks = int(subsample_size / chunk_size) print(nsplits, nchunks) for idx in range(nresamples): start = np.random.randint(0, chunk_size, dtype=dtype) indices = np.arange(start, data_size, dtype=dtype) splits = np.array_split(indices, nsplits) # gidx = sorted(np.random.permutation(nsplits)[:nchunks]) # w/o replacement gidx = np.random.randint(0, nsplits, size=nchunks) # w/ replacement sample = np.hstack([splits[t] for t in gidx]) yield sample def bootstrap_ols_fit(xtrain, ytrain, bootsamples, include_constant=False): '''bootstrap the bhat estimate with OLS ''' nboot = len(bootsamples) if include_constant: xtrain = np.hstack([np.ones((xtrain.shape[0], 1), dtype=xtrain.dtype), xtrain]) boot_weights = np.zeros( (nboot, xtrain.shape[1], ytrain.shape[1]), dtype=xtrain.dtype) for bdx, samplesidx in enumerate(bootsamples): bhat = models.ols(xtrain[samplesidx], ytrain[samplesidx]) boot_weights[bdx] = bhat if bdx % 500 == 0: print(bdx, bhat.shape) return boot_weights def bootstrap_sta_fit(xtrain, ytrain, bootsamples, include_constant=False): '''bootstrap the bhat estimate with OLS ''' nboot = len(bootsamples) if include_constant: xtrain = np.hstack([np.ones((xtrain.shape[0], 1), dtype=xtrain.dtype), xtrain]) boot_weights = np.zeros( (nboot, xtrain.shape[1], ytrain.shape[1]), dtype=xtrain.dtype) for bdx, samplesidx in enumerate(bootsamples): bhat = np.dot(xtrain[samplesidx].T, ytrain[samplesidx])/len(samplesidx) boot_weights[bdx] = bhat if bdx % 500 == 0: print(bdx, bhat.shape) return boot_weights def bootstrap_ridge_fit(xtrain, ytrain, bootsamples, include_constant=False, ridges=np.logspace(0, 4, 10)): '''bootstrap the bhat estimate with OLS ''' nboot = len(bootsamples) if include_constant: xtrain = np.hstack([np.ones((xtrain.shape[0], 1), dtype=xtrain.dtype), xtrain]) boot_weights = np.zeros( (nboot, xtrain.shape[1], ytrain.shape[1]), dtype=xtrain.dtype) solver = models.solve_l2_primal if xtrain.shape[0] > xtrain.shape[1] \ else models.solve_l2_dual for bdx, samplesidx in enumerate(bootsamples): fit = solver(xtrain[samplesidx], ytrain[samplesidx], xtrain[samplesidx], ytrain[samplesidx], performance=True, ridges=ridges, metric='rsquared', verbose=True if bdx % 1000 == 0 else False, ) # population best perf = np.nanmean(fit['performance'], -1) ridgeperf, ridgeopt = np.max(perf), ridges[np.argmax(perf)] if np.isnan(ridgeperf): ridgeopt = np.inf fit = solver(xtrain[samplesidx], ytrain[samplesidx], xtrain[samplesidx], ytrain[samplesidx], weights=True, ridges=[ridgeopt], metric='rsquared') bhat = fit['weights'] boot_weights[bdx] = bhat if bdx % 500 == 0: print(bdx, bhat.shape) return boot_weights def detrend_secs2oddwindow(secs, dt): '''Valid window length for detrending Parameters ---------- secs : scalar, [seconds] dt : scalar, [seconds] ''' window_size = int(secs/dt) window_size += (window_size - 1) % 2 return window_size def detrend_signal(data, window_size=5, detrend_type='median', **kwargs): '''Detrend a signal Parameters ---------- data : np.ndarray, (ntimepoints, ...) window_size : scalar, (k,) detrend_type : str * median: Median filter * mean: Moving average filter * macausal: Causal moving average filter * bandpass: Bandpass signal * sg: savitsky-golay filter **kwargs : for sg detrending Returns ------- detrended_data : np.ndarray, (ntimepoints, ...) ''' shape = data.shape data = data.reshape(data.shape[0], -1) detdat = temporal_filter( data, window_size=window_size, ftype=detrend_type, **kwargs) detdat = detdat.reshape(shape) return detdat def temporal_filter(fusi, window_size=5, ftype='median', **fkwargs): '''Estimate low-frequency trend and removes it from signal Parameters ---------- fusi (ntimepoints, voxels): np.ndarray ''' assert ftype in ['median', 'sg', 'ma', 'macausal', 'bandpass'] if fusi.ndim == 1: fusi = fusi[..., None] fusi_filt = np.zeros_like(fusi) for chidx in range(fusi.shape[1]): pixel_data = fusi[:, chidx] # .copy() pixel_mean = pixel_data.mean() pixel_data = pixel_data - pixel_mean if ftype == 'median': temporal_filter = signal.medfilt(pixel_data, window_size) elif ftype == 'sg': polyorder = 3 if 'polyorder' not in fkwargs else fkwargs.pop( 'polyorder') temporal_filter = signal.savgol_filter(pixel_data, window_size, polyorder, **fkwargs) elif ftype == 'ma': delays = range(-window_size, window_size+1) temporal_filter = tikutils.delay_signal( pixel_data, delays).mean(-1) elif ftype == 'macausal': delays = range(window_size+1) temporal_filter = tikutils.delay_signal( pixel_data, delays).mean(-1) elif ftype == 'bandpass': temporal_filter = band_pass_signal(pixel_data, **kwargs) # add mean back new_signal = (pixel_data - temporal_filter) + pixel_mean fusi_filt[:, chidx] = new_signal if chidx % 1000 == 0: print(ftype, window_size, chidx, new_signal.sum(), pixel_mean, fkwargs) return fusi_filt def get_centered_samples(data, outsamples): '''Extract "N" samples from the middle of the data. ''' oldsamples = data.shape[0] window_left = int((oldsamples - outsamples)/2) #window_left = int((oldsamples - window_center)/2) newdata = data[window_left:window_left + outsamples] assert newdata.shape[0] == outsamples return newdata def get_temporal_filters(fusi, window_size=5, ftype='median', **fkwargs): '''fusi (ntimepoints, pixels) estimates and returns a filter ''' assert ftype in ['median', 'sg', 'ma', 'macausal', 'bandpass'] if fusi.ndim == 1: fusi = fusi[..., None] fusi_filt = np.zeros_like(fusi) for chidx in range(fusi.shape[1]): pixel_data = fusi[:, chidx].copy() pixel_mean = pixel_data.mean() pixel_data = pixel_data - pixel_mean if ftype == 'median': temporal_filter = signal.medfilt(pixel_data, window_size) elif ftype == 'sg': polyorder = 3 if 'polyorder' not in fkwargs else fkwargs.pop( 'polyorder') temporal_filter = signal.savgol_filter(pixel_data, window_size, polyorder, **fkwargs) elif ftype == 'ma': delays = range(-window_size, window_size+1) temporal_filter = tikutils.delay_signal( pixel_data, delays).mean(-1) elif ftype == 'macausal': delays = range(window_size+1) temporal_filter = tikutils.delay_signal( pixel_data, delays).mean(-1) elif ftype == 'bandpass': temporal_filter = band_pass_signal(pixel_data, **fkwargs) # add mean back new_signal = temporal_filter + pixel_mean fusi_filt[:, chidx] = new_signal if chidx % 1000 == 0: print(ftype, window_size, chidx, new_signal.sum(), pixel_mean, fkwargs) return fusi_filt.squeeze() def autocorr(y, yy=None, nlags=1): ''' Auto-correlation function for `y` a 1D-array `nlags` is in sample units. Parameters ---------- y : 1D np.ndarray The signal yy : optional nlags : int Number of lags to return (0 - N) Returns ------- rho : 1D np.ndarray The auto-correlation values upto `nlags` including zero ''' assert y.ndim == 1 if yy is None: yy = y assert yy.ndim == 1 acorr = np.correlate(y, yy, 'same') acorr /= acorr.max() # normalized n = int(acorr.shape[0]/2) # lags = np.arange(acorr.shape[0]) - n # return acorr[np.where(np.logical_and(lags >= 0, lags <= nlags))] # Minutely faster return acorr[n:n+nlags+1] def make_mask(superior_top, superior_bottom, coronal_medial, coronal_lateral, shape): mask = np.zeros(shape, dtype=np.bool) mask[min(coronal_medial, coronal_lateral):max(coronal_medial, coronal_lateral), min(superior_bottom, superior_top):max(superior_bottom, superior_top)] = True return mask def band_pass_signal(data, sample_rate=1.0, ntaps=5, cutoff=[24.0, 48.0]): '''Band-pass a signal with a FIR filter. data (np.ndarray) : sample_rate (float-like): in Hz cutoff (list-like) : (low, high) frequency cutoffs ''' # filter photo signal from scipy import signal ntaps = max(int(sample_rate/float(ntaps)), 1) cutoff =
np.asarray(cutoff)
numpy.asarray
import os import subprocess import pickle import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy as sc import pathlib import threading import concurrent.futures as cf from scipy.signal import medfilt import csv import tikzplotlib import encoders_comparison_tool as enc import video_info as vi from bj_delta import bj_delta, bj_delta_akima # Colors in terminal class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' useage_log_suffix = "_useage.log" psnr_log_suffix = "-psnr_logfile.txt" ssim_log_suffix = "-ssim_logfile.txt" vmaf_log_suffix = "-vmaf_logfile.txt" videofiles = [] codecs = ["av1", "svtav1", "vp9", "x264", "x265", "vvc"] codecs_short = {"av1": "AV1", "svtav1": "SVT-AV1", "vp9": "VP9", "x264": "x264", "x265": "x265", "vvc": "VVenC",} sequences = ["Netflix Aerial yuv420p10le 60fps", "ShakeNDry yuv420p 30fps", "SunBath yuv420p10le 50fps", "Tree Shade yuv420p10le 30fps", "Sintel2 yuv420p10le 24fps", ] preset = ["preset"] top_dir = "/run/media/ondra/video/test2/" # top_dir = "/run/media/ondra/61597e72-9c9f-4edd-afab-110602521f55/test2/" graphics_dir = "graphs/" sequences_short = { "Netflix Aerial yuv420p10le 60fps": "Aerial", "ShakeNDry yuv420p 30fps": "ShakeNDry", "SunBath yuv420p10le 50fps": "SunBath", "Tree Shade yuv420p10le 30fps": "Tree Shade", "Sintel2 yuv420p10le 24fps": "Sintel2", } series_labels = { 'av1-cpu-used_3-': "AV1 cpu-used 3", 'av1-cpu-used_4-': "AV1 cpu-used 4", 'av1-cpu-used_5-': "AV1 cpu-used 5", 'av1-cpu-used_6-': "AV1 cpu-used 6", 'svtav1-preset_3-': "SVT-AV1 preset 3", 'svtav1-preset_5-': "SVT-AV1 preset 5", 'svtav1-preset_7-': "SVT-AV1 preset 7", 'svtav1-preset_9-': "SVT-AV1 preset 9", 'svtav1-preset_11-': "SVT-AV1 preset 11", 'svtav1-preset_13-': "SVT-AV1 preset 13", 'vp9-rc_0-': "VP9 RC 0", 'vp9-cpu-used_0-': "VP9 cpu-used 0", 'vp9-cpu-used_2-': "VP9 cpu-used 2", 'vp9-cpu-used_4-': "VP9 cpu-used 4", # 'x264-preset_ultrafast-': "x264 ultrafast", 'x264-preset_fast-': "x264 fast", 'x264-preset_medium-': "x264 medium", 'x264-preset_slow-': "x264 slow", 'x264-preset_veryslow-': "x264 veryslow", 'x264-preset_placebo-': "x264 placebo", 'x265-preset_ultrafast-': "x265 ultrafast", 'x265-preset_fast-': "x265 fast", 'x265-preset_medium-': "x265 medium", 'x265-preset_slow-': "x265 slow", 'x265-preset_veryslow-': "x265 veryslow", 'vvc-preset_faster-': "VVenC faster", 'vvc-preset_fast-': "VVenC fast", 'vvc-preset_medium-': "VVenC medium", } psnr_lim = { "Netflix Aerial yuv420p10le 60fps": (33, 47), "ShakeNDry yuv420p 30fps": (33, 44), "Sintel2 yuv420p10le 24fps": (40, 60), "SunBath yuv420p10le 50fps": (35, 55), "Tree Shade yuv420p10le 30fps": (35, 45), } ssim_lim = { "Netflix Aerial yuv420p10le 60fps": (0.9, 1), "ShakeNDry yuv420p 30fps": (0.9, 0.98), "Sintel2 yuv420p10le 24fps": (0.98, 1), "SunBath yuv420p10le 50fps": (0.94, 1), "Tree Shade yuv420p10le 30fps": (0.92, 0.99), } msssim_lim = { "Netflix Aerial yuv420p10le 60fps": (0.9, 1), "ShakeNDry yuv420p 30fps": (0.92, 1), "Sintel2 yuv420p10le 24fps": (0.98, 1), "SunBath yuv420p10le 50fps": (0.94, 1), "Tree Shade yuv420p10le 30fps": (0.96, 1), } vmaf_lim = { "Netflix Aerial yuv420p10le 60fps": (60, 100), "ShakeNDry yuv420p 30fps": (70, 100), "Sintel2 yuv420p10le 24fps": (70, 100), "SunBath yuv420p10le 50fps": (70, 100), "Tree Shade yuv420p10le 30fps": (80, 100), } bitrate_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 150), "ShakeNDry yuv420p 30fps": (0, 200), "Sintel2 yuv420p10le 24fps": (0, 45), "SunBath yuv420p10le 50fps": (0, 150), "Tree Shade yuv420p10le 30fps": (0, 200), } bitrate_lim_log = { "Netflix Aerial yuv420p10le 60fps": (0.1, 1000), "ShakeNDry yuv420p 30fps": (0.1, 1000), "SunBath yuv420p10le 50fps": (0.1, 1000), "Tree Shade yuv420p10le 30fps": (0.1, 1000), "Sintel2 yuv420p10le 24fps": (0.1, 100), } processing_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 50000), "ShakeNDry yuv420p 30fps": (0, 8000), "SunBath yuv420p10le 50fps": (0, 5000), "Tree Shade yuv420p10le 30fps": (0, 12000), "Sintel2 yuv420p10le 24fps": (0, 12000), } processing_lim_log = { "Netflix Aerial yuv420p10le 60fps": (1, 1000), "ShakeNDry yuv420p 30fps": (1, 10000), "SunBath yuv420p10le 50fps": (1, 1000), "Tree Shade yuv420p10le 30fps": (1, 1000), "Sintel2 yuv420p10le 24fps": (1, 1000), } cpu_time_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 200000), "ShakeNDry yuv420p 30fps": (0, 60000), "SunBath yuv420p10le 50fps": (0, 35000), "Tree Shade yuv420p10le 30fps": (0, 70000), "Sintel2 yuv420p10le 24fps": (0, 70000), } cpu_time_lim_log = { "Netflix Aerial yuv420p10le 60fps": (0.1, 1000), "ShakeNDry yuv420p 30fps": (0.1, 10000), "SunBath yuv420p10le 50fps": (0.1, 1000), "Tree Shade yuv420p10le 30fps": (0.1, 1000), "Sintel2 yuv420p10le 24fps": (0.1, 1000), } cpu_fps_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 200), "ShakeNDry yuv420p 30fps": (0, 200), "SunBath yuv420p10le 50fps": (0, 200), "Tree Shade yuv420p10le 30fps": (0, 200), "Sintel2 yuv420p10le 24fps": (0, 200), } decode_fps_lim = { "Netflix Aerial yuv420p10le 60fps": (0, None), "ShakeNDry yuv420p 30fps": (0, 60), "SunBath yuv420p10le 50fps": (0, 60), "Tree Shade yuv420p10le 30fps": (0, 60), "Sintel2 yuv420p10le 24fps": (0, 60), } BJ1_serie = "x264-preset_placebo-" BD_xname = "avg_bitrate_mb" BD_ynames = ["psnr_avg", "ssim_avg", "msssim_avg", "vmaf_avg"] BD_names = [] for n in BD_ynames: # BD_names.append("bd_" + n) BD_names.append("bd_rate_" + n) encode_excluded_states = ["measuring decode"] speeds_table = { "placebo": 0, "slow": 3, "slower": 2, "veryslow": 1, "medium": 4, "fast": 5, "faster": 6, "veryfast": 7, "superfast": 8, "ultrafast": 9, } binaries = { "ffprobe": "/usr/bin/ffprobe", "ffmpeg": "/usr/bin/ffmpeg" } vi.set_defaults(binaries) def video_stream_size(videofile_path): if videofile_path.endswith(".266"): return os.path.getsize(videofile_path[0:-4] + ".266") / 1024 #in KiB log = videofile_path + ".stream_size" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream size hit!") return float(s) result = subprocess.run( [ "ffmpeg", "-hide_banner", "-i", videofile_path, "-map", "0:v:0", "-c", "copy", "-f", "null", "-" ], capture_output=True, text=True, ) try: size = (result.stderr.rsplit("\n")[-2].rsplit(" ")[0].rsplit(":")[1][0: -2]) s = float(size) # in KiB with open(log, "w") as f: f.write(str(s)) return s except ValueError: raise ValueError(result.stderr.rstrip("\n")) def video_stream_length(videofile_path): if videofile_path.endswith(".266"): videofile = videofile_path[:-4] + ".mkv" else: videofile = videofile_path log = videofile + ".stream_length" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream length hit!") return float(s) result = vi.video_length_seconds(videofile) with open(log, "w") as f: f.write(str(result)) return result def video_stream_frames(videofile_path): if videofile_path.endswith(".266"): videofile = videofile_path[:-4] + ".mkv" else: videofile = videofile_path log = videofile + ".stream_frames" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream framenum hit!") return int(s) result = vi.video_frames(videofile) with open(log, "w") as f: f.write(str(result)) return result def series_label(key, sequence=None): if sequence is None or sequence in key: k = series_labels.keys() for s in (s for s in k if s in key): return series_labels[s] raise KeyError ''' def simple_plot(x, y, xlabel, ylabel, savefile, minxlim=True): i1, ax1 = plt.subplots() plt.plot(x, y) ax1.set(xlabel=xlabel, ylabel=ylabel) if minxlim: ax1.set_xlim(left=min(x), right=max(x)) ax1.grid() plt.savefig(f"{savefile}.svg") plt.savefig(f"{savefile}.pgf") tikzplotlib.save(f"{savefile}.tex") plt.close(i1) def composite_plot(mxy, mlegend, xlabel, ylabel, savefile, xlim=None, ylim=None): i1, ax1 = plt.subplots() i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] plt.plot(x, y, label=mlegend[next(i)], marker="+") ax1.set(xlabel=xlabel, ylabel=ylabel) plt.legend() if xlim is True: ax1.set_xlim(left=min(x), right=max(x)) elif xlim is not None: ax1.set_xlim(left=xlim[0], right=xlim[1]) if ylim is True: ax1.set_ylim(bottom=min(y), top=max(y)) elif ylim is not None: ax1.set_ylim(bottom=ylim[0], top=ylim[1]) ax1.grid() p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close(i1) def composite_plot_smooth(mxy, mlegend, xlabel, ylabel, savefile, xlim=None, ylim=None): i1, ax1 = plt.subplots() i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] c = plt.scatter(x, y, label=mlegend[next(i)], marker="+") colr = c.get_facecolor()[0] lx = np.log(x) p = sc.interpolate.Akima1DInterpolator(lx, y) x_smooth = np.linspace(min(x), max(x), 1000) y_smooth = p(np.log(x_smooth)) plt.plot(x_smooth, y_smooth, color=colr) ax1.set(xlabel=xlabel, ylabel=ylabel) plt.legend() if xlim is True: ax1.set_xlim(left=x.min(), right=x.max()) elif xlim is not None: ax1.set_xlim(left=xlim[0], right=xlim[1]) if ylim is True: ax1.set_ylim(bottom=y.min(), top=y.max()) elif ylim is not None: ax1.set_ylim(bottom=ylim[0], top=ylim[1]) ax1.grid() p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close(i1) ''' def plot_graphs(data, sequence=None, codec=None): if sequence is None and codec is None: out = graphics_dir elif sequence is None: out = graphics_dir + codec + "/" elif codec is None: out = graphics_dir + sequences_short[sequence] + "/" else: out = graphics_dir + sequences_short[sequence] + "/" + codec + "/" lower_right = 4 d = df_to_plot(data, "avg_bitrate_mb", "psnr_avg") composite_plot(d, "Bitrate [Mbit/s]", "PSNR (YUV) [dB]", out + "psnr", xlim=bitrate_lim[sequence], ylim=psnr_lim[sequence], legend_loc=lower_right) composite_plot(d, "Bitrate [Mbit/s]", "PSNR (YUV) [dB]", out + "psnr_log", ylim=psnr_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "ssim_avg") composite_plot(d, "Bitrate [Mbit/s]", "SSIM", out + "ssim", xlim=bitrate_lim[sequence], ylim=ssim_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "SSIM", out + "ssim_log", ylim=ssim_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "msssim_avg") composite_plot(d, "Bitrate [Mbit/s]", "MS-SSIM", out + "msssim", xlim=bitrate_lim[sequence], ylim=msssim_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "MS-SSIM", out + "msssim_log", ylim=msssim_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "vmaf_avg") composite_plot(d, "Bitrate [Mbit/s]", "VMAF", out + "vmaf", xlim=bitrate_lim[sequence], ylim=vmaf_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "VMAF", out + "vmaf_log", ylim=vmaf_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "decode_time_fps") composite_plot(d, "Bitrate [Mbit/s]", "Rychlost dekódování [frame/s]", out + "decode", ylim=(0, None), xlim=bitrate_lim_log[sequence], xlog=True) d = df_to_plot(data, "avg_bitrate_mb", "total_time_fps") composite_plot(d, "Bitrate [Mbit/s]", "Procesorový čas [s/frame]", out + "encode", ylim=(0.1, None), xlim=bitrate_lim_log[sequence], xlog=True, ylog=True) def df_to_plot(data, x_name, y_name): tables = [t[[x_name, y_name]].rename(columns={x_name: "x", y_name: "y"}).sort_values(by="x") for t in list(data["table"])] l = list(data["label"]) s = list(data["speed"]) lt = zip(l, tables, s) for m in lt: setattr(m[1], "label", m[0]) setattr(m[1], "speed", m[2]) return tables def df_to_plot2(data, x_name, y_name): tables = [data[[x_name, y_name]].rename(columns={x_name: "x", y_name: "y"}).loc[data["codec"] == s].sort_values(by="x") for s in codecs] lt = zip(codecs, tables) for m in lt: setattr(m[1], "label", codecs_short[m[0]]) return tables #def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): #i1, ax1 = plt.subplots() #if not (xlog or ylog): #tikz_before = False #if xlog: #ax1.set_xscale('log') #ax1.grid(True, which="both") #if xlogscalar: #ax1.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_xscale('linear') #ax1.grid(True) #if ylog: #ax1.set_yscale('log') #ax1.grid(True, which="both") #if ylogscalar: #ax1.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_yscale('linear') #ax1.grid(True) #for table in data: #if smooth: #c = plt.scatter(table.x, table.y, label=table.label, marker="+") #colr = c.get_facecolor()[0] #if log_inter: #lx = np.log(table.x) #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) #else: #lx = table.x #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.linspace(min(table.x), max(table.x), 200) #y_smooth = p(np.log(x_smooth)) #plt.plot(x_smooth, y_smooth, color=colr) #else: #plt.plot(table.x, table.y, label=table.label, marker="+") #ax1.set(xlabel=xlabel, ylabel=ylabel) #if legend_loc is None: #ax1.legend() #else: #ax1.legend(loc=legend_loc) #if xlim is True: #ax1.set_xlim(left=table.x.min(), right=table.x.max()) #elif xlim is not None: #ax1.set_xlim(left=xlim[0], right=xlim[1]) #if ylim is True: #ax1.set_ylim(bottom=table.y.min(), top=table.y.max()) #elif ylim is not None: #ax1.set_ylim(bottom=ylim[0], top=ylim[1]) #p = os.path.split(savefile) #enc.create_dir(p[0] + '/svg/') #enc.create_dir(p[0] + '/png/') #enc.create_dir(p[0] + '/tex/') #if tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") #plt.savefig(f"{p[0] + '/png/' + p[1]}.png") #if not tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.close(i1) def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): plt.figure() plt.axis() if not (xlog or ylog): tikz_before = False if xlog: plt.xscale('log') plt.grid(True, which="both") # if xlogscalar: # plt.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.xscale('linear') plt.grid(True) if ylog: plt.yscale('log') plt.grid(True, which="both") # if ylogscalar: # plt.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.yscale('linear') plt.grid(True) for table in data: if smooth: c = plt.scatter(table.x, table.y, label=table.label, marker="+") colr = c.get_facecolor()[0] if log_inter: lx = np.log(table.x) p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) else: lx = table.x p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.linspace(min(table.x), max(table.x), 200) y_smooth = p(np.log(x_smooth)) plt.plot(x_smooth, y_smooth, color=colr) else: plt.plot(table.x, table.y, label=table.label, marker="+") plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend(loc=legend_loc) if xlim is True: plt.xlim(left=table.x.min(), right=table.x.max()) elif xlim is not None: plt.xlim(left=xlim[0], right=xlim[1]) if ylim is True: plt.ylim(bottom=table.y.min(), top=table.y.max()) elif ylim is not None: plt.ylim(bottom=ylim[0], top=ylim[1]) p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') if tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") if not tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close() def df_to_latex_table(values, save_path): pass def calc_bj(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") def formatter1(x): s = ('%1.2f' % x).replace(".",",") + "\,\%" return s def formatter2(x): s = ('%1.2f' % x).replace(".",",") + "\%" if x > 0: s = "\cellcolor{red!25}" + s elif x < 0: s = "\cellcolor{green!25}" + s return s def calc_bj_cross_to_table(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): table_metric = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) table_rate = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) for mleg in mlegend_o: mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(mleg)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(mleg) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] table_metric.loc[l, mleg] = bd_metric table_rate.loc[l, mleg] = bd_rate # print(table_metric.to_latex(float_format="%.2f", decimal=",")) # print(table_rate.to_latex(float_format="%.2f")) return table_metric, table_rate ''' def calc_bj_akima(dftable, x_name, y_name, bd_metric_legend, bd_rate_legend): xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") ''' def calc_bj_akima(data, x_name, y_name, bd_metric_legend, bd_rate_legend): df = data.copy() for t in df.itertuples(): t.table.rename(columns={x_name: "x", y_name: "y"}).sort_values(by="x") df bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) def read_table_kcolv(logpath): with open(logpath, "r") as f: firstline = next(f).rstrip(" \n") columns = [] for x in firstline.rsplit(" "): columns.append(x.rsplit(":")[0]) r = range(len(columns)) table = pd.read_table(logpath, names=columns, usecols=list(r), sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in r}) return table.apply(pd.to_numeric) class PSNR_values: def __init__(self, logpath): self.logpath = logpath table = read_table_kcolv(self.logpath) self.n = table.n self.mse_avg = table.mse_avg self.mse_y = table.mse_y self.mse_u = table.mse_u self.mse_v = table.mse_v self.psnr_avg = table.psnr_avg self.psnr_y = table.psnr_y self.psnr_u = table.psnr_u self.psnr_v = table.psnr_v self.mse_avg_avg = np.average(self.mse_avg) self.mse_y_avg = np.average(self.mse_y) self.mse_u_avg = np.average(self.mse_u) self.mse_v_avg = np.average(self.mse_v) self.psnr_avg_avg = np.average(self.psnr_avg) self.psnr_y_avg = np.average(self.psnr_y) self.psnr_u_avg = np.average(self.psnr_u) self.psnr_v_avg = np.average(self.psnr_v) class SSIM_values: def __init__(self, logpath): self.logpath = logpath names = ("n", "Y", "U", "V", "All", "unnorm") table = pd.read_table(self.logpath, names=names, sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in range(5)}) table.unnorm = table.unnorm.str.slice(start=1, stop=-1) table = table.apply(pd.to_numeric) self.n = table.n self.Y = table.Y self.U = table.U self.V = table.V self.All = table.All self.unnorm = table.unnorm # unnorm = 10*log10(1-All) self.Y_avg = np.average(self.Y) self.U_avg = np.average(self.U) self.V_avg = np.average(self.V) self.All_avg = np.average(self.All) self.unnorm_avg = np.average(self.unnorm) class VMAF_values: def __init__(self, logpath): self.logpath = logpath table = pd.read_table(logpath, sep=",") table = table.loc[:, ~table.columns.str.contains('^Unnamed')] self.table = table self.vmaf_avg = table.vmaf.mean() class Useage_values: def __init__(self, logpath): self.logpath = logpath with open(logpath, "r") as log: firstline = next(log) self.row_names = firstline.rsplit(",")[0:-1] table = pd.read_csv(self.logpath) self.table = table self.state_names = list(table.state.unique()) total_time = 0 total_cpu_time = 0 for state in [x for x in self.state_names if x not in encode_excluded_states]: for row in self.row_names: if row == "state": pass else: arr =
np.array(table[row][table.index[table['state'] == state]])
numpy.array
# # CanvasRenderQt.py -- for rendering into a ImageViewQt widget # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # import numpy as np from ginga.qtw.QtHelp import (QtCore, QPen, QPolygon, QColor, QFontMetrics, QPainterPath, QImage, QPixmap, get_font, get_painter) from ginga import colors from ginga.vec import CanvasRenderVec as vec from ginga.canvas import render # force registration of all canvas types import ginga.canvas.types.all # noqa class RenderContext(render.RenderContextBase): def __init__(self, renderer, viewer, surface): render.RenderContextBase.__init__(self, renderer, viewer) self.cr = get_painter(surface) def __get_color(self, color, alpha): clr = QColor() if isinstance(color, tuple): clr.setRgbF(color[0], color[1], color[2], alpha) else: r, g, b = colors.lookup_color(color) clr.setRgbF(r, g, b, alpha) return clr def set_line_from_shape(self, shape): pen = QPen() pen.setWidthF(getattr(shape, 'linewidth', 1.0)) if hasattr(shape, 'linestyle'): if shape.linestyle == 'dash': pen.setDashPattern([3.0, 4.0, 6.0, 4.0]) pen.setDashOffset(5.0) alpha = getattr(shape, 'alpha', 1.0) color = self.__get_color(shape.color, alpha) pen.setColor(color) self.cr.setPen(pen) def set_fill_from_shape(self, shape): fill = getattr(shape, 'fill', False) if fill: if hasattr(shape, 'fillcolor') and shape.fillcolor: color = shape.fillcolor else: color = shape.color if color is None: self.cr.setBrush(QtCore.Qt.NoBrush) else: alpha = getattr(shape, 'alpha', None) fillalpha = getattr(shape, 'fillalpha', alpha) color = self.__get_color(color, fillalpha) self.cr.setBrush(color) else: self.cr.setBrush(QtCore.Qt.NoBrush) def set_font_from_shape(self, shape): if hasattr(shape, 'font'): if (hasattr(shape, 'fontsize') and shape.fontsize is not None and not getattr(shape, 'fontscale', False)): fontsize = shape.fontsize else: fontsize = shape.scale_font(self.viewer) fontsize = self.scale_fontsize(fontsize) font = get_font(shape.font, fontsize) self.cr.setFont(font) def initialize_from_shape(self, shape, line=True, fill=True, font=True): if line: self.set_line_from_shape(shape) if fill: self.set_fill_from_shape(shape) if font: self.set_font_from_shape(shape) def set_line(self, color, alpha=1.0, linewidth=1, style='solid'): clr = self.__get_color(color, alpha) pen = self.cr.pen() pen.setColor(clr) pen.setWidthF(float(linewidth)) if style == 'dash': pen.setDashPattern([3.0, 4.0, 6.0, 4.0]) pen.setDashOffset(5.0) self.cr.setPen(pen) def set_fill(self, color, alpha=1.0): if color is None: self.cr.setBrush(QtCore.Qt.NoBrush) else: color = self.__get_color(color, alpha) self.cr.setBrush(color) def set_font(self, fontname, fontsize, color='black', alpha=1.0): self.set_line(color, alpha=alpha) fontsize = self.scale_fontsize(fontsize) font = get_font(fontname, fontsize) self.cr.setFont(font) def text_extents(self, text): fm = self.cr.fontMetrics() if hasattr(fm, 'horizontalAdvance'): width = fm.horizontalAdvance(text) else: width = fm.width(text) height = fm.height() return width, height def setup_pen_brush(self, pen, brush): if pen is not None: self.set_line(pen.color, alpha=pen.alpha, linewidth=pen.linewidth, style=pen.linestyle) self.cr.setBrush(QtCore.Qt.NoBrush) if brush is not None: self.set_fill(brush.color, alpha=brush.alpha) ##### DRAWING OPERATIONS ##### ## def draw_image(self, cvs_img, cpoints, cache, whence, order='RGBA'): ## # no-op for this renderer ## pass def draw_text(self, cx, cy, text, rot_deg=0.0): self.cr.save() self.cr.translate(cx, cy) self.cr.rotate(-rot_deg) self.cr.drawText(0, 0, text) self.cr.restore() def draw_polygon(self, cpoints): ## cpoints = trcalc.strip_z(cpoints) qpoints = [QtCore.QPoint(p[0], p[1]) for p in cpoints] p = cpoints[0] qpoints.append(QtCore.QPoint(p[0], p[1])) qpoly = QPolygon(qpoints) self.cr.drawPolygon(qpoly) def draw_circle(self, cx, cy, cradius): # this is necessary to work around a bug in Qt--radius of 0 # causes a crash cradius = max(cradius, 0.000001) pt = QtCore.QPointF(cx, cy) self.cr.drawEllipse(pt, float(cradius), float(cradius)) def draw_bezier_curve(self, cp): path = QPainterPath() path.moveTo(cp[0][0], cp[0][1]) path.cubicTo(cp[1][0], cp[1][1], cp[2][0], cp[2][1], cp[3][0], cp[3][1]) self.cr.drawPath(path) def draw_ellipse_bezier(self, cp): # draw 4 bezier curves to make the ellipse path = QPainterPath() path.moveTo(cp[0][0], cp[0][1]) path.cubicTo(cp[1][0], cp[1][1], cp[2][0], cp[2][1], cp[3][0], cp[3][1]) path.cubicTo(cp[4][0], cp[4][1], cp[5][0], cp[5][1], cp[6][0], cp[6][1]) path.cubicTo(cp[7][0], cp[7][1], cp[8][0], cp[8][1], cp[9][0], cp[9][1]) path.cubicTo(cp[10][0], cp[10][1], cp[11][0], cp[11][1], cp[12][0], cp[12][1]) self.cr.drawPath(path) def draw_line(self, cx1, cy1, cx2, cy2): self.cr.pen().setCapStyle(QtCore.Qt.RoundCap) self.cr.drawLine(cx1, cy1, cx2, cy2) def draw_path(self, cp): ## cp = trcalc.strip_z(cp) self.cr.pen().setCapStyle(QtCore.Qt.RoundCap) pts = [QtCore.QLineF(QtCore.QPointF(cp[i][0], cp[i][1]), QtCore.QPointF(cp[i + 1][0], cp[i + 1][1])) for i in range(len(cp) - 1)] self.cr.drawLines(pts) class CanvasRenderer(render.StandardPipelineRenderer): def __init__(self, viewer, surface_type='qimage'): render.StandardPipelineRenderer.__init__(self, viewer) self.kind = 'qt' # Qt needs this to be in BGRA self.rgb_order = 'BGRA' self.qimg_fmt = QImage.Format_RGB32 self.surface_type = surface_type # the offscreen drawing surface self.surface = None def resize(self, dims): """Resize our drawing area to encompass a space defined by the given dimensions. """ width, height = dims[:2] self.logger.debug("renderer reconfigured to %dx%d" % ( width, height)) new_wd, new_ht = width * 2, height * 2 if self.surface_type == 'qpixmap': if ((self.surface is None) or (self.surface.width() < width) or (self.surface.height() < height)): self.surface = QPixmap(new_wd, new_ht) else: self.surface = QImage(width, height, self.qimg_fmt) super(CanvasRenderer, self).resize(dims) def _get_qimage(self, rgb_data): ht, wd, channels = rgb_data.shape result = QImage(rgb_data.data, wd, ht, self.qimg_fmt) # Need to hang on to a reference to the array result.ndarray = rgb_data return result def _get_color(self, r, g, b): # TODO: combine with the method from the RenderContext? n = 255.0 clr = QColor(int(r * n), int(g * n), int(b * n)) return clr def get_surface_as_array(self, order=None): if self.surface_type == 'qpixmap': qimg = self.surface.toImage() else: qimg = self.surface #qimg = qimg.convertToFormat(QImage.Format_RGBA32) width, height = qimg.width(), qimg.height() if hasattr(qimg, 'bits'): # PyQt ptr = qimg.bits() ptr.setsize(qimg.byteCount()) else: # PySide ptr = qimg.constBits() arr = np.array(ptr).reshape(height, width, 4) # rendering surface is usually larger than window, so cutout # just enough to show what has been drawn win_wd, win_ht = self.dims[:2] arr =
np.ascontiguousarray(arr[:win_ht, :win_wd, :])
numpy.ascontiguousarray
# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pwlfit/transform.""" import unittest import numpy as np from pwlfit import test_util from pwlfit import transform import scipy.stats identity_transform = transform.identity log_transform = np.log log1p_transform = np.log1p symlog1p_transform = transform.symlog1p class FindBestTransformTest(test_util.PWLFitTest): def test_weighted_pearson_correlation_is_independent_of_weight_scale(self): np.random.seed(4) x = np.random.normal(size=100) y = x + np.random.normal(size=100) w = np.random.uniform(size=100) corr_w = transform.weighted_pearson_correlation(x, y, w) corr_5w = transform.weighted_pearson_correlation(x, y, 5 * w) self.assertAlmostEqual(corr_w, corr_5w) def test_weighted_pearson_correlation_matches_scipy_for_equal_weights(self): # Verify that our weighted pearson correlation matches scipy's unweighted # pearson correlation when the weights are equal. np.random.seed(4) x = np.random.normal(size=100) w = np.ones_like(x) # Non-correlated. y = np.random.normal(size=100) weightless_corr, _ = scipy.stats.pearsonr(x, y) weighted_corr = transform.weighted_pearson_correlation(x, y, w) self.assertAlmostEqual(weightless_corr, weighted_corr) # Correlated. y = x + np.random.normal(size=100) weightless_corr, _ = scipy.stats.pearsonr(x, y) weighted_corr = transform.weighted_pearson_correlation(x, y, w) self.assertAlmostEqual(weightless_corr, weighted_corr) # Perfect correlation. y = x weightless_corr, _ = scipy.stats.pearsonr(x, y) weighted_corr = transform.weighted_pearson_correlation(x, y, w) self.assertAlmostEqual(weightless_corr, weighted_corr) def test_weighted_pearson_correlation_nan_when_x_is_constant(self): np.random.seed(6) x = np.repeat(np.random.normal(), 10) y = np.random.normal(size=10) w = np.random.uniform(size=10) correlation = transform.weighted_pearson_correlation(x, y, w) self.assertTrue(np.isnan(correlation)) def test_weighted_pearson_correlation_nan_when_y_is_constant(self): np.random.seed(7) x = np.random.normal(size=10) y = np.repeat(np.random.normal(), 10) w = np.random.uniform(size=10) correlation = transform.weighted_pearson_correlation(x, y, w) self.assertTrue(np.isnan(correlation)) def test_weighted_pearson_correlation_raises_on_bad_input(self): no_pts = np.array([], dtype=float) two_pts = np.array([1., 2.]) three_pts = np.array([1., 2., 3.]) with self.assertRaises(ValueError): transform.weighted_pearson_correlation(no_pts, no_pts, no_pts) with self.assertRaises(ValueError): transform.weighted_pearson_correlation(three_pts, two_pts, two_pts) with self.assertRaises(ValueError): transform.weighted_pearson_correlation(three_pts, two_pts, three_pts) with self.assertRaises(ValueError): transform.weighted_pearson_correlation(three_pts, three_pts, two_pts) with self.assertRaises(ValueError): transform.weighted_pearson_correlation(no_pts, two_pts, three_pts) # Doesn't raise. transform.weighted_pearson_correlation(two_pts, two_pts, two_pts) transform.weighted_pearson_correlation(three_pts, three_pts, three_pts) def test_identity_function(self): np.random.seed(4) xs = np.random.normal(size=100) self.assert_allclose(xs, transform.identity(xs)) def test_symlog1p_matches_log1p(self): np.random.seed(4) xs = np.abs(np.random.normal(size=100)) self.assert_allclose(np.log1p(xs), transform.symlog1p(xs)) self.assert_allclose(-np.log1p(xs), transform.symlog1p(-xs)) def test_find_best_transform_is_identity_for_constant_xs(self): np.random.seed(5) x = np.ones(10) y = np.arange(10) w = np.random.uniform(size=len(x)) found_transform = transform.find_best_transform(x, y, w) self.assertEqual(identity_transform, found_transform) def test_find_best_transform_is_identity_for_constant_ys(self): np.random.seed(5) x = np.arange(10) y = np.ones(10) w = np.random.uniform(size=len(x)) found_transform = transform.find_best_transform(x, y, w, pct_to_clip=0) self.assertEqual(identity_transform, found_transform) def test_find_best_transform_is_identity_for_xs_constant_after_clipping(self): np.random.seed(5) x = np.array([1.] + [2] * 100 + [3]) y =
np.log(x)
numpy.log
#!/usr/bin/env python import pandas as pd import numpy as np import os from datetime import datetime, timedelta import math import logging from pathlib import Path import seaborn as sns import matplotlib.pyplot as plt import matplotlib.dates as mdates import jinja2 import pdfkit import sys sys.path.append('../../') from src.features import build_features from src.visualization import visualize class beiwe_participation_report(): ''' ''' def __init__(self,report_date): ''' ''' self.report_date = report_date self.firstDate = datetime(2020,5,13) self.maxDailySurveys = np.busday_count(self.firstDate.date(), self.report_date.date(), weekmask='Sun Mon Wed Fri') self.maxWeeklySurveys = np.busday_count(self.firstDate.date(), self.report_date.date(), weekmask='Sat') def import_survey_summary(self,surveyType='morning'): ''' Imports survey summary csv files, cuts it down to the specified date, and returns a cleaned dataframe ''' # importing datafile temp = pd.read_csv(f"../../data/interim/survey_mood_{surveyType}_summary.csv",index_col=0) # getting dataframe in date range df = pd.DataFrame() for column in temp.columns: if datetime.strptime(column,'%m/%d/%Y') <= self.report_date: df = pd.concat([df,temp[column]],axis=1) # converting elements to numbers and creating sum/percent column for column in df.columns: df[column] = pd.to_numeric(df[column],errors='coerce') df['Sum'] = df.sum(axis=1) if surveyType in ['morning','evening']: df['Percent'] = df['Sum'] / self.maxDailySurveys else: df['Percent'] = df['Sum'] / self.maxWeeklySurveys return df def load_survey_data(self): ''' ''' # importing self.morn = self.import_survey_summary('morning') self.night = self.import_survey_summary('evening') self.week = self.import_survey_summary('week') def load_sensor_data(self,dateThru='06082020'): ''' ''' self.acc = pd.read_csv(f'../../data/interim/acc_summary.csv', index_col=0) def create_plots(self): ''' ''' # morning and evening histograms fig, axes = plt.subplots(1,2,figsize=(12,6),sharey=True) i = 0 colors = ('firebrick','cornflowerblue') for df,name in zip([self.morn,self.night],['morning','evening']): ax = axes[i] sns.distplot(df['Sum'],bins=np.arange(0,self.maxDailySurveys+5,1),color=colors[i],kde=False,label=name,ax=ax) ax.set_xticks(np.arange(0,self.maxDailySurveys+5,1)) ax.set_xlim([0,self.maxDailySurveys+5]) ax.set_ylim([0,10]) ax.set_xlabel('Total Surveys Completed') ax.legend(title='Survey Timing') i += 1 axes[0].set_ylabel('Number of Participants') axes[0].text(self.maxDailySurveys+1,-1.5,f'Max Possible Surveys: {self.maxDailySurveys}') axes[1].set_xticks(np.arange(1,self.maxDailySurveys+5,1)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=None) plt.savefig('../../reports/beiwe_check/daily_survey_summary_histogram.png') # weekly histograms fig,ax = plt.subplots(figsize=(12,6)) sns.distplot(self.week['Sum'],bins=np.arange(0,6,1),kde=False,color='cornflowerblue') ax.set_xticks(np.arange(0,6,1)) ax.set_xlabel(f'Total Surveys Completed - Max Possible: {self.maxWeeklySurveys}') ax.set_xlim([0,5]) ax.set_ylabel('Number of Participants') plt.savefig('../../reports/beiwe_check/weekly_survey_summary_histrogram.png') # participation tier for survey,timing in zip([self.morn,self.night],['morning','evening']): fig, ax = plt.subplots(figsize=(12,8)) colors = ['red','orange','yellow','green','blue','violet'] shapes = ['o', 'v', '^', '<', '>', '8', 's', 'd'] df = survey.sort_values('Sum') per =
np.zeros(4)
numpy.zeros
import configparser import os import sys import time import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt from astropy.io import fits import marg_mcmc as wl import batman # Set path to read in get_limb.py from bin_analysis sys.path.insert(0, '../bin_analysis') import get_limb as gl def event_time(date, properties): """Program to determine the expected event time Inputs date: 1D array of the date of each exposure (MJD) properties: 1D array containing the last observed eclipse and the period. (MJD, days)""" time = properties[1, 0] time_error = properties[1, 1] period = properties[4, 0] period_error = properties[4, 1] i = 0 while time < date[0]: i += 1 time += period epoch_error = np.sqrt(time_error**2 + (i*period_error)**2) return float(time), float(epoch_error) def get_orbits(date): """Procedure to organize light curve data by HST orbit""" orbit=np.zeros(1).astype(int) for i in range(len(date)-1): t=date[i+1]-date[i] if t*86400 > 1200.: orbit=np.append(orbit, i+1) # 1800s is about half an HST orbit return np.append(orbit, len(date)) def inputs(data, transit=True): """ Function to read in priors for a system. INPUTS: data: Data table of priors for a particular planet OUTPUTS: Returns array of system properties with corresponding uncertainties: [rprs, central event time, inclination, orbit distance/stellar radius (a/Rs), period, transit/eclipse depth] """ inp_values = pd.read_table(data, sep=' ', index_col=None) data_arr = inp_values.iloc[:,2].values labels = inp_values.iloc[:,0].values param_errs = inp_values.iloc[:,3].values # Conversions are R_Jup to meters, R_solar to meters, AU to meters, # and JD to MJD. conversions = np.array([6.9911e7, 6.957e8, 1.49598e11, -2400000.5]) period = data_arr[4] inc = data_arr[5] rprs = data_arr[8] rprs_err = param_errs[8] a_R = data_arr[9] if transit==True: epoch = data_arr[6] + conversions[3] depth = rprs * rprs depth_err = 2 * rprs * rprs_err else: epoch = data_arr[6] + conversions[3] + period/2. depth = rprs*rprs*(data_arr[2]/data_arr[3])/3 # Save important inputs to properties (props) array. props = np.zeros(6) props[0] = rprs props[1] = epoch props[2] = inc props[3] = a_R props[4] = period props[5] = depth # Save corresponding errors, mostly for priors for MCMC fitting. errors = np.zeros(6) errors[0] = rprs_err errors[1] = param_errs[6] errors[2] = param_errs[5] errors[3] = param_errs[9] errors[4] = param_errs[4] errors[5] = depth_err return [props,errors] # def correction(inputs, date, flux, transit=False): # params=batman.TransitParams() # params.w=90. # params.ecc=0 # params.rp=np.sqrt(inputs[0]) # t0=inputs[1] # params.inc=inputs[2] # params.a=inputs[3] # params.per=inputs[4] # depth=inputs[5] # phase = (date-t0)/params.per # phase = phase - np.floor(phase) # phase[phase > 0.5] = phase[phase > 0.5] - 1.0 # if transit==True: # params.t0=t0 # params.u=inputs[6:] # params.limb_dark="quadratic" # m=batman.TransitModel(params, date) # model=m.light_curve(params) # else: # params.fp=inputs[5] # params.t_secondary=t0 # params.u=[] # params.limb_dark="uniform" # m=batman.TransitModel(params, date, transittype="secondary") # model=m.light_curve(params) # corrected=flux/model # return corrected # def remove_bad_data(light_curve, spectra, light_corrected, date1, light_err, spec_err # , user_inputs, check=False): # """Procedure to remove "bad" data from light curve""" # med= np.ma.median(light_corrected) # sigma = np.sqrt(np.sum((light_corrected-med)**2)/(2*len(light_corrected))) # medi=np.zeros_like(date1)+med # sig3=medi+3*sigma # sig4=medi+4*sigma # sig5=medi+5*sigma # sig3m=medi-3*sigma # sig4m=medi-4*sigma # sig5m=medi-5*sigma # if check==False: # nPasses=int(user_inputs[3]) # sigma_cut_factor=user_inputs[2] # else: # data=plt.plot(date1, light_corrected,'bo',ls='dotted') # plt.xlabel('MJD') # plt.ylabel('Total Flux') # s5=plt.plot(date1, sig5,'pink',date1, sig5m, 'pink') # s5[0].set_label('5-sigma') # s4=plt.plot(date1, sig4,'g', date1, sig4m, 'g') # s4[0].set_label('4-sigma') # s3=plt.plot(date1, sig3,'r', date1, sig3m, 'r') # s3[0].set_label('3-sigma') # plt.plot(date1, medi, label='Median',ls='solid') # plt.legend(scatterpoints=1) # plt.show(block=False) # cut = raw_input("Enter the sigma-cut factor (3-5 recommended): ") # sigma_cut_factor = float(cut) # user_inputs[2]=sigma_cut_factor # passes=raw_input("Enter the number of passes for the sigma-cut: ") # nPasses=int(passes) # user_inputs[3]=nPasses # plt.close() # # Cut out the "bad" data # for j in range(nPasses): # med= np.ma.median(light_corrected) # sigma = np.sqrt(np.sum((light_corrected-med)**2)/(2*len(light_corrected))) # dif= np.abs(light_corrected-med) # index=np.where(dif < sigma_cut_factor*sigma)[0] # light_curve=light_curve[index] # date1=date1[index] # light_corrected=light_corrected[index] # light_err=light_err[index] # spectra=spectra[index,:] # spec_err=spec_err[index,:] # return [light_curve, spectra, light_corrected, date1, light_err, spec_err] def preprocess_whitelight(visit , direction , x=0, y=0 , check=True , ignore_first_exposures=False , inp_file=False , ld_source='claret2012.csv' , save_processed_data=False , transit=False , data_plots=True , mcmc=False , include_error_inflation=True , openinc=False , openar=True , fixtime=False , ld_type="nonlinear" , linear_slope=True , quad_slope=False , exp_slope=False , log_slope=False , one_slope=True , norandomt=True , fit_plots=False , plot_best=True , save_mcmc=False , save_model_info=False): """ Function to allow user to extract relevant orbital data from reduced time series of a visit. Also allow user to exclude first orbit or first exposure of each orbit. The selected data is then fed into "marg_mcmc" for model light curve fitting. INPUTS See config.py file [DATA] x, y: Allow the user to reduce aperture by (x,y) pixels checks: set to "on" to manually reduce data inp_file: Allow user to load in preprocess information instead of manually finding. Cannot have checks and inp_file both off or both on. If checks is set to on, "user_inputs" will return the inputs that the user used: [first orbit, last orbit, sigma cut factor, number of passes, center eclipse time]. If checks is set to off, then the user_inputs array will be used as inputs (easier to automate) [MODEL] mcmc: Use MCMC sampler, extracting corner plot and other diagnostics openinc: Fit for inclination (default is fixed) openar: Fit for a/Rstar (default is fixed) fixtime: Fix center of event time (default is open) norandomt: Do now allow center of event time starting point to be vary randomly fit_plots: Show model light curve fit in real time [SAVE] save_processed_data: Save the data with the systematics removed for the best fit model save_model_info: Save best fit parameters for every systematic model save_mcmc: Save MCMC products, such as corner plot, autocorrelation, etc. The save files will all be saved with key or name "planet/visitXX/direction" """ if direction != 'both': folder = '../data_reduction/reduced/%s/%s/final/*.fits' % (visit, direction) data=np.sort(np.asarray(glob.glob(folder))) nexposure = len(data) print('There are %d exposures in this visit' % nexposure) alldate=np.zeros(len(data)) time=np.zeros_like(alldate) test=fits.open(data[0]) xlen, ylen = test[0].data.shape test.close() xlen-=2*x ylen-=2*y allspec=np.ma.zeros((len(data),xlen, ylen)) allerr=np.zeros((len(data),xlen,ylen)) xmin=x xmax=xlen-x ymin=y ymax=ylen-y for i, img in enumerate(data): expfile=fits.open(img) hdr=expfile[0].header exp=expfile[0].data mask=expfile[1].data errs=expfile[2].data expfile.close() alldate[i]=(hdr['EXPSTART']+hdr['EXPEND'])/2. time[i]=hdr['EXPTIME'] expo=exp[xmin:xmax, ymin:ymax] mask=mask[xmin:xmax, ymin:ymax] errs=errs[xmin:xmax, ymin:ymax] allspec[i,:,:]=np.ma.array(expo, mask=mask) allerr[i,:,:]=np.ma.array(errs, mask=mask) allspec1d=np.ma.sum(allspec,axis=1) allerr1d=np.sqrt(np.ma.sum(allerr*allerr, axis=1)) median_flux = np.ma.median(np.ma.sum(allspec1d, axis=1)) # Regardless of direction, if all exposures share the same one we make # dir_array all zeros for easy parameter use in model fitting. dir_array = np.zeros_like(alldate) else: direction = 'forward' folder = '../data_reduction/reduced/%s/%s/final/*.fits' % (visit, direction) data=np.sort(np.asarray(glob.glob(folder))) nexposure = len(data) print('There are %d exposures in this visit' % nexposure) alldate=np.zeros(len(data)) time=np.zeros_like(alldate) test=fits.open(data[0]) xlen, ylen = test[0].data.shape test.close() xlen-=2*x ylen-=2*y allspec=np.ma.zeros((len(data),xlen, ylen)) allerr=np.zeros((len(data),xlen,ylen)) xmin=x xmax=xlen-x ymin=y ymax=ylen-y for i, img in enumerate(data): expfile=fits.open(img) hdr=expfile[0].header exp=expfile[0].data mask=expfile[1].data errs=expfile[2].data expfile.close() alldate[i]=(hdr['EXPSTART']+hdr['EXPEND'])/2. time[i]=hdr['EXPTIME'] expo=exp[xmin:xmax, ymin:ymax] mask=mask[xmin:xmax, ymin:ymax] errs=errs[xmin:xmax, ymin:ymax] allspec[i,:,:]=np.ma.array(expo, mask=mask) allerr[i,:,:]=np.ma.array(errs, mask=mask) allspec1d=np.ma.sum(allspec,axis=1) allerr1d=np.sqrt(np.ma.sum(allerr*allerr, axis=1)) median_flux = np.ma.median(np.ma.sum(allspec1d, axis=1)) # Now do for other direction direction = 'reverse' folder = '../data_reduction/reduced/%s/%s/final/*.fits' % (visit, direction) rdata=np.sort(np.asarray(glob.glob(folder))) nexposure = len(rdata) print('There are %d exposures in this visit' % nexposure) rdate=np.zeros(len(rdata)) rtime=
np.zeros_like(rdate)
numpy.zeros_like
"""" Title : Input fpwb Written by: <NAME> Date : 18/11/19 Language : Python Aeronautical Institute of Technology Inputs: MTOW Outputs: Cap_Sal FO_Sal """ ######################################################################################## """Importing Modules""" ######################################################################################## import numpy as np import sys, os from atmosphere import atmosphere ######################################################################################## """Constants declaration""" ######################################################################################## def frange(x, y, jump=1.0): i = 0.0 x = float(x) # Prevent yielding integers. y = float(y) # Comparison converts y to float every time otherwise. x0 = x epsilon = jump / 2.0 yield x # yield always first value while x + epsilon < y: i += 1.0 x = x0 + i * jump yield x def input_fpwb(M,AirportElevation, lf,lco,lcab,xle,wS,enf,wingb,diedro,wMAC, c0,cr,cq,ct,etabreak,FusDiam,xuroot,xlroot,ylroot,yuroot, xukink,xlkink,ylkink,yukink,xutip,xltip,yutip,yltip,ir,iq,it): ## Constantes rad = np.pi/180 ft2m = 0.3048 m2ft = 1./ft2m ## nuroot = len(xuroot) nlroot = len(xlroot) nukink = len(xukink) nlkink = len(xlkink) nutip = len(xutip) nltip = len(xltip) ## ise = 1. # ise - Control parameter for the nonisentropic correction. # ISE=1. - the nonisentropic correction is used # ISE=0. - no correction order = 2. # order - order of the artificial dissipation in the supersonic zones # rchord=chord at wing-fuselage intersection# filename = sys.argv[0] file_path = os.path.abspath(filename+"/..") # file_path = 'c:\\Users\\aarc8\\Documents\\Github\\GIT_IAANDOCAC\\IAANDOCAC-aircraft-framework\\aircraft famework\\framework Bento\\' extensions = ('.ps', '.out','.pl4','.blp','.sav','.inp') filelist = [ f for f in os.listdir(file_path) if f.endswith(extensions) ] for f in filelist: os.remove(os.path.join(file_path, f)) largfus = 1.03*FusDiam/2 wingb2 = wingb/2 dist_quebra = (wingb2)*etabreak raio = FusDiam/2 YE0 = raio*0.005 # distancia verticla da asa na linha de centro da fuselagem # if dist_quebra < largfus: dist_quebra = 1.15*largfus # Geracao de secao circular da fuselagem Nupp = 20 #Secao circular yc=[] zc=[] dteta = np.pi/(2*Nupp-1) for j in range(0,2*Nupp): teta= (j)*dteta yc1=raio*np.cos(teta) yc.append(yc1) zc1=raio*np.sin(teta) zc.append(zc1) yc = np.flip(yc) # minespintra=min(ylroot) distv=(FusDiam/2)*np.sin(rad*diedro) d1=-1.1*FusDiam/2-minespintra*c0+distv if (d1+minespintra*c0) < -0.95*FusDiam/2: ylew = -0.94*FusDiam/2 + distv - minespintra*c0 else: ylew=-1.1*FusDiam/2-minespintra*c0 # Secao comprida entre o inicio e o fim da asa # zw = [] yw = [] zw.append(0.0) yw.append(-1.1*raio) zw.append(raio/4) yw.append(-1.1*raio) zw.append(raio/2) yw.append(-1.1*raio) zw.append(0.95*raio) yw.append(-raio) zw.append(+raio) yw.append(-0.95*raio) zw.append(+raio) yw.append(-0.90*raio) zw.append(+raio) yw.append(-0.50*raio) zw.append(+raio) yw.append(0.) dteta=np.pi/2/Nupp for j in range(Nupp): teta = (j+1)*dteta yw1 = raio*np.sin(teta) yw.append(yw1) zw1 = raio*np.cos(teta) zw.append(zw1) # Secao 1 da fuselagem com carenagem antes da asa teta1=20*rad y1 =-raio*np.sin(teta1) z1 = raio*np.cos(teta1) zwf1 = [] ywf1 = [] zwf1.append(0.0) ywf1.append(-raio) zwf1.append(z1/4) ywf1.append(-raio) zwf1.append(z1/2) ywf1.append(-raio) zwf1.append(0.90*z1) ywf1.append(-0.95*raio) zwf1.append(+z1) ywf1.append(-0.85*raio) ywf1.append(0.50*(+y1-0.95*raio)) zwf1.append(z1) zwf1.append(+z1) ywf1.append(1.1*y1) zwf1.append(+z1) ywf1.append(y1) jcount = 8 dteta = (np.pi/2+teta1)/Nupp for j in frange((-teta1+dteta),np.pi/2,dteta): jcount = jcount + 1 ywf11= raio*np.sin(j) ywf1.append(ywf11) zwf11 = raio*np.cos(j) zwf1.append(zwf11) #plot(zwf1,ywf1,'-bo') #hold on # # Secao 2 da fuselagem com carenagem antes da asa # teta1=30*rad teta2=60*rad npontos=10 dteta = teta1/(npontos-1) ywf = [] zwf = [] for j in frange(1,npontos,1): ang=(j-1)*dteta ywf_aux= -raio*np.cos(ang) ywf.append(ywf_aux) zwf_aux= +raio*np.sin(ang) zwf.append(zwf_aux) y1 = -raio*np.cos(teta1) y2 = -raio*np.cos(teta2) #z1 = raio*sin(teta1) z2 = raio*np.sin(teta2) ymed = 0.50*(y1+y2) #zmed = 0.50*(z1+z2) ywf.append(y1-0.05*ymed) zwf.append(0.90*z2) ywf.append(y1-0.150*ymed) zwf.append(0.97*z2) npi=2*npontos -(npontos+3)+1 dteta = teta1/(npi-1) for j in frange((npontos+3),2*npontos,1): ang=teta2+(j-(npontos+3))*dteta #angg=ang/rad ywf_aux=-raio*np.cos(ang) ywf.append(ywf_aux) zwf_aux=+raio*np.sin(ang) zwf.append(zwf_aux) teta3 =np.pi/2 dteta=teta3/npontos for j in frange(1,npontos,1): ang=j*dteta ywf_aux=raio*np.sin(ang) ywf.append(ywf_aux) zwf_aux=raio*np.cos(ang) zwf.append(zwf_aux) #plot(zwf,ywf,'--r+') # # Secao 2 da fuselagem com carenagem antes da asa # teta1=40*rad teta2=55*rad npontos=12 dteta = teta1/(npontos-1) ywf2 = [] zwf2 = [] for j in frange(1,npontos,1): ang=(j-1)*dteta ywf2_aux= -raio*np.cos(ang) ywf2.append(ywf2_aux) zwf2_aux= +raio*np.sin(ang) zwf2.append(zwf2_aux) y1 = -raio*np.cos(teta1) y2 = -raio*np.cos(teta2) #z1 = raio*sin(teta1) z2 = raio*np.sin(teta2) ymed = 0.50*(y1+y2) #zmed = 0.50*(z1+z2) ywf2.append(y1-0.05*ymed) zwf2.append(0.90*z2) ywf2.append(y1-0.150*ymed) zwf2.append(0.97*z2) npi=2*npontos -(npontos+3)+1 dteta = teta1/(npi-1) for j in frange((npontos+3),2*npontos,1): ang=teta2+(j-(npontos+3))*dteta #angg=ang/rad ywf2_aux=-raio*np.cos(ang) ywf2.append(ywf2_aux) zwf2_aux=+raio*np.sin(ang) zwf2.append(zwf2_aux) teta3 =np.pi/2 dteta=teta3/npontos for j in frange(1,npontos,1): ang=j*dteta ywf2_aux=raio*np.sin(ang) ywf2.append(ywf2_aux) zwf2_aux=raio*np.cos(ang) zwf2.append(zwf2_aux) # ****** Preparacao da geracao dos dois arquivos com angulo de ataque # diferentes cada um ********************************************* for jj in range(1,3): # if jj == 1: # gera arquivo # 1 para calculo do clmax CL = 0.5 Ataque = 3 FCONT = 0. # start from scratch atm = atmosphere(AirportElevation*m2ft,0) TAE = atm.TAE # temperatura [K] T8 = TAE ro = atm.ro # densidade [Kg/m�] va = atm.va # velocidade do som [m/s] # ***** air viscosity (begin)****** mi0 = 18.27E-06 Tzero = 291.15 # Reference temperature (15 graus celsius) Ceh = 120 # C = Sutherland's constant for the gaseous material in question mi = mi0*((TAE+Ceh)/(Tzero+Ceh))*((TAE/Tzero)**1.5) vel = va*M rey = ro*vel*wMAC/mi fid = open('fpwbclm1.inp','w+') elif jj == 2: # gera arquivo # 2 para calculo do CLmax CL=0.75 Ataque = 5 FCONT =0. # =1 ==>start from previous calculation atm=atmosphere(AirportElevation*m2ft,0) TAE=atm.TAE # temperatura [K] T8 = TAE ro=atm.ro # densidade [Kg/m�] va=atm.va # velocidade do som [m/s] # ***** air viscosity (begin)****** mi0=18.27E-06 Tzero=291.15 # Reference temperature Ceh= 120 # C = Sutherland's constant for the gaseous material in question mi=mi0*((TAE+Ceh)/(Tzero+Ceh))*((TAE/Tzero)**1.5) vel=va*M rey=ro*vel*wMAC/mi fid = open('fpwbclm2.inp',"w") # Stations for viscous calculation nvisc_i=4 nvisc_e=5 stavi=largfus/wingb2 + 0.0125 stabreak=dist_quebra/wingb2 zvisc_internal=np.linspace(stavi,stabreak,nvisc_i) zvisc_external=np.linspace(stabreak+0.1,1.,nvisc_e) zvisc = np.concatenate([zvisc_internal,zvisc_external]) nvisc=nvisc_i+nvisc_e #nvisc=double(nvisc) fid.write(' AVAER FULL POTENTIAL ANALYSIS \n') fid.write(' NX >< NY >< NZ >< NT >< FCONT > \n') fid.write(' 48. 12. 10. 5. %2.0f \n' % FCONT) fid.write(' FPICT1 >< FPICT2 >< FPICT3 >< FPICT4 >< FPICT5 >< >< >< tecplot> \n') fid.write(' 0. 0. 0. 0. 0.0 0. \n') fid.write(' XMIN >< XMAX >< YMIN >< YMAX >< ZMIN >< ZMAX > \n') fid.write(' -.1 1.7 -.9 .9 .0 2.7 \n') fid.write(' EX >< EY >< EZ > \n') fid.write(' -5. 5. 10. \n') fid.write(' NP >< ETAE >< T8 >< PR >< PRT >< RRR >< VGL >< VGT > \n') fid.write(' 21. 4. %4.0f .753 .90 1. 1.26 1.26 \n' % T8) fid.write(' NTR >< AL_CL >< CL >< DCL/DA > \n') fid.write(' %6.1f 0. %4.2f 0.40 \n' % (nvisc, CL)) fid.write('< Z >< XTRU >< XTRL > \n') for jvisc in range(nvisc): fid.write(' %9.4f 0.05 0.05 \n' % zvisc[jvisc]) fid.write(' NDF >< NVB >< CFXMIN >< F_LK > \n') fid.write(' 5. 1.0 -5. 0.0 \n') fid.write(' FPRIN0 >< FPRIN1 >< FPRIN2 >< FPRINB > \n') fid.write(' 1. -9. -9. -2. \n') fid.write(' FPLOT1 >< FPLOT2 >< FPLOT3 >< FPLOT4 >< FPLOT5 >< FPLOT6 >< FPLOT7 >< FPLOT8 > \n') fid.write(' 1. 1. 1. 1. 1. 1. 2. 2. \n') fid.write(' CPMINW >< CPMINF > \n') fid.write(' -2. -1.6 \n') fid.write('< NZOUT > \n') fid.write(' 6. \n') fid.write('< ZCPOUT > \n') fid.write(' 0.150 \n') fid.write(' 0.250 \n') fid.write(' 0.415 \n') fid.write(' 0.500 \n') fid.write(' 0.700 \n') fid.write(' 0.950 \n') fid.write(' NCPOUT > \n') fid.write(' 20. \n') fid.write(' CPOUT > \n') fid.write(' -1.4 \n') fid.write(' -1.3 \n') fid.write(' -1.2 \n') fid.write(' -1.1 \n') fid.write(' -1.0 \n') fid.write(' -.9 \n') fid.write(' -.8 \n') fid.write(' -.7 \n') fid.write(' -.6 \n') fid.write(' -.5 \n') fid.write(' -.4 \n') fid.write(' -.3 \n') fid.write(' -.2 \n') fid.write(' -.1 \n') fid.write(' .0 \n') fid.write(' .1 \n') fid.write(' .2 \n') fid.write(' .3 \n') fid.write(' .4 \n') fid.write(' .5 \n') fid.write(' NIT >< MIT >< P1 >< P2 >< PL >< PH >< NLH >< FHALF > \n') fid.write(' 30. 30. 1.3 1.00 .7 1.5 3. 1. \n') fid.write(' NBL > \n') fid.write(' 4. \n') fid.write(' NITBL >< PB >< PBIV > \n') fid.write(' 6. .8 \n') fid.write(' 12. .8 \n') fid.write(' 18. .8 \n') fid.write(' 24. .8 \n') fid.write(' NIT >< MIT >< P1 >< P2 >< PL >< PH >< NLH >< FHALF >\n') fid.write(' 40. 30. 1.2 1.00 .7 1.5 4. 1. \n') fid.write(' NBL > \n') fid.write(' 6. \n') fid.write(' NITBL >< PB >< PBIV > \n') fid.write(' 6. .7 \n') fid.write(' 12. .7 \n') fid.write(' 18. .7 \n') fid.write(' 24. .7 \n') fid.write(' 30. .7 \n') fid.write(' 36. .7 \n') fid.write(' NIT >< MIT >< P1 >< P2 >< PL >< PH >< NLH >< FHALF >\n') fid.write(' 36. 30. 1.0 1.001 .7 1.5 5. 0. \n') fid.write(' NBL > \n') fid.write(' 5. \n') fid.write(' NITBL >< PB >< PBIV > \n') fid.write(' 6. .55 \n') fid.write(' 12. .55 \n') fid.write(' 18. .55 \n') fid.write(' 24. .55 \n') fid.write(' 30. .55 \n') fid.write('< MACH >< ALFA >< RE >< CAX >< SWING >< SE >< ORDER > \n') fid.write('%8.3f%10.3f%10.0f.%10.3f%10.4f%10.4f%10.4f\n'% (M ,Ataque, rey, wMAC, wS/2, ise, order)) fid.write('< NSEC >< PZROOT >< PZTIP >< PXLE >< PXTE >< PYTE >< PZA >< PZB >\n') fid.write(' 4.00000 0.15000 0.25000 0.65000 0.65000 0.80000 0.00000 0.00000 \n') # ROOT SIMMETRY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fid.write('< Z >< XLE >< YLE >< CHORD >< THICK >< ALPHA >< FSEC > \n') fid.write('%9.4f %10.5f%10.5f%10.5f%10.5f%10.5f%10.5f\n' % (0,0,YE0+largfus*np.tan(rad*diedro),c0,1,ir,1)) fid.write('< YSYM >< NU >< NL > \n') fid.write('%10.5f%10.5f%10.5f\n' % (0,nuroot,nlroot)) fid.write(' < XSING >< YSING >< TRAIL >< SLOPT >\n') fid.write('%10.5f%10.5f%10.5f%10.5f\n' % (0.00921,0,7.16234,-0.05857)) fid.write(' < XU >< YU >\n') for j in range(len(xuroot)): fid.write('%10.5f%10.5f\n' % (xuroot[j], yuroot[j])) fid.write(' < XL >< YL >\n') for j in range(len(xlroot)): fid.write('%10.5f%10.5f\n' % (xlroot[j], ylroot[j])) # ROOT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fid.write('< Z >< XLE >< YLE >< CHORD >< THICK >< ALPHA >< FSEC > \n') fid.write('%9.4f %10.5f%10.5f%10.5f%10.5f%10.5f%10.5f\n' % (largfus,largfus*
np.tan(rad*enf)
numpy.tan
import torch import numpy as np import torch_utils from Models import base_model import torch_utils as my_utils import time import interactions from handlers.output_handler import FileHandler from handlers.tensorboard_writer import TensorboardWrapper from setting_keywords import KeyWordSettings from Fitting.FittingFC.declare_fitter import DeclareFitter from typing import List class MultiLevelAttentionCompositeFitter(DeclareFitter): """ I implement this class for testing if the padding all zeros sequences are the root cause of performance reduction. """ def __init__(self, net: base_model.BaseModel, loss = "bpr", n_iter = 100, testing_epochs = 5, batch_size = 16, reg_l2 = 1e-3, learning_rate = 1e-4, early_stopping = 0, # means no early stopping decay_step = None, decay_weight = None, optimizer_func = None, use_cuda = False, num_negative_samples = 4, logfolder = None, curr_date = None, seed = None, **kargs): super(DeclareFitter, self).__init__(net, loss, n_iter, testing_epochs, batch_size, reg_l2, learning_rate, early_stopping, decay_step, decay_weight, optimizer_func, use_cuda, num_negative_samples, logfolder, curr_date, seed, **kargs) self.fixed_num_evidences = kargs[KeyWordSettings.FIXED_NUM_EVIDENCES] self.output_handler = kargs[KeyWordSettings.OutputHandlerFactChecking] def fit(self, train_iteractions: interactions.ClassificationInteractions, verbose = True, # for printing out evaluation during training topN = 10, val_interactions: interactions.ClassificationInteractions = None, test_interactions: interactions.ClassificationInteractions = None): """ Fit the model. Parameters ---------- train_iteractions: :class:`interactions.ClassificationInteractions` The input sequence dataset. val_interactions: :class:`interactions.ClassificationInteractions` test_interactions: :class:`interactions.ClassificationInteractions` """ self._initialize(train_iteractions) best_val_auc, best_val_f1_macro, best_epoch, test_auc = 0, 0, 0, 0 test_results_dict = None iteration_counter = 0 count_patience_epochs = 0 for epoch_num in range(self._n_iter): # ------ Move to here ----------------------------------- # self._net.train(True) query_ids, left_contents, left_lengths, query_sources, \ evd_docs_ids, evd_docs_contents, evd_docs_lens, evd_sources, evd_cnt_each_query, \ pair_labels = self._sampler.get_train_instances_hanfc(train_iteractions, self.fixed_num_evidences) queries, query_content, query_lengths, query_sources, \ evd_docs, evd_docs_contents, evd_docs_lens, evd_sources, evd_cnt_each_query, \ pair_labels = my_utils.shuffle(query_ids, left_contents, left_lengths, query_sources, evd_docs_ids, evd_docs_contents, evd_docs_lens, evd_sources, evd_cnt_each_query, pair_labels) epoch_loss, total_pairs = 0.0, 0 t1 = time.time() for (minibatch_num, (batch_query, batch_query_content, batch_query_len, batch_query_sources, # i.e. claim source batch_evd_docs, batch_evd_contents, batch_evd_lens, batch_evd_sources, batch_evd_cnt_each_query, batch_labels)) \ in enumerate(my_utils.minibatch(queries, query_content, query_lengths, query_sources, evd_docs, evd_docs_contents, evd_docs_lens, evd_sources, evd_cnt_each_query, pair_labels, batch_size = self._batch_size)): batch_query = my_utils.gpu(torch.from_numpy(batch_query), self._use_cuda) batch_query_content = my_utils.gpu(torch.from_numpy(batch_query_content), self._use_cuda) # batch_query_len = my_utils.gpu(torch.from_numpy(batch_query_len), self._use_cuda) batch_query_sources = my_utils.gpu(torch.from_numpy(batch_query_sources), self._use_cuda) batch_evd_docs = my_utils.gpu(torch.from_numpy(batch_evd_docs), self._use_cuda) batch_evd_contents = my_utils.gpu(torch.from_numpy(batch_evd_contents), self._use_cuda) # batch_evd_lens = my_utils.gpu(torch.from_numpy(batch_evd_lens), self._use_cuda) batch_evd_sources = my_utils.gpu(torch.from_numpy(batch_evd_sources), self._use_cuda) batch_evd_cnt_each_query = my_utils.gpu(torch.from_numpy(batch_evd_cnt_each_query), self._use_cuda) batch_labels = my_utils.gpu(torch.from_numpy(batch_labels), self._use_cuda) # total_pairs += self._batch_size * self. additional_data = {KeyWordSettings.EvidenceCountPerQuery: batch_evd_cnt_each_query} self._optimizer.zero_grad() if self._loss in ["bpr", "hinge", "pce", "bce", "cross_entropy", "vanilla_cross_entropy", "regression_loss", "masked_cross_entropy"]: loss = self._get_multiple_evidences_predictions_normal( batch_query, batch_query_content, batch_query_len, batch_query_sources, batch_evd_docs, batch_evd_contents, batch_evd_lens, batch_evd_sources, batch_labels, self.fixed_num_evidences, **additional_data) # print("Loss: ", loss) epoch_loss += loss.item() iteration_counter += 1 # if iteration_counter % 2 == 0: break TensorboardWrapper.mywriter().add_scalar("loss/minibatch_loss", loss.item(), iteration_counter) loss.backward() self._optimizer.step() # for name, param in self._net.named_parameters(): # self.tensorboard_writer.add_histogram(name + "/grad", param.grad, iteration_counter) # self.tensorboard_writer.add_histogram(name + "/value", param, iteration_counter) # epoch_loss /= float(total_pairs) TensorboardWrapper.mywriter().add_scalar("loss/epoch_loss_avg", epoch_loss, epoch_num) # print("Number of Minibatches: ", minibatch_num, "Avg. loss of epoch: ", epoch_loss) t2 = time.time() epoch_train_time = t2 - t1 if verbose: # validation after each epoch f1_macro_val, auc_val = self._output_results_every_epoch(topN, val_interactions, test_interactions, epoch_num, epoch_train_time, epoch_loss) if (f1_macro_val > best_val_f1_macro) or \ (f1_macro_val == best_val_f1_macro and auc_val > best_val_auc): # prioritize f1_macro # if (hits + ndcg) > (best_hit + best_ndcg): count_patience_epochs = 0 with open(self.saved_model, "wb") as f: torch.save(self._net.state_dict(), f) # test_results_dict = result_test best_val_auc, best_val_f1_macro, best_epoch = auc_val, f1_macro_val, epoch_num # test_hit, test_ndcg = hits_test, ndcg_test else: count_patience_epochs += 1 if self._early_stopping_patience and count_patience_epochs > self._early_stopping_patience: self.output_handler.myprint("Early Stopped due to no better performance in %s epochs" % count_patience_epochs) break if np.isnan(epoch_loss) or epoch_loss == 0.0: raise ValueError('Degenerate epoch loss: {}'.format(epoch_loss)) self._flush_training_results(best_val_auc, best_epoch) def _get_multiple_evidences_predictions_normal(self, query_ids: torch.Tensor, query_contents: torch.Tensor, query_lens: np.ndarray, query_sources: torch.Tensor, evd_doc_ids: torch.Tensor, evd_doc_contents: torch.Tensor, evd_docs_lens: np.ndarray, evd_sources: torch.Tensor, labels: np.ndarray, n: int, **kargs) -> torch.Tensor: """ compute cross entropy loss Parameters ---------- query_ids: (B, ) query_contents: (B, L) query_lens: (B, ) evd_doc_ids: (B, n) evd_doc_contents: (B, n, R) evd_docs_lens: (B, n) evd_sources: (B, n) labels: (B, ) labels of pair n: `int` is the number of evidences for each claim/query kargs: `dict` Returns ------- loss value based on a loss function """ evd_count_per_query = kargs[KeyWordSettings.EvidenceCountPerQuery] # (B, ) assert evd_doc_ids.size() == evd_docs_lens.shape assert query_ids.size(0) == evd_doc_ids.size(0) assert query_lens.shape == labels.size() assert query_contents.size(0) == evd_doc_contents.size(0) # = batch_size _, L = query_contents.size() batch_size = query_ids.size(0) # prunning at this step to remove padding\ e_lens, e_conts, q_conts, q_lens = [], [], [], [] expaned_labels = [] for evd_cnt, q_cont, q_len, evd_lens, evd_doc_cont, label in \ zip(evd_count_per_query, query_contents, query_lens, evd_docs_lens, evd_doc_contents, labels): evd_cnt = int(torch_utils.cpu(evd_cnt).detach().numpy()) e_lens.extend(list(evd_lens[:evd_cnt])) e_conts.append(evd_doc_cont[:evd_cnt, :]) # stacking later q_lens.extend([q_len] * evd_cnt) q_conts.append(q_cont.unsqueeze(0).expand(evd_cnt, L)) expaned_labels.extend([int(torch_utils.cpu(label).detach().numpy())] * evd_cnt) # concat e_conts = torch.cat(e_conts, dim = 0) # (n1 + n2 + ..., R) e_lens = np.array(e_lens) # (n1 + n2 + ..., ) q_conts = torch.cat(q_conts, dim = 0) # (n1 + n2 + ..., R) q_lens = np.array(q_lens) assert q_conts.size(0) == q_lens.shape[0] == e_conts.size(0) == e_lens.shape[0] d_new_indices, d_old_indices = torch_utils.get_sorted_index_and_reverse_index(e_lens) e_lens = my_utils.gpu(torch.from_numpy(e_lens), self._use_cuda) q_new_indices, q_restoring_indices = torch_utils.get_sorted_index_and_reverse_index(query_lens) query_lens = my_utils.gpu(torch.from_numpy(query_lens), self._use_cuda) # query_lens = my_utils.gpu(torch.from_numpy(query_lens), self._use_cuda) additional_paramters = { KeyWordSettings.Query_lens: query_lens, KeyWordSettings.Doc_lens: evd_docs_lens, KeyWordSettings.DocLensIndices: (d_new_indices, d_old_indices, e_lens), KeyWordSettings.QueryLensIndices: (q_new_indices, q_restoring_indices, query_lens), KeyWordSettings.QuerySources: query_sources, KeyWordSettings.DocSources: evd_sources, KeyWordSettings.TempLabel: labels, KeyWordSettings.DocContentNoPaddingEvidence: e_conts, KeyWordSettings.QueryContentNoPaddingEvidence: q_conts, KeyWordSettings.EvidenceCountPerQuery: evd_count_per_query, KeyWordSettings.FIXED_NUM_EVIDENCES: n } predictions = self._net(query_contents, evd_doc_contents, **additional_paramters) # (B, ) # labels.unsqueeze(-1).expand(batch_size, n).reshape(batch_size * n) # labels = torch_utils.gpu(torch.from_numpy(np.array(expaned_labels)), self._use_cuda) # print("Labels: ", labels) # mask = (evd_doc_ids >= 0).view(batch_size * n).float() return self._loss_func(predictions, labels.float()) def evaluate(self, testRatings: interactions.ClassificationInteractions, K: int, output_ranking = False, **kargs): """ Compute evaluation metrics. No swearing in code please!!! Parameters ---------- testRatings K output_ranking: whether we should output predictions kargs Returns ------- """ all_labels = [] all_final_probs = [] list_error_analysis = [] for query, evidences_info in testRatings.dict_claims_and_evidences_test.items(): evd_ids, labels, evd_contents, evd_lengths = evidences_info assert len(set(labels)) == 1, "Must have only one label due to same claim" all_labels.append(labels[0]) claim_content = testRatings.dict_claim_contents[query] claim_source =
np.array([testRatings.dict_claim_source[query]])
numpy.array
import random import numpy as np import ot import tqdm def transform_mOT(src, target, src_label, origin, k, m, iter=100): np.random.seed(1) random.seed(1) ot_transf = np.zeros_like(src) n = src.shape[0] for _ in tqdm.tqdm(range(iter)): s = np.copy(src).reshape(-1, 3).astype("long") t =
np.array(target)
numpy.array
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) from six import string_types # Standard library import sys import datetime import warnings # Third-party from astropy.coordinates import (EarthLocation, SkyCoord, AltAz, get_sun, get_moon, Angle, Longitude) import astropy.units as u from astropy.time import Time from astropy.utils.exceptions import AstropyDeprecationWarning import numpy as np import pytz # Package from .exceptions import TargetNeverUpWarning, TargetAlwaysUpWarning from .moon import moon_illumination, moon_phase_angle from .target import get_skycoord, SunFlag, MoonFlag __all__ = ["Observer"] MAGIC_TIME = Time(-999, format='jd') # Handle deprecated MAGIC_TIME variable def deprecation_wrap_module(mod, deprecated): """Return a wrapped object that warns about deprecated accesses""" deprecated = set(deprecated) class DeprecateWrapper(object): def __getattr__(self, attr): if attr in deprecated: warnmsg = ("`MAGIC_TIME` will be deprecated in future versions " "of astroplan. Use masked Time objects instead.") warnings.warn(warnmsg, AstropyDeprecationWarning) return getattr(mod, attr) return DeprecateWrapper() sys.modules[__name__] = deprecation_wrap_module(sys.modules[__name__], deprecated=['MAGIC_TIME']) def _generate_24hr_grid(t0, start, end, n_grid_points, for_deriv=False): """ Generate a nearly linearly spaced grid of time durations. The midpoints of these grid points will span times from ``t0``+``start`` to ``t0``+``end``, including the end points, which is useful when taking numerical derivatives. Parameters ---------- t0 : `~astropy.time.Time` Time queried for, grid will be built from or up to this time. start : float Number of days before/after ``t0`` to start the grid. end : float Number of days before/after ``t0`` to end the grid. n_grid_points : int (optional) Number of grid points to generate for_deriv : bool Generate time series for taking numerical derivative (modify bounds)? Returns ------- `~astropy.time.Time` """ if for_deriv: time_grid = np.concatenate([[start - 1 / (n_grid_points - 1)], np.linspace(start, end, n_grid_points)[1:-1], [end + 1 / (n_grid_points - 1)]]) * u.day else: time_grid = np.linspace(start, end, n_grid_points) * u.day # broadcast so grid is first index, and remaining shape of t0 # falls in later indices. e.g. if t0 is shape (10), time_grid # will be shape (N, 10). If t0 is shape (5, 2), time_grid is (N, 5, 2) while time_grid.ndim <= t0.ndim: time_grid = time_grid[:, np.newaxis] # we want to avoid 1D grids since we always want to broadcast against targets if time_grid.ndim == 1: time_grid = time_grid[:, np.newaxis] return t0 + time_grid class Observer(object): """ A container class for information about an observer's location and environment. Examples -------- We can create an observer at Subaru Observatory in Hawaii two ways. First, locations for some observatories are stored in astroplan, and these can be accessed by name, like so: >>> from astroplan import Observer >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii") To find out which observatories can be accessed by name, check out `~astropy.coordinates.EarthLocation.get_site_names`. Next, you can initialize an observer by specifying the location with `~astropy.coordinates.EarthLocation`: >>> from astropy.coordinates import EarthLocation >>> import astropy.units as u >>> location = EarthLocation.from_geodetic(-155.4761*u.deg, 19.825*u.deg, ... 4139*u.m) >>> subaru = Observer(location=location, name="Subaru", timezone="US/Hawaii") You can also create an observer without an `~astropy.coordinates.EarthLocation`: >>> from astroplan import Observer >>> import astropy.units as u >>> subaru = Observer(longitude=-155.4761*u.deg, latitude=19.825*u.deg, ... elevation=0*u.m, name="Subaru", timezone="US/Hawaii") """ @u.quantity_input(elevation=u.m) def __init__(self, location=None, timezone='UTC', name=None, latitude=None, longitude=None, elevation=0*u.m, pressure=None, relative_humidity=None, temperature=None, description=None): """ Parameters ---------- location : `~astropy.coordinates.EarthLocation` The location (latitude, longitude, elevation) of the observatory. timezone : str or `datetime.tzinfo` (optional) The local timezone to assume. If a string, it will be passed through ``pytz.timezone()`` to produce the timezone object. name : str A short name for the telescope, observatory or location. latitude : float, str, `~astropy.units.Quantity` (optional) The latitude of the observing location. Should be valid input for initializing a `~astropy.coordinates.Latitude` object. longitude : float, str, `~astropy.units.Quantity` (optional) The longitude of the observing location. Should be valid input for initializing a `~astropy.coordinates.Longitude` object. elevation : `~astropy.units.Quantity` (optional), default = 0 meters The elevation of the observing location, with respect to sea level. Defaults to sea level. pressure : `~astropy.units.Quantity` (optional) The ambient pressure. Defaults to zero (i.e. no atmosphere). relative_humidity : float (optional) The ambient relative humidity. temperature : `~astropy.units.Quantity` (optional) The ambient temperature. description : str (optional) A short description of the telescope, observatory or observing location. """ self.name = name self.pressure = pressure self.temperature = temperature self.relative_humidity = relative_humidity # If lat/long given instead of EarthLocation, convert them # to EarthLocation if location is None and (latitude is not None and longitude is not None): self.location = EarthLocation.from_geodetic(longitude, latitude, elevation) elif isinstance(location, EarthLocation): self.location = location else: raise TypeError('Observatory location must be specified with ' 'either (1) an instance of ' 'astropy.coordinates.EarthLocation or (2) ' 'latitude and longitude in degrees as ' 'accepted by astropy.coordinates.Latitude and ' 'astropy.coordinates.Latitude.') # Accept various timezone inputs, default to UTC if isinstance(timezone, datetime.tzinfo): self.timezone = timezone elif isinstance(timezone, string_types): self.timezone = pytz.timezone(timezone) else: raise TypeError('timezone keyword should be a string, or an ' 'instance of datetime.tzinfo') def __repr__(self): """ String representation of the `~astroplan.Observer` object. Examples -------- >>> from astroplan import Observer >>> keck = Observer.at_site("Keck", timezone="US/Hawaii") >>> print(keck) # doctest: +FLOAT_CMP <Observer: name='Keck', location (lon, lat, el)=(-155.478333333 deg, 19.8283333333 deg, 4160.0 m), timezone=<DstTzInfo 'US/Hawaii' LMT-1 day, 13:29:00 STD>> """ class_name = self.__class__.__name__ attr_names = ['name', 'location', 'timezone', 'pressure', 'temperature', 'relative_humidity'] attr_values = [getattr(self, attr) for attr in attr_names] attributes_strings = [] for name, value in zip(attr_names, attr_values): if value is not None: # Format location for easy readability if name == 'location': formatted_loc = ["{} {}".format(i.value, i.unit) for i in value.to_geodetic()] attributes_strings.append( "{} (lon, lat, el)=({})".format( name, ", ".join(formatted_loc))) else: if name != 'name': value = repr(value) else: value = "'{}'".format(value) attributes_strings.append("{}={}".format(name, value)) return "<{}: {}>".format(class_name, ",\n ".join(attributes_strings)) @classmethod def at_site(cls, site_name, **kwargs): """ Initialize an `~astroplan.observer.Observer` object with a site name. Extra keyword arguments are passed to the `~astroplan.Observer` constructor (see `~astroplan.Observer` for available keyword arguments). Parameters ---------- site_name : str Observatory name, must be resolvable with `~astropy.coordinates.EarthLocation.get_site_names`. Returns ------- `~astroplan.observer.Observer` Observer object. Examples -------- Initialize an observer at Kitt Peak National Observatory: >>> from astroplan import Observer >>> import astropy.units as u >>> kpno_generic = Observer.at_site('kpno') >>> kpno_today = Observer.at_site('kpno', pressure=1*u.bar, temperature=0*u.deg_C) """ name = kwargs.pop('name', site_name) if 'location' in kwargs: raise ValueError("Location kwarg should not be used if " "initializing an Observer with Observer.at_site()") return cls(location=EarthLocation.of_site(site_name), name=name, **kwargs) def astropy_time_to_datetime(self, astropy_time): """ Convert the `~astropy.time.Time` object ``astropy_time`` to a localized `~datetime.datetime` object. Timezones localized with `pytz`_. .. _pytz: https://pypi.python.org/pypi/pytz/ Parameters ---------- astropy_time : `~astropy.time.Time` Scalar or list-like. Returns ------- `~datetime.datetime` Localized datetime, where the timezone of the datetime is set by the ``timezone`` keyword argument of the `~astroplan.Observer` constructor. Examples -------- Convert an astropy time to a localized `~datetime.datetime`: >>> from astroplan import Observer >>> from astropy.time import Time >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii") >>> astropy_time = Time('1999-12-31 06:00:00') >>> print(subaru.astropy_time_to_datetime(astropy_time)) 1999-12-30 20:00:00-10:00 """ if not astropy_time.isscalar: return [self.astropy_time_to_datetime(t) for t in astropy_time] # Convert astropy.time.Time to a UTC localized datetime (aware) utc_datetime = pytz.utc.localize(astropy_time.utc.datetime) # Convert UTC to local timezone return self.timezone.normalize(utc_datetime) def datetime_to_astropy_time(self, date_time): """ Convert the `~datetime.datetime` object ``date_time`` to a `~astropy.time.Time` object. Timezones localized with `pytz`_. If the ``date_time`` is naive, the implied timezone is the ``timezone`` structure of ``self``. Parameters ---------- date_time : `~datetime.datetime` or list-like Returns ------- `~astropy.time.Time` Astropy time object (no timezone information preserved). Examples -------- Convert a localized `~datetime.datetime` to a `~astropy.time.Time` object. Non-localized datetimes are assumed to be UTC. <Time object: scale='utc' format='datetime' value=1999-12-31 06:00:00> >>> from astroplan import Observer >>> import datetime >>> import pytz >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii") >>> hi_date_time = datetime.datetime(2005, 6, 21, 20, 0, 0, 0) >>> subaru.datetime_to_astropy_time(hi_date_time) <Time object: scale='utc' format='datetime' value=2005-06-22 06:00:00> >>> utc_date_time = datetime.datetime(2005, 6, 22, 6, 0, 0, 0, ... tzinfo=pytz.timezone("UTC")) >>> subaru.datetime_to_astropy_time(utc_date_time) <Time object: scale='utc' format='datetime' value=2005-06-22 06:00:00> """ if hasattr(date_time, '__iter__'): return Time([self.datetime_to_astropy_time(t) for t in date_time]) # For timezone-naive datetimes, assign local timezone if date_time.tzinfo is None: date_time = self.timezone.localize(date_time) return Time(date_time, location=self.location) def _is_broadcastable(self, shp1, shp2): """Test if two shape tuples are broadcastable""" if shp1 == shp2: return True for a, b in zip(shp1[::-1], shp2[::-1]): if a == 1 or b == 1 or a == b: pass else: return False return True def _preprocess_inputs(self, time, target=None, grid_times_targets=False): """ Preprocess time and target inputs This routine takes the inputs for time and target and attempts to return a single `~astropy.time.Time` and `~astropy.coordinates.SkyCoord` for each argument, which may be non-scalar if necessary. time : `~astropy.time.Time` or other (see below) The time(s) to use in the calculation. It can be anything that `~astropy.time.Time` will accept (including a `~astropy.time.Time` object) target : `~astroplan.FixedTarget`, `~astropy.coordinates.SkyCoord`, or list The target(s) to use in the calculation. grid_times_targets: bool If True, the target object will have extra dimensions packed onto the end, so that calculations with M targets and N times will return an (M, N) shaped result. Otherwise, we rely on broadcasting the shapes together using standard numpy rules. Useful for grid searches for rise/set times etc. """ # make sure we have a non-scalar time if not isinstance(time, Time): time = Time(time) if target is None: return time, None # convert any kind of target argument to non-scalar SkyCoord target = get_skycoord(target) if grid_times_targets: if target.isscalar: # ensure we have a (1, 1) shape coord target = SkyCoord(np.tile(target, 1))[:, np.newaxis] else: while target.ndim <= time.ndim: target = target[:, np.newaxis] elif not self._is_broadcastable(target.shape, time.shape): raise ValueError('Time and Target arguments cannot be broadcast ' 'against each other with shapes {} and {}' .format(time.shape, target.shape)) return time, target def altaz(self, time, target=None, obswl=None, grid_times_targets=False): """ Get an `~astropy.coordinates.AltAz` frame or coordinate. If ``target`` is None, generates an altitude/azimuth frame. Otherwise, calculates the transformation to that frame for the requested ``target``. Parameters ---------- time : `~astropy.time.Time` or other (see below) The time at which the observation is taking place. Will be used as the ``obstime`` attribute in the resulting frame or coordinate. This will be passed in as the first argument to the `~astropy.time.Time` initializer, so it can be anything that `~astropy.time.Time` will accept (including a `~astropy.time.Time` object) target : `~astroplan.FixedTarget`, `~astropy.coordinates.SkyCoord`, or list (optional) Celestial object(s) of interest. If ``target`` is `None`, returns the `~astropy.coordinates.AltAz` frame without coordinates. obswl : `~astropy.units.Quantity` (optional) Wavelength of the observation used in the calculation. grid_times_targets: bool (optional) If True, the target object will have extra dimensions packed onto the end, so that calculations with M targets and N times will return an (M, N) shaped result. Otherwise, we rely on broadcasting the shapes together using standard numpy rules. Useful for grid searches for rise/set times etc. Returns ------- `~astropy.coordinates.AltAz` If ``target`` is `None`, returns `~astropy.coordinates.AltAz` frame. If ``target`` is not `None`, returns the ``target`` transformed to the `~astropy.coordinates.AltAz` frame. Examples -------- Create an instance of the `~astropy.coordinates.AltAz` frame for an observer at Apache Point Observatory at a particular time: >>> from astroplan import Observer >>> from astropy.time import Time >>> from astropy.coordinates import SkyCoord >>> apo = Observer.at_site("APO") >>> time = Time('2001-02-03 04:05:06') >>> target = SkyCoord(0*u.deg, 0*u.deg) >>> altaz_frame = apo.altaz(time) Now transform the target's coordinates to the alt/az frame: >>> target_altaz = target.transform_to(altaz_frame) # doctest: +SKIP Alternatively, construct an alt/az frame and transform the target to that frame all in one step: >>> target_altaz = apo.altaz(time, target) # doctest: +SKIP """ if target is not None: time, target = self._preprocess_inputs(time, target, grid_times_targets) altaz_frame = AltAz(location=self.location, obstime=time, pressure=self.pressure, obswl=obswl, temperature=self.temperature, relative_humidity=self.relative_humidity) if target is None: # Return just the frame return altaz_frame else: return target.transform_to(altaz_frame) def parallactic_angle(self, time, target, grid_times_targets=False): """ Calculate the parallactic angle. Parameters ---------- time : `~astropy.time.Time` Observation time. target : `~astroplan.FixedTarget` or `~astropy.coordinates.SkyCoord` or list Target celestial object(s). grid_times_targets: bool If True, the target object will have extra dimensions packed onto the end, so that calculations with M targets and N times will return an (M, N) shaped result. Otherwise, we rely on broadcasting the shapes together using standard numpy rules. Returns ------- `~astropy.coordinates.Angle` Parallactic angle. Notes ----- The parallactic angle is the angle between the great circle that intersects a celestial object and the zenith, and the object's hour circle [1]_. .. [1] https://en.wikipedia.org/wiki/Parallactic_angle """ time, coordinate = self._preprocess_inputs(time, target, grid_times_targets) # Eqn (14.1) of Meeus' Astronomical Algorithms LST = time.sidereal_time('mean', longitude=self.location.lon) H = (LST - coordinate.ra).radian q = np.arctan2(np.sin(H), (np.tan(self.location.lat.radian) * np.cos(coordinate.dec.radian) - np.sin(coordinate.dec.radian)*np.cos(H)))*u.rad return Angle(q) # Sun-related methods. @u.quantity_input(horizon=u.deg) def _horiz_cross(self, t, alt, rise_set, horizon=0*u.degree): """ Find time ``t`` when values in array ``a`` go from negative to positive or positive to negative (exclude endpoints) ``return_limits`` will return nearest times to zero-crossing. Parameters ---------- t : `~astropy.time.Time` Grid of N times, any shape. Search grid along first axis, e.g (N, ...) alt : `~astropy.units.Quantity` Grid of altitudes Depending on broadcasting we either have ndim >=3 and M targets along first axis, e.g (M, N, ...), or ndim = 2 and targets/times in last axis rise_set : {"rising", "setting"} Calculate either rising or setting across the horizon horizon : float Number of degrees above/below actual horizon to use for calculating rise/set times (i.e., -6 deg horizon = civil twilight, etc.) Returns ------- Returns the lower and upper limits on the time and altitudes of the horizon crossing. The altitude limits have shape (M, ...) and the time limits have shape (...). These arrays aresuitable for interpolation to find the horizon crossing time. """ # handle different cases by enforcing standard shapes on # the altitude grid finesse_time_indexes = False if alt.ndim == 1: raise ValueError('Must supply more at least a 2D grid of altitudes') elif alt.ndim == 2: # TODO: this test for ndim=2 doesn't work. if times is e.g (2,5) # then alt will have ndim=3, but shape (100, 2, 5) so grid # is in first index... ntargets = alt.shape[1] ngrid = alt.shape[0] unit = alt.unit alt = np.broadcast_to(alt, (ntargets, ngrid, ntargets)).T alt = alt*unit extra_dimension_added = True if t.shape[1] == 1: finesse_time_indexes = True else: extra_dimension_added = False output_shape = (alt.shape[0],) + alt.shape[2:] if rise_set == 'rising': # Find index where altitude goes from below to above horizon condition = ((alt[:, :-1, ...] < horizon) * (alt[:, 1:, ...] > horizon)) elif rise_set == 'setting': # Find index where altitude goes from above to below horizon condition = ((alt[:, :-1, ...] > horizon) * (alt[:, 1:, ...] < horizon)) noncrossing_indices = np.sum(condition, axis=1, dtype=np.intp) < 1 alt_lims1 = u.Quantity(np.zeros(output_shape), unit=u.deg) alt_lims2 = u.Quantity(np.zeros(output_shape), unit=u.deg) jd_lims1 = np.zeros(output_shape) jd_lims2 = np.zeros(output_shape) if np.any(noncrossing_indices): for target_index in set(np.where(noncrossing_indices)[0]): warnmsg = ('Target with index {} does not cross horizon={} ' 'within 24 hours'.format(target_index, horizon)) if (alt[target_index, ...] > horizon).all(): warnings.warn(warnmsg, TargetAlwaysUpWarning) else: warnings.warn(warnmsg, TargetNeverUpWarning) alt_lims1[np.nonzero(noncrossing_indices)] = np.nan alt_lims2[np.nonzero(noncrossing_indices)] = np.nan jd_lims1[np.nonzero(noncrossing_indices)] = np.nan jd_lims2[np.nonzero(noncrossing_indices)] = np.nan before_indices = np.array(np.nonzero(condition)) # we want to add an vector like (0, 1, ...) to get after indices after_indices = before_indices.copy() after_indices[1, :] += 1 al1 = alt[tuple(before_indices)] al2 = alt[tuple(after_indices)] # slice the time in the same way, but delete the object index before_time_index_tuple = np.delete(before_indices, 0, 0) after_time_index_tuple = np.delete(after_indices, 0, 0) if finesse_time_indexes: before_time_index_tuple[1:] = 0 after_time_index_tuple[1:] = 0 tl1 = t[tuple(before_time_index_tuple)] tl2 = t[tuple(after_time_index_tuple)] alt_lims1[tuple(np.delete(before_indices, 1, 0))] = al1 alt_lims2[tuple(np.delete(before_indices, 1, 0))] = al2 jd_lims1[tuple(np.delete(before_indices, 1, 0))] = tl1.utc.jd jd_lims2[tuple(np.delete(before_indices, 1, 0))] = tl2.utc.jd if extra_dimension_added: return (alt_lims1.diagonal(), alt_lims2.diagonal(), jd_lims1.diagonal(), jd_lims2.diagonal()) else: return alt_lims1, alt_lims2, jd_lims1, jd_lims2 @u.quantity_input(horizon=u.deg) def _two_point_interp(self, jd_before, jd_after, alt_before, alt_after, horizon=0*u.deg): """ Do linear interpolation between two ``altitudes`` at two ``times`` to determine the time where the altitude goes through zero. Parameters ---------- jd_before : `float` JD(UTC) before crossing event jd_after : `float` JD(UTC) after crossing event alt_before : `~astropy.units.Quantity` altitude before crossing event alt_after : `~astropy.units.Quantity` altitude after crossing event horizon : `~astropy.units.Quantity` Solve for the time when the altitude is equal to reference_alt. Returns ------- t : `~astropy.time.Time` Time when target crosses the horizon """ # Approximate the horizon-crossing time: slope = (alt_after-alt_before) / ((jd_after - jd_before) * u.d) crossing_jd = (jd_after * u.d - ((alt_after - horizon) / slope)) # TODO: edit after https://github.com/astropy/astropy/issues/9612 has # been addressed. # Determine whether or not there are NaNs in the crossing_jd array which # represent computations where no horizon crossing was found: nans = np.isnan(crossing_jd) # If there are, set them equal to zero, rather than np.nan crossing_jd[nans] = 0 times = Time(crossing_jd, format='jd') # Create a Time object with masked out times where there were NaNs times[nans] = np.ma.masked return np.squeeze(times) def _altitude_trig(self, LST, target, grid_times_targets=False): """ Calculate the altitude of ``target`` at local sidereal times ``LST``. This method provides a factor of ~3 speed up over calling `altaz`, and inherently does *not* take the atmosphere into account. Parameters ---------- LST : `~astropy.time.Time` Local sidereal times (array) target : {`~astropy.coordinates.SkyCoord`, `FixedTarget`} or similar Target celestial object's coordinates. grid_times_targets: bool If True, the target object will have extra dimensions packed onto the end, so that calculations with M targets and N times will return an (M, N) shaped result. Otherwise, we rely on broadcasting the shapes together using standard numpy rules. Returns ------- alt : `~astropy.unit.Quantity` Array of altitudes """ LST, target = self._preprocess_inputs(LST, target, grid_times_targets) alt = np.arcsin(np.sin(self.location.lat.radian) * np.sin(target.dec) +
np.cos(self.location.lat.radian)
numpy.cos
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import quantipy as qp # from matplotlib import pyplot as plt # import matplotlib.image as mpimg import string import pickle import warnings try: import seaborn as sns from PIL import Image except: pass from quantipy.core.cache import Cache from quantipy.core.view import View from quantipy.core.view_generators.view_mapper import ViewMapper from quantipy.core.view_generators.view_maps import QuantipyViews from quantipy.core.helpers.functions import emulate_meta from quantipy.core.tools.view.logic import (has_any, has_all, has_count, not_any, not_all, not_count, is_lt, is_ne, is_gt, is_le, is_eq, is_ge, union, intersection, get_logic_index) from quantipy.core.helpers.functions import (paint_dataframe, emulate_meta, get_text, finish_text_key) from quantipy.core.tools.dp.prep import recode from quantipy.core.tools.qp_decorators import lazy_property from operator import add, sub, mul from operator import truediv as div #from scipy.stats.stats import _ttest_finish as get_pval from scipy.stats._stats_py import _ttest_finish as get_pval from scipy.stats import chi2 as chi2dist from scipy.stats import f as fdist from itertools import combinations, chain, product from collections import defaultdict, OrderedDict, Counter import gzip try: import dill except: pass import json import copy import time import sys import re from quantipy.core.rules import Rules _TOTAL = '@' _AXES = ['x', 'y'] class ChainManager(object): def __init__(self, stack): self.stack = stack self.__chains = [] self.source = 'native' self.build_info = {} self._hidden = [] def __str__(self): return '\n'.join([chain.__str__() for chain in self]) def __repr__(self): return self.__str__() def __getitem__(self, value): if isinstance(value, str): element = self.__chains[self._idx_from_name(value)] is_folder = isinstance(element, dict) if is_folder: return list(element.values())[0] else: return element else: return self.__chains[value] def __len__(self): """returns the number of cached Chains""" return len(self.__chains) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < self.__len__(): obj = self[self.n] self.n += 1 return obj else: raise StopIteration next = __next__ def add_chain(self, chain): self.__chains.append(chain) @property def folders(self): """ Folder indices, names and number of stored ``qp.Chain`` items (as tuples). """ return [(self.__chains.index(f), list(f.keys())[0], len(list(f.values())[0])) for f in self if isinstance(f, dict)] @property def singles(self): """ The list of all non-folder ``qp.Chain`` indices and names (as tuples). """ return list(zip(self.single_idxs, self.single_names)) @property def chains(self): """ The flattened list of all ``qp.Chain`` items of self. """ all_chains = [] for c in self: if isinstance(c, dict): all_chains.extend(list(c.values())[0]) else: all_chains.append(c) return all_chains @property def folder_idxs(self): """ The folders' index positions in self. """ return [f[0] for f in self.folders] @property def folder_names(self): """ The folders' names from self. """ return [f[1] for f in self.folders] @property def single_idxs(self): """ The ``qp.Chain`` instances' index positions in self. """ return [self.__chains.index(c) for c in self if isinstance(c, Chain)] @property def single_names(self): """ The ``qp.Chain`` instances' names. """ return [s.name for s in self if isinstance(s, Chain)] @property def hidden(self): """ All ``qp.Chain`` elements that are hidden. """ return [c.name for c in self.chains if c.hidden] @property def hidden_folders(self): """ All hidden folders. """ return [n for n in self._hidden if n in self.folder_names] def _content_structure(self): return ['folder' if isinstance(k, dict) else 'single' for k in self] def _singles_to_idx(self): return {name: i for i, name in list(self._idx_to_singles().items())} def _idx_to_singles(self): return dict(self.singles) def _idx_fold(self): return dict([(f[0], f[1]) for f in self.folders]) def _folders_to_idx(self): return {name: i for i, name in list(self._idx_fold().items())} def _names(self, unroll=False): if not unroll: return self.folder_names + self.single_names else: return [c.name for c in self.chains] def _idxs_to_names(self): singles = self.singles folders = [(f[0], f[1]) for f in self.folders] return dict(singles + folders) def _names_to_idxs(self): return {n: i for i, n in list(self._idxs_to_names().items())} def _name_from_idx(self, name): return self._idxs_to_names()[name] def _idx_from_name(self, idx): return self._names_to_idxs()[idx] def _is_folder_ref(self, ref): return ref in self._folders_to_idx() or ref in self._idx_fold() def _is_single_ref(self, ref): return ref in self._singles_to_idx or ref in self._idx_to_singles() def _uniquify_names(self): all_names = Counter(self.single_names + self.folder_names) single_name_occ = Counter(self.single_names) folder_name_occ = {folder: Counter([c.name for c in self[folder]]) for folder in self.folder_names} for struct_name in all_names: if struct_name in folder_name_occ: iter_over = folder_name_occ[struct_name] is_folder = struct_name else: iter_over = single_name_occ is_folder = False for name, occ in list(iter_over.items()): if occ > 1: new_names = ['{}_{}'.format(name, i) for i in range(1, occ + 1)] idx = [s[0] for s in self.singles if s[1] == name] pairs = list(zip(idx, new_names)) if is_folder: for idx, c in enumerate(self[is_folder]): c.name = pairs[idx][1] else: for p in pairs: self.__chains[p[0]].name = p[1] return None def _set_to_folderitems(self, folder): """ Will keep only the ``values()`` ``qp.Chain`` item list from the named folder. Use this for within-folder-operations... """ if not folder in self.folder_names: err = "A folder named '{}' does not exist!".format(folder) raise KeyError(err) else: org_chains = self.__chains[:] org_index = self._idx_from_name(folder) self.__chains = self[folder] return org_chains, org_index def _rebuild_org_folder(self, folder, items, index): """ After a within-folder-operation this method is using the returns of ``_set_to_folderitems`` to rebuild the originating folder. """ self.fold(folder) new_folder = self.__chains[:] self.__chains = items self.__chains[index] = new_folder[0] return None @staticmethod def _dupes_in_chainref(chain_refs): return len(set(chain_refs)) != len(chain_refs) def _check_equality(self, other, return_diffs=True): """ """ chains1 = self.chains chains2 = other.chains diffs = {} if not len(chains1) == len(chains2): return False else: paired = list(zip(chains1, chains2)) for c1, c2 in paired: atts1 = c1.__dict__ atts2 = c2.__dict__ for att in list(atts1.keys()): if isinstance(atts1[att], (pd.DataFrame, pd.Index)): if not atts1[att].equals(atts2[att]): diffs[att] = [atts1[att], atts2[att]] else: if atts1[att] != atts2[att]: diffs[att] = [atts1[att], atts2[att]] return diffs if return_diffs else not diffs def _test_same_structure(self, other): """ """ folders1 = self.folders singles1 = self.singles folders2 = other.folders singles2 = other.singles if (folders1 != folders2 or singles1 != singles2): return False else: return True def equals(self, other): """ Test equality of self to another ``ChainManager`` object instance. .. note:: Only the flattened list of ``Chain`` objects stored are tested, i.e. any folder structure differences are ignored. Use ``compare()`` for a more detailed comparison. Parameters ---------- other : ``qp.ChainManager`` Another ``ChainManager`` object to compare. Returns ------- equality : bool """ return self._check_equality(other, False) def compare(self, other, strict=True, full_summary=True): """ Compare structure and content of self to another ``ChainManager`` instance. Parameters ---------- other : ``qp.ChainManager`` Another ``ChainManager`` object to compare. strict : bool, default True Test if the structure of folders vs. single Chain objects is the same in both ChainManager instances. full_summary : bool, default True ``False`` will disable the detailed comparison ``pd.DataFrame`` that informs about differences between the objects. Returns ------- result : str A brief feedback message about the comparison results. """ diffs = [] if strict: same_structure = self._test_same_structure(other) if not same_structure: diffs.append('s') check = self._check_equality(other) if isinstance(check, bool): diffs.append('l') else: if check: diffs.append('c') report_full = ['_frame', '_x_keys', '_y_keys', 'index', '_columns', 'base_descriptions', 'annotations'] diffs_in = '' if diffs: if 'l' in diffs: diffs_in += '\n -Length (number of stored Chain objects)' if 's' in diffs: diffs_in += '\n -Structure (folders and/or single Chain order)' if 'c' in diffs: diffs_in += '\n -Chain elements (properties and content of Chain objects)' if diffs_in: result = 'ChainManagers are not identical:\n' result += '--------------------------------' + diffs_in else: result = 'ChainManagers are identical.' print(result) return None def save(self, path, keep_stack=False): """ """ if not keep_stack: del self.stack self.stack = None f = open(path, 'wb') pickle.dump(self, f, pickle.HIGHEST_PROTOCOL) f.close() return None @staticmethod def load(path): """ """ f = open(path, 'rb') obj = pickle.load(f) f.close() return obj def _toggle_vis(self, chains, mode='hide'): if not isinstance(chains, list): chains = [chains] for chain in chains: if isinstance(chain, dict): fname = list(chain.keys())[0] elements = list(chain.values())[0] fidx = self._idx_from_name(fname) folder = self[fidx][fname] for c in folder: if c.name in elements: c.hidden = True if mode == 'hide' else False if mode == 'hide' and not c.name in self._hidden: self._hidden.append(c.name) if mode == 'unhide' and c.name in self._hidden: self._hidden.remove(c.name) else: if chain in self.folder_names: for c in self[chain]: c.hidden = True if mode == 'hide' else False else: self[chain].hidden = True if mode == 'hide' else False if mode == 'hide': if not chain in self._hidden: self._hidden.append(chain) else: if chain in self._hidden: self._hidden.remove(chain) return None def hide(self, chains): """ Flag elements as being hidden. Parameters ---------- chains : (list) of int and/or str or dict The ``qp.Chain`` item and/or folder names to hide. To hide *within* a folder use a dict to map the desired Chain names to the belonging folder name. Returns ------- None """ self._toggle_vis(chains, 'hide') return None def unhide(self, chains=None): """ Unhide elements that have been set as ``hidden``. Parameters ---------- chains : (list) of int and/or str or dict, default None The ``qp.Chain`` item and/or folder names to unhide. To unhide *within* a folder use a dict to map the desired Chain names to the belonging folder name. If not provided, all hidden elements will be unhidden. Returns ------- None """ if not chains: chains = self.folder_names + self.single_names self._toggle_vis(chains, 'unhide') return None def clone(self): """ Return a full (deep) copy of self. """ return copy.deepcopy(self) def insert(self, other_cm, index=-1, safe_names=False): """ Add elements from another ``ChainManager`` instance to self. Parameters ---------- other_cm : ``quantipy.ChainManager`` A ChainManager instance to draw the elements from. index : int, default -1 The positional index after which new elements will be added. Defaults to -1, i.e. elements are appended at the end. safe_names : bool, default False If True and any duplicated element names are found after the operation, names will be made unique (by appending '_1', '_2', '_3', etc.). Returns ------ None """ if not isinstance(other_cm, ChainManager): raise ValueError("other_cm must be a quantipy.ChainManager instance.") if not index == -1: before_c = self.__chains[:index+1] after_c = self.__chains[index+1:] new_chains = before_c + other_cm.__chains + after_c self.__chains = new_chains else: self.__chains.extend(other_cm.__chains) if safe_names: self._uniquify_names() return None def merge(self, folders, new_name=None, drop=True): """ Unite the items of two or more folders, optionally providing a new name. If duplicated ``qp.Chain`` items are found, the first instance will be kept. The merged folder will take the place of the first folder named in ``folders``. Parameters ---------- folders : list of int and/or str The folders to merge refernced by their positional index or by name. new_name : str, default None Use this as the merged folder's name. If not provided, the name of the first folder in ``folders`` will be used instead. drop : bool, default True If ``False``, the original folders will be kept alongside the new merged one. Returns ------- None """ if not isinstance(folders, list): err = "'folders' must be a list of folder references!" raise TypeError(err) if len(folders) == 1: err = "'folders' must contain at least two folder names!" raise ValueError(err) if not all(self._is_folder_ref(f) for f in folders): err = "One or more folder names from 'folders' do not exist!" ValueError(err) folders = [f if isinstance(f, str) else self._name_from_idx(f) for f in folders] folder_idx = self._idx_from_name(folders[0]) if not new_name: new_name = folders[0] merged_items = [] seen_names = [] for folder in folders: for chain in self[folder]: if not chain.name in seen_names: merged_items.append(chain) seen_names.append(chain.name) if drop: self.__chains[folder_idx] = {new_name: merged_items} remove_folders = folders[1:] if new_name != folders[0] else folders for r in remove_folders: self.remove(r) else: start = self.__chains[:folder_idx] end = self.__chains[folder_idx:] self.__chains = start + [{new_name: merged_items}] + end return None def fold(self, folder_name=None, chains=None): """ Arrange non-``dict`` structured ``qp.Chain`` items in folders. All separate ``qp.Chain`` items will be mapped to their ``name`` property being the ``key`` in the transformed ``dict`` structure. Parameters ---------- folder_name : str, default None Collect all items in a folder keyed by the provided name. If the key already exists, the items will be appended to the ``dict`` values. chains : (list) of int and/or str, default None Select specific ``qp.Chain`` items by providing their positional indices or ``name`` property value for moving only a subset to the folder. Returns ------- None """ if chains: if not isinstance(chains, list): chains = [chains] if any(self._is_folder_ref(c) for c in chains): err = 'Cannot build folder from other folders!' raise ValueError(err) all_chain_names = [] singles = [] for c in chains: if isinstance(c, str): all_chain_names.append(c) elif isinstance(c, int) and c in self._idx_to_singles(): all_chain_names.append(self._idx_to_singles()[c]) for c in all_chain_names: singles.append(self[self._singles_to_idx()[c]]) else: singles = [s for s in self if isinstance(s, Chain)] if self._dupes_in_chainref(singles): err = "Cannot build folder from duplicate qp.Chain references: {}" raise ValueError(err.format(singles)) for s in singles: if folder_name: if folder_name in self.folder_names: self[folder_name].append(s) else: self.__chains.append({folder_name: [s]}) del self.__chains[self._singles_to_idx()[s.name]] else: self.__chains[self._singles_to_idx()[s.name]] = {s.name: [s]} return None def unfold(self, folder=None): """ Remove folder but keep the collected items. The items will be added starting at the old index position of the original folder. Parameters ---------- folder : (list of) str, default None The name of the folder to drop and extract items from. If not provided all folders will be unfolded. Returns ------- None """ if not folder: folder = self.folder_names else: if not isinstance(folder, list): folder = [folder] invalid = [f for f in folder if f not in self.folder_names] if invalid: err = "Folder(s) named '{}' not found.".format(invalid) raise KeyError(err) for f in folder: old_pos = self._idx_from_name(f) items = self[f] start = self.__chains[: old_pos] end = self.__chains[old_pos + 1: ] self.__chains = start + items + end return None def remove(self, chains, folder=None, inplace=True): """ Remove (folders of) ``qp.Chain`` items by providing a list of indices or names. Parameters ---------- chains : (list) of int and/or str ``qp.Chain`` items or folders by provided by their positional indices or ``name`` property. folder : str, default None If a folder name is provided, items will be dropped within that folder only instead of removing all found instances. inplace : bool, default True By default the new order is applied inplace, set to ``False`` to return a new object instead. Returns ------- None """ if inplace: cm = self else: cm = self.clone() if folder: org_chains, org_index = cm._set_to_folderitems(folder) if not isinstance(chains, list): chains = [chains] remove_idxs= [c if isinstance(c, int) else cm._idx_from_name(c) for c in chains] if cm._dupes_in_chainref(remove_idxs): err = "Cannot remove with duplicate chain references: {}" raise ValueError(err.format(remove_idxs)) new_items = [] for pos, c in enumerate(cm): if not pos in remove_idxs: new_items.append(c) cm.__chains = new_items if folder: cm._rebuild_org_folder(folder, org_chains, org_index) if inplace: return None else: return cm def cut(self, values, ci=None, base=False, tests=False): """ Isolate selected axis values in the ``Chain.dataframe``. Parameters ---------- values : (list of) str The string must indicate the raw (i.e. the unpainted) second level axis value, e.g. ``'mean'``, ``'net_1'``, etc. ci : {'counts', 'c%', None}, default None The cell item version to target if multiple frequency representations are present. base : bool, default False Controls keeping any existing base view aggregations. tests : bool, default False Controls keeping any existing significance test view aggregations. Returns ------- None """ if not isinstance(values, list): values = [values] if 'cbase' in values: values[values.index('cbase')] = 'All' if base and not 'All' in values: values = ['All'] + values for c in self.chains: # force ci parameter for proper targeting on array summaries... if c.array_style == 0 and ci is None: _ci = c.cell_items.split('_')[0] if not _ci.startswith('counts'): ci = '%' else: ci = 'counts' if c.sig_test_letters: c._remove_letter_header() idxs, names, order = c._view_idxs( values, keep_tests=tests, keep_bases=base, names=True, ci=ci) idxs = [i for _, i in sorted(zip(order, idxs))] names = [n for _, n in sorted(zip(order, names))] if c.ci_count > 1: c._non_grouped_axis() if c.array_style == 0: c._fill_cells() start, repeat = c._row_pattern(ci) c._frame = c._frame.iloc[start::repeat, idxs] else: c._frame = c._frame.iloc[idxs, :] c.index = c._slice_edited_index(c.index, idxs) new_views = OrderedDict() for v in c.views.copy(): if not v in names: del c._views[v] else: c._views[v] = names.count(v) if not c._array_style == 0: if not tests: c.sig_test_letters = None else: c._frame = c._apply_letter_header(c._frame) c.edited = True return None def join(self, title='Summary'): """ Join **all** ``qp.Chain```elements, concatenating along the matching axis. Parameters ---------- title : {str, 'auto'}, default 'Summary' The new title for the joined axis' index representation. Returns ------- None """ custom_views = [] self.unfold() chains = self.chains totalmul = len(chains[0]._frame.columns.get_level_values(0).tolist()) concat_dfs = [] new_labels = [] for c in chains: new_label = [] if c.sig_test_letters: c._remove_letter_header() c._frame = c._apply_letter_header(c._frame) df = c.dataframe if not c.array_style == 0: new_label.append(df.index.get_level_values(0).values.tolist()[0]) new_label.extend((len(c.describe()) - 1) * ['']) else: new_label.extend(df.index.get_level_values(1).values.tolist()) names = ['Question', 'Values'] join_idx = pd.MultiIndex.from_product([[title], new_label], names=names) df.index = join_idx df.rename(columns={c._x_keys[0]: 'Total'}, inplace=True) if not c.array_style == 0: custom_views.extend(c._views_per_rows()) else: df.columns.set_levels(levels=[title]*totalmul, level=0, inplace=True) concat_dfs.append(df) new_df = pd.concat(concat_dfs, axis=0, join='inner') self.chains[0]._frame = new_df self.reorder([0]) self.rename({self.single_names[0]: title}) self.fold() self.chains[0]._custom_views = custom_views return None def reorder(self, order, folder=None, inplace=True): """ Reorder (folders of) ``qp.Chain`` items by providing a list of new indices or names. Parameters ---------- order : list of int and/or str The folder or ``qp.Chain`` references to determine the new order of items. Any items not referenced will be removed from the new order. folder : str, default None If a folder name is provided, items will be sorted within that folder instead of applying the sorting to the general items collection. inplace : bool, default True By default the new order is applied inplace, set to ``False`` to return a new object instead. Returns ------- None """ if inplace: cm = self else: cm = self.clone() if folder: org_chains, org_index = self._set_to_folderitems(folder) if not isinstance(order, list): err = "'order' must be a list!" raise ValueError(err) new_idx_order = [] for o in order: if isinstance(o, int): new_idx_order.append(o) else: new_idx_order.append(self._idx_from_name(o)) if cm._dupes_in_chainref(new_idx_order): err = "Cannot reorder from duplicate qp.Chain references: {}" raise ValueError(err.format(new_idx_order)) items = [self.__chains[idx] for idx in new_idx_order] cm.__chains = items if folder: cm._rebuild_org_folder(folder, org_chains, org_index) if inplace: return None else: return cm def rename(self, names, folder=None): """ Rename (folders of) ``qp.Chain`` items by providing a mapping of old to new keys. Parameters ---------- names : dict Maps existing names to the desired new ones, i.e. {'old name': 'new names'} pairs need to be provided. folder : str, default None If a folder name is provided, new names will only be applied within that folder. This is without effect if all ``qp.Chain.name`` properties across the items are unique. Returns ------- None """ if not isinstance(names, dict): err = "''names' must be a dict of old_name: new_name pairs." raise ValueError(err) if folder and not folder in self.folder_names: err = "A folder named '{}' does not exist!".format(folder) raise KeyError(err) for old, new in list(names.items()): no_folder_name = folder and not old in self._names(False) no_name_across = not folder and not old in self._names(True) if no_folder_name and no_name_across: err = "'{}' is not an existing folder or ``qp.Chain`` name!" raise KeyError(err.format(old)) else: within_folder = old not in self._names(False) if not within_folder: idx = self._idx_from_name(old) if not isinstance(self.__chains[idx], dict): self.__chains[idx].name = new else: self.__chains[idx] = {new: self[old][:]} else: iter_over = self[folder] if folder else self.chains for c in iter_over: if c.name == old: c.name = new return None def _native_stat_names(self, idxvals_list, text_key=None): """ """ if not text_key: text_key = 'en-GB' replacements = { 'en-GB': { 'Weighted N': 'Base', # Crunch 'N': 'Base', # Crunch 'Mean': 'Mean', # Dims 'StdDev': 'Std. dev', # Dims 'StdErr': 'Std. err. of mean', # Dims 'SampleVar': 'Sample variance' # Dims }, } native_stat_names = [] for val in idxvals_list: if val in replacements[text_key]: native_stat_names.append(replacements[text_key][val]) else: native_stat_names.append(val) return native_stat_names def _get_ykey_mapping(self): ys = [] letters = string.ascii_uppercase + string.ascii_lowercase for c in self.chains: if c._y_keys not in ys: ys.append(c._y_keys) return list(zip(ys, letters)) def describe(self, by_folder=False, show_hidden=False): """ Get a structual summary of all ``qp.Chain`` instances found in self. Parameters ---------- by_folder : bool, default False If True, only information on ``dict``-structured (folder-like) ``qp.Chain`` items is shown, multiindexed by folder names and item enumerations. show_hidden : bool, default False If True, the summary will also include elements that have been set hidden using ``self.hide()``. Returns ------- None """ folders = [] folder_items = [] variables = [] names = [] array_sum = [] sources = [] banner_ids = [] item_pos = [] hidden = [] bannermap = self._get_ykey_mapping() for pos, chains in enumerate(self): is_folder = isinstance(chains, dict) if is_folder: folder_name = list(chains.keys()) chains = list(chains.values())[0] folder_items.extend(list(range(0, len(chains)))) item_pos.extend([pos] * len(chains)) else: chains = [chains] folder_name = [None] folder_items.append(None) item_pos.append(pos) if chains[0].structure is None: variables.extend([c._x_keys[0] for c in chains]) names.extend([c.name for c in chains]) folders.extend(folder_name * len(chains)) array_sum.extend([True if c.array_style > -1 else False for c in chains]) sources.extend(c.source if not c.edited else 'edited' for c in chains) for c in chains: for m in bannermap: if m[0] == c._y_keys: banner_ids.append(m[1]) else: variables.extend([chains[0].name]) names.extend([chains[0].name]) folders.extend(folder_name) array_sum.extend([False]) sources.extend(c.source for c in chains) banner_ids.append(None) for c in chains: if c.hidden: hidden.append(True) else: hidden.append(False) df_data = [item_pos, names, folders, folder_items, variables, sources, banner_ids, array_sum, hidden] df_cols = ['Position', 'Name', 'Folder', 'Item', 'Variable', 'Source', 'Banner id', 'Array', 'Hidden'] df = pd.DataFrame(df_data).T df.columns = df_cols if by_folder: df = df.set_index(['Position', 'Folder', 'Item']) if not show_hidden: df = df[df['Hidden'] == False][df.columns[:-1]] return df def from_mtd(self, mtd_doc, ignore=None, paint=True, flatten=False): """ Convert a Dimensions table document (.mtd) into a collection of quantipy.Chain representations. Parameters ---------- mtd_doc : (pandified) .mtd A Dimensions .mtd file or the returned result of ``pandify_mtd()``. A "pandified" .mtd consists of ``dict`` of ``pandas.DataFrame`` and metadata ``dict``. Additional text here... ignore : bool, default False Text labels : bool, default True Text flatten : bool, default False Text Returns ------- self : quantipy.ChainManager Will consist of Quantipy representations of the pandas-converted .mtd file. """ def relabel_axes(df, meta, sigtested, labels=True): """ """ for axis in ['x', 'y']: if axis == 'x': transf_axis = df.index else: transf_axis = df.columns levels = transf_axis.nlevels axis_meta = 'index-emetas' if axis == 'x' else 'columns-emetas' for l in range(0, levels): if not (sigtested and axis == 'y' and l == levels -1): org_vals = transf_axis.get_level_values(l).tolist() org_names = [ov.split('|')[0] for ov in org_vals] org_labs = [ov.split('|')[1] for ov in org_vals] new_vals = org_labs if labels else org_names if l > 0: for no, axmeta in enumerate(meta[axis_meta]): if axmeta['Type'] != 'Category': new_vals[no] = axmeta['Type'] new_vals = self._native_stat_names(new_vals) rename_dict = {old: new for old, new in zip(org_vals, new_vals)} if axis == 'x': df.rename(index=rename_dict, inplace=True) df.index.names = ['Question', 'Values'] * (levels / 2) else: df.rename(columns=rename_dict, inplace=True) if sigtested: df.columns.names = (['Question', 'Values'] * (levels / 2) + ['Test-IDs']) else: df.columns.names = ['Question', 'Values'] * (levels / 2) return None def split_tab(tab): """ """ df, meta = tab['df'], tab['tmeta'] mtd_slicer = df.index.get_level_values(0) meta_limits = list(OrderedDict( (i, mtd_slicer.tolist().count(i)) for i in mtd_slicer).values()) meta_slices = [] for start, end in enumerate(meta_limits): if start == 0: i_0 = 0 else: i_0 = meta_limits[start-1] meta_slices.append((i_0, end)) df_slicers = [] for e in mtd_slicer: if not e in df_slicers: df_slicers.append(e) dfs = [df.loc[[s], :].copy() for s in df_slicers] sub_metas = [] for ms in meta_slices: all_meta = copy.deepcopy(meta) idx_meta = all_meta['index-emetas'][ms[0]: ms[1]] all_meta['index-emetas'] = idx_meta sub_metas.append(all_meta) return list(zip(dfs, sub_metas)) def _get_axis_vars(df): axis_vars = [] for axis in [df.index, df.columns]: ax_var = [v.split('|')[0] for v in axis.unique().levels[0]] axis_vars.append(ax_var) return axis_vars[0][0], axis_vars[1] def to_chain(basic_chain_defintion, add_chain_meta): new_chain = Chain(None, basic_chain_defintion[1]) new_chain.source = 'Dimensions MTD' new_chain.stack = None new_chain.painted = True new_chain._meta = add_chain_meta new_chain._frame = basic_chain_defintion[0] new_chain._x_keys = [basic_chain_defintion[1]] new_chain._y_keys = basic_chain_defintion[2] new_chain._given_views = None new_chain._grp_text_map = [] new_chain._text_map = None # new_chain._pad_id = None # new_chain._array_style = None new_chain._has_rules = False # new_chain.double_base = False # new_chain.sig_test_letters = None # new_chain.totalize = True # new_chain._meta['var_meta'] = basic_chain_defintion[-1] # new_chain._extract_base_descriptions() new_chain._views = OrderedDict() new_chain._views_per_rows() for vk in new_chain._views_per_rows(): if not vk in new_chain._views: new_chain._views[vk] = new_chain._views_per_rows().count(vk) return new_chain def mine_mtd(tab_collection, paint, chain_coll, folder=None): failed = [] unsupported = [] for name, sub_tab in list(tab_collection.items()): try: if isinstance(list(sub_tab.values())[0], dict): mine_mtd(sub_tab, paint, chain_coll, name) else: tabs = split_tab(sub_tab) chain_dfs = [] for tab in tabs: df, meta = tab[0], tab[1] nestex_x = None nested_y = (df.columns.nlevels % 2 == 0 and df.columns.nlevels > 2) sigtested = (df.columns.nlevels % 2 != 0 and df.columns.nlevels > 2) if sigtested: df = df.swaplevel(0, axis=1).swaplevel(0, 1, 1) else: invalid = ['-', '*', '**'] df = df.applymap( lambda x: float(x.replace(',', '.').replace('%', '')) if isinstance(x, str) and not x in invalid else x ) x, y = _get_axis_vars(df) df.replace('-', np.NaN, inplace=True) relabel_axes(df, meta, sigtested, labels=paint) colbase_l = -2 if sigtested else -1 for base in ['Base', 'UnweightedBase']: df = df.drop(base, axis=1, level=colbase_l) chain = to_chain((df, x, y), meta) chain.name = name chain_dfs.append(chain) if not folder: chain_coll.extend(chain_dfs) else: folders = [(i, list(c.keys())[0]) for i, c in enumerate(chain_coll, 0) if isinstance(c, dict)] if folder in [f[1] for f in folders]: pos = [f[0] for f in folders if f[1] == folder][0] chain_coll[pos][folder].extend(chain_dfs) else: chain_coll.append({folder: chain_dfs}) except: failed.append(name) return chain_coll chain_coll = [] chains = mine_mtd(mtd_doc, paint, chain_coll) self.__chains = chains return self def from_cmt(self, crunch_tabbook, ignore=None, cell_items='c', array_summaries=True): """ Convert a Crunch multitable document (tabbook) into a collection of quantipy.Chain representations. Parameters ---------- crunch_tabbook : ``Tabbook`` object instance Text ignore : bool, default False Text cell_items : {'c', 'p', 'cp'}, default 'c' Text array_summaries : bool, default True Text Returns ------- self : quantipy.ChainManager Will consist of Quantipy representations of the Crunch table document. """ def cubegroups_to_chain_defs(cubegroups, ci, arr_sum): """ Convert CubeGroup DataFrame to a Chain.dataframe. """ chain_dfs = [] # DataFrame edits to get basic Chain.dataframe rep. for idx, cubegroup in enumerate(cubegroups): cubegroup_df = cubegroup.dataframe array = cubegroup.is_array # split arrays into separate dfs / convert to summary df... if array: ai_aliases = cubegroup.subref_aliases array_elements = [] dfs = [] if array_summaries: arr_sum_df = cubegroup_df.copy().unstack()['All'] arr_sum_df.is_summary = True x_label = arr_sum_df.index.get_level_values(0).tolist()[0] x_name = cubegroup.rowdim.alias dfs.append((arr_sum_df, x_label, x_name)) array_elements = cubegroup_df.index.levels[1].values.tolist() ai_df = cubegroup_df.copy() idx = cubegroup_df.index.droplevel(0) ai_df.index = idx for array_element, alias in zip(array_elements, ai_aliases): dfs.append((ai_df.loc[[array_element], :].copy(), array_element, alias)) else: x_label = cubegroup_df.index.get_level_values(0).tolist()[0] x_name = cubegroup.rowdim.alias dfs = [(cubegroup_df, x_label, x_name)] # Apply QP-style DataFrame conventions (indexing, names, etc.) for cgdf, x_var_label, x_var_name in dfs: is_summary = hasattr(cgdf, 'is_summary') if is_summary: cgdf = cgdf.T y_var_names = ['@'] x_names = ['Question', 'Values'] y_names = ['Array', 'Questions'] else: y_var_names = cubegroup.colvars x_names = ['Question', 'Values'] y_names = ['Question', 'Values'] cgdf.index = cgdf.index.droplevel(0) # Compute percentages? if cell_items == 'p': _calc_pct(cgdf) # Build x-axis multiindex / rearrange "Base" row idx_vals = cgdf.index.values.tolist() cgdf = cgdf.reindex([idx_vals[-1]] + idx_vals[:-1]) idx_vals = cgdf.index.values.tolist() mi_vals = [[x_var_label], self._native_stat_names(idx_vals)] row_mi = pd.MultiIndex.from_product(mi_vals, names=x_names) cgdf.index = row_mi # Build y-axis multiindex y_vals = [('Total', 'Total') if y[0] == 'All' else y for y in cgdf.columns.tolist()] col_mi = pd.MultiIndex.from_tuples(y_vals, names=y_names) cgdf.columns = col_mi if is_summary: cgdf = cgdf.T chain_dfs.append((cgdf, x_var_name, y_var_names, cubegroup._meta)) return chain_dfs def _calc_pct(df): df.iloc[:-1, :] = df.iloc[:-1, :].div(df.iloc[-1, :]) * 100 return None def to_chain(basic_chain_defintion, add_chain_meta): """ """ new_chain = Chain(None, basic_chain_defintion[1]) new_chain.source = 'Crunch multitable' new_chain.stack = None new_chain.painted = True new_chain._meta = add_chain_meta new_chain._frame = basic_chain_defintion[0] new_chain._x_keys = [basic_chain_defintion[1]] new_chain._y_keys = basic_chain_defintion[2] new_chain._given_views = None new_chain._grp_text_map = [] new_chain._text_map = None new_chain._pad_id = None new_chain._array_style = None new_chain._has_rules = False new_chain.double_base = False new_chain.sig_test_letters = None new_chain.totalize = True new_chain._meta['var_meta'] = basic_chain_defintion[-1] new_chain._extract_base_descriptions() new_chain._views = OrderedDict() for vk in new_chain._views_per_rows(): if not vk in new_chain._views: new_chain._views[vk] = new_chain._views_per_rows().count(vk) return new_chain # self.name = name OK! # self._meta = Crunch meta OK! # self._x_keys = None OK! # self._y_keys = None OK! # self._frame = None OK! # self.totalize = False OK! -> But is True! # self.stack = stack OK! -> N/A # self._has_rules = None OK! -> N/A # self.double_base = False OK! -> N/A # self.sig_test_letters = None OK! -> N/A # self._pad_id = None OK! -> N/A # self._given_views = None OK! -> N/A # self._grp_text_map = [] OK! -> N/A # self._text_map = None OK! -> N/A # self.grouping = None ? # self._group_style = None ? # self._transl = qp.core.view.View._metric_name_map() * with CMT/MTD self.source = 'Crunch multitable' cubegroups = crunch_tabbook.cube_groups meta = {'display_settings': crunch_tabbook.display_settings, 'weight': crunch_tabbook.weight} if cell_items == 'c': meta['display_settings']['countsOrPercents'] = 'counts' elif cell_items == 'p': meta['display_settings']['countsOrPercents'] = 'percent' chain_defs = cubegroups_to_chain_defs(cubegroups, cell_items, array_summaries) self.__chains = [to_chain(c_def, meta) for c_def in chain_defs] return self # ------------------------------------------------------------------------ def from_cluster(self, clusters): """ Create an OrderedDict of ``Cluster`` names storing new ``Chain``\s. Parameters ---------- clusters : cluster-like ([dict of] quantipy.Cluster) Text ... Returns ------- new_chain_dict : OrderedDict Text ... """ self.source = 'native (old qp.Cluster of qp.Chain)' qp.set_option('new_chains', True) def check_cell_items(views): c = any('counts' in view.split('|')[-1] for view in views) p = any('c%' in view.split('|')[-1] for view in views) cp = c and p if cp: cell_items = 'counts_colpct' else: cell_items = 'counts' if c else 'colpct' return cell_items def check_sigtest(views): """ """ levels = [] sigs = [v.split('|')[1] for v in views if v.split('|')[1].startswith('t.')] for sig in sigs: l = '0.{}'.format(sig.split('.')[-1]) if not l in levels: levels.append(l) return levels def mine_chain_structure(clusters): cluster_defs = [] for cluster_def_name, cluster in list(clusters.items()): for name in cluster: if isinstance(list(cluster[name].items())[0][1], pd.DataFrame): cluster_def = {'name': name, 'oe': True, 'df': list(cluster[name].items())[0][1], 'filter': chain.filter, 'data_key': chain.data_key} else: xs, views, weight = [], [], [] for chain_name, chain in list(cluster[name].items()): for v in chain.views: w = v.split('|')[-2] if w not in weight: weight.append(w) if v not in views: views.append(v) xs.append(chain.source_name) ys = chain.content_of_axis cluster_def = {'name': '{}-{}'.format(cluster_def_name, name), 'filter': chain.filter, 'data_key': chain.data_key, 'xs': xs, 'ys': ys, 'views': views, 'weight': weight[-1], 'bases': 'both' if len(weight) == 2 else 'auto', 'cell_items': check_cell_items(views), 'tests': check_sigtest(views)} cluster_defs.append(cluster_def) return cluster_defs from quantipy.core.view_generators.view_specs import ViewManager cluster_specs = mine_chain_structure(clusters) for cluster_spec in cluster_specs: oe = cluster_spec.get('oe', False) if not oe: vm = ViewManager(self.stack) vm.get_views(cell_items=cluster_spec['cell_items'], weight=cluster_spec['weight'], bases=cluster_spec['bases'], stats= ['mean', 'stddev', 'median', 'min', 'max'], tests=cluster_spec['tests']) self.get(data_key=cluster_spec['data_key'], filter_key=cluster_spec['filter'], x_keys = cluster_spec['xs'], y_keys = cluster_spec['ys'], views=vm.views, orient='x', prioritize=True) else: meta = [cluster_spec['data_key'], cluster_spec['filter']] df, name = cluster_spec['df'], cluster_spec['name'] self.add(df, meta_from=meta, name=name) return None @staticmethod def _force_list(obj): if isinstance(obj, (list, tuple)): return obj return [obj] def _check_keys(self, data_key, keys): """ Checks given keys exist in meta['columns'] """ keys = self._force_list(keys) meta = self.stack[data_key].meta valid = list(meta['columns'].keys()) + list(meta['masks'].keys()) invalid = ['"%s"' % _ for _ in keys if _ not in valid and _ != _TOTAL] if invalid: raise ValueError("Keys %s do not exist in meta['columns'] or " "meta['masks']." % ", ".join(invalid)) return keys def add(self, structure, meta_from=None, meta=None, name=None): """ Add a pandas.DataFrame as a Chain. Parameters ---------- structure : ``pandas.Dataframe`` The dataframe to add to the ChainManger meta_from : list, list-like, str, default None The location of the meta in the stack. Either a list-like object with data key and filter key or a str as the data key meta : quantipy meta (dict) External meta used to paint the frame name : ``str``, default None The name to give the resulting chain. If not passed, the name will become the concatenated column names, delimited by a period Returns ------- appended : ``quantipy.ChainManager`` """ name = name or '.'.join(structure.columns.tolist()) chain = Chain(self.stack, name, structure=structure) chain._frame = chain.structure chain._index = chain._frame.index chain._columns = chain._frame.columns chain._frame_values = chain._frame.values if meta_from: if isinstance(meta_from, str): chain._meta = self.stack[meta_from].meta else: data_key, filter_key = meta_from chain._meta = self.stack[data_key][filter_key].meta elif meta: chain._meta = meta self.__chains.append(chain) return self def get(self, data_key, filter_key, x_keys, y_keys, views, orient='x', rules=True, rules_weight=None, prioritize=True, folder=None): """ TODO: Full doc string Get a (list of) Chain instance(s) in either 'x' or 'y' orientation. Chain.dfs will be concatenated along the provided 'orient'-axis. """ # TODO: VERIFY data_key # TODO: VERIFY filter_key # TODO: Add verbose arg to get() x_keys = self._check_keys(data_key, x_keys) y_keys = self._check_keys(data_key, y_keys) if folder and not isinstance(folder, str): err = "'folder' must be a name provided as string!" raise ValueError(err) if orient == 'x': it, keys = x_keys, y_keys else: it, keys = y_keys, x_keys for key in it: x_key, y_key = (key, keys) if orient == 'x' else (keys, key) chain = Chain(self.stack, key) chain = chain.get(data_key, filter_key, self._force_list(x_key), self._force_list(y_key), views, rules=rules, rules_weight=rules_weight, prioritize=prioritize, orient=orient) folders = self.folder_names if folder in folders: idx = self._idx_from_name(folder) self.__chains[idx][folder].append(chain) else: if folder: self.__chains.append({folder: [chain]}) else: self.__chains.append(chain) return None def paint_all(self, *args, **kwargs): """ Apply labels, sig. testing conversion and other post-processing to the ``Chain.dataframe`` property. Use this to prepare a ``Chain`` for further usage in an Excel or Power- point Build. Parameters ---------- text_key : str, default meta['lib']['default text'] The language version of any variable metadata applied. text_loc_x : str, default None The key in the 'text' to locate the text_key for the ``pandas.DataFrame.index`` labels text_loc_y : str, default None The key in the 'text' to locate the text_key for the ``pandas.DataFrame.columns`` labels display : {'x', 'y', ['x', 'y']}, default None Text axes : {'x', 'y', ['x', 'y']}, default None Text view_level : bool, default False Text transform_tests : {False, 'full', 'cells'}, default cells Text totalize : bool, default False Text Returns ------- None The ``.dataframe`` is modified inplace. """ for chain in self: if isinstance(chain, dict): for c in list(chain.values())[0]: c.paint(*args, **kwargs) else: chain.paint(*args, **kwargs) return None HEADERS = ['header-title', 'header-left', 'header-center', 'header-right'] FOOTERS = ['footer-title', 'footer-left', 'footer-center', 'footer-right'] VALID_ANNOT_TYPES = HEADERS + FOOTERS + ['notes'] VALID_ANNOT_CATS = ['header', 'footer', 'notes'] VALID_ANNOT_POS = ['title', 'left', 'center', 'right'] class ChainAnnotations(dict): def __init__(self): super(ChainAnnotations, self).__init__() self.header_title = [] self.header_left = [] self.header_center = [] self.header_right = [] self.footer_title = [] self.footer_left = [] self.footer_center = [] self.footer_right = [] self.notes = [] for v in VALID_ANNOT_TYPES: self[v] = [] def __setitem__(self, key, value): self._test_valid_key(key) return super(ChainAnnotations, self).__setitem__(key, value) def __getitem__(self, key): self._test_valid_key(key) return super(ChainAnnotations, self).__getitem__(key) def __repr__(self): headers = [(h.split('-')[1], self[h]) for h in self.populated if h.split('-')[0] == 'header'] footers = [(f.split('-')[1], self[f]) for f in self.populated if f.split('-')[0] == 'footer'] notes = self['notes'] if self['notes'] else [] if notes: ar = 'Notes\n' ar += '-{:>16}\n'.format(str(notes)) else: ar = 'Notes: None\n' if headers: ar += 'Headers\n' for pos, text in list(dict(headers).items()): ar += ' {:>5}: {:>5}\n'.format(str(pos), str(text)) else: ar += 'Headers: None\n' if footers: ar += 'Footers\n' for pos, text in list(dict(footers).items()): ar += ' {:>5}: {:>5}\n'.format(str(pos), str(text)) else: ar += 'Footers: None' return ar def _test_valid_key(self, key): """ """ if key not in VALID_ANNOT_TYPES: splitted = key.split('-') if len(splitted) > 1: acat, apos = splitted[0], splitted[1] else: acat, apos = key, None if apos: if acat == 'notes': msg = "'{}' annotation type does not support positions!" msg = msg.format(acat) elif not acat in VALID_ANNOT_CATS and not apos in VALID_ANNOT_POS: msg = "'{}' is not a valid annotation type!".format(key) elif acat not in VALID_ANNOT_CATS: msg = "'{}' is not a valid annotation category!".format(acat) elif apos not in VALID_ANNOT_POS: msg = "'{}' is not a valid annotation position!".format(apos) else: msg = "'{}' is not a valid annotation type!".format(key) raise KeyError(msg) @property def header(self): h_dict = {} for h in HEADERS: if self[h]: h_dict[h.split('-')[1]] = self[h] return h_dict @property def footer(self): f_dict = {} for f in FOOTERS: if self[f]: f_dict[f.split('-')[1]] = self[f] return f_dict @property def populated(self): """ The annotation fields that are defined. """ return sorted([k for k, v in list(self.items()) if v]) @staticmethod def _annot_key(a_type, a_pos): if a_pos: return '{}-{}'.format(a_type, a_pos) else: return a_type def set(self, text, category='header', position='title'): """ Add annotation texts defined by their category and position. Parameters ---------- category : {'header', 'footer', 'notes'}, default 'header' Defines if the annotation is treated as a *header*, *footer* or *note*. position : {'title', 'left', 'center', 'right'}, default 'title' Sets the placement of the annotation within its category. Returns ------- None """ if not category: category = 'header' if not position and category != 'notes': position = 'title' if category == 'notes': position = None akey = self._annot_key(category, position) self[akey].append(text) self.__dict__[akey.replace('-', '_')].append(text) return None CELL_DETAILS = {'en-GB': {'cc': 'Cell Contents', 'N': 'Counts', 'c%': 'Column Percentages', 'r%': 'Row Percentages', 'str': 'Statistical Test Results', 'cp': 'Column Proportions', 'cm': 'Means', 'stats': 'Statistics', 'mb': 'Minimum Base', 'sb': 'Small Base', 'up': ' indicates result is significantly higher than the result in the Total column', 'down': ' indicates result is significantly lower than the result in the Total column' }, 'fr-FR': {'cc': 'Contenu cellule', 'N': 'Total', 'c%': 'Pourcentage de colonne', 'r%': 'Pourcentage de ligne', 'str': 'Résultats test statistique', 'cp': 'Proportions de colonne', 'cm': 'Moyennes de colonne', 'stats': 'Statistiques', 'mb': 'Base minimum', 'sb': 'Petite base', 'up': ' indique que le résultat est significativement supérieur au résultat de la colonne Total', 'down': ' indique que le résultat est significativement inférieur au résultat de la colonne Total' }} class Chain(object): def __init__(self, stack, name, structure=None): self.stack = stack self.name = name self.structure = structure self.source = 'native' self.edited = False self._custom_views = None self.double_base = False self.grouping = None self.sig_test_letters = None self.totalize = False self.base_descriptions = None self.painted = False self.hidden = False self.annotations = ChainAnnotations() self._array_style = None self._group_style = None self._meta = None self._x_keys = None self._y_keys = None self._given_views = None self._grp_text_map = [] self._text_map = None self._custom_texts = {} self._transl = qp.core.view.View._metric_name_map() self._pad_id = None self._frame = None self._has_rules = None self._flag_bases = None self._is_mask_item = False self._shapes = None class _TransformedChainDF(object): """ """ def __init__(self, chain): c = chain.clone() self.org_views = c.views self.df = c._frame self._org_idx = self.df.index self._edit_idx = list(range(0, len(self._org_idx))) self._idx_valmap = {n: o for n, o in zip(self._edit_idx, self._org_idx.get_level_values(1))} self.df.index = self._edit_idx self._org_col = self.df.columns self._edit_col = list(range(0, len(self._org_col))) self._col_valmap = {n: o for n, o in zip(self._edit_col, self._org_col.get_level_values(1))} self.df.columns = self._edit_col self.array_mi = c._array_style == 0 self.nested_y = c._nested_y self._nest_mul = self._nesting_multiplier() return None def _nesting_multiplier(self): """ """ levels = self._org_col.nlevels if levels == 2: return 1 else: return (levels / 2) + 1 def _insert_viewlikes(self, new_index_flat, org_index_mapped): inserts = [new_index_flat.index(val) for val in new_index_flat if not val in list(org_index_mapped.values())] flatviews = [] for name, no in list(self.org_views.items()): e = [name] * no flatviews.extend(e) for vno, i in enumerate(inserts): flatviews.insert(i, '__viewlike__{}'.format(vno)) new_views = OrderedDict() no_of_views = Counter(flatviews) for fv in flatviews: if not fv in new_views: new_views[fv] = no_of_views[fv] return new_views def _updated_index_tuples(self, axis): """ """ if axis == 1: current = self.df.columns.values.tolist() mapped = self._col_valmap org_tuples = self._org_col.tolist() else: current = self.df.index.values.tolist() mapped = self._idx_valmap org_tuples = self._org_idx.tolist() merged = [mapped[val] if val in mapped else val for val in current] # ================================================================ if (self.array_mi and axis == 1) or axis == 0: self._transf_views = self._insert_viewlikes(merged, mapped) else: self._transf_views = self.org_views # ================================================================ i = d = 0 new_tuples = [] for merged_val in merged: idx = i-d if i-d != len(org_tuples) else i-d-1 if org_tuples[idx][1] == merged_val: new_tuples.append(org_tuples[idx]) else: empties = ['*'] * self._nest_mul new_tuple = tuple(empties + [merged_val]) new_tuples.append(new_tuple) d += 1 i += 1 return new_tuples def _reindex(self): """ """ y_names = ['Question', 'Values'] if not self.array_mi: x_names = y_names else: x_names = ['Array', 'Questions'] if self.nested_y: y_names = y_names * (self._nest_mul - 1) tuples = self._updated_index_tuples(axis=1) self.df.columns = pd.MultiIndex.from_tuples(tuples, names=y_names) tuples = self._updated_index_tuples(axis=0) self.df.index = pd.MultiIndex.from_tuples(tuples, names=x_names) return None def export(self): """ """ return self._TransformedChainDF(self) def assign(self, transformed_chain_df): """ """ if not isinstance(transformed_chain_df, self._TransformedChainDF): raise ValueError("Must pass an exported ``Chain`` instance!") transformed_chain_df._reindex() self._frame = transformed_chain_df.df self.views = transformed_chain_df._transf_views return None def __str__(self): if self.structure is not None: return '%s...\n%s' % (self.__class__.__name__, str(self.structure.head())) str_format = ('%s...' '\nSource: %s' '\nName: %s' '\nOrientation: %s' '\nX: %s' '\nY: %s' '\nNumber of views: %s') return str_format % (self.__class__.__name__, getattr(self, 'source', 'native'), getattr(self, 'name', 'None'), getattr(self, 'orientation', 'None'), getattr(self, '_x_keys', 'None'), getattr(self, '_y_keys', 'None'), getattr(self, 'views', 'None')) def __repr__(self): return self.__str__() def __len__(self): """Returns the total number of cells in the Chain.dataframe""" return (len(getattr(self, 'index', [])) * len(getattr(self, 'columns', []))) def clone(self): """ """ return copy.deepcopy(self) @lazy_property def _default_text(self): tk = self._meta['lib']['default text'] if tk not in self._transl: self._transl[tk] = self._transl['en-GB'] return tk @lazy_property def orientation(self): """ TODO: doc string """ if len(self._x_keys) == 1 and len(self._y_keys) == 1: return 'x' elif len(self._x_keys) == 1: return 'x' elif len(self._y_keys) == 1: return 'y' if len(self._x_keys) > 1 and len(self._y_keys) > 1: return None @lazy_property def axis(self): # TODO: name appropriate? return int(self.orientation=='x') @lazy_property def axes(self): # TODO: name appropriate? if self.axis == 1: return self._x_keys, self._y_keys return self._y_keys, self._x_keys @property def dataframe(self): return self._frame @property def index(self): return self._index @index.setter def index(self, index): self._index = index @property def columns(self): return self._columns @columns.setter def columns(self, columns): self._columns = columns @property def frame_values(self): return self._frame_values @frame_values.setter def frame_values(self, frame_values): self._frame_values = frame_values @property def views(self): return self._views @views.setter def views(self, views): self._views = views @property def array_style(self): return self._array_style @property def shapes(self): if self._shapes is None: self._shapes = [] return self._shapes @array_style.setter def array_style(self, link): array_style = -1 for view in list(link.keys()): if link[view].meta()['x']['is_array']: array_style = 0 if link[view].meta()['y']['is_array']: array_style = 1 self._array_style = array_style @property def pad_id(self): if self._pad_id is None: self._pad_id = 0 else: self._pad_id += 1 return self._pad_id @property def sig_levels(self): sigs = set([v for v in self._valid_views(True) if v.split('|')[1].startswith('t.')]) tests = [t.split('|')[1].split('.')[1] for t in sigs] levels = [t.split('|')[1].split('.')[3] for t in sigs] sig_levels = {} for m in zip(tests, levels): l = '.{}'.format(m[1]) t = m[0] if t in sig_levels: sig_levels[t].append(l) else: sig_levels[t] = [l] return sig_levels @property def cell_items(self): if self.views: compl_views = [v for v in self.views if ']*:' in v] check_views = compl_views[:] or self.views.copy() for v in check_views: if v.startswith('__viewlike__'): if compl_views: check_views.remove(v) else: del check_views[v] non_freqs = ('d.', 't.') c = any(v.split('|')[3] == '' and not v.split('|')[1].startswith(non_freqs) and not v.split('|')[-1].startswith('cbase') for v in check_views) col_pct = any(v.split('|')[3] == 'y' and not v.split('|')[1].startswith(non_freqs) and not v.split('|')[-1].startswith('cbase') for v in check_views) row_pct = any(v.split('|')[3] == 'x' and not v.split('|')[1].startswith(non_freqs) and not v.split('|')[-1].startswith('cbase') for v in check_views) c_colpct = c and col_pct c_rowpct = c and row_pct c_colrow_pct = c_colpct and c_rowpct single_ci = not (c_colrow_pct or c_colpct or c_rowpct) if single_ci: if c: return 'counts' elif col_pct: return 'colpct' else: return 'rowpct' else: if c_colrow_pct: return 'counts_colpct_rowpct' elif c_colpct: if self._counts_first(): return 'counts_colpct' else: return 'colpct_counts' else: return 'counts_rowpct' @property def _ci_simple(self): ci = [] if self.views: for v in self.views: if 'significance' in v: continue if ']*:' in v: if v.split('|')[3] == '': if 'N' not in ci: ci.append('N') if v.split('|')[3] == 'y': if 'c%' not in ci: ci.append('c%') if v.split('|')[3] == 'x': if 'r%' not in ci: ci.append('r%') else: if v.split('|')[-1] == 'counts': if 'N' not in ci: ci.append('N') elif v.split('|')[-1] == 'c%': if 'c%' not in ci: ci.append('c%') elif v.split('|')[-1] == 'r%': if 'r%' not in ci: ci.append('r%') return ci @property def ci_count(self): return len(self.cell_items.split('_')) @property def contents(self): if self.structure: return nested = self._array_style == 0 if nested: dims = self._frame.shape contents = {row: {col: {} for col in range(0, dims[1])} for row in range(0, dims[0])} else: contents = dict() for row, idx in enumerate(self._views_per_rows()): if nested: for i, v in list(idx.items()): contents[row][i] = self._add_contents(v) else: contents[row] = self._add_contents(idx) return contents @property def cell_details(self): lang = self._default_text if self._default_text == 'fr-FR' else 'en-GB' cd = CELL_DETAILS[lang] ci = self.cell_items cd_str = '%s (%s)' % (cd['cc'], ', '.join([cd[_] for _ in self._ci_simple])) against_total = False if self.sig_test_letters: mapped = '' group = None i = 0 if (self._frame.columns.nlevels in [2, 3]) else 4 for letter, lab in zip(self.sig_test_letters, self._frame.columns.codes[-i]): if letter == '@': continue if group is not None: if lab == group: mapped += '/' + letter else: group = lab mapped += ', ' + letter else: group = lab mapped += letter test_types = cd['cp'] if self.sig_levels.get('means'): test_types += ', ' + cd['cm'] levels = [] for key in ('props', 'means'): for level in self.sig_levels.get(key, iter(())): l = '%s%%' % int(100. - float(level.split('+@')[0].split('.')[1])) if l not in levels: levels.append(l) if '+@' in level: against_total = True cd_str = cd_str[:-1] + ', ' + cd['str'] +'), ' cd_str += '%s (%s, (%s): %s' % (cd['stats'], test_types, ', '.join(levels), mapped) if self._flag_bases: flags = ([], []) [(flags[0].append(min), flags[1].append(small)) for min, small in self._flag_bases] cd_str += ', %s: %s (**), %s: %s (*)' % (cd['mb'], ', '.join(map(str, flags[0])), cd['sb'], ', '.join(map(str, flags[1]))) cd_str += ')' cd_str = [cd_str] if against_total: cd_str.extend([cd['up'], cd['down']]) return cd_str def describe(self): def _describe(cell_defs, row_id): descr = [] for r, m in list(cell_defs.items()): descr.append( [k if isinstance(v, bool) else v for k, v in list(m.items()) if v]) if any('is_block' in d for d in descr): blocks = self._describe_block(descr, row_id) calc = 'calc' in blocks for d, b in zip(descr, blocks): if b: d.append(b) if not calc else d.extend([b, 'has_calc']) return descr if self._array_style == 0: description = {k: _describe(v, k) for k, v in list(self.contents.items())} else: description = _describe(self.contents, None) return description def _fill_cells(self): """ """ self._frame = self._frame.fillna(method='ffill') return None # @lazy_property def _counts_first(self): for v in self.views: sname = v.split('|')[-1] if sname in ['counts', 'c%']: if sname == 'counts': return True else: return False #@property def _views_per_rows(self): """ """ base_vk = 'x|f|x:||{}|cbase' counts_vk = 'x|f|:||{}|counts' pct_vk = 'x|f|:|y|{}|c%' mean_vk = 'x|d.mean|:|y|{}|mean' stddev_vk = 'x|d.stddev|:|y|{}|stddev' variance_vk = 'x|d.var|:|y|{}|var' sem_vk = 'x|d.sem|:|y|{}|sem' if self.source == 'Crunch multitable': ci = self._meta['display_settings']['countsOrPercents'] w = self._meta['weight'] if ci == 'counts': main_vk = counts_vk.format(w if w else '') else: main_vk = pct_vk.format(w if w else '') base_vk = base_vk.format(w if w else '') metrics = [base_vk] + (len(self.dataframe.index)-1) * [main_vk] elif self.source == 'Dimensions MTD': ci = self._meta['cell_items'] w = None axis_vals = [axv['Type'] for axv in self._meta['index-emetas']] metrics = [] for axis_val in axis_vals: if axis_val == 'Base': metrics.append(base_vk.format(w if w else '')) if axis_val == 'UnweightedBase': metrics.append(base_vk.format(w if w else '')) elif axis_val == 'Category': metrics.append(counts_vk.format(w if w else '')) elif axis_val == 'Mean': metrics.append(mean_vk.format(w if w else '')) elif axis_val == 'StdDev': metrics.append(stddev_vk.format(w if w else '')) elif axis_val == 'StdErr': metrics.append(sem_vk.format(w if w else '')) elif axis_val == 'SampleVar': metrics.append(variance_vk.format(w if w else '')) return metrics else: # Native Chain views # ---------------------------------------------------------------- if self.edited and (self._custom_views and not self.array_style == 0): return self._custom_views else: if self._array_style != 0: metrics = [] if self.orientation == 'x': for view in self._valid_views(): view = self._force_list(view) initial = view[0] size = self.views[initial] metrics.extend(view * size) else: for view_part in self.views: for view in self._valid_views(): view = self._force_list(view) initial = view[0] size = view_part[initial] metrics.extend(view * size) else: counts = [] colpcts = [] rowpcts = [] metrics = [] ci = self.cell_items for v in list(self.views.keys()): if not v.startswith('__viewlike__'): parts = v.split('|') is_completed = ']*:' in v if not self._is_c_pct(parts): counts.extend([v]*self.views[v]) if self._is_r_pct(parts): rowpcts.extend([v]*self.views[v]) if (self._is_c_pct(parts) or self._is_base(parts) or self._is_stat(parts)): colpcts.extend([v]*self.views[v]) else: counts = counts + ['__viewlike__'] colpcts = colpcts + ['__viewlike__'] rowpcts = rowpcts + ['__viewlike__'] dims = self._frame.shape for row in range(0, dims[0]): if ci in ['counts_colpct', 'colpct_counts'] and self.grouping: if row % 2 == 0: if self._counts_first(): vc = counts else: vc = colpcts else: if not self._counts_first(): vc = counts else: vc = colpcts else: vc = counts if ci == 'counts' else colpcts metrics.append({col: vc[col] for col in range(0, dims[1])}) return metrics def _valid_views(self, flat=False): clean_view_list = [] valid = list(self.views.keys()) org_vc = self._given_views v_likes = [v for v in valid if v.startswith('__viewlike__')] if isinstance(org_vc, tuple): v_likes = tuple(v_likes) view_coll = org_vc + v_likes for v in view_coll: if isinstance(v, str): if v in valid: clean_view_list.append(v) else: new_v = [] for sub_v in v: if sub_v in valid: new_v.append(sub_v) if isinstance(v, tuple): new_v = list(new_v) if new_v: if len(new_v) == 1: new_v = new_v[0] if not flat: clean_view_list.append(new_v) else: if isinstance(new_v, list): clean_view_list.extend(new_v) else: clean_view_list.append(new_v) return clean_view_list def _add_contents(self, viewelement): """ """ if viewelement.startswith('__viewlike__'): parts = '|||||' viewlike = True else: parts = viewelement.split('|') viewlike = False return dict(is_default=self._is_default(parts), is_c_base=self._is_c_base(parts), is_r_base=self._is_r_base(parts), is_e_base=self._is_e_base(parts), is_c_base_gross=self._is_c_base_gross(parts), is_counts=self._is_counts(parts), is_c_pct=self._is_c_pct(parts), is_r_pct=self._is_r_pct(parts), is_res_c_pct=self._is_res_c_pct(parts), is_counts_sum=self._is_counts_sum(parts), is_c_pct_sum=self._is_c_pct_sum(parts), is_counts_cumsum=self._is_counts_cumsum(parts), is_c_pct_cumsum=self._is_c_pct_cumsum(parts), is_net=self._is_net(parts), is_block=self._is_block(parts), is_calc_only = self._is_calc_only(parts), is_mean=self._is_mean(parts), is_stddev=self._is_stddev(parts), is_min=self._is_min(parts), is_max=self._is_max(parts), is_median=self._is_median(parts), is_variance=self._is_variance(parts), is_sem=self._is_sem(parts), is_varcoeff=self._is_varcoeff(parts), is_percentile=self._is_percentile(parts), is_propstest=self._is_propstest(parts), is_meanstest=self._is_meanstest(parts), is_weighted=self._is_weighted(parts), weight=self._weight(parts), is_stat=self._is_stat(parts), stat=self._stat(parts), siglevel=self._siglevel(parts), is_viewlike=viewlike) def _row_pattern(self, target_ci): """ """ cisplit = self.cell_items.split('_') if target_ci == 'c%': start = cisplit.index('colpct') elif target_ci == 'counts': start = cisplit.index('counts') repeat = self.ci_count return (start, repeat) def _view_idxs(self, view_tags, keep_tests=True, keep_bases=True, names=False, ci=None): """ """ if not isinstance(view_tags, list): view_tags = [view_tags] rowmeta = self.named_rowmeta nested = self.array_style == 0 if nested: if self.ci_count > 1: rp_idx = self._row_pattern(ci)[0] rowmeta = rowmeta[rp_idx] else: rp_idx = 0 rowmeta = rowmeta[0] rows = [] for r in rowmeta: is_code = str(r[0]).isdigit() if 'is_counts' in r[1] and is_code: rows.append(('counts', r[1])) elif 'is_c_pct' in r[1] and is_code: rows.append(('c%', r[1])) elif 'is_propstest' in r[1]: rows.append((r[0], r[1])) elif 'is_meanstest' in r[1]: rows.append((r[0], r[1])) else: rows.append(r) invalids = [] if not keep_tests: invalids.extend(['is_propstest', 'is_meanstest']) if ci == 'counts': invalids.append('is_c_pct') elif ci == 'c%': invalids.append('is_counts') idxs = [] names = [] order = [] for i, row in enumerate(rows): if any([invalid in row[1] for invalid in invalids]): if not (row[0] == 'All' and keep_bases): continue if row[0] in view_tags: order.append(view_tags.index(row[0])) idxs.append(i) if nested: names.append(self._views_per_rows()[rp_idx][i]) else: names.append(self._views_per_rows()[i]) return (idxs, order) if not names else (idxs, names, order) @staticmethod def _remove_grouped_blanks(viewindex_labs): """ """ full = [] for v in viewindex_labs: if v == '': full.append(last) else: last = v full.append(last) return full def _slice_edited_index(self, axis, positions): """ """ l_zero = axis.get_level_values(0).values.tolist()[0] l_one = axis.get_level_values(1).values.tolist() l_one = [l_one[p] for p in positions] axis_tuples = [(l_zero, lab) for lab in l_one] if self.array_style == 0: names = ['Array', 'Questions'] else: names = ['Question', 'Values'] return pd.MultiIndex.from_tuples(axis_tuples, names=names) def _non_grouped_axis(self): """ """ axis = self._frame.index l_zero = axis.get_level_values(0).values.tolist()[0] l_one = axis.get_level_values(1).values.tolist() l_one = self._remove_grouped_blanks(l_one) axis_tuples = [(l_zero, lab) for lab in l_one] if self.array_style == 0: names = ['Array', 'Questions'] else: names = ['Question', 'Values'] self._frame.index = pd.MultiIndex.from_tuples(axis_tuples, names=names) return None @property def named_rowmeta(self): if self.painted: self.toggle_labels() d = self.describe() if self.array_style == 0: n = self._frame.columns.get_level_values(1).values.tolist() n = self._remove_grouped_blanks(n) mapped = {rowid: list(zip(n, rowmeta)) for rowid, rowmeta in list(d.items())} else: n = self._frame.index.get_level_values(1).values.tolist() n = self._remove_grouped_blanks(n) mapped = list(zip(n, d)) if not self.painted: self.toggle_labels() return mapped @lazy_property def _nested_y(self): return any('>' in v for v in self._y_keys) def _is_default(self, parts): return parts[-1] == 'default' def _is_c_base(self, parts): return parts[-1] == 'cbase' def _is_r_base(self, parts): return parts[-1] == 'rbase' def _is_e_base(self, parts): return parts[-1] == 'ebase' def _is_c_base_gross(self, parts): return parts[-1] == 'cbase_gross' def _is_base(self, parts): return (self._is_c_base(parts) or self._is_c_base_gross(parts) or self._is_e_base(parts) or self._is_r_base(parts)) def _is_counts(self, parts): return parts[1].startswith('f') and parts[3] == '' def _is_c_pct(self, parts): return parts[1].startswith('f') and parts[3] == 'y' def _is_r_pct(self, parts): return parts[1].startswith('f') and parts[3] == 'x' def _is_res_c_pct(self, parts): return parts[-1] == 'res_c%' def _is_net(self, parts): return parts[1].startswith(('f', 'f.c:f', 't.props')) and \ len(parts[2]) > 3 and not parts[2] == 'x++' def _is_calc_only(self, parts): if self._is_net(parts) and not self._is_block(parts): return ((self.__has_freq_calc(parts) or self.__is_calc_only_propstest(parts)) and not (self._is_counts_sum(parts) or self._is_c_pct_sum(parts))) else: return False def _is_block(self, parts): if self._is_net(parts): conditions = parts[2].split('[') multiple_conditions = len(conditions) > 2 expand = '+{' in parts[2] or '}+' in parts[2] complete = '*:' in parts[2] if expand or complete: return True if multiple_conditions: if self.__has_operator_expr(parts): return True return False return False return False def _stat(self, parts): if parts[1].startswith('d.'): return parts[1].split('.')[-1] else: return None # non-meta relevant helpers def __has_operator_expr(self, parts): e = parts[2] for syntax in [']*:', '[+{', '}+']: if syntax in e: e = e.replace(syntax, '') ops = ['+', '-', '*', '/'] return any(len(e.split(op)) > 1 for op in ops) def __has_freq_calc(self, parts): return parts[1].startswith('f.c:f') def __is_calc_only_propstest(self, parts): return self._is_propstest(parts) and self.__has_operator_expr(parts) @staticmethod def _statname(parts): split = parts[1].split('.') if len(split) > 1: return split[1] return split[-1] def _is_mean(self, parts): return self._statname(parts) == 'mean' def _is_stddev(self, parts): return self._statname(parts) == 'stddev' def _is_min(self, parts): return self._statname(parts) == 'min' def _is_max(self, parts): return self._statname(parts) == 'max' def _is_median(self, parts): return self._statname(parts) == 'median' def _is_variance(self, parts): return self._statname(parts) == 'var' def _is_sem(self, parts): return self._statname(parts) == 'sem' def _is_varcoeff(self, parts): return self._statname(parts) == 'varcoeff' def _is_percentile(self, parts): return self._statname(parts) in ['upper_q', 'lower_q', 'median'] def _is_counts_sum(self, parts): return parts[-1].endswith('counts_sum') def _is_c_pct_sum(self, parts): return parts[-1].endswith('c%_sum') def _is_counts_cumsum(self, parts): return parts[-1].endswith('counts_cumsum') def _is_c_pct_cumsum(self, parts): return parts[-1].endswith('c%_cumsum') def _is_weighted(self, parts): return parts[4] != '' def _weight(self, parts): if parts[4] != '': return parts[4] else: return None def _is_stat(self, parts): return parts[1].startswith('d.') def _is_propstest(self, parts): return parts[1].startswith('t.props') def _is_meanstest(self, parts): return parts[1].startswith('t.means') def _siglevel(self, parts): if self._is_meanstest(parts) or self._is_propstest(parts): return parts[1].split('.')[-1] else: return None def _describe_block(self, description, row_id): if self.painted: repaint = True self.toggle_labels() else: repaint = False vpr = self._views_per_rows() if row_id is not None: vpr = [v[1] for v in list(vpr[row_id].items())] idx = self.dataframe.columns.get_level_values(1).tolist() else: idx = self.dataframe.index.get_level_values(1).tolist() idx_view_map = list(zip(idx, vpr)) block_net_vk = [v for v in vpr if len(v.split('|')[2].split('['))>2 or '[+{' in v.split('|')[2] or '}+]' in v.split('|')[2]] has_calc = any([v.split('|')[1].startswith('f.c') for v in block_net_vk]) is_tested = any(v.split('|')[1].startswith('t.props') for v in vpr) if block_net_vk: expr = block_net_vk[0].split('|')[2] expanded_codes = set(map(int, re.findall(r'\d+', expr))) else: expanded_codes = [] for idx, m in enumerate(idx_view_map): if idx_view_map[idx][0] == '': idx_view_map[idx] = (idx_view_map[idx-1][0], idx_view_map[idx][1]) for idx, row in enumerate(description): if not 'is_block' in row: idx_view_map[idx] = None blocks_len = len(expr.split('],')) * (self.ci_count + is_tested) if has_calc: blocks_len -= (self.ci_count + is_tested) block_net_def = [] described_nets = 0 for e in idx_view_map: if e: if isinstance(e[0], str): if has_calc and described_nets == blocks_len: block_net_def.append('calc') else: block_net_def.append('net') described_nets += 1 else: code = int(e[0]) if code in expanded_codes: block_net_def.append('expanded') else: block_net_def.append('normal') else: block_net_def.append(e) if repaint: self.toggle_labels() return block_net_def def get(self, data_key, filter_key, x_keys, y_keys, views, rules=False, rules_weight=None, orient='x', prioritize=True): """ Get the concatenated Chain.DataFrame """ self._meta = self.stack[data_key].meta self._given_views = views self._x_keys = x_keys self._y_keys = y_keys concat_axis = 0 if rules: if not isinstance(rules, list): self._has_rules = ['x', 'y'] else: self._has_rules = rules # use_views = views[:] # for first in self.axes[0]: # for second in self.axes[1]: # link = self._get_link(data_key, filter_key, first, second) # for v in use_views: # if v not in link: # use_views.remove(v) for first in self.axes[0]: found = [] x_frames = [] for second in self.axes[1]: if self.axis == 1: link = self._get_link(data_key, filter_key, first, second) else: link = self._get_link(data_key, filter_key, second, first) if link is None: continue if prioritize: link = self._drop_substituted_views(link) found_views, y_frames = self._concat_views( link, views, rules_weight) found.append(found_views) try: if self._meta['columns'][link.x].get('parent'): self._is_mask_item = True except KeyError: pass # TODO: contains arrary summ. attr. # TODO: make this work y_frames = self._pad_frames(y_frames) self.array_style = link if self.array_style > -1: concat_axis = 1 if self.array_style == 0 else 0 y_frames = self._pad_frames(y_frames) x_frames.append(pd.concat(y_frames, axis=concat_axis)) self.shapes.append(x_frames[-1].shape) self._frame = pd.concat(self._pad(x_frames), axis=self.axis) if self._group_style == 'reduced' and self.array_style >- 1: scan_views = [v if isinstance(v, (tuple, list)) else [v] for v in self._given_views] scan_views = [v for v in scan_views if len(v) > 1] no_tests = [] for scan_view in scan_views: new_views = [] for view in scan_view: if not view.split('|')[1].startswith('t.'): new_views.append(view) no_tests.append(new_views) cond = any(len(v) >= 2 for v in no_tests) if cond: self._frame = self._reduce_grouped_index(self._frame, 2, self._array_style) if self.axis == 1: self.views = found[-1] else: self.views = found self.double_base = len([v for v in self.views if v.split('|')[-1] == 'cbase']) > 1 self._index = self._frame.index self._columns = self._frame.columns self._extract_base_descriptions() del self.stack return self def _toggle_bases(self, keep_weighted=True): df = self._frame is_array = self._array_style == 0 contents = self.contents[0] if is_array else self.contents has_wgt_b = [k for k, v in list(contents.items()) if v['is_c_base'] and v['is_weighted']] has_unwgt_b = [k for k, v in list(contents.items()) if v['is_c_base'] and not v['is_weighted']] if not (has_wgt_b and has_unwgt_b): return None if keep_weighted: drop_rows = has_unwgt_b names = ['x|f|x:|||cbase'] else: drop_rows = has_wgt_b names = ['x|f|x:||{}|cbase'.format(list(contents.values())[0]['weight'])] for v in self.views.copy(): if v in names: del self._views[v] df = self._frame if is_array: cols = [col for x, col in enumerate(df.columns.tolist()) if not x in drop_rows] df = df.loc[:, cols] else: rows = [row for x, row in enumerate(df.index.tolist()) if not x in drop_rows] df = df.loc[rows, :] self._frame = df self._index = df.index self._columns = df.columns return None def _slice_edited_index(self, axis, positions): """ """ l_zero = axis.get_level_values(0).values.tolist()[0] l_one = axis.get_level_values(1).values.tolist() l_one = [l_one[p] for p in positions] axis_tuples = [(l_zero, lab) for lab in l_one] if self.array_style == 0: names = ['Array', 'Questions'] else: names = ['Question', 'Values'] return pd.MultiIndex.from_tuples(axis_tuples, names=names) def _drop_substituted_views(self, link): if any(isinstance(sect, (list, tuple)) for sect in self._given_views): chain_views = list(chain.from_iterable(self._given_views)) else: chain_views = self._given_views has_compl = any(']*:' in vk for vk in link) req_compl = any(']*:' in vk for vk in chain_views) has_cumsum = any('++' in vk for vk in link) req_cumsum = any('++' in vk for vk in chain_views) if (has_compl and req_compl) or (has_cumsum and req_cumsum): new_link = copy.copy(link) views = [] for vk in link: vksplit = vk.split('|') method, cond, name = vksplit[1], vksplit[2], vksplit[-1] full_frame = name in ['counts', 'c%'] basic_sigtest = method.startswith('t.') and cond == ':' if not full_frame and not basic_sigtest: views.append(vk) for vk in link: if vk not in views: del new_link[vk] return new_link else: return link def _pad_frames(self, frames): """ TODO: doc string """ empty_frame = lambda f: pd.DataFrame(index=f.index, columns=f.columns) max_lab = max(f.axes[self.array_style].size for f in frames) for e, f in enumerate(frames): size = f.axes[self.array_style].size if size < max_lab: f = pd.concat([f, empty_frame(f)], axis=self.array_style) order = [None] * (size * 2) order[::2] = list(range(size)) order[1::2] = list(range(size, size * 2)) if self.array_style == 0: frames[e] = f.iloc[order, :] else: frames[e] = f.iloc[:, order] return frames def _get_link(self, data_key, filter_key, x_key, y_key): """ """ base = self.stack[data_key][filter_key] if x_key in base: base = base[x_key] if y_key in base: return base[y_key] else: if self._array_style == -1: self._y_keys.remove(y_key) else: self._x_keys.remove(x_key) return None def _index_switch(self, axis): """ Returns self.dataframe/frame index/ columns based on given x/ y """ return dict(x=self._frame.index, y=self._frame.columns).get(axis) def _pad(self, frames): """ Pad index/ columns when nlevels is less than the max nlevels in list of dataframes. """ indexes = [] max_nlevels = [max(f.axes[i].nlevels for f in frames) for i in (0, 1)] for e, f in enumerate(frames): indexes = [] for i in (0, 1): if f.axes[i].nlevels < max_nlevels[i]: indexes.append(self._pad_index(f.axes[i], max_nlevels[i])) else: indexes.append(f.axes[i]) frames[e].index, frames[e].columns = indexes return frames def _pad_index(self, index, size): """ Add levels to columns MultiIndex so the nlevels matches the biggest columns MultiIndex in DataFrames to be concatenated. """ pid = self.pad_id pad = ((size - index.nlevels) // 2) fill = int((pad % 2) == 1) names = list(index.names) names[0:0] = names[:2] * pad arrays = self._lzip(index.values) arrays[0:0] = [tuple('#pad-%s' % pid for _ in arrays[i]) for i in range(pad + fill)] * pad return pd.MultiIndex.from_arrays(arrays, names=names) @staticmethod def _reindx_source(df, varname, total): """ """ df.index = df.index.set_levels([varname], level=0, inplace=False) if df.columns.get_level_values(0).tolist()[0] != varname and total: df.columns = df.columns.set_levels([varname], level=0, inplace=False) return df def _concat_views(self, link, views, rules_weight, found=None): """ Concatenates the Views of a Chain. """ frames = [] totals = [[_TOTAL]] * 2 if found is None: found = OrderedDict() if self._text_map is None: self._text_map = dict() for view in views: try: self.array_style = link if isinstance(view, (list, tuple)): if not self.grouping: self.grouping = True if isinstance(view, tuple): self._group_style = 'reduced' else: self._group_style = 'normal' if self.array_style > -1: use_grp_type = 'normal' else: use_grp_type = self._group_style found, grouped = self._concat_views(link, view, rules_weight, found=found) if grouped: frames.append(self._group_views(grouped, use_grp_type)) else: agg = link[view].meta()['agg'] is_descriptive = agg['method'] == 'descriptives' is_base = agg['name'] in ['cbase', 'rbase', 'ebase', 'cbase_gross'] is_sum = agg['name'] in ['counts_sum', 'c%_sum'] is_net = link[view].is_net() oth_src = link[view].has_other_source() no_total_sign = is_descriptive or is_base or is_sum or is_net if link[view]._custom_txt and is_descriptive: statname = agg['fullname'].split('|')[1].split('.')[1] if not statname in self._custom_texts: self._custom_texts[statname] = [] self._custom_texts[statname].append(link[view]._custom_txt) if is_descriptive: text = agg['name'] try: self._text_map.update({agg['name']: text}) except AttributeError: self._text_map = {agg['name']: text} if agg['text']: name = dict(cbase='All').get(agg['name'], agg['name']) try: self._text_map.update({name: agg['text']}) except AttributeError: self._text_map = {name: agg['text'], _TOTAL: 'Total'} if agg['grp_text_map']: # try: if not agg['grp_text_map'] in self._grp_text_map: self._grp_text_map.append(agg['grp_text_map']) # except AttributeError: # self._grp_text_map = [agg['grp_text_map']] frame = link[view].dataframe if oth_src: frame = self._reindx_source(frame, link.x, link.y == _TOTAL) # RULES SECTION # ======================================================== # TODO: DYNAMIC RULES: # - all_rules_axes, rules_weight must be provided not hardcoded # - Review copy/pickle in original version!!! rules_weight = None if self._has_rules: rules = Rules(link, view, self._has_rules, rules_weight) # print rules.show_rules() # rules.get_slicer() # print rules.show_slicers() rules.apply() frame = rules.rules_df() # ======================================================== if not no_total_sign and (link.x == _TOTAL or link.y == _TOTAL): if link.x == _TOTAL: level_names = [[link.y], ['@']] elif link.y == _TOTAL: level_names = [[link.x], ['@']] try: frame.columns.set_levels(level_names, level=[0, 1], inplace=True) except ValueError: pass frames.append(frame) if view not in found: if self._array_style != 0: found[view] = len(frame.index) else: found[view] = len(frame.columns) if link[view]._kwargs.get('flag_bases'): flag_bases = link[view]._kwargs['flag_bases'] try: if flag_bases not in self._flag_bases: self._flag_bases.append(flag_bases) except TypeError: self._flag_bases = [flag_bases] except KeyError: pass return found, frames @staticmethod def _temp_nest_index(df): """ Flatten the nested MultiIndex for easier handling. """ # Build flat column labels flat_cols = [] order_idx = [] i = -1 for col in df.columns.values: flat_col_lab = ''.join(str(col[:-1])).strip() if not flat_col_lab in flat_cols: i += 1 order_idx.append(i) flat_cols.append(flat_col_lab) else: order_idx.append(i) # Drop unwanted levels (keep last Values Index-level in that process) levels = list(range(0, df.columns.nlevels-1)) drop_levels = levels[:-2]+ [levels[-1]] df.columns = df.columns.droplevel(drop_levels) # Apply the new flat labels and resort the columns df.columns.set_levels(levels=flat_cols, level=0, inplace=True) df.columns.set_codes(order_idx, level=0, inplace=True) return df, flat_cols @staticmethod def _replace_test_results(df, replacement_map, char_repr): """ Swap all digit-based results with letters referencing the column header. .. note:: The modified df will be stripped of all indexing on both rows and columns. """ all_dfs = [] ignore = False for col in list(replacement_map.keys()): target_col = df.columns[0] if col == '@' else col value_df = df[[target_col]].copy() if not col == '@': value_df.drop('@', axis=1, level=1, inplace=True) values = value_df.replace(np.NaN, '-').values.tolist() r = replacement_map[col] new_values = [] case = None for v in values: if isinstance(v[0], str): if char_repr == 'upper': case = 'up' elif char_repr == 'lower': case = 'low' elif char_repr == 'alternate': if case == 'up': case = 'low' else: case = 'up' for no, l in sorted(list(r.items()), reverse=True): v = [char.replace(str(no), l if case == 'up' else l.lower()) if isinstance(char, str) else char for char in v] new_values.append(v) else: new_values.append(v) part_df = pd.DataFrame(new_values) all_dfs.append(part_df) letter_df = pd.concat(all_dfs, axis=1) # Clean it up letter_df.replace('-', np.NaN, inplace=True) for signs in [('[', ''), (']', ''), (', ', '.')]: letter_df = letter_df.applymap(lambda x: x.replace(signs[0], signs[1]) if isinstance(x, str) else x) return letter_df @staticmethod def _get_abc_letters(no_of_cols, incl_total): """ Get the list of letter replacements depending on the y-axis length. """ repeat_alphabet = int(no_of_cols / 26) abc = list(string.ascii_uppercase) letters = list(string.ascii_uppercase) if repeat_alphabet: for r in range(0, repeat_alphabet): letter = abc[r] extend_abc = ['{}{}'.format(letter, l) for l in abc] letters.extend(extend_abc) if incl_total: letters = ['@'] + letters[:no_of_cols-1] else: letters = letters[:no_of_cols] return letters def _any_tests(self): vms = [v.split('|')[1] for v in list(self._views.keys())] return any('t.' in v for v in vms) def _no_of_tests(self): tests = [v for v in list(self._views.keys()) if v.split('|')[1].startswith('t.')] levels = [v.split('|')[1].split('.')[-1] for v in tests] return len(set(levels)) def _siglevel_on_row(self): """ """ vpr = self._views_per_rows() tests = [(no, v) for no, v in enumerate(vpr) if v.split('|')[1].startswith('t.')] s = [(t[0], float(int(t[1].split('|')[1].split('.')[3].split('+')[0]))/100.0) for t in tests] return s def transform_tests(self, char_repr='upper', display_level=True): """ Transform column-wise digit-based test representation to letters. Adds a new row that is applying uppercase letters to all columns (A, B, C, ...) and maps any significance test's result cells to these column indicators. """ if not self._any_tests(): return None # Preparation of input dataframe and dimensions of y-axis header df = self.dataframe.copy() number_codes = df.columns.get_level_values(-1).tolist() number_header_row = copy.copy(df.columns) if self._no_of_tests() != 2 and char_repr == 'alternate': char_repr = 'upper' has_total = '@' in self._y_keys if self._nested_y: df, questions = self._temp_nest_index(df) else: questions = self._y_keys all_num = number_codes if not has_total else [0] + number_codes[1:] # Set the new column header (ABC, ...) column_letters = self._get_abc_letters(len(number_codes), has_total) vals = df.columns.get_level_values(0).tolist() mi = pd.MultiIndex.from_arrays( (vals, column_letters)) df.columns = mi self.sig_test_letters = df.columns.get_level_values(1).tolist() # Build the replacements dict and build list of unique column indices test_dict = OrderedDict() for num_idx, col in enumerate(df.columns): if col[1] == '@': question = col[1] else: question = col[0] if not question in test_dict: test_dict[question] = {} number = all_num[num_idx] letter = col[1] test_dict[question][number] = letter letter_df = self._replace_test_results(df, test_dict, char_repr) # Re-apply indexing & finalize the new crossbreak column header if display_level: levels = self._siglevel_on_row() index = df.index.get_level_values(1).tolist() for i, l in levels: index[i] = '#Level: {}'.format(l) l0 = df.index.get_level_values(0).tolist()[0] tuples = [(l0, i) for i in index] index = pd.MultiIndex.from_tuples( tuples, names=['Question', 'Values']) letter_df.index = index else: letter_df.index = df.index letter_df.columns = number_header_row letter_df = self._apply_letter_header(letter_df) self._frame = letter_df return self def _remove_letter_header(self): self._frame.columns = self._frame.columns.droplevel(level=-1) return None def _apply_letter_header(self, df): """ """ new_tuples = [] org_names = [n for n in df.columns.names] idx = df.columns for i, l in zip(idx, self.sig_test_letters): new_tuples.append(i + (l, )) if not 'Test-IDs' in org_names: org_names.append('Test-IDs') mi = pd.MultiIndex.from_tuples(new_tuples, names=org_names) df.columns = mi return df def _extract_base_descriptions(self): """ """ if self.source == 'Crunch multitable': self.base_descriptions = self._meta['var_meta'].get('notes', None) else: base_texts = OrderedDict() arr_style = self.array_style if arr_style != -1: var = self._x_keys[0] if arr_style == 0 else self._y_keys[0] masks = self._meta['masks'] columns = self._meta['columns'] item = masks[var]['items'][0]['source'].split('@')[-1] test_item = columns[item] test_mask = masks[var] if 'properties' in test_mask: base_text = test_mask['properties'].get('base_text', None) elif 'properties' in test_item: base_text = test_item['properties'].get('base_text', None) else: base_text = None self.base_descriptions = base_text else: for x in self._x_keys: if 'properties' in self._meta['columns'][x]: bt = self._meta['columns'][x]['properties'].get('base_text', None) if bt: base_texts[x] = bt if base_texts: if self.orientation == 'x': self.base_descriptions = list(base_texts.values())[0] else: self.base_descriptions = list(base_texts.values()) return None def _ensure_indexes(self): if self.painted: self._frame.index, self._frame.columns = self.index, self.columns if self.structure is not None: self._frame.loc[:, :] = self.frame_values else: self.index, self.columns = self._frame.index, self._frame.columns if self.structure is not None: self.frame_values = self._frame.values def _finish_text_key(self, text_key, text_loc_x, text_loc_y): text_keys = dict() text_key = text_key or self._default_text if text_loc_x: text_keys['x'] = (text_loc_x, text_key) else: text_keys['x'] = text_key if text_loc_y: text_keys['y'] = (text_loc_y, text_key) else: text_keys['y'] = text_key return text_keys def paint(self, text_key=None, text_loc_x=None, text_loc_y=None, display=None, axes=None, view_level=False, transform_tests='upper', display_level=True, add_test_ids=True, add_base_texts='simple', totalize=False, sep=None, na_rep=None, transform_column_names=None, exclude_mask_text=False): """ Apply labels, sig. testing conversion and other post-processing to the ``Chain.dataframe`` property. Use this to prepare a ``Chain`` for further usage in an Excel or Power- point Build. Parameters ---------- text_keys : str, default None Text text_loc_x : str, default None The key in the 'text' to locate the text_key for the x-axis text_loc_y : str, default None The key in the 'text' to locate the text_key for the y-axis display : {'x', 'y', ['x', 'y']}, default None Text axes : {'x', 'y', ['x', 'y']}, default None Text view_level : bool, default False Text transform_tests : {False, 'upper', 'lower', 'alternate'}, default 'upper' Text add_test_ids : bool, default True Text add_base_texts : {False, 'all', 'simple', 'simple-no-items'}, default 'simple' Whether or not to include existing ``.base_descriptions`` str to the label of the appropriate base view. Selecting ``'simple'`` will inject the base texts to non-array type Chains only. totalize : bool, default True Text sep : str, default None The seperator used for painting ``pandas.DataFrame`` columns na_rep : str, default None numpy.NaN will be replaced with na_rep if passed transform_column_names : dict, default None Transformed column_names are added to the labeltexts. exclude_mask_text : bool, default False Exclude mask text from mask-item texts. Returns ------- None The ``.dataframe`` is modified inplace. """ self._ensure_indexes() text_keys = self._finish_text_key(text_key, text_loc_x, text_loc_y) if self.structure is not None: self._paint_structure(text_key, sep=sep, na_rep=na_rep) else: self.totalize = totalize if transform_tests: self.transform_tests(transform_tests, display_level) # Remove any letter header row from transformed tests... if self.sig_test_letters: self._remove_letter_header() if display is None: display = _AXES if axes is None: axes = _AXES self._paint(text_keys, display, axes, add_base_texts, transform_column_names, exclude_mask_text) # Re-build the full column index (labels + letter row) if self.sig_test_letters and add_test_ids: self._frame = self._apply_letter_header(self._frame) if view_level: self._add_view_level() self.painted = True return None def _paint_structure(self, text_key=None, sep=None, na_rep=None): """ Paint the dataframe-type Chain. """ if not text_key: text_key = self._meta['lib']['default text'] str_format = '%%s%s%%s' % sep column_mapper = dict() na_rep = na_rep or '' pattern = r'\, (?=\W|$)' for column in self.structure.columns: if not column in self._meta['columns']: continue meta = self._meta['columns'][column] if sep: column_mapper[column] = str_format % (column, meta['text'][text_key]) else: column_mapper[column] = meta['text'][text_key] if meta.get('values'): values = meta['values'] if isinstance(values, str): pointers = values.split('@') values = self._meta[pointers.pop(0)] while pointers: values = values[pointers.pop(0)] if meta['type'] == 'delimited set': value_mapper = { str(item['value']): item['text'][text_key] for item in values } series = self.structure[column] try: series = (series.str.split(';') .apply(pd.Series, 1) .stack(dropna=False) .map(value_mapper.get) #, na_action='ignore') .unstack()) first = series[series.columns[0]] rest = [series[c] for c in series.columns[1:]] self.structure[column] = ( first .str.cat(rest, sep=', ', na_rep='') .str.slice(0, -2) .replace(to_replace=pattern, value='', regex=True) .replace(to_replace='', value=na_rep) ) except AttributeError: continue else: value_mapper = { item['value']: item['text'][text_key] for item in values } self.structure[column] = (self.structure[column] .map(value_mapper.get, na_action='ignore') ) self.structure[column].fillna(na_rep, inplace=True) self.structure.rename(columns=column_mapper, inplace=True) def _paint(self, text_keys, display, axes, bases, transform_column_names, exclude_mask_text): """ Paint the Chain.dataframe """ indexes = [] for axis in _AXES: index = self._index_switch(axis) if axis in axes: index = self._paint_index(index, text_keys, display, axis, bases, transform_column_names, exclude_mask_text) indexes.append(index) self._frame.index, self._frame.columns = indexes def _paint_index(self, index, text_keys, display, axis, bases, transform_column_names, exclude_mask_text): """ Paint the Chain.dataframe.index1 """ error = "No text keys from {} found in {}" level_0_text, level_1_text = [], [] nlevels = index.nlevels if nlevels > 2: arrays = [] for i in range(0, nlevels, 2): index_0 = index.get_level_values(i) index_1 = index.get_level_values(i+1) tuples = list(zip(index_0.values, index_1.values)) names = (index_0.name, index_1.name) sub = pd.MultiIndex.from_tuples(tuples, names=names) sub = self._paint_index(sub, text_keys, display, axis, bases, transform_column_names, exclude_mask_text) arrays.extend(self._lzip(sub.ravel())) tuples = self._lzip(arrays) return pd.MultiIndex.from_tuples(tuples, names=index.names) levels = self._lzip(index.values) arrays = (self._get_level_0(levels[0], text_keys, display, axis, transform_column_names, exclude_mask_text), self._get_level_1(levels, text_keys, display, axis, bases)) new_index = pd.MultiIndex.from_arrays(arrays, names=index.names) return new_index def _get_level_0(self, level, text_keys, display, axis, transform_column_names, exclude_mask_text): """ """ level_0_text = [] for value in level: if str(value).startswith('#pad'): pass elif pd.notnull(value): if value in list(self._text_map.keys()): value = self._text_map[value] else: text = self._get_text(value, text_keys[axis], exclude_mask_text) if axis in display: if transform_column_names: value = transform_column_names.get(value, value) value = '{}. {}'.format(value, text) else: value = text level_0_text.append(value) if '@' in self._y_keys and self.totalize and axis == 'y': level_0_text = ['Total'] + level_0_text[1:] return list(map(str, level_0_text)) def _get_level_1(self, levels, text_keys, display, axis, bases): """ """ level_1_text = [] if text_keys[axis] in self._transl: tk_transl = text_keys[axis] else: tk_transl = self._default_text c_text = copy.deepcopy(self._custom_texts) if self._custom_texts else {} for i, value in enumerate(levels[1]): if str(value).startswith('#pad'): level_1_text.append(value) elif pd.isnull(value): level_1_text.append(value) elif str(value) == '': level_1_text.append(value) elif str(value).startswith('#Level: '): level_1_text.append(value.replace('#Level: ', '')) else: translate = list(self._transl[list(self._transl.keys())[0]].keys()) if value in list(self._text_map.keys()) and value not in translate: level_1_text.append(self._text_map[value]) elif value in translate: if value == 'All': text = self._specify_base(i, text_keys[axis], bases) else: text = self._transl[tk_transl][value] if value in c_text: add_text = c_text[value].pop(0) text = '{} {}'.format(text, add_text) level_1_text.append(text) elif value == 'All (eff.)': text = self._specify_base(i, text_keys[axis], bases) level_1_text.append(text) else: if any(self.array_style == a and axis == x for a, x in ((0, 'x'), (1, 'y'))): text = self._get_text(value, text_keys[axis], True) level_1_text.append(text) else: try: values = self._get_values(levels[0][i]) if not values: level_1_text.append(value) else: for item in self._get_values(levels[0][i]): if int(value) == item['value']: text = self._get_text(item, text_keys[axis]) level_1_text.append(text) except (ValueError, UnboundLocalError): if self._grp_text_map: for gtm in self._grp_text_map: if value in list(gtm.keys()): text = self._get_text(gtm[value], text_keys[axis]) level_1_text.append(text) return list(map(str, level_1_text)) @staticmethod def _unwgt_label(views, base_vk): valid = ['cbase', 'cbase_gross', 'rbase', 'ebase'] basetype = base_vk.split('|')[-1] views_split = [v.split('|') for v in views] multibase = len([v for v in views_split if v[-1] == basetype]) > 1 weighted = base_vk.split('|')[-2] w_diff = len([v for v in views_split if not v[-1] in valid and not v[-2] == weighted]) > 0 if weighted: return False elif multibase or w_diff: return True else: return False def _add_base_text(self, base_val, tk, bases): if self._array_style == 0 and bases != 'all': return base_val else: bt = self.base_descriptions if isinstance(bt, dict): bt_by_key = bt[tk] else: bt_by_key = bt if bt_by_key: if bt_by_key.startswith('%s:' % base_val): bt_by_key = bt_by_key.replace('%s:' % base_val, '') return '{}: {}'.format(base_val, bt_by_key) else: return base_val def _specify_base(self, view_idx, tk, bases): tk_transl = tk if tk in self._transl else self._default_text base_vk = self._valid_views()[view_idx] basetype = base_vk.split('|')[-1] unwgt_label = self._unwgt_label(list(self._views.keys()), base_vk) if unwgt_label: if basetype == 'cbase_gross': base_value = self._transl[tk_transl]['no_w_gross_All'] elif basetype == 'ebase': base_value = 'Unweighted effective base' else: base_value = self._transl[tk_transl]['no_w_All'] else: if basetype == 'cbase_gross': base_value = self._transl[tk_transl]['gross All'] elif basetype == 'ebase': base_value = 'Effective base' elif not bases or (bases == 'simple-no-items' and self._is_mask_item): base_value = self._transl[tk_transl]['All'] else: key = tk if isinstance(tk, tuple): _, key = tk base_value = self._add_base_text(self._transl[tk_transl]['All'], key, bases) return base_value def _get_text(self, value, text_key, item_text=False): """ """ if value in list(self._meta['columns'].keys()): col = self._meta['columns'][value] if item_text and col.get('parent'): parent = list(col['parent'].keys())[0].split('@')[-1] items = self._meta['masks'][parent]['items'] for i in items: if i['source'].split('@')[-1] == value: obj = i['text'] break else: obj = col['text'] elif value in list(self._meta['masks'].keys()): obj = self._meta['masks'][value]['text'] elif 'text' in value: obj = value['text'] else: obj = value return self._get_text_from_key(obj, text_key) def _get_text_from_key(self, text, text_key): """ Find the first value in a meta object's "text" key that matches a text_key for it's axis. """ if isinstance(text_key, tuple): loc, key = text_key if loc in text: if key in text[loc]: return text[loc][key] elif self._default_text in text[loc]: return text[loc][self._default_text] if key in text: return text[key] for key in (text_key, self._default_text): if key in text: return text[key] return '<label>' def _get_values(self, column): """ Returns values from self._meta["columns"] or self._meta["lib"]["values"][<mask name>] if parent is "array" """ if column in self._meta['columns']: values = self._meta['columns'][column].get('values', []) elif column in self._meta['masks']: values = self._meta['lib']['values'].get(column, []) if isinstance(values, str): keys = values.split('@') values = self._meta[keys.pop(0)] while keys: values = values[keys.pop(0)] return values def _add_view_level(self, shorten=False): """ Insert a third Index level containing View keys into the DataFrame. """ vnames = self._views_per_rows() if shorten: vnames = [v.split('|')[-1] for v in vnames] self._frame['View'] = pd.Series(vnames, index=self._frame.index) self._frame.set_index('View', append=True, inplace=True) def toggle_labels(self): """ Restore the unpainted/ painted Index, Columns appearance. """ if self.painted: self.painted = False else: self.painted = True attrs = ['index', 'columns'] if self.structure is not None: attrs.append('_frame_values') for attr in attrs: vals = attr[6:] if attr.startswith('_frame') else attr frame_val = getattr(self._frame, vals) setattr(self._frame, attr, getattr(self, attr)) setattr(self, attr, frame_val) if self.structure is not None: values = self._frame.values self._frame.loc[:, :] = self.frame_values self.frame_values = values return self @staticmethod def _single_column(*levels): """ Returns True if multiindex level 0 has one unique value """ return all(len(level) == 1 for level in levels) def _group_views(self, frame, group_type): """ Re-sort rows so that they appear as being grouped inside the Chain.dataframe. """ grouped_frame = [] len_of_frame = len(frame) frame = pd.concat(frame, axis=0) index_order = frame.index.get_level_values(1).tolist() index_order = index_order[:int(len(index_order) / len_of_frame)] gb_df = frame.groupby(level=1, sort=False) for i in index_order: grouped_df = gb_df.get_group(i) if group_type == 'reduced': grouped_df = self._reduce_grouped_index(grouped_df, len_of_frame-1) grouped_frame.append(grouped_df) grouped_frame = pd.concat(grouped_frame, verify_integrity=False) return grouped_frame @staticmethod def _reduce_grouped_index(grouped_df, view_padding, array_summary=-1): idx = grouped_df.index q = idx.get_level_values(0).tolist()[0] if array_summary == 0: val = idx.get_level_values(1).tolist() for index in range(1, len(val), 2): val[index] = '' grp_vals = val elif array_summary == 1: grp_vals = [] indexed = [] val = idx.get_level_values(1).tolist() for v in val: if not v in indexed or v == 'All': grp_vals.append(v) indexed.append(v) else: grp_vals.append('') else: val = idx.get_level_values(1).tolist()[0] grp_vals = [val] + [''] * view_padding mi = pd.MultiIndex.from_product([[q], grp_vals], names=idx.names) grouped_df.index = mi return grouped_df @staticmethod def _lzip(arr): """ """ return list(zip(*arr)) @staticmethod def _force_list(obj): if isinstance(obj, (list, tuple)): return obj return [obj] @classmethod def __pad_id(cls): cls._pad_id += 1 return cls._pad_id # class MTDChain(Chain): # def __init__(self, mtd_doc, name=None): # super(MTDChain, self).__init__(stack=None, name=name, structure=None) # self.mtd_doc = mtd_doc # self.source = 'Dimensions MTD' self.get = self._get # def _get(self, ignore=None, labels=True): # per_folder = OrderedDict() # failed = [] # unsupported = [] # for name, tab_def in self.mtd_doc.items(): # try: # if isinstance(tab_def.values()[0], dict): # unsupported.append(name) # else: # tabs = split_tab(tab_def) # chain_dfs = [] # for tab in tabs: # df, meta = tab[0], tab[1] # # SOME DFs HAVE TOO MANY / UNUSED LEVELS... # if len(df.columns.levels) > 2: # df.columns = df.columns.droplevel(0) # x, y = _get_axis_vars(df) # df.replace('-', np.NaN, inplace=True) # relabel_axes(df, meta, labels=labels) # df = df.drop('Base', axis=1, level=1) # try: # df = df.applymap(lambda x: float(x.replace(',', '.') # if isinstance(x, (str, unicode)) else x)) # except: # msg = "Could not convert df values to float for table '{}'!" # # warnings.warn(msg.format(name)) # chain_dfs.append(to_chain((df, x, y), meta)) # per_folder[name] = chain_dfs # except: # failed.append(name) # print 'Conversion failed for:\n{}\n'.format(failed) # print 'Subfolder conversion unsupported for:\n{}'.format(unsupported) # return per_folder ############################################################################## class Quantity(object): """ The Quantity object is the main Quantipy aggregation engine. Consists of a link's data matrix representation and sectional defintion of weight vector (wv), x-codes section (xsect) and y-codes section (ysect). The instance methods handle creation, retrieval and manipulation of the data input matrices and section definitions as well as the majority of statistical calculations. """ # ------------------------------------------------- # Instance initialization # ------------------------------------------------- def __init__(self, link, weight=None, use_meta=False, base_all=False): # Collect information on wv, x- and y-section self._uses_meta = use_meta self.ds = self._convert_to_dataset(link) self.d = self._data self.base_all = base_all self._dataidx = link.get_data().index if self._uses_meta: self.meta = self._meta if list(self.meta().values()) == [None] * len(list(self.meta().values())): self._uses_meta = False self.meta = None else: self.meta = None self._cache = link.get_cache() self.f = link.filter self.x = link.x self.y = link.y self.w = weight if weight is not None else '@1' self.is_weighted = False self.type = self._get_type() if self.type == 'nested': self.nest_def = Nest(self.y, self.d(), self.meta()).nest() self._squeezed = False self.idx_map = None self.xdef = self.ydef = None self.matrix = self._get_matrix() self.is_empty = self.matrix.sum() == 0 self.switched = False self.factorized = None self.result = None self.logical_conditions = [] self.cbase = self.rbase = None self.comb_x = self.comb_y = None self.miss_x = self.miss_y = None self.calc_x = self.calc_y = None self._has_x_margin = self._has_y_margin = False def __repr__(self): if self.result is not None: return '%s' % (self.result) else: return 'Quantity - x: {}, xdef: {} y: {}, ydef: {}, w: {}'.format( self.x, self.xdef, self.y, self.ydef, self.w) # ------------------------------------------------- # Matrix creation and retrievel # ------------------------------------------------- def _convert_to_dataset(self, link): ds = qp.DataSet('') ds._data = link.stack[link.data_key].data ds._meta = link.get_meta() return ds def _data(self): return self.ds._data def _meta(self): return self.ds._meta def _get_type(self): """ Test variable type that can be "simple", "nested" or "array". """ if self._uses_meta: masks = [self.x, self.y] if any(mask in list(self.meta()['masks'].keys()) for mask in masks): mask = { True: self.x, False: self.y}.get(self.x in list(self.meta()['masks'].keys())) if self.meta()['masks'][mask]['type'] == 'array': if self.x == '@': self.x, self.y = self.y, self.x return 'array' elif '>' in self.y: return 'nested' else: return 'simple' else: return 'simple' def _is_multicode_array(self, mask_element): return ( self.d()[mask_element].dtype == 'str' ) def _get_wv(self): """ Returns the weight vector of the matrix. """ return self.d()[[self.w]].values def weight(self): """ Weight by multiplying the indicator entries with the weight vector. """ self.matrix *= np.atleast_3d(self.wv) # if self.is_weighted: # self.matrix[:, 1:, 1:] *= np.atleast_3d(self.wv) # else: # self.matrix *= np.atleast_3d(self.wv) # self.is_weighted = True return None def unweight(self): """ Remove any weighting by dividing the matrix by itself. """ self.matrix /= self.matrix # self.matrix[:, 1:, 1:] /= self.matrix[:, 1:, 1:] # self.is_weighted = False return None def _get_total(self): """ Return a vector of 1s for the matrix. """ return self.d()[['@1']].values def _copy(self): """ Copy the Quantity instance, i.e. its data matrix, into a new object. """ m_copy = np.empty_like(self.matrix) m_copy[:] = self.matrix c = copy.copy(self) c.matrix = m_copy return c def _get_response_codes(self, var): """ Query the meta specified codes values for a meta-using Quantity. """ if self.type == 'array': rescodes = [v['value'] for v in self.meta()['lib']['values'][var]] else: values = emulate_meta( self.meta(), self.meta()['columns'][var].get('values', None)) rescodes = [v['value'] for v in values] return rescodes def _get_response_texts(self, var, text_key=None): """ Query the meta specified text values for a meta-using Quantity. """ if text_key is None: text_key = 'main' if self.type == 'array': restexts = [v[text_key] for v in self.meta()['lib']['values'][var]] else: values = emulate_meta( self.meta(), self.meta()['columns'][var].get('values', None)) restexts = [v['text'][text_key] for v in values] return restexts def _switch_axes(self): """ """ if self.switched: self.switched = False self.matrix = self.matrix.swapaxes(1, 2) else: self.switched = True self.matrix = self.matrix.swapaxes(2, 1) self.xdef, self.ydef = self.ydef, self.xdef self._x_indexers, self._y_indexers = self._y_indexers, self._x_indexers self.comb_x, self.comb_y = self.comb_y, self.comb_x self.miss_x, self.miss_y = self.miss_y, self.miss_x return self def _reset(self): for prop in list(self.__dict__.keys()): if prop in ['_uses_meta', 'base_all', '_dataidx', 'meta', '_cache', 'd', 'idx_map']: pass elif prop in ['_squeezed', 'switched']: self.__dict__[prop] = False else: self.__dict__[prop] = None self.result = None return None def swap(self, var, axis='x', inplace=True): """ Change the Quantity's x- or y-axis keeping filter and weight setup. All edits and aggregation results will be removed during the swap. Parameters ---------- var : str New variable's name used in axis swap. axis : {'x', 'y'}, default ``'x'`` The axis to swap. inplace : bool, default ``True`` Whether to modify the Quantity inplace or return a new instance. Returns ------- swapped : New Quantity instance with exchanged x- or y-axis. """ if axis == 'x': x = var y = self.y else: x = self.x y = var f, w = self.f, self.w if inplace: swapped = self else: swapped = self._copy() swapped._reset() swapped.x, swapped.y = x, y swapped.f, swapped.w = f, w swapped.type = swapped._get_type() swapped._get_matrix() if not inplace: return swapped def rescale(self, scaling, drop=False): """ Modify the object's ``xdef`` property reflecting new value defintions. Parameters ---------- scaling : dict Mapping of old_code: new_code, given as of type int or float. drop : bool, default False If True, codes not included in the scaling dict will be excluded. Returns ------- self """ proper_scaling = {old_code: new_code for old_code, new_code in list(scaling.items()) if old_code in self.xdef} xdef_ref = [proper_scaling[code] if code in list(proper_scaling.keys()) else code for code in self.xdef] if drop: to_drop = [code for code in self.xdef if code not in list(proper_scaling.keys())] self.exclude(to_drop, axis='x') self.xdef = xdef_ref return self def exclude(self, codes, axis='x'): """ Wrapper for _missingfy(...keep_codes=False, ..., keep_base=False, ...) Excludes specified codes from aggregation. """ self._missingfy(codes, axis=axis, keep_base=False, inplace=True) return self def limit(self, codes, axis='x'): """ Wrapper for _missingfy(...keep_codes=True, ..., keep_base=True, ...) Restrict the data matrix entires to contain the specified codes only. """ self._missingfy(codes, axis=axis, keep_codes=True, keep_base=True, inplace=True) return self def filter(self, condition, keep_base=True, inplace=False): """ Use a Quantipy conditional expression to filter the data matrix entires. """ if inplace: filtered = self else: filtered = self._copy() qualified_rows = self._get_logic_qualifiers(condition) valid_rows = self.idx_map[self.idx_map[:, 0] == 1][:, 1] filter_idx = np.in1d(valid_rows, qualified_rows) if keep_base: filtered.matrix[~filter_idx, 1:, :] = np.NaN else: filtered.matrix[~filter_idx, :, :] = np.NaN if not inplace: return filtered def _get_logic_qualifiers(self, condition): if not isinstance(condition, dict): column = self.x logic = condition else: column = list(condition.keys())[0] logic = list(condition.values())[0] idx, logical_expression = get_logic_index(self.d()[column], logic, self.d()) logical_expression = logical_expression.split(':')[0] if not column == self.x: logical_expression = logical_expression.replace('x[', column+'[') self.logical_conditions.append(logical_expression) return idx def _missingfy(self, codes, axis='x', keep_codes=False, keep_base=True, indices=False, inplace=True): """ Clean matrix from entries preserving or modifying the weight vector. Parameters ---------- codes : list A list of codes to be considered in cleaning. axis : {'x', 'y'}, default 'x' The axis to clean codes on. Refers to the Link object's x- and y- axes. keep_codes : bool, default False Controls whether the passed codes are kept or erased from the Quantity matrix data entries. keep_base: bool, default True Controls whether the weight vector is set to np.NaN alongside the x-section rows or remains unmodified. indices: bool, default False If ``True``, the data matrix indicies of the corresponding codes will be returned as well. inplace : bool, default True Will overwrite self.matrix with the missingfied matrix by default. If ``False``, the method will return a new np.array with the modified entries. Returns ------- self or numpy.array (and optionally a list of int when ``indices=True``) Either a new matrix is returned as numpy.array or the ``matrix`` property is modified inplace. """ if inplace: missingfied = self else: missingfied = self._copy() if axis == 'y' and self.y == '@' and not self.type == 'array': return self elif axis == 'y' and self.type == 'array': ni_err = 'Cannot missingfy array mask element sections!' raise NotImplementedError(ni_err) else: if axis == 'y': missingfied._switch_axes() mis_ix = missingfied._get_drop_idx(codes, keep_codes) mis_ix = [code + 1 for code in mis_ix] if mis_ix is not None: for ix in mis_ix: np.place(missingfied.matrix[:, ix], missingfied.matrix[:, ix] > 0, np.NaN) if not keep_base: if axis == 'x': self.miss_x = codes else: self.miss_y = codes if self.type == 'array': mask = np.nansum(missingfied.matrix[:, missingfied._x_indexers], axis=1, keepdims=True) mask /= mask mask = mask > 0 else: mask = np.nansum(np.sum(missingfied.matrix, axis=1, keepdims=False), axis=1, keepdims=True) > 0 missingfied.matrix[~mask] = np.NaN if axis == 'y': missingfied._switch_axes() if inplace: self.matrix = missingfied.matrix if indices: return mis_ix else: if indices: return missingfied, mis_ix else: return missingfied def _organize_global_missings(self, missings): hidden = [c for c in list(missings.keys()) if missings[c] == 'hidden'] excluded = [c for c in list(missings.keys()) if missings[c] == 'excluded'] shown = [c for c in list(missings.keys()) if missings[c] == 'shown'] return hidden, excluded, shown def _organize_stats_missings(self, missings): excluded = [c for c in list(missings.keys()) if missings[c] in ['d.excluded', 'excluded']] return excluded def _autodrop_stats_missings(self): if self.x == '@': pass elif self.ds._has_missings(self.x): missings = self.ds._get_missings(self.x) to_drop = self._organize_stats_missings(missings) self.exclude(to_drop) else: pass return None def _clean_from_global_missings(self): if self.x == '@': pass elif self.ds._has_missings(self.x): missings = self.ds._get_missings(self.x) hidden, excluded, shown = self._organize_global_missings(missings) if excluded: excluded_codes = excluded excluded_idxer = self._missingfy(excluded, keep_base=False, indices=True) else: excluded_codes, excluded_idxer = [], [] if hidden: hidden_codes = hidden hidden_idxer = self._get_drop_idx(hidden, keep=False) hidden_idxer = [code + 1 for code in hidden_idxer] else: hidden_codes, hidden_idxer = [], [] dropped_codes = excluded_codes + hidden_codes dropped_codes_idxer = excluded_idxer + hidden_idxer self._x_indexers = [x_idx for x_idx in self._x_indexers if x_idx not in dropped_codes_idxer] self.matrix = self.matrix[:, [0] + self._x_indexers] self.xdef = [x_c for x_c in self.xdef if x_c not in dropped_codes] else: pass return None def _get_drop_idx(self, codes, keep): """ Produces a list of indices referring to the given input matrix's axes sections in order to erase data entries. Parameters ---------- codes : list Data codes that should be dropped from or kept in the matrix. keep : boolean Controls if the the passed code defintion is interpreted as "codes to keep" or "codes to drop". Returns ------- drop_idx : list List of x section matrix indices. """ if codes is None: return None else: if keep: return [self.xdef.index(code) for code in self.xdef if code not in codes] else: return [self.xdef.index(code) for code in codes if code in self.xdef] def group(self, groups, axis='x', expand=None, complete=False): """ Build simple or logical net vectors, optionally keeping orginating codes. Parameters ---------- groups : list, dict of lists or logic expression The group/net code defintion(s) in form of... * a simple list: ``[1, 2, 3]`` * a dict of list: ``{'grp A': [1, 2, 3], 'grp B': [4, 5, 6]}`` * a logical expression: ``not_any([1, 2])`` axis : {``'x'``, ``'y'``}, default ``'x'`` The axis to group codes on. expand : {None, ``'before'``, ``'after'``}, default ``None`` If ``'before'``, the codes that are grouped will be kept and placed before the grouped aggregation; vice versa for ``'after'``. Ignored on logical expressions found in ``groups``. complete : bool, default False If True, codes that define the Link on the given ``axis`` but are not present in the ``groups`` defintion(s) will be placed in their natural position within the aggregation, respecting the value of ``expand``. Returns ------- None """ # check validity and clean combine instructions if axis == 'y' and self.type == 'array': ni_err_array = 'Array mask element sections cannot be combined.' raise NotImplementedError(ni_err_array) elif axis == 'y' and self.y == '@': val_err = 'Total link has no y-axis codes to combine.' raise ValueError(val_err) grp_def = self._organize_grp_def(groups, expand, complete, axis) combines = [] names = [] # generate the net vectors (+ possible expanded originating codes) for grp in grp_def: name, group, exp, logical = grp[0], grp[1], grp[2], grp[3] one_code = len(group) == 1 if one_code and not logical: vec = self._slice_vec(group[0], axis=axis) elif not logical and not one_code: vec, idx = self._grp_vec(group, axis=axis) else: vec = self._logic_vec(group) if axis == 'y': self._switch_axes() if exp is not None: m_idx = [ix for ix in self._x_indexers if ix not in idx] m_idx = self._sort_indexer_as_codes(m_idx, group) if exp == 'after': names.extend(name) names.extend([c for c in group]) combines.append( np.concatenate([vec, self.matrix[:, m_idx]], axis=1)) else: names.extend([c for c in group]) names.extend(name) combines.append( np.concatenate([self.matrix[:, m_idx], vec], axis=1)) else: names.extend(name) combines.append(vec) if axis == 'y': self._switch_axes() # re-construct the combined data matrix combines = np.concatenate(combines, axis=1) if axis == 'y': self._switch_axes() combined_matrix = np.concatenate([self.matrix[:, [0]], combines], axis=1) if axis == 'y': combined_matrix = combined_matrix.swapaxes(1, 2) self._switch_axes() # update the sectional information new_sect_def = list(range(0, combined_matrix.shape[1] - 1)) if axis == 'x': self.xdef = new_sect_def self._x_indexers = self._get_x_indexers() self.comb_x = names else: self.ydef = new_sect_def self._y_indexers = self._get_y_indexers() self.comb_y = names self.matrix = combined_matrix def _slice_vec(self, code, axis='x'): ''' ''' if axis == 'x': code_idx = self.xdef.index(code) + 1 else: code_idx = self.ydef.index(code) + 1 if axis == 'x': m_slice = self.matrix[:, [code_idx]] else: self._switch_axes() m_slice = self.matrix[:, [code_idx]] self._switch_axes() return m_slice def _grp_vec(self, codes, axis='x'): netted, idx = self._missingfy(codes=codes, axis=axis, keep_codes=True, keep_base=True, indices=True, inplace=False) if axis == 'y': netted._switch_axes() net_vec = np.nansum(netted.matrix[:, netted._x_indexers], axis=1, keepdims=True) net_vec /= net_vec return net_vec, idx def _logic_vec(self, condition): """ Create net vector of qualified rows based on passed condition. """ filtered = self.filter(condition=condition, inplace=False) net_vec = np.nansum(filtered.matrix[:, self._x_indexers], axis=1, keepdims=True) net_vec /= net_vec return net_vec def _grp_type(self, grp_def): if isinstance(grp_def, list): if not isinstance(grp_def[0], (int, float)): return 'block' else: return 'list' elif isinstance(grp_def, tuple): return 'logical' elif isinstance(grp_def, dict): return 'wildcard' def _add_unused_codes(self, grp_def_list, axis): ''' ''' query_codes = self.xdef if axis == 'x' else self.ydef frame_lookup = {c: [[c], [c], None, False] for c in query_codes} frame = [[code] for code in query_codes] for grpdef_idx, grpdef in enumerate(grp_def_list): for code in grpdef[1]: if [code] in frame: if grpdef not in frame: frame[frame.index([code])] = grpdef else: frame[frame.index([code])] = '-' frame = [code for code in frame if not code == '-'] for code in frame: if code[0] in list(frame_lookup.keys()): frame[frame.index([code[0]])] = frame_lookup[code[0]] return frame def _organize_grp_def(self, grp_def, method_expand, complete, axis): """ Sanitize a combine instruction list (of dicts): names, codes, expands. """ organized_def = [] codes_used = [] any_extensions = complete any_logical = False if method_expand is None and complete: method_expand = 'before' if not self._grp_type(grp_def) == 'block': grp_def = [{'net': grp_def, 'expand': method_expand}] for grp in grp_def: if any(isinstance(val, (tuple, dict)) for val in list(grp.values())): if complete: ni_err = ('Logical expr. unsupported when complete=True. ' 'Only list-type nets/groups can be completed.') raise NotImplementedError(ni_err) if 'expand' in list(grp.keys()): del grp['expand'] expand = None logical = True else: if 'expand' in list(grp.keys()): grp = copy.deepcopy(grp) expand = grp['expand'] if expand is None and complete: expand = 'before' del grp['expand'] else: expand = method_expand logical = False organized_def.append([list(grp.keys()), list(grp.values())[0], expand, logical]) if expand: any_extensions = True if logical: any_logical = True codes_used.extend(list(grp.values())[0]) if not any_logical: if len(set(codes_used)) != len(codes_used) and any_extensions: ni_err_extensions = ('Same codes in multiple groups unsupported ' 'with expand and/or complete =True.') raise NotImplementedError(ni_err_extensions) if complete: return self._add_unused_codes(organized_def, axis) else: return organized_def def _force_to_nparray(self): """ Convert the aggregation result into its numpy array equivalent. """ if isinstance(self.result, pd.DataFrame): self.result = self.result.values return True else: return False def _attach_margins(self): """ Force margins back into the current Quantity.result if none are found. """ if not self._res_is_stat(): values = self.result if not self._has_y_margin and not self.y == '@': margins = False values = np.concatenate([self.rbase[1:, :], values], 1) else: margins = True if not self._has_x_margin: margins = False values = np.concatenate([self.cbase, values], 0) else: margins = True self.result = values return margins else: return False def _organize_expr_def(self, expression, axis): """ """ # Prepare expression parts and lookups for indexing the agg. result val1, op, val2 = expression[0], expression[1], expression[2] if self._res_is_stat(): idx_c = [self.current_agg] offset = 0 else: if axis == 'x': idx_c = self.xdef if not self.comb_x else self.comb_x else: idx_c = self.ydef if not self.comb_y else self.comb_y offset = 1 # Test expression validity and find np.array indices / prepare scalar # values of the expression idx_err = '"{}" not found in {}-axis.' # [1] input is 1. scalar, 2. vector from the agg. result if isinstance(val1, list): if not val2 in idx_c: raise IndexError(idx_err.format(val2, axis)) val1 = val1[0] val2 = idx_c.index(val2) + offset expr_type = 'scalar_1' # [2] input is 1. vector from the agg. result, 2. scalar elif isinstance(val2, list): if not val1 in idx_c: raise IndexError(idx_err.format(val1, axis)) val1 = idx_c.index(val1) + offset val2 = val2[0] expr_type = 'scalar_2' # [3] input is two vectors from the agg. result elif not any(isinstance(val, list) for val in [val1, val2]): if not val1 in idx_c: raise IndexError(idx_err.format(val1, axis)) if not val2 in idx_c: raise IndexError(idx_err.format(val2, axis)) val1 = idx_c.index(val1) + offset val2 = idx_c.index(val2) + offset expr_type = 'vectors' return val1, op, val2, expr_type, idx_c @staticmethod def constant(num): return [num] def calc(self, expression, axis='x', result_only=False): """ Compute (simple) aggregation level arithmetics. """ unsupported = ['cbase', 'rbase', 'summary', 'x_sum', 'y_sum'] if self.result is None: raise ValueError('No aggregation to base calculation on.') elif self.current_agg in unsupported: ni_err = 'Aggregation type "{}" not supported.' raise NotImplementedError(ni_err.format(self.current_agg)) elif axis not in ['x', 'y']: raise ValueError('Invalid axis parameter: {}'.format(axis)) is_df = self._force_to_nparray() has_margin = self._attach_margins() values = self.result expr_name = list(expression.keys())[0] if axis == 'x': self.calc_x = expr_name else: self.calc_y = expr_name values = values.T expr = list(expression.values())[0] v1, op, v2, exp_type, index_codes = self._organize_expr_def(expr, axis) # ==================================================================== # TODO: generalize this calculation part so that it can "parse" # arbitrary calculation rules given as nested or concatenated # operators/codes sequences. if exp_type == 'scalar_1': val1, val2 = v1, values[[v2], :] elif exp_type == 'scalar_2': val1, val2 = values[[v1], :], v2 elif exp_type == 'vectors': val1, val2 = values[[v1], :], values[[v2], :] calc_res = op(val1, val2) # ==================================================================== if axis == 'y': calc_res = calc_res.T ap_axis = 0 if axis == 'x' else 1 if result_only: if not self._res_is_stat(): self.result = np.concatenate([self.result[[0], :], calc_res], ap_axis) else: self.result = calc_res else: self.result = np.concatenate([self.result, calc_res], ap_axis) if axis == 'x': self.calc_x = index_codes + [self.calc_x] else: self.calc_y = index_codes + [self.calc_y] self.cbase = self.result[[0], :] if self.type in ['simple', 'nested']: self.rbase = self.result[:, [0]] else: self.rbase = None if not self._res_is_stat(): self.current_agg = 'calc' self._organize_margins(has_margin) else: self.current_agg = 'calc' if is_df: self.to_df() return self def count(self, axis=None, raw_sum=False, margin=True, as_df=True): """ Count entries over all cells or per axis margin. Parameters ---------- axis : {None, 'x', 'y'}, deafult None When axis is None, the frequency of all cells from the uni- or multivariate distribution is presented. If the axis is specified to be either 'x' or 'y' the margin per axis becomes the resulting aggregation. raw_sum : bool, default False If True will perform a simple summation over the cells given the axis parameter. This ignores net counting of qualifying answers in favour of summing over all answers given when considering margins. margin : bool, deafult True Controls whether the margins of the aggregation result are shown. This also applies to margin aggregations themselves, since they contain a margin in (form of the total number of cases) as well. as_df : bool, default True Controls whether the aggregation is transformed into a Quantipy- multiindexed (following the Question/Values convention) pandas.DataFrame or will be left in its numpy.array format. Returns ------- self Passes a pandas.DataFrame or numpy.array of cell or margin counts to the ``result`` property. """ if axis is None and raw_sum: raise ValueError('Cannot calculate raw sum without axis.') if axis is None: self.current_agg = 'freq' elif axis == 'x': self.current_agg = 'cbase' if not raw_sum else 'x_sum' elif axis == 'y': self.current_agg = 'rbase' if not raw_sum else 'y_sum' if not self.w == '@1': self.weight() if not self.is_empty or self._uses_meta: counts = np.nansum(self.matrix, axis=0) else: counts = self._empty_result() self.cbase = counts[[0], :] if self.type in ['simple', 'nested']: self.rbase = counts[:, [0]] else: self.rbase = None if axis is None: self.result = counts elif axis == 'x': if not raw_sum: self.result = counts[[0], :] else: self.result = np.nansum(counts[1:, :], axis=0, keepdims=True) elif axis == 'y': if not raw_sum: self.result = counts[:, [0]] else: if self.x == '@' or self.y == '@': self.result = counts[:, [0]] else: self.result = np.nansum(counts[:, 1:], axis=1, keepdims=True) self._organize_margins(margin) if as_df: self.to_df() self.unweight() return self def _empty_result(self): if self._res_is_stat() or self.current_agg == 'summary': self.factorized = 'x' xdim = 1 if self._res_is_stat() else 8 if self.ydef is None: ydim = 1 elif self.ydef is not None and len(self.ydef) == 0: ydim = 2 else: ydim = len(self.ydef) + 1 else: if self.xdef is not None: if len(self.xdef) == 0: xdim = 2 else: xdim = len(self.xdef) + 1 if self.ydef is None: ydim = 1 elif self.ydef is not None and len(self.ydef) == 0: ydim = 2 else: ydim = len(self.ydef) + 1 elif self.xdef is None: xdim = 2 if self.ydef is None: ydim = 1 elif self.ydef is not None and len(self.ydef) == 0: ydim = 2 else: ydim = len(self.ydef) + 1 return np.zeros((xdim, ydim)) def _effective_n(self, axis=None, margin=True): self.weight() effective = (np.nansum(self.matrix, axis=0)**2 / np.nansum(self.matrix**2, axis=0)) self.unweight() start_on = 0 if margin else 1 if axis is None: return effective[start_on:, start_on:] elif axis == 'x': return effective[[0], start_on:] else: return effective[start_on:, [0]] def summarize(self, stat='summary', axis='x', margin=True, as_df=True): """ Calculate distribution statistics across the given axis. Parameters ---------- stat : {'summary', 'mean', 'median', 'var', 'stddev', 'sem', varcoeff', 'min', 'lower_q', 'upper_q', 'max'}, default 'summary' The measure to calculate. Defaults to a summary output of the most important sample statistics. axis : {'x', 'y'}, default 'x' The axis which is reduced in the aggregation, e.g. column vs. row means. margin : bool, default True Controls whether statistic(s) of the marginal distribution are shown. as_df : bool, default True Controls whether the aggregation is transformed into a Quantipy- multiindexed (following the Question/Values convention) pandas.DataFrame or will be left in its numpy.array format. Returns ------- self Passes a pandas.DataFrame or numpy.array of the descriptive (summary) statistic(s) to the ``result`` property. """ self.current_agg = stat if self.is_empty: self.result = self._empty_result() else: self._autodrop_stats_missings() if stat == 'summary': stddev, mean, base = self._dispersion(axis, measure='sd', _return_mean=True, _return_base=True) self.result = np.concatenate([ base, mean, stddev, self._min(axis), self._percentile(perc=0.25), self._percentile(perc=0.50), self._percentile(perc=0.75), self._max(axis) ], axis=0) elif stat == 'mean': self.result = self._means(axis) elif stat == 'var': self.result = self._dispersion(axis, measure='var') elif stat == 'stddev': self.result = self._dispersion(axis, measure='sd') elif stat == 'sem': self.result = self._dispersion(axis, measure='sem') elif stat == 'varcoeff': self.result = self._dispersion(axis, measure='varcoeff') elif stat == 'min': self.result = self._min(axis) elif stat == 'lower_q': self.result = self._percentile(perc=0.25) elif stat == 'median': self.result = self._percentile(perc=0.5) elif stat == 'upper_q': self.result = self._percentile(perc=0.75) elif stat == 'max': self.result = self._max(axis) self._organize_margins(margin) if as_df: self.to_df() return self def _factorize(self, axis='x', inplace=True): self.factorized = axis if inplace: factorized = self else: factorized = self._copy() if axis == 'y': factorized._switch_axes() np.copyto(factorized.matrix[:, 1:, :], np.atleast_3d(factorized.xdef), where=factorized.matrix[:, 1:, :]>0) if not inplace: return factorized def _means(self, axis, _return_base=False): fact = self._factorize(axis=axis, inplace=False) if not self.w == '@1': fact.weight() fact_prod = np.nansum(fact.matrix, axis=0) fact_prod_sum = np.nansum(fact_prod[1:, :], axis=0, keepdims=True) bases = fact_prod[[0], :] means = fact_prod_sum/bases if axis == 'y': self._switch_axes() means = means.T bases = bases.T if _return_base: return means, bases else: return means def _dispersion(self, axis='x', measure='sd', _return_mean=False, _return_base=False): """ Extracts measures of dispersion from the incoming distribution of X vs. Y. Can return the arithm. mean by request as well. Dispersion measure supported are standard deviation, variance, coeffiecient of variation and standard error of the mean. """ means, bases = self._means(axis, _return_base=True) unbiased_n = bases - 1 self.unweight() factorized = self._factorize(axis, inplace=False) factorized.matrix[:, 1:] -= means factorized.matrix[:, 1:] *= factorized.matrix[:, 1:, :] if not self.w == '@1': factorized.weight() diff_sqrt = np.nansum(factorized.matrix[:, 1:], axis=1) disp = np.nansum(diff_sqrt/unbiased_n, axis=0, keepdims=True) disp[disp <= 0] = np.NaN disp[np.isinf(disp)] = np.NaN if measure == 'sd': disp = np.sqrt(disp) elif measure == 'sem': disp = np.sqrt(disp) / np.sqrt((unbiased_n + 1)) elif measure == 'varcoeff': disp = np.sqrt(disp) / means self.unweight() if _return_mean and _return_base: return disp, means, bases elif _return_mean: return disp, means elif _return_base: return disp, bases else: return disp def _max(self, axis='x'): factorized = self._factorize(axis, inplace=False) vals = np.nansum(factorized.matrix[:, 1:, :], axis=1) return np.nanmax(vals, axis=0, keepdims=True) def _min(self, axis='x'): factorized = self._factorize(axis, inplace=False) vals = np.nansum(factorized.matrix[:, 1:, :], axis=1) if 0 not in factorized.xdef: np.place(vals, vals == 0, np.inf) return np.nanmin(vals, axis=0, keepdims=True) def _percentile(self, axis='x', perc=0.5): """ Computes percentiles from the incoming distribution of X vs.Y and the requested percentile value. The implementation mirrors the algorithm used in SPSS Dimensions and the EXAMINE procedure in SPSS Statistics. It based on the percentile defintion #6 (adjusted for survey weights) in: Hyndman, <NAME>. and <NAME> (1996) - "Sample Quantiles in Statistical Packages", The American Statistician, 50, No. 4, 361-365. Parameters ---------- axis : {'x', 'y'}, default 'x' The axis which is reduced in the aggregation, i.e. column vs. row medians. perc : float, default 0.5 Defines the percentile to be computed. Defaults to 0.5, the sample median. Returns ------- percs : np.array Numpy array storing percentile values. """ percs = [] factorized = self._factorize(axis, inplace=False) vals = np.nansum(np.nansum(factorized.matrix[:, 1:, :], axis=1, keepdims=True), axis=1) weights = (vals/vals)*self.wv for shape_i in range(0, vals.shape[1]): iter_weights = weights[:, shape_i] iter_vals = vals[:, shape_i] mask = ~np.isnan(iter_weights) iter_weights = iter_weights[mask] iter_vals = iter_vals[mask] sorter = np.argsort(iter_vals) iter_vals = np.take(iter_vals, sorter) iter_weights = np.take(iter_weights, sorter) iter_wsum = np.nansum(iter_weights, axis=0) iter_wcsum = np.cumsum(iter_weights, axis=0) k = (iter_wsum + 1.0) * perc if iter_vals.shape[0] == 0: percs.append(0.00) elif iter_vals.shape[0] == 1: percs.append(iter_vals[0]) elif iter_wcsum[0] > k: wcsum_k = iter_wcsum[0] percs.append(iter_vals[0]) elif iter_wcsum[-1] <= k: percs.append(iter_vals[-1]) else: wcsum_k = iter_wcsum[iter_wcsum <= k][-1] p_k_idx = np.searchsorted(np.ndarray.flatten(iter_wcsum), wcsum_k) p_k = iter_vals[p_k_idx] p_k1 = iter_vals[p_k_idx+1] w_k1 = iter_weights[p_k_idx+1] excess = k - wcsum_k if excess >= 1.0: percs.append(p_k1) else: if w_k1 >= 1.0: percs.append((1.0-excess)*p_k + excess*p_k1) else: percs.append((1.0-(excess/w_k1))*p_k + (excess/w_k1)*p_k1) return np.array(percs)[None, :] def _organize_margins(self, margin): if self._res_is_stat(): if self.type == 'array' or self.y == '@' or self.x == '@': self._has_y_margin = self._has_x_margin = False else: if self.factorized == 'x': if not margin: self._has_x_margin = False self._has_y_margin = False self.result = self.result[:, 1:] else: self._has_x_margin = False self._has_y_margin = True else: if not margin: self._has_x_margin = False self._has_y_margin = False self.result = self.result[1:, :] else: self._has_x_margin = True self._has_y_margin = False if self._res_is_margin(): if self.y == '@' or self.x == '@': if self.current_agg in ['cbase', 'x_sum']: self._has_y_margin = self._has_x_margin = False if self.current_agg in ['rbase', 'y_sum']: if not margin: self._has_y_margin = self._has_x_margin = False self.result = self.result[1:, :] else: self._has_x_margin = True self._has_y_margin = False else: if self.current_agg in ['cbase', 'x_sum']: if not margin: self._has_y_margin = self._has_x_margin = False self.result = self.result[:, 1:] else: self._has_x_margin = False self._has_y_margin = True if self.current_agg in ['rbase', 'y_sum']: if not margin: self._has_y_margin = self._has_x_margin = False self.result = self.result[1:, :] else: self._has_x_margin = True self._has_y_margin = False elif self.current_agg in ['freq', 'summary', 'calc']: if self.type == 'array' or self.y == '@' or self.x == '@': if not margin: self.result = self.result[1:, :] self._has_x_margin = False self._has_y_margin = False else: self._has_x_margin = True self._has_y_margin = False else: if not margin: self.result = self.result[1:, 1:] self._has_x_margin = False self._has_y_margin = False else: self._has_x_margin = True self._has_y_margin = True else: pass def _sort_indexer_as_codes(self, indexer, codes): mapping = sorted(zip(indexer, codes), key=lambda l: l[1]) return [i[0] for i in mapping] def _get_y_indexers(self): if self._squeezed or self.type in ['simple', 'nested']: if self.ydef is not None: idxs = list(range(1, len(self.ydef)+1)) return self._sort_indexer_as_codes(idxs, self.ydef) else: return [1] else: y_indexers = [] xdef_len = len(self.xdef) zero_based_ys = [idx for idx in range(0, xdef_len)] for y_no in range(0, len(self.ydef)): if y_no == 0: y_indexers.append(zero_based_ys) else: y_indexers.append([idx + y_no * xdef_len for idx in zero_based_ys]) return y_indexers def _get_x_indexers(self): if self._squeezed or self.type in ['simple', 'nested']: idxs = list(range(1, len(self.xdef)+1)) return self._sort_indexer_as_codes(idxs, self.xdef) else: x_indexers = [] upper_x_idx = len(self.ydef) start_x_idx = [len(self.xdef) * offset for offset in range(0, upper_x_idx)] for x_no in range(0, len(self.xdef)): x_indexers.append([idx + x_no for idx in start_x_idx]) return x_indexers def _squeeze_dummies(self): """ Reshape and replace initial 2D dummy matrix into its 3D equivalent. """ self.wv = self.matrix[:, [-1]] sects = [] if self.type == 'array': x_sections = self._get_x_indexers() y_sections = self._get_y_indexers() y_total = np.nansum(self.matrix[:, x_sections], axis=1) y_total /= y_total y_total = y_total[:, None, :] for sect in y_sections: sect = self.matrix[:, sect] sects.append(sect) sects = np.dstack(sects) self._squeezed = True sects = np.concatenate([y_total, sects], axis=1) self.matrix = sects self._x_indexers = self._get_x_indexers() self._y_indexers = [] elif self.type in ['simple', 'nested']: x = self.matrix[:, :len(self.xdef)+1] y = self.matrix[:, len(self.xdef)+1:-1] for i in range(0, y.shape[1]): sects.append(x * y[:, [i]]) sects = np.dstack(sects) self._squeezed = True self.matrix = sects self._x_indexers = self._get_x_indexers() self._y_indexers = self._get_y_indexers() #===================================================================== #THIS CAN SPEED UP PERFOMANCE BY A GOOD AMOUNT BUT STACK-SAVING #TIME & SIZE WILL SUFFER. WE CAN DEL THE "SQUEEZED" COLLECTION AT #SAVE STAGE. #===================================================================== # self._cache.set_obj(collection='squeezed', # key=self.f+self.w+self.x+self.y, # obj=(self.xdef, self.ydef, # self._x_indexers, self._y_indexers, # self.wv, self.matrix, self.idx_map)) def _get_matrix(self): wv = self._cache.get_obj('weight_vectors', self.w) if wv is None: wv = self._get_wv() self._cache.set_obj('weight_vectors', self.w, wv) total = self._cache.get_obj('weight_vectors', '@1') if total is None: total = self._get_total() self._cache.set_obj('weight_vectors', '@1', total) if self.type == 'array': xm, self.xdef, self.ydef = self._dummyfy() self.matrix = np.concatenate((xm, wv), 1) else: if self.y == '@' or self.x == '@': section = self.x if self.y == '@' else self.y xm, self.xdef = self._cache.get_obj('matrices', section) if xm is None: xm, self.xdef = self._dummyfy(section) self._cache.set_obj('matrices', section, (xm, self.xdef)) self.ydef = None self.matrix = np.concatenate((total, xm, total, wv), 1) else: xm, self.xdef = self._cache.get_obj('matrices', self.x) if xm is None: xm, self.xdef = self._dummyfy(self.x) self._cache.set_obj('matrices', self.x, (xm, self.xdef)) ym, self.ydef = self._cache.get_obj('matrices', self.y) if ym is None: ym, self.ydef = self._dummyfy(self.y) self._cache.set_obj('matrices', self.y, (ym, self.ydef)) self.matrix = np.concatenate((total, xm, total, ym, wv), 1) self.matrix = self.matrix[self._dataidx] self.matrix = self._clean() self._squeeze_dummies() self._clean_from_global_missings() return self.matrix def _dummyfy(self, section=None): if section is not None: # i.e. Quantipy multicode data if self.d()[section].dtype == 'str' or self.d()[section].dtype == 'object': section_data = self.d()[section].astype('str').str.get_dummies(';') if self._uses_meta: res_codes = self._get_response_codes(section) section_data.columns = [int(col) for col in section_data.columns] section_data = section_data.reindex(columns=res_codes) section_data.replace(np.NaN, 0, inplace=True) if not self._uses_meta: section_data.sort_index(axis=1, inplace=True) # i.e. Quantipy single-coded/numerical data else: section_data = pd.get_dummies(self.d()[section]) if self._uses_meta and not self._is_raw_numeric(section): res_codes = self._get_response_codes(section) section_data = section_data.reindex(columns=res_codes) section_data.replace(np.NaN, 0, inplace=True) section_data.rename( columns={ col: int(col) if float(col).is_integer() else col for col in section_data.columns }, inplace=True) return section_data.values, section_data.columns.tolist() elif section is None and self.type == 'array': a_i = [i['source'].split('@')[-1] for i in self.meta()['masks'][self.x]['items']] a_res = self._get_response_codes(self.x) dummies = [] if self._is_multicode_array(a_i[0]): for i in a_i: i_dummy = self.d()[i].str.get_dummies(';') i_dummy.columns = [int(col) for col in i_dummy.columns] dummies.append(i_dummy.reindex(columns=a_res)) else: for i in a_i: dummies.append(pd.get_dummies(self.d()[i]).reindex(columns=a_res)) a_data = pd.concat(dummies, axis=1) return a_data.values, a_res, a_i def _clean(self): """ Drop empty sectional rows from the matrix. """ mat = self.matrix.copy() mat_indexer = np.expand_dims(self._dataidx, 1) if not self.type == 'array': xmask = (np.nansum(mat[:, 1:len(self.xdef)+1], axis=1) > 0) if self.ydef is not None: if self.base_all: ymask = (np.nansum(mat[:, len(self.xdef)+1:-1], axis=1) > 0) else: ymask = (np.nansum(mat[:, len(self.xdef)+2:-1], axis=1) > 0) self.idx_map = np.concatenate( [np.expand_dims(xmask & ymask, 1), mat_indexer], axis=1) return mat[xmask & ymask] else: self.idx_map = np.concatenate( [np.expand_dims(xmask, 1), mat_indexer], axis=1) return mat[xmask] else: mask = (np.nansum(mat[:, :-1], axis=1) > 0) self.idx_map = np.concatenate( [np.expand_dims(mask, 1), mat_indexer], axis=1) return mat[mask] def _is_raw_numeric(self, var): return self.meta()['columns'][var]['type'] in ['int', 'float'] def _res_from_count(self): return self._res_is_margin() or self.current_agg == 'freq' def _res_from_summarize(self): return self._res_is_stat() or self.current_agg == 'summary' def _res_is_margin(self): return self.current_agg in ['tbase', 'cbase', 'rbase', 'x_sum', 'y_sum'] def _res_is_stat(self): return self.current_agg in ['mean', 'min', 'max', 'varcoeff', 'sem', 'stddev', 'var', 'median', 'upper_q', 'lower_q'] def to_df(self): if self.current_agg == 'freq': if not self.comb_x: self.x_agg_vals = self.xdef else: self.x_agg_vals = self.comb_x if not self.comb_y: self.y_agg_vals = self.ydef else: self.y_agg_vals = self.comb_y elif self.current_agg == 'calc': if self.calc_x: self.x_agg_vals = self.calc_x self.y_agg_vals = self.ydef if not self.comb_y else self.comb_y else: self.x_agg_vals = self.xdef if not self.comb_x else self.comb_x self.y_agg_vals = self.calc_y elif self.current_agg == 'summary': summary_vals = ['mean', 'stddev', 'min', '25%', 'median', '75%', 'max'] self.x_agg_vals = summary_vals self.y_agg_vals = self.ydef elif self.current_agg in ['x_sum', 'cbase']: self.x_agg_vals = 'All' if self.current_agg == 'cbase' else 'sum' self.y_agg_vals = self.ydef elif self.current_agg in ['y_sum', 'rbase']: self.x_agg_vals = self.xdef self.y_agg_vals = 'All' if self.current_agg == 'rbase' else 'sum' elif self._res_is_stat(): if self.factorized == 'x': self.x_agg_vals = self.current_agg self.y_agg_vals = self.ydef if not self.comb_y else self.comb_y else: self.x_agg_vals = self.xdef if not self.comb_x else self.comb_x self.y_agg_vals = self.current_agg # can this made smarter WITHOUT 1000000 IF-ELSEs above?: if ((self.current_agg in ['freq', 'cbase', 'x_sum', 'summary', 'calc'] or self._res_is_stat()) and not self.type == 'array'): if self.y == '@' or self.x == '@': self.y_agg_vals = '@' df = pd.DataFrame(self.result) idx, cols = self._make_multiindex() df.index = idx df.columns = cols self.result = df if not self.x == '@' else df.T if self.type == 'nested': self._format_nested_axis() return self def _make_multiindex(self): x_grps = self.x_agg_vals y_grps = self.y_agg_vals if not isinstance(x_grps, list): x_grps = [x_grps] if not isinstance(y_grps, list): y_grps = [y_grps] if not x_grps: x_grps = [None] if not y_grps: y_grps = [None] if self._has_x_margin: x_grps = ['All'] + x_grps if self._has_y_margin: y_grps = ['All'] + y_grps if self.type == 'array': x_unit = y_unit = self.x x_names = ['Question', 'Values'] y_names = ['Array', 'Questions'] else: x_unit = self.x if not self.x == '@' else self.y y_unit = self.y if not self.y == '@' else self.x x_names = y_names = ['Question', 'Values'] x = [x_unit, x_grps] y = [y_unit, y_grps] index = pd.MultiIndex.from_product(x, names=x_names) columns = pd.MultiIndex.from_product(y, names=y_names) return index, columns def _format_nested_axis(self): nest_mi = self._make_nest_multiindex() if not len(self.result.columns) > len(nest_mi.values): self.result.columns = nest_mi else: total_mi_values = [] for var in self.nest_def['variables']: total_mi_values += [var, -1] total_mi = pd.MultiIndex.from_product(total_mi_values, names=nest_mi.names) full_nest_mi = nest_mi.union(total_mi) for lvl, c in zip(list(range(1, len(full_nest_mi)+1, 2)), self.nest_def['level_codes']): full_nest_mi.set_levels(['All'] + c, level=lvl, inplace=True) self.result.columns = full_nest_mi return None def _make_nest_multiindex(self): values = [] names = ['Question', 'Values'] * (self.nest_def['levels']) for lvl_var, lvl_c in zip(self.nest_def['variables'], self.nest_def['level_codes']): values.append(lvl_var) values.append(lvl_c) mi = pd.MultiIndex.from_product(values, names=names) return mi def normalize(self, on='y'): """ Convert a raw cell count result to its percentage representation. Parameters ---------- on : {'y', 'x'}, default 'y' Defines the base to normalize the result on. ``'y'`` will produce column percentages, ``'x'`` will produce row percentages. Returns ------- self Updates an count-based aggregation in the ``result`` property. """ if self.x == '@': on = 'y' if on == 'x' else 'x' if on == 'y': if self._has_y_margin or self.y == '@' or self.x == '@': base = self.cbase else: if self._get_type() == 'array': base = self.cbase else: base = self.cbase[:, 1:] else: if self._has_x_margin: base = self.rbase else: base = self.rbase[1:, :] if isinstance(self.result, pd.DataFrame): if self.x == '@': self.result = self.result.T if on == 'y': base = np.repeat(base, self.result.shape[0], axis=0) else: base = np.repeat(base, self.result.shape[1], axis=1) self.result = self.result / base * 100 if self.x == '@': self.result = self.result.T return self def rebase(self, reference, on='counts', overwrite_margins=True): """ """ val_err = 'No frequency aggregation to rebase.' if self.result is None: raise ValueError(val_err) elif self.current_agg != 'freq': raise ValueError(val_err) is_df = self._force_to_nparray() has_margin = self._attach_margins() ref = self.swap(var=reference, inplace=False) if self._sects_identical(self.xdef, ref.xdef): pass elif self._sects_different_order(self.xdef, ref.xdef): ref.xdef = self.xdef ref._x_indexers = ref._get_x_indexers() ref.matrix = ref.matrix[:, ref._x_indexers + [0]] elif self._sect_is_subset(self.xdef, ref.xdef): ref.xdef = [code for code in ref.xdef if code in self.xdef] ref._x_indexers = ref._sort_indexer_as_codes(ref._x_indexers, self.xdef) ref.matrix = ref.matrix[:, [0] + ref._x_indexers] else: idx_err = 'Axis defintion is not a subset of rebase reference.' raise IndexError(idx_err) ref_freq = ref.count(as_df=False) self.result = (self.result/ref_freq.result) * 100 if overwrite_margins: self.rbase = ref_freq.rbase self.cbase = ref_freq.cbase self._organize_margins(has_margin) if is_df: self.to_df() return self @staticmethod def _sects_identical(axdef1, axdef2): return axdef1 == axdef2 @staticmethod def _sects_different_order(axdef1, axdef2): if not len(axdef1) == len(axdef2): return False else: if (x for x in axdef1 if x in axdef2): return True else: return False @staticmethod def _sect_is_subset(axdef1, axdef2): return set(axdef1).intersection(set(axdef2)) > 0 class Test(object): """ The Quantipy Test object is a defined by a Link and the view name notation string of a counts or means view. All auxiliary figures needed to arrive at the test results are computed inside the instance of the object. """ def __init__(self, link, view_name_notation, test_total=False): super(Test, self).__init__() # Infer whether a mean or proportion test is being performed view = link[view_name_notation] if view.meta()['agg']['method'] == 'descriptives': self.metric = 'means' else: self.metric = 'proportions' self.invalid = None self.no_pairs = None self.no_diffs = None self.parameters = None self.test_total = test_total self.mimic = None self.level = None # Calculate the required baseline measures for the test using the # Quantity instance self.Quantity = qp.Quantity(link, view.weights(), use_meta=True, base_all=self.test_total) self._set_baseline_aggregates(view) # Set information about the incoming aggregation # to be able to route correctly through the algorithms # and re-construct a Quantipy-indexed pd.DataFrame self.is_weighted = view.meta()['agg']['is_weighted'] self.has_calc = view.has_calc() self.x = view.meta()['x']['name'] self.xdef = view.dataframe.index.get_level_values(1).tolist() self.y = view.meta()['y']['name'] self.ydef = view.dataframe.columns.get_level_values(1).tolist() columns_to_pair = ['@'] + self.ydef if self.test_total else self.ydef self.ypairs = list(combinations(columns_to_pair, 2)) self.y_is_multi = view.meta()['y']['is_multi'] self.multiindex = (view.dataframe.index, view.dataframe.columns) def __repr__(self): return ('%s, total included: %s, test metric: %s, parameters: %s, ' 'mimicked: %s, level: %s ')\ % (Test, self.test_total, self.metric, self.parameters, self.mimic, self.level) def _set_baseline_aggregates(self, view): """ Derive or recompute the basic values required by the ``Test`` instance. """ grps, exp, compl, calc, exclude, rescale = view.get_edit_params() if exclude is not None: self.Quantity.exclude(exclude) if self.metric == 'proportions' and self.test_total and view._has_code_expr(): self.Quantity.group(grps, expand=exp, complete=compl) if self.metric == 'means': aggs = self.Quantity._dispersion(_return_mean=True, _return_base=True) self.sd, self.values, self.cbases = aggs[0], aggs[1], aggs[2] if not self.test_total: self.sd = self.sd[:, 1:] self.values = self.values[:, 1:] self.cbases = self.cbases[:, 1:] elif self.metric == 'proportions': if not self.test_total: self.values = view.dataframe.values.copy() self.cbases = view.cbases[:, 1:] self.rbases = view.rbases[1:, :] self.tbase = view.cbases[0, 0] else: agg = self.Quantity.count(margin=True, as_df=False) if calc is not None: calc_only = view._kwargs.get('calc_only', False) self.Quantity.calc(calc, axis='x', result_only=calc_only) self.values = agg.result[1:, :] self.cbases = agg.cbase self.rbases = agg.rbase[1:, :] self.tbase = agg.cbase[0, 0] def set_params(self, test_total=False, level='mid', mimic='Dim', testtype='pooled', use_ebase=True, ovlp_correc=True, cwi_filter=False, flag_bases=None): """ Sets the test algorithm parameters and defines the type of test. This method sets the test's global parameters and derives the necessary measures for the computation of the test statistic. The default values correspond to the SPSS Dimensions Column Tests algorithms that control for bias introduced by weighting and overlapping samples in the column pairs of multi-coded questions. .. note:: The Dimensions implementation uses variance pooling. Parameters ---------- test_total : bool, default False If set to True, the test algorithms will also include an existent total (@-) version of the original link and test against the unconditial data distribution. level : str or float, default 'mid' The level of significance given either as per 'low' = 0.1, 'mid' = 0.05, 'high' = 0.01 or as specific float, e.g. 0.15. mimic : {'askia', 'Dim'} default='Dim' Will instruct the mimicking of a software specific test. testtype : str, default 'pooled' Global definition of the tests. use_ebase : bool, default True If True, will use the effective sample sizes instead of the the simple weighted ones when testing a weighted aggregation. ovlp_correc : bool, default True If True, will consider and correct for respondent overlap when testing between multi-coded column pairs. cwi_filter : bool, default False If True, will check an incoming count aggregation for cells that fall below a treshhold comparison aggregation that assumes counts to be independent. flag_bases : list of two int, default None If provided, the output dataframe will replace results that have been calculated on (eff.) bases below the first int with ``'**'`` and mark results in columns with bases below the second int with ``'*'`` Returns ------- self """ # Check if the aggregation is non-empty # and that there are >1 populated columns if np.nansum(self.values) == 0 or len(self.ydef) == 1: self.invalid = True if np.nansum(self.values) == 0: self.no_diffs = True if len(self.ydef) == 1: self.no_pairs = True self.mimic = mimic self.comparevalue, self.level = self._convert_level(level) else: # Set global test algorithm parameters self.invalid = False self.no_diffs = False self.no_pairs = False valid_mimics = ['Dim', 'askia'] if mimic not in valid_mimics: raise ValueError('Failed to mimic: "%s". Select from: %s\n' % (mimic, valid_mimics)) else: self.mimic = mimic if self.mimic == 'askia': self.parameters = {'testtype': 'unpooled', 'use_ebase': False, 'ovlp_correc': False, 'cwi_filter': True, 'base_flags': None} self.test_total = False elif self.mimic == 'Dim': self.parameters = {'testtype': 'pooled', 'use_ebase': True, 'ovlp_correc': True, 'cwi_filter': False, 'base_flags': flag_bases} self.level = level self.comparevalue, self.level = self._convert_level(level) # Get value differences between column pairings if self.metric == 'means': self.valdiffs = np.array( [m1 - m2 for m1, m2 in combinations(self.values[0], 2)]) if self.metric == 'proportions': # special to askia testing: counts-when-independent filtering if cwi_filter: self.values = self._cwi() props = (self.values / self.cbases).T self.valdiffs = np.array([p1 - p2 for p1, p2 in combinations(props, 2)]).T # Set test specific measures for Dimensions-like testing: # [1] effective base usage if use_ebase and self.is_weighted: if not self.test_total: self.ebases = self.Quantity._effective_n(axis='x', margin=False) else: self.ebases = self.Quantity._effective_n(axis='x', margin=True) else: self.ebases = self.cbases # [2] overlap correction if self.y_is_multi and self.parameters['ovlp_correc']: self.overlap = self._overlap() else: self.overlap = np.zeros(self.valdiffs.shape) # [3] base flags if flag_bases: self.flags = {'min': flag_bases[0], 'small': flag_bases[1]} self.flags['flagged_bases'] = self._get_base_flags() else: self.flags = None return self # ------------------------------------------------- # Main algorithm methods to compute test statistics # ------------------------------------------------- def run(self): """ Performs the testing algorithm and creates an output pd.DataFrame. The output is indexed according to Quantipy's Questions->Values convention. Significant results between columns are presented as lists of integer y-axis codes where the column with the higher value is holding the codes of the columns with the lower values. NaN is indicating that a cell is not holding any sig. higher values compared to the others. """ if not self.invalid: sigs = self.get_sig() return self._output(sigs) else: return self._empty_output() def get_sig(self): """ TODO: implement returning tstats only. """ stat = self.get_statistic() stat = self._convert_statistic(stat) if self.metric == 'means': diffs = pd.DataFrame(self.valdiffs, index=self.ypairs, columns=self.xdef).T elif self.metric == 'proportions': stat = pd.DataFrame(stat, index=self.xdef, columns=self.ypairs) diffs = pd.DataFrame(self.valdiffs, index=self.xdef, columns=self.ypairs) if self.mimic == 'Dim': return diffs[(diffs != 0) & (stat < self.comparevalue)] elif self.mimic == 'askia': return diffs[(diffs != 0) & (stat > self.comparevalue)] def get_statistic(self): """ Returns the test statistic of the algorithm. """ return self.valdiffs / self.get_se() def get_se(self): """ Compute the standard error (se) estimate of the tested metric. The calculation of the se is defined by the parameters of the setup. The main difference is the handling of variances. **unpooled** implicitly assumes variance inhomogenity between the column pairing's samples. **pooled** treats variances effectively as equal. """ if self.metric == 'means': if self.parameters['testtype'] == 'unpooled': return self._se_mean_unpooled() elif self.parameters['testtype'] == 'pooled': return self._se_mean_pooled() elif self.metric == 'proportions': if self.parameters['testtype'] == 'unpooled': return self._se_prop_unpooled() if self.parameters['testtype'] == 'pooled': return self._se_prop_pooled() # ------------------------------------------------- # Conversion methods for levels and statistics # ------------------------------------------------- def _convert_statistic(self, teststat): """ Convert test statistics to match the decision rule of the test logic. Either transforms to p-values or returns the absolute value of the statistic, depending on the decision rule of the test. This is used to mimic other software packages as some tests' decision rules check test-statistic against pre-defined treshholds while others check sig. level against p-value. """ if self.mimic == 'Dim': ebases_pairs = [eb1 + eb2 for eb1, eb2 in combinations(self.ebases[0], 2)] dof = ebases_pairs - self.overlap - 2 dof[dof <= 1] = np.NaN return get_pval(dof, teststat)[1] elif self.mimic == 'askia': return abs(teststat) def _convert_level(self, level): """ Determines the comparison value for the test's decision rule. Checks whether the level of test is a string that defines low, medium, or high significance or an "actual" level of significance and converts it to a comparison level/significance level tuple. This is used to mimic other software packages as some test's decision rules check test-statistic against pre-defined treshholds while others check sig. level against p-value. """ if isinstance(level, str): if level == 'low': if self.mimic == 'Dim': comparevalue = siglevel = 0.10 elif self.mimic == 'askia': comparevalue = 1.65 siglevel = 0.10 elif level == 'mid': if self.mimic == 'Dim': comparevalue = siglevel = 0.05 elif self.mimic == 'askia': comparevalue = 1.96 siglevel = 0.05 elif level == 'high': if self.mimic == 'Dim': comparevalue = siglevel = 0.01 elif self.mimic == 'askia': comparevalue = 2.576 siglevel = 0.01 else: if self.mimic == 'Dim': comparevalue = siglevel = level elif self.mimic == 'askia': comparevalue = 1.65 siglevel = 0.10 return comparevalue, siglevel # ------------------------------------------------- # Standard error estimates calculation methods # ------------------------------------------------- def _se_prop_unpooled(self): """ Estimated standard errors of prop. diff. (unpool. var.) per col. pair. """ props = self.values/self.cbases unp_sd = ((props*(1-props))/self.cbases).T return np.array([np.sqrt(cat1 + cat2) for cat1, cat2 in combinations(unp_sd, 2)]).T def _se_mean_unpooled(self): """ Estimated standard errors of mean diff. (unpool. var.) per col. pair. """ sd_base_ratio = self.sd / self.cbases return np.array([np.sqrt(sd_b_r1 + sd_b_r2) for sd_b_r1, sd_b_r2 in combinations(sd_base_ratio[0], 2)])[None, :] def _se_prop_pooled(self): """ Estimated standard errors of prop. diff. (pooled var.) per col. pair. Controlling for effective base sizes and overlap responses is supported and applied as defined by the test's parameters setup. """ ebases_correc_pairs = np.array([1 / x + 1 / y for x, y in combinations(self.ebases[0], 2)]) if self.y_is_multi and self.parameters['ovlp_correc']: ovlp_correc_pairs = ((2 * self.overlap) / [x * y for x, y in combinations(self.ebases[0], 2)]) else: ovlp_correc_pairs = self.overlap counts_sum_pairs = np.array( [c1 + c2 for c1, c2 in combinations(self.values.T, 2)]) bases_sum_pairs = np.expand_dims( [b1 + b2 for b1, b2 in combinations(self.cbases[0], 2)], 1) pooled_props = (counts_sum_pairs/bases_sum_pairs).T return (np.sqrt(pooled_props * (1 - pooled_props) * (np.array(ebases_correc_pairs - ovlp_correc_pairs)))) def _se_mean_pooled(self): """ Estimated standard errors of mean diff. (pooled var.) per col. pair. Controlling for effective base sizes and overlap responses is supported and applied as defined by the test's parameters setup. """ ssw_base_ratios = self._sum_sq_w(base_ratio=True) enum = np.nan_to_num((self.sd ** 2) * (self.cbases-1)) denom = self.cbases-ssw_base_ratios enum_pairs = np.array([enum1 + enum2 for enum1, enum2 in combinations(enum[0], 2)]) denom_pairs = np.array([denom1 + denom2 for denom1, denom2 in combinations(denom[0], 2)]) ebases_correc_pairs = np.array([1/x + 1/y for x, y in combinations(self.ebases[0], 2)]) if self.y_is_multi and self.parameters['ovlp_correc']: ovlp_correc_pairs = ((2*self.overlap) / [x * y for x, y in combinations(self.ebases[0], 2)]) else: ovlp_correc_pairs = self.overlap[None, :] return (np.sqrt((enum_pairs/denom_pairs) * (ebases_correc_pairs - ovlp_correc_pairs))) # ------------------------------------------------- # Specific algorithm values & test option measures # ------------------------------------------------- def _sum_sq_w(self, base_ratio=True): """ """ if not self.Quantity.w == '@1': self.Quantity.weight() if not self.test_total: ssw = np.nansum(self.Quantity.matrix ** 2, axis=0)[[0], 1:] else: ssw = np.nansum(self.Quantity.matrix ** 2, axis=0)[[0], :] if base_ratio: return ssw/self.cbases else: return ssw def _cwi(self, threshold=5, as_df=False): """ Derives the count distribution assuming independence between columns. """ c_col_n = self.cbases c_cell_n = self.values t_col_n = self.tbase if self.rbases.shape[1] > 1: t_cell_n = self.rbases[1:, :] else: t_cell_n = self.rbases[0] np.place(t_col_n, t_col_n == 0, np.NaN) np.place(t_cell_n, t_cell_n == 0, np.NaN) np.place(c_col_n, c_col_n == 0, np.NaN) np.place(c_cell_n, c_cell_n == 0, np.NaN) cwi = (t_cell_n * c_col_n) / t_col_n cwi[cwi < threshold] = np.NaN if as_df: return pd.DataFrame(c_cell_n + cwi - cwi, index=self.xdef, columns=self.ydef) else: return c_cell_n + cwi - cwi def _overlap(self): if self.is_weighted: self.Quantity.weight() m = self.Quantity.matrix.copy() m = np.nansum(m, 1) if self.test_total else np.nansum(m[:, 1:, 1:], 1) if not self.is_weighted: m /= m m[m == 0] = np.NaN col_pairs = list(combinations(list(range(0, m.shape[1])), 2)) if self.parameters['use_ebase'] and self.is_weighted: # Overlap computation when effective base is being used w_sum_sq = np.array([np.nansum(m[:, [c1]] + m[:, [c2]], axis=0)**2 for c1, c2 in col_pairs]) w_sq_sum = np.array([np.nansum(m[:, [c1]]**2 + m[:, [c2]]**2, axis=0) for c1, c2 in col_pairs]) return np.nan_to_num((w_sum_sq/w_sq_sum)/2).T else: # Overlap with simple weighted/unweighted base size ovlp = np.array([np.nansum(m[:, [c1]] + m[:, [c2]], axis=0) for c1, c2 in col_pairs]) return (np.nan_to_num(ovlp)/2).T def _get_base_flags(self): bases = self.ebases[0] small = self.flags['small'] minimum = self.flags['min'] flags = [] for base in bases: if base >= small: flags.append('') elif base < small and base >= minimum: flags.append('*') else: flags.append('**') return flags # ------------------------------------------------- # Output creation # ------------------------------------------------- def _output(self, sigs): res = {y: {x: [] for x in self.xdef} for y in self.ydef} test_columns = ['@'] + self.ydef if self.test_total else self.ydef for col, val in sigs.items(): if self._flags_exist(): b1ix, b2ix = test_columns.index(col[0]), test_columns.index(col[1]) b1_ok = self.flags['flagged_bases'][b1ix] != '**' b2_ok = self.flags['flagged_bases'][b2ix] != '**' else: b1_ok, b2_ok = True, True for row, v in val.items(): if v > 0: if b2_ok: if col[0] == '@': res[col[1]][row].append('@H') else: res[col[0]][row].append(col[1]) if v < 0: if b1_ok: if col[0] == '@': res[col[1]][row].append('@L') else: res[col[1]][row].append(col[0]) test = pd.DataFrame(res).applymap(lambda x: str(x)) test = test.reindex(index=self.xdef, columns=self.ydef) if self._flags_exist(): test = self._apply_base_flags(test) test.replace('[]*', '*', inplace=True) test.replace('[]', np.NaN, inplace=True) # removing test results on post-aggregation rows [calc()] if self.has_calc: if len(test.index) > 1: test.iloc[-1:, :] = np.NaN else: test.iloc[:, :] = np.NaN test.index, test.columns = self.multiindex[0], self.multiindex[1] return test def _empty_output(self): """ """ values = self.values if self.metric == 'proportions': if self.no_pairs or self.no_diffs: values[:] = np.NaN if values.shape == (1, 1) or values.shape == (1, 0): values = [np.NaN] if self.metric == 'means': if self.no_pairs: values = [np.NaN] if self.no_diffs and not self.no_pairs: values[:] = np.NaN return pd.DataFrame(values, index=self.multiindex[0], columns=self.multiindex[1]) def _flags_exist(self): return (self.flags is not None and not all(self.flags['flagged_bases']) == '') def _apply_base_flags(self, sigres, replace=True): flags = self.flags['flagged_bases'] if self.test_total: flags = flags[1:] for res_col, flag in zip(sigres.columns, flags): if flag == '**': if replace: sigres[res_col] = flag else: sigres[res_col] = sigres[res_col] + flag elif flag == '*': sigres[res_col] = sigres[res_col] + flag return sigres class Nest(object): """ Description of class... """ def __init__(self, nest, data, meta): self.data = data self.meta = meta self.name = nest self.variables = nest.split('>') self.levels = len(self.variables) self.level_codes = [] self.code_maps = None self._needs_multi = self._any_multicoded() def nest(self): self._get_nested_meta() self._get_code_maps() interlocked = self._interlock_codes() if not self.name in self.data.columns: recode_map = {code: intersection(code_pair) for code, code_pair in enumerate(interlocked, start=1)} self.data[self.name] = np.NaN self.data[self.name] = recode(self.meta, self.data, target=self.name, mapper=recode_map) nest_info = {'variables': self.variables, 'level_codes': self.level_codes, 'levels': self.levels} return nest_info def _any_multicoded(self): return any(self.data[self.variables].dtypes == 'str') def _get_code_maps(self): code_maps = [] for level, var in enumerate(self.variables): mapping = [{var: [int(code)]} for code in self.level_codes[level]] code_maps.append(mapping) self.code_maps = code_maps return None def _interlock_codes(self): return list(product(*self.code_maps)) def _get_nested_meta(self): meta_dict = {} qtext, valtexts = self._interlock_texts() meta_dict['type'] = 'delimited set' if self._needs_multi else 'single' meta_dict['text'] = {'en-GB': '>'.join(qtext[0])} meta_dict['values'] = [{'text' : {'en-GB': '>'.join(valtext)}, 'value': c} for c, valtext in enumerate(valtexts, start=1)] self.meta['columns'][self.name] = meta_dict return None def _interlock_texts(self): all_valtexts = [] all_qtexts = [] for var in self.variables: var_valtexts = [] values = self.meta['columns'][var]['values'] all_qtexts.append(list(self.meta['columns'][var]['text'].values())) for value in values: var_valtexts.append(list(value['text'].values())[0]) all_valtexts.append(var_valtexts) self.level_codes.append([code['value'] for code in values]) interlocked_valtexts = list(product(*all_valtexts)) interlocked_qtexts = list(product(*all_qtexts)) return interlocked_qtexts, interlocked_valtexts ############################################################################## class Multivariate(object): def __init__(self): pass def _select_variables(self, x, y=None, w=None, drop_listwise=False): x_vars, y_vars = [], [] if not isinstance(x, list): x = [x] if not isinstance(y, list) and not y=='@': y = [y] if w is None: w = '@1' wrong_var_sel_1_on_1 = 'Can only analyze 1-to-1 relationships.' if self.analysis == 'Reduction' and (not (len(x) == 1 and len(y) == 1) or y=='@'): raise AttributeError(wrong_var_sel_1_on_1) for var in x: if self.ds._is_array(var): if self.analysis == 'Reduction': raise AttributeError(wrong_var_sel_1_on_1) x_a_items = self.ds._get_itemmap(var, non_mapped='items') x_vars += x_a_items else: x_vars.append(var) if y and not y == '@': for var in y: if self.ds._is_array(var): if self.analysis == 'Reduction': raise AttributeError(wrong_var_sel_1_on_1) y_a_items = self.ds._get_itemmap(var, non_mapped='items') y_vars += y_a_items else: y_vars.append(var) elif y == '@': y_vars = x_vars if x_vars == y_vars or y is None: data_slice = x_vars + [w] else: data_slice = x_vars + y_vars + [w] if self.analysis == 'Relations' and y != '@': self.x = self.y = x_vars + y_vars self._org_x, self._org_y = x_vars, y_vars else: self.x = self._org_x = x_vars self.y = self._org_y = y_vars self.w = w self._analysisdata = self.ds[data_slice] self._drop_missings() if drop_listwise: self._analysisdata.dropna(inplace=True) valid = self._analysisdata.index self.ds._data = self.ds._data.loc[valid, :] return None def _drop_missings(self): data = self._analysisdata.copy() for var in data.columns: if self.ds._has_missings(var): drop = self.ds._get_missing_list(var, globally=False) data[var].replace(drop, np.NaN, inplace=True) self._analysisdata = data return None def _has_analysis_data(self): if not hasattr(self, '_analysisdata'): raise AttributeError('No analysis variables assigned!') def _has_yvar(self): if self.y is None: raise AttributeError('Must select at least one y-variable or ' '"@"-matrix indicator!') def _get_quantities(self, create='all'): crossed_quantities = [] single_quantities = [] helper_stack = qp.Stack() helper_stack.add_data(self.ds.name, self.ds._data, self.ds._meta) w = self.w if self.w != '@1' else None for x, y in product(self.x, self.y): helper_stack.add_link(x=x, y=y) l = helper_stack[self.ds.name]['no_filter'][x][y] crossed_quantities.append(qp.Quantity(l, weight=w)) for x in self._org_x+self._org_y: helper_stack.add_link(x=x, y='@') l = helper_stack[self.ds.name]['no_filter'][x]['@'] single_quantities.append(qp.Quantity(l, weight=w)) self.single_quantities = single_quantities self.crossed_quantities = crossed_quantities return None class Reductions(Multivariate): def __init__(self, dataset): self.ds = dataset self.single_quantities = None self.crossed_quantities = None self.analysis = 'Reduction' def plot(self, type, point_coords): plt.set_autoscale_on = False plt.figure(figsize=(5, 5)) plt.xlim([-1, 1]) plt.ylim([-1, 1]) #plt.axvline(x=0.0, c='grey', ls='solid', linewidth=0.9) #plt.axhline(y=0.0, c='grey', ls='solid', linewidth=0.9) x = plt.scatter(point_coords['x'][0], point_coords['x'][1], edgecolor='w', marker='o', c='red', s=20) y = plt.scatter(point_coords['y'][0], point_coords['y'][1], edgecolor='k', marker='^', c='lightgrey', s=20) fig = x.get_figure() # print fig.get_axes()[0].grid() fig.get_axes()[0].tick_params(labelsize=6) fig.get_axes()[0].patch.set_facecolor('w') fig.get_axes()[0].grid(which='major', linestyle='solid', color='grey', linewidth=0.6) fig.get_axes()[0].xaxis.get_major_ticks()[0].label1.set_visible(False) x0 = fig.get_axes()[0].get_position().x0 y0 = fig.get_axes()[0].get_position().y0 x1 = fig.get_axes()[0].get_position().x1 y1 = fig.get_axes()[0].get_position().y1 text = 'Correspondence map' plt.figtext(x0+0.015, 1.09-y0, text, fontsize=12, color='w', fontweight='bold', verticalalignment='top', bbox={'facecolor':'red', 'alpha': 0.8, 'edgecolor': 'w', 'pad': 10}) label_map = self._get_point_label_map('CA', point_coords) for axis in list(label_map.keys()): for lab, coord in list(label_map[axis].items()): plt.annotate(lab, coord, ha='left', va='bottom', fontsize=6) plt.legend((x, y), (self.x[0], self.y[0]), loc='best', bbox_to_anchor=(1.325, 1.07), ncol=2, fontsize=6, title=' ') x_codes, x_texts = self.ds._get_valuemap(self.x[0], non_mapped='lists') y_codes, y_texts = self.ds._get_valuemap(self.y[0], non_mapped='lists') text = ' '*80 for var in zip(x_codes, x_texts): text += '\n{}: {}\n'.format(var[0], var[1]) fig.text(1.06-x0, 0.85, text, fontsize=5, verticalalignment='top', bbox={'facecolor':'red', 'edgecolor': 'w', 'pad': 10}) x_len = len(x_codes) text = ' '*80 for var in zip(y_codes, y_texts): text += '\n{}: {}\n'.format(var[0], var[1]) test = fig.text(1.06-x0, 0.85-((x_len)*0.0155)-((x_len)*0.0155)-0.05, text, fontsize=5, verticalalignment='top', bbox={'facecolor': 'lightgrey', 'alpha': 0.65, 'edgecolor': 'w', 'pad': 10}) logo = Image.open('C:/Users/alt/Documents/IPython Notebooks/Designs/Multivariate class/__resources__/YG_logo.png') newax = fig.add_axes([x0+0.005, y0-0.25, 0.1, 0.1], anchor='NE', zorder=-1) newax.imshow(logo) newax.axis('off') fig.savefig(self.ds.path + 'correspond.png', bbox_inches='tight', dpi=300) def correspondence(self, x, y, w=None, norm='sym', diags=True, plot=True): """ Perform a (multiple) correspondence analysis. Parameters ---------- norm : {'sym', 'princ'}, default 'sym' <DESCP> summary : bool, default True If True, the output will contain a dataframe that summarizes core information about the Inertia decomposition. plot : bool, default False If set to True, a correspondence map plot will be saved in the Stack's data path location. Returns ------- results: pd.DataFrame Summary of analysis results. """ self._select_variables(x, y, w) self._get_quantities() # 1. Chi^2 analysis obs, exp = self.expected_counts(x=x, y=y, return_observed=True) chisq, sig = self.chi_sq(x=x, y=y, sig=True) inertia = chisq / np.nansum(obs) # 2. svd on standardized residuals std_residuals = ((obs - exp) / np.sqrt(exp)) / np.sqrt(np.nansum(obs)) sv, row_eigen_mat, col_eigen_mat, ev = self._svd(std_residuals) # 3. row and column coordinates a = 0.5 if norm == 'sym' else 1.0 row_mass = self.mass(x=x, y=y, margin='x') col_mass = self.mass(x=x, y=y, margin='y') dim = min(row_mass.shape[0]-1, col_mass.shape[0]-1) row_sc = (row_eigen_mat * sv[:, 0] ** a) / np.sqrt(row_mass) col_sc = (col_eigen_mat.T * sv[:, 0] ** a) / np.sqrt(col_mass) if plot: # prep coordinates for plot item_sep = len(self.single_quantities[0].xdef) dim1_c = [r_s[0] for r_s in row_sc] + [c_s[0] for c_s in col_sc] # dim2_c = [r_s[1]*(-1) for r_s in row_sc] + [c_s[1]*(-1) for c_s in col_sc] dim2_c = [r_s[1] for r_s in row_sc] + [c_s[1] for c_s in col_sc] dim1_xitem, dim2_xitem = dim1_c[:item_sep], dim2_c[:item_sep] dim1_yitem, dim2_yitem = dim1_c[item_sep:], dim2_c[item_sep:] coords = {'x': [dim1_xitem, dim2_xitem], 'y': [dim1_yitem, dim2_yitem]} self.plot('CA', coords) plt.show() if diags: _dim = range(1, dim+1) chisq_stats = [chisq, 'sig: {}'.format(sig), 'dof: {}'.format((obs.shape[0] - 1)*(obs.shape[1] - 1))] _chisq = ([np.NaN] * (dim-3)) + chisq_stats _sig = ([np.NaN] * (dim-2)) + [chisq] _sv, _ev = sv[:dim, 0], ev[:dim, 0] _expl_inertia = 100 * (ev[:dim, 0] / inertia) _cumul_expl_inertia = np.cumsum(_expl_inertia) _perc_chisq = _expl_inertia / 100 * chisq labels = ['Dimension', 'Singular values', 'Eigen values', 'explained % of Inertia', 'cumulative % explained', 'explained Chi^2', 'Total Chi^2'] results = pd.DataFrame([_dim, _sv, _ev, _expl_inertia, _cumul_expl_inertia,_perc_chisq, _chisq]).T results.columns = labels results.set_index('Dimension', inplace=True) return results def _get_point_label_map(self, type, point_coords): if type == 'CA': xcoords = list(zip(point_coords['x'][0],point_coords['x'][1])) xlabels = self.crossed_quantities[0].xdef x_point_map = {lab: coord for lab, coord in zip(xlabels, xcoords)} ycoords = list(zip(point_coords['y'][0], point_coords['y'][1])) ylabels = self.crossed_quantities[0].ydef y_point_map = {lab: coord for lab, coord in zip(ylabels, ycoords)} return {'x': x_point_map, 'y': y_point_map} def mass(self, x, y, w=None, margin=None): """ Compute rel. margins or total cell frequencies of a contigency table. """ counts = self.crossed_quantities[0].count(margin=False) total = counts.cbase[0, 0] if margin is None: return counts.result.values / total elif margin == 'x': return counts.rbase[1:, :] / total elif margin == 'y': return (counts.cbase[:, 1:] / total).T def expected_counts(self, x, y, w=None, return_observed=False): """ Compute expected cell distribution given observed absolute frequencies. """ #self.single_quantities, self.crossed_quantities = self._get_quantities() counts = self.crossed_quantities[0].count(margin=False) total = counts.cbase[0, 0] row_m = counts.rbase[1:, :] col_m = counts.cbase[:, 1:] if not return_observed: return (row_m * col_m) / total else: return counts.result.values, (row_m * col_m) / total def chi_sq(self, x, y, w=None, sig=False, as_inertia=False): """ Compute global Chi^2 statistic, optionally transformed into Inertia. """ obs, exp = self.expected_counts(x=x, y=y, return_observed=True) diff_matrix = ((obs - exp)**2) / exp total_chi_sq = np.nansum(diff_matrix) if sig: dof = (obs.shape[0] - 1) * (obs.shape[1] - 1) sig_result = np.round(1 - chi2dist.cdf(total_chi_sq, dof), 3) if as_inertia: total_chi_sq /= np.nansum(obs) if sig: return total_chi_sq, sig_result else: return total_chi_sq def _svd(self, matrix, return_eigen_matrices=True, return_eigen=True): """ Singular value decomposition wrapping np.linalg.svd(). """ u, s, v = np.linalg.svd(matrix, full_matrices=False) s = s[:, None] if not return_eigen: if return_eigen_matrices: return s, u, v else: return s else: if return_eigen_matrices: return s, u, v, (s ** 2) else: return s, (s ** 2) class LinearModels(Multivariate): """ OLS REGRESSION, ... """ def __init__(self, dataset): self.ds = dataset.copy() self.single_quantities = None self.crossed_quantities = None self.analysis = 'LinearModels' def set_model(self, y, x, w=None, intercept=True): """ """ self._select_variables(x=x, y=y, w=w, drop_listwise=True) self._get_quantities() self._matrix = self.ds[self.y + self.x + [self.w]].dropna().values ymean = self.single_quantities[-1].summarize('mean', as_df=False) self._ymean = ymean.result[0, 0] self._use_intercept = intercept self.dofs = self._dofs() predictors = ' + '.join(self.x) if self._use_intercept: predictors = 'c + ' + predictors self.formula = '{} ~ {}'.format(y, predictors) return self def _dofs(self): """ """ correction = 1 if self._use_intercept else 0 obs = self._matrix[:, -1].sum() tdof = obs - correction mdof = len(self.x) rdof = obs - mdof - correction return [tdof, mdof, rdof] def _vectors(self): """ """ w = self._matrix[:, [-1]] y = self._matrix[:, [0]] x = self._matrix[:, 1:-1] x = np.concatenate([np.ones((x.shape[0], 1)), x], axis=1) return w, y, x def get_coefs(self, standardize=False): coefs = self._coefs() if not standardize else self._betas() coef_df = pd.DataFrame(coefs, index = ['-c-'] + self.x if self._use_intercept else self.x, columns = ['b'] if not standardize else ['beta']) coef_df.replace(np.NaN, '', inplace=True) return coef_df def _betas(self): """ """ corr_mat = Relations(self.ds).corr(self.x, self.y, self.w, n=False, sig=None, drop_listwise=True, matrixed=True) corr_mat = corr_mat.values predictors = corr_mat[:-1, :-1] y = corr_mat[:-1, [-1]] inv_predictors = np.linalg.inv(predictors) betas = inv_predictors.dot(y) if self._use_intercept: betas = np.vstack([[np.NaN], betas]) return betas def _coefs(self): """ """ w, y, x = self._vectors() coefs = np.dot(np.linalg.inv(np.dot(x.T, x*w)), np.dot(x.T, y*w)) return coefs def get_modelfit(self, r_sq=True): anova, fit_stats = self._sum_of_squares() dofs = np.round(np.array(self.dofs)[:, None], 0) anova_stats = np.hstack([anova, dofs, fit_stats]) anova_df = pd.DataFrame(anova_stats, index=['total', 'model', 'residual'], columns=['sum of squares', 'dof', 'R', 'R^2']) anova_df.replace(np.NaN, '', inplace=True) return anova_df def _sum_of_squares(self): """ """ w, y, x = self._vectors() x_w = x*w hat = x_w.dot(np.dot(np.linalg.inv(np.dot(x.T, x_w)), x.T)) tss = (w*(y - self._ymean)**2).sum()[None] rss = y.T.dot(np.dot(np.eye(hat.shape[0])-hat, y*w))[0] ess = tss-rss all_ss = np.vstack([tss, ess, rss]) rsq = np.vstack([[np.NaN], ess/tss, [np.NaN]]) r = np.sqrt(rsq) all_rs = np.hstack([r, rsq]) return all_ss, all_rs def estimate(self, estimator='ols', diags=True): """ """ # Wrap up the modularized computation methods coefs, betas = self.get_coefs(), self.get_coefs(True) modelfit = self.get_modelfit() # Compute diagnostics, i.e. standard errors and sig. of estimates/fit # prerequisites w, _, x = self._vectors() rss = modelfit.loc['residual', 'sum of squares'] ess = modelfit.loc['model', 'sum of squares'] # coefficients: std. errors, t-stats, sigs c_se = np.diagonal(np.sqrt(np.linalg.inv(np.dot(x.T,x*w)) * (rss/self.dofs[-1])))[None].T c_sigs = np.hstack(get_pval(self.dofs[-1], coefs/c_se)) c_diags = np.round(np.hstack([c_se, c_sigs]), 6) c_diags_df = pd.DataFrame(c_diags, index=coefs.index, columns=['se', 't-stat', 'p']) # modelfit: se, F-stat, ... m_se = np.vstack([[np.NaN], np.sqrt(rss/self.dofs[-1]), [np.NaN]]) m_fstat = np.vstack([[np.NaN], (ess/self.dofs[1]) / (rss/self.dofs[-1]), [np.NaN]]) m_sigs = 1-fdist.cdf(m_fstat, self.dofs[1], self.dofs[-1]) m_diags = np.round(np.hstack([m_se, m_fstat, m_sigs]), 6) m_diags_df = pd.DataFrame(m_diags, index=modelfit.index, columns=['se', 'F-stat', 'p']) # Put everything together parameter_results = pd.concat([coefs, betas, c_diags_df], axis=1) fit_summary = pd.concat([modelfit, m_diags_df], axis=1).replace(np.NaN, '') return parameter_results, fit_summary def _lmg_models_per_var(self): all_models = self._lmg_combs() models_by_var = {x: [] for x in self.x} for var in self.x: qualified_models = [] for model in all_models: if var in model: qualified_models.append(model) for qualified_model in qualified_models: q_m = list(qualified_model) q_m.remove(var) models_by_var[var].append([qualified_model, q_m]) return models_by_var def _lmg_combs(self): full = self.x lmg_combs = [] for combine_no in range(1, len(full)): lmg_combs.extend([list(comb) for comb in list(combinations(full, combine_no))]) lmg_combs.append(full) return lmg_combs def _rsq_lmg_subset(self, subset): self.set_model(self.y, subset, self.w) anova = self.get_modelfit() return anova['R^2'].replace('', np.NaN).dropna().values[0] def lmg(self, norm=True, plot=False): known_rsq = {} x_results = {} full_len = len(self.x) cols = self.y + self.x self._analysisdata = self._analysisdata.copy().dropna(subset=cols) total_rsq = self._rsq_lmg_subset(self.x) all_models = self._lmg_models_per_var() model_max_no = len(list(all_models.keys())) * len(list(all_models.values())[0]) # print 'LMG analysis on {} models started...'.format(model_max_no) for x, diff_models in list(all_models.items()): group_results = {size: [] for size in range(1, full_len + 1)} for diff_model in diff_models: # sys.stdout.write('|') # sys.stdout.flush() if not diff_model[1]: if tuple(diff_model[0]) in list(known_rsq.keys()): r1 = known_rsq[tuple(diff_model[0])] else: r1 = self._rsq_lmg_subset(diff_model[0]) known_rsq[tuple(diff_model[0])] = r1 group_results[len(diff_model[0])].append((r1)) else: if tuple(diff_model[0]) in list(known_rsq.keys()): r1 = known_rsq[tuple(diff_model[0])] else: r1 = self._rsq_lmg_subset(diff_model[0]) known_rsq[tuple(diff_model[0])] = r1 if tuple(diff_model[1]) in list(known_rsq.keys()): r2 = known_rsq[tuple(diff_model[1])] else: r2 = self._rsq_lmg_subset(diff_model[1]) known_rsq[tuple(diff_model[1])] = r2 group_results[len(diff_model[0])].append((r1-r2)) x_results[x] = group_results lmgs = [] for var, results in list(x_results.items()): res = np.mean([
np.mean(val)
numpy.mean
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([-1,0,0,0,1,0,0,0,1])
numpy.array
import numpy as np from numpy import sin, cos, sqrt, deg2rad, pi import pandas as pd import scipy.interpolate import os import sys import subprocess import json import argparse from collections import OrderedDict # path to OpenTsiolkovsky path_opentsio = os.getenv('PATH_OPENTSIO', "/usr/local/OpenTsiolkovsky/bin") # import local modules path_tools = os.path.join(path_opentsio, "../tools") sys.path.append(path_tools) from coordinate_transform import * # functions def calc_IIP(acc, ddtheta, t_stop, ang_dir, posLLH, velNED, dcmBODY2NED_, delta=0.0): # theta = 0.5 * ddtheta * t_stop**2 (ssa, csa) = scipy.special.fresnel(sqrt(ddtheta / pi) * t_stop) dv_para = acc * sqrt(pi / ddtheta) * csa dv_vert = acc * sqrt(pi / ddtheta) * ssa dv_ax = dv_para * cos(delta) + dv_vert * sin(delta) dv_no = - dv_para * sin(delta) + dv_vert * cos(delta) vec_dir = np.array([0., -sin(deg2rad(ang_dir)), cos(deg2rad(ang_dir))]) dv = np.array([dv_ax, 0., 0.]) + vec_dir * dv_no velNED_new = np.matmul(dcmBODY2NED_, dv) + velNED posLLH_impact = posLLH_IIP(posLLH, velNED_new) return posLLH_impact[:2] # global difinitions directions = [ {"name": "head", "offset[deg]": 0.}, {"name": "left", "offset[deg]": 90.}, {"name": "tail", "offset[deg]": 180.}, {"name":"right", "offset[deg]": 270.}, ] opentsio = os.path.join(path_opentsio, "OpenTsiolkovsky") if __name__ == "__main__": # read command-line arguments parser = argparse.ArgumentParser() parser.add_argument("filename.json", type=str) parser.add_argument("max_emst_time", type=float) # max emergency stop time[s] parser.add_argument("max_gimbal_angle", type=float) # max gimable angle [deg] parser.add_argument("-ts", "--time_step", type=float, default=1.0) # timestep of output [s] parser.add_argument("-dts", "--dt_stop", type=float, default=0.05) # calculation timestep of emergency stop time [s] args = parser.parse_args() filename_json = vars(args)["filename.json"] time_emst_max = args.max_emst_time gimbal_angle_max = args.max_gimbal_angle time_step = args.time_step dt_stop = args.dt_stop # read nominal json file with open(filename_json) as f: nominal_json = json.load(f, object_pairs_hook=OrderedDict) # import body specs filename_inertia = nominal_json["stage1"]["6DoF"]["moment of inertia file name(str)"] filename_cgxt = nominal_json["stage1"]["attitude neutrality(3DoF)"]["CG, Controller position file(str)"] df_inertia = pd.read_csv(filename_inertia, index_col=False) inertia_yy_at = scipy.interpolate.interp1d(df_inertia["time [s]"], df_inertia["inertia all at CG [kgm^2]"]) df_cgxt = pd.read_csv(filename_cgxt, index_col=False) length_cg2cont = df_cgxt["Controller_pos_STA[m]"].values - df_cgxt["CG_pos_STA[m]"].values length_cg2cont_at = scipy.interpolate.interp1d(df_cgxt["time[s]"], length_cg2cont) # make rocket dynamics CSV output for IIP calculation tmp_json = nominal_json.copy() tmp_json["name(str)"] += "_temp" if time_step is not None: tmp_json["calculate condition"]["time step for output[s]"] = time_step tmp_dir = "./_temp_" while os.path.exists(tmp_dir): tmp_dir += "_" os.mkdir(tmp_dir) exists_output_dir = os.path.exists("./output") if not exists_output_dir: os.mkdir("./output") filename_tmp = os.path.join(tmp_dir, "{}.json".format(tmp_json["name(str)"])) with open(filename_tmp, "w") as f: json.dump(tmp_json, f, indent=4) subprocess.run([opentsio, filename_tmp], stdout=subprocess.PIPE) filename_result = os.path.join("./output", "{}_dynamics_1.csv".format(tmp_json["name(str)"])) df_result = pd.read_csv(filename_result, index_col=False) df_pwd = df_result[df_result["is_powered(1=powered 0=free)"] == 1] # IIP calculation with additional velocity array_out = [] for index, se_pwd in df_pwd.iterrows(): # each break time t_break, mass, thrust = se_pwd[["time(s)", "mass(kg)", "thrust(N)"]].values posLLH = se_pwd[["lat(deg)", "lon(deg)", "altitude(m)"]].values velNED = se_pwd[["vel_NED_X(m/s)", "vel_NED_Y(m/s)", "vel_NED_Z(m/s)"]].values dcmBODY2ECI_ = se_pwd[["dcmBODY2ECI_{0}{1}".format(i, j) for i in range(1, 4) for j in range(1, 4)]].values dcmBODY2ECI_ = np.reshape(dcmBODY2ECI_, (3, 3)) dcmECI2ECEF_ = dcmECI2ECEF(t_break) dcmECEF2NED_ = dcmECEF2NEDfromLLH(posLLH) dcmBODY2NED_ = np.matmul(dcmECEF2NED_, np.matmul(dcmECI2ECEF_, dcmBODY2ECI_)) acc = thrust / mass ddtheta = thrust * sin(
deg2rad(gimbal_angle_max)
numpy.deg2rad
import numpy as np import scipy.sparse import kmeans import json #Make sure we get consistent, reproducible results
np.random.seed(seed=1)
numpy.random.seed
""" inheritance-diagram:: dfo.optimizer.direct :parts: 1 """ from misc.debug import DbgMsgOut, DbgMsg from .base import BoxConstrainedOptimizer from numpy import max, min, abs, array import numpy as np import heapq __all__ = ['Cube', 'DIRECT'] class Cube(object): def __init__(self, x, f, depth): self.x = array(x) self.f = f self.ndim = self.x.shape[0] self.depth = depth def increase_depth(self, i=None): if i is not None: self.depth[i] += 1 else: for i in range(self.ndim): self.depth[i] += 1 class DIRECT(BoxConstrainedOptimizer): def __init__(self, function, xlo=None, xhi=None, debug=0, fstop=None, maxiter=None): BoxConstrainedOptimizer.__init__(self, function, xlo, xhi, debug, fstop, maxiter, cache=True) self.pq_cache = None self.eps = 1e-2 self.K = 0 self.max_depth = 5 self.visited = [] def check(self): """ Checks the optimization algorithm's settings and raises an exception if something is wrong. """ BoxConstrainedOptimizer.check(self) # if self.samplesize is None: # raise Exception(DbgMsg("DIRECT", "The sample size should not be None.")) def reset(self, x0): """ Puts the optimizer in its initial state and sets the initial point to be the 1-dimensional array *x0*. The length of the array becomes the dimension of the optimization problem (:attr:`ndim` member). The shape of *x* must match that of *xlo* and *xhi*. """ BoxConstrainedOptimizer.reset(self, x0) # Debug message if self.debug: DbgMsgOut("DIRECT", "Resetting DIRECT") def run(self): """ Run the DIRECT algorithm. """ # Debug message if self.debug: DbgMsgOut("CSOPT", "Starting a coordinate search run at i=" + str(self.niter)) # Reset stop flag self.stop = False # Check self.check() self.x = 0.5 *
np.ones(shape=(self.ndim,))
numpy.ones
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.fluid as fluid import paddle.fluid.core as core import unittest import numpy import numbers class TestTensor(unittest.TestCase): def setUp(self): self.support_dtypes = [ 'bool', 'uint8', 'int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64' ] def test_int_tensor(self): scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() tensor._set_dims([1000, 784]) tensor._alloc_int(place) tensor_array = numpy.array(tensor) self.assertEqual((1000, 784), tensor_array.shape) tensor_array[3, 9] = 1 tensor_array[19, 11] = 2 tensor.set(tensor_array, place) tensor_array_2 = numpy.array(tensor) self.assertEqual(1, tensor_array_2[3, 9]) self.assertEqual(2, tensor_array_2[19, 11]) def test_float_tensor(self): scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() tensor._set_dims([1000, 784]) tensor._alloc_float(place) tensor_array = numpy.array(tensor) self.assertEqual((1000, 784), tensor_array.shape) tensor_array[3, 9] = 1.0 tensor_array[19, 11] = 2.0 tensor.set(tensor_array, place) tensor_array_2 = numpy.array(tensor) self.assertAlmostEqual(1.0, tensor_array_2[3, 9]) self.assertAlmostEqual(2.0, tensor_array_2[19, 11]) def test_int8_tensor(self): scope = core.Scope() var = scope.var("int8_tensor") cpu_tensor = var.get_tensor() tensor_array = numpy.random.randint( -127, high=128, size=[100, 200], dtype=numpy.int8) place = core.CPUPlace() cpu_tensor.set(tensor_array, place) cpu_tensor_array_2 = numpy.array(cpu_tensor) self.assertAlmostEqual(cpu_tensor_array_2.all(), tensor_array.all()) if core.is_compiled_with_cuda(): cuda_tensor = var.get_tensor() tensor_array = numpy.random.randint( -127, high=128, size=[100, 200], dtype=numpy.int8) place = core.CUDAPlace(0) cuda_tensor.set(tensor_array, place) cuda_tensor_array_2 = numpy.array(cuda_tensor) self.assertAlmostEqual(cuda_tensor_array_2.all(), tensor_array.all()) def test_int_lod_tensor(self): place = core.CPUPlace() scope = core.Scope() var_lod = scope.var("test_lod_tensor") lod_tensor = var_lod.get_tensor() lod_tensor._set_dims([4, 4, 6]) lod_tensor._alloc_int(place) array = numpy.array(lod_tensor) array[0, 0, 0] = 3 array[3, 3, 5] = 10 lod_tensor.set(array, place) lod_tensor.set_recursive_sequence_lengths([[2, 2]]) lod_v = numpy.array(lod_tensor) self.assertTrue(numpy.alltrue(array == lod_v)) lod = lod_tensor.recursive_sequence_lengths() self.assertEqual(2, lod[0][0]) self.assertEqual(2, lod[0][1]) def test_float_lod_tensor(self): place = core.CPUPlace() scope = core.Scope() var_lod = scope.var("test_lod_tensor") lod_tensor = var_lod.get_tensor() lod_tensor._set_dims([5, 2, 3, 4]) lod_tensor._alloc_float(place) tensor_array = numpy.array(lod_tensor) self.assertEqual((5, 2, 3, 4), tensor_array.shape) tensor_array[0, 0, 0, 0] = 1.0 tensor_array[0, 0, 0, 1] = 2.0 lod_tensor.set(tensor_array, place) lod_v = numpy.array(lod_tensor) self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) self.assertEqual(len(lod_tensor.recursive_sequence_lengths()), 0) lod_py = [[2, 1], [1, 2, 2]] lod_tensor.set_recursive_sequence_lengths(lod_py) lod = lod_tensor.recursive_sequence_lengths() self.assertListEqual(lod_py, lod) def test_lod_tensor_init(self): place = core.CPUPlace() lod_py = [[2, 1], [1, 2, 2]] lod_tensor = core.LoDTensor() lod_tensor._set_dims([5, 2, 3, 4]) lod_tensor.set_recursive_sequence_lengths(lod_py) lod_tensor._alloc_float(place) tensor_array = numpy.array(lod_tensor) tensor_array[0, 0, 0, 0] = 1.0 tensor_array[0, 0, 0, 1] = 2.0 lod_tensor.set(tensor_array, place) lod_v = numpy.array(lod_tensor) self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths()) def test_lod_tensor_gpu_init(self): if not core.is_compiled_with_cuda(): return place = core.CUDAPlace(0) lod_py = [[2, 1], [1, 2, 2]] lod_tensor = core.LoDTensor() lod_tensor._set_dims([5, 2, 3, 4]) lod_tensor.set_recursive_sequence_lengths(lod_py) lod_tensor._alloc_float(place) tensor_array = numpy.array(lod_tensor) tensor_array[0, 0, 0, 0] = 1.0 tensor_array[0, 0, 0, 1] = 2.0 lod_tensor.set(tensor_array, place) lod_v = numpy.array(lod_tensor) self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths()) def test_empty_tensor(self): place = core.CPUPlace() scope = core.Scope() var = scope.var("test_tensor") tensor = var.get_tensor() tensor._set_dims([0, 1]) tensor._alloc_float(place) tensor_array = numpy.array(tensor) self.assertEqual((0, 1), tensor_array.shape) if core.is_compiled_with_cuda(): gpu_place = core.CUDAPlace(0) tensor._alloc_float(gpu_place) tensor_array = numpy.array(tensor) self.assertEqual((0, 1), tensor_array.shape) def run_slice_tensor(self, place, dtype): tensor = fluid.Tensor() shape = [3, 3, 3] tensor._set_dims(shape) tensor_array = numpy.array( [[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype(dtype) tensor.set(tensor_array, place) n1 = tensor[1] t1 = tensor_array[1] self.assertTrue((numpy.array(n1) == numpy.array(t1)).all()) n2 = tensor[1:] t2 = tensor_array[1:] self.assertTrue((numpy.array(n2) == numpy.array(t2)).all()) n3 = tensor[0:2:] t3 = tensor_array[0:2:] self.assertTrue((numpy.array(n3) == numpy.array(t3)).all()) n4 = tensor[2::-2] t4 = tensor_array[2::-2] self.assertTrue((numpy.array(n4) == numpy.array(t4)).all()) n5 = tensor[2::-2][0] t5 = tensor_array[2::-2][0] self.assertTrue((numpy.array(n5) == numpy.array(t5)).all()) n6 = tensor[2:-1:-1] t6 = tensor_array[2:-1:-1] self.assertTrue((numpy.array(n6) == numpy.array(t6)).all()) n7 = tensor[0:, 0:] t7 = tensor_array[0:, 0:] self.assertTrue((numpy.array(n7) == numpy.array(t7)).all()) n8 = tensor[0::1, 0::-1, 2:] t8 = tensor_array[0::1, 0::-1, 2:] self.assertTrue((numpy.array(n8) == numpy.array(t8)).all()) def test_slice_tensor(self): for dtype in self.support_dtypes: # run cpu first place = core.CPUPlace() self.run_slice_tensor(place, dtype) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) self.run_slice_tensor(place, dtype) def test_print_tensor(self): scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() tensor._set_dims([10, 10]) tensor._alloc_int(place) tensor_array = numpy.array(tensor) self.assertEqual((10, 10), tensor_array.shape) tensor_array[0, 0] = 1 tensor_array[2, 2] = 2 tensor.set(tensor_array, place) print(tensor) self.assertTrue(isinstance(str(tensor), str)) if core.is_compiled_with_cuda(): tensor.set(tensor_array, core.CUDAPlace(0)) print(tensor) self.assertTrue(isinstance(str(tensor), str)) def test_tensor_poiter(self): place = core.CPUPlace() scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() dtype = core.VarDesc.VarType.FP32 self.assertTrue( isinstance(tensor._mutable_data(place, dtype), numbers.Integral)) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) self.assertTrue( isinstance( tensor._mutable_data(place, dtype), numbers.Integral)) place = core.CUDAPinnedPlace() self.assertTrue( isinstance( tensor._mutable_data(place, dtype), numbers.Integral)) places = fluid.cuda_pinned_places() self.assertTrue( isinstance( tensor._mutable_data(places[0], dtype), numbers.Integral)) def test_tensor_set_fp16(self): array = numpy.random.random((300, 500)).astype("float16") tensor = fluid.Tensor() place = core.CPUPlace() tensor.set(array, place) self.assertEqual(tensor._dtype(), core.VarDesc.VarType.FP16) self.assertTrue(numpy.array_equal(numpy.array(tensor), array)) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) tensor.set(array, place) self.assertEqual(tensor._dtype(), core.VarDesc.VarType.FP16) self.assertTrue(numpy.array_equal(numpy.array(tensor), array)) place = core.CUDAPinnedPlace() tensor.set(array, place) self.assertEqual(tensor._dtype(), core.VarDesc.VarType.FP16) self.assertTrue(numpy.array_equal(numpy.array(tensor), array)) def test_tensor_set_int16(self): array = numpy.random.randint(100, size=(300, 500)).astype("int16") tensor = fluid.Tensor() place = core.CPUPlace() tensor.set(array, place) self.assertEqual(tensor._dtype(), core.VarDesc.VarType.INT16) self.assertTrue(numpy.array_equal(numpy.array(tensor), array)) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) tensor.set(array, place) self.assertEqual(tensor._dtype(), core.VarDesc.VarType.INT16) self.assertTrue(numpy.array_equal(
numpy.array(tensor)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den =
N.array([4,4,4])
numpy.array
#!/usr/bin/python """ Perform HI survey Fisher forecast based on Pedro's formalism (see notes from August 2013). Requires up-to-date NumPy, SciPy (tested with version 0.11.0) and matplotlib. A number of functions can optionally use MPI (mpi4py). (<NAME> & <NAME>, 2013--2014) """ import numpy as np import scipy.integrate import scipy.interpolate from scipy.misc import derivative import pylab as P import matplotlib.patches import matplotlib.cm from .units import * import uuid, os, sys, copy from hashlib import md5 from . import camb_wrapper as camb from . import mg_growth from tempfile import gettempdir # No. of samples in log space in each dimension. 300 seems stable for (AA). NSAMP_K = 500 # 1000 NSAMP_U = 1500 # 3000 # Debug settings (set all to False for normal operation) DBG_PLOT_CUMUL_INTEGRAND = False # Plot k-space integrand of the dP/P integral INF_NOISE = 1e200 # Very large finite no. used to denote infinite noise EXP_OVERFLOW_VAL = 250. # Max. value of exponent for np.exp() before assuming overflow # Decide which RSD function to use (N.B. interpretation of sigma_NL changes # slightly depending on option) RSD_FUNCTION = 'kaiser' #RSD_FUNCTION = 'loeb' # Location of CAMB fiducial P(k) file # NOTE: Currently expects CAMB P(k) needs to be at chosen z value (z=0 here). CAMB_KMAX = 20. / 0.7 # Max. k for CAMB, in h Mpc^-1 CAMB_EXEC = "/home/phil/lynx/oslo/bao21cm/camb" # Directory containing camb executable ################################################################################ # Plotting functions ################################################################################ def figure_of_merit(p1, p2, F, cov=None, twosigma=False): """ DETF Figure of Merit, defined as the area inside the 95% contour of w0,wa. fom = 1 / [ sqrt( |cov(w0, wa)| ) ], where cov = F^-1, and cov(w0, wa) is the w0,wa 2x2 sub-matrix of the covmat. If twosigma=True, there is an additional factor of 1/4 that comes from looking at the 95% (2-sigma) contours. """ if cov == None: cov = np.linalg.inv(F) # Calculate determinant c11 = cov[p1,p1] c22 = cov[p2,p2] c12 = cov[p1,p2] det = c11*c22 - c12**2. fom = 1. / np.sqrt(det) if twosigma: fom *= 0.25 return fom def ellipse_for_fisher_params(p1, p2, F, Finv=None): """ Return covariance ellipse parameters (width, height, angle) from Fisher matrix F, for parameters in the matrix with indices p1 and p2. See arXiv:0906.4123 for expressions. """ if Finv is not None: cov = Finv else: cov = np.linalg.inv(F) c11 = cov[p1,p1] c22 = cov[p2,p2] c12 = cov[p1,p2] # Calculate ellipse parameters (Eqs. 2-4 of Coe, arXiv:0906.4123) y1 = 0.5*(c11 + c22) y2 = np.sqrt( 0.25*(c11 - c22)**2. + c12**2. ) a = 2. * np.sqrt(y1 + y2) # Factor of 2 because def. is *total* width of ellipse b = 2. * np.sqrt(y1 - y2) # Flip major/minor axis depending on which parameter is dominant if c11 >= c22: w = a; h = b else: w = b; h = a # Handle c11==c22 case for angle calculation if c11 != c22: ang = 0.5*np.arctan( 2.*c12 / (c11 - c22) ) else: ang = 0.5*np.arctan( 2.*c12 / 1e-20 ) # Sign sensitivity here # Factors to use if 1,2,3-sigma contours required alpha = [1.52, 2.48, 3.44] return w, h, ang * 180./np.pi, alpha def plot_ellipse(F, p1, p2, fiducial, names, ax=None): """ Show error ellipse for 2 parameters from Fisher matrix. """ alpha = [1.52, 2.48, 3.44] # 1/2/3-sigma scalings, from Table 1 of arXiv:0906.4123 # Get ellipse parameters x, y = fiducial a, b, ang = ellipse_for_fisher_params(p1, p2, F) # Get 1,2,3-sigma ellipses and plot ellipses = [matplotlib.patches.Ellipse(xy=(x, y), width=alpha[k]*b, height=alpha[k]*a, angle=ang, fc='none') for k in range(0, 2)] if ax is None: ax = P.subplot(111) for e in ellipses: ax.add_patch(e) ax.plot(x, y, 'bx') if ax is None: ax.set_xlabel(names[0]) ax.set_ylabel(names[1]) P.show() def triangle_plot(fiducial, F, names, priors=None, skip=None): """ Show triangle plot of 2D error ellipses from Fisher matrix. """ alpha = [1.52, 2.48, 3.44] # 1/2/3-sigma scalings, from Table 1 of arXiv:0906.4123 # Calculate covmat N = len(fiducial) Finv = np.linalg.inv(F) # Remove unwanted variables (after marginalisation though) if skip is not None: Finv = fisher_with_excluded_params(Finv, skip) # Loop through elements of matrix, plotting 2D contours or 1D marginals for i in range(N): for j in range(N): x = fiducial[i]; y = fiducial[j] # Plot 2D contours if j > i: a, b, ang = ellipse_for_fisher_params(i, j, F=None, Finv=Finv) # Get 1,2,3-sigma ellipses and plot ellipses = [matplotlib.patches.Ellipse(xy=(x, y), width=alpha[k]*b, height=alpha[k]*a, angle=ang, fc='none') for k in range(0, 2)] ax = P.subplot(N, N, N*j + i + 1) for e in ellipses: ax.add_patch(e) P.plot(x, y, 'bx') ax.tick_params(axis='both', which='major', labelsize=8) ax.tick_params(axis='both', which='minor', labelsize=8) # Plot 1D Gaussian if i==j: ax = P.subplot(N, N, N*i + j + 1) P.title(names[i]) u = fiducial[i] std = np.sqrt(Finv[i,i]) _x = np.linspace(u - 4.*std, u + 4.*std, 500) _y = np.exp(-0.5*(_x - u)**2. / std**2.) \ / np.sqrt(2.*np.pi*std**2.) P.plot(_x, _y, 'r-') # Add priors to plot if priors is not None: if not np.isinf(priors[i]): std = priors[i] yp = np.exp(-0.5*(_x - u)**2. / priors[i]**2.) \ / np.sqrt(2.*np.pi*std**2.) P.plot(_x, yp, 'b-', alpha=0.5) ax.tick_params(axis='both', which='major', labelsize=8) ax.tick_params(axis='both', which='minor', labelsize=8) if i==0: P.ylabel(names[j]) P.show() def fix_log_plot(y, yerr): """ Corrects errorbars for log plot. """ yup = yerr.copy() ylow = yerr.copy() ylow[np.where(y - yerr <= 0.)] = y[np.where(y - yerr <= 0.)]*0.99999 # Correct inf's too ylow[np.isinf(yerr)] = y[np.isinf(yerr)]*0.99999 yup[np.isinf(yerr)] = y[np.isinf(yup)]*1e5 return yup, ylow def plot_corrmat(F, names): """ Plot the correlation matrix for a given Fisher matrix. Returns matplotlib Figure object. """ # Construct correlation matrix F_corr = np.zeros(F.shape) for ii in range(F.shape[0]): for jj in range(F.shape[0]): F_corr[ii,jj] = F[ii, jj] / np.sqrt(F[ii,ii] * F[jj,jj]) # Plot corrmat fig = P.figure() ax = fig.add_subplot(111) #F_corr = F_corr**3. matshow = ax.matshow(F_corr, vmin=-1., vmax=1., cmap=matplotlib.cm.get_cmap("RdBu")) #ax.title("z = %3.3f" % zc[i]) fig.colorbar(matshow) """ # Label the ticks correctly locs, labels = (ax.get_xticks(), ax.get_xticklabels()) print labels, len(labels) print locs, len(locs) #labels = ['',] labels = ['',] + names new_labels = [x.format(locs[ii]) for ii,x in enumerate(labels)] ax.set_xticks(locs, new_labels) locs, labels = (ax.get_yticks(), ax.get_yticklabels()) ax.set_yticks(locs, new_labels) ax.xlim((-0.5, 5.5)) ax.ylim((5.5, -0.5)) """ lbls = ["%d:%s" % (i, names[i]) for i in range(len(names))] #ax.set_xlabel(lbls) ax.text(1.3, 0.99, "\n".join(lbls), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes) for tick in ax.xaxis.get_major_ticks(): tick.tick1line.set_markersize(0) tick.tick2line.set_markersize(0) tick.label1.set_horizontalalignment('center') fig.show() P.show() #P.savefig("corrcoeff-%s-%3.3f.png" % (names[k], zc[i])) ################################################################################ # Binning strategies ################################################################################ def zbins_fixed(expt, zbin_min=0., zbin_max=6., dz=0.1): """ Construct a sensible binning for a given experiment for bins with fixed dz, equally spaced from z=zbin_min. If the band does not exactly divide into the binning, smaller bins will be added at the end of the band. """ zs = np.arange(zbin_min, zbin_max, dz) zc = (zs + 0.5*dz)[:-1] # Get redshift ranges of actual experiment zmin = expt['nu_line'] / expt['survey_numax'] - 1. zmax = expt['nu_line'] / (expt['survey_numax'] - expt['survey_dnutot']) - 1. # Remove bins with no overlap idxs = np.where(np.logical_and(zs >= zmin, zs <= zmax)) zs = zs[idxs] # Add end bins to cover as much of the full band as possible if (zs[0] - zmin) > 0.1*dz: zs = np.concatenate(([zmin,], zs)) if (zmax - zs[-1]) > 0.1*dz: zs = np.concatenate((zs, [zmax,])) # Return bin edges and centroids zc = np.array([0.5*(zs[i+1] + zs[i]) for i in range(zs.size - 1)]) return zs, zc def zbins_equal_spaced(expt, bins=None, dz=None): """ Return redshift bin edges and centroids for an equally-spaced redshift binning. """ if (bins is not None) and (dz is not None): raise ValueError("Specify either bins *or* dz; you can't specify both.") # Get redshift ranges zmin = expt['nu_line'] / expt['survey_numax'] - 1. zmax = expt['nu_line'] / (expt['survey_numax'] - expt['survey_dnutot']) - 1. # Set number of bins if dz is not None: bins = int((zmax - zmin) / dz) # Return bin edges and centroids zs = np.linspace(zmin, zmax, bins+1) zc = [0.5*(zs[i+1] + zs[i]) for i in range(zs.size - 1)] return zs, np.array(zc) def zbins_const_dr(expt, cosmo, bins=None, nsamples=500, initial_dz=None): """ Return redshift bin edges and centroids for bins that are equally-spaced in r(z). Will either split the full range into some number of bins, or else fill the range using bins of const. dr. set from an initial bin delta_z. """ # Get redshift range zmin = expt['nu_line'] / expt['survey_numax'] - 1. zmax = expt['nu_line'] / (expt['survey_numax'] - expt['survey_dnutot']) - 1. # Fiducial cosmological values _z = np.linspace(0., zmax, nsamples) a = 1. / (1. + _z) H0 = (100.*cosmo['h']); w0 = cosmo['w0']; wa = cosmo['wa'] om = cosmo['omega_M_0']; ol = cosmo['omega_lambda_0'] ok = 1. - om - ol # Sample comoving dist. r(z) at discrete points (assumes ok~0 in last step) omegaDE = ol * np.exp(3.*wa*(a - 1.)) / a**(3.*(1. + w0 + wa)) E = np.sqrt( om * a**(-3.) + ok * a**(-2.) + omegaDE ) _r = (C/H0) * np.concatenate( ([0.], scipy.integrate.cumtrapz(1./E, _z)) ) # Interpolate to get z(r) and r(z) r_z = scipy.interpolate.interp1d(_z, _r, kind='linear') z_r = scipy.interpolate.interp1d(_r, _z, kind='linear') # Return bin edges and centroids if bins is not None: # Get certain no. of bins rbins = np.linspace(r_z(zmin), r_z(zmax), bins+1) zbins = z_r(rbins) else: # Get bins with const. dr from initial delta_z rmin = r_z(zmin) rmax = r_z(zmax) dr = r_z(zmin + initial_dz) - rmin print("Const. dr =", dr, "Mpc") # Loop through range, filling with const. dr bins as far as possible rtot = rmin zbins = [] while rtot < rmax: zbins.append(z_r(rtot)) rtot += dr zbins.append(z_r(rmax)) zbins = np.array(zbins) zc = [0.5*(zbins[i+1] + zbins[i]) for i in range(zbins.size - 1)] return zbins, np.array(zc) def zbins_const_dnu(expt, cosmo, bins=None, dnu=None, initial_dz=None): """ Return redshift bin edges and centroids for bins that are equally-spaced in frequency (nu). Will either split the full range into some number of bins, or else fill the range using bins of const. dnu set from an initial bin delta_z. """ # Get redshift range zmin = expt['nu_line'] / expt['survey_numax'] - 1. zmax = expt['nu_line'] / (expt['survey_numax'] - expt['survey_dnutot']) - 1. numax = expt['nu_line'] / (1. + zmin) numin = expt['nu_line'] / (1. + zmax) # nu as a function of z nu_z = lambda zz: expt['nu_line'] / (1. + zz) z_nu = lambda f: expt['nu_line'] / f - 1. # Return bin edges and centroids if bins is not None: # Get certain no. of bins nubins = np.linspace(numax, numin, bins+1) zbins = z_nu(nubins) else: # Get bins with const. dr from initial delta_z if dnu is None: dnu = nu_z(zmin + initial_dz) - nu_z(zmin) dnu = -1. * np.abs(dnu) # dnu negative, to go from highest to lowest freq. # Loop through range, filling with const. dr bins as far as possible nu = numax zbins = [] while nu > numin: zbins.append(z_nu(nu)) nu += dnu zbins.append(z_nu(numin)) # Check we haven't exactly hit the edge (to ensure no zero-width bins) if np.abs(zbins[-1] - zbins[-2]) < 1e-4: del zbins[-2] # Remove interstitial bin edge zbins = np.array(zbins) zc = [0.5*(zbins[i+1] + zbins[i]) for i in range(zbins.size - 1)] return zbins, np.array(zc) def zbins_split_width(expt, dz=(0.1, 0.3), zsplit=2.): """ Construct a binning scheme with bin widths that change after a certain redshift. The first redshift range is filled with equal-sized bins that may go over the split redshift. The remaining range is filled with bins of the other width (apart from the last bin, that may be truncated). Parameters ---------- expt : dict Dict of experimental settings. dz : tuple (length 2) Widths of redshift bins before and after the split redshift. zsplit : float Redshift at which to change from the first bin width to the second. """ # Get redshift ranges of actual experiment zmin = expt['nu_line'] / expt['survey_numax'] - 1. zmax = expt['nu_line'] / (expt['survey_numax'] - expt['survey_dnutot']) - 1. # Special case if zmin > zsplit or zmax < zsplit if (zmin > zsplit) or (zmax < zsplit): _dz = dz[0] if (zmax < zsplit) else dz[1] nbins = np.floor((zmax - zmin) / _dz) zs = np.linspace(zmin, zmin + nbins*_dz, nbins+1) if (zmax - zs[-1]) > 0.2 * _dz: zs = np.concatenate((zs, [zmax,])) zc = np.array([0.5*(zs[i+1] + zs[i]) for i in range(zs.size - 1)]) return zs, zc # Fill first range with equal-sized bins with width dz[0] nbins = np.ceil((zsplit - zmin) / dz[0]) z1 = np.linspace(zmin, zmin + nbins*dz[0], nbins+1) # Fill remaining range with equal-sized bins with width dz[1] nbins = np.floor((zmax - z1[-1]) / dz[1]) z2 = np.linspace(z1[-1] + dz[1], z1[-1] + nbins*dz[1], nbins) zs = np.concatenate((z1, z2)) # Add final bin to fill range only if >20% of dz[1] if (zmax - zs[-1]) > 0.2 * dz[1]: zs = np.concatenate((zs, [zmax,])) zc = np.array([0.5*(zs[i+1] + zs[i]) for i in range(zs.size - 1)]) return zs, zc ################################################################################ # Experiment specification handler functions ################################################################################ def load_interferom_file(fname): """ Load n(u) file for interferometer and return linear interpolation function. """ x, _nx =
np.genfromtxt(fname)
numpy.genfromtxt
"""Tests for the mask.py script.""" import pytest import sys import os import numpy as np import matplotlib.pyplot as plt import unittest.mock as mock from deltametrics import cube from deltametrics import mask from deltametrics.plan import OpeningAnglePlanform from deltametrics.sample_data import _get_rcm8_path, _get_golf_path rcm8_path = _get_rcm8_path() with pytest.warns(UserWarning): rcm8cube = cube.DataCube(rcm8_path) golf_path = _get_golf_path() golfcube = cube.DataCube(golf_path) _OAP_0 = OpeningAnglePlanform.from_elevation_data( golfcube['eta'][-1, :, :], elevation_threshold=0) _OAP_05 = OpeningAnglePlanform.from_elevation_data( golfcube['eta'][-1, :, :], elevation_threshold=0.5) @mock.patch.multiple(mask.BaseMask, __abstractmethods__=set()) class TestBaseMask: """ To test the BaseMask, we patch the base job with a filled abstract method `.run()`. .. note:: This patch is handled at the class level above!! """ fake_input = np.ones((100, 200)) @mock.patch('deltametrics.mask.BaseMask._set_shape_mask') def test_name_setter(self, patched): basemask = mask.BaseMask('somename', self.fake_input) assert basemask.mask_type == 'somename' patched.assert_called() # this would change the shape assert basemask.shape is None # so shape is not set assert basemask._mask is None # so mask is not set def test_simple_example(self): basemask = mask.BaseMask('field', self.fake_input) # make a bunch of assertions assert np.all(basemask._mask == False) assert np.all(basemask.integer_mask == 0) assert basemask._mask is basemask.mask assert basemask.shape == self.fake_input.shape def test_trim_mask_length(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) _l = 5 basemask.trim_mask(length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 0) assert np.all(basemask.integer_mask[_l:, :] == 1) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_trim_mask_cube(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) basemask.trim_mask(golfcube) # assert np.all(basemask.integer_mask[:5, :] == 0) # assert np.all(basemask.integer_mask[5:, :] == 1) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_trim_mask_noargs(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) basemask.trim_mask() # assert np.all(basemask.integer_mask[:5, :] == 0) # assert np.all(basemask.integer_mask[5:, :] == 1) def test_trim_mask_axis1_withlength(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) _l = 5 basemask.trim_mask(axis=0, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:, :_l] == 0) assert np.all(basemask.integer_mask[:, _l:] == 1) def test_trim_mask_diff_True(self): basemask = mask.BaseMask('field', self.fake_input) # everything is False (0) assert np.all(basemask.integer_mask == 0) _l = 5 basemask.trim_mask(value=True, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) assert np.all(basemask.integer_mask[_l:, :] == 0) def test_trim_mask_diff_ints(self): basemask = mask.BaseMask('field', self.fake_input) # everything is False (0) assert np.all(basemask.integer_mask == 0) _l = 5 basemask.trim_mask(value=1, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) basemask.trim_mask(value=0, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 0) basemask.trim_mask(value=5, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) basemask.trim_mask(value=5.534, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) def test_trim_mask_toomanyargs(self): basemask = mask.BaseMask('field', self.fake_input) with pytest.raises(ValueError): basemask.trim_mask('arg1', 'arg2', value=1, length=1) def test_show(self): """ Here, we just test whether it works, and whether it takes a specific axis. """ basemask = mask.BaseMask('field', self.fake_input) # test show with nothing basemask.show() plt.close() # test show with colorbar basemask.show(colorbar=True) plt.close() # test show with title basemask.show(title='a title') plt.close() # test show with axes, bad values fig, ax = plt.subplots() basemask.show(ax=ax) plt.close() def test_show_error_nomask(self): """ Here, we just test whether it works, and whether it takes a specific axis. """ basemask = mask.BaseMask('field', self.fake_input) # mock as though something went wrong basemask._mask = None with pytest.raises(RuntimeError): basemask.show() def test_no_data(self): """Test when no data input raises error.""" with pytest.raises(ValueError, match=r'Expected 1 input, got 0.'): _ = mask.BaseMask('field') def test_invalid_data(self): """Test invalid data input.""" with pytest.raises(TypeError, match=r'Unexpected type was input: .*'): _ = mask.BaseMask('field', 'a string!!') def test_invalid_second_data(self): """Test invalid data input.""" with pytest.raises(TypeError, match=r'First input to mask .*'): _ = mask.BaseMask('field', np.zeros((100, 200)), 'a string!!') def test_return_empty(self): """Test when no data input, but allow empty, returns empty.""" empty_basemask = mask.BaseMask('field', allow_empty=True) assert empty_basemask.mask_type == 'field' assert empty_basemask.shape is None assert empty_basemask._mask is None assert empty_basemask._mask is empty_basemask.mask def test_is_mask_deprecationwarning(self): """Test that TypeError is raised if is_mask is invalid.""" with pytest.warns(DeprecationWarning): _ = mask.BaseMask('field', self.fake_input, is_mask='invalid') with pytest.warns(DeprecationWarning): _ = mask.BaseMask('field', self.fake_input, is_mask=True) def test_3dinput_deprecationerror(self): """Test that TypeError is raised if is_mask is invalid.""" with pytest.raises(ValueError, match=r'Creating a `Mask` .*'): _ = mask.BaseMask('field', np.random.uniform(size=(10, 100, 200))) class TestShorelineMask: """Tests associated with the mask.ShorelineMask class.""" # define an input mask for the mask instantiation pathway _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) # make assertions assert shoremask._input_flag == 'array' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool assert isinstance(shoremask._mask, np.ndarray) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask(rcm8cube, t=-1) # make assertions assert shoremask._input_flag == 'cube' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cubewithmeta(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask(golfcube, t=-1) # make assertions assert shoremask._input_flag == 'cube' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_mask(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask(self._ElevationMask) # make assertions assert shoremask._input_flag == 'mask' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool def test_angle_threshold(self): """Test that instantiation works for an array.""" # define the mask shoremask_default = mask.ShorelineMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) shoremask = mask.ShorelineMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0, angle_threshold=45) # make assertions assert shoremask.angle_threshold == 45 assert not np.all(shoremask_default == shoremask) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask shoremask = mask.ShorelineMask( rcm8cube['eta'][0, :, :], elevation_threshold=0) # assert - expect all True values should be in one row _whr_edge = np.where(shoremask._mask[:, 0]) assert _whr_edge[0].size > 0 # if fails, no shoreline found! _row = int(_whr_edge[0][0]) assert np.all(shoremask._mask[_row, :] == 1) assert np.all(shoremask._mask[_row+1:, :] == 0) def test_static_from_OAP(self): shoremask = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfOAP = mask.ShorelineMask.from_OAP(_OAP_0) shoremask_05 = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) mfOAP_05 = mask.ShorelineMask.from_OAP(_OAP_05) assert np.all(shoremask._mask == mfOAP._mask) assert np.all(shoremask_05._mask == mfOAP_05._mask) def test_static_from_mask_ElevationMask(self): shoremask = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfem = mask.ShorelineMask.from_mask(self._ElevationMask) shoremask_05 = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) assert np.all(shoremask._mask == mfem._mask) assert np.sum(shoremask_05.integer_mask) < np.sum(shoremask.integer_mask) def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask _arr = np.ones((100, 200)) _arr[50:55, :] = 0 shoremask = mask.ShorelineMask.from_array(_arr) # make assertions assert shoremask.mask_type == 'shoreline' assert shoremask._input_flag is None assert np.all(shoremask._mask == _arr) _arr2 = np.random.uniform(size=(100, 200)) _arr2_bool = _arr2.astype(bool) assert _arr2.dtype == float shoremask2 = mask.ShorelineMask.from_array(_arr2) # make assertions assert shoremask2.mask_type == 'shoreline' assert shoremask2._input_flag is None assert np.all(shoremask2._mask == _arr2_bool) class TestElevationMask: """Tests associated with the mask.LandMask class.""" def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) # make assertions assert elevationmask._input_flag == 'array' assert elevationmask.mask_type == 'elevation' assert elevationmask.elevation_threshold == 0 assert elevationmask.threshold == 0 assert elevationmask.elevation_threshold is elevationmask.threshold assert elevationmask._mask.dtype == bool def test_all_below_threshold(self): elevationmask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=10) # make assertions assert elevationmask._input_flag == 'array' assert elevationmask.mask_type == 'elevation' assert elevationmask.elevation_threshold == 10 assert elevationmask.threshold == 10 assert elevationmask.elevation_threshold is elevationmask.threshold assert elevationmask._mask.dtype == bool assert np.all(elevationmask.mask == 0) def test_all_above_threshold(self): elevationmask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=-10) # make assertions assert elevationmask._input_flag == 'array' assert elevationmask.mask_type == 'elevation' assert elevationmask.elevation_threshold == -10 assert elevationmask.threshold == -10 assert elevationmask.elevation_threshold is elevationmask.threshold assert elevationmask._mask.dtype == bool assert np.all(elevationmask.mask == 1) def test_default_vals_array_needs_elevation_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.ElevationMask(rcm8cube['eta'][-1, :, :]) def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask( rcm8cube, t=-1, elevation_threshold=0) # make assertions assert elevationmask._input_flag == 'cube' assert elevationmask.mask_type == 'elevation' assert elevationmask._mask.dtype == bool def test_default_vals_cubewithmeta(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask( golfcube, t=-1, elevation_threshold=0) # make assertions assert elevationmask._input_flag == 'cube' assert elevationmask.mask_type == 'elevation' assert elevationmask._mask.dtype == bool # compare with another instantiated from array elevationmask_comp = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) assert np.all(elevationmask_comp.mask == elevationmask.mask) # try with a different elevation_threshold (higher) elevationmask_higher = mask.ElevationMask( golfcube, t=-1, elevation_threshold=0.5) assert (np.sum(elevationmask_higher.integer_mask) < np.sum(elevationmask.integer_mask)) def test_default_vals_cube_needs_elevation_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.ElevationMask( rcm8cube, t=-1) with pytest.raises(TypeError, match=r'.* missing'): _ = mask.ElevationMask( golfcube, t=-1) def test_default_vals_mask_notimplemented(self): """Test that instantiation works for an array.""" # define the mask _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) with pytest.raises(NotImplementedError, match=r'Cannot instantiate .*'): _ = mask.ElevationMask( _ElevationMask, elevation_threshold=0) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask elevationmask = mask.ElevationMask( rcm8cube['eta'][0, :, :], elevation_threshold=0) # assert - expect all True values should be up to a point _whr_land = np.where(elevationmask._mask[:, 0]) assert _whr_land[0].size > 0 # if fails, no land found! _row = int(_whr_land[0][-1]) + 1 # last index third = elevationmask.shape[1]//3 # limit to left of inlet assert np.all(elevationmask._mask[:_row, :third] == 1) assert np.all(elevationmask._mask[_row:, :] == 0) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask.from_array(np.ones((100, 200))) # make assertions assert elevationmask._input_flag == 'elevation' class TestFlowMask: """Tests associated with the mask.LandMask class.""" def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask flowmask = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=0.3) # make assertions assert flowmask._input_flag == 'array' assert flowmask.mask_type == 'flow' assert flowmask.flow_threshold == 0.3 assert flowmask.threshold == 0.3 assert flowmask.flow_threshold is flowmask.threshold assert flowmask._mask.dtype == bool # note that, the mask will take any array though... # define the mask flowmask_any = mask.FlowMask( golfcube['eta'][-1, :, :], flow_threshold=0) assert flowmask_any._input_flag == 'array' assert flowmask_any.mask_type == 'flow' assert flowmask_any.flow_threshold == 0 assert flowmask_any.threshold == 0 assert flowmask_any.flow_threshold is flowmask_any.threshold def test_all_below_threshold(self): flowmask = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=20) # make assertions assert flowmask._input_flag == 'array' assert flowmask.mask_type == 'flow' assert flowmask.flow_threshold == 20 assert flowmask.threshold == 20 assert flowmask.flow_threshold is flowmask.threshold assert flowmask._mask.dtype == bool assert np.all(flowmask.mask == 0) def test_all_above_threshold(self): flowmask = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=-5) # make assertions assert flowmask._input_flag == 'array' assert flowmask.mask_type == 'flow' assert flowmask.flow_threshold == -5 assert flowmask.threshold == -5 assert flowmask.flow_threshold is flowmask.threshold assert flowmask._mask.dtype == bool assert np.all(flowmask.mask == 1) def test_default_vals_array_needs_flow_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.FlowMask(rcm8cube['velocity'][-1, :, :]) def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask flowmask = mask.FlowMask( rcm8cube, t=-1, flow_threshold=0.3) # make assertions assert flowmask._input_flag == 'cube' assert flowmask.mask_type == 'flow' assert flowmask._mask.dtype == bool def test_vals_cube_different_fields(self): """Test that instantiation works for an array.""" # define the mask velmask = mask.FlowMask( rcm8cube, t=-1, cube_key='velocity', flow_threshold=0.3) # make assertions assert velmask._input_flag == 'cube' assert velmask.mask_type == 'flow' assert velmask._mask.dtype == bool dismask = mask.FlowMask( rcm8cube, t=-1, cube_key='discharge', flow_threshold=0.3) # make assertions assert dismask._input_flag == 'cube' assert dismask.mask_type == 'flow' assert dismask._mask.dtype == bool assert not np.all(velmask.mask == dismask.mask) def test_default_vals_cubewithmeta(self): """Test that instantiation works For a cube with metadata. """ # define the mask flowmask = mask.FlowMask( golfcube, t=-1, flow_threshold=0.3) # make assertions assert flowmask._input_flag == 'cube' assert flowmask.mask_type == 'flow' assert flowmask._mask.dtype == bool # compare with another instantiated from array flowmask_comp = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=0.3) assert np.all(flowmask_comp.mask == flowmask.mask) def test_flowthresh_vals_cubewithmeta(self): # make default flowmask = mask.FlowMask( golfcube, t=-1, flow_threshold=0.3) # try with a different flow_threshold (higher) flowmask_higher = mask.FlowMask( golfcube, t=-1, flow_threshold=0.5) assert (np.sum(flowmask_higher.integer_mask) < np.sum(flowmask.integer_mask)) def test_default_vals_cube_needs_flow_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.FlowMask( rcm8cube, t=-1) with pytest.raises(TypeError, match=r'.* missing'): _ = mask.FlowMask( golfcube, t=-1) def test_default_vals_mask_notimplemented(self): """Test that instantiation works for an array.""" # define the mask _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) with pytest.raises(NotImplementedError, match=r'Cannot instantiate .*'): _ = mask.FlowMask( _ElevationMask, flow_threshold=0.3) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask flowmask = mask.FlowMask( rcm8cube['velocity'][0, :, :], flow_threshold=0.3) # assert - expect doesnt care about land assert flowmask.mask_type == 'flow' @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask flowmask = mask.FlowMask.from_array(np.ones((100, 200))) # make assertions assert flowmask._input_flag == 'flow' class TestLandMask: """Tests associated with the mask.LandMask class.""" # define an input mask for the mask instantiation pathway _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) _OAP_0 = OpeningAnglePlanform.from_elevation_data( golfcube['eta'][-1, :, :], elevation_threshold=0) _OAP_05 = OpeningAnglePlanform.from_elevation_data( golfcube['eta'][-1, :, :], elevation_threshold=0.5) def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask landmask = mask.LandMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) # make assertions assert landmask._input_flag == 'array' assert landmask.mask_type == 'land' assert landmask.angle_threshold > 0 assert landmask._mask.dtype == bool def test_default_vals_array_needs_elevation_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.LandMask(rcm8cube['eta'][-1, :, :]) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask landmask = mask.LandMask(rcm8cube, t=-1) # make assertions assert landmask._input_flag == 'cube' assert landmask.mask_type == 'land' assert landmask.angle_threshold > 0 assert landmask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cubewithmeta(self): """Test that instantiation works for an array.""" # define the mask landmask = mask.LandMask(golfcube, t=-1) # make assertions assert landmask._input_flag == 'cube' assert landmask.mask_type == 'land' assert landmask.angle_threshold > 0 assert landmask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_mask(self): """Test that instantiation works for an array.""" # define the mask landmask = mask.LandMask(self._ElevationMask) # make assertions assert landmask._input_flag == 'mask' assert landmask.mask_type == 'land' assert landmask.angle_threshold > 0 assert landmask._mask.dtype == bool def test_angle_threshold(self): """ Test that the angle threshold argument is used by the LandMask when instantiated. """ # define the mask landmask_default = mask.LandMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) landmask = mask.LandMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0, angle_threshold=45) # make assertions assert landmask.angle_threshold == 45 assert not np.all(landmask_default == landmask) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask landmask = mask.LandMask( rcm8cube['eta'][0, :, :], elevation_threshold=0) # assert - expect all True values should be in one row _whr_land = np.where(landmask._mask[:, 0]) assert _whr_land[0].size > 0 # if fails, no land found! _row = int(_whr_land[0][-1]) + 1 # last index assert np.all(landmask._mask[:_row, :] == 1) assert np.all(landmask._mask[_row:, :] == 0) def test_static_from_OAP(self): landmask = mask.LandMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfOAP = mask.LandMask.from_OAP(_OAP_0) landmask_05 = mask.LandMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) mfOAP_05 = mask.LandMask.from_OAP(_OAP_05) assert np.all(landmask._mask == mfOAP._mask) assert np.all(landmask_05._mask == mfOAP_05._mask) def test_static_from_mask_ElevationMask(self): landmask = mask.LandMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfem = mask.LandMask.from_mask(self._ElevationMask) landmask_05 = mask.LandMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) assert np.all(landmask._mask == mfem._mask) assert np.sum(landmask_05.integer_mask) < np.sum(landmask.integer_mask) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask landmask = mask.LandMask.from_array(np.ones((100, 200))) # make assertions assert landmask._input_flag == 'land' class TestWetMask: """Tests associated with the mask.WetMask class.""" # define an input mask for the mask instantiation pathway _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask wetmask = mask.WetMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) # make assertions assert wetmask._input_flag == 'array' assert wetmask.mask_type == 'wet' assert wetmask._mask.dtype == bool def test_default_vals_array_needs_elevation_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing 1 .*'): _ = mask.WetMask(rcm8cube['eta'][-1, :, :]) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask wetmask = mask.WetMask(rcm8cube, t=-1) # make assertions assert wetmask._input_flag == 'cube' assert wetmask.mask_type == 'wet' assert wetmask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cubewithmeta(self): """Test that instantiation works for an array.""" # define the mask wetmask = mask.WetMask(golfcube, t=-1) # make assertions assert wetmask._input_flag == 'cube' assert wetmask.mask_type == 'wet' assert wetmask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_mask(self): """Test that instantiation works for an array.""" # define the mask wetmask = mask.WetMask(self._ElevationMask) # make assertions assert wetmask._input_flag == 'mask' assert wetmask.mask_type == 'wet' assert wetmask._mask.dtype == bool def test_angle_threshold(self): """ Test that the angle threshold argument is passed along to the LandMask when instantiated. """ # define the mask wetmask_default = mask.WetMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) wetmask = mask.WetMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0, angle_threshold=45) # make assertions assert not np.all(wetmask_default == wetmask) assert np.sum(wetmask.integer_mask) < np.sum(wetmask_default.integer_mask) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask wetmask = mask.WetMask( rcm8cube['eta'][0, :, :], elevation_threshold=0) # assert - expect all True values should be in one row _whr_edge = np.where(wetmask._mask[:, 0]) assert _whr_edge[0].size > 0 # if fails, no shoreline found! _row = int(_whr_edge[0][0]) assert np.all(wetmask._mask[_row, :] == 1) assert np.all(wetmask._mask[_row+1:, :] == 0) def test_static_from_OAP(self): # create two with sea level = 0 landmask = mask.LandMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfOAP = mask.LandMask.from_OAP(_OAP_0) # create two with diff elevation threshold landmask_05 = mask.LandMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) mfOAP_05 = mask.LandMask.from_OAP(_OAP_05) assert np.all(landmask._mask == mfOAP._mask) assert np.all(landmask_05._mask == mfOAP_05._mask) def test_static_from_mask_ElevationMask(self): wetmask = mask.WetMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfem = mask.WetMask.from_mask(self._ElevationMask) wetmask_05 = mask.WetMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) assert np.all(wetmask._mask == mfem._mask) assert np.sum(wetmask_05.integer_mask) < np.sum(wetmask.integer_mask) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask wetmask = mask.WetMask.from_array(np.ones((100, 200))) # make assertions assert wetmask._input_flag == 'land' class TestChannelMask: """Tests associated with the mask.ChannelMask class.""" # define an input mask for the mask instantiation pathway _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask channelmask = mask.ChannelMask( rcm8cube['eta'][-1, :, :], rcm8cube['velocity'][-1, :, :], elevation_threshold=0, flow_threshold=0.5) # make assertions assert channelmask._input_flag == 'array' assert channelmask.mask_type == 'channel' assert channelmask._mask.dtype == bool def test_default_vals_array_needs_elevation_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing 1 .*'): _ = mask.ChannelMask( rcm8cube['eta'][-1, :, :], rcm8cube['velocity'][-1, :, :], flow_threshold=10) def test_default_vals_array_needs_flow_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing 1 .*'): _ = mask.ChannelMask( rcm8cube['eta'][-1, :, :], rcm8cube['velocity'][-1, :, :], elevation_threshold=10) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask channelmask = mask.ChannelMask(rcm8cube, t=-1) # make assertions assert channelmask._input_flag == 'cube' assert channelmask.mask_type == 'channel' assert channelmask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cubewithmeta(self): """Test that instantiation works for an array.""" # define the mask channelmask = mask.ChannelMask(golfcube, t=-1) # make assertions assert channelmask._input_flag == 'cube' assert channelmask.mask_type == 'channel' assert channelmask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_mask(self): """Test that instantiation works for an array.""" # define the mask channelmask = mask.ChannelMask(self._ElevationMask) # make assertions assert channelmask._input_flag == 'mask' assert channelmask.mask_type == 'channel' assert channelmask._mask.dtype == bool def test_angle_threshold(self): """ Test that the angle threshold argument is passed along to the when instantiated. """ # define the mask channelmask_default = mask.ChannelMask( rcm8cube['eta'][-1, :, :], rcm8cube['velocity'][-1, :, :], elevation_threshold=0, flow_threshold=0.5) channelmask = mask.ChannelMask( rcm8cube['eta'][-1, :, :], rcm8cube['velocity'][-1, :, :], elevation_threshold=0, flow_threshold=0.5, angle_threshold=45) # make assertions assert not np.all(channelmask_default == channelmask) assert np.sum(channelmask.integer_mask) < np.sum(channelmask_default.integer_mask) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask channelmask = mask.ChannelMask( rcm8cube['eta'][0, :, :], rcm8cube['velocity'][-1, :, :], elevation_threshold=0, flow_threshold=0.5) # assert - expect all True values should be in center and first rows _cntr_frst = channelmask.mask[:3, rcm8cube.shape[2]//2] assert np.all(_cntr_frst == 1) def test_static_from_OAP_not_implemented(self): with pytest.raises(NotImplementedError, match=r'`from_OAP` is not defined .*'): _ = mask.ChannelMask.from_OAP(_OAP_0) def test_static_from_OAP_and_FlowMask(self): """ Test combinations to ensure that arguments passed to array instant match the arguments passed to the independ FlowMask and OAP objects. """ channelmask_03 = mask.ChannelMask( golfcube['eta'][-1, :, :], golfcube['velocity'][-1, :, :], elevation_threshold=0, flow_threshold=0.3) flowmask_03 = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=0.3) mfOAP_03 = mask.ChannelMask.from_OAP_and_FlowMask(_OAP_0, flowmask_03) channelmask_06 = mask.ChannelMask( golfcube['eta'][-1, :, :], golfcube['velocity'][-1, :, :], elevation_threshold=0.5, flow_threshold=0.6) flowmask_06 = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=0.6) mfOAP_06 = mask.ChannelMask.from_OAP_and_FlowMask(_OAP_05, flowmask_06) assert np.all(channelmask_03._mask == mfOAP_03._mask) assert np.all(channelmask_06._mask == mfOAP_06._mask) assert not np.all(channelmask_03._mask == mfOAP_06._mask) assert not np.all(channelmask_03._mask == channelmask_06._mask) assert
np.sum(mfOAP_06.integer_mask)
numpy.sum
# -*- coding: utf-8 -*- """ Created on 2017-6-27 @author: cheng.li """ import numpy as np from typing import Union from typing import Tuple from typing import Optional from typing import Dict import cvxpy from alphamind.cython.optimizers import QPOptimizer from alphamind.cython.optimizers import CVOptimizer from alphamind.exceptions.exceptions import PortfolioBuilderException def _create_bounds(lbound, ubound, bm, risk_exposure, risk_target): lbound = lbound - bm ubound = ubound - bm if risk_exposure is not None: cons_mat = risk_exposure.T bm_risk = cons_mat @ bm clbound = risk_target[0] - bm_risk cubound = risk_target[1] - bm_risk else: cons_mat = None clbound = None cubound = None return lbound, ubound, cons_mat, clbound, cubound def _create_result(optimizer, bm): if optimizer.status() == 0 or optimizer.status() == 1: return 'optimal', optimizer.feval(), optimizer.x_value() + bm else: raise PortfolioBuilderException(optimizer.status()) def mean_variance_builder(er: np.ndarray, risk_model: Dict[str, Union[None, np.ndarray]], bm: np.ndarray, lbound: Union[np.ndarray, float], ubound: Union[np.ndarray, float], risk_exposure: Optional[np.ndarray], risk_target: Optional[Tuple[np.ndarray, np.ndarray]], lam: float=1.) -> Tuple[str, float, np.ndarray]: lbound, ubound, cons_mat, clbound, cubound = _create_bounds(lbound, ubound, bm, risk_exposure, risk_target) if np.all(lbound == -np.inf) and np.all(ubound == np.inf) and cons_mat is None: # using fast path cvxpy n = len(er) w = cvxpy.Variable(n) cov = risk_model['cov'] special_risk = risk_model['idsync'] risk_cov = risk_model['factor_cov'] risk_exposure = risk_model['factor_loading'] if cov is None: risk = cvxpy.sum_squares(cvxpy.multiply(cvxpy.sqrt(special_risk), w)) \ + cvxpy.quad_form((w.T * risk_exposure).T, risk_cov) else: risk = cvxpy.quad_form(w, cov) objective = cvxpy.Minimize(-w.T * er + 0.5 * lam * risk) prob = cvxpy.Problem(objective) prob.solve(solver='ECOS', feastol=1e-9, abstol=1e-9, reltol=1e-9) if prob.status == 'optimal' or prob.status == 'optimal_inaccurate': return 'optimal', prob.value,
np.array(w.value)
numpy.array
import numpy as np from gips.gistmodel.fitting import MC_fitter from gips.gistmodel._numerical_ext import gist_functional_6p_ext from gips.gistmodel._numerical_ext import gist_functional_5p_ext from gips.gistmodel._numerical_ext import gist_functional_4p_ext from gips.gistmodel._numerical_ext import gist_restraint_ext from gips.gistmodel._numerical_ext import merge_casedata_ext from gips.gistmodel._numerical_ext import pair_difference_ext from gips.utils.misc import parms_error from gips import FLOAT from gips import DOUBLE MODE=3 class mode3(MC_fitter): def __init__(self, gdatarec_dict, gdata_dict, ref_energy=-11.108, parms=6, pairs=False, radiusadd=[0.,3.], softness=1.0, softcut=2.0, boundsdict=None, pairlist=None, exclude=None, scaling=2.0, select=None, decomp_E=False, decomp_S=False, verbose=False): super(mode3, self).__init__(gdatarec_dict=gdatarec_dict, gdata_dict=gdata_dict, ref_energy=ref_energy, mode=MODE, radiusadd=radiusadd, softness=softness, softcut=softcut, exclude=exclude, scaling=scaling, verbose=verbose) self.pairs = pairs self.parms = parms self._parms = parms self._gist_functional_ext = None self.boundsdict = boundsdict self.pairlist = pairlist if self.pairs: self.set_pairs() self.set_selection(select) self.set_functional() self.set_bounds() self.set_step() self.set_x0() self.w = self.w.astype(DOUBLE) self.w_cplx = self.w_cplx.astype(DOUBLE) self.w_lig = self.w_lig.astype(DOUBLE) def gist_functional(self, x): ### &PyArray_Type, &E, ### &PyArray_Type, &S, ### &PyArray_Type, &g, ### &PyArray_Type, &vol, ### &PyArray_Type, &ind, ### &PyArray_Type, &x, ### &PyArray_Type, &dx, ### &PyArray_Type, &fun, ### &PyArray_Type, &grad, ### &verbose ### x[0] = E_aff ### x[1] = e_co ### x[2] = S_aff ### x[3] = s_co ### x[4] = g_co ### x[5] = C _x = np.zeros(self.parms, dtype=DOUBLE) _x[:-1] = x[:-1] ### Make sure all types are DOUBLE if not self.pairs: if not self._gist_functional_ext(self.E, self.S, self.g, self.vol, self.ind_rec, _x, self._dx, self._calc_data, self._gradients, 0, int(self.anal_grad)): raise ValueError("Something went wrong in gist functional calculation.") if not self._gist_functional_ext(self.E_cplx, self.S_cplx, self.g_cplx, self.vol_cplx, self.ind_rec_cplx, _x, self._dx, self._calc_data_cplx, self._gradients_cplx, 0, int(self.anal_grad)): raise ValueError("Something went wrong in gist functional calculation.") if not self._gist_functional_ext(self.E_lig, self.S_lig, self.g_lig, self.vol_lig, self.ind_rec_lig, _x, self._dx, self._calc_data_lig, self._gradients_lig, 0, int(self.anal_grad)): raise ValueError("Something went wrong in gist functional calculation.") ### &PyArray_Type, &x, ### &PyArray_Type, &xmin, ### &PyArray_Type, &xmax, ### &k, ### &restraint, ### &PyArray_Type, &restraint_grad if self.anal_boundary: self._restraint = gist_restraint_ext(x, self.xmin, self.xmax, self.kforce_f, self.kforce, self._restraint_grad) def _f_process(self, x): __doc___= """ returns the squared sum of residuals objective function is the free energy """ self.gist_functional(x) self._f[:] = 0. if self.anal_grad: self._g[:] = 0. ### Complex and Ligand contributions ### &PyArray_Type, &source, ### &PyArray_Type, &assign, ### &PyArray_Type, &factor, ### &PyArray_Type, &assign_factor if self.pairs: _f = merge_casedata_ext(self._calc_data_cplx, self.ind_case_cplx, self.w_cplx, self.ind_case_cplx) _f -= merge_casedata_ext(self._calc_data_lig, self.ind_case_lig, self.w_lig, self.ind_case_lig) self._f[:] += pair_difference_ext(_f, self.pairidx) for i in range(self.parms-1): _g = merge_casedata_ext(self._gradients_cplx[:,i], self.ind_case_cplx, self.w_cplx, self.ind_case_cplx) _g -= merge_casedata_ext(self._gradients_lig[:, i], self.ind_case_lig, self.w_lig, self.ind_case_lig) self._g[:,i] += pair_difference_ext(_g, self.pairidx) else: self._f[:] = merge_casedata_ext(self._calc_data_cplx, self.ind_case_cplx, self.w_cplx, self.ind_case_cplx) self._f[:] -= merge_casedata_ext(self._calc_data, self.ind_case, self.w, self.ind_rec) self._f[:] -= merge_casedata_ext(self._calc_data_lig, self.ind_case_lig, self.w_lig, self.ind_case_lig) for i in range(self.parms): self._g[:,i] = merge_casedata_ext(self._gradients_cplx[:,i], self.ind_case_cplx, self.w_cplx, self.ind_case_cplx) self._g[:,i] -= merge_casedata_ext(self._gradients[:,i], self.ind_case, self.w, self.ind_rec) self._g[:,i] -= merge_casedata_ext(self._gradients_lig[:, i], self.ind_case_lig, self.w_lig, self.ind_case_lig) self._f[:] += x[-1] self._g[:,-1] = 1 else: if self.pairs: ### Complex and Ligand contributions _f = merge_casedata_ext(self._calc_data_cplx, self.ind_case_cplx, self.w_cplx, self.ind_case_cplx) _f -= merge_casedata_ext(self._calc_data_lig, self.ind_case_lig, self.w_lig, self.ind_case_lig) self._f[:] += pair_difference_ext(_f, self.pairidx) else: ### Receptor contributions self._f[:] = merge_casedata_ext(self._calc_data_cplx, self.ind_case_cplx, self.w_cplx, self.ind_case_cplx) self._f[:] -= merge_casedata_ext(self._calc_data, self.ind_case, self.w, self.ind_rec) self._f[:] -= merge_casedata_ext(self._calc_data_lig, self.ind_case_lig, self.w_lig, self.ind_case_lig) self._f[:] += x[-1] def set_bounds(self): __doc__ = """ Ensures that we don't run out of bounds during MC steps. """ self.xmin = np.zeros(self._parms, dtype=DOUBLE) self.xmax = np.zeros(self._parms, dtype=DOUBLE) self._restraint_grad = np.zeros(self._parms, dtype=DOUBLE) self._restraint = 0. self.kforce_f = np.zeros(self._parms, dtype=DOUBLE) _E = np.min([np.min(self.E_cplx),np.min(self.E),np.min(self.E_lig)]),\ np.max([np.max(self.E_cplx),np.max(self.E),
np.max(self.E_lig)
numpy.max
#!/usr/bin/env python # coding: utf-8 # # Introduction # ## The Data Set # In today's workshop, we will revisit the data set you worked with in the Machine Learning workshop. As a refresher: this data set is from the GSE53987 dataset on Bipolar disorder (BD) and major depressive disorder (MDD) and schizophrenia: # # <NAME>, <NAME>, <NAME>, <NAME> et al. STEP levels are unchanged in pre-frontal cortex and associative striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and major depressive disorder. PLoS One 2015;10(3):e0121744. PMID: 25786133 # # This is a microarray data on platform GPL570 (HG-U133_Plus_2, Affymetrix Human Genome U133 Plus 2.0 Array) consisting of 54675 probes. # # The raw CEL files of the GEO series were downloaded, frozen-RMA normalized, and the probes have been converted to HUGO gene symbols using the annotate package averaging on genes. The sample clinical data (meta-data) was parsed from the series matrix file. You can download it **here**. # # In total there are 205 rows consisting of 19 individuals diagnosed with BPD, 19 with MDD, 19 schizophrenia and 19 controls. Each sample has gene expression from 3 tissues (post-mortem brain). There are a total of 13768 genes (numeric features) and 10 meta features and 1 ID (GEO sample accession): # # - Age # - Race (W for white and B for black) # - Gender (F for female and M for male) # - Ph: pH of the brain tissue # - Pmi: post mortal interval # - Rin: RNA integrity number # - Patient: Unique ID for each patient. Each patient has up to 3 tissue samples. The patient ID is written as disease followed by a number from 1 to 19 # - Tissue: tissue the expression was obtained from. # - Disease.state: class of disease the patient belongs to: bipolar, schizophrenia, depression or control. # - source.name: combination of the tissue and disease.state # # ## Workshop Goals # This workshop will walk you through an analysis of the GSE53987 microarray data set. This workshop has the following three tasks: # 1. Visualize the demographics of the data set # 2. Cluster gene expression data and appropriately visualize the cluster results # 3. Compute differential gene expression and visualize the differential expression # # Each task has a __required__ section and a __bonus__ section. Focus on completing the three __required__ sections first, then if you have time at the end, revisit the __bonus__ sections. # # Finally, as this is your final workshop, we hope that you will this as an opportunity to integrate the different concepts that you have learned in previous workshops. # # ## Workshop Logistics # As mentioned in the pre-workshop documentation, you can do this workshop either in a Jupyter Notebook, or in a python script. Please make sure you have set-up the appropriate environment for youself. This workshop will be completed using "paired-programming" and the "driver" will switch every 15 minutes. Also, we will be using the python plotting libraries matplotlib and seaborn. # ## TASK 0: Import Libraries and Data # - Download the data set (above) as a .csv file # - Initialize your script by loading the following libraries. # In[2]: # Import Necessary Libraries import pandas as pd import numpy as np import seaborn as sns from sklearn import cluster, metrics, decomposition from matplotlib import pyplot as plt import itertools data = pd.read_csv('GSE53987_combined.csv', index_col=0) genes = data.columns[10:] # ## TASK 1: Visualize Dataset Demographics # ### Required Workshop Task: # ##### Use the skeleton code to write 3 plotting functions: # 1. plot_distribution() # - Returns a distribution plot object given a dataframe and one observation # 2. plot_relational() # - Returns a distribution plot object given a dataframe and (x,y) observations # 3. plot_categorical() # - Returns a categorical plot object given a dataframe and (x,y) observations # ##### Use these functions to produce the following plots: # 1. Histogram of patient ages # 2. Histogram of gene expression for 1 gene # 3. Scatter plot of gene expression for 1 gene by ages # 4. Scatter plot of gene expression for 1 gene by disease state # Your plots should satisfy the following critical components: # - Axis titles # - Figure title # - Legend (if applicable) # - Be readable # # ### Bonus Task: # 1. Return to these functions and include functionality to customize color palettes, axis legends, etc. You can choose to define your own plotting "style" and keep that consistent for all of your plotting functions. # 2. Faceting your plots. Modify your functions to take in a "facet" argument that when facet is an observation, the function will create a facet grid and facet on that observation. Read more about faceting here: # Faceting generates multi-plot grids by __mapping a dataset onto multiple axes arrayed in a grid of rows and columns that correspond to levels of variables in the dataset.__ # - In order to use facteting, your data __must be__ in a Pandas DataFrame and it must take the form of what Hadley Whickam calls “tidy” data. # - In brief, that means your dataframe should be structured such that each column is a variable and each row is an observation. There are figure-level functions (e.g. relplot() or catplot()) that will create facet grids automatically and can be used in place of things like distplot() or scatterplot(). # In[63]: # Import the data (.csv file) as a data frame data = pd.read_csv("/Users/ebriars/Desktop/Bioinformatics/BRITE REU Workshops/Data Visualization/GSE53987_combined.csv", index_col=0) # Function to Plot a Distribtion def plot_distribution(df, obs1, obs2=''): """ Create a distribution plot for at least one observation Arguments: df (pandas data frame): data frame containing at least 1 column of numerical values obs1 (string): observation to plot distribution on obs2 (string, optional) Returns: axes object """ if obs2 == '': ax = sns.distplot(df[obs1]) else: ax = sns.FacetGrid(df, hue=obs2) ax = (g.map(sns.distplot, obs1, hist=False)) return ax # Function to Plot Relational (x,y) Plots def plot_relational(df, x, y, hue=None, kind=None): """ Create a plot for an x,y relationship (default = scatter plot) Optional functionality for additional observations. Arguments: df (pandas data frame): data frame containing at least 2 columns of numerical values x (string): observation for the independent variable y (string): observation for the dependent variable hue (string, optional): additional observation to color the plot on kind (string, optional): type of plot to create [scatter, line] Returns: axes object """ if kind == None or kind == "scatter": ax = sns.scatterplot(data=df, x=x, y=y, hue=hue) else: ax = sns.lineplot(data=df, x=x, y=y, hue=hue) return ax def plot_categorical(df, x, y, hue=None, kind=None): """ Create a plot for an x,y relationship where x is categorical (not numerical) Arguments: df (pandas data frame): data frame containing at least 2 columns of numerical values x (string): observation for the independent variable (categorical) y (string): observation for the dependent variable hue (string, optional): additional observation to color the plot on kind (string, optional): type of plot to create. Options should include at least: strip (default), box, and violin """ if kind == None or kind == "strip": ax = sns.stripplot(data=df, x=x, y=y, hue=hue) elif kind == "violin": ax = sns.violinplot(data=df, x=x, y=y, hue=hue) elif kind == "box": ax = sns.boxplot(data=df, x=x, y=y, hue=hue) return ax def main(): """ Generate the following plots: 1. Histogram of patient ages 2. Histogram of gene expression for 1 gene 3. Scatter plot of gene expression for 1 gene by ages 4. Scatter plot of gene expression for 1 gene by disease state """ # ## TASK 2: Differential Expression Analysis # # Differential expression analysis is a fancy way of saying, "We want to find which genes exhibit increased or decreased expression compared to a control group". Neat. Because the dataset we're working with is MicroArray data -- which is mostly normally distributed -- we'll be using a simple One-Way ANOVA. If, however, you were working with sequence data -- which follows a Negative Binomial distribution -- you would need more specialized tools. A helper function is provided below. # In[7]: def differential_expression(data, group_col, features, reference=None): """ Perform a one-way ANOVA across all provided features for a given grouping. Arguments --------- data : (pandas.DataFrame) DataFrame containing group information and feature values. group_col : (str) Column in `data` containing sample group labels. features : (list, numpy.ndarray): Columns in `data` to test for differential expression. Having them be gene names would make sense. :thinking: reference : (str, optional) Value in `group_col` to use as the reference group. Default is None, and the value will be chosen. Returns ------- pandas.DataFrame A DataFrame of differential expression results with columns for fold changes between groups, maximum fold change from reference, f values, p values, and adjusted p-values by Bonferroni correction. """ if group_col not in data.columns: raise ValueError("`group_col` {} not found in data".format(group_col)) if any([x not in data.columns for x in features]): raise ValueError("Not all provided features found in data.") if reference is None: reference = data[group_col].unique()[0] print("No reference group provided. Using {}".format(reference)) elif reference not in data[group_col].unique(): raise ValueError("Reference value {} not found in column {}.".format( reference, group_col)) by_group = data.groupby(group_col) reference_avg = by_group.get_group(reference).loc[:,features].mean() values = [] results = {} for each, index in by_group.groups.items(): values.append(data.loc[index, features]) if each != reference: key = "{}.FoldChange".format(each) results[key] = data.loc[index, features].mean() / reference_avg fold_change_cols = list(results.keys()) fvalues, pvalues = stats.f_oneway(*values) results['f.value'] = fvalues results['p.value'] = pvalues results['p.value.adj'] = pvalues * len(features) results_df = pd.DataFrame(results) def largest_deviation(x): i = np.where(abs(x) == max(abs(x)))[0][0] return x[i] results_df['Max.FoldChange'] = results_df[fold_change_cols].apply( lambda x: largest_deviation(x.values), axis=1) return results_df # In[15]: # Here's some pre-subsetted data hippocampus = data[data["Tissue"] == "hippocampus"] pf_cortex = data[data["Tissue"] == "Pre-frontal cortex (BA46)"] as_striatum = data[data["Tissue"] == "Associative striatum"] # Here's how we can subset a dataset by two conditions. # You might find it useful :thinking: data[(data["Tissue"] == 'hippocampus') & (data['Disease.state'] == 'control')] # ### Task 2a: Volcano Plots # # Volcano plots are ways to showcase the number of differentially expressed genes found during high throughput sequencing analysis. Log fold changes are plotted along the x-axis, while p-values are plotted along the y-axis. Genes are marked significant if they exceed some absolute Log fold change theshold **as well** some p-value level for significance. This can be seen in the plot below. # # ![](https://galaxyproject.github.io/training-material/topics/transcriptomics/images/rna-seq-viz-with-volcanoplot/volcanoplot.png) # # Your first task will be to generate some Volcano plots: # # **Requirments** # 1. Use the provided function to perform an ANOVA (analysis of variance) between control and experimental groups in each tissue. # - Perform a separate analysis for each tissue. # 2. Implement the skeleton function to create a volcano plot to visualize both the log fold change in expression values and the adjusted p-values from the ANOVA # 3. Highlight significant genes with distinct colors # In[ ]: def volcano_plot(data, sig_col, fc_col, sig_thresh, fc_thresh): """ Generate a volcano plot to showcasing differentially expressed genes. Parameters ---------- data : (pandas.DataFrame) A data frame containing differential expression results sig_col : str Column in `data` with adjusted p-values. fc_col : str Column in `data` with fold changes. sig_thresh : str Threshold for statistical significance. fc_thresh """ data['significant'] = False data[fc_col] = np.log2(data[fc_col]) de_genes = (data[sig_col] < sig_thesh) & (data[fc_col].abs() > fc_thresh) data.loc[de_genes, 'significant'] = True ax = sns.scatterplot(x=fc_col, y=sig_col, hue='significant', data=data, palette=['black', 'red'], alpha=0.75) linewidth = plt.rcParams['lines.linewidth'] - 1 plt.axvline(x=fc_thresh, linestyle='--', linewidth=linewidth, color='#4D4E4F') plt.axvline(x=-fc_thresh, linestyle='--', linewidth=linewidth, color='#4D4E4F') plt.axhline(y=sig_thresh, linestyle='--', linewidth=linewidth, color='#4D4E4F') ax.legend().set_visible(False) ylabel = sig_col if sig_col.lower() == 'fdr': ylabel = 'False Discovery Rate' plt.xlabel(r"$log_2$ Fold Change") plt.ylabel(ylabel) for spine in ['right', 'top']: ax.spines[spine].set_visible(False) plt.tight_layout() return ax # ### Task 2b: Plot the Top 1000 Differentially Expressed Genes # # Clustered heatmaps are hugely popular for displaying differences in gene expression values. To reference such a plot, look back at the introductory material. Here we will be plotting the 1000 most differentially expressed genes for each of the analysis performed before. # # **Requirements** # - Implement the skeleton function below # - Z normalize gene values # - Use a diverging and perceptually uniform colormap # - Generate plots for each of the DE results above # # **Hint**: Look over all the options for [sns.clustermap()](https://seaborn.pydata.org/generated/seaborn.clustermap.html). It might make things easier. # In[ ]: def heatmap(data, genes, group_col): """[summary] Parameters ---------- data : pd.DataFrame A (sample x gene) data matrix containing gene expression values for each sample. genes : list, str List of genes to plot """ plot_data = anno_df[:, genes] ax = sns.clustermap(data, cmap='RdBu_r', z_score=1) return ax # **Bonus** There's nothing denoting which samples belong to which experimental group. Fix it. # # *Bonus hint*: Look real close at the documentation. # ## TASK 3: Clustering Analysis # # You've seen clustering in the previous machine learning workshop. Some basic plots were generated for you, including plotting the clusters on the principle componets. While we can certainly do more of that, we will also be introducing two new plots: elbow plots and silhouette plots. # # ### Elbow Plots # # Elbow plots are plots that are used to help diagnose the perennial question of K-means clustering: how do I chose K? To create the graph, you plot the number of clusters on the x-axis and some evaluation of "cluster goodness" on the y-axis. Looking at the name of the plot, you might guess that we're looking for an "elbow". This is the point in the graph when we start getting diminished returns in performance, and specifying more clusters may lead to over-clustering the data. An example plot is shown below. # # ![](https://upload.wikimedia.org/wikipedia/commons/c/cd/DataClustering_ElbowCriterion.JPG) # # You can see the K selected (K = 3), is right before diminishing returns start to kick in. Mathematically, this point is defined as the point in which curvature is maximized. However, the inflection point is also a decent -- though more conservative -- estimate. However, we'll just stick to eye-balling it for this workshop. If you would like to know how to automatically find the elbow point, more information can be found [here](https://raghavan.usc.edu/papers/kneedle-simplex11.pdf) # # ### Task 2a: Implement a function that creates an elbow plot # # Skeleton code is provided below. The function expects a list of k-values and their associated scores. An optional "ax" parameter is also provided. This parameter should be an axes object and can be created by issueing the following command: # # ```ax = plt.subplot()``` # # While we won't need the parameter right now, we'll likely use it in the future. # # **Function Requirements** # - Generate plot data by clustering the entire dataset on the first 50 principle components. Vary K values from 2 - 10. # - While you've been supplied a helper function for clustering, you'll need to supply the principle components yourself. Refer to your machine learning workshop along with the scikit-learn [documentation](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html) # - Plots each k and it's associated value. # - Plots lines connecting each data point. # - Produces a plot with correctly labelled axes. # # **Hint:** Working with an axis object is similar to base matplotlib, except `plt.scatter()` might become something like `ax.scatter()`. # # #### Helper Function # In[6]: def cluster_data(X, k): """ Cluster data using K-Means. Parameters ---------- X : (numpy.ndarray) Data matrix to cluster samples on. Should be (samples x features). k : int Number of clusters to find. Returns ------- tuple (numpy.ndarray, float) A tuple where the first value is the assigned cluster labels for each sample, and the second value is the score associated with the particular clustering. """ model = cluster.KMeans(n_clusters=k).fit(X) score = model.score(X) return (model.labels_, score) # #### Task 2a Implementation # In[3]: def elbow_plot(ks, scores, best=None, ax=None): """ Create a scatter plot to aid in choosing the number of clusters using K-means. Arguments --------- ks : (numpy.ndarray) Tested values for the number of clusters. scores: (numpy.ndarray) Cluster scores associated with each number K. ax: plt.Axes Object, optional """ if ax is None: fig, ax = plt.subplots() ax.scatter(ks, scores) ax.plot(ks, scores) ax.set_xlabel("Number of Clusters") ax.set_ylabel("Negative Distance From Mean") return ax # Once you've created the base plotting function, you'll probably realize we have no indivation of where the elbow point is. Fix this by adding another optional parameter (`best`) to your function. The parameter `best` should be the K value that produces the elbow point. # # **Function Requirements** # # - Add an optional parameter `best` that if supplied denotes the elbow point with a vertical, dashed line. # - If `best` is not supplied, the plot should still be produced but without denoting the elbow point. # # **Hint**: `plt.axvline` and `plt.axhline` can be used to produce vertical and horizontal lines, respectively. More information [here](https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.axvline.html) # # **Note**: You are not required to have the line end at the associated score value. # In[2]: def elbow_plot(ks, scores, best=None, ax=None): """ Create a scatter plot to aid in choosing the number of clusters using K-means. Arguments --------- ks : (numpy.ndarray) Tested values for the number of clusters. scores: (numpy.ndarray) Cluster scores associated with each number K. best: int, optional The best value for K. Determined by the K that falls at the elbow. If passed, a black dashed line will be plotted to indicate the best. Default is no line. ax: plt.Axes Object, optional """ if ax is None: fig, ax = plt.subplots() ax.scatter(ks, scores) ax.plot(ks, scores) ax.set_xlabel("Number of Clusters") ax.set_ylabel("Negative Distance From Mean") if best is not None: if best not in ks: raise ValueError("{} not included in provided number " "of clusters.") idx = np.where(np.array(ks) == best)[0][0] ymin, ymax = ax.get_ylim() point = (scores[idx] - ymin) / (ymax - ymin) print(point) ax.axvline(x=best, ymax=point, linestyle="--", c='black') ax.scatter([3], scores[idx], edgecolor='black', facecolor="none", s=200) ax.set_title("Elbow at K={}".format(best), loc='left') return ax # ### Silhouette Plots # # Silhouette plots are another way to visually diagnose cluster performance. They are created by finding the [silhouette coefficient](https://en.wikipedia.org/wiki/Silhouette_(clustering)) for each sample in the data, and plotting an area graph for each cluster. The silhouette coefficient measures how well-separated clusters are from each other. The value ranges from $[-1 , 1]$, where 1 indicates good separation, 0 indicates randomness, and -1 indicates mixing of clusters. An example is posted below. # # ![](https://scikit-plot.readthedocs.io/en/stable/_images/plot_silhouette.png) # # As you can see, each sample in each cluster has the area filled from some minimal point (usually 0 or the minimum score in the dataset) and clusters are separated to produce distinct [silhouettes](https://www.youtube.com/watch?v=-TcUvXzgwMY). # # ### Task 3b: Implement a function to plot silhouette coefficients # # Because the code for create a silhouette plot can be a little bit involved, we've created both a skeleton function with documentation, and provided the following pseudo-code: # # ``` # - Calculate scores for each sample. # - Get a set of unique sample labels. # - Set a score minimum # - Initialize variables y_lower, and y_step # - y_lower is the lower bound on the x-axis for the first cluster's silhouette # - y_step is the distance between cluster silhouettes # - Initialize variable, breaks # - breaks are the middle point of each cluster silhouette and will be used to # position the axis label # - Interate through each cluster label, for each cluster: # - Calcaluate the variable y_upper by adding the number of samples # - Fill the area between y_lower and y_upper using the silhoutte scores for # each sample # - Calculate middle point of y distance. Append the variable break. # - Calculate new y_lower value # - Label axes with appropriate names and tick marks # - Create dashed line at the average silhouette score over all samples # ``` # # **Hint**: you might find [ax.fill_betweenx()](https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.axes.Axes.fill_betweenx.html) # and [ax.set_yticks()](https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.axes.Axes.set_yticks.html?highlight=set_yticks#matplotlib.axes.Axes.set_yticks)/ # [ax.set_yticklabels()](https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.axes.Axes.set_yticklabels.html?highlight=set_yticklabels#matplotlib.axes.Axes.set_yticklabels) useful. # In[4]: def silhouette_plot(X, y, ax=None): """ Plot silhouette scores for all samples across clusters. Parameters ---------- X : numpy.ndarray Numerical data used to cluster the data. y : numpy.ndarray Cluster labels assigned to each sample. ax : matplotlib.Axes Axis object to plot scores onto. Default is None, and a new axis will be created. Returns ------- matplotlib.Axes """ if ax is None: ax = plt.subplot() scores = metrics.silhouette_samples(X, y) clusters = sorted(np.unique(y)) score_min = 0 y_lower, y_step = 5, 5 props = plt.rcParams['axes.prop_cycle'] colors = itertools.cycle(props.by_key()['color']) breaks = [] for each, color in zip(clusters, colors): # Aggregate the silhouette scores for samples, sort scores for # area filling cluster_scores = scores[y == each] cluster_scores.sort() y_upper = y_lower + len(cluster_scores) ax.fill_betweenx(
np.arange(y_lower, y_upper)
numpy.arange
""" A set of NumPy functions to apply per chunk """ from __future__ import absolute_import, division, print_function from collections import Container, Iterable, Sequence from functools import wraps from toolz import concat import numpy as np from . import numpy_compat as npcompat from ..compatibility import getargspec from ..utils import ignoring def keepdims_wrapper(a_callable): """ A wrapper for functions that don't provide keepdims to ensure that they do. """ if "keepdims" in getargspec(a_callable).args: return a_callable @wraps(a_callable) def keepdims_wrapped_callable(x, axis=None, keepdims=None, *args, **kwargs): r = a_callable(x, axis=axis, *args, **kwargs) if not keepdims: return r axes = axis if axes is None: axes = range(x.ndim) if not isinstance(axes, (Container, Iterable, Sequence)): axes = [axes] r_slice = tuple() for each_axis in range(x.ndim): if each_axis in axes: r_slice += (None,) else: r_slice += (slice(None),) r = r[r_slice] return r return keepdims_wrapped_callable # Wrap NumPy functions to ensure they provide keepdims. sum = keepdims_wrapper(np.sum) prod = keepdims_wrapper(np.prod) min = keepdims_wrapper(np.min) max = keepdims_wrapper(np.max) argmin = keepdims_wrapper(np.argmin) nanargmin = keepdims_wrapper(np.nanargmin) argmax = keepdims_wrapper(np.argmax) nanargmax = keepdims_wrapper(np.nanargmax) any = keepdims_wrapper(np.any) all = keepdims_wrapper(np.all) nansum = keepdims_wrapper(np.nansum) try: from numpy import nanprod, nancumprod, nancumsum except ImportError: # pragma: no cover nanprod = npcompat.nanprod nancumprod = npcompat.nancumprod nancumsum = npcompat.nancumsum nanprod = keepdims_wrapper(nanprod) nancumprod = keepdims_wrapper(nancumprod) nancumsum = keepdims_wrapper(nancumsum) nanmin = keepdims_wrapper(np.nanmin) nanmax = keepdims_wrapper(np.nanmax) mean = keepdims_wrapper(np.mean) with ignoring(AttributeError): nanmean = keepdims_wrapper(np.nanmean) var = keepdims_wrapper(np.var) with ignoring(AttributeError): nanvar = keepdims_wrapper(np.nanvar) std = keepdims_wrapper(np.std) with ignoring(AttributeError): nanstd = keepdims_wrapper(np.nanstd) def coarsen(reduction, x, axes, trim_excess=False): """ Coarsen array by applying reduction to fixed size neighborhoods Parameters ---------- reduction: function Function like np.sum, np.mean, etc... x: np.ndarray Array to be coarsened axes: dict Mapping of axis to coarsening factor Examples -------- >>> x = np.array([1, 2, 3, 4, 5, 6]) >>> coarsen(np.sum, x, {0: 2}) array([ 3, 7, 11]) >>> coarsen(np.max, x, {0: 3}) array([3, 6]) Provide dictionary of scale per dimension >>> x = np.arange(24).reshape((4, 6)) >>> x array([[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]) >>> coarsen(np.min, x, {0: 2, 1: 3}) array([[ 0, 3], [12, 15]]) You must avoid excess elements explicitly >>> x = np.array([1, 2, 3, 4, 5, 6, 7, 8]) >>> coarsen(np.min, x, {0: 3}, trim_excess=True) array([1, 4]) """ # Insert singleton dimensions if they don't exist already for i in range(x.ndim): if i not in axes: axes[i] = 1 if trim_excess: ind = tuple(slice(0, -(d % axes[i])) if d % axes[i] else slice(None, None) for i, d in enumerate(x.shape)) x = x[ind] # (10, 10) -> (5, 2, 5, 2) newshape = tuple(concat([(x.shape[i] / axes[i], axes[i]) for i in range(x.ndim)])) return reduction(x.reshape(newshape), axis=tuple(range(1, x.ndim * 2, 2))) def trim(x, axes=None): """ Trim boundaries off of array >>> x = np.arange(24).reshape((4, 6)) >>> trim(x, axes={0: 0, 1: 1}) array([[ 1, 2, 3, 4], [ 7, 8, 9, 10], [13, 14, 15, 16], [19, 20, 21, 22]]) >>> trim(x, axes={0: 1, 1: 1}) array([[ 7, 8, 9, 10], [13, 14, 15, 16]]) """ if isinstance(axes, int): axes = [axes] * x.ndim if isinstance(axes, dict): axes = [axes.get(i, 0) for i in range(x.ndim)] return x[tuple(slice(ax, -ax if ax else None) for ax in axes)] try: from numpy import broadcast_to except ImportError: # pragma: no cover broadcast_to = npcompat.broadcast_to def topk(k, x): """ Top k elements of an array >>> topk(2, np.array([5, 1, 3, 6])) array([6, 5]) """ # http://stackoverflow.com/a/23734295/616616 by larsmans k = np.minimum(k, len(x)) ind = np.argpartition(x, -k)[-k:] return
np.sort(x[ind])
numpy.sort
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2014-2018 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ """ This modules provides the rendering of plot titles, axes and grid. """ __authors__ = ["<NAME>"] __license__ = "MIT" __date__ = "03/04/2017" # TODO # keep aspect ratio managed here? # smarter dirty flag handling? import datetime as dt import math import weakref import logging from collections import namedtuple import numpy from ...._glutils import gl, Program from ..._utils import FLOAT32_SAFE_MIN, FLOAT32_MINPOS, FLOAT32_SAFE_MAX from .GLSupport import mat4Ortho from .GLText import Text2D, CENTER, BOTTOM, TOP, LEFT, RIGHT, ROTATE_270 from ..._utils.ticklayout import niceNumbersAdaptative, niceNumbersForLog10 from ..._utils.dtime_ticklayout import calcTicksAdaptive, bestFormatString from ..._utils.dtime_ticklayout import timestamp _logger = logging.getLogger(__name__) # PlotAxis #################################################################### class PlotAxis(object): """Represents a 1D axis of the plot. This class is intended to be used with :class:`GLPlotFrame`. """ def __init__(self, plot, tickLength=(0., 0.), labelAlign=CENTER, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=CENTER, titleRotate=0, titleOffset=(0., 0.)): self._ticks = None self._plot = weakref.ref(plot) self._isDateTime = False self._timeZone = None self._isLog = False self._dataRange = 1., 100. self._displayCoords = (0., 0.), (1., 0.) self._title = '' self._tickLength = tickLength self._labelAlign = labelAlign self._labelVAlign = labelVAlign self._titleAlign = titleAlign self._titleVAlign = titleVAlign self._titleRotate = titleRotate self._titleOffset = titleOffset @property def dataRange(self): """The range of the data represented on the axis as a tuple of 2 floats: (min, max).""" return self._dataRange @dataRange.setter def dataRange(self, dataRange): assert len(dataRange) == 2 assert dataRange[0] <= dataRange[1] dataRange = float(dataRange[0]), float(dataRange[1]) if dataRange != self._dataRange: self._dataRange = dataRange self._dirtyTicks() @property def isLog(self): """Whether the axis is using a log10 scale or not as a bool.""" return self._isLog @isLog.setter def isLog(self, isLog): isLog = bool(isLog) if isLog != self._isLog: self._isLog = isLog self._dirtyTicks() @property def timeZone(self): """Returnss datetime.tzinfo that is used if this axis plots date times.""" return self._timeZone @timeZone.setter def timeZone(self, tz): """Sets dateetime.tzinfo that is used if this axis plots date times.""" self._timeZone = tz self._dirtyTicks() @property def isTimeSeries(self): """Whether the axis is showing floats as datetime objects""" return self._isDateTime @isTimeSeries.setter def isTimeSeries(self, isTimeSeries): isTimeSeries = bool(isTimeSeries) if isTimeSeries != self._isDateTime: self._isDateTime = isTimeSeries self._dirtyTicks() @property def displayCoords(self): """The coordinates of the start and end points of the axis in display space (i.e., in pixels) as a tuple of 2 tuples of 2 floats: ((x0, y0), (x1, y1)). """ return self._displayCoords @displayCoords.setter def displayCoords(self, displayCoords): assert len(displayCoords) == 2 assert len(displayCoords[0]) == 2 assert len(displayCoords[1]) == 2 displayCoords = tuple(displayCoords[0]), tuple(displayCoords[1]) if displayCoords != self._displayCoords: self._displayCoords = displayCoords self._dirtyTicks() @property def title(self): """The text label associated with this axis as a str in latin-1.""" return self._title @title.setter def title(self, title): if title != self._title: self._title = title plot = self._plot() if plot is not None: plot._dirty() @property def ticks(self): """Ticks as tuples: ((x, y) in display, dataPos, textLabel).""" if self._ticks is None: self._ticks = tuple(self._ticksGenerator()) return self._ticks def getVerticesAndLabels(self): """Create the list of vertices for axis and associated text labels. :returns: A tuple: List of 2D line vertices, List of Text2D labels. """ vertices = list(self.displayCoords) # Add start and end points labels = [] tickLabelsSize = [0., 0.] xTickLength, yTickLength = self._tickLength for (xPixel, yPixel), dataPos, text in self.ticks: if text is None: tickScale = 0.5 else: tickScale = 1. label = Text2D(text=text, x=xPixel - xTickLength, y=yPixel - yTickLength, align=self._labelAlign, valign=self._labelVAlign) width, height = label.size if width > tickLabelsSize[0]: tickLabelsSize[0] = width if height > tickLabelsSize[1]: tickLabelsSize[1] = height labels.append(label) vertices.append((xPixel, yPixel)) vertices.append((xPixel + tickScale * xTickLength, yPixel + tickScale * yTickLength)) (x0, y0), (x1, y1) = self.displayCoords xAxisCenter = 0.5 * (x0 + x1) yAxisCenter = 0.5 * (y0 + y1) xOffset, yOffset = self._titleOffset # Adaptative title positioning: # tickNorm = math.sqrt(xTickLength ** 2 + yTickLength ** 2) # xOffset = -tickLabelsSize[0] * xTickLength / tickNorm # xOffset -= 3 * xTickLength # yOffset = -tickLabelsSize[1] * yTickLength / tickNorm # yOffset -= 3 * yTickLength axisTitle = Text2D(text=self.title, x=xAxisCenter + xOffset, y=yAxisCenter + yOffset, align=self._titleAlign, valign=self._titleVAlign, rotate=self._titleRotate) labels.append(axisTitle) return vertices, labels def _dirtyTicks(self): """Mark ticks as dirty and notify listener (i.e., background).""" self._ticks = None plot = self._plot() if plot is not None: plot._dirty() @staticmethod def _frange(start, stop, step): """range for float (including stop).""" while start <= stop: yield start start += step def _ticksGenerator(self): """Generator of ticks as tuples: ((x, y) in display, dataPos, textLabel). """ dataMin, dataMax = self.dataRange if self.isLog and dataMin <= 0.: _logger.warning( 'Getting ticks while isLog=True and dataRange[0]<=0.') dataMin = 1. if dataMax < dataMin: dataMax = 1. if dataMin != dataMax: # data range is not null (x0, y0), (x1, y1) = self.displayCoords if self.isLog: if self.isTimeSeries: _logger.warning("Time series not implemented for log-scale") logMin, logMax = math.log10(dataMin), math.log10(dataMax) tickMin, tickMax, step, _ = niceNumbersForLog10(logMin, logMax) xScale = (x1 - x0) / (logMax - logMin) yScale = (y1 - y0) / (logMax - logMin) for logPos in self._frange(tickMin, tickMax, step): if logMin <= logPos <= logMax: dataPos = 10 ** logPos xPixel = x0 + (logPos - logMin) * xScale yPixel = y0 + (logPos - logMin) * yScale text = '1e%+03d' % logPos yield ((xPixel, yPixel), dataPos, text) if step == 1: ticks = list(self._frange(tickMin, tickMax, step))[:-1] for logPos in ticks: dataOrigPos = 10 ** logPos for index in range(2, 10): dataPos = dataOrigPos * index if dataMin <= dataPos <= dataMax: logSubPos = math.log10(dataPos) xPixel = x0 + (logSubPos - logMin) * xScale yPixel = y0 + (logSubPos - logMin) * yScale yield ((xPixel, yPixel), dataPos, None) else: xScale = (x1 - x0) / (dataMax - dataMin) yScale = (y1 - y0) / (dataMax - dataMin) nbPixels = math.sqrt(pow(x1 - x0, 2) + pow(y1 - y0, 2)) # Density of 1.3 label per 92 pixels # i.e., 1.3 label per inch on a 92 dpi screen tickDensity = 1.3 / 92 if not self.isTimeSeries: tickMin, tickMax, step, nbFrac = niceNumbersAdaptative( dataMin, dataMax, nbPixels, tickDensity) for dataPos in self._frange(tickMin, tickMax, step): if dataMin <= dataPos <= dataMax: xPixel = x0 + (dataPos - dataMin) * xScale yPixel = y0 + (dataPos - dataMin) * yScale if nbFrac == 0: text = '%g' % dataPos else: text = ('%.' + str(nbFrac) + 'f') % dataPos yield ((xPixel, yPixel), dataPos, text) else: # Time series dtMin = dt.datetime.fromtimestamp(dataMin, tz=self.timeZone) dtMax = dt.datetime.fromtimestamp(dataMax, tz=self.timeZone) tickDateTimes, spacing, unit = calcTicksAdaptive( dtMin, dtMax, nbPixels, tickDensity) for tickDateTime in tickDateTimes: if dtMin <= tickDateTime <= dtMax: dataPos = timestamp(tickDateTime) xPixel = x0 + (dataPos - dataMin) * xScale yPixel = y0 + (dataPos - dataMin) * yScale fmtStr = bestFormatString(spacing, unit) text = tickDateTime.strftime(fmtStr) yield ((xPixel, yPixel), dataPos, text) # GLPlotFrame ################################################################# class GLPlotFrame(object): """Base class for rendering a 2D frame surrounded by axes.""" _TICK_LENGTH_IN_PIXELS = 5 _LINE_WIDTH = 1 _SHADERS = { 'vertex': """ attribute vec2 position; uniform mat4 matrix; void main(void) { gl_Position = matrix * vec4(position, 0.0, 1.0); } """, 'fragment': """ uniform vec4 color; uniform float tickFactor; /* = 1./tickLength or 0. for solid line */ void main(void) { if (mod(tickFactor * (gl_FragCoord.x + gl_FragCoord.y), 2.) < 1.) { gl_FragColor = color; } else { discard; } } """ } _Margins = namedtuple('Margins', ('left', 'right', 'top', 'bottom')) # Margins used when plot frame is not displayed _NoDisplayMargins = _Margins(0, 0, 0, 0) def __init__(self, margins): """ :param margins: The margins around plot area for axis and labels. :type margins: dict with 'left', 'right', 'top', 'bottom' keys and values as ints. """ self._renderResources = None self._margins = self._Margins(**margins) self.axes = [] # List of PlotAxis to be updated by subclasses self._grid = False self._size = 0., 0. self._title = '' self._displayed = True @property def isDirty(self): """True if it need to refresh graphic rendering, False otherwise.""" return self._renderResources is None GRID_NONE = 0 GRID_MAIN_TICKS = 1 GRID_SUB_TICKS = 2 GRID_ALL_TICKS = (GRID_MAIN_TICKS + GRID_SUB_TICKS) @property def displayed(self): """Whether axes and their labels are displayed or not (bool)""" return self._displayed @displayed.setter def displayed(self, displayed): displayed = bool(displayed) if displayed != self._displayed: self._displayed = displayed self._dirty() @property def margins(self): """Margins in pixels around the plot.""" if not self.displayed: return self._NoDisplayMargins else: return self._margins @property def grid(self): """Grid display mode: - 0: No grid. - 1: Grid on main ticks. - 2: Grid on sub-ticks for log scale axes. - 3: Grid on main and sub ticks.""" return self._grid @grid.setter def grid(self, grid): assert grid in (self.GRID_NONE, self.GRID_MAIN_TICKS, self.GRID_SUB_TICKS, self.GRID_ALL_TICKS) if grid != self._grid: self._grid = grid self._dirty() @property def size(self): """Size in pixels of the plot area including margins.""" return self._size @size.setter def size(self, size): assert len(size) == 2 size = tuple(size) if size != self._size: self._size = size self._dirty() @property def plotOrigin(self): """Plot area origin (left, top) in widget coordinates in pixels.""" return self.margins.left, self.margins.top @property def plotSize(self): """Plot area size (width, height) in pixels.""" w, h = self.size w -= self.margins.left + self.margins.right h -= self.margins.top + self.margins.bottom return w, h @property def title(self): """Main title as a str in latin-1.""" return self._title @title.setter def title(self, title): if title != self._title: self._title = title self._dirty() # In-place update # if self._renderResources is not None: # self._renderResources[-1][-1].text = title def _dirty(self): # When Text2D require discard we need to handle it self._renderResources = None def _buildGridVertices(self): if self._grid == self.GRID_NONE: return [] elif self._grid == self.GRID_MAIN_TICKS: def test(text): return text is not None elif self._grid == self.GRID_SUB_TICKS: def test(text): return text is None elif self._grid == self.GRID_ALL_TICKS: def test(_): return True else: logging.warning('Wrong grid mode: %d' % self._grid) return [] return self._buildGridVerticesWithTest(test) def _buildGridVerticesWithTest(self, test): """Override in subclass to generate grid vertices""" return [] def _buildVerticesAndLabels(self): # To fill with copy of axes lists vertices = [] labels = [] for axis in self.axes: axisVertices, axisLabels = axis.getVerticesAndLabels() vertices += axisVertices labels += axisLabels vertices = numpy.array(vertices, dtype=numpy.float32) # Add main title xTitle = (self.size[0] + self.margins.left - self.margins.right) // 2 yTitle = self.margins.top - self._TICK_LENGTH_IN_PIXELS labels.append(Text2D(text=self.title, x=xTitle, y=yTitle, align=CENTER, valign=BOTTOM)) # grid gridVertices = numpy.array(self._buildGridVertices(), dtype=numpy.float32) self._renderResources = (vertices, gridVertices, labels) _program = Program( _SHADERS['vertex'], _SHADERS['fragment'], attrib0='position') def render(self): if not self.displayed: return if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) gl.glViewport(0, 0, width, height) prog = self._program prog.use() gl.glLineWidth(self._LINE_WIDTH) gl.glUniformMatrix4fv(prog.uniforms['matrix'], 1, gl.GL_TRUE, matProj.astype(numpy.float32)) gl.glUniform4f(prog.uniforms['color'], 0., 0., 0., 1.) gl.glUniform1f(prog.uniforms['tickFactor'], 0.) gl.glEnableVertexAttribArray(prog.attributes['position']) gl.glVertexAttribPointer(prog.attributes['position'], 2, gl.GL_FLOAT, gl.GL_FALSE, 0, vertices) gl.glDrawArrays(gl.GL_LINES, 0, len(vertices)) for label in labels: label.render(matProj) def renderGrid(self): if self._grid == self.GRID_NONE: return if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) gl.glViewport(0, 0, width, height) prog = self._program prog.use() gl.glLineWidth(self._LINE_WIDTH) gl.glUniformMatrix4fv(prog.uniforms['matrix'], 1, gl.GL_TRUE, matProj.astype(numpy.float32)) gl.glUniform4f(prog.uniforms['color'], 0.7, 0.7, 0.7, 1.) gl.glUniform1f(prog.uniforms['tickFactor'], 0.) # 1/2.) # 1/tickLen gl.glEnableVertexAttribArray(prog.attributes['position']) gl.glVertexAttribPointer(prog.attributes['position'], 2, gl.GL_FLOAT, gl.GL_FALSE, 0, gridVertices) gl.glDrawArrays(gl.GL_LINES, 0, len(gridVertices)) # GLPlotFrame2D ############################################################### class GLPlotFrame2D(GLPlotFrame): def __init__(self, margins): """ :param margins: The margins around plot area for axis and labels. :type margins: dict with 'left', 'right', 'top', 'bottom' keys and values as ints. """ super(GLPlotFrame2D, self).__init__(margins) self.axes.append(PlotAxis(self, tickLength=(0., -5.), labelAlign=CENTER, labelVAlign=TOP, titleAlign=CENTER, titleVAlign=TOP, titleRotate=0, titleOffset=(0, self.margins.bottom // 2))) self._x2AxisCoords = () self.axes.append(PlotAxis(self, tickLength=(5., 0.), labelAlign=RIGHT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=BOTTOM, titleRotate=ROTATE_270, titleOffset=(-3 * self.margins.left // 4, 0))) self._y2Axis = PlotAxis(self, tickLength=(-5., 0.), labelAlign=LEFT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=TOP, titleRotate=ROTATE_270, titleOffset=(3 * self.margins.right // 4, 0)) self._isYAxisInverted = False self._dataRanges = { 'x': (1., 100.), 'y': (1., 100.), 'y2': (1., 100.)} self._baseVectors = (1., 0.), (0., 1.) self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None def _dirty(self): super(GLPlotFrame2D, self)._dirty() self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None @property def isDirty(self): """True if it need to refresh graphic rendering, False otherwise.""" return (super(GLPlotFrame2D, self).isDirty or self._transformedDataRanges is None or self._transformedDataProjMat is None or self._transformedDataY2ProjMat is None) @property def xAxis(self): return self.axes[0] @property def yAxis(self): return self.axes[1] @property def y2Axis(self): return self._y2Axis @property def isY2Axis(self): """Whether to display the left Y axis or not.""" return len(self.axes) == 3 @isY2Axis.setter def isY2Axis(self, isY2Axis): if isY2Axis != self.isY2Axis: if isY2Axis: self.axes.append(self._y2Axis) else: self.axes = self.axes[:2] self._dirty() @property def isYAxisInverted(self): """Whether Y axes are inverted or not as a bool.""" return self._isYAxisInverted @isYAxisInverted.setter def isYAxisInverted(self, value): value = bool(value) if value != self._isYAxisInverted: self._isYAxisInverted = value self._dirty() DEFAULT_BASE_VECTORS = (1., 0.), (0., 1.) """Values of baseVectors for orthogonal axes.""" @property def baseVectors(self): """Coordinates of the X and Y axes in the orthogonal plot coords. Raises ValueError if corresponding matrix is singular. 2 tuples of 2 floats: (xx, xy), (yx, yy) """ return self._baseVectors @baseVectors.setter def baseVectors(self, baseVectors): self._dirty() (xx, xy), (yx, yy) = baseVectors vectors = (float(xx), float(xy)), (float(yx), float(yy)) det = (vectors[0][0] * vectors[1][1] - vectors[1][0] * vectors[0][1]) if det == 0.: raise ValueError("Singular matrix for base vectors: " + str(vectors)) if vectors != self._baseVectors: self._baseVectors = vectors self._dirty() @property def dataRanges(self): """Ranges of data visible in the plot on x, y and y2 axes. This is different to the axes range when axes are not orthogonal. Type: ((xMin, xMax), (yMin, yMax), (y2Min, y2Max)) """ return self._DataRanges(self._dataRanges['x'], self._dataRanges['y'], self._dataRanges['y2']) @staticmethod def _clipToSafeRange(min_, max_, isLog): # Clip range if needed minLimit = FLOAT32_MINPOS if isLog else FLOAT32_SAFE_MIN min_ = numpy.clip(min_, minLimit, FLOAT32_SAFE_MAX) max_ = numpy.clip(max_, minLimit, FLOAT32_SAFE_MAX) assert min_ < max_ return min_, max_ def setDataRanges(self, x=None, y=None, y2=None): """Set data range over each axes. The provided ranges are clipped to possible values (i.e., 32 float range + positive range for log scale). :param x: (min, max) data range over X axis :param y: (min, max) data range over Y axis :param y2: (min, max) data range over Y2 axis """ if x is not None: self._dataRanges['x'] = \ self._clipToSafeRange(x[0], x[1], self.xAxis.isLog) if y is not None: self._dataRanges['y'] = \ self._clipToSafeRange(y[0], y[1], self.yAxis.isLog) if y2 is not None: self._dataRanges['y2'] = \ self._clipToSafeRange(y2[0], y2[1], self.y2Axis.isLog) self.xAxis.dataRange = self._dataRanges['x'] self.yAxis.dataRange = self._dataRanges['y'] self.y2Axis.dataRange = self._dataRanges['y2'] _DataRanges = namedtuple('dataRanges', ('x', 'y', 'y2')) @property def transformedDataRanges(self): """Bounds of the displayed area in transformed data coordinates (i.e., log scale applied if any as well as skew) 3-tuple of 2-tuple (min, max) for each axis: x, y, y2. """ if self._transformedDataRanges is None: (xMin, xMax), (yMin, yMax), (y2Min, y2Max) = self.dataRanges if self.xAxis.isLog: try: xMin = math.log10(xMin) except ValueError: _logger.info('xMin: warning log10(%f)', xMin) xMin = 0. try: xMax = math.log10(xMax) except ValueError: _logger.info('xMax: warning log10(%f)', xMax) xMax = 0. if self.yAxis.isLog: try: yMin = math.log10(yMin) except ValueError: _logger.info('yMin: warning log10(%f)', yMin) yMin = 0. try: yMax = math.log10(yMax) except ValueError: _logger.info('yMax: warning log10(%f)', yMax) yMax = 0. try: y2Min = math.log10(y2Min) except ValueError: _logger.info('yMin: warning log10(%f)', y2Min) y2Min = 0. try: y2Max = math.log10(y2Max) except ValueError: _logger.info('yMax: warning log10(%f)', y2Max) y2Max = 0. # Non-orthogonal axes if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors skew_mat =
numpy.array(((xx, yx), (xy, yy)))
numpy.array
''' Unit tests for CurvRectRegridder @author: <NAME> ''' from __future__ import print_function import unittest import numpy import ESMP from esmpcontrol import ESMPControl from regrid2d import CurvRectRegridder class CurvRectRegridderTests(unittest.TestCase): ''' Unit tests for the CurvRectRegridder class ''' # flag to indicate when to call ESMPControl().stopESMP() last_test = False def setUp(self): ''' Create some repeatedly used test data. ''' # Use tuples for the arrays to make sure the NumPy # arrays created in the class methods are always used; # not arrays that happened to be passed as input. # Also verifies passed data is not modified. # Rectilinear coordinates, data. and flags crn_lons = numpy.linspace(-110, -90, 11) crn_lats = numpy.linspace(0, 32, 9) ctr_lons = 0.5 * (crn_lons[:-1] + crn_lons[1:]) ctr_lats = 0.5 * (crn_lats[:-1] + crn_lats[1:]) ctr_lats_mat, ctr_lons_mat = numpy.meshgrid(ctr_lats, ctr_lons) data = -2.0 * numpy.sin(numpy.deg2rad(ctr_lons_mat)) \ * numpy.cos(numpy.deg2rad(ctr_lats_mat)) ctr_flags = numpy.zeros(data.shape, dtype=numpy.int32) ctr_flags[:2, :2] = 1 crn_flags = numpy.zeros((crn_lons.shape[0], crn_lats.shape[0]), dtype=numpy.int32) crn_flags[:2, :2] = 1 # Turn rectilinear arrays into tuples self.rect_corner_lons = tuple(crn_lons) self.rect_corner_lats = tuple(crn_lats) self.rect_center_lons = tuple(ctr_lons) self.rect_center_lats = tuple(ctr_lats) self.rect_center_ignr = tuple([tuple(subarr) for subarr in ctr_flags.tolist()]) self.rect_corner_ignr = tuple([tuple(subarr) for subarr in crn_flags.tolist()]) self.rect_data = tuple([tuple(subarr) for subarr in data.tolist()]) # Curvilinear coordindates - one step further out on all sides of the region crn_lons = numpy.linspace(-112, -88, 13) crn_lats = numpy.linspace(-4, 36, 11) crn_lats_mat, crn_lons_mat = numpy.meshgrid(crn_lats, crn_lons) ctr_lons = 0.5 * (crn_lons[:-1] + crn_lons[1:]) ctr_lats = 0.5 * (crn_lats[:-1] + crn_lats[1:]) ctr_lats_mat, ctr_lons_mat = numpy.meshgrid(ctr_lats, ctr_lons) # Pull coordinates in some towards the center crn_lons = crn_lons_mat * numpy.cos(numpy.deg2rad(crn_lats_mat - 16.0) / 2.0) crn_lats = crn_lats_mat * numpy.cos(numpy.deg2rad(crn_lons_mat + 100.0) / 2.0) ctr_lons = ctr_lons_mat * numpy.cos(numpy.deg2rad(ctr_lats_mat - 16.0) / 2.0) ctr_lats = ctr_lats_mat * numpy.cos(numpy.deg2rad(ctr_lons_mat + 100.0) / 2.0) # Curvilinear data and flags data = -2.0 * numpy.sin(numpy.deg2rad(ctr_lons)) \ * numpy.cos(numpy.deg2rad(ctr_lats)) ctr_flags = numpy.zeros(data.shape, dtype=numpy.int32) ctr_flags[:3, :3] = 1 crn_flags = numpy.zeros(crn_lons.shape, dtype=numpy.int32) crn_flags[:3, :3] = 1 # Turn curvilinear arrays into tuples self.curv_corner_lons = tuple([tuple(subarr) for subarr in crn_lons.tolist()]) self.curv_corner_lats = tuple([tuple(subarr) for subarr in crn_lats.tolist()]) self.curv_center_lons = tuple([tuple(subarr) for subarr in ctr_lons.tolist()]) self.curv_center_lats = tuple([tuple(subarr) for subarr in ctr_lats.tolist()]) self.curv_center_ignr = tuple([tuple(subarr) for subarr in ctr_flags.tolist()]) self.curv_corner_ignr = tuple([tuple(subarr) for subarr in crn_flags.tolist()]) self.curv_data = tuple([tuple(subarr) for subarr in data.tolist()]) # undef_val must be a numpy array self.undef_val = numpy.array([1.0E10], dtype=numpy.float64) if not ESMPControl().startCheckESMP(): self.fail("startCheckESMP did not succeed - test called after last_test set to True") def test01CurvRectRegridderInit(self): ''' Test of the CurvRectRegridder.__init__ method. ''' regridder = CurvRectRegridder() self.assertTrue(regridder != None, "CurvRectRegridder() returned None") regridder.finalize() def test02CreateCurvGrid(self): ''' Tests the CurvRectRegridder.createCurvGrid method. Since nothing is returned from this method, just checks for unexpected/expected Errors being raised. ''' regridder = CurvRectRegridder() # Test with all corner and center data regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, self.curv_center_ignr, self.curv_corner_lons, self.curv_corner_lats, self.curv_corner_ignr) # Test without flags regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, None, self.curv_corner_lons, self.curv_corner_lats) # Test without corners regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, self.curv_center_ignr) # Test without corners or flags regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats) # TODO: Test invalid cases # Done with this regridder regridder.finalize() def test03AssignCurvField(self): ''' Tests the CurvRectRegridder.assignCurvGrid method. Since nothing is returned from this method, just checks for unexpected/expected Errors being raised. ''' regridder = CurvRectRegridder() # Test with all corner and center data regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, self.curv_center_ignr, self.curv_corner_lons, self.curv_corner_lats, self.curv_corner_ignr) regridder.assignCurvField() regridder.assignCurvField(self.curv_data) # Test without flags regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, None, self.curv_corner_lons, self.curv_corner_lats) regridder.assignCurvField(self.curv_data) regridder.assignCurvField() # Test without corners regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, self.curv_center_ignr) regridder.assignCurvField(self.curv_data) regridder.assignCurvField() # Test without corners or flags regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats) regridder.assignCurvField() regridder.assignCurvField(self.curv_data) # TODO: Test invalid cases # Done with this regridder regridder.finalize() def test04CreateRectGrid(self): ''' Tests the CurvRectRegridder.createRectGrid method. Since nothing is returned from this method, just checks for unexpected/expected Errors being raised. ''' regridder = CurvRectRegridder() # Test with all corner and center data regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, self.rect_center_ignr, self.rect_corner_lons, self.rect_corner_lats, self.rect_corner_ignr) # Test without flags regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, None, self.rect_corner_lons, self.rect_corner_lats) # Test without corners regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, self.rect_center_ignr) # Test without corners or flags regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats) # TODO: Test invalid cases # Done with this regridder regridder.finalize() def test05AssignRectField(self): ''' Tests the CurvRectRegridder.assignRectGrid method. Since nothing is returned from this method, just checks for unexpected/expected Errors being raised. ''' regridder = CurvRectRegridder() # Test with all corner and center data regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, self.rect_center_ignr, self.rect_corner_lons, self.rect_corner_lats, self.rect_corner_ignr) regridder.assignRectField(self.rect_data) regridder.assignRectField() # Test without flags regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, None, self.rect_corner_lons, self.rect_corner_lats) regridder.assignRectField() regridder.assignRectField(self.rect_data) # Test without corners regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, self.rect_center_ignr) regridder.assignRectField() regridder.assignRectField(self.rect_data) # Test without corners or flags regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats) regridder.assignRectField(self.rect_data) regridder.assignRectField() # TODO: Test invalid cases # Done with this regridder regridder.finalize() def test06RegridCurvToRectConserve(self): ''' Tests the CurvRectRegridder.regridCurvToRect method using conservative regridding ''' regridder = CurvRectRegridder() # Test with all corner and center data, using conservative regridding regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, self.curv_center_ignr, self.curv_corner_lons, self.curv_corner_lats, self.curv_corner_ignr) regridder.assignCurvField(self.curv_data) regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, self.rect_center_ignr, self.rect_corner_lons, self.rect_corner_lats, self.rect_corner_ignr) regridder.assignRectField() regrid_data = regridder.regridCurvToRect(self.undef_val, ESMP.ESMP_REGRIDMETHOD_CONSERVE) expect_data = numpy.array(self.rect_data, dtype=numpy.float64) undef_flags = numpy.array(self.rect_center_ignr, dtype=numpy.bool) expect_data[undef_flags] = self.undef_val mismatch_found = False # Couple "good" points next to ignored data area are a bit wonky expect_data[2, 0] = self.undef_val regrid_data[2, 0] = self.undef_val expect_data[2, 1] = self.undef_val regrid_data[2, 1] = self.undef_val for i in range(expect_data.shape[0]): for j in range(expect_data.shape[1]): if numpy.abs(expect_data[i, j] - regrid_data[i, j]) > 0.0007: mismatch_found = True print("expect = %#6.4f, found = %#6.4f for lon = %5.1f, " \ "lat = %5.1f" % (expect_data[i, j], regrid_data[i, j], self.rect_center_lons[i], self.rect_center_lats[j])) if mismatch_found: self.fail("data mismatch found") def test07RegridCurvToRectBilinear(self): ''' Tests the CurvRectRegridder.regridCurvToRect method using bilinear regridding ''' regridder = CurvRectRegridder() # Test with only center data and no flags, using bilinear regridding regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats) regridder.assignCurvField(self.curv_data) regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats) regridder.assignRectField() regrid_data = regridder.regridCurvToRect(self.undef_val, ESMP.ESMP_REGRIDMETHOD_BILINEAR) expect_data = numpy.array(self.rect_data, dtype=numpy.float64) mismatch_found = False # one point falls outside the curvilinear centerpoints grid? expect_data[5, 0] = self.undef_val for i in range(expect_data.shape[0]): for j in range(expect_data.shape[1]): if numpy.abs(expect_data[i, j] - regrid_data[i, j]) > 0.0003: mismatch_found = True print("expect = %#6.4f, found = %#6.4f for lon = %5.1f, " \ "lat = %5.1f" % (expect_data[i, j], regrid_data[i, j], self.rect_center_lons[i], self.rect_center_lats[j])) if mismatch_found: self.fail("data mismatch found") def test08RegridCurvToRectPatch(self): ''' Tests the CurvRectRegridder.regridCurvToRect method using patch regridding ''' regridder = CurvRectRegridder() # Test with only center data, and flags only on rectilinear centers, # using patch regridding regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats) regridder.assignCurvField(self.curv_data) regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, self.rect_center_ignr) regridder.assignRectField() regrid_data = regridder.regridCurvToRect(self.undef_val, ESMP.ESMP_REGRIDMETHOD_PATCH) expect_data = numpy.array(self.rect_data, dtype=numpy.float64) undef_flags = numpy.array(self.rect_center_ignr, dtype=numpy.bool) expect_data[undef_flags] = self.undef_val # one point falls outside the curvilinear centerpoints grid? expect_data[5, 0] = self.undef_val mismatch_found = False for i in range(expect_data.shape[0]): for j in range(expect_data.shape[1]): if numpy.abs(expect_data[i, j] - regrid_data[i, j]) > 0.0011: mismatch_found = True print("expect = %#6.4f, found = %#6.4f for lon = %5.1f, " \ "lat = %5.1f" % (expect_data[i, j], regrid_data[i, j], self.rect_center_lons[i], self.rect_center_lats[j])) if mismatch_found: self.fail("data mismatch found") def test09RegridRectToCurvConserve(self): ''' Tests the CurvRectRegridder.regridRectToCurv method using conservative regridding ''' regridder = CurvRectRegridder() # Test with all corner and center data, using conservative regridding regridder.createCurvGrid(self.curv_center_lons, self.curv_center_lats, self.curv_center_ignr, self.curv_corner_lons, self.curv_corner_lats, self.curv_corner_ignr) regridder.assignCurvField() regridder.createRectGrid(self.rect_center_lons, self.rect_center_lats, self.rect_center_ignr, self.rect_corner_lons, self.rect_corner_lats, self.rect_corner_ignr) regridder.assignRectField(self.rect_data) regrid_data = regridder.regridRectToCurv(self.undef_val, ESMP.ESMP_REGRIDMETHOD_CONSERVE) expect_data =
numpy.array(self.curv_data, dtype=numpy.float64)
numpy.array
import numpy as np import scipy.linalg def elastic_net(A, B, x=None, l1=1, l2=1, lam=1, tol=1e-6, maxiter=10000): """Performs elastic net regression by ADMM minimize ||A*x - B|| + l1*|x| + l2*||x|| Args: A (ndarray) : m x n matrix B (ndarray) : m x k matrix x (ndarray) : optional, n x k matrix (initial guess for solution) l1 (float) : optional, strength of l1 penalty l2 (float) : optional, strength of l2 penalty lam (float) : optional, admm penalty parameter tol (float) : optional, relative tolerance for stopping maxiter(int) : optional, max number of iterations Returns: X (ndarray) : n x k matrix, minimizing the objective References: <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning. """ n = A.shape[1] k = B.shape[1] # admm penalty param lam1 = l1*lam lam2 = l2*lam # cache lu factorization for fast prox operator AtA =
np.dot(A.T, A)
numpy.dot
#!/usr/bin/python3 import numpy as np from numpy import matlib from numpy import random import sys import copy import scipy.signal import scipy.stats.stats from matplotlib import pyplot as plt import unittest def Norm(t): while t > np.pi: t -= 2 * np.pi while t < -np.pi: t += 2 * np.pi return t def Sign(n): return 1.0 if n >= 0.0 else -1.0 class Airfoil(object): def __init__(self, A, rho, lifting=5.0, cmax=1.2): self.A = A # Cross-sectional area, m^2 self.rho = rho # Density of medium, kg / m^2 self.lifting = lifting self.Cmax = cmax def ClipAlpha(self, alpha): return np.clip(Norm(alpha), -np.pi / 2, np.pi / 2) def atanClCd(self, alpha): """ Based on playing around with some common profiles, assuming a linear relationship to calculate atan2(Cl(alpha), Cd(alpha)) w.r.t. alpha seems reasonable. """ clipalpha = self.ClipAlpha(alpha) deltaatan = -Sign(alpha) if abs(alpha) < np.pi / 2.0 else 0.0 return (np.pi / 2.0 - abs(clipalpha)) * np.sign(clipalpha), deltaatan def normClCd(self, alpha): """ Calculates sqrt(Cl^2 + Cd^2). This doesn't seem to capture typical profiles at particularly high angles of attack, but it seems a fair approximation. This may cause us to be more incliuned to sail straight downwind than we really should be. True profiles have a dip ~70-80 deg angle of attack. Returns norm, deltanorm/deltaalpha """ alpha = self.ClipAlpha(alpha) exp = np.exp(-self.lifting * abs(alpha)) norm = self.Cmax * (1.0 - exp) deltanorm = self.Cmax * self.lifting * exp * Sign(alpha) return norm, deltanorm def F(self, alpha, v): """ Arguments: alpha: Airfoil angle of attack v: Relative speed in medium Returns: F, deltaF/deltaalpha: Note: deltaF does not account for heel """ clipalpha = self.ClipAlpha(alpha) S = 0.5 * self.rho * self.A * v ** 2 norm, deltanorm = self.normClCd(clipalpha) F = S * norm deltaF = S * deltanorm # Account for stupid angles of attack deltaF *= -1.0 if abs(alpha) > np.pi / 2.0 else 1.0 return F, deltaF class DebugForces(object): def __init__(self): self.taunet = [] self.Flon = [] self.Flat = [] self.Fs = [] self.Fk = [] self.Fr = [] self.gammas = [] self.gammak = [] self.gammar = [] self.FBlon = [] self.FBlat = [] self.taus = [] self.tauk = [] self.taur = [] self.tauB = [] def UpdateZero(self): self.Update(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) def Update(self, taunet, Flon, Flat, Fs, Fk, Fr, gammas, gammak, gammar, FBlon, FBlat, taus, tauk, taur, tauB): self.taunet.append(taunet) self.Flon.append(Flon) self.Flat.append(Flat) self.Fs.append(Fs) self.Fk.append(Fk) self.Fr.append(Fr) self.gammas.append(gammas) self.gammak.append(gammak) self.gammar.append(gammar) self.FBlon.append(FBlon) self.FBlat.append(FBlat) self.taus.append(taus) self.tauk.append(tauk) self.taur.append(taur) self.tauB.append(tauB) def Flonlat(self, F, gamma): lon = [f * np.cos(g) for f, g in zip(F, gamma)] lat = [f * np.sin(g) for f, g in zip(F, gamma)] return lon, lat def Fslonlat(self): return self.Flonlat(self.Fs, self.gammas) def Fklonlat(self): return self.Flonlat(self.Fk, self.gammak) def Frlonlat(self): return self.Flonlat(self.Fr, self.gammar) class Physics(object): def __init__(self): self.hs = 1.5 # Height of sail CoE above origin, m self.hk = -0.7 # Height of keel CoE above origin, m self.hr = 0.0 # Height of rudder CoE above origin, m # Positions longitudinally on the boat relative # to the origin, in m: self.rs = 0.1 self.rk = 0.0 self.rr = -0.9 # Distance of the CoE from the rotational point (i.e., # 0 would be a rudder that required no force to turn) self.ls = 0.25 self.lr = 0.0 rhowater = 1000.0 # Density of water, kg / m^3 rhoair = 1.225 # Density of air, kg / m^3 As = 2.0 # Sail Area, m^2 Ak = .3 # Keel Area, m^2 Ar = .04 # Rudder Area, m^2 self.sail = Airfoil(As, rhoair, 5.0, 1.4) self.keel = Airfoil(Ak, rhowater, 8.0, 1.4) self.rudder = Airfoil(Ar, rhowater, 4.0, 1.7) self.Blon = 15.0 # Damping term, N / (m / s) self.Blat = 25.0 # Lateral damping term, bigger b/c hull long/thin) # self.Bv = 10.0 self.Bomega = 500 # Damping term, N * m / (rad / sec) self.hb = -1.0 # Height of CoM of boat ballast, m self.wb = 14.0 * 9.8 # Weight of boat ballast, N self.J = 10.0 # Boat Moment of Inertia about yaw, kg * m^2 self.m = 25.0 # Boat mass, kg def SailForces(self, thetaw, vw, deltas): """ Calculates and returns forces from the sail. Arguments: thetaw: Wind, 0 = running downwind, +pi / 2 = wind from port vw: Wind speed, m / s deltas: Sail angle, 0 = all in, +pi / 2 = sail on starboard heel: Boat heel, 0 = upright Returns: Fs: Magnitude of force from sail (N) gammas: Angle of force from sail (rad, 0 = forwards, +pi / 2 = pushing to port) deltaFs: Derivative of Fs w.r.t. deltas deltagamma: Derivative of gamma w.r.t. deltas """ alphas = -Norm(thetaw + deltas + np.pi) atanC, deltaatan = self.sail.atanClCd(alphas) Fs, deltaFs = self.sail.F(alphas, vw) #Fs = Fs if abs(alphas) > 0.08 else 0.0 gammas = Norm(atanC - thetaw) deltaFs = deltaFs * -1.0 # -1 = dalpha / ddeltas deltagamma = deltaatan * -1.0 # -1 = dalpha / ddeltas return Fs, gammas, deltaFs, deltagamma def KeelForces(self, thetac, vc): """ Calculates and returns forces from the sail. Arguments: thetac: Current, 0 = Boat going straight, +pi / 2 = Boat drifting to starboard vc: Speed in water, m / s heel: Boat heel, 0 = upright Returns: Fk: Magnitude of force from keel (N) gammak: Angle of force from keel (rad, 0 = forwards, +pi / 2 = pushing to port) """ alphak = -Norm(thetac) atanC, _ = self.keel.atanClCd(alphak) atanC = (np.pi / 2.0 - 0.05) * np.sign(alphak) Fk, deltaFk = self.keel.F(alphak, vc) gammak = Norm(atanC - thetac + np.pi) return Fk, gammak def RudderForces(self, thetac, vc, deltar): """ Calculates and returns forces from the sail. Arguments: thetac: Current, 0 = Boat going straight, +pi / 2 = Boat drifting to starboard vc: Speed in water, m / s deltar: Rudder angle, 0 = straight, + pi / 2 = rudder on starboard heel: Boat heel, 0 = upright Returns: Fr: Magnitude of force from rudder (N) gammar: Angle of force from rudder (rad, 0 = forwards, +pi / 2 = pushing to port) deltaFr: dFr / ddeltar deltagamma: dgammar / ddeltar """ alphar = -Norm(thetac + deltar) alphar = np.clip(alphar, -.25, .25) atanC = (np.pi / 2.0 - 0.05) * Sign(alphar) Fr = 0.5 * self.rudder.A * self.rudder.rho * vc ** 2 * 5.0 * abs(alphar) gammar = Norm(atanC - thetac + np.pi) deltaFr = 0.5 * self.rudder.A * self.rudder.rho * vc ** 2 * 5.0 * -Sign(alphar) deltagamma = 0.0 return Fr, gammar, deltaFr, deltagamma def SailTorque(self, Fs, gammas, deltas, heel, deltaFs, deltagammas, deltaheel): """ Calculate yaw torque from sail, using output from SailForces Returns the torque and the derivative of the torque w.r.t. deltas. """ sheel = np.sin(heel) cheel = np.cos(heel) cdeltas = np.cos(deltas) sdeltas = np.sin(deltas) return Fs * ((self.rs - self.ls * cdeltas) * np.sin(gammas) * cheel + self.hk * np.cos(gammas) * sheel), 0.0 r = np.sqrt((self.rs - self.ls * cdeltas) ** 2 + (self.hs * sheel) ** 2) drds = ((self.rs - self.ls * cdeltas) * (self.ls * sdeltas) \ + (self.hs * sheel) * (self.hs * cheel) * deltaheel) \ / r atany = -self.hs * sheel atanx = self.rs - self.ls * cdeltas theta = gammas - np.arctan2(atany, atanx) stheta = np.sin(theta) dsthetads = np.cos(theta) * \ (deltagammas - (atanx * (-self.hs * cheel * deltaheel) - atany * (self.ls * cdeltas)) / (atanx ** 2 + atany ** 2)) dcheelds = -sheel * deltaheel tau = r * Fs * stheta * cheel dtauds = r * Fs * stheta * dcheelds \ + r * Fs * dsthetads * cheel \ + r * deltaFs * stheta * cheel \ + drds * Fs * stheta * cheel return tau, dtauds def KeelTorque(self, Fk, gammak, heel): """ Calculate yaw torque from keel, using output from KeelForces """ return Fk * (self.rk * np.sin(gammak) * np.cos(heel) + self.hk * np.cos(gammak) * np.sin(heel)) r = np.sqrt(self.rk ** 2 + (self.hk * np.sin(heel)) ** 2) theta = gammak - np.arctan2(-self.hk * np.sin(heel), self.rk) return r * Fk * np.sin(theta) * np.cos(heel) def RudderTorque(self, Fr, gammar, heel, deltaFr, deltaheel): """ Calculate yaw torque from rudder, using output from RudderForces Assumes self.hr is negligible. """ tau = self.rr * Fr * np.sin(gammar) * np.cos(heel) dtaudr = self.rr * np.cos(heel) * deltaFr * np.sin(gammar) dtauds = -self.rr * Fr * np.sin(gammar) * np.sin(heel) * deltaheel dtauds = 0.0 # Not sure if above dtauds is still good. return tau, dtaudr, dtauds def ApproxHeel(self, Fs, gammas, Fk, gammak, deltaFs, deltagammas): """ Returns equilibrium heel angle for a given Fs, Fk, as well as the derivative of the heel with respect to deltas """ tanheel = (Fs * self.hs * np.sin(gammas) + Fk * self.hk * np.sin(gammak)) / (self.hb * self.wb) heel = np.arctan(tanheel) dheel = self.hs * (deltaFs * np.sin(gammas) + Fs * np.cos(gammas) * deltagammas) \ / ((1.0 + tanheel ** 2) * self.hb * self.wb) return heel, dheel def NetForce(self, thetaw, vw, thetac, vc, deltas, deltar, heel, omega, debugf=None): """ Sum up all the forces and return net longitudinal and lateral forces, and net torque Arguments: thetaw: Wind dir vw: wind speed thetac: Water dir vc: Water speed deltas: sail angle deltar: rudder angle heel: Duh. omega: boat rotational velocity, rad / s debugf: DebugForces instance for... debugging Returns: Flon, Flat, taunet, newheel """ Fs, gammas, dFsds, dgsds= self.SailForces(thetaw, vw, deltas) Fk, gammak = self.KeelForces(thetac, vc) heel, dheelds = self.ApproxHeel(Fs, gammas, Fk, gammak, dFsds, dgsds) Fr, gammar, dFrdr, dgrdr = self.RudderForces(thetac, vc, deltar) taus, dtausds = self.SailTorque(Fs, gammas, deltas, heel, dFsds, dgsds, dheelds) tauk = self.KeelTorque(Fk, gammak, heel) taur, dtaurdr, dtaurds = self.RudderTorque(Fr, gammar, heel, dFrdr, dheelds) tauB = -self.Bomega * omega * abs(omega) FBlon = -self.Blon * vc * abs(vc) * np.cos(thetac) FBlat = self.Blat * vc * np.sin(thetac) Flon = Fs * np.cos(gammas) + Fk * np.cos(gammak) + Fr * np.cos(gammar) + FBlon Flat = (Fs * np.sin(gammas) + Fk * np.sin(gammak) + Fr * np.sin(gammar)) * np.cos(heel) + FBlat taunet = taus + tauk + taur + tauB newheel, _ = self.ApproxHeel(Fs, gammas, Fk, gammak, 0, 0) #print("Flon: ", Flon, " Flat: ", Flat, " Blon: ", -self.Blon * vc * np.cos(thetac), # " Fs ", Fs, " gammas ", gammas, " Fk ", Fk, " gammak ", gammak, " Fr ", Fr, # " gammar ", gammar) #print("taunet ", taunet, " taus ", taus, " tauk ", tauk, " taur ", taur, " Btau", # -self.Bomega * omega) if debugf != None: debugf.Update(taunet, Flon, Flat, Fs, Fk, Fr, gammas, gammak, gammar, FBlon, FBlat, taus, tauk, taur, tauB) return Flon, Flat, taunet, newheel def Yadaptive(self, thetaw, vw, thetac, vc, yaw, omega, deltas, deltar): """ Using: u = {F_lon, tau_net} beta = {Blon, Bomega, Ar, rs, taubias, 1} """ YFlonBlon = -vc * abs(vc) * np.cos(thetac) Fr, gammar, _, _ = self.RudderForces(thetac, vc, deltar) YFlonAr = Fr * np.cos(gammar) / self.rudder.A Fs, gammas, _, _= self.SailForces(thetaw, vw, deltas) Fk, gammak = self.KeelForces(thetac, vc) YFlonconst = Fs * np.cos(gammas) + Fk * np.cos(gammak) YFlon = np.matrix([[YFlonBlon, 0.0, YFlonAr, 0.0, 0.0, YFlonconst]]) heel, _ = self.ApproxHeel(Fs, gammas, Fk, gammak, 0.0, 0.0) taur, _, _ = self.RudderTorque(Fr, gammar, heel, 0.0, 0.0) tauk = self.KeelTorque(Fk, gammak, heel) taus, _ = self.SailTorque(Fs, gammas, deltas, heel, 0.0, 0.0, 0.0) YtauBomega = -omega * abs(omega) YtauAr = taur / self.rudder.A Ytaurs = Fs * np.sin(gammas) * np.cos(heel) Ytauconst = tauk + (taus - Ytaurs * self.rs) Ytau = np.matrix([[0.0, YtauBomega, YtauAr, Ytaurs, 1.0, Ytauconst]]) #print("Ytau: ", Ytau) #print("YFlon: ", YFlon) return np.concatenate((YFlon, Ytau), axis=0) def Update(self, truewx, truewy, x, y, vx, vy, yaw, omega, deltas, deltar, heel, dt, flopsail=False, debugf=None): thetac = -Norm(np.arctan2(vy, vx) - yaw) vc = np.sqrt(vx ** 2 + vy ** 2) appwx = truewx - vx appwy = truewy - vy thetaw = Norm(-np.arctan2(appwy, appwx) + yaw) vw = np.sqrt(appwx ** 2 + appwy ** 2) * 1.6 # For wind gradient if flopsail: deltas = abs(deltas) if thetaw > 0 else -abs(deltas) #print("thetac ", thetac, " vc ", vc, " thetaw ", thetaw, " vw ", vw) Flon, Flat, tau, newheel = self.NetForce( thetaw, vw, thetac, vc, deltas, deltar, heel, omega, debugf) if False: # For approximating damping force, with overall force as input, # state as [pos, vel] Ac = np.matrix([[0.0, 1.0], [0.0, -self.Bv / self.m]]) Bc = np.matrix([[0.0], [1.0 / self.m]]) (Ad, Bd, _, _, _) = scipy.signal.cont2discrete((Ac, Bc, Ac, Bc), dt) statex = np.matrix([[x], [vx]]) forcex = Flon * np.cos(yaw) - Flat *
np.sin(yaw)
numpy.sin
import os import cv2 import pdb import json import shutil import numpy as np import pandas as pd import random from tqdm import tqdm import argparse from pycocotools import mask from pycocotools.coco import COCO from skimage import measure try: import moxing as mox mox.file.shift('os', 'mox') except: pass WIDTH = 50 COCO_CLASS_NAMES_ID_DIC = { 'person': '1', 'bicycle': '2', 'car': '3', 'motorcycle': '4', 'airplane': '5', 'bus': '6', 'train': '7', 'truck': '8', 'boat': '9', 'traffic light': '10', 'fire hydrant': '11', 'stop sign': '13', 'parking meter': '14', 'bench': '15', 'bird': '16', 'cat': '17', 'dog': '18', 'horse': '19', 'sheep': '20', 'cow': '21', 'elephant': '22', 'bear': '23', 'zebra': '24', 'giraffe': '25', 'backpack': '27', 'umbrella': '28', 'handbag': '31', 'tie': '32', 'suitcase': '33', 'frisbee': '34', 'skis': '35', 'snowboard': '36', 'sports ball': '37', 'kite': '38', 'baseball bat': '39', 'baseball glove': '40', 'skateboard': '41', 'surfboard': '42', 'tennis racket': '43', 'bottle': '44', 'wine glass': '46', 'cup': '47', 'fork': '48', 'knife': '49', 'spoon': '50', 'bowl': '51', 'banana': '52', 'apple': '53', 'sandwich': '54', 'orange': '55', 'broccoli': '56', 'carrot': '57', 'hot dog': '58', 'pizza': '59', 'donut': '60', 'cake': '61', 'chair': '62', 'couch': '63', 'potted plant': '64', 'bed': '65', 'dining table': '67', 'toilet': '70', 'tv': '72', 'laptop': '73', 'mouse': '74', 'remote': '75', 'keyboard': '76', 'cell phone': '77', 'microwave': '78', 'oven': '79', 'toaster': '80', 'sink': '81', 'refrigerator': '82', 'book': '84', 'clock': '85', 'vase': '86', 'scissors': '87', 'teddy bear': '88', 'hair drier': '89', 'toothbrush': '90' } COCO_OPENIMAGE_RELATED_CLASSES_NAME_DIC = { 'person': ['Person'], 'bicycle': ['Stationary bicycle', 'Bicycle'], 'car': ['Car', 'Limousine', 'Van', 'Vehicle', 'Land vehicle', 'Ambulance', 'Cart', 'Golf cart'], 'motorcycle': ['Motorcycle'], 'airplane': ['Airplane'], 'bus': ['Bus'], 'train': ['Train'], 'truck': ['Truck'], 'boat': ['Boat', 'Barge', 'Gondola', 'Canoe', 'Jet ski', 'Submarine'], 'traffic light': ['Traffic light'], 'fire hydrant': ['Fire hydrant'], 'stop sign': ['Stop sign'], 'parking meter': ['Parking meter'], 'bench': ['Bench'], 'bird': ['Magpie', 'Woodpecker', 'Blue jay', 'Ostrich', 'Penguin', 'Raven', 'Chicken', 'Eagle', 'Owl', 'Duck', 'Canary', 'Goose', 'Swan', 'Falcon', 'Parrot', 'Sparrow', 'Turkey'], 'cat': ['Cat'], 'dog': ['Dog'], 'horse': ['Horse'], 'sheep': ['Sheep'], 'cow': ['Cattle', 'Bull'], 'elephant': ['Elephant'], 'bear': ['Bear', 'Brown bear', 'Panda', 'Polar bear'], 'zebra': ['Zebra'], 'giraffe': ['Giraffe'], 'backpack': ['Backpack'], 'umbrella': ['Umbrella'], 'handbag': ['Handbag'], 'tie': ['Tie'], 'suitcase': ['Suitcase'], 'frisbee': ['Flying disc'], 'skis': ['Ski'], 'snowboard': ['Snowboard'], 'sports ball': ['Ball', 'Football', 'Cricket ball', 'Volleyball', 'Tennis ball', 'Rugby ball', 'Golf ball'], 'kite': ['Kite'], 'baseball bat': ['Baseball bat'], 'baseball glove': ['Baseball glove'], 'skateboard': ['Skateboard'], 'surfboard': ['Surfboard'], 'tennis racket': ['Tennis racket'], 'bottle': ['Bottle'], 'wine glass': ['Wine glass'], 'cup': ['Coffee cup', 'Measuring cup'], 'fork': ['Fork'], 'knife': ['Kitchen knife', 'Knife'], 'spoon': ['Spoon'], 'bowl': ['Mixing bowl', 'Bowl'], 'banana': ['Banana'], 'apple': ['Apple'], 'sandwich': ['Sandwich', 'Hamburger', 'Submarine sandwich'], 'orange': ['Orange'], 'broccoli': ['Broccoli'], 'carrot': ['Carrot'], 'hot dog': ['Hot dog'], 'pizza': ['Pizza'], 'donut': ['Doughnut'], 'cake': ['Cake'], 'chair': ['WheelChair', 'Chair'], 'couch': ['Couch', 'Sofa bed', 'Loveseat', 'studio couch'], 'potted plant': ['Houseplant'], 'bed': ['Bed', 'Infant bed'], 'dining table': ['Table', 'Coffee table', 'Kitchen & dining room table'], 'toilet': ['Toilet'], 'tv': ['Television'], 'laptop': ['Laptop'], 'mouse': ['Computer mouse'], 'remote': ['Remote control'], 'keyboard': ['Computer keyboard'], 'cell phone': ['Mobile phone'], 'microwave': ['Microwave oven'], 'oven': ['Oven'], 'toaster': ['Toaster'], 'sink': ['Sink'], 'refrigerator': ['Refrigerator'], 'book': ['Book'], 'clock': ['Clock', 'Alarm clock', 'Digital clock', 'Wall clock'], 'vase': ['Vase'], 'scissors': ['Scissors'], 'teddy bear': ['Teddy bear'], 'hair drier': ['Hair dryer'], 'toothbrush': ['Toothbrush'] } COCO_OPENIMAGE_RELATED_CLASSES_DIC = { 'person': ['/m/01g317'], 'bicycle': ['/m/03kt2w', '/m/0199g'], 'car': ['/m/0k4j', '/m/01lcw4', '/m/0h2r6', '/m/07yv9', '/m/01prls', '/m/012n7d', '/m/018p4k', '/m/0323sq'], 'motorcycle': ['/m/04_sv'], 'airplane': ['/m/0cmf2'], 'bus': ['/m/01bjv'], 'train': ['/m/07jdr'], 'truck': ['/m/07r04'], 'boat': ['/m/019jd', '/m/01btn', '/m/02068x', '/m/0ph39', '/m/01xs3r', '/m/074d1'], 'traffic light': ['/m/015qff'], 'fire hydrant': ['/m/01pns0'], 'stop sign': ['/m/02pv19'], 'parking meter': ['/m/015qbp'], 'bench': ['/m/0cvnqh'], 'bird': ['/m/012074', '/m/01dy8n', '/m/01f8m5', '/m/05n4y', '/m/05z6w', '/m/06j2d', '/m/09b5t', '/m/09csl', '/m/09d5_', '/m/09ddx', '/m/0ccs93', '/m/0dbvp', '/m/0dftk', '/m/0f6wt', '/m/0gv1x', '/m/0h23m', '/m/0jly1'], 'cat': ['/m/01yrx'], 'dog': ['/m/0bt9lr'], 'horse': ['/m/03k3r'], 'sheep': ['/m/07bgp'], 'cow': ['/m/01xq0k1', '/m/0cnyhnx'], 'elephant': ['/m/0bwd_0j'], 'bear': ['/m/01dws', '/m/01dxs', '/m/03bj1', '/m/0633h'], 'zebra': ['/m/0898b'], 'giraffe': ['/m/03bk1'], 'backpack': ['/m/01940j'], 'umbrella': ['/m/0hnnb'], 'handbag': ['/m/080hkjn'], 'tie': ['/m/01rkbr'], 'suitcase': ['/m/01s55n'], 'frisbee': ['/m/02wmf'], 'skis': ['/m/071p9'], 'snowboard': ['/m/06__v'], 'sports ball': ['/m/018xm', '/m/01226z', '/m/02ctlc', '/m/05ctyq', '/m/0wdt60w', '/m/044r5d'], 'kite': ['/m/02zt3'], 'baseball bat': ['/m/03g8mr'], 'baseball glove': ['/m/03grzl'], 'skateboard': ['/m/06_fw'], 'surfboard': ['/m/019w40'], 'tennis racket': ['/m/0h8my_4'], 'bottle': ['/m/04dr76w'], 'wine glass': ['/m/09tvcd'], 'cup': ['/m/02p5f1q', '/m/07v9_z'], 'fork': ['/m/0dt3t'], 'knife': ['/m/058qzx', '/m/04ctx'], 'spoon': ['/m/0cmx8'], 'bowl': ['/m/03hj559', '/m/04kkgm'], 'banana': ['/m/09qck'], 'apple': ['/m/014j1m'], 'sandwich': ['/m/0l515', '/m/0cdn1', '/m/06pcq'], 'orange': ['/m/0cyhj_'], 'broccoli': ['/m/0hkxq'], 'carrot': ['/m/0fj52s'], 'hot dog': ['/m/01b9xk'], 'pizza': ['/m/0663v'], 'donut': ['/m/0jy4k'], 'cake': ['/m/0fszt'], 'chair': ['/m/01mzpv'], 'couch': ['/m/02crq1', '/m/03m3pdh', '/m/0703r8'], 'potted plant': ['/m/03fp41'], 'bed': ['/m/03ssj5', '/m/061hd_'], 'dining table': ['/m/04bcr3', '/m/078n6m', '/m/0h8n5zk'], 'toilet': ['/m/09g1w'], 'tv': ['/m/07c52'], 'laptop': ['/m/01c648'], 'mouse': ['/m/020lf'], 'remote': ['/m/0qjjc'], 'keyboard': ['/m/01m2v'], 'cell phone': ['/m/050k8'], 'microwave': ['/m/0fx9l'], 'oven': ['/m/029bxz'], 'toaster': ['/m/01k6s3'], 'sink': ['/m/0130jx'], 'refrigerator': ['/m/040b_t'], 'book': ['/m/0bt_c3'], 'clock': ['/m/01x3z', '/m/046dlr', '/m/06_72j', '/m/0h8mzrc'], 'vase': ['/m/02s195'], 'scissors': ['/m/01lsmm'], 'teddy bear': ['/m/0kmg4'], 'hair drier': ['/m/03wvsk'], 'toothbrush': ['/m/012xff'] } def convert_dic(dic): new_dic = dict() for k, v in dic.items(): for _v in v: if type(_v) == str: new_dic[_v] = k elif type(_v) == tuple: new_dic[_v[0]] = k return new_dic COCO_OPENIMAGE_RELATED_CLASSES_DIC_CONVERT = convert_dic(COCO_OPENIMAGE_RELATED_CLASSES_DIC) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--im_root', type=str, required=True) parser.add_argument('--seg_im_root', type=str, required=True) parser.add_argument('--op_bbox_anno', type=str, default=None) parser.add_argument('--op_segm_anno', type=str, default=None) parser.add_argument('--op_cls_info', type=str, default=None, required=True) parser.add_argument('--which_set', type=str, default='train', choices=['train', 'test', 'val', 'all']) parser.add_argument('--not_conv_cls', default=False, action='store_true') args = parser.parse_args() return args class OpenImage2COCO(object): def __init__(self, image_root=None, segm_image_root=None, openimage_bbox_file=None, openimage_seg_file=None, openimage_cls_info_file=None, which_set='val', convert_cls_into_coco=True): if 'train' in which_set: filling_info = 'training' elif 'val' in which_set: filling_info = 'validation' elif 'test' in which_set: filling_info = 'testing' else: exit() self.info = { 'description': 'This is the {} set of Open Images V5.'.format(filling_info), 'url' : 'https://storage.googleapis.com/openimages/web/index.html', 'version': '1.0', 'year': 2019, 'contributor': 'Google', 'date_created': '2019-07-30' } self.which_set = which_set self.image_root = image_root self.segm_image_root = segm_image_root self.openimage_bbox_file = openimage_bbox_file self.openimage_seg_file = openimage_seg_file self.openimage_cls_info_file = openimage_cls_info_file self.convert_cls_into_coco = convert_cls_into_coco self.cls_id = 0 self.cls_dic = dict() self.cls_id_dic = dict() cls_info = self.__read_csv(openimage_cls_info_file) for ci in cls_info: if convert_cls_into_coco: if ci[0] in COCO_OPENIMAGE_RELATED_CLASSES_DIC_CONVERT: self.cls_dic.update({ci[0]: ci[1]}) self.cls_id_dic.update({ci[0]: COCO_CLASS_NAMES_ID_DIC[COCO_OPENIMAGE_RELATED_CLASSES_DIC_CONVERT[ci[0]]]}) self.cls_id += 1 else: self.cls_dic.update({ci[0]: ci[1]}) self.cls_id_dic.update({ci[0]: self.cls_id}) self.cls_id += 1 @staticmethod def __read_csv(name, to_start=0): return pd.read_csv(name, header=None, low_memory=False).values[to_start: ] def convert_bbox(self, save_path): self.save_path = save_path image_id = 0 box_id = 0 images_dic = dict() image_info = list() annos = list() categories = list() print('=' * 100) print('Reading bbox file...') bbox_annos = self.__read_csv(self.openimage_bbox_file, 1) print('Counting images...') counted_annos = list() for ba in tqdm(bbox_annos, ncols=WIDTH): # name_key: ImageID name_key = ba[0] cls_id = ba[2] if self.convert_cls_into_coco: if cls_id in COCO_OPENIMAGE_RELATED_CLASSES_DIC_CONVERT: counted_annos.append(ba) if not name_key in images_dic: images_dic.update({name_key: image_id}) image_id += 1 else: counted_annos.append(ba) if not name_key in images_dic: # ImageID <==> image_id images_dic.update({name_key: image_id}) image_id += 1 print('Getting image infos...') name_key_height_width_dic = dict() for name_key in tqdm(images_dic, ncols=WIDTH): im = cv2.imread(os.path.join(self.image_root, self.which_set, name_key + '.jpg')) height, width = im.shape[ :2] if name_key not in name_key_height_width_dic: name_key_height_width_dic[name_key] = (height, width) image = { 'file_name': name_key + '.jpg', 'height': height, 'width': width, 'id': images_dic[name_key] } image_info.append(image) print('Writing annotations...') for ba in tqdm(counted_annos, ncols=WIDTH): name_key = ba[0] height, width = name_key_height_width_dic[name_key] bbox = [ float(ba[4]) * width, float(ba[6]) * height, (float(ba[5]) - float(ba[4])) * width, (float(ba[7]) - float(ba[6])) * height ] IsOccluded = int(ba[8]) IsTruncated = int(ba[9]) IsGroupOf = int(ba[10]) IsDepiction = int(ba[11]) IsInside = int(ba[12]) LabelName = ba[2] if LabelName in self.cls_id_dic: anno = { 'bbox': bbox, 'area': bbox[2] * bbox[3], 'image_id': images_dic[name_key], 'category_id': self.cls_id_dic[LabelName], 'iscrowd': 0, # ??? == isGroupOf? 'id': int(box_id), 'IsOccluded': IsOccluded, 'IsTruncated': IsTruncated, 'IsGroupOf': IsGroupOf, 'IsDepiction': IsDepiction, 'IsInside': IsInside } annos.append(anno) box_id += 1 if self.convert_cls_into_coco: for k, v in COCO_CLASS_NAMES_ID_DIC.items(): category = { 'supercategory': k, 'id': v, 'name': k } categories.append(category) else: for cat in self.cls_dic: category = { 'supercategory': self.cls_dic[cat], 'id': self.cls_id_dic[cat], 'name': self.cls_dic[cat] } categories.append(category) inputfile = { 'info': self.info, 'images': image_info, 'type': 'instances', 'annotations': annos, 'categories': categories } print('Writing into JSON...') with open(save_path, 'w', encoding='utf8') as f: json.dump(inputfile,f) print('=' * 100) def visualize_bbox(self, sample_num=10, r_seed=3, g_seed=7, b_seed=19, save_path=None): if save_path: with open(save_path, 'r', encoding='utf8') as f: coco_format_file = json.load(f) else: with open(self.save_path, 'r', encoding='utf8') as f: coco_format_file = json.load(f) selected_images = random.choices(coco_format_file['images'], k=sample_num) for si in selected_images: im = cv2.imread(os.path.join(self.image_root, self.which_set, si['file_name'])) for a in coco_format_file['annotations']: # print(a['image_id'], si['id']) if a['image_id'] == si['id']: x, y, w, h = list(map(round, a['bbox'])) cate_id = int(a['category_id']) color = ((r_seed * cate_id) % 255, (g_seed * cate_id) % 255, (b_seed * cate_id) % 255) cv2.rectangle(im, (x, y), (x + w, y + h), color, 2) cls_name = self.cls_dic[[x[0] for x in self.cls_id_dic.items() if x[1] == a['category_id']][0]] if self.convert_cls_into_coco: cls_name = convert_dic(COCO_OPENIMAGE_RELATED_CLASSES_NAME_DIC)[cls_name] cv2.putText(im, cls_name, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, color=color, thickness=1) cv2.imshow(si['file_name'], im) cv2.waitKey(0) cv2.destroyAllWindows() def convert_segmentation(self, save_path): self.seg_save_path = save_path image_id = 0 box_id = 0 images_dic = dict() image_info = list() annos = list() categories = list() print('=' * 100) print('Reading segm file...') bbox_annos = self.__read_csv(self.openimage_seg_file, 1) print('Counting images...') counted_annos = list() for ba in tqdm(bbox_annos, ncols=WIDTH): # name_key: ImageID name_key = ba[1] cls_id = ba[2] if self.convert_cls_into_coco: if cls_id in COCO_OPENIMAGE_RELATED_CLASSES_DIC_CONVERT: counted_annos.append(ba) if not name_key in images_dic: images_dic.update({name_key: image_id}) image_id += 1 else: counted_annos.append(ba) if not name_key in images_dic: # ImageID <==> image_id images_dic.update({name_key: image_id}) image_id += 1 print('Getting image infos...') name_key_height_width_dic = dict() for name_key in tqdm(images_dic, ncols=WIDTH): im = cv2.imread(os.path.join(self.image_root, self.which_set, name_key + '.jpg')) height, width = im.shape[ :2] if name_key not in name_key_height_width_dic: name_key_height_width_dic[name_key] = (height, width) image = { 'file_name': name_key + '.jpg', 'height': height, 'width': width, 'id': images_dic[name_key] } image_info.append(image) print('Writing annotations...') for ba in tqdm(counted_annos, ncols=WIDTH): mask_key = ba[0] mask_img = cv2.imread(os.path.join(self.segm_image_root, self.which_set, mask_key), 0) name_key = ba[1] height, width = name_key_height_width_dic[name_key] mask_img = cv2.resize(mask_img, (width, height)) mask_img[0,: ] = 0 mask_img[-1,: ] = 0 mask_img[:, 0] = 0 mask_img[:, -1] = 0 fortran_ground_truth_binary_mask = np.asfortranarray(mask_img) encoded_ground_truth = mask.encode(fortran_ground_truth_binary_mask) ground_truth_area = mask.area(encoded_ground_truth) contours = measure.find_contours(mask_img, 0.5) bbox = [ float(ba[4]) * width, float(ba[6]) * height, (float(ba[5]) - float(ba[4])) * width, (float(ba[7]) - float(ba[6])) * height ] LabelName = ba[2] if LabelName in self.cls_id_dic: anno = { 'bbox': bbox, 'area': ground_truth_area.tolist(), 'image_id': images_dic[name_key], 'category_id': self.cls_id_dic[LabelName], 'iscrowd': 0, 'id': int(box_id), 'segmentation': [] } for contour in contours: contour = np.flip(contour, axis=1) segmentation = contour.ravel().tolist() anno["segmentation"].append(segmentation) annos.append(anno) box_id += 1 if self.convert_cls_into_coco: for k, v in COCO_CLASS_NAMES_ID_DIC.items(): category = { 'supercategory': k, 'id': v, 'name': k } categories.append(category) else: for cat in self.cls_dic: category = { 'supercategory': self.cls_dic[cat], 'id': self.cls_id_dic[cat], 'name': self.cls_dic[cat] } categories.append(category) inputfile = { 'info': self.info, 'images': image_info, 'type': 'instances', 'annotations': annos, 'categories': categories } print('Writing into JSON...') with open(save_path, 'w', encoding='utf8') as f: json.dump(inputfile,f) print('=' * 100) def visualize_segmentation(self, sample_num=10, r_seed=3, g_seed=7, b_seed=19, save_path=None): coco = COCO(save_path if save_path else self.seg_save_path) selected_images = random.choices(coco.loadImgs(coco.getImgIds()), k=sample_num) for si in selected_images: img_id = si['id'] annos = coco.loadAnns(coco.getAnnIds(imgIds=img_id)) for a in annos: im = cv2.imread(os.path.join(self.image_root, self.which_set, si['file_name'])) mask_img = coco.annToMask(a) im = im *
np.stack([mask_img] * 3, axis=-1)
numpy.stack
from math import sin import numpy as np import sympy as sp from .dynamic_model import DynamicModelBase from utils.Logger import logger import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib as mpl import math class QuadCopter(DynamicModelBase): def __init__(self, is_with_constraints = True, T = 100): ##### Dynamic Function ######## n, m = 12, 4 # number of state = 12, number of action = 4, prediction horizon = 100 h_constant = 0.02 # sampling time x_u_var = sp.symbols('x_u:16') ueq = 1.962 # p_x p_y p_z # v_x v_y v_z # phi(6) theta(7) psi(8) # omega_x omega_y omega_z # f1 f2 f3 f4 Jx = 0.0244 Jy = 0.0244 Jz = 0.0436 mass = 0.8 g_constant = 9.81 L_constant = 0.165 # m c_constant = 0.002167 # m cos_phi = sp.cos(x_u_var[6]) sin_phi = sp.sin(x_u_var[6]) cos_theta = sp.cos(x_u_var[7]) sin_theta = sp.sin(x_u_var[7]) cos_psi = sp.cos(x_u_var[8]) sin_psi = sp.sin(x_u_var[8]) e_constant = np.asarray([0,0,1]).reshape(-1,1) R_matrix = sp.Matrix([[cos_theta*cos_psi, cos_theta*sin_psi, -sin_theta], [sin_phi*sin_theta*cos_psi-cos_phi*sin_psi, sin_phi*sin_theta*sin_psi+cos_phi*cos_psi, sin_phi*cos_theta], [cos_phi*sin_theta*cos_psi+sin_phi*sin_psi, cos_phi*sin_theta*sin_psi-sin_phi*cos_psi, cos_phi*cos_theta]]) W_matrix = sp.Matrix([[1.0, sin_phi*sin_theta/cos_theta, cos_phi*sin_theta/cos_theta], [0.0, cos_phi, -sin_phi], [0.0, sin_phi/cos_theta, cos_phi/cos_theta]]) J_matrix = np.diag([Jx, Jy, Jz]) pos = sp.Matrix([[x_u_var[0]], [x_u_var[1]], [x_u_var[2]]]) vel = sp.Matrix([[x_u_var[3]], [x_u_var[4]], [x_u_var[5]]]) ang = sp.Matrix([[x_u_var[6]], [x_u_var[7]], [x_u_var[8]]]) ang_vel = sp.Matrix([[x_u_var[9]], [x_u_var[10]], [x_u_var[11]]]) # Dynamics params pos_dot = R_matrix.T * vel vel_dot = -ang_vel.cross(vel) + R_matrix @ (g_constant * e_constant) ang_dot = W_matrix * ang_vel angvel_dot =
np.linalg.inv(J_matrix)
numpy.linalg.inv
""" Copyright (C) 2018-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from extensions.ops.split import AttributedSplit from mo.back.replacement import BackReplacementPattern from mo.front.common.partial_infer.utils import int64_array from mo.graph.graph import Graph class SplitNormalizer(BackReplacementPattern): enabled = True graph_condition = [lambda graph: not graph.graph['cmd_params'].generate_experimental_IR_V10] def find_and_replace_pattern(self, graph: Graph): for node in graph.get_op_nodes(op='Split'): name = node.soft_get('name', node.id) input_shape = node.in_port(0).data.get_shape() assert input_shape is not None axis = node.in_port(1).data.get_value() assert axis is not None num_splits = node.soft_get('num_splits', None) assert num_splits is not None if axis < 0: axis += input_shape.size split = AttributedSplit(graph, {'name': name, 'axis': axis, 'num_splits': num_splits}).create_node() for idx, port in node.out_ports().items(): node.out_port(idx).get_connection().set_source(split.out_port(idx)) node.in_port(0).get_connection().set_destination(split.in_port(0)) graph.remove_node(node.id) class VariadicSplitNormalizer(BackReplacementPattern): enabled = True graph_condition = [lambda graph: not graph.graph['cmd_params'].generate_experimental_IR_V10] def find_and_replace_pattern(self, graph: Graph): for node in graph.get_op_nodes(op='VariadicSplit'): name = node.soft_get('name', node.id) input_shape = node.in_port(0).data.get_shape() assert input_shape is not None axis = node.in_port(1).data.get_value() assert axis is not None size_splits = node.in_port(2).data.get_value() assert size_splits is not None connected_outputs = {idx: port for idx, port in node.out_ports().items() if not port.disconnected()} assert len(size_splits) >= len(connected_outputs) split_size = connected_outputs[list(connected_outputs.keys())[0]].data.get_shape()[axis] if
np.unique(size_splits)
numpy.unique
# Practice sites #https://www.machinelearningplus.com/python/101-numpy-exercises-python/ #http://www.cs.umd.edu/~nayeem/courses/MSML605/files/04_Lec4_List_Numpy.pdf #https://www.gormanalysis.com/blog/python-numpy-for-your-grandma/ #https://nickmccullum.com/advanced-python/numpy-indexing-assignment/ # 1. Import numpy as np and see the version # Difficulty Level: L1 # Q. Import numpy as np and print the version number. ##? 1. Import numpy as np and see the version # Difficulty Level: L1 # Q. Import numpy as np and print the version number. import numpy as np print(np.__version__) ##? 2. How to create a 1D array? # Difficulty Level: L1 # Q. Create a 1D array of numbers from 0 to 9 arr = np.arange(10) arr ##? 3. How to create a boolean array? # Difficulty Level: L1 # Q. Create a 3×3 numpy array of all True’s arr = np.full((3,3), True, dtype=bool) arr ##? 4. How to extract items that satisfy a given condition from 1D array? # Difficulty Level: L1 # Q. Extract all odd numbers from arr arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] ##? 5. How to replace items that satisfy a condition with another value in numpy array? # Difficulty Level: L1 # Q. Replace all odd numbers in arr with -1 arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] = -1 arr ##? 6. How to replace items that satisfy a condition without affecting the original array? # Difficulty Level: L2 # Q. Replace all odd numbers in arr with -1 without changing arr arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) #1 np.where out = np.where(arr % 2 == 1, -1, arr) out #2 list comp out = np.array([-1 if x % 2 == 1 else x for x in arr]) out ##? 7. How to reshape an array? # Difficulty Level: L1 # Q. Convert a 1D array to a 2D array with 2 rows arr = np.arange(10) arr.reshape(2, -1) # Setting y to -1 automatically decides number of columns. # Could do the same with arr.reshape(2, 5) ##? 8. How to stack two arrays vertically? # Difficulty Level: L2 # Q. Stack arrays a and b vertically a = np.arange(10).reshape(2, -1) b = np.repeat(1, 10).reshape(2, -1) #1 np.vstack([a, b]) #2 np.concatenate([a, b], axis=0) #3 np.r_[a, b] # 9. How to stack two arrays horizontally? # Difficulty Level: L2 # Q. Stack the arrays a and b horizontally. a = np.arange(10).reshape(2, -1) b = np.repeat(1, 10).reshape(2, -1) #1 np.hstack([a, b]) #2 np.concatenate([a, b], axis=1) #3 np.c_[a, b] ##? 10. How to generate custom sequences in numpy without hardcoding? # Difficulty Level: L2 # Q. Create the following pattern without hardcoding. # Use only numpy functions and the below input array a. a = np.array([1,2,3]) np.r_[np.repeat(a,3), np.tile(a, 3)] ##? 11. How to get the common items between two python numpy arrays? # Difficulty Level: L2 # Q. Get the common items between a and b a = np.array([1,2,3,2,3,4,3,4,5,6]) b = np.array([7,2,10,2,7,4,9,4,9,8]) np.intersect1d(a, b) ##? 12. How to remove from one array those items that exist in another? # Difficulty Level: L2 # Q. From array a remove all items present in array b a = np.array([1,2,3,4,5]) b = np.array([5,6,7,8,9]) # From 'a' remove all of 'b' np.setdiff1d(a,b) ##? 13. How to get the positions where elements of two arrays match? # Difficulty Level: L2 # Q. Get the positions where elements of a and b match a = np.array([1,2,3,2,3,4,3,4,5,6]) b = np.array([7,2,10,2,7,4,9,4,9,8]) np.where(a==b) # 14. How to extract all numbers between a given range from a numpy array? # Difficulty Level: L2 # Q. Get all items between 5 and 10 from a. a = np.array([2, 6, 1, 9, 10, 3, 27]) #1 idx = np.where((a>=5) & (a<=10)) a[idx] #2 idx = np.where(np.logical_and(a >= 5, a <= 10)) a[idx] #3 a[(a >= 5) & (a <= 10)] ##? 15. How to make a python function that handles scalars to work on numpy arrays? # Difficulty Level: L2 # Q. Convert the function maxx that works on two scalars, to work on two arrays. def maxx(x:np.array, y:np.array): """Get the maximum of two items""" if x >= y: return x else: return y a = np.array([5, 7, 9, 8, 6, 4, 5]) b = np.array([6, 3, 4, 8, 9, 7, 1]) pair_max = np.vectorize(maxx, otypes=[float]) pair_max(a, b) ##? 16. How to swap two columns in a 2d numpy array? # Difficulty Level: L2 # Q. Swap columns 1 and 2 in the array arr. arr = np.arange(9).reshape(3,3) arr arr[:, [1, 0, 2]] #by putting brackets inside the column slice. You have access to column indices ##? 17. How to swap two rows in a 2d numpy array? # Difficulty Level: L2 # Q. Swap rows 1 and 2 in the array arr: arr = np.arange(9).reshape(3,3) arr arr[[0, 2, 1], :] #same goes here for the rows ##? 18. How to reverse the rows of a 2D array? # Difficulty Level: L2 # Q. Reverse the rows of a 2D array arr. # Input arr = np.arange(9).reshape(3,3) arr arr[::-1, :] #or arr[::-1] # 19. How to reverse the columns of a 2D array? # Difficulty Level: L2 # Q. Reverse the columns of a 2D array arr. # Input arr = np.arange(9).reshape(3,3) arr arr[:,::-1] ##? 20. How to create a 2D array containing random floats between 5 and 10? # Difficulty Level: L2 # Q. Create a 2D array of shape 5x3 to contain random decimal numbers between 5 and 10. arr = np.arange(9).reshape(3,3) #1 rand_arr = np.random.randint(low=5, high=10, size=(5,3)) + np.random.random((5,3)) rand_arr #2 rand_arr = np.random.uniform(5, 10, size=(5,3)) rand_arr ##? 21. How to print only 3 decimal places in python numpy array? # Difficulty Level: L1 # Q. Print or show only 3 decimal places of the numpy array rand_arr. rand_arr = np.random.random((5,3)) rand_arr rand_arr = np.random.random([5,3]) np.set_printoptions(precision=3) rand_arr[:4] ##? 22. How to pretty print a numpy array by suppressing the scientific notation (like 1e10)? # Difficulty Level: L1 # Q. Pretty print rand_arr by suppressing the scientific notation (like 1e10) #Reset printoptions np.set_printoptions(suppress=False) # Create the random array np.random.seed(100) rand_arr = np.random.random([3,3])/1e3 rand_arr #Set precision and suppress e notation np.set_printoptions(suppress=True, precision=6) rand_arr ##? 23. How to limit the number of items printed in output of numpy array? # Difficulty Level: L1 # Q. Limit the number of items printed in python numpy array a to a maximum of 6 elements. a = np.arange(15) #set the elements to print in threshold np.set_printoptions(threshold=6) a # reset the threshold to default np.set_printoptions(threshold=1000) ##? 24. How to print the full numpy array without truncating # Difficulty Level: L1 # Q. Print the full numpy array a without truncating. a = np.arange(15) # reset the threshold to default np.set_printoptions(threshold=1000) a ##? 25. How to import a dataset with numbers and texts keeping the text intact in python numpy? # Difficulty Level: L2 # Q. Import the iris dataset keeping the text intact. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype="object") names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') iris[:3] ##? 26. How to extract a particular column from 1D array of tuples? # Difficulty Level: L2 # Q. Extract the text column species from the 1D iris imported in previous question. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8") species = np.array([col[4] for col in iris_1d]) species[:5] ##? 27. How to convert a 1d array of tuples to a 2d numpy array? # Difficulty Level: L2 # Q. Convert the 1D iris to 2D array iris_2d by omitting the species text field. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8") #1 no_species_2d = np.array([row.tolist()[:4] for row in iris_1d]) no_species_2d[:3] #2 # Can directly specify columns to use with the "usecols" method url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' no_species_2d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8", usecols=[0,1,2,3]) no_species_2d[:3] ##? 28. How to compute the mean, median, standard deviation of a numpy array? # Difficulty: L1 # Q. Find the mean, median, standard deviation of iris's sepallength (1st column) url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8") sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0]) # or sepal = np.array([col[0] for col in iris_1d]) # or sepal = np.array([col.tolist()[0] for col in iris_1d]) mu, med, sd = np.mean(sepal), np.median(sepal), np.std(sepal) np.set_printoptions(precision=2) print(f'The mean is {mu} \nThe median is {med} \nThe standard deviation is {sd}') ##? 29. How to normalize an array so the values range exactly between 0 and 1? # Difficulty: L2 # Q. Create a normalized form of iris's sepallength whose values range exactly between 0 and 1 so that the minimum has value 0 and maximum has value 1. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8") sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0]) #1 smax, smin = np.max(sepal), np.min(sepal) S = (sepal-smin)/(smax-smin) S #2 S = (sepal-smin)/sepal.ptp() S ##? 30. How to compute the softmax score? # Difficulty Level: L3 # Q. Compute the softmax score of sepallength. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0], encoding="utf-8") #or sepal = np.genfromtxt(url, delimiter=',', dtype='object') sepal = np.array([float(row[0]) for row in sepal]) # https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python""" #1 def softmax(x): e_x = np.exp(x - np.max(x)) return e_x/ e_x.sum(axis=0) softmax(sepal) ##? 31. How to find the percentile scores of a numpy array? # Difficulty Level: L1 # Q. Find the 5th and 95th percentile of iris's sepallength url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' sepal = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0]) np.percentile(sepal, q=[5, 95]) ##? 32. How to insert values at random positions in an array? # Difficulty Level: L2 # Q. Insert np.nan values at 20 random positions in iris_2d dataset url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', encoding="utf-8") #Can change object to float if you want #1 i, j = np.where(iris_2d) # i, j contain the row numbers and column numbers of the 600 elements of Irix_x np.random.seed(100) iris_2d[np.random.choice(i, 20), np.random.choice((j), 20)] = np.nan #Checking nans in 2nd column np.isnan(iris_2d[:, 1]).sum() #Looking over all rows/columns np.isnan(iris_2d[:, :]).sum() #2 np.random.seed(100) iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)]=np.nan #Looking over all rows/columns np.isnan(iris_2d[:, :]).sum() ##? 33. How to find the position of missing values in numpy array? # Difficulty Level: L2 # Q. Find the number and position of missing values in iris_2d's sepallength (1st column) # ehh already did that? Lol. Using above filtered array from method 2 in # question 32 np.isnan(iris_2d[:, 0]).sum() #Indexes of which can be found with np.where(np.isnan(iris_2d[:, 0])) ##? 34. How to filter a numpy array based on two or more conditions? # Difficulty Level: L3 # Q. Filter the rows of iris_2d that has petallength (3rd column) > 1.5 # and sepallength (1st column) < 5.0 url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) filt_cond = (iris_2d[:,0] < 5.0) & (iris_2d[:, 2] > 1.5) iris_2d[filt_cond] ##? 35. How to drop rows that contain a missing value from a numpy array? # Difficulty Level: L3: # Q. Select the rows of iris_2d that does not have any nan value. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan #1 #No direct numpy implementation iris_drop = np.array([~np.any(np.isnan(row)) for row in iris_2d]) #Look at first 5 rows of drop iris_2d[iris_drop][:5] #2 iris_2d[np.sum(np.isnan(iris_2d), axis=1)==0][:5] ##? 36. How to find the correlation between two columns of a numpy array? # Difficulty Level: L2 # Q. Find the correlation between SepalLength(1st column) and PetalLength(3rd column) in iris_2d url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) #1 np.corrcoef(iris_2d[:, 0], iris_2d[:, 2])[0, 1] #2 from scipy.stats.stats import pearsonr corr, p_val = pearsonr(iris_2d[:, 0], iris_2d[:, 2]) print(corr) # Correlation coef indicates the degree of linear relationship between two numeric variables. # It can range between -1 to +1. # The p-value roughly indicates the probability of an uncorrelated system producing # datasets that have a correlation at least as extreme as the one computed. # The lower the p-value (<0.01), greater is the significance of the relationship. # It is not an indicator of the strength. #> 0.871754157305 ##? 37. How to find if a given array has any null values? # Difficulty Level: L2 # Q. Find out if iris_2d has any missing values. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) np.isnan(iris_2d[:, :]).any() ##? 38. How to replace all missing values with 0 in a numpy array? # Difficulty Level: L2 # Q. Replace all occurrences of nan with 0 in numpy array url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan #Check for nans np.any(~np.isnan(iris_2d[:, :])) #Set Indexes of of the nans = 0 iris_2d[np.isnan(iris_2d)] = 0 #Check the same indexes np.where(iris_2d==0) #Check first 10 rows iris_2d[:10] ##? 39. How to find the count of unique values in a numpy array? # Difficulty Level: L2 # Q. Find the unique values and the count of unique values in iris's species # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object', encoding="utf-8") names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') #1 species = np.array([row.tolist()[4] for row in iris]) np.unique(species, return_counts=True) #2 np.unique(iris[:, 4], return_counts=True) ##? 40. How to convert a numeric to a categorical (text) array? # Difficulty Level: L2 # Q. Bin the petal length (3rd) column of iris_2d to form a text array, such that if petal length is: # Less than 3 --> 'small' # 3-5 --> 'medium' # '>=5 --> 'large' # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') #1 #Bin the petal length petal_length_bin = np.digitize(iris[:, 2].astype('float'), [0, 3, 5, 10]) #Map it to respective category. label_map = {1: 'small', 2: 'medium', 3: 'large', 4: np.nan} petal_length_cat = [label_map[x] for x in petal_length_bin] petal_length_cat[:4] #or petal_length_cat = np.array(list(map(lambda x: label_map[x], petal_length_bin))) petal_length_cat[:4] ##? 41. How to create a new column from existing columns of a numpy array? # Difficulty Level: L2 # Q. Create a new column for volume in iris_2d, # where volume is (pi x petallength x sepal_length^2)/3 # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='object') # Compute volume sepallength = iris_2d[:, 0].astype('float') petallength = iris_2d[:, 2].astype('float') volume = (np.pi * petallength*sepallength**2)/3 # Introduce new dimension to match iris_2d's volume = volume[:, np.newaxis] # Add the new column out = np.hstack([iris_2d, volume]) out[:4] ##? 42. How to do probabilistic sampling in numpy? # Difficulty Level: L3 # Q. Randomly sample iris's species such that setosa # is twice the number of versicolor and virginica # Import iris keeping the text column intact url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') #Get species column species = iris[:, 4] #1 Generate Probablistically. np.random.seed(100) a = np.array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']) out = np.random.choice(a, 150, p=[0.5, 0.25, 0.25]) #Checking counts np.unique(out[:], return_counts=True) #2 Probablistic Sampling #preferred np.random.seed(100) probs = np.r_[np.linspace(0, 0.500, num=50), np.linspace(0.501, .0750, num=50), np.linspace(.751, 1.0, num=50)] index = np.searchsorted(probs, np.random.random(150)) species_out = species[index] print(np.unique(species_out, return_counts=True)) # Approach 2 is preferred because it creates an index variable that can be # used to sample 2d tabular data. ##? 43. How to get the second largest value of an array when grouped by another array? # Difficulty Level: L2 # Q. What is the value of second longest petallength of species setosa # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') petal_setosa = iris[iris[:, 4]==b'Iris-setosa', [2]].astype('float') #1 #Note. Option 1 will return the second largest value 1.7, but with no repeats (np.unique() np.unique(np.sort(petal_setosa))[-2] #Note, options 2 and 3. these will return 1.9 because that is the second largest value. #2 petal_setosa[np.argpartition(petal_setosa, -2)[-2]] #3 petal_setosa[petal_setosa.argsort()[-2]] #4 unq = np.unique(petal_setosa) unq[np.argpartition(unq, -2)[-2]] #Note: This method still gives back 1.9. As that is the 2nd largest value, #So you'd have to filter for unique values. Then do the argpart on the unq array ##? 44. How to sort a 2D array by a column # Difficulty Level: L2 # Q. Sort the iris dataset based on sepallength column. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' # dtype = [('sepallength', float), ('sepalwidth', float), ('petallength', float), ('petalwidth', float),('species', 'S10')] iris = np.genfromtxt(url, delimiter=',', dtype="object") names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') #1 print(iris[iris[:,0].argsort()][:20]) #2 #!Only captures first column to sort np.sort(iris[:, 0], axis=0) #3 sorted(iris, key=lambda x: x[0]) ##? 45. How to find the most frequent value in a numpy array? # Difficulty Level: L1 # Q. Find the most frequent value of petal length (3rd column) in iris dataset. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') vals, counts = np.unique(iris[:, 2], return_counts=True) print(vals[np.argmax(counts)]) ##? 46. How to find the position of the first occurrence of a value greater than a given value? # Difficulty Level: L2 # Q. Find the position of the first occurrence of a value greater than 1.0 in petalwidth 4th column of iris dataset. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') #1 np.argwhere(iris[:, 3].astype(float) > 1.0)[0] # 47. How to replace all values greater than a given value to a given cutoff? # Difficulty Level: L2 # Q. From the array a, replace all values greater than 30 to 30 and less than 10 to 10. np.set_printoptions(precision=2) np.random.seed(100) a = np.random.uniform(1,50, 20) #1 np.clip(a, a_min=10, a_max=30) #2 np.where(a < 10, 10, np.where(a > 30, 30, a)) #Tangent - Filtering condition #Say we only want the values above 10 and below 30. Or operator | should help there. filt_cond = (a < 10) | (a > 30) a[filt_cond] ##? 48. How to get the positions of top n values from a numpy array? # Difficulty Level: L2 # Q. Get the positions of top 5 maximum values in a given array a. np.random.seed(100) a = np.random.uniform(1,50, 20) #1 a.argsort()[:5] #2 np.argpartition(-a, 5)[:5] # or (order is reversed though) np.argpartition(a, -5)[-5:] #To get the values. #1 a[a.argsort()][-5:] #2 np.sort(a)[-5:] #3 np.partition(a, kth=-5)[-5:] #4 a[np.argpartition(-a, 5)][:5] #or a[np.argpartition(a, -5)][-5:] ##? 49. How to compute the row wise counts of all possible values in an array? # Difficulty Level: L4 # Q. Compute the counts of unique values row-wise. np.random.seed(100) arr = np.random.randint(1,11,size=(6, 10)) #Add a column of of the counts of each row #Tangent fun counts = np.array([np.unique(row).size for row in arr]) counts = counts.reshape(arr.shape[0], 1) arr = np.hstack([arr, counts]) arr #1 def row_counts(arr2d): count_arr = [np.unique(row, return_counts=True) for row in arr2d] return [[int(b[a==i]) if i in a else 0 for i in np.unique(arr2d)] for a, b in count_arr] print(np.arange(1, 11)) row_counts(arr) #2 arr = np.array([np.array(list('<NAME>')), np.array(list('narendramodi')), np.array(list('jjayalalitha'))]) print(np.unique(arr)) row_counts(arr) ##? 50. How to convert an array of arrays into a flat 1d array? # Difficulty Level: 2 # Q. Convert array_of_arrays into a flat linear 1d array. # Input: arr1 = np.arange(3) arr2 = np.arange(3,7) arr3 = np.arange(7,10) array_of_arrays = np.array([arr1, arr2, arr3]) array_of_arrays #1 - List comp arr_2d = [a for arr in array_of_arrays for a in arr] arr_2d #2 - concatenate arr_2d = np.concatenate([arr1, arr2, arr3]) arr_2d #3 - hstack arr_2d = np.hstack([arr1, arr2, arr3]) arr_2d #4 - ravel arr_2d = np.concatenate(array_of_arrays).ravel() #ravel flattens the array arr_2d ##? 51. How to generate one-hot encodings for an array in numpy? # Difficulty Level L4 # Q. Compute the one-hot encodings (dummy binary variables for each unique value in the array) # Input np.random.seed(101) arr = np.random.randint(1,11, size=20) arr #1 def one_hot_encode(arr): uniqs = np.unique(arr) out = np.zeros((arr.shape[0], uniqs.shape[0])) for i, k in enumerate(arr): out[i, k-1] = 1 return out print("\t",np.arange(1, 11)) one_hot_encode(arr) #2 (arr[:, None] == np.unique(arr)).view(np.int8) ##? 52. How to create row numbers grouped by a categorical variable? # Difficulty Level: L3 # Q. Create row numbers grouped by a categorical variable. # Use the following sample from iris species as input. #Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' species = np.genfromtxt(url, delimiter=',', dtype='str', usecols=4) #choose 20 species randomly species_small = np.sort(np.random.choice(species, size=20)) species_small #1 print([i for val in np.unique(species_small) for i, grp in enumerate(species_small[species_small==val])]) ##? 53. How to create group ids based on a given categorical variable? # Difficulty Level: L4 # Q. Create group ids based on a given categorical variable. # Use the following sample from iris species as input. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' species = np.genfromtxt(url, delimiter=',', dtype='str', usecols=4) species_small = np.sort(np.random.choice(species, size=20)) species_small #1 [np.argwhere(np.unique(species_small) == s).tolist()[0][0] for val in np.unique(species_small) for s in species_small[species_small==val]] #2 # Solution: For Loop version output = [] uniqs = np.unique(species_small) for val in uniqs: # uniq values in group for s in species_small[species_small==val]: # each element in group groupid = np.argwhere(uniqs == s).tolist()[0][0] # groupid output.append(groupid) print(output) ##? 54. How to rank items in an array using numpy? # Difficulty Level: L2 # Q. Create the ranks for the given numeric array a. #Input np.random.seed(10) a = np.random.randint(20, size=10) print(a) a.argsort().argsort() ##? 55. How to rank items in a multidimensional array using numpy? # Difficulty Level: L3 # Q. Create a rank array of the same shape as a given numeric array a. #Input np.random.seed(10) a = np.random.randint(20, size=[5,5]) print(a) #1 print(a.ravel().argsort().argsort().reshape(a.shape)) #2 #Ranking the rows tmp = a.argsort()[::-1] np.arange(len(a))[tmp]+1 #2b #Alternate ranking of rows (8x faster) sidx =
np.argsort(a, axis=1)
numpy.argsort
import numpy as np import random import re ANNOTATIONFILE = 'OpenKPAnnotations.tsv' def getScoreUnigram(candidate, gold): #Unigram Levenshtein distance #First we produce all possible pairs and greedily select scoring, bestMatch = {}, {} maxScore = 0 maxLabel = '' #Generate all possible combinations for goldLabel in gold: goldKey = str(goldLabel) scoring[goldKey] = {} for candidateLabel in candidate: candidateKey = str(candidateLabel) scoring[goldKey][candidateKey] = (len(goldLabel) - len(goldLabel-candidateLabel))/len(goldLabel) #Greedily select best combination and then remove all related combinations. while len(scoring) > 0: maxScore = 0 maxLabel = '' for goldLabel in scoring: goldKey = str(goldLabel) for candidateLabel in scoring[goldKey]: candidateKey = str(candidateLabel) score = scoring[goldKey][candidateKey] if score >= maxScore: maxScore = score maxLabel = (goldKey, candidateKey) bestMatch[maxLabel] = scoring[maxLabel[0]][maxLabel[1]] scoring.pop(maxLabel[0])#remove all pairs that could return sum(bestMatch.values())/len(gold) def getScoreEM(candidate, gold): #Unigram Levenshtein distance #First we produce all possible pairs and greedily select scoring, bestMatch = {}, {} maxScore = 0 maxLabel = '' #Generate all possible combinations for goldLabel in gold: goldKey = str(goldLabel) scoring[goldKey] = {} for candidateLabel in candidate: candidateKey = str(candidateLabel) if goldLabel == candidateLabel: scoring[goldKey][candidateKey] = 1 else: scoring[goldKey][candidateKey] = 0 #Greedily select best combination and then remove all related combinations. while len(scoring) > 0: maxScore = -1 maxLabel = '' for goldLabel in scoring: goldKey = str(goldLabel) for candidateLabel in scoring[goldKey]: candidateKey = str(candidateLabel) score = scoring[goldKey][candidateKey] if score >= maxScore: maxScore = score maxLabel = (goldKey, candidateKey) bestMatch[maxLabel] = scoring[maxLabel[0]][maxLabel[1]] scoring.pop(maxLabel[0])#remove all pairs that could return sum(bestMatch.values())/len(gold) def calculateAgreement(judgements): scoresUnigram = [] scoresEM = [] for url in judgements: for i in range(len(judgements[url])): currentRunsUnigram, currentRunsEM = [], [] for j in range(len(judgements[url])): if j != i: currentRunsUnigram.append(getScoreUnigram(judgements[url][i],judgements[url][j])) currentRunsEM.append(getScoreEM(judgements[url][i],judgements[url][j])) if len(currentRunsUnigram) > 0: scoresUnigram.append(np.sum(currentRunsUnigram)/(len(judgements[url])-1)) scoresEM.append(np.sum(currentRunsEM)/(len(judgements[url])-1)) print('Exact Match max:{} min:{} mean:{}'.format(np.max(scoresEM), np.min(scoresEM),np.mean(scoresEM))) print('Unigram max:{} min:{} mean:{}'.format(np.max(scoresUnigram), np.min(scoresUnigram),
np.mean(scoresUnigram)
numpy.mean
from src.utils import pdump, pload, bmtv, bmtm from src.lie_algebra import SO3 from termcolor import cprint from torch.utils.data.dataset import Dataset from scipy.interpolate import interp1d import numpy as np import matplotlib.pyplot as plt import pickle import os import torch import sys class BaseDataset(Dataset): def __init__(self, predata_dir, train_seqs, val_seqs, test_seqs, mode, N, min_train_freq=128, max_train_freq=512, dt=0.005): super().__init__() # where record pre loaded data self.predata_dir = predata_dir self.path_normalize_factors = os.path.join(predata_dir, 'nf.p') self.mode = mode # choose between training, validation or test sequences train_seqs, self.sequences = self.get_sequences(train_seqs, val_seqs, test_seqs) # get and compute value for normalizing inputs self.mean_u, self.std_u = self.init_normalize_factors(train_seqs) self.mode = mode # train, val or test self._train = False self._val = False # noise density self.imu_std = torch.Tensor([8e-5, 1e-3]).float() # bias repeatability (without in-run bias stability) self.imu_b0 = torch.Tensor([1e-3, 1e-3]).float() # IMU sampling time self.dt = dt # (s) # sequence size during training self.N = N # power of 2 self.min_train_freq = min_train_freq self.max_train_freq = max_train_freq self.uni = torch.distributions.uniform.Uniform(-torch.ones(1), torch.ones(1)) def get_sequences(self, train_seqs, val_seqs, test_seqs): """Choose sequence list depending on dataset mode""" sequences_dict = { 'train': train_seqs, 'val': val_seqs, 'test': test_seqs, } return sequences_dict['train'], sequences_dict[self.mode] def __getitem__(self, i): mondict = self.load_seq(i) N_max = mondict['xs'].shape[0] if self._train: # random start n0 = torch.randint(0, self.max_train_freq, (1, )) nend = n0 + self.N elif self._val: # end sequence n0 = self.max_train_freq + self.N nend = N_max - ((N_max - n0) % self.max_train_freq) else: # full sequence n0 = 0 nend = N_max - (N_max % self.max_train_freq) u = mondict['us'][n0: nend] x = mondict['xs'][n0: nend] return u, x def __len__(self): return len(self.sequences) def add_noise(self, u): """Add Gaussian noise and bias to input""" noise = torch.randn_like(u) noise[:, :, :3] = noise[:, :, :3] * self.imu_std[0] noise[:, :, 3:6] = noise[:, :, 3:6] * self.imu_std[1] # bias repeatability (without in run bias stability) b0 = self.uni.sample(u[:, 0].shape).cuda() b0[:, :, :3] = b0[:, :, :3] * self.imu_b0[0] b0[:, :, 3:6] = b0[:, :, 3:6] * self.imu_b0[1] u = u + noise + b0.transpose(1, 2) return u def init_train(self): self._train = True self._val = False def init_val(self): self._train = False self._val = True def length(self): return self._length def load_seq(self, i): return pload(self.predata_dir, self.sequences[i] + '.p') def load_gt(self, i): return pload(self.predata_dir, self.sequences[i] + '_gt.p') def init_normalize_factors(self, train_seqs): if os.path.exists(self.path_normalize_factors): mondict = pload(self.path_normalize_factors) return mondict['mean_u'], mondict['std_u'] path = os.path.join(self.predata_dir, train_seqs[0] + '.p') if not os.path.exists(path): print("init_normalize_factors not computed") return 0, 0 print('Start computing normalizing factors ...') cprint("Do it only on training sequences, it is vital!", 'yellow') # first compute mean num_data = 0 for i, sequence in enumerate(train_seqs): pickle_dict = pload(self.predata_dir, sequence + '.p') us = pickle_dict['us'] sms = pickle_dict['xs'] if i == 0: mean_u = us.sum(dim=0) num_positive = sms.sum(dim=0) num_negative = sms.shape[0] - sms.sum(dim=0) else: mean_u += us.sum(dim=0) num_positive += sms.sum(dim=0) num_negative += sms.shape[0] - sms.sum(dim=0) num_data += us.shape[0] mean_u = mean_u / num_data pos_weight = num_negative / num_positive # second compute standard deviation for i, sequence in enumerate(train_seqs): pickle_dict = pload(self.predata_dir, sequence + '.p') us = pickle_dict['us'] if i == 0: std_u = ((us - mean_u) ** 2).sum(dim=0) else: std_u += ((us - mean_u) ** 2).sum(dim=0) std_u = (std_u / num_data).sqrt() normalize_factors = { 'mean_u': mean_u, 'std_u': std_u, } print('... ended computing normalizing factors') print('pos_weight:', pos_weight) print('This values most be a training parameters !') print('mean_u :', mean_u) print('std_u :', std_u) print('num_data :', num_data) pdump(normalize_factors, self.path_normalize_factors) return mean_u, std_u def read_data(self, data_dir): raise NotImplementedError @staticmethod def interpolate(x, t, t_int): """ Interpolate ground truth at the sensor timestamps """ # vector interpolation x_int = np.zeros((t_int.shape[0], x.shape[1])) for i in range(x.shape[1]): if i in [4, 5, 6, 7]: continue x_int[:, i] = np.interp(t_int, t, x[:, i]) # quaternion interpolation t_int = torch.Tensor(t_int - t[0]) t = torch.Tensor(t - t[0]) qs = SO3.qnorm(torch.Tensor(x[:, 4:8])) x_int[:, 4:8] = SO3.qinterp(qs, t, t_int).numpy() return x_int class EUROCDataset(BaseDataset): """ Dataloader for the EUROC Data Set. """ def __init__(self, data_dir, predata_dir, train_seqs, val_seqs, test_seqs, mode, N, min_train_freq, max_train_freq, dt=0.005): super().__init__(predata_dir, train_seqs, val_seqs, test_seqs, mode, N, min_train_freq, max_train_freq, dt) # convert raw data to pre loaded data self.read_data(data_dir) def read_data(self, data_dir): r"""Read the data from the dataset""" f = os.path.join(self.predata_dir, 'MH_01_easy.p') if True and os.path.exists(f): return print("Start read_data, be patient please") def set_path(seq): path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv") path_gt = os.path.join(data_dir, seq, "mav0", "state_groundtruth_estimate0", "data.csv") return path_imu, path_gt sequences = os.listdir(data_dir) # read each sequence for sequence in sequences: print("\nSequence name: " + sequence) path_imu, path_gt = set_path(sequence) imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1) gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1) # time synchronization between IMU and ground truth t0 = np.max([gt[0, 0], imu[0, 0]]) t_end = np.min([gt[-1, 0], imu[-1, 0]]) # start index idx0_imu = np.searchsorted(imu[:, 0], t0) idx0_gt = np.searchsorted(gt[:, 0], t0) # end index idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right') idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right') # subsample imu = imu[idx0_imu: idx_end_imu] gt = gt[idx0_gt: idx_end_gt] ts = imu[:, 0]/1e9 # interpolate gt = self.interpolate(gt, gt[:, 0]/1e9, ts) # take ground truth position p_gt = gt[:, 1:4] p_gt = p_gt - p_gt[0] # take ground true quaternion pose q_gt = torch.Tensor(gt[:, 4:8]).double() q_gt = q_gt / q_gt.norm(dim=1, keepdim=True) Rot_gt = SO3.from_quaternion(q_gt.cuda(), ordering='wxyz').cpu() # convert from numpy p_gt = torch.Tensor(p_gt).double() v_gt = torch.tensor(gt[:, 8:11]).double() imu = torch.Tensor(imu[:, 1:]).double() # compute pre-integration factors for all training mtf = self.min_train_freq dRot_ij = bmtm(Rot_gt[:-mtf], Rot_gt[mtf:]) dRot_ij = SO3.dnormalize(dRot_ij.cuda()) dxi_ij = SO3.log(dRot_ij).cpu() # save for all training mondict = { 'xs': dxi_ij.float(), 'us': imu.float(), } pdump(mondict, self.predata_dir, sequence + ".p") # save ground truth mondict = { 'ts': ts, 'qs': q_gt.float(), 'vs': v_gt.float(), 'ps': p_gt.float(), } pdump(mondict, self.predata_dir, sequence + "_gt.p") class TUMVIDataset(BaseDataset): """ Dataloader for the TUM-VI Data Set. """ def __init__(self, data_dir, predata_dir, train_seqs, val_seqs, test_seqs, mode, N, min_train_freq, max_train_freq, dt=0.005): super().__init__(predata_dir, train_seqs, val_seqs, test_seqs, mode, N, min_train_freq, max_train_freq, dt) # convert raw data to pre loaded data self.read_data(data_dir) # noise density self.imu_std = torch.Tensor([8e-5, 1e-3]).float() # bias repeatability (without in-run bias stability) self.imu_b0 = torch.Tensor([1e-3, 1e-3]).float() def read_data(self, data_dir): r"""Read the data from the dataset""" f = os.path.join(self.predata_dir, 'dataset-room1_512_16_gt.p') if True and os.path.exists(f): return print("Start read_data, be patient please") def set_path(seq): path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv") path_gt = os.path.join(data_dir, seq, "mav0", "mocap0", "data.csv") return path_imu, path_gt sequences = os.listdir(data_dir) # read each sequence for sequence in sequences: print("\nSequence name: " + sequence) if 'room' not in sequence: continue path_imu, path_gt = set_path(sequence) imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1) gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1) # time synchronization between IMU and ground truth t0 =
np.max([gt[0, 0], imu[0, 0]])
numpy.max
import ctypes import os import warnings import numpy as np from nengo_loihi.inputs import ChipProcess class DVSFileChipProcess(ChipProcess): """Process for DVS input to Loihi chip from a pre-recorded file. Parameters ---------- file_path : string The path of the file to read from. Can be a ``.aedat`` or ``.events`` file. file_fmt : "aedat" or "events" or None, optional The format of the file. If ``None`` (default), this will be detected from the file extension. t_start : float, optional Offset for the time in the file to start at, in seconds. rel_time : bool, optional Whether to make all times relative to the first event, or not. Defaults to True for ``.aedat`` files and False otherwise. pool : (int, int), optional Number of pixels to pool over in the vertical and horizontal directions, respectively. channels_last : bool, optional Whether to make the channels (i.e. the polarity) the least-significant index (True) or the most-significant index (False). dvs_height : int, optional The actual height (in pixels) of the DVS sensor. Only change this if your sensor has a non-standard height. If you wish to make the output of this node smaller, use the ``pool`` argument instead. dvs_width : int, optional The actual width (in pixels) of the DVS sensor. Only change this if your sensor has a non-standard width. If you wish to make the output of this node smaller, use the ``pool`` argument instead. **kwargs Extra arguments to pass to the `nengo.Process` constructor. Examples -------- This example shows how to create the process, use it in a `~nengo.Node`, and connect it to neurons on the Loihi chip. The DVS events loaded from the file will be transferred immediately to the Loihi chip; none of the simulation is on the host. .. testcode:: with nengo.Network() as net: dvs_process = nengo_loihi.dvs.DVSFileChipProcess("my-dvs-events.aedat") u = nengo.Node(dvs_process) ens = nengo.Ensemble(dvs_process.size, dimensions=1) nengo.Connection(u, ens.neurons) """ def __init__( self, file_path, file_fmt=None, t_start=0, rel_time=None, pool=(1, 1), channels_last=True, dvs_height=180, dvs_width=240, **kwargs, ): self.file_path = file_path self.file_fmt = file_fmt self.t_start = t_start self.rel_time = rel_time self.dvs_height = dvs_height self.dvs_width = dvs_width self.dvs_polarity = 2 self.channels_last = channels_last self.pool = pool self.height = int(np.ceil(self.dvs_height / self.pool[0])) self.width = int(np.ceil(self.dvs_width / self.pool[1])) self.polarity = self.dvs_polarity self.size = self.height * self.width * self.polarity super().__init__(default_size_in=0, default_size_out=self.size, **kwargs) def make_step(self, shape_in, shape_out, dt, rng, state): """Make the step function to display the DVS events as image frames. This step function is only called when using this process in a `nengo.Simulator`. When using it in a `nengo_loihi.Simulator`, the events are transferred directly to the Loihi board. """ assert shape_in == (0,) assert len(shape_out) == 1 height = self.height width = self.width polarity = self.polarity t_start = self.t_start events_t, events_idx = self._read_events() def step_dvsfileimage(t): t = t_start + t t_lower = (t - dt) * 1e6 t_upper = t * 1e6 idxs = events_idx[(events_t >= t_lower) & (events_t < t_upper)] image = np.zeros(height * width * polarity) np.add.at(image, idxs, 1 / dt) return image return step_dvsfileimage def _read_events(self): """Helper function to read events from the target file.""" dvs_events = DVSEvents() dvs_events.read_file( self.file_path, file_fmt=self.file_fmt, rel_time=self.rel_time ) events = dvs_events.events pool_y, pool_x = self.pool if self.channels_last: stride_x = self.polarity stride_y = self.polarity * self.width stride_p = 1 else: stride_x = 1 stride_y = self.width stride_p = self.width * self.height events_t = events[:]["t"] events_idx = ( (events[:]["y"].astype(np.int32) // pool_y) * stride_y + (events[:]["x"].astype(np.int32) // pool_x) * stride_x + events[:]["p"].astype(np.int32) * stride_p ) return events_t, events_idx class DVSEvents: """A group of events from a Dynamic Vision Sensor (DVS) spiking camera. Attributes ---------- events : structured `numpy.ndarray` A structured array with the following fields: * "y": The vertical coordinate of the event. * "x": The horizontal coordinate of the event. * "p": The polarity of the event (``0`` for off, ``1`` for on). * "v": The event trigger (``0`` for DVS events, ``1`` for external events). * "t": The event timestamp in microseconds. n_events : int The number of events. """ events_dtype = np.dtype( [("y", "u2"), ("x", "u2"), ("p", "u1"), ("v", "u1"), ("t", "u4")] ) def __init__(self): self.events = None @property def n_events(self): """The number of events (equals ``len(self.events)``).""" return len(self.events) @staticmethod def from_file(file_path, **kwargs): """Create a new `.DVSEvents` object with events from a file. Parameters ---------- file_path : str The path to the events file. **kwargs Additional keyword arguments to pass to `.DVSEvents.read_file`. """ events = DVSEvents() events.read_file(file_path, **kwargs) return events def init_events(self, event_data=None, n_events=None): """Initialize ``events`` array. Only required if configuring events manually (i.e. not reading from a file). Parameters ---------- event_data : list of tuples, optional Each tuple is of the form ``(y, x, p, v, t)``. See `.DVSEvents` for the definitions of these fields. n_events : int, optional The number of events in the new (empty) events array, in the case that ``event_data`` is not provided. """ assert (event_data is not None) or (n_events is not None) if event_data is not None: n_events = len(event_data) if n_events is None else n_events assert n_events == len( event_data ), "Specified number of events (%d) does not match length of data (%d)" % ( n_events, len(event_data), ) if self.events is not None: warnings.warn("`events` has already been initialized. Overwriting.") if event_data is not None: self.events = np.array(event_data, dtype=self.events_dtype) else: self.events =
np.zeros(n_events, dtype=self.events_dtype)
numpy.zeros
import numpy import torch import math import numpy as np import time import operator as op from functools import reduce class PLSExplainer(): def __init__(self, objective_function, target_sparsity, eval_budget, dimensionality, restarts=1, temp_decay = .8, search_space='up_to_k', no_duplicates=True): ''' objective_function : maps from np.ndarray of shape 1 x p -> (suff/comp, suff_woe/comp_woe) search_space: up_to_k means max sparsity is ceil(dim * target_sparsity). if set to exact_k, then will be exactly k-sparse no_duplicates: if True, never evaluate an x twice. requires keeping track of all previous x ''' self.objective_function = objective_function self.target_sparsity = target_sparsity self.eval_budget = eval_budget self.dimensionality = dimensionality self.search_space = search_space self.max_sparsity = math.ceil(self.dimensionality*self.target_sparsity) assert target_sparsity > 0 and target_sparsity < 1 # limit both restarts and per_restart budget based on the number of possible explanations self.num_possible_explanations = self.ncr(self.dimensionality, self.max_sparsity) self.restarts = min(restarts, self.num_possible_explanations) self.n_iters = math.ceil(self.eval_budget / self.restarts) self.n_iters = min(self.n_iters, math.ceil(self.num_possible_explanations / self.restarts)) # limit n_iters per restart to not add up to more than num_possible_explanations self.random_masks = self.random_masks(num_masks=eval_budget, max_length=dimensionality, sparsity=target_sparsity, search_space='exact_k') self.remaining_sample_idx = list(range(len(self.random_masks))) self.no_duplicates = no_duplicates self.T = 1. self.temp_decay = temp_decay self.seen_masks = set() def balanced_array(self, size, prop): # make array of 0s and 1s of len=size and mean ~= prop array = np.zeros(size) where_ones = np.random.choice(np.arange(size), size=math.ceil(size*prop), replace=False) array[where_ones] = 1 return array def ncr(self, n, r): r = min(r, n-r) numer = reduce(op.mul, range(n, n-r, -1), 1) denom = reduce(op.mul, range(1, r+1), 1) return numer // denom # or / in Python 2 def run(self): (all_masks, all_obj, all_woe_obj) = self.parallel_local_search() return_masks = all_masks[-1].reshape(1, -1) # single best mask return_obj = all_obj return_woe_obj = all_woe_obj self.objective_at_t = self.create_objective_over_time(return_obj) self.objective_at_t_woe = self.create_objective_over_time(return_woe_obj) return (return_masks, return_obj, return_woe_obj) def create_objective_over_time(self, obj): # takes obj, array of length n, and repeats each element in obj self.restarts time # e.g., [0,1,2], with self.restarts=2, becomes [0,0,1,1,2,2] return obj.repeat(self.restarts, axis=0) def sample_single_x(self, old_x=None, add_to_seen=True): # sample new_x from old_x, nparray of length n_vars, or from self.random_masks # first of all, if no new explanations left to sample, generate random one if len(self.seen_masks) >= self.num_possible_explanations: new_x = self.balanced_array(size=self.dimensionality, prop=self.target_sparsity) elif old_x is None: sample_idx = np.random.choice(self.remaining_sample_idx) if self.no_duplicates: self.remaining_sample_idx.remove(sample_idx) new_x = self.random_masks[sample_idx] else: if self.search_space == 'up_to_k': flip_bit =
np.random.randint(self.dimensionality)
numpy.random.randint
import solver.algorithms as alg import numpy as np def problem4(t0, tf, NA0, NB0, tauA, tauB, n, returnlist=False): """Uses Euler's method to model the solution to a radioactive decay problem where dNA/dt = -NA/tauA and dNB/dt = NA/tauA - NB/tauB. Args: t0 (float): Start time tf (float): End time NA0 (int): Initial number of NA nuclei NB0 (int): Initial number of NB nuclei tauA (float): Decay time constant for NA tauB (float): Decay time constant for NB n (int): Number of points to sample at returnlist (bool) = Controls whether the function returns the list of points or not. Defaults to false Returns: solution (list): Points on the graph of the approximate solution. Each element in the list has the form (t, array([NA, NB])) In the graph, NA is green and NB is blue """ print("Problem 4: ~Radioactive Decay~ dNA/dt = -NA/tauA & dNB/dt = NA/tauA - NB/tauA - NB/tauB") N0 =
np.array([NA0, NB0])
numpy.array
# -*- coding: utf-8 -*- """ PatchGP on Snelson """ import argparse import numpy as np import torch import gpytorch import itertools from moegplib.datasets.toydata import SnelsonDataset from moegplib.utils.logger import SaveAndLoad, BoardLogger from moegplib.networks.toydata import SnelsonPrimeNet from moegplib.networks.modelquantiles import ModelQuantiles from moegplib.clustering.quantiles import quantiles1d from moegplib.moegp.gkernels import NTK1DGP import matplotlib.pyplot as plt CUDA_LAUNCH_BLOCKING="1" def parse_args(args): """Parse command line parameters Args: args ([str]): command line parameters as list of strings Returns: :obj:`argparse.Namespace`: command line parameters namespace """ parser = argparse.ArgumentParser( description="An example with Snelson data-set.") parser.add_argument('--seed', default=1234, type=int, help='seed for numpy and pytorch (default: 1234)') parser.add_argument('--ckp_dir', default="./", help='directory of the check point file.') parser.add_argument('--data_dir', default="./", help='directory of the data') return parser.parse_args(args) def main(args): """Main entry point allowing external calls Args: args ([str]): command line parameter list """ # arguments args = parse_args(args) # device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print("available devides:", device) # initialization lr = 0.1 delta = 1.5 cluster_nr = 7 # create the dataset and data loader dataset = SnelsonDataset(data_dir = args.data_dir, inbetween=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=dataset.__len__(), shuffle=True, num_workers=4) # create the model model = SnelsonPrimeNet(D_in=1, H=32, D_out=1, n_layers=2, activation='sigmoid') logger = SaveAndLoad(checkpth=args.ckp_dir) checkpoint = logger.load_ckp(is_best=True) model.load_state_dict(checkpoint['state_dict']) model.to(device) # output the datasets and clustering xtrain = dataloader.dataset.X ytrain = dataloader.dataset.Y xtest = dataloader.dataset.Xtest idx, idx_t, lidx, lidx_t, bnd_x, bidx, nb, CONN = quantiles1d(xtrain, xtest, cluster_nr) xtrain = xtrain[lidx].squeeze(-1) ytrain = ytrain[lidx].squeeze(-1) xtest = xtest[lidx_t].squeeze(-1) # put the data into a gpu. xtrain = torch.from_numpy(xtrain).to(device) ytrain = torch.from_numpy(ytrain).unsqueeze(-1).to(device) xtest = torch.from_numpy(xtest).to(device) bnd_x = torch.from_numpy(bnd_x).unsqueeze(-1).to(device) # compute the Jacobians with a gpu incl. boundary points (note: the input shapes should match) mq = ModelQuantiles(model=model, data=(xtrain.unsqueeze(-1), ytrain.unsqueeze(-1)), delta=delta, devices=device) (Jtrain, yhat, s_noise, m_0, S_0) = mq.projection() (Jtest, _, _, _, _) = mq.projection(xtest.unsqueeze(-1)) (Jbnd, _, _, _, _) = mq.projection(bnd_x.unsqueeze(-1)) dnnpred = list() gpsig2 = list() xtestlist = list() for i in range(len(idx)): # per experts, extract neighbors experts = list() # list neighborhoods (only valid for 2-D case) if not len(CONN): lst = list() else: lst_a = list() if np.nonzero(CONN[0] == i)[0].size == 0 else (np.nonzero(CONN[0] == i)[0]).astype(int) lst_b = list() if np.nonzero(CONN[1] == i)[0].size == 0 else (np.nonzero(CONN[1] == i)[0]).astype(int) if len(lst_a) and len(lst_b): lst = [lst_a, lst_b] # note this is only for 2-D case! elif len(lst_a) and not len(lst_b): lst = [lst_a] elif not len(lst_a) and len(lst_b): lst = [lst_b] else: print("no neighbor! - is it even possible?") lst = list() lst = sorted(list(itertools.chain(*lst))) experts.append([i]) experts.append(CONN[1][lst_a].tolist()) experts.append(CONN[0][lst_b].tolist()) experts = list(itertools.chain(*experts)) experts = [x+1 for x in experts] experts = list(filter(None, experts)) experts = list(set(experts)) experts = [x-1 for x in experts] experts = sorted(experts) bidx_e = list(np.asarray(bidx)[lst]) # cut the matrices based on neighbors Xtrainhat = Jtrain[0][np.concatenate([idx[ei] for ei in experts])] Ytrainhat = yhat[0][np.concatenate([idx[ei] for ei in experts])] Xtesthat = Jtest[0][np.concatenate([idx_t[ei] for ei in experts])] # patchwork gp build train covariance VIA initiate likelihood and model. likelihood = gpytorch.likelihoods.GaussianLikelihood().to(device) gpmodel = NTK1DGP(Xtrainhat, Ytrainhat, likelihood).to(device) # a new list comprehension idx_e = list() idx_t_e = list() cnt = 0 cnt_t = 0 lidx_e = np.arange(0, len([np.concatenate([idx[ei] for ei in experts])][0])) lidx_t_e = np.arange(0, len([np.concatenate([idx_t[ei] for ei in experts])][0])) for ei in experts: idx_e.append(np.arange(cnt, cnt+len(idx[ei]))) idx_t_e.append(np.arange(cnt_t, cnt_t+len(idx_t[ei]))) if ei == i: idx_ce = np.arange(cnt_t, cnt_t+len(idx_t[ei]), 1) cnt = cnt + len(idx[ei]) cnt_t = cnt_t + len(idx_t[ei]) bidxe_e = list(np.arange(0, len(bidx_e))) CONN_e = [CONN[0][bidx_e], CONN[1][bidx_e]] minus = CONN_e[0][0] CONN_e[0] = CONN_e[0] - minus CONN_e[1] = CONN_e[1] - minus # training a gp model training_iter = 100 gpmodel.train() likelihood.train() optimizer = torch.optim.Adam(gpmodel.parameters(), lr=0.1) mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, gpmodel) # entering training loop for i in range(training_iter): optimizer.zero_grad() output = gpmodel(Xtrainhat) loss = -mll(output, Ytrainhat) loss.backward(retain_graph=True) if i%5==0: print('Iter %d/%d - Loss: %.3f delta: %.3f noise: %.3f' % ( i + 1, training_iter, loss.item(), gpmodel.covar_module.variance.item(), gpmodel.likelihood.noise.item() )) optimizer.step() # Get into evaluation (predictive posterior) mode #patchkwargs['is_train'] = False gpmodel.eval() likelihood.eval() with torch.no_grad(), gpytorch.settings.fast_pred_var(): observed_pred = likelihood(gpmodel(Xtesthat)) sig2 = observed_pred.stddev.mul_(2) dnn_pred = model(xtest[
np.concatenate([idx_t[ei] for ei in experts])
numpy.concatenate
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import astropy.units as u from astropy.table import Table from astropy.utils import lazyproperty from astropy.wcs.utils import pixel_to_skycoord from .core import SegmentationImage from ..utils.convolution import filter_data __all__ = ['SourceProperties', 'source_properties', 'properties_table'] __doctest_requires__ = {('SourceProperties', 'SourceProperties.*', 'source_properties', 'properties_table'): ['scipy', 'skimage']} class SourceProperties(object): """ Class to calculate photometry and morphological properties of a single labeled source. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array from which to calculate the source photometry and properties. If ``filtered_data`` is input, then it will be used instead of ``data`` to calculate the source centroid and morphological properties. Source photometry is always measured from ``data``. For accurate source properties and photometry, ``data`` should be background-subtracted. segment_img : `SegmentationImage` or array_like (int) A 2D segmentation image, either as a `SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. label : int The label number of the source whose properties to calculate. filtered_data : array-like or `~astropy.units.Quantity`, optional The filtered version of the background-subtracted ``data`` from which to calculate the source centroid and morphological properties. The kernel used to perform the filtering should be the same one used in defining the source segments (e.g., see :func:`~photutils.detect_sources`). If `None`, then the unfiltered ``data`` will be used instead. Note that SExtractor's centroid and morphological parameters are calculated from the filtered "detection" image. error : array_like or `~astropy.units.Quantity`, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. See the Notes section below for details on the error propagation. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. background : float, array_like, or `~astropy.units.Quantity`, optional The background level that was *previously* present in the input ``data``. ``background`` may either be a scalar value or a 2D image with the same shape as the input ``data``. Inputting the ``background`` merely allows for its properties to be measured within each source segment. The input ``background`` does *not* get subtracted from the input ``data``, which should already be background-subtracted. wcs : `~astropy.wcs.WCS` The WCS transformation to use. If `None`, then `~photutils.SourceProperties.icrs_centroid`, `~photutils.SourceProperties.ra_icrs_centroid`, and `~photutils.SourceProperties.dec_icrs_centroid` will be `None`. Notes ----- `SExtractor`_'s centroid and morphological parameters are always calculated from the filtered "detection" image. The usual downside of the filtering is the sources will be made more circular than they actually are. If you wish to reproduce `SExtractor`_ results, then use the ``filtered_data`` input. If ``filtered_data`` is `None`, then the unfiltered ``data`` will be used for the source centroid and morphological parameters. Negative (background-subtracted) data values within the source segment are set to zero when measuring morphological properties based on image moments. This could occur, for example, if the segmentation image was defined from a different image (e.g., different bandpass) or if the background was oversubtracted. Note that `~photutils.SourceProperties.source_sum` includes the contribution of negative (background-subtracted) data values. The input ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources. `~photutils.SourceProperties.source_sum_err` is simply the quadrature sum of the pixel-wise total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\Delta F` is `~photutils.SourceProperties.source_sum_err`, :math:`S` are the non-masked pixels in the source segment, and :math:`\sigma_{\mathrm{tot}, i}` is the input ``error`` array. Custom errors for source segments can be calculated using the `~photutils.SourceProperties.error_cutout_ma` and `~photutils.SourceProperties.background_cutout_ma` properties, which are 2D `~numpy.ma.MaskedArray` cutout versions of the input ``error`` and ``background``. The mask is `True` for both pixels outside of the source segment and masked pixels from the ``mask`` input. .. _SExtractor: http://www.astromatic.net/software/sextractor """ def __init__(self, data, segment_img, label, filtered_data=None, error=None, mask=None, background=None, wcs=None): if not isinstance(segment_img, SegmentationImage): segment_img = SegmentationImage(segment_img) if segment_img.shape != data.shape: raise ValueError('segment_img and data must have the same shape.') if error is not None: error = np.atleast_1d(error) if len(error) == 1: error = np.zeros(data.shape) + error if error.shape != data.shape: raise ValueError('error and data must have the same shape.') if mask is np.ma.nomask: mask = np.zeros(data.shape).astype(bool) if mask is not None: if mask.shape != data.shape: raise ValueError('mask and data must have the same shape.') if background is not None: background = np.atleast_1d(background) if len(background) == 1: background = np.zeros(data.shape) + background if background.shape != data.shape: raise ValueError('background and data must have the same ' 'shape.') # data and filtered_data should be background-subtracted # for accurate source photometry and properties self._data = data if filtered_data is None: self._filtered_data = data else: self._filtered_data = filtered_data self._error = error # total error; 2D array self._background = background # 2D array segment_img.check_label(label) self.label = label self._slice = segment_img.slices[label - 1] self._segment_img = segment_img self._mask = mask self._wcs = wcs def __getitem__(self, key): return getattr(self, key, None) def make_cutout(self, data, masked_array=False): """ Create a (masked) cutout array from the input ``data`` using the minimal bounding box of the source segment. Parameters ---------- data : array-like (2D) The data array from which to create the masked cutout array. ``data`` must have the same shape as the segmentation image input into `SourceProperties`. masked_array : bool, optional If `True` then a `~numpy.ma.MaskedArray` will be created where the mask is `True` for both pixels outside of the source segment and any masked pixels. If `False`, then a `~numpy.ndarray` will be generated. Returns ------- result : `~numpy.ndarray` or `~numpy.ma.MaskedArray` (2D) The 2D cutout array or masked array. """ if data is None: return None data = np.asanyarray(data) if data.shape != self._data.shape: raise ValueError('data must have the same shape as the ' 'segmentation image input to SourceProperties') if masked_array: return np.ma.masked_array(data[self._slice], mask=self._cutout_total_mask) else: return data[self._slice] def to_table(self, columns=None, exclude_columns=None): """ Create a `~astropy.table.Table` of properties. If ``columns`` or ``exclude_columns`` are not input, then the `~astropy.table.Table` will include all scalar-valued properties. Multi-dimensional properties, e.g. `~photutils.SourceProperties.data_cutout`, can be included in the ``columns`` input. Parameters ---------- columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.Table`. The allowed column names are any of the attributes of `SourceProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.Table`. The default properties are those with scalar values. Returns ------- table : `~astropy.table.Table` A single-row table of properties of the source. """ return properties_table(self, columns=columns, exclude_columns=exclude_columns) @lazyproperty def _cutout_segment_bool(self): """ _cutout_segment_bool is `True` only for pixels in the source segment of interest. Pixels from other sources within the rectangular cutout are not included. """ return self._segment_img.data[self._slice] == self.label @lazyproperty def _cutout_total_mask(self): """ _cutout_total_mask is `True` for regions outside of the source segment or where the input mask is `True`. """ mask = ~self._cutout_segment_bool if self._mask is not None: mask |= self._mask[self._slice] return mask @lazyproperty def data_cutout(self): """ A 2D cutout from the (background-subtracted) data of the source segment. """ return self.make_cutout(self._data, masked_array=False) @lazyproperty def data_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the (background-subtracted) data, where the mask is `True` for both pixels outside of the source segment and masked pixels. """ return self.make_cutout(self._data, masked_array=True) @lazyproperty def _data_cutout_maskzeroed_double(self): """ A 2D cutout from the (background-subtracted) (filtered) data, where pixels outside of the source segment and masked pixels are set to zero. Invalid values (e.g. NaNs or infs) are set to zero. Negative data values are also set to zero because negative pixels (especially at large radii) can result in image moments that result in negative variances. The cutout image is double precision, which is required for scikit-image's Cython-based moment functions. """ cutout = self.make_cutout(self._filtered_data, masked_array=False) cutout = np.where(np.isfinite(cutout), cutout, 0.) cutout = np.where(cutout > 0, cutout, 0.) # negative pixels -> 0 return (cutout * ~self._cutout_total_mask).astype(np.float64) @lazyproperty def error_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the input ``error`` image, where the mask is `True` for both pixels outside of the source segment and masked pixels. If ``error`` is `None`, then ``error_cutout_ma`` is also `None`. """ return self.make_cutout(self._error, masked_array=True) @lazyproperty def background_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the input ``background``, where the mask is `True` for both pixels outside of the source segment and masked pixels. If ``background`` is `None`, then ``background_cutout_ma`` is also `None`. """ return self.make_cutout(self._background, masked_array=True) @lazyproperty def coords(self): """ A tuple of `~numpy.ndarray`\s containing the ``y`` and ``x`` pixel coordinates of the source segment. Masked pixels are not included. """ yy, xx =
np.nonzero(self.data_cutout_ma)
numpy.nonzero
import numpy as np import ksc from ksc.tracing.functions import math, nn @ksc.trace def dense(weights, x): W, b = weights return math.broadcast_add(math.dot(x, W), b) @ksc.trace def mlp(weights, x): weights1, weights2 = weights return dense(weights2, nn.relu(dense(weights1, x))) def test_dense(): W =
np.random.normal(0, 1, (3, 4))
numpy.random.normal
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits import mplot3d import neural_net import utils def plot_lra_random_weight_losses(linear_regressor_ann, input_dim, output_dim, train1_x, train1_nb_examples, train1_y): min_lra_loss = np.inf random_weights = np.arange(-10,11) fig = plt.figure() fig.set_facecolor('w') for i in random_weights: linear_regressor_ann.set_weights(i.reshape((output_dim, input_dim))) lra_output = linear_regressor_ann.forward(train1_x.reshape((train1_nb_examples, input_dim, output_dim))) lra_loss = np.mean(linear_regressor_ann.loss(train1_y)) if lra_loss < min_lra_loss: min_lra_loss = lra_loss plt.scatter(i, lra_loss, color="blue") plt.title('Loss for Linear regressor ANN') plt.xlabel('weights') plt.ylabel('loss') print(f"Minimum loss:{min_lra_loss:.2f}") plt.show() def plot_tla_random_weight_losses(two_layer_ann, input_dim, output_dim, nb_of_hiddenunits, train1_x, train1_nb_examples, train1_y, randomize_first_layer): random_weights = np.arange(-10,11) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(111, projection='3d') for i in random_weights: for j in random_weights: if randomize_first_layer: two_layer_ann.set_weights_1(np.array([i, j]).reshape((nb_of_hiddenunits, input_dim))) else: two_layer_ann.set_weights_2(np.array([i, j]).reshape((output_dim, nb_of_hiddenunits))) tla_output = two_layer_ann.forward(train1_x.reshape((train1_nb_examples, input_dim, output_dim))) tla_loss = np.mean(two_layer_ann.loss(train1_y)) ax.scatter(i, j, tla_loss, color="blue") plt.title('Loss for Two Layer ANN') if randomize_first_layer: ax.set_xlabel('weights_1') ax.set_ylabel('weights_1') else: ax.set_xlabel('weights_2') ax.set_ylabel('weights_2') ax.set_zlabel('loss') plt.show() def train_lra(hyperparams, linear_regressor_ann, train_x, train_y, input_dim, output_dim, train_nb_examples, train_uniform_x_samples, label="train"): learning_rate, nb_of_epochs, batch_size = hyperparams fig = plt.figure() min_lra_loss = np.inf for epoch in range(nb_of_epochs): for i in range(train_nb_examples//batch_size): linear_regressor_ann.forward(train_x[i*batch_size:i*batch_size+batch_size].reshape((batch_size, input_dim, output_dim))) linear_regressor_ann.loss(train_y[i*batch_size:i*batch_size+batch_size]) linear_regressor_ann.backward(learning_rate) lra_output = linear_regressor_ann.forward(train_x.reshape((train_nb_examples, input_dim, output_dim))) lra_loss = np.mean(linear_regressor_ann.loss(train_y)) print(f"Epoch:{epoch+1}, Linear regressor ANN loss:{lra_loss:.4f}") plt.scatter(train_x, train_y) lra_output = linear_regressor_ann.forward(train_uniform_x_samples.reshape((train_nb_examples, input_dim, output_dim))) plt.plot(train_uniform_x_samples, lra_output.reshape((train_nb_examples, 1)), linewidth=3) plt.title(f'Linear regressor ANN, Epoch:{epoch+1}, Training Set, Loss:{lra_loss:.4f}') plt.xlabel('x') plt.ylabel('y') plt.savefig(f'gif/lra_{epoch+1:03d}.png') plt.close() if min_lra_loss - lra_loss > 1e-5: min_lra_loss = lra_loss else: print("Stopped training") plt.scatter(train_x, train_y) lra_output = linear_regressor_ann.forward(train_uniform_x_samples.reshape((train_nb_examples, input_dim, output_dim))) plt.plot(train_uniform_x_samples, lra_output.reshape((train_nb_examples, 1)), linewidth=3) plt.title(f'Linear regressor ANN, Epoch:{epoch+1}, Training Set, Loss:{lra_loss:.4f}') plt.xlabel('x') plt.ylabel('y') plt.savefig(f'output/lra_{label}.png') plt.close() break def evaluate_lra(linear_regressor_ann, x, nb_examples, input_dim, output_dim, y, mode_str): lra_output = linear_regressor_ann.forward(x.reshape((nb_examples, input_dim, output_dim))) lra_loss = np.mean(linear_regressor_ann.loss(y)) lra_loss_std = np.std(linear_regressor_ann.loss(y)) print(f"Linear regressor ANN, {mode_str} set loss:{lra_loss:.4f}, std:{lra_loss_std:.4f}") return lra_loss def plot_lra_evaluation(linear_regressor_ann, x, input_dim, output_dim, y, mode_str, lra_loss, train_uniform_x_samples, train_nb_examples, label): fig = plt.figure() fig.set_facecolor('w') plt.scatter(x, y) lra_output = linear_regressor_ann.forward(train_uniform_x_samples.reshape((train_nb_examples, input_dim, output_dim))) plt.plot(train_uniform_x_samples, lra_output.reshape((train_nb_examples, 1)), linewidth=3) plt.title(f'Linear regressor ANN, {mode_str} Set, Loss:{np.mean(lra_loss):.4f}') plt.xlabel('x') plt.ylabel('y') plt.savefig(f'output/lra_{label}.png') plt.show() def train_tla(data_ix, train_x, train_y, input_dim, output_dim, train_nb_examples, train_uniform_x_samples): if data_ix == 1: lr_config = {2: 8e-3, 4: 1e-2, 8: 1e-2, 16: 5e-3} epoch_config = {2: 5500, 4: 8000, 8: 7500, 16: 9000} batchsize_config = {2: 2, 4: 2, 8: 2, 16: 3} activation_config = {2: "sigmoid", 4: "sigmoid", 8: "sigmoid", 16: "sigmoid"} loss_config = {2: "mse", 4: "mse", 8: "mse", 16: "mse"} momentum_config = {2: 0.75, 4: 0.75, 8: 0.9, 16: 0.6} stop_loss_config = {2: 0.05795, 4: 0.02025, 8: 0.02045, 16: 0.02065} plot_color = {2: "red", 4: "cyan", 8: "magenta", 16: "black"} elif data_ix == 2: lr_config = {2: 9e-3, 4: 9e-3, 8: 1e-2, 16: 9e-3} epoch_config = {2: 7500, 4: 6500, 8: 8000, 16: 30000} batchsize_config = {2: 3, 4: 3, 8: 2, 16: 2} activation_config = {2: "sigmoid", 4: "sigmoid", 8: "sigmoid", 16: "sigmoid"} loss_config = {2: "mse", 4: "mse", 8: "mse", 16: "mse"} momentum_config = {2: 0.4, 4: 0.4, 8: 0.5, 16: 0.3} stop_loss_config = {2: 0.28005, 4: 0.14305, 8: 0.05975, 16: 0.05915} plot_color = {2: "red", 4: "cyan", 8: "magenta", 16: "black"} trained_nets = [] anim_files = [] for nb_of_hiddenunits in (2, 4, 8, 16): np.random.seed(550) learning_rate = lr_config[nb_of_hiddenunits] nb_of_epochs = epoch_config[nb_of_hiddenunits] batch_size = batchsize_config[nb_of_hiddenunits] two_layer_ann = neural_net.TwoLayerANN(nb_of_hiddenunits, activation_function=activation_config[nb_of_hiddenunits], loss_function=loss_config[nb_of_hiddenunits], use_momentum=True, momentum_factor=momentum_config[nb_of_hiddenunits]) fig = plt.figure() print(f"Training two layer ANN with {nb_of_hiddenunits} units") for epoch in range(nb_of_epochs): for i in range(train_nb_examples//batch_size): two_layer_ann.forward(train_x[i*batch_size:i*batch_size+batch_size].reshape((batch_size, input_dim, output_dim))) two_layer_ann.loss(train_y[i*batch_size:i*batch_size+batch_size]) two_layer_ann.backward(learning_rate) tla_output = two_layer_ann.forward(train_x.reshape((train_nb_examples, input_dim, output_dim))) tla_loss = np.mean(two_layer_ann.loss(train_y)) if (data_ix == 1 and (epoch == 0 or (epoch+1) % 500 == 0)) or (data_ix == 2 and epoch == 0 or (epoch+1) % (1500 if nb_of_hiddenunits == 16 else 500) == 0): print(f"Epoch:{epoch+1}, Two layer ANN loss:{tla_loss:.4f}") plt.scatter(train_x, train_y) tla_output = two_layer_ann.forward(train_uniform_x_samples.reshape((train_nb_examples, input_dim, output_dim))) plt.plot(train_uniform_x_samples, tla_output.reshape((train_nb_examples, 1)), color=plot_color[nb_of_hiddenunits], linewidth=3) plt.title(f'Two layer ANN ({nb_of_hiddenunits} units), Epoch:{epoch+1}, Training Set, Loss:{tla_loss:.4f}') plt.xlabel('x') plt.ylabel('y') plt.savefig(f'gif/tla_{nb_of_hiddenunits}_{epoch+1:05d}.png') plt.close() if tla_loss < stop_loss_config[nb_of_hiddenunits]: print(f"Stopped training, Epoch:{epoch+1}, Two layer ANN loss:{tla_loss:.4f}") plt.scatter(train_x, train_y) tla_output = two_layer_ann.forward(train_uniform_x_samples.reshape((train_nb_examples, input_dim, output_dim))) plt.plot(train_uniform_x_samples, tla_output.reshape((train_nb_examples, 1)), color=plot_color[nb_of_hiddenunits], linewidth=3) plt.title(f'Two layer ANN ({nb_of_hiddenunits} units), Epoch:{epoch+1}, Training Set, Loss:{tla_loss:.4f}') plt.xlabel('x') plt.ylabel('y') plt.savefig(f'output/tla_{nb_of_hiddenunits}_train{"_2" if data_ix == 2 else ""}.png') plt.close() break anim_file = f'gif/tla_{nb_of_hiddenunits}_training{"_2" if data_ix == 2 else ""}.gif' utils.create_animation(anim_file, f'gif/tla_{nb_of_hiddenunits}_*.png', fps=4 if data_ix == 1 else 8) trained_nets.append(two_layer_ann) anim_files.append(anim_file) return trained_nets, anim_files def evaluate_tla(trained_nets, train_x, train_y, test_x, test_y, train_nb_examples, test_nb_examples, train_uniform_x_samples, input_dim, output_dim, label=""): ann_hidden_units = [2, 4, 8, 16] plot_color = {2: "red", 4: "cyan", 8: "magenta", 16: "black"} for i in range(4): two_layer_ann = trained_nets[i] tla_output = two_layer_ann.forward(train_x.reshape((train_nb_examples, input_dim, output_dim))) tla_loss = np.mean(two_layer_ann.loss(train_y)) tla_loss_std = np.std(two_layer_ann.loss(train_y)) print(f"Two layer ANN, {ann_hidden_units[i]} units, training set loss:{tla_loss:.4f}, std:{tla_loss_std:.4f}") fig = plt.figure() fig.set_facecolor('w') plt.scatter(train_x, train_y) tla_output = two_layer_ann.forward(train_uniform_x_samples.reshape((train_nb_examples, input_dim, output_dim))) plt.plot(train_uniform_x_samples, tla_output.reshape((train_nb_examples, 1)), color=plot_color[ann_hidden_units[i]], linewidth=3) plt.title(f'Two layer ANN, {ann_hidden_units[i]} units, Training Set, Loss:{np.mean(tla_loss):.4f}') plt.xlabel('x') plt.ylabel('y') plt.savefig(f'output/tla_{ann_hidden_units[i]}_train_curve{label}.png') plt.show() tla_output = two_layer_ann.forward(test_x.reshape((test_nb_examples, input_dim, output_dim))) tla_loss = np.mean(two_layer_ann.loss(test_y)) tla_loss_std = np.std(two_layer_ann.loss(test_y)) print(f"Two layer ANN, {ann_hidden_units[i]} units, test set loss:{tla_loss:.4f}, std:{tla_loss_std:.4f}") fig = plt.figure() fig.set_facecolor('w') plt.scatter(test_x, test_y) tla_output = two_layer_ann.forward(train_uniform_x_samples.reshape((train_nb_examples, input_dim, output_dim))) plt.plot(train_uniform_x_samples, tla_output.reshape((train_nb_examples, 1)), color=plot_color[ann_hidden_units[i]], linewidth=3) plt.title(f'Two layer ANN, {ann_hidden_units[i]} units, Test Set, Loss:{
np.mean(tla_loss)
numpy.mean
""" Model Description """ "-----------------------------------------------------------------------------" """This model is a half cell model of of PEM fuel cell cathode. The model uses a core-shell type catalyst layer geometry. The core-shell geometry involves a Pt-covered carbon core covered with a thin shell of Nafion.""" """ Model Assumptions """ "-----------------------------------------------------------------------------" " 1.) Gas properties are constant -> parameters" " 2.) Temperature is constant -> parameter" " 3.) Variables are Phi_dl [V] -> only difference important," " Nafion/gas species mass densities [kg/m^3], and surface coverages [-]" " 4.) The proton density in Nafion is constant due to its structure" " 5.) The C/Pt phases at every node have the same potential" " 6.) The ionic conductivity of Nafion is a function of its RH, temperature," " and thickness. It can be modeled via various sub models described in" " detail in the pemfc_property_funcs file." # Note: Interpolations can only be done within the ranges given by the above # mentioned paper [1]; therefore, this model only works for properties of # Nafion RH, temperature, and thickness of 20-95 %, 30-60 C, and 4-300 nm # respectively. Values outside of these ranges with result in an unknown # value of ionic conductivity. # Note: Another valuable paper for model inputs is "An improved two-dimensional # agglomerate cathode model to study the influence of catalyst layer # structural parameters" by Sun, Peppley, and Karan from 2005 [2]. This # includes GDL and CL thickness, porosities, and more. # Note: Permeability values taken as scaled values from Zenyuk, Das, Weber # paper that reported saturated values for GDL and CL at reported # porosities. Title "Understanding Impacts of Catalyst Layer Thickness # on Fuel Cell Performance via Mathematical Modeling" (2016) [3]. # Note: Oxygen diffusion through Nafion was taken from Sethuraman et al. paper # and scaled by water volume fraction as a function of t_naf. Titled # "Measuring Oxygen, Carbon Monoxide, Hydrogen Sulfide Diffusion # Coefficients and Solubility in Nafion Membranes" (2009) [4]. # Note: Knowledge of O2 diffusion scaling with water volume fraction used to # scale values. Interpolations from DeCaluwe et al. taken to evaluate # water fraction as function of t_naf. Titled "Structure-property # relationships at Nafion thin-film interfaces:..." (2018) [5] # Note: Nafion conducitivity treatment as bulk material was added as an option. # This method assumes the thin shell has the same conductivity as bulk # material and that there are no confinement or microstructure effects # when it gets too thin. The relationship is taken from Yadav et al. in # their 2012 publication of "Analysis of EIS Technique and Nafion 117 # Conductivity as a Function of Temperature and Relative Humidity" [6] # Note: Low Pt loading data and modeling results are present with operating # conditions in "Modeling and Experimental Validation of Pt Loading and # Electrode Composition Efects in PEM Fuel Cells" by L. Hao et. al. [7] # This paper was published in 2015 and makes it recent enough to validate # against. # Note: In order to validate the model, results for the full cell are needed. # The anode was added by determining the steady-state potential via # Gibb's free energy correlations. The PEM was simply modeled as a V=IR # relationship where the resistance (Ohm*cm^2) was taken from [8] (2002). """ Import needed modules """ "-----------------------------------------------------------------------------" import os, time import numpy as np import cantera as ct """ User Input Parameters """ "-----------------------------------------------------------------------------" " External currents " i_OCV = 0. # 0 [A/cm^2] -> or single run if != 0 i_ext0 = np.linspace(1e-3,0.1,10) # currents in kinetic region [A/cm^2] i_ext1 =
np.linspace(2e-1,1.5,10)
numpy.linspace
import os import scipy.misc import numpy as np def get_data(pardir, max_size=None, debug=False): file_list = os.listdir(pardir) if max_size is None: max_size = len(file_list) x_data = list() y_data = list() for f in file_list[:max_size]: data_path = os.path.join(pardir, f) im = scipy.misc.imread(data_path, flatten=False, mode='RGB') ims = scipy.misc.imresize(im,(60, 160, 3)) x_data.append(ims) num = f.split('.')[0] N = len(num) y = np.zeros((N, 10)) for n, i in enumerate(num): y[n][int(i)] = 1 y_data.append(y) x_data = np.array(x_data) y_data =
np.array(y_data)
numpy.array
import sklearn from .base import ExcursionModel from .utils import get_kernel import numpy as np class SKLearnGP(ExcursionModel, sklearn.gaussian_process.GaussianProcessRegressor): """This is a guassian process used to compute the excursion model. Most if not all excursion models will be a gaussian process. """ def __init__(self, ndim, kernel_type='const_rbf', alpha=10**-7): kernel = get_kernel(ndim, kernel_type) self.gp_params = { 'alpha': alpha, 'n_restarts_optimizer': 10, 'random_state': 1234 } super(SKLearnGP, self).__init__(kernel=kernel, **self.gp_params) self.epsilon = 0.0 def update_model(self, x, y): """ Updates training data (does not re-fit model hyper-parameters). """ inputs = x targets = y if x.shape[1] != 1 else y.flatten() if self.epsilon > 0.0: # Add noise if the likelihood had included epsilon>0 in algo options raise NotImplementedError("The current package only supports noiseless models for sklearn models") if not hasattr(self, "X_train_") and not hasattr(self, "y_train_"): # No data; add it self.X_train_ = inputs self.y_train_ = targets.ravel() else: self.X_train_ =
np.concatenate((self.X_train_, inputs), axis=0)
numpy.concatenate
import cv2 import imutils import numpy as np from shared.sort_cont import sort_cont from skimage import measure from skimage.filters import threshold_local def segment_chars(plate_img, fixed_width): """ extract Value channel from the HSV format of image and apply adaptive thresholding to reveal the characters on the license plate """ V = cv2.split(cv2.cvtColor(plate_img, cv2.COLOR_BGR2HSV))[2] T = threshold_local(V, 29, offset=15, method='gaussian') thresh = (V > T).astype('uint8') * 255 thresh = cv2.bitwise_not(thresh) # resize the license plate region to a canonical size plate_img = imutils.resize(plate_img, width=fixed_width) thresh = imutils.resize(thresh, width=fixed_width) bgr_thresh = cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR) # perform a connected components analysis and initialize the mask to store the locations # of the character candidates labels = measure.label(thresh, connectivity=2, background=0) charCandidates =
np.zeros(thresh.shape, dtype='uint8')
numpy.zeros
import numpy as np from scipy.integrate import quad from scipy.special import binom from scipy.special import gamma from scipy.special import gammainc from scipy.stats import binom from numba import njit def get_thetami_mat(mmax, beta, f=lambda m: 1, K=1, alpha=2, tmin=1, T=np.inf): #uses an exponential dose distribution #thetami = thetam(i/m-1) thetami = np.zeros((mmax+1,mmax+1)) Z = (tmin**(-alpha)-T**(-alpha))/alpha for m in range(2,mmax+1): for i in range(1,m): tau_c = K*(m-1)/(beta*i*f(m)) thetami[m,i] += np.exp(-tau_c)-np.exp(-tau_c/T)*T**(-alpha) thetami[m,i] += tau_c**(-alpha)*gamma(alpha+1)*(\ gammainc(alpha+1,tau_c)- gammainc(alpha+1,tau_c/T)) return thetami/(Z*alpha) @njit def get_binom(N,p): if N > 0: pmf =
np.zeros(N+1)
numpy.zeros
from dataclasses import dataclass from typing import Sequence import sympy import numpy as np from numpy import zeros, diag, eye, ones, array from numpy.linalg import cholesky from numpy.random import multivariate_normal @dataclass class SimulationParams: ymvars: Sequence[sympy.Symbol] # manifest endogenous variables xmean_true: Sequence[float] # mean of exogeneous data sigx_theo: float # true scalar error variance of xvars sigym_theo: float # true scalar error variance of ymvars rho: float # true correlation within y and within x vars tau: int # nr. of simulated observations def simulate(m, sim_params): """simulate exogeneous x and corresponding endogeneous y data for example equations""" # dimensions ndim = len(m.yvars) mdim = len(m.xvars) selvec = zeros(ndim) selvec[[list(m.yvars).index(el) for el in sim_params.ymvars]] = 1 selmat = diag(selvec) selvecc = selvec.reshape(ndim, 1) fym = eye(ndim)[diag(selmat) == 1] # compute theoretical RAM covariance matrices # ToDo: needed? # yyy sigmax_theo = sim_params.sigx_theo * ( sim_params.rho * ones((mdim, mdim)) + (1 - sim_params.rho) * eye(mdim) ) sigmau_theo = sim_params.sigym_theo * ( sim_params.rho * selvecc @ selvecc.T + (1 - sim_params.rho) * selmat ) # symmetrize covariance matrices, such that numerically well conditioned sigmax_theo = (sigmax_theo + sigmax_theo.T) / 2 sigmau_theo = (sigmau_theo + sigmau_theo.T) / 2 # simulate x data # use cholesky to avoid numerical random normal posdef problem, old: # xdat = multivariate_normal(sim_params.xmean_true, sigmax_theo, sim_params.tau).T xdat = multivariate_normal(zeros(mdim), eye(mdim), sim_params.tau).T xdat = array(sim_params.xmean_true).reshape(mdim, 1) + cholesky(sigmax_theo) @ xdat # ymdat from yhat with enndogenous errors yhat = m.compute(xdat) ymdat = fym @ ( yhat + multivariate_normal(zeros(ndim), sigmau_theo, sim_params.tau).T ) # delete nan columns colind = ~np.any(
np.isnan(ymdat)
numpy.isnan
import tensorflow as tf from os import path import numpy as np from scipy import misc from styx_msgs.msg import TrafficLight import cv2 import rospy import tensorflow as tf class CarlaModel(object): def __init__(self, model_checkpoint): self.sess = None self.checkpoint = model_checkpoint self.prob_thr = 0.90 self.TRAFFIC_LIGHT_CLASS = 10 self.image_no = 10000 tf.reset_default_graph() def predict(self, img): if self.sess == None: gd = tf.GraphDef() gd.ParseFromString(tf.gfile.GFile(self.checkpoint, "rb").read()) tf.import_graph_def(gd, name="object_detection_api") self.sess = tf.Session() g = tf.get_default_graph() self.image = g.get_tensor_by_name("object_detection_api/image_tensor:0") self.boxes = g.get_tensor_by_name("object_detection_api/detection_boxes:0") self.scores = g.get_tensor_by_name("object_detection_api/detection_scores:0") self.classes = g.get_tensor_by_name("object_detection_api/detection_classes:0") img_h, img_w = img.shape[:2] self.image_no = self.image_no+1 cv2.imwrite("full_"+str(self.image_no)+".png", img) for h0 in [img_h//3, (img_h//3)-150]: for w0 in [0, img_w//3, img_w*2//3]: grid = img[h0:h0+img_h//3+50, w0:w0+img_w//3, :] # grid pred_boxes, pred_scores, pred_classes = self.sess.run([self.boxes, self.scores, self.classes], feed_dict={self.image:
np.expand_dims(grid, axis=0)
numpy.expand_dims
#!/usr/bin/env python """Very simple SVG rasterizer NOT SUPPORTED: - markers - symbol - color-interpolation and filter-color-interpolation attributes PARTIALLY SUPPORTED: - text (textPath is not supported) - fonts - font resolution logic is very basic - style font attribute is not parsed only font-* attrs are supported KNOWN PROBLEMS: - multiple pathes over going over the same pixels are breakin antialising (would draw all pixels with multiplied AA coverage (clamped)). """ from __future__ import annotations import builtins import gzip import io import math import numpy as np import numpy.typing as npt import os import re import struct import sys import textwrap import time import warnings import xml.etree.ElementTree as etree import zlib from functools import reduce, partial from typing import Any, Callable, NamedTuple, List, Tuple, Optional, Dict EPSILON = sys.float_info.epsilon FLOAT_RE = re.compile(r"[-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?") FLOAT = np.float64 # ------------------------------------------------------------------------------ # Layer # ------------------------------------------------------------------------------ COMPOSE_OVER = 0 COMPOSE_OUT = 1 COMPOSE_IN = 2 COMPOSE_ATOP = 3 COMPOSE_XOR = 4 COMPOSE_PRE_ALPHA = {COMPOSE_OVER, COMPOSE_OUT, COMPOSE_IN, COMPOSE_ATOP, COMPOSE_XOR} BBox = Tuple[float, float, float, float] FNDArray = npt.NDArray[FLOAT] class Layer(NamedTuple): image: np.ndarray[Tuple[int, int, int], FLOAT] offset: Tuple[int, int] pre_alpha: bool linear_rgb: bool @property def x(self) -> int: return self.offset[0] @property def y(self) -> int: return self.offset[1] @property def width(self) -> int: return self.image.shape[1] @property def height(self) -> int: return self.image.shape[0] @property def channels(self) -> int: return self.image.shape[2] @property def bbox(self) -> BBox: return (*self.offset, *self.image.shape[:2]) def translate(self, x: int, y: int) -> Layer: offset = (self.x + x, self.y + y) return Layer(self.image, offset, self.pre_alpha, self.linear_rgb) def color_matrix(self, matrix: np.ndarray) -> Layer: """Apply color matrix transformation""" if not isinstance(matrix, np.ndarray) or matrix.shape != (4, 5): raise ValueError("expected 4x5 matrix") layer = self.convert(pre_alpha=False, linear_rgb=True) M = matrix[:, :4] B = matrix[:, 4] image = np.matmul(layer.image, M.T) + B np.clip(image, 0, 1, out=image) return Layer(image, layer.offset, pre_alpha=False, linear_rgb=True) def convolve(self, kernel: np.ndarray) -> Layer: """Convlve layer""" try: from scipy.signal import convolve layer = self.convert(pre_alpha=False, linear_rgb=True) kw, kh = kernel.shape image = convolve(layer.image, kernel[..., None]) x, y = int(layer.x - kw / 2), int(layer.y - kh / 2) return Layer(image, (x, y), pre_alpha=False, linear_rgb=True) except ImportError: warnings.warn("Layer::convolve requires `scipy`") return self def morphology(self, x: int, y: int, method: str) -> Layer: """Morphology filter operation Morphology is essentially {min|max} pooling with [1, 1] stride """ layer = self.convert(pre_alpha=True, linear_rgb=True) image = pooling(layer.image, ksize=(x, y), stride=(1, 1), method=method) return Layer(image, layer.offset, pre_alpha=True, linear_rgb=True) def convert(self, pre_alpha=None, linear_rgb=None) -> Layer: """Convert image if needed to specified alpha and colorspace""" pre_alpha = self.pre_alpha if pre_alpha is None else pre_alpha linear_rgb = self.linear_rgb if linear_rgb is None else linear_rgb if self.channels == 1: # single channel value assumed to be alpha return Layer(self.image, self.offset, pre_alpha, linear_rgb) in_image, out_offset, out_pre_alpha, out_linear_rgb = self out_image = None if out_linear_rgb != linear_rgb: out_image = in_image.copy() # convert to straight alpha first if needed if out_pre_alpha: out_image = color_pre_to_straight_alpha(out_image) out_pre_alpha = False if linear_rgb: out_image = color_srgb_to_linear(out_image) else: out_image = color_linear_to_srgb(out_image) out_linear_rgb = linear_rgb if out_pre_alpha != pre_alpha: if out_image is None: out_image = in_image.copy() if pre_alpha: out_image = color_straight_to_pre_alpha(out_image) else: out_image = color_pre_to_straight_alpha(out_image) out_pre_alpha = pre_alpha if out_image is None: return self return Layer(out_image, out_offset, out_pre_alpha, out_linear_rgb) def background(self, color: np.ndarray) -> Layer: layer = self.convert(pre_alpha=True, linear_rgb=True) image = canvas_compose(COMPOSE_OVER, color[None, None, ...], layer.image) return Layer(image, layer.offset, pre_alpha=True, linear_rgb=True) def opacity(self, opacity: float, linear_rgb=False) -> Layer: """Apply additinal opacity""" layer = self.convert(pre_alpha=True, linear_rgb=linear_rgb) image = layer.image * opacity return Layer(image, layer.offset, pre_alpha=True, linear_rgb=linear_rgb) @staticmethod def compose(layers: List[Layer], method=COMPOSE_OVER, linear_rgb=False) -> Optional[Layer]: """Compose multiple layers into one with specified `method` Composition in linear RGB is correct one but SVG composes in sRGB by default. Only filter is composing in linear RGB by default. """ if not layers: return None elif len(layers) == 1: return layers[0] images = [] pre_alpha = method in COMPOSE_PRE_ALPHA for layer in layers: layer = layer.convert(pre_alpha=pre_alpha, linear_rgb=linear_rgb) images.append((layer.image, layer.offset)) #print([i[0].shape for i in images]) blend = partial(canvas_compose, method) if method == COMPOSE_IN: result = canvas_merge_intersect(images, blend) elif method == COMPOSE_OVER: start = time.time() result = canvas_merge_union(images, full=False, blend=blend) print("render from image,offset pair take:",time.time()-start) else: result = canvas_merge_union(images, full=True, blend=blend) if result is None: return None image, offset = result return Layer(image, offset, pre_alpha=pre_alpha, linear_rgb=linear_rgb) def write_png(self, output=None): if self.channels != 4: raise ValueError("Only RGBA layers are supported") layer = self.convert(pre_alpha=False, linear_rgb=False) return canvas_to_png(layer.image, output) def __repr__(self): return "Layer(x={}, y={}, w={}, h={}, pre_alpha={}, linear_rgb={})".format( self.x, self.y, self.width, self.height, self.pre_alpha, self.linear_rgb ) def show(self, format=None): """Show layer on terminal if `imshow` if available NOTE: used only for debugging """ try: from imshow import show layer = self.convert(pre_alpha=False, linear_rgb=False) show(layer.image, format=format) except ImportError: warnings.warn("to be able to show layer on terminal imshow is required") def canvas_create(width, height, bg=None): """Create canvas of a specified size Returns (canvas, transform) tuple: canvas - float64 ndarray of (height, width, 4) shape transform - transform from (x, y) to canvas pixel coordinates """ if bg is None: canvas = np.zeros((height, width, 4), dtype=FLOAT) else: canvas = np.broadcast_to(bg, (height, width, 4)).copy() return canvas, Transform().matrix(0, 1, 0, 1, 0, 0) def canvas_to_png(canvas, output=None): """Convert (height, width, rgba{float64}) to PNG""" def png_pack(output, tag, data): checksum = 0xFFFFFFFF & zlib.crc32(data, zlib.crc32(tag)) output.write(struct.pack("!I", len(data))) output.write(tag) output.write(data) output.write(struct.pack("!I", checksum)) height, width, _ = canvas.shape data = io.BytesIO() comp = zlib.compressobj(level=9) for row in np.round(canvas * 255.0).astype(np.uint8): data.write(comp.compress(b"\x00")) data.write(comp.compress(row.tobytes())) data.write(comp.flush()) output = io.BytesIO() if output is None else output output.write(b"\x89PNG\r\n\x1a\n") png_pack(output, b"IHDR", struct.pack("!2I5B", width, height, 8, 6, 0, 0, 0)), png_pack(output, b"IDAT", data.getvalue()), png_pack(output, b"IEND", b"") return output def canvas_compose(mode, dst, src): """Compose two alpha premultiplied images https://ciechanow.ski/alpha-compositing/ http://ssp.impulsetrain.com/porterduff.html """ src_a = src[..., -1:] if len(src.shape) == 3 else src dst_a = dst[..., -1:] if len(dst.shape) == 3 else dst if mode == COMPOSE_OVER: return src + dst * (1 - src_a) elif mode == COMPOSE_OUT: return src * (1 - dst_a) elif mode == COMPOSE_IN: return src * dst_a elif mode == COMPOSE_ATOP: return src * dst_a + dst * (1 - src_a) elif mode == COMPOSE_XOR: return src * (1 - dst_a) + dst * (1 - src_a) elif isinstance(mode, tuple) and len(mode) == 4: k1, k2, k3, k4 = mode return (k1 * src * dst + k2 * src + k3 * dst + k4).clip(0, 1) raise ValueError(f"invalid compose mode: {mode}") canvas_compose_over = partial(canvas_compose, COMPOSE_OVER) def canvas_merge_at(base, overlay, offset, blend=canvas_compose_over): """Alpha blend `overlay` on top of `base` at offset coordintate Updates `base` with `overlay` in place. """ x, y = offset b_h, b_w = base.shape[:2] o_h, o_w = overlay.shape[:2] clip = lambda v, l, h: l if v < l else h if v > h else v b_x_low, b_x_high = clip(x, 0, b_h), clip(x + o_h, 0, b_h) b_y_low, b_y_high = clip(y, 0, b_w), clip(y + o_w, 0, b_w) effected = base[b_x_low:b_x_high, b_y_low:b_y_high] if effected.size == 0: return o_x_low, o_x_high = clip(-x, 0, o_h), clip(b_h - x, 0, o_h) o_y_low, o_y_high = clip(-y, 0, o_w), clip(b_w - y, 0, o_w) overlay = overlay[o_x_low:o_x_high, o_y_low:o_y_high] if overlay.size == 0: return effected[...] = blend(effected, overlay).clip(0, 1) return base def canvas_merge_union(layers, full=True, blend=canvas_compose_over): """Blend multiple `layers` into single large enough image""" if not layers: raise ValueError("can not blend zero layers") elif len(layers) == 1: return layers[0] min_x, min_y, max_x, max_y = None, None, None, None for image, offset in layers: x, y = offset w, h = image.shape[:2] if min_x is None: min_x, min_y = x, y max_x, max_y = x + w, y + h else: min_x, min_y = min(min_x, x), min(min_y, y) max_x, max_y = max(max_x, x + w), max(max_y, y + h) width, height = max_x - min_x, max_y - min_y if full: output = None for image, offset in layers: x, y = offset w, h = image.shape[:2] ox, oy = x - min_x, y - min_y image_full = np.zeros((width, height, 4), dtype=FLOAT) image_full[ox : ox + w, oy : oy + h] = image if output is None: output = image_full else: output = blend(output, image_full) else: # this is optimization for method `over` blending output = np.zeros((max_x - min_x, max_y - min_y, 4), dtype=FLOAT) for index, (image, offset) in enumerate(layers): x, y = offset w, h = image.shape[:2] ox, oy = x - min_x, y - min_y effected = output[ox : ox + w, oy : oy + h] if index == 0: effected[...] = image else: effected[...] = blend(effected, image) return output, (min_x, min_y) def canvas_merge_intersect(layers, blend=canvas_compose_over): """Blend multiple `layers` into single image coverd by all layers""" if not layers: raise ValueError("can not blend zero layers") elif len(layers) == 1: return layers[0] min_x, min_y, max_x, max_y = None, None, None, None for layer, offset in layers: x, y = offset w, h = layer.shape[:2] if min_x is None: min_x, min_y = x, y max_x, max_y = x + w, y + h else: min_x, min_y = max(min_x, x), max(min_y, y) max_x, max_y = min(max_x, x + w), min(max_y, y + h) if min_x >= max_x or min_y >= max_y: return None # empty intersection (first, (fx, fy)), *rest = layers output = first[min_x - fx : max_x - fx, min_y - fy : max_y - fy] w, h, c = output.shape if c == 1: output = np.broadcast_to(output, (w, h, 4)) output = output.copy() for layer, offset in rest: x, y = offset output[...] = blend(output, layer[min_x - x : max_x - x, min_y - y : max_y - y]) return output, (min_x, min_y) def pooling(mat, ksize, stride=None, method="max", pad=False): """Overlapping pooling on 2D or 3D data. <mat>: ndarray, input array to pool. <ksize>: tuple of 2, kernel size in (ky, kx). <stride>: tuple of 2 or None, stride of pooling window. If None, same as <ksize> (non-overlapping pooling). <method>: str, 'max for max-pooling, 'mean' for mean-pooling. <pad>: bool, pad <mat> or not. If no pad, output has size (n-f)//s+1, n being <mat> size, f being kernel size, s stride. if pad, output has size ceil(n/s). Return <result>: pooled matrix. """ m, n = mat.shape[:2] ky, kx = ksize if stride is None: stride = (ky, kx) sy, sx = stride if pad: nx = int(np.ceil(n / float(sx))) ny = int(np.ceil(m / float(sy))) size = ((ny - 1) * sy + ky, (nx - 1) * sx + kx) + mat.shape[2:] mat_pad = np.full(size, np.nan) mat_pad[:m, :n, ...] = mat else: mat_pad = mat[: (m - ky) // sy * sy + ky, : (n - kx) // sx * sx + kx, ...] # Get a strided sub-matrices view of an ndarray. s0, s1 = mat_pad.strides[:2] m1, n1 = mat_pad.shape[:2] m2, n2 = ksize view_shape = (1 + (m1 - m2) // stride[0], 1 + (n1 - n2) // stride[1], m2, n2) + mat_pad.shape[ 2: ] strides = (stride[0] * s0, stride[1] * s1, s0, s1) + mat_pad.strides[2:] view = np.lib.stride_tricks.as_strided(mat_pad, view_shape, strides=strides) if method == "max": result = np.nanmax(view, axis=(2, 3)) elif method == "min": result = np.nanmin(view, axis=(2, 3)) elif method == "mean": result = np.nanmean(view, axis=(2, 3)) else: raise ValueError(f"invalid poll method: {method}") return result def color_pre_to_straight_alpha(rgba): """Convert from premultiplied alpha inplace""" rgb = rgba[..., :-1] alpha = rgba[..., -1:] np.divide(rgb, alpha, out=rgb, where=alpha > 0.0001) np.clip(rgba, 0, 1, out=rgba) return rgba def color_straight_to_pre_alpha(rgba): """Convert to premultiplied alpha inplace""" rgba[..., :-1] *= rgba[..., -1:] return rgba def color_linear_to_srgb(rgba): """Convert pixels from linear RGB to sRGB inplace""" rgb = rgba[..., :-1] small = rgb <= 0.0031308 rgb[small] = rgb[small] * 12.92 large = ~small rgb[large] = 1.055 * np.power(rgb[large], 1.0 / 2.4) - 0.055 return rgba def color_srgb_to_linear(rgba): """Convert pixels from sRGB to linear RGB inplace""" rgb = rgba[..., :-1] small = rgb <= 0.04045 rgb[small] = rgb[small] / 12.92 large = ~small rgb[large] = np.power((rgb[large] + 0.055) / 1.055, 2.4) return rgba # ------------------------------------------------------------------------------ # Transform # ------------------------------------------------------------------------------ class Transform: __slots__: List[str] = ["m", "_m_inv"] m: np.ndarray[Tuple[int, int], FLOAT] _m_inv: np.ndarray[Tuple[int, int], FLOAT] def __init__(self, matrix=None, matrix_inv=None): if matrix is None: self.m = np.identity(3) self._m_inv = self.m else: self.m = matrix self._m_inv = matrix_inv def __matmul__(self, other: Transform) -> Transform: return Transform(self.m @ other.m) @property def invert(self) -> Transform: if self._m_inv is None: self._m_inv = np.linalg.inv(self.m) return Transform(self._m_inv, self.m) def __call__(self, points: FNDArray) -> FNDArray: if len(points) == 0: return points return points @ self.m[:2, :2].T + self.m[:2, 2] def apply(self) -> Callable[[FNDArray], FNDArray]: M = self.m[:2, :2].T B = self.m[:2, 2] return lambda points: points @ M + B def matrix(self, m00, m01, m02, m10, m11, m12): return Transform(self.m @ np.array([[m00, m01, m02], [m10, m11, m12], [0, 0, 1]])) def translate(self, tx: float, ty: float) -> Transform: return Transform(self.m @ np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])) def scale(self, sx, sy=None): sy = sx if sy is None else sy return Transform(self.m @ np.array([[sx, 0, 0], [0, sy, 0], [0, 0, 1]])) def rotate(self, angle): cos_a = math.cos(angle) sin_a = math.sin(angle) return Transform(self.m @ np.array([[cos_a, -sin_a, 0], [sin_a, cos_a, 0], [0, 0, 1]])) def skew(self, ax, ay): return Transform( np.matmul(self.m, np.array([[1, math.tan(ax), 0], [math.tan(ay), 1, 0], [0, 0, 1]])) ) def __repr__(self): return str(np.around(self.m, 4).tolist()[:2]) def no_translate(self): m = self.m.copy() m[0, 2] = 0 m[1, 2] = 0 return Transform(m) # ------------------------------------------------------------------------------ # Render scene # ------------------------------------------------------------------------------ RENDER_FILL = 0 RENDER_STROKE = 1 RENDER_GROUP = 2 RENDER_OPACITY = 3 RENDER_CLIP = 4 RENDER_TRANSFORM = 5 RENDER_FILTER = 6 RENDER_MASK = 7 class Scene(tuple): __slots__: List[str] = [] def __new__(cls, type, args): return tuple.__new__(cls, (type, args)) @classmethod def fill(cls, path, paint, fill_rule=None): return cls(RENDER_FILL, (path, paint, fill_rule)) @classmethod def stroke(cls, path, paint, width, linecap=None, linejoin=None): return cls(RENDER_STROKE, (path, paint, width, linecap, linejoin)) @classmethod def group(cls, children): if not children: raise ValueError("group have to contain at least one child") if len(children) == 1: return children[0] return cls(RENDER_GROUP, children) def opacity(self, opacity): if opacity > 0.999: return self return Scene(RENDER_OPACITY, (self, opacity)) def clip(self, clip, bbox_units=False): return Scene(RENDER_CLIP, (self, clip, bbox_units)) def mask(self, mask, bbox_units=False): return Scene(RENDER_MASK, (self, mask, bbox_units)) def transform(self, transform): type, args = self if type == RENDER_TRANSFORM: target, target_transform = args return Scene(RENDER_TRANSFORM, (target, transform @ target_transform)) else: return Scene(RENDER_TRANSFORM, (self, transform)) def filter(self, filter): return Scene(RENDER_FILTER, (self, filter)) def render(self, transform, mask_only=False, viewport=None, linear_rgb=False): """Render graph""" type, args = self if type == RENDER_FILL: path, paint, fill_rule = args if mask_only: return path.mask(transform, fill_rule=fill_rule, viewport=viewport) else: return path.fill( transform, paint, fill_rule=fill_rule, viewport=viewport, linear_rgb=linear_rgb ) elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args stroke = path.stroke(width, linecap, linejoin) if mask_only: return stroke.mask(transform, viewport=viewport) else: return stroke.fill(transform, paint, viewport=viewport, linear_rgb=linear_rgb) elif type == RENDER_GROUP: layers, hulls = [], [] start = time.time() for child in args: layer = child.render(transform, mask_only, viewport, linear_rgb) if layer is None: continue layer, hull = layer layers.append(layer) hulls.append(hull) group = Layer.compose(layers, COMPOSE_OVER, linear_rgb) if not group: return None return group, ConvexHull.merge(hulls) elif type == RENDER_OPACITY: target, opacity = args layer = target.render(transform, mask_only, viewport, linear_rgb) if layer is None: return None layer, hull = layer return layer.opacity(opacity, linear_rgb), hull elif type == RENDER_CLIP: target, clip, bbox_units = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result if bbox_units: transform = hull.bbox_transform(transform) clip_result = clip.render(transform, True, viewport, linear_rgb) if clip_result is None: return None mask, _ = clip_result result = Layer.compose([mask, image], COMPOSE_IN, linear_rgb) if result is None: return None return result, hull elif type == RENDER_TRANSFORM: target, target_transfrom = args return target.render(transform @ target_transfrom, mask_only, viewport, linear_rgb) elif type == RENDER_MASK: target, mask_scene, bbox_units = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result if bbox_units: transform = hull.bbox_transform(transform) mask_result = mask_scene.render(transform, mask_only, viewport, linear_rgb) if mask_result is None: return None mask, _ = mask_result mask = mask.convert(pre_alpha=False, linear_rgb=linear_rgb) mask_image = mask.image[..., :3] @ [0.2125, 0.7154, 0.072] * mask.image[..., 3] mask = Layer(mask_image[..., None], mask.offset, pre_alpha=False, linear_rgb=linear_rgb) result = Layer.compose([mask, image], COMPOSE_IN, linear_rgb) if result is None: return None return result, hull elif type == RENDER_FILTER: target, filter = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result return filter(transform, image), hull else: raise ValueError(f"unhandled scene type: {type}") def to_path(self, transform: Transform): """Try to convert whole scene to a path (used only for testing)""" def to_path(scene, transform): type, args = scene if type == RENDER_FILL: path, _paint, _fill_rule = args yield path.transform(transform) elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args yield path.transform(transform).stroke(width, linecap, linejoin) elif type == RENDER_GROUP: for child in args: yield from to_path(child, transform) elif type == RENDER_OPACITY: target, _opacity = args yield from to_path(target, transform) elif type == RENDER_CLIP: target, _clip, _bbox_units = args yield from to_path(target, transform) elif type == RENDER_TRANSFORM: target, target_transfrom = args yield from to_path(target, transform @ target_transfrom) elif type == RENDER_MASK: target, _mask_scene, _bbox_units = args yield from to_path(target, transform) elif type == RENDER_FILTER: target, _filter = args yield from to_path(target, transform) else: raise ValueError(f"unhandled scene type: {type}") subpaths = [spath for path in to_path(self, transform) for spath in path.subpaths] return Path(subpaths) def __repr__(self) -> str: def repr_rec(scene, output, depth): output.write(indent * depth) type, args = scene if type == RENDER_FILL: path, paint, fill_rule = args if isinstance(paint, np.ndarray): paint = format_color(paint) output.write(f"FILL fill_rule:{fill_rule} paint:{paint}\n") output.write(textwrap.indent(repr(path), indent * (depth + 1))) output.write("\n") elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args if isinstance(paint, np.ndarray): paint = format_color(paint) output.write(f"STROKE ") output.write(f"width:{width} ") output.write(f"linecap:{linecap} ") output.write(f"linejoin:{linejoin} ") output.write(f"paint:{paint}\n") output.write(textwrap.indent(repr(path), indent * (depth + 1))) output.write("\n") elif type == RENDER_GROUP: output.write("GROUP\n") for child in args: repr_rec(child, output, depth + 1) elif type == RENDER_OPACITY: target, opacity = args output.write(f"OPACITY {opacity}\n") repr_rec(target, output, depth + 1) elif type == RENDER_CLIP: target, clip, bbox_units = args output.write(f"CLIP bbox_units:{bbox_units}\n") output.write(indent * (depth + 1)) output.write("CLIP_PATH\n") repr_rec(clip, output, depth + 2) output.write(indent * (depth + 1)) output.write("CLIP_TARGET\n") repr_rec(target, output, depth + 2) elif type == RENDER_MASK: target, mask, bbox_units = args output.write(f"MASK bbox_units:{bbox_units}\n") output.write(indent * (depth + 1)) output.write("MAKS_PATH\n") repr_rec(mask, output, depth + 2) output.write(indent * (depth + 1)) output.write("MASK_TARGET\n") repr_rec(target, output, depth + 2) elif type == RENDER_TRANSFORM: target, transform = args output.write(f"TRANSFORM {transform}\n") repr_rec(target, output, depth + 1) elif type == RENDER_FILTER: target, filter = args output.write(f"FILTER {filter}\n") repr_rec(target, output, depth + 1) else: raise ValueError(f"unhandled scene type: {type}") return output def format_color(cs): return "#" + "".join(f"{c:0<2x}" for c in (cs * 255).astype(np.uint8)) indent = " " return repr_rec(self, io.StringIO(), 0).getvalue()[:-1] # ------------------------------------------------------------------------------ # Path # ------------------------------------------------------------------------------ PATH_LINE = 0 PATH_QUAD = 1 PATH_CUBIC = 2 PATH_ARC = 3 PATH_CLOSED = 4 PATH_UNCLOSED = 5 PATH_LINES = {PATH_LINE, PATH_CLOSED, PATH_UNCLOSED} PATH_FILL_NONZERO = "nonzero" PATH_FILL_EVENODD = "evenodd" STROKE_JOIN_MITER = "miter" STROKE_JOIN_ROUND = "round" STROKE_JOIN_BEVEL = "bevel" STROKE_CAP_BUTT = "butt" STROKE_CAP_ROUND = "round" STROKE_CAP_SQUARE = "square" class Path: """Single rendering unit that can be filled or converted to stroke path `subpaths` is a list of tuples: - `(PATH_LINE, (p0, p1))` - line from p0 to p1 - `(PATH_CUBIC, (p0, c0, c1, p1))` - cubic bezier curve from p0 to p1 with control c0, c1 - `(PATH_QUAD, (p0, c0, p1))` - quadratic bezier curve from p0 to p1 with control c0 - `(PATH_ARC, (center, rx, ry, phi, eta, eta_delta)` - arc with a center and to radii rx, ry rotated to phi angle, going from inital eta to eta + eta_delta angle. - `(PATH_CLOSED | PATH_UNCLOSED, (p0, p1))` - last segment of subpath `"closed"` if path was closed and `"unclosed"` if path was not closed. p0 - end subpath p1 - beggining of this subpath. """ __slots__ = ["subpaths"] subpaths: List[List[Tuple[int, Tuple[Any, ...]]]] def __init__(self, subpaths): self.subpaths = subpaths def __iter__(self): """Itearte over subpaths""" return iter(self.subpaths) def __bool__(self) -> bool: return bool(self.subpaths) def mask( self, transform: Transform, fill_rule: Optional[str] = None, viewport: Optional[BBox] = None, ): """Render path as a mask (alpha channel only image)""" # convert all curves to cubic curves and lines lines_defs, cubics_defs = [], [] for path in self.subpaths: if not path: continue for cmd, args in path: if cmd in PATH_LINES: lines_defs.append(args) elif cmd == PATH_CUBIC: cubics_defs.append(args) elif cmd == PATH_QUAD: cubics_defs.append(bezier2_to_bezier3(args)) elif cmd == PATH_ARC: cubics_defs.extend(arc_to_bezier3(*args)) else: raise ValueError(f"unsupported path type: `{cmd}`") #def __call__(self, points: FNDArray) -> FNDArray: #if len(points) == 0: #return points #return points @ self.m[:2, :2].T + self.m[:2, 2] # transform all curves into presentation coordinate system lines = transform(np.array(lines_defs, dtype=FLOAT)) cubics = transform(np.array(cubics_defs, dtype=FLOAT)) # flattend (convet to lines) all curves if cubics.size != 0: # flatness of 0.1px gives good accuracy if lines.size != 0: lines = np.concatenate([lines, bezier3_flatten_batch(cubics, 0.1)]) else: lines = bezier3_flatten_batch(cubics, 0.1) if lines.size == 0: return # calculate size of the mask min_x, min_y = np.floor(lines.reshape(-1, 2).min(axis=0)).astype(int) - 1 max_x, max_y = np.ceil(lines.reshape(-1, 2).max(axis=0)).astype(int) + 1 if viewport is not None: vx, vy, vw, vh = viewport min_x, min_y = max(vx, min_x), max(vy, min_y) max_x, max_y = min(vx + vw, max_x), min(vy + vh, max_y) width = max_x - min_x height = max_y - min_y if width <= 0 or height <= 0: return # create trace (signed coverage) trace = np.zeros((width, height), dtype=FLOAT) for points in lines - np.array([min_x, min_y]): line_signed_coverage(trace, points) # render mask mask = np.cumsum(trace, axis=1) if fill_rule is None or fill_rule == PATH_FILL_NONZERO: mask = np.fabs(mask).clip(0, 1) elif fill_rule == PATH_FILL_EVENODD: mask = np.fabs(np.remainder(mask + 1.0, 2.0) - 1.0) else: raise ValueError(f"Invalid fill rule: {fill_rule}") mask[mask < 1e-6] = 0 # reound down to zero very small mask values output = Layer(mask[..., None], (min_x, min_y), pre_alpha=True, linear_rgb=True) return output, ConvexHull(lines) def fill(self, transform, paint, fill_rule=None, viewport=None, linear_rgb=True): """Render path by fill-ing it.""" if paint is None: return None # create a mask mask = self.mask(transform, fill_rule, viewport) if mask is None: return None mask, hull = mask # create background with specified paint if isinstance(paint, np.ndarray) and paint.shape == (4,): if not linear_rgb: paint = color_pre_to_straight_alpha(paint.copy()) paint = color_linear_to_srgb(paint) paint = color_straight_to_pre_alpha(paint) output = Layer(mask.image * paint, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) elif isinstance(paint, (GradLinear, GradRadial)): if paint.bbox_units: user_tr = hull.bbox_transform(transform).invert else: user_tr = transform.invert # convert grad pixels to user coordinate system pixels = user_tr(grad_pixels(mask.bbox)) if paint.linear_rgb is not None: linear_rgb = paint.linear_rgb image = paint.fill(pixels, linear_rgb=linear_rgb) # NOTE: consider optimizing calculation of grad only for unmasked points # masked = mask.image > EPSILON # painted = paint.fill( # pixels[np.broadcast_to(masked, pixels.shape)].reshape(-1, 2), # linear_rgb=linear_rgb, # ) # image = np.zeros((mask.width, mask.height, 4), dtype=FLOAT) # image[np.broadcast_to(masked, image.shape)] = painted.reshape(-1) background = Layer(image, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) # use `canvas_compose` directly to avoid needless allocation background = background.convert(pre_alpha=True, linear_rgb=linear_rgb) mask = mask.convert(pre_alpha=True, linear_rgb=linear_rgb) image = canvas_compose(COMPOSE_IN, mask.image, background.image) output = Layer(image, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) elif isinstance(paint, Pattern): # render pattern pat_tr = transform.no_translate() if paint.scene_view_box: if paint.bbox_units: px, py, pw, ph = paint.bbox() _hx, _hy, hw, hh = hull.bbox(transform) bbox = (px * hw, py * hh, pw * hw, ph * hh) else: bbox = paint.bbox() pat_tr @= svg_viewbox_transform(bbox, paint.scene_view_box) elif paint.scene_bbox_units: pat_tr = hull.bbox_transform(pat_tr) pat_tr @= paint.transform result = paint.scene.render(pat_tr, linear_rgb=linear_rgb) if result is None: return None pat_layer, _pat_hull = result # repeat pattern repeat_tr = transform if paint.bbox_units: repeat_tr = hull.bbox_transform(repeat_tr) repeat_tr @= paint.transform repeat_tr = repeat_tr.no_translate() offsets = repeat_tr.invert(grad_pixels(mask.bbox)) offsets = repeat_tr( np.remainder(offsets - [paint.x, paint.y], [paint.width, paint.height]) ) offsets = offsets.astype(int) corners = repeat_tr( [ [0, 0], [paint.width, 0], [0, paint.height], [paint.width, paint.height], ] ) max_x, max_y = corners.max(axis=0).astype(int) min_x, min_y = corners.min(axis=0).astype(int) w, h = max_x - min_x, max_y - min_y offsets -= [min_x, min_y] pat = np.zeros((w + 1, h + 1, 4)) pat = canvas_merge_at(pat, pat_layer.image, (pat_layer.x - min_x, pat_layer.y - min_y)) image = canvas_compose(COMPOSE_IN, mask.image, pat[offsets[..., 0], offsets[..., 1]]) output = Layer( image, mask.offset, pre_alpha=pat_layer.pre_alpha, linear_rgb=pat_layer.linear_rgb ) else: warnings.warn(f"fill method is not implemented: {paint}") return None return output, hull def stroke(self, width, linecap=None, linejoin=None) -> "Path": """Convert path to stroked path""" curve_names = {2: PATH_LINE, 3: PATH_QUAD, 4: PATH_CUBIC} dist = width / 2 outputs = [] for path in self: if not path: continue # offset curves forward, backward = [], [] for cmd, args in path: if cmd == PATH_LINE or cmd == PATH_CLOSED: line = np.array(args) line_forward = line_offset(line, dist) if line_forward is None: continue forward.append(line_forward) backward.append(line_offset(line, -dist)) elif cmd == PATH_CUBIC: cubic = np.array(args) forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_QUAD: cubic = bezier2_to_bezier3(args) forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_ARC: for cubic in arc_to_bezier3(*args): forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_UNCLOSED: continue else: raise ValueError(f"unsupported path type: `{cmd}`") closed = cmd == PATH_CLOSED if not forward: continue # connect curves curves = [] for curve in forward: if not curves: curves.append(curve) continue curves.extend(stroke_line_join(curves[-1], curve, linejoin)) curves.append(curve) # complete subpath if path is closed or add line cap if closed: curves.extend(stroke_line_join(curves[-1], curves[0], linejoin)) outputs.append([(curve_names[len(curve)], np.array(curve)) for curve in curves]) curves = [] else: curves.extend(stroke_line_cap(curves[-1][-1], backward[-1][-1], linecap)) # extend subpath with backward path while backward: curve = list(reversed(backward.pop())) if not curves: curves.append(curve) continue curves.extend(stroke_line_join(curves[-1], curve, linejoin)) curves.append(curve) # complete subpath if closed: curves.extend(stroke_line_join(curves[-1], curves[0], linejoin)) else: curves.extend(stroke_line_cap(curves[-1][-1], curves[0][0], linecap)) outputs.append([(curve_names[len(curve)], np.array(curve)) for curve in curves]) return Path(outputs) def transform(self, transform: Transform) -> "Path": """Apply transformation to a path This method is usually not used directly but rather transformation is passed to mask/fill method. """ paths_out = [] for path_in in self.subpaths: path_out = [] if not path_in: continue for cmd, args in path_in: if cmd == PATH_ARC: cubics = arc_to_bezier3(*args) for cubic in transform(cubics): path_out.append((PATH_CUBIC, cubic.tolist())) else: points = transform(np.array(args)).tolist() path_out.append((cmd, points)) paths_out.append(path_out) return Path(paths_out) def to_svg(self) -> str: """Convert to SVG path""" output = io.StringIO() for path in self.subpaths: if not path: continue cmd_prev = None for cmd, args in path: if cmd == PATH_LINE: (x0, y0), (x1, y1) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") else: output.write("L") output.write(f"{x1:g},{y1:g} ") cmd_prev = PATH_LINE elif cmd == PATH_QUAD: (x0, y0), (x1, y1), (x2, y2) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") output.write("Q") output.write(f"{x1:g},{y1:g} {x2:g},{y2:g} ") cmd_prev = PATH_QUAD elif cmd in {PATH_CUBIC, PATH_ARC}: if cmd == PATH_ARC: cubics = arc_to_bezier3(*args) else: cubics = [args] for args in cubics: (x0, y0), (x1, y1), (x2, y2), (x3, y3) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") output.write("C") output.write(f"{x1:g},{y1:g} {x2:g},{y2:g} {x3:g},{y3:g} ") cmd_prev = PATH_CUBIC elif cmd == PATH_CLOSED: output.write("Z ") cmd_prev = None elif cmd == PATH_UNCLOSED: cmd_prev = None else: raise ValueError("unhandled path type: `{cmd}`") output.write("\n") return output.getvalue()[:-1] @staticmethod def from_svg(input: str) -> "Path": """Parse SVG path For more info see [SVG spec](https://www.w3.org/TR/SVG11/paths.html) """ input_len = len(input) input_offset = 0 WHITESPACE = set(" \t\r\n,") COMMANDS = set("MmZzLlHhVvCcSsQqTtAa") def position(is_relative, pos, dst): return [pos[0] + dst[0], pos[1] + dst[1]] if is_relative else dst def smooth(points): px, py = points[-1] cx, cy = points[-2] return [px * 2 - cx, py * 2 - cy] # parser state paths = [] path = [] args = [] cmd = None pos = [0.0, 0.0] first = True # true if this is a frist command start = [0.0, 0.0] smooth_cubic = None smooth_quad = None while input_offset <= input_len: char = input[input_offset] if input_offset < input_len else None if char in WHITESPACE: # remove whitespaces input_offset += 1 elif char is None or char in COMMANDS: # process current command cmd_args, args = args, [] if cmd is None: pass elif cmd in "Mm": # terminate current path if path: path.append((PATH_UNCLOSED, [pos, start])) paths.append(path) path = [] is_relative = cmd == "m" (move, *lineto) = chunk(cmd_args, 2) pos = position(is_relative and not first, pos, move) start = pos for dst in lineto: dst = position(is_relative, pos, dst) path.append((PATH_LINE, [pos, dst])) pos = dst # line to elif cmd in "Ll": for dst in chunk(cmd_args, 2): dst = position(cmd == "l", pos, dst) path.append((PATH_LINE, [pos, dst])) pos = dst # vertical line to elif cmd in "Vv": if not cmd_args: raise ValueError(f"command '{cmd}' expects at least one argument") is_relative = cmd == "v" for dst in cmd_args: dst = position(is_relative, pos, [0 if is_relative else pos[0], dst]) path.append((PATH_LINE, [pos, dst])) pos = dst # horizontal line to elif cmd in "Hh": if not cmd_args: raise ValueError(f"command '{cmd}' expects at least one argument") is_relative = cmd == "h" for dst in cmd_args: dst = position(is_relative, pos, [dst, 0 if is_relative else pos[1]]) path.append((PATH_LINE, [pos, dst])) pos = dst # cubic bezier curve elif cmd in "Cc": for points in chunk(cmd_args, 6): points = [position(cmd == "c", pos, point) for point in chunk(points, 2)] path.append((PATH_CUBIC, [pos, *points])) pos = points[-1] smooth_cubic = smooth(points) # smooth cubic bezier curve elif cmd in "Ss": for points in chunk(cmd_args, 4): points = [position(cmd == "s", pos, point) for point in chunk(points, 2)] if smooth_cubic is None: smooth_cubic = pos path.append((PATH_CUBIC, [pos, smooth_cubic, *points])) pos = points[-1] smooth_cubic = smooth(points) # quadratic bezier curve elif cmd in "Qq": for points in chunk(cmd_args, 4): points = [position(cmd == "q", pos, point) for point in chunk(points, 2)] path.append((PATH_QUAD, [pos, *points])) pos = points[-1] smooth_quad = smooth(points) # smooth quadratic bezier curve elif cmd in "Tt": for points in chunk(cmd_args, 2): points = position(cmd == "t", pos, points) if smooth_quad is None: smooth_quad = pos points = [pos, smooth_quad, points] path.append((PATH_QUAD, points)) pos = points[-1] smooth_quad = smooth(points) # elliptical arc elif cmd in "Aa": # NOTE: `large_f`, and `sweep_f` are not float but flags which can only be # 0 or 1 and as the result some svg minimizers merge them with next # float which may break current parser logic. for points in chunk(cmd_args, 7): rx, ry, x_axis_rot, large_f, sweep_f, dst_x, dst_y = points dst = position(cmd == "a", pos, [dst_x, dst_y]) src, pos = pos, dst if rx == 0 or ry == 0: path.append((PATH_LINE, [pos, dst])) else: path.append( ( PATH_ARC, arc_svg_to_parametric( src, dst, rx, ry, x_axis_rot, large_f > 0.001, sweep_f > 0.001, ), ) ) # close current path elif cmd in "Zz": if cmd_args: raise ValueError(f"`z` command does not accept any argmuents: {cmd_args}") path.append((PATH_CLOSED, [pos, start])) if path: paths.append(path) path = [] pos = start else: raise ValueError(f"unsuppported command '{cmd}' at: {input_offset}") if cmd is not None and cmd not in "CcSs": smooth_cubic = None if cmd is not None and cmd not in "QqTt": smooth_quad = None first = False input_offset += 1 cmd = char else: # parse float arguments match = FLOAT_RE.match(input, input_offset) if match: match_str = match.group(0) args.append(float(match_str)) input_offset += len(match_str) else: raise ValueError(f"not recognized command '{char}' at: {input_offset}") if path: path.append((PATH_UNCLOSED, [pos, start])) paths.append(path) return Path(paths) def is_empty(self): return not bool(self.subpaths) def __repr__(self): if not self.subpaths: return "EMPTY" output = io.StringIO() for subpath in self.subpaths: for type, coords in subpath: if type == PATH_LINE: output.write(f"LINE {repr_coords(coords)}\n") elif type == PATH_CUBIC: output.write(f"CUBIC {repr_coords(coords)}\n") elif type == PATH_QUAD: output.write(f"QUAD {repr_coords(coords)}\n") elif type == PATH_ARC: center, rx, ry, phi, eta, eta_delta = coords output.write(f"ARC ") output.write(f"{repr_coords([center])} ") output.write(f"{rx:.4g} {ry:.4g} ") output.write(f"{phi:.3g} {eta:.3g} {eta_delta:.3g}\n") elif type == PATH_CLOSED: output.write("CLOSE\n") return output.getvalue()[:-1] def repr_coords(coords): return " ".join(f"{x:.4g},{y:.4g}" for x, y in coords) # offset along tanget to approximate circle with four bezier3 curves CIRCLE_BEIZER_OFFSET = 4 * (math.sqrt(2) - 1) / 3 def stroke_line_cap(p0, p1, linecap=None): """Generate path connecting two curves p0 and p1 with a cap""" if linecap is None: linecap = STROKE_CAP_BUTT if np.allclose(p0, p1): return [] if linecap == STROKE_CAP_BUTT: return [np.array([p0, p1])] elif linecap == STROKE_CAP_ROUND: seg = p1 - p0 radius = np.linalg.norm(seg) / 2 seg /= 2 * radius seg_norm = np.array([-seg[1], seg[0]]) offset = CIRCLE_BEIZER_OFFSET * radius center = (p0 + p1) / 2 midpoint = center + seg_norm * radius return [ np.array([p0, p0 + seg_norm * offset, midpoint - seg * offset, midpoint]), np.array([midpoint, midpoint + seg * offset, p1 + seg_norm * offset, p1]), ] elif linecap == STROKE_CAP_SQUARE: seg = p1 - p0 seg_norm = np.array([-seg[1], seg[0]]) polyline = [p0, p0 + seg_norm / 2, p1 + seg_norm / 2, p1] return [np.array([s0, s1]) for s0, s1 in zip(polyline, polyline[1:])] else: raise ValueError(f"unkown line cap type: `{linecap}`") def stroke_line_join(c0, c1, linejoin=None, miterlimit=4): """Stroke used at the joints of paths""" if linejoin is None: linejoin = STROKE_JOIN_MITER if linejoin == STROKE_JOIN_BEVEL: return [np.array([c0[-1], c1[0]])] _, l0 = stroke_curve_tangent(c0) l1, _ = stroke_curve_tangent(c1) if l0 is None or l1 is None: return [np.array([c0[-1], c1[0]])] if np.allclose(l0[-1], l1[0]): return [] p, t0, t1 = line_intersect(l0, l1) if p is None or (0 <= t0 <= 1 and 0 <= t1 <= 1): # curves intersect or parallel return [np.array([c0[-1], c1[0]])] # FIXME correctly determine miterlength: stroke_width / sin(eta / 2) if abs(t0) < miterlimit and abs(t1) < miterlimit: if linejoin == STROKE_JOIN_MITER: return [np.array([c0[-1], p]), np.array([p, c1[0]])] elif linejoin == STROKE_JOIN_ROUND: # FIXME: correctly produce round instead quad curve return [np.array([c0[-1], p, c1[0]])] return [np.array([c0[-1], c1[0]])] def stroke_curve_tangent(curve): """Find tangents of a curve at t = 0 and at t = 1 points""" segs = [] for p0, p1 in zip(curve, curve[1:]): if np.allclose(p0, p1): continue segs.append([p0, p1]) if not segs: return None, None return segs[0], segs[-1] def chunk(vs, size): """Chunk list `vs` into chunk of size `size`""" chunks = [vs[i : i + size] for i in range(0, len(vs), size)] if not chunks or len(chunks[-1]) != size: raise ValueError(f"list {vs} can not be chunked in {size}s") return chunks # ------------------------------------------------------------------------------ # Gradients # ------------------------------------------------------------------------------ class GradLinear(NamedTuple): p0: np.ndarray p1: np.ndarray stops: List[Tuple[float, np.ndarray]] transform: Optional[Transform] spread: str bbox_units: bool linear_rgb: Optional[bool] def fill(self, pixels, linear_rgb=True): """Fill pixels (array of coordinates) with gradient Returns new array same size as pixels filled with gradient """ if self.transform is not None: pixels = self.transform.invert(pixels) vec = self.p1 - self.p0 offset = (pixels - self.p0) @ vec / np.dot(vec, vec) return grad_interpolate(grad_spread(offset, self.spread), self.stops, linear_rgb) class GradRadial(NamedTuple): center: np.ndarray radius: float fcenter: Optional[np.ndarray] fradius: float stops: List[Tuple[float, np.ndarray]] transform: Optional[Transform] spread: str bbox_units: bool linear_rgb: Optional[bool] def fill(self, pixels, linear_rgb=True): """Fill pixels (array of coordinates) with gradient Returns new array same size as pixels filled with gradient. Two circle gradient is an interpolation between two cirles (c0, r0) and (c1, r1), with center `c(t) = (1 - t) * c0 + t * c1`, and radius `r(t) = (1 - t) * r0 + t * r1`. If we have a pixel with coordinates `p`, we should solve equation for it `|| c(t) - p || = r(t)` and pick solution corresponding to bigger radius. Solving this equation for `t`: || c(t) - p || = r(t) -> At² - 2Bt + C = 0 where: cd = c2 - c1 pd = p - c1 rd = r2 - r1 A = cdx ^ 2 + cdy ^ 2 - rd ^ 2 B = pdx * cdx + pdy * cdy + r1 * rd C = pdx ^2 + pdy ^ 2 - r1 ^ 2 results in: t = (B +/- (B ^ 2 - A * C).sqrt()) / A [reference]: https://cgit.freedesktop.org/pixman/tree/pixman/pixman-radial-gradient.c """ mask = None if self.transform is not None: pixels = self.transform.invert(pixels) if self.fcenter is None and self.fradius is None: offset = (pixels - self.center) / self.radius offset = np.sqrt((offset * offset).sum(axis=-1)) else: fcenter = self.center if self.fcenter is None else self.fcenter fradius = self.fradius or 0 # This is SVG 1.1 behaviour. If focal center is outside of circle it # should be moved inside. But in SVG 2.0 it should produce a cone # shaped gradient. # fdist = np.linalg.norm(fcenter - self.center) # if fdist > self.radius: # fcenter = self.center + (fcenter - self.center) * self.radius / fdist cd = self.center - fcenter pd = pixels - fcenter rd = self.radius - fradius a = (cd ** 2).sum() - rd ** 2 b = (pd * cd).sum(axis=-1) + fradius * rd c = (pd ** 2).sum(axis=-1) - fradius ** 2 det = b * b - a * c if (det < 0).any(): mask = det >= 0 det = det[mask] b = b[mask] c = c[mask] t0 = np.sqrt(det) t1 = (b + t0) / a t2 = (b - t0) / a if mask is None: offset = np.maximum(t1, t2) else: offset = np.zeros(mask.shape, dtype=FLOAT) offset[mask] = np.maximum(t1, t2) if fradius != self.radius: # exclude negative `r(t)` mask &= offset > (fradius / (fradius - self.radius)) overlay = grad_interpolate(grad_spread(offset, self.spread), self.stops, linear_rgb) if mask is not None: overlay[~mask] = np.array([0, 0, 0, 0]) return overlay def grad_pixels(viewport): """Create pixels matrix to be filled by gradient""" off_x, off_y, width, height = viewport xs, ys = np.indices((width, height)).astype(FLOAT) offset = [off_x + 0.5, off_y + 0.5] return np.concatenate([xs[..., None], ys[..., None]], axis=2) + offset def grad_spread(offsets, spread): if spread == "pad": return offsets elif spread == "repeat": return np.modf(offsets)[0] elif spread == "reflect": return np.fabs(np.remainder(offsets + 1.0, 2.0) - 1.0) raise ValueError(f"invalid spread method: {spread}") def grad_interpolate(offset, stops, linear_rgb): """Create gradient by interpolating offsets from stops""" stops = grad_stops_colorspace(stops, linear_rgb) output = np.zeros((*offset.shape, 4), dtype=FLOAT) o_min, c_min = stops[0] output[offset <= o_min] = c_min o_max, c_max = stops[-1] output[offset > o_max] = c_max for (o0, c0), (o1, c1) in zip(stops, stops[1:]): mask = np.logical_and(offset > o0, offset <= o1) ratio = ((offset[mask] - o0) / (o1 - o0))[..., None] output[mask] += (1 - ratio) * c0 + ratio * c1 return output def grad_stops_colorspace(stops, linear_rgb=False): if linear_rgb: return stops output = [] for offset, color in stops: color = color_pre_to_straight_alpha(color.copy()) color = color_linear_to_srgb(color) color = color_straight_to_pre_alpha(color) output.append((offset, color)) return output class Pattern(NamedTuple): scene: Scene scene_bbox_units: bool scene_view_box: Optional[Tuple[float, float, float, float]] x: float y: float width: float height: float transform: Transform bbox_units: bool def bbox(self): return (self.x, self.y, self.width, self.height) # ------------------------------------------------------------------------------ # Filter # ------------------------------------------------------------------------------ FE_BLEND = 0 FE_COLOR_MATRIX = 1 FE_COMPONENT_TRANSFER = 2 FE_COMPOSITE = 3 FE_CONVOLVE_MATRIX = 4 FE_DIFFUSE_LIGHTING = 5 FE_DISPLACEMENT_MAP = 6 FE_FLOOD = 7 FE_GAUSSIAN_BLUR = 8 FE_MERGE = 9 FE_MORPHOLOGY = 10 FE_OFFSET = 11 FE_SPECULAR_LIGHTING = 12 FE_TILE = 13 FE_TURBULENCE = 14 FE_SOURCE_ALPHA = "SourceAlpha" FE_SOURCE_GRAPHIC = "SourceGraphic" COLOR_MATRIX_LUM = np.array( [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0.2125, 0.7154, 0.0721, 0, 0]], dtype=FLOAT ) COLOR_MATRIX_HUE = np.array( [ [[0.213, 0.715, 0.072], [0.213, 0.715, 0.072], [0.213, 0.715, 0.072]], [[0.787, -0.715, -0.072], [-0.213, 0.285, -0.072], [-0.213, -0.715, 0.928]], [[-0.213, -0.715, 0.928], [0.143, 0.140, -0.283], [-0.787, 0.715, 0.072]], ], dtype=FLOAT, ) class Filter(NamedTuple): names: Dict[str, int] # {name: index} filters: List[Tuple[int, List[Any], List[int]]] # [(type, attrs, inputs)] @classmethod def empty(cls): return cls({FE_SOURCE_ALPHA: 0, FE_SOURCE_GRAPHIC: 1}, []) def add_filter(self, type, attrs, inputs, result): names = self.names.copy() filters = self.filters.copy() args = [] for input in inputs: if input is None: args.append(len(filters) + 1) # use previous result else: arg = self.names.get(input) if arg is None: warnings.warn(f"unknown filter result name: {input}") args.append(len(filters) + 1) # use previous result else: args.append(arg) if result is not None: names[result] = len(filters) + 2 filters.append((type, attrs, args)) return Filter(names, filters) def offset(self, dx, dy, input=None, result=None): return self.add_filter(FE_OFFSET, (dx, dy), [input], result) def merge(self, inputs, result=None): return self.add_filter(FE_MERGE, tuple(), inputs, result) def blur(self, std_x, std_y=None, input=None, result=None): return self.add_filter(FE_GAUSSIAN_BLUR, (std_x, std_y), [input], result) def blend(self, in1, in2, mode=None, result=None): return self.add_filter(FE_BLEND, (mode,), [in1, in2], result) def composite(self, in1, in2, mode=None, result=None): return self.add_filter(FE_COMPOSITE, (mode,), [in1, in2], result) def color_matrix(self, input, matrix, result=None): return self.add_filter(FE_COLOR_MATRIX, (matrix,), [input], result) def morphology(self, rx, ry, method, input, result=None): return self.add_filter(FE_MORPHOLOGY, (rx, ry, method), [input], result) def __call__(self, transform, source): """Execute fiter on the provided source""" alpha = Layer( source.image[..., -1:] * np.array([0, 0, 0, 1]), source.offset, pre_alpha=True, linear_rgb=True, ) stack = [alpha, source.convert(pre_alpha=False, linear_rgb=True)] for filter in self.filters: type, attrs, inputs = filter if type == FE_OFFSET: fn = filter_offset(transform, *attrs) elif type == FE_MERGE: fn = filter_merge(transform, *attrs) elif type == FE_BLEND: fn = filter_blend(transform, *attrs) elif type == FE_COMPOSITE: fn = filter_composite(transform, *attrs) elif type == FE_GAUSSIAN_BLUR: fn = filter_blur(transform, *attrs) elif type == FE_COLOR_MATRIX: fn = filter_color_matrix(transform, *attrs) elif type == FE_MORPHOLOGY: fn = filter_morphology(transform, *attrs) else: raise ValueError(f"unsupported filter type: {type}") stack.append(fn(*(stack[input] for input in inputs))) return stack[-1] def filter_color_matrix(_transform, matrix): def filter_color_matrix_apply(input): if not isinstance(matrix, np.ndarray) or matrix.shape != (4, 5): warnings.warn(f"invalid color matrix: {matrix}") return input return input.color_matrix(matrix) return filter_color_matrix_apply def filter_offset(transform, dx, dy): def filter_offset_apply(input): x, y = input.offset tx, ty = transform(transform.invert([x, y]) + [dx, dy]) return input.translate(int(tx) - x, int(ty) - y) return filter_offset_apply def filter_morphology(transform, rx, ry, method): def filter_morphology_apply(input): # NOTE: # I have no idea how to account for rotation, except to roate # apply morphology and rotate back, but it is slow, so I'm not doing it ux, uy = transform([[rx, 0], [0, ry]]) - transform([[0, 0], [0, 0]]) x = int(np.linalg.norm(ux) * 2) y = int(np.linalg.norm(uy) * 2) if x < 1 or y < 1: return input return input.morphology(x, y, method) return filter_morphology_apply def filter_merge(_transform): def filter_merge_apply(*inputs): return Layer.compose(inputs, linear_rgb=True) return filter_merge_apply def filter_blend(_transform, mode): def filter_blend_apply(in1, in2): warnings.warn("feBlend is not properly supported") return Layer.compose([in2, in1], linear_rgb=True) return filter_blend_apply def filter_composite(_transform, mode): def filter_composite_apply(in1, in2): return Layer.compose([in2, in1], mode, linear_rgb=True) return filter_composite_apply def filter_blur(transform, std_x, std_y=None): if std_y is None: std_y = std_x def filter_blur_apply(input): kernel = blur_kernel(transform, (std_x, std_y)) if kernel is None: return input return input.convolve(kernel) return filter_blur_apply def blur_kernel(transform, sigma): """Gaussian blur convolution kerenel Gaussiange kernel ginven presentation transformation and sigma in user coordinate system. """ sigma_x, sigma_y = sigma # if one of the sigmas is smaller then a pixel rotatetion produces # incorrect degenerate state when the whole convolution is the same as over # a delta function. So we need to adjust it. If both simgas are smallerd # then a pixel then gaussian blur is a nonop. scale_x, scale_y = np.linalg.norm(transform(np.eye(2)) - transform([0, 0]), axis=1) if scale_x * sigma_x < 0.5 and scale_y * sigma_y < 0.5: return None elif scale_x * sigma_x < 0.5: sigma_x = 0.5 / scale_x elif scale_y * sigma_y < 0.5: sigma_y = 0.5 / scale_y sigma = np.array([sigma_x, sigma_y]) sigmas = 2.5 user_box = [ [-sigmas * sigma_x, -sigmas * sigma_y], [-sigmas * sigma_x, sigmas * sigma_y], [sigmas * sigma_x, sigmas * sigma_y], [sigmas * sigma_x, -sigmas * sigma_y], ] box = transform(user_box) - transform([0, 0]) min_x, min_y = box.min(axis=0).astype(int) max_x, max_y = box.max(axis=0).astype(int) kernel_w, kernel_h = max_x - min_x, max_y - min_y kernel_w += ~kernel_w & 1 # make it odd kernel_h += ~kernel_h & 1 user_tr = transform.invert kernel = user_tr(grad_pixels([-kernel_w / 2, -kernel_h / 2, kernel_w, kernel_h])) kernel -= user_tr([0, 0]) # remove translation kernel = np.exp(-np.square(kernel) / (2 * np.square(sigma))) kernel = kernel.prod(axis=-1) return kernel / kernel.sum() def color_matrix_hue_rotate(angle): """Hue rotation matrix for speicified angle in radians""" matrix = np.eye(4, 5) matrix[:3, :3] = np.dot(COLOR_MATRIX_HUE.T, [1, math.cos(angle), math.sin(angle)]).T return matrix def color_matrix_saturate(value): matrix = np.eye(4, 5) matrix[:3, :3] = np.dot(COLOR_MATRIX_HUE.T, [1, value, 0]).T return matrix # ------------------------------------------------------------------------------ # Convex Hull # ------------------------------------------------------------------------------ class ConvexHull: """Convex hull using graham scan Points are stored in presenetation coordinate system, so we would not have to convert them back and force when merging. """ __slots__ = ["points"] def __init__(self, points): """Construct convex hull of a set of points using graham scan""" if isinstance(points, np.ndarray): points = points.reshape(-1, 2).tolist() def turn(p, q, r): return (q[0] - p[0]) * (r[1] - p[1]) - (r[0] - p[0]) * (q[1] - p[1]) def keep_left(hull, p): while len(hull) > 1 and turn(hull[-2], hull[-1], p) <= 0: hull.pop() if not hull or hull[-1] != p: hull.append(p) return hull points = sorted(points) left = reduce(keep_left, points, []) right = reduce(keep_left, reversed(points), []) left.extend(right[1:-1]) self.points = left @classmethod def merge(cls, hulls): """Merge multiple convex hulls into one""" points = [] for hull in hulls: points.extend(hull.points) return cls(points) def bbox(self, transform): """Bounding box in user coordinate system""" points = transform.invert(np.array(self.points)) min_x, min_y = points.min(axis=0) max_x, max_y = points.max(axis=0) return [min_x, min_y, max_x - min_x, max_y - min_y] def bbox_transform(self, transform): """Transformation matrix for `objectBoundingBox` units Create bounding box transfrom for `objectBoundingBox`, using convex hull in the canvas coordinate system and current user space transformation. `objectBoundingBox` is a coordinate system where bounding box is a unit square. Returns `objectBoundingBox` transform. FIXME: In case of stroke we should use bounding box of the original path, not the stroked path. """ x, y, w, h = self.bbox(transform) if w <= 0 and h <= 0: return transform return transform.translate(x, y).scale(w, h) def path(self): points = self.points lines = [(PATH_LINE, l) for l in zip(points, points[1:])] lines.append((PATH_CLOSED, [points[-1], points[0]])) return Path([lines]) # ------------------------------------------------------------------------------ # Bezier # ------------------------------------------------------------------------------ BEZIER3_FLATNESS = np.array([[-2, 3, 0, -1], [-1, 0, 3, -2]], dtype=FLOAT) BEZIER3_SPLIT = np.array( [ [1, 0, 0, 0], [0.5, 0.5, 0, 0], [0.25, 0.5, 0.25, 0], [0.125, 0.375, 0.375, 0.125], [0.125, 0.375, 0.375, 0.125], [0, 0.25, 0.5, 0.25], [0, 0, 0.5, 0.5], [0, 0, 0, 1], ], dtype=FLOAT, ) BEZIER3_MAT = np.array([[1, 0, 0, 0], [-3, 3, 0, 0], [3, -6, 3, 0], [-1, 3, -3, 1]], dtype=FLOAT) BEZIER2_MAT = np.array([[1, 0, 0], [-2, 2, 0], [1, -2, 1]], dtype=FLOAT) BEZIER3_ABC = np.array([[-3, 9, -9, 3], [6, -12, 6, 0], [-3, 3, 0, 0]], dtype=FLOAT) BEZIER2_TO_BEZIER3 = np.array( [[1, 0, 0], [1.0 / 3, 2.0 / 3, 0], [0, 2.0 / 3.0, 1.0 / 3], [0, 0, 1]], dtype=FLOAT ) BEZIER = {2: [[0, 1], [1, -1]], 3: BEZIER2_MAT, 4: BEZIER3_MAT} def bezier3_split(points): """Split bezier3 curve in two bezier3 curves at t=0.5 Using de Castelju construction at t=0.5 """ return np.matmul(BEZIER3_SPLIT, points).reshape(2, 4, 2) def bezier3_split_batch(batch): """Split N bezier3 curves in 2xN bezier3 curves at t=0.5""" return np.moveaxis(np.dot(BEZIER3_SPLIT, batch), 0, -2).reshape((-1, 4, 2)) def bezier3_flatness_batch(batch): """Flattness criteria for a batch of bezier3 curves It is equal to `f = maxarg d(t) where d(t) = |b(t) - l(t)|, l(t) = (1 - t) * b0 + t * b3` for b(t) bezier3 curve with b{0..3} control points, in other words maximum distance from parametric line to bezier3 curve for the same parameter t. It is proven in the article that: f^2 <= 1/16 (max{u_x^2, v_x^2} + max{u_y^2, v_y^2}) where: u = 3 * b1 - 2 * b0 - b3 v = 3 * b2 - b0 - 2 * b3 `f == 0` means completely flat so estimating upper bound is sufficient as spliting more than needed is not a problem for rendering. [Linear Approximation of Bezier Curve](https://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf) """ uv = np.moveaxis(np.square(np.dot(BEZIER3_FLATNESS, batch)), 0, -1) return uv.max(-2).sum(-1) def bezier3_flatten_batch(batch, flatness): lines = [] flatness = (flatness ** 2) * 16 while batch.size > 0: flat_mask = bezier3_flatness_batch(batch) < flatness lines.append(batch[flat_mask][..., [0, 3], :]) batch = bezier3_split_batch(batch[~flat_mask]) return np.concatenate(lines) def bezier3_bbox(points): a, b, c = BEZIER3_ABC @ points det = b ** 2 - 4 * a * c t0 = (-b + np.sqrt(det)) / (2 * a) t1 = (-b - np.sqrt(det)) / (2 * a) curve = bezier_parametric(points) exterm = np.array([curve(t) for t in [0, 1, *t0, *t1] if 0 <= t <= 1]) min_x, min_y = exterm.min(axis=0) max_x, max_y = exterm.max(axis=0) return (min_x, min_y, max_x - min_x, max_y - min_y) def bezier3_offset(curve, distance): """Offset beizer3 curve with a list of bezier3 curves Offset bezier curve using Tiller-Hanson method. In short, just offset line segement corresponding to control points, find intersection of this lines and treat them as new control points. """ def should_split(curve): c0, c1, c2, c3 = curve # angle(c3 - c0, c2 - c1) > 90 or < -90 if np.dot(c3 - c0, c2 - c1) < 0: return True # control points should be on the same side of the baseline a0 = np.cross(c3 - c0, c1 - c0) a1 = np.cross(c3 - c0, c2 - c0) if a0 * a1 < 0: return True # distance between center mass and midpoint of a cruve, # bigger then .1 of bounding box diagonal. c_mass = curve.sum(0) / 4 # center mass c_mid = [0.125, 0.375, 0.375, 0.125] @ curve # t = 0.5 dist = ((c_mass - c_mid) ** 2).sum() bbox_diag = ((curve.max(0) - curve.min(0)) ** 2).sum() return dist * 100 > bbox_diag outputs = [] curves = [curve] while curves: curve = curves.pop() if should_split(curve) and len(outputs) < 16: curves.extend(reversed(bezier3_split(curve))) continue output = [] repeat = 0 line = None for p0, p1 in zip(curve, curve[1:]): # skip non-offsetable lines if np.allclose(p0, p1): repeat += 1 continue # offset and intersect with previous o0, o1 = line_offset([p0, p1], distance) if line is not None: x0, _t0, _t1 = line_intersect(line, (o0, o1)) if x0 is not None: o0 = x0 else: o0 = (line[-1] + o0) / 2 # repeat points if needed for _ in range(repeat + 1): output.append(o0) repeat = 0 line = (o0, o1) if line is not None: # insert last points for _ in range(repeat + 1): output.append(o1) if outputs and not np.allclose(output[0], outputs[-1][-1]): # hack for a curve like "M0,0 C100,50 0,50 100,0" outputs.extend(stroke_line_cap(output[0], outputs[-1][-1], STROKE_CAP_ROUND)) outputs.append(output) return np.array(outputs) def bezier2_to_bezier3(points): """Convert bezier2 to bezier3 curve""" return BEZIER2_TO_BEZIER3 @ points def bezier_parametric(points): points = np.array(points, dtype=FLOAT) points_count, _ = points.shape matrix = BEZIER.get(points_count) if matrix is None: raise ValueError("unsupported bezier curve order: {}", points_count) powers = np.array(range(points_count), dtype=FLOAT) matrix = np.dot(matrix, points) return lambda t: np.power(t, powers) @ matrix def bezier_deriv_parametric(points): points = np.array(points, dtype=FLOAT) points_count, _ = points.shape matrix = BEZIER.get(points_count) if matrix is None: raise ValueError("unsupported bezier curve order: {}", points_count) powers = np.array(range(points_count - 1), dtype=FLOAT) deriv_matrix = (matrix * np.array(range(points_count))[..., None])[1:] deriv_matrix = np.dot(deriv_matrix, points) return lambda t: np.power(t, powers) @ deriv_matrix # ------------------------------------------------------------------------------ # Line # ------------------------------------------------------------------------------ def line_signed_coverage(canvas, line): """Trace line on a canvas rendering signed coverage Implementation details: Line must be specified in the canvas coordinate system (that is one unit of length is equal to one pixel). Line is always traversed with scan line along `x` coordinates from lowest value to largest, and scan lines are going from lowest `y` value to larges. Based on https://github.com/raphlinus/font-rs/blob/master/src/raster.rs """ floor, ceil = math.floor, math.ceil min, max = builtins.min, builtins.max h, w = canvas.shape X, Y = 1, 0 p0, p1 = line[0], line[1] if p0[Y] == p1[Y]: return # does not introduce any signed converage dir, p0, p1 = (1.0, p0, p1) if p0[Y] < p1[Y] else (-1.0, p1, p0) dxdy = (p1[X] - p0[X]) / (p1[Y] - p0[Y]) # Find first point to trace. Since we are going to interate over Y's # we should pick min(y , p0.y) as a starting y point, and adjust x # accordingly x, y = p0[X], int(max(0, p0[Y])) if p0[Y] < 0: x -= p0[Y] * dxdy x_next = x for y in range(y, min(h, ceil(p1[Y]))): x = x_next dy = min(y + 1, p1[Y]) - max(y, p0[Y]) d = dir * dy # signed y difference # find next x position x_next = x + dxdy * dy # order (x, x_next) from smaller value x0 to bigger x1 x0, x1 = (x, x_next) if x < x_next else (x_next, x) # lower bound of effected x pixels x0_floor = floor(x0) x0i = int(x0_floor) # uppwer bound of effected x pixels x1_ceil = ceil(x1) x1i = int(x1_ceil) if x1i <= x0i + 1: # only goes through one pixel xmf = 0.5 * (x + x_next) - x0_floor # effective height if x0i >= w: continue canvas[y, x0i if x0i > 0 else 0] += d * (1 - xmf) xi = x0i + 1 if xi >= w: continue canvas[y, xi if xi > 0 else 0] += d * xmf # next pixel is fully shaded else: s = 1 / (x1 - x0) x0f = x0 - x0_floor # fractional part of x0 x1f = x1 - x1_ceil + 1.0 # fraction part of x1 a0 = 0.5 * s * (1 - x0f) ** 2 # area of the smallest x pixel am = 0.5 * s * x1f ** 2 # area of the largest x pixel # first pixel if x0i >= w: continue canvas[y, x0i if x0i > 0 else 0] += d * a0 if x1i == x0i + 2: # only two pixels are covered xi = x0i + 1 if xi >= w: continue canvas[y, xi if xi > 0 else 0] += d * (1.0 - a0 - am) else: # second pixel a1 = s * (1.5 - x0f) xi = x0i + 1 if xi >= w: continue canvas[y, xi if xi > 0 else 0] += d * (a1 - a0) # second .. last pixels for xi in range(x0i + 2, x1i - 1): if xi >= w: continue canvas[y, xi if xi > 0 else 0] += d * s # last pixel a2 = a1 + (x1i - x0i - 3) * s xi = x1i - 1 if xi >= w: continue canvas[y, xi if xi > 0 else 0] += d * (1.0 - a2 - am) if x1i >= w: continue canvas[y, x1i if x1i > 0 else 0] += d * am return canvas def line_intersect(l0, l1): """Find intersection betwee two line segments Solved by solving l(t) for both lines: l(t) = (1 - t) * l[0] + t * l[1] v ~ l[1] - l[0] l0(ta) == l1(tb) l0[0] - l1[0] = [v1, -v0] @ [tb, ta] inv([v1, -v0]) @ (l0[0] - l1[0]) = [tb, ta] """ ((x1, y1), (x2, y2)) = l0 ((x3, y3), (x4, y4)) = l1 det = (x4 - x3) * (y1 - y2) - (x1 - x2) * (y4 - y3) if abs(det) < EPSILON: return None, 0, 0 t0 = ((y3 - y4) * (x1 - x3) + (x4 - x3) * (y1 - y3)) / det t1 = ((y1 - y2) * (x1 - x3) + (x2 - x1) * (y1 - y3)) / det return [x1 * (1 - t0) + x2 * t0, y1 * (1 - t0) + y2 * t0], t0, t1 def line_offset(line, distance): ((x1, y1), (x2, y2)) = line (vx, vy) = (x2 - x1, y2 - y1) line_len = vx * vx + vy * vy if line_len < EPSILON: return None line_len = math.sqrt(line_len) dx = -vy * distance / line_len dy = vx * distance / line_len return np.array([[x1 + dx, y1 + dy], [x2 + dx, y2 + dy]]) def line_offset_batch(batch, distance): """Offset a batch of line segments to specified distance""" norms = np.matmul([-1, 1], batch) @ [[0, 1], [-1, 0]] norms_len = np.sqrt((norms ** 2).sum(-1))[..., None] offset = norms * distance / norms_len return batch + offset[..., None, :] def line_parametric(points): return bezier_parametric(points) # ------------------------------------------------------------------------------ # Arc # ------------------------------------------------------------------------------ def arc_to_bezier3(center, rx, ry, phi, eta, eta_delta): """Approximate arc with a sequnce of cubic bezier curves [Drawing an elliptical arc using polylines, quadraticor cubic Bezier curves] (http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf) [Approximating Arcs Using Cubic Bézier Curves] (https://www.joecridge.me/content/pdf/bezier-arcs.pdf) We are using following formula to split arc segment from `eta_1` to `eta_2` to achieve good approximation arc is split in segments smaller then `pi / 2`. P0 = A(eta_1) P1 = P0 + alpha * A'(eta_1) P2 = P3 - alpha * A'(eta_2) P3 = A(eta_2) where A - arc parametrized by angle A' - derivative of arc parametrized by angle eta_1 = eta eta_2 = eta + eta_delta alpha = sin(eta_2 - eta_1) * (sqrt(4 + 3 * tan((eta_2 - eta_1) / 2) ** 2) - 1) / 3 """ M = np.array([[math.cos(phi), -math.sin(phi)], [math.sin(phi), math.cos(phi)]]) arc = lambda a: M @ [rx * math.cos(a), ry * math.sin(a)] + center arc_d = lambda a: M @ [-rx * math.sin(a), ry * math.cos(a)] segment_max_angle = math.pi / 4 # maximum `eta_delta` of a segment segments = [] segments_count = math.ceil(abs(eta_delta) / segment_max_angle) etas = np.linspace(eta, eta + eta_delta, segments_count + 1) for eta_1, eta_2 in zip(etas, etas[1:]): sq = math.sqrt(4 + 3 * math.tan((eta_2 - eta_1) / 2) ** 2) alpha = math.sin(eta_2 - eta_1) * (sq - 1) / 3 p0 = arc(eta_1) p3 = arc(eta_2) p1 = p0 + alpha * arc_d(eta_1) p2 = p3 - alpha * arc_d(eta_2) segments.append([p0, p1, p2, p3]) return np.array(segments) def arc_svg_to_parametric(src, dst, rx, ry, x_axis_rot, large_flag, sweep_flag): """Convert arc from SVG arguments to parametric curve This code mostly comes from arc implementation notes from svg sepc (Arc to Parametric)[https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes] Returns arc parameters in parameteric form: - `src`, `dst` - usefull if implementation wants to know stat and end without recomputation - `center` - center of an elpise - `rx`, `ry` - elipse radii - `phi` - eplise rotation with regard to x axis - `eta` - initial parameter anple - `eta_delta` - differentse between final and initial `eta` values Curve is specified in a following form: eta(t) = eta + t * eta_delta arc(t) = [[cos(phi), -sin(phi)], [sin(phi), cos(phi)]] @ [rx * cos(eta(t)), ry * sin(eta(t))] + [cx, cy] """ rx, ry = abs(rx), abs(ry) src, dst = np.array(src), np.array(dst) phi = x_axis_rot * math.pi / 180 cos_phi, sin_phi = math.cos(phi), math.sin(phi) M = np.array([[cos_phi, sin_phi], [-sin_phi, cos_phi]]) # Eq 5.1 x1, y1 = np.matmul(M, (src - dst) / 2) # scale/normalize radii (Eq 6.2) s = (x1 / rx) ** 2 + (y1 / ry) ** 2 if s > 1: s = math.sqrt(s) rx *= s ry *= s # Eq 5.2 sq = math.sqrt(max(0, (rx * ry) ** 2 / ((rx * y1) ** 2 + (ry * x1) ** 2) - 1)) if large_flag == sweep_flag: sq = -sq center = sq * np.array([rx * y1 / ry, -ry * x1 / rx]) cx, cy = center # Eq 5.3 convert center to initail coordinates center = np.matmul(M.T, center) + (dst + src) / 2 # Eq 5.5-6 v0 = np.array([1, 0]) v1 = np.array([(x1 - cx) / rx, (y1 - cy) / ry]) v2 = np.array([(-x1 - cx) / rx, (-y1 - cy) / ry]) # initial angle eta = angle_between(v0, v1) # delta angle to be covered when t changes from 0..1 eta_delta = math.fmod(angle_between(v1, v2), 2 * math.pi) if not sweep_flag and eta_delta > 0: eta_delta -= 2 * math.pi if sweep_flag and eta_delta < 0: eta_delta += 2 * math.pi return center, rx, ry, phi, eta, eta_delta def arc_parametric(center, rx, ry, phi, eta, eta_delta): def arc(t): """Parametric arc curve""" angle = eta + t * eta_delta return M @ [rx * math.cos(angle), ry * math.sin(angle)] + center M = np.array([[math.cos(phi), -math.sin(phi)], [math.sin(phi), math.cos(phi)]]) return arc def arc_deriv_parametric(center, rx, ry, phi, eta, eta_delta): def arc_deriv(t): angle = eta + t * eta_delta return M @ [-rx * math.sin(angle), ry * math.cos(angle)] * eta_delta M = np.array([[math.cos(phi), -math.sin(phi)], [math.sin(phi), math.cos(phi)]]) return arc_deriv def angle_between(v0, v1): """Calculate angle between two vectors""" angle_cos =
np.dot(v0, v1)
numpy.dot
import logging import numpy as np from scipy.optimize import minimize from sklearn.model_selection import KFold from .Kernel import Kernel from .Kernel import RBF from .Plotting import plot_BayOpt logger = logging.getLogger(__name__) class GP(): """ Gaussian Process class ... Attributes ---------- dim_input : int Dimension of the input space dim_output : int Dimension of the output space dimension : int Number of the training points X : np.array Training sample points written as column vector. 5 Training points of 2 dimensions -> shape(5,2) 1 Training point of 2 dimensions -> shape(1,1) Y : np.array Training target points written as column vector. 5 Target points of 1 dimension -> shape(5,1) 1 Target point of 1 dimension -> shape(1,1) data : dict Dictionary with X and Y as keys that holds the values of the respective array kernel : Kernel object (default RBF) Chosen kernel for the Gaussian Process cov : np.array (default None) Covariance of the GP normalize_y : bool (default True) Flag to normalize the target values to 0 mean and 1 variance marg : float (default None) Log Marginal Likelihood value _stat : bool (default False) Flag for the fit Example --------- x=np.random.uniform(0,3,10)[:,None] y=np.sin(x) gp = GP(x, y) gp.optimize() Methods --------- """ def __init__(self, X: np.ndarray, Y: np.ndarray, kernel: Kernel = RBF(), cov: np.ndarray = None, normalize_y=True): """ X : np.array Training sample points written as column vector. Y : np.array Training target points written as column vector. kernel : Kernel object cov : np.array (default None) Covariance of the GP after the fit. A covariance matrix can be passed to use for the prediction. normalize_y : bool (default True) Flag to normalize the target values to 0 mean and 1 variance """ self.dim_input = X[0].shape[0] self.dim_output = Y[0].shape[0] self.dimension = X.shape[0] self.X_train = X self.Y_train = Y self.data = {"X": self.X_train, "Y": self.Y_train} self.kernel = kernel self.cov = cov self.normalize_y = normalize_y self.marg = None self._stat = False def log_marginal_likelihood(self): """ Compute the Log Marginal Likelihood for the current set of Training points and the current hyperparameters while storing the result value in __marg. By default it tries to use the cholesky decomposition to compute the log marginal likelihood. If there is some numerical error (usually by too litlle noise) it tries to use the standard inversion routine of the Graham Matrix. If it happens the noise of the GP should be increased. """ Y = self.get_Y() if self.normalize_y: self._mean_y = np.mean(self.get_Y(), axis=0) self._std_y = np.std(self.get_Y(), axis=0) Y = (self.get_Y() - self._mean_y) / self._std_y kernel = self.get_kernel().kernel_product(self.get_X(), self.get_X()) kernel[np.diag_indices_from(kernel)] += self.get_noise() ** 2 try: if self._stat: K = self.get_cov() else: K = np.linalg.cholesky(kernel) marg = - .5 * Y.T.dot(np.linalg.lstsq(K.T, np.linalg.lstsq(K, Y, rcond=None)[0], rcond=None)[0]) \ - .5 * np.log(np.diag(K)).sum() \ - .5 * K.shape[0] * np.log(2 * np.pi) except np.linalg.LinAlgError as exc: logging.info("\nComputing as a normal inverse\n%s",exc) K = np.linalg.inv(kernel) marg = - .5 * Y.T.dot(K.dot(Y)) \ - .5 * np.log(np.diag(K)).sum() \ - .5 * K.shape[0] * np.log(2 * np.pi) self.set_marg(marg.flatten()) def compute_log_marginal_likelihood(self, X, Y, pair_matrix, hyper, verbose=False): """ Routine to calculate the negative log marginal likelihood for a given set of hyperparameters. :param X: np.array Training points for the calculation of the Log Marginal likelihood :param Y: np.array Target points for the calculation :param pair_matrix: np.array Distance matrix between X and Y :param hyper: array-like Array of hyperparameters :param verbose: bool (default False) print the process of the optimizers on the console :return: The value of the negative log marginal likelihood If eval_grad attribute of the kernel is set on True, the method will use the gradient informations. With eval_grad=True it will return an array of the negative value for the log marginal likelihood and the needed derivates. It tries to calculate using the Cholesky decomposition. If it fails it also tries to compute the normal inversion of the Graham matrix. If the set of hyperparameters causes the calculations to fail for a np.linalg.error, it sets the marginal likelihood to infinity to discard the set of parameters. """ logger.debug(hyper) if self.normalize_y: self._mean_y = np.mean(self.get_Y(), axis=0) self._std_y = np.std(self.get_Y(), axis=0) Y = (self.get_Y() - self._mean_y) / self._std_y kernel = self.kernel.kernel_(*hyper, pair_matrix) try: K = np.linalg.cholesky(kernel) marg = - .5 * Y.T.dot(np.linalg.lstsq(K.T, np.linalg.lstsq(K, Y, rcond=None)[0], rcond=None)[0]) \ - .5 * np.log(np.diag(K)).sum() \ - .5 * K.shape[0] * np.log(2 * np.pi) except np.linalg.LinAlgError as exc: try: logger.info("\nComputing as a normal inverse\n %s",exc) K = np.linalg.inv(kernel) marg = - .5 * Y.T.dot(K.dot(Y)) \ - .5 * np.log(np.diag(K)).sum() \ - .5 * K.shape[0] * np.log(2 * np.pi) except np.linalg.LinAlgError as exc2: if verbose: logger.warning(exc2) marg = np.inf if self.get_kernel().get_eval(): marg_grad = self.compute_log_marginal_likelihood_gradient(X, Y, pair_matrix, hyper, verbose=False) return -marg.flatten(), marg_grad.flatten() else: return -np.array(marg).flatten() def compute_log_marginal_likelihood_gradient(self, X, Y, pair_matrix, hyper, verbose=False): """ Routine to calculate the gradient of log marginal likelihood for a set of hyperparameters. :param X: np.array Training points for the calculation of the Log Marginal likelihood :param Y: np.array Target points for the calculation :param pair_matrix: np.array Distance matrix between X and Y :param hyper: array-like Array of hyperparameters :param verbose: bool (default False) print the process of the optimizers on the console :return: The value of the gradients of negative log marginal likelihood. """ logger.debug("GRADIENT mode\t%s", hyper) hyper = np.squeeze(hyper) m_g = lambda h: -(.5 * Y.T.dot(K.dot(h.dot(K.dot(Y)))) - .5 * np.diag(K.dot(h)).sum()) kernel = self.kernel.kernel_eval_grad_(*hyper, pair_matrix) K = np.linalg.inv(kernel[0]) try: grad_kernel = [m_g(i) for i in kernel[1:]] except np.linalg.LinAlgError as exc: if verbose: logger.warning(exc) return np.array(grad_kernel) def grid_search_optimization(self, constrains, n_points, function=np.linspace, verbose=False): """ Routine called by optimize_grid to handle the optimization. :param constrains: list Array-like with the constrains for the hyperparameters. Ex: [[lb,ub],[lb,ub],[lb,ub]] :param n_points: int Number of points sampled in each dimension. The number of total evaluations will be n_points^d(hyper) :param function: callable (default np.linspace) function that will be used to generate the sampling point. np.random.uniform : randomized grid search np.linspace : normal grid search :param verbose: bool (default False) print the process of the optimizers on the console """ self.__optimizer = "Grid search" def check_best(best, new): return best["marg"] < new def set_dict(new_marg, new_hyper): best["marg"] = new_marg best["hyper"] = new_hyper if self.get_marg() is not None: best = {"marg": self.get_marg(), "hyper": self.get_kernel().gethyper()} else: self.log_marginal_likelihood() best = {"marg": self.get_marg(), "hyper": self.get_kernel().gethyper()} X, Y = self.get_X(), self.get_Y() pair_matrix = np.sum(X ** 2, axis=1)[:, None] + np.sum(X ** 2, axis=1) - 2 * np.dot(X, X.T) hyper_grid = generate_grid(3, n_points, constrains, function) for i in hyper_grid: tmp_marg = self.compute_log_marginal_likelihood(X, Y, pair_matrix, i, verbose) if check_best(best, -tmp_marg): set_dict(-tmp_marg, i) return best def optimize_grid(self, constrains=[[1e-5, 30], [1e-5, 30], [1e-5, 10]], n_points=100, function=np.linspace, verbose=False): """ Routine for optimizing the hyperparameters by maximizing the log marginal Likelihood by a naive grid search. :param constrains: list (default [[1e-5, 30], [1e-5, 30], [1e-5, 10]]) Array-like with the constrains for the hyperparameters. Ex: [[lb,ub],[lb,ub],[lb,ub]] :param n_points: int (default 100) Number of points sampled in each dimension. The number of total evaluations will be n_points^3 :param function: func (default np.linspace) function that will be used to generate the sampling point. np.random.uniform : randomized grid search np.linspace : normal grid search :param verbose: bool (default False) print the process of the optimizers on the console """ args = (constrains, n_points, function, verbose) new = self.grid_search_optimization(*args) self.set_marg(new["marg"]) # fare un buon metodo set hyper self.set_hyper(*new["hyper"]) self.fit() def optimize(self, n_restarts=10, optimizer="L-BFGS-B", verbose=False): """ Optimization Routine for the hyperparameters of the GP by Minimizing the negative log Marginal Likelihood. n_restarts : int (default 10) Number of restart points for the optimizer optimizer : str (default L-BFGS-B) Type of Optimizer chosen for the task. Because the Optimization is bounded, the following optimizers can be used: L-BFGS-B, SLSCP, TNC For a better documentation of the optimizers follow the Scipy documentation verbose : bool (default False) print the process of the optimizers on the console If eval_grad of the Kernel is set on True , the gradient of the Log Marginal Likelihood will be calculated and used for the optimization. This usually speed up the convergence but it also makes the Optimizer more prone to find local minima. """ self.__optimizer = optimizer self.log_marginal_likelihood() old_marg = self.get_marg() old_hyper = self.get_kernel().gethyper() hyper_dim = len(old_hyper) boundaries = self.get_boundary() #print(boundaries) eval_grad = self.get_kernel().get_eval() logger.debug("Starting Log Marginal Likelihood Value: %s", old_marg) X_d, Y_d = self.get_X(), self.get_Y() pair_matrix = np.sum(X_d ** 2, axis=1)[:, None] + np.sum(X_d ** 2, axis=1) - 2 * np.dot(X_d, X_d.T) new_hyper = None new_marg = None it = 0 # Optimization Loop for i in np.random.uniform(boundaries[:, 0], boundaries[:, 1], size=(n_restarts, hyper_dim)): it += 1 logger.debug("RESTART : %s , %s", it, i) res = minimize(lambda h: self.compute_log_marginal_likelihood(X=X_d, Y=Y_d, pair_matrix=pair_matrix, verbose=verbose, hyper=(np.squeeze( h.reshape(-1, hyper_dim)))), x0=i, bounds=((1e-5, None), (1e-5, None), (1e-5, None)), method=self.__optimizer, jac=eval_grad) if not res.success: continue try: if new_marg is None or res.fun[0] < new_marg: new_marg = res.fun[0] new_hyper = res.x except: pass logger.info(res.fun) # If the optimization doesn't converge set the value to old parameters if new_marg is None: if verbose: logger.warning("Using Old Log Marg Likelihood") new_marg = old_marg new_hyper = old_hyper logger.info("New Log Marginal Likelihood Value: %s", -new_marg, new_hyper) # Update and fit the new gp model self.set_hyper(*new_hyper) self.set_marg(-new_marg) self.fit() def fit(self): """ Compute the Graham Matrix for the kernel and the cholesky decomposition required for the prediction. It stores the result in cov and change the flag of stat in True """ ker = self.get_kernel() n = self.get_dim_data() try: kernel = self.get_kernel().kernel_product(self.get_X(), self.get_X()) kernel[np.diag_indices_from(kernel)] += self.get_noise() ** 2 self.cov = np.linalg.cholesky(kernel) self._stat = True except np.linalg.LinAlgError as exc: raise ValueError("Cholesky decomposition encountered a numerical error\nIncrease the Noise Level\n", exc) def predict(self, X): """ Make prediction on X samples :param X: np.array :return: tuple of 2 elements GP mean and GP Variance """ # Check if we require to normalize the target values # normalizer = np.sqrt(2 * np.pi * ker.gethyper()[0] ** 2) ker = self.get_kernel() K_sample = ker.kernel_product(self.get_X(), X) inv_cov = np.linalg.solve(self.get_cov(), K_sample) if not self.normalize_y: # cov_sample = ker.kernel_product(X,X) # Mean mean = np.dot(inv_cov.T, np.linalg.solve(self.get_cov(), self.get_Y())) # general case # Variance # var = ker.gethyper()[0] ** 2 + ker.gethyper()[2] - np.sum(inv_cov ** 2, axis=0) var = ker.kernel_var() - np.sum(inv_cov ** 2, axis=0) var_neg = var < 0 var[var_neg] = 0. var = np.sqrt(var)[:, None] return mean, var else: # Normalize Y self._mean_y = np.mean(self.get_Y(), axis=0) self._std_y = np.std(self.get_Y(), axis=0) Y = (self.get_Y() - self._mean_y) / self._std_y # MEAN y_mean = np.dot(inv_cov.T, np.linalg.solve(self.get_cov(), Y)) # DESTANDARDIZE y_mean = (self._std_y * y_mean + self._mean_y) # VARIANCE # var = ker.gethyper()[0] ** 2 + self.get_noise() - np.sum(inv_cov ** 2, axis=0) var = ker.kernel_var() - np.sum(inv_cov ** 2, axis=0) # REMOVE VARIANCE VALUE LESS THAN 0 var_neg = var < 0 var[var_neg] = 0. # DeStandardize var = np.sqrt(var * self._std_y ** 2)[:, None] return y_mean, var def plot(self, X): """ Function that handles the prediction of the GP object and the plotting without returning anything. For visual reasons it only works with input data of 1 dimension and 2 dimension :param X: np.array Data to use to predict and plot """ mean, var = self.predict(X) dim = self.get_dim_data() args = [self.get_X(), self.get_Y(), X, mean, var] plt = plot_BayOpt(*args) plt.show() def prepare_fold(self, n): kf = KFold(n_splits=n) kf.get_n_splits(self.get_dim_data()) folds = [] for train, test in kf.split(self.get_X()): folds.append([train, test]) return folds @staticmethod def RMSE(gp_model, dataset_X, dataset_Y, test_index): def func(pred, test): return np.sqrt(np.mean(np.squeeze((pred - test) ** 2))) gp_model.fit() test_x = dataset_X[test_index] test_y = dataset_Y[test_index] pred = gp_model.predict(test_x) return func(pred, test_y) def k_fold_cv(self, n_fold, hyper): index = self.prepare_fold(n_fold) RMSE = 0 for i in range(n_fold): X_train, X_test = self.get_X()[index[i][0]], self.get_X()[index[i][1]] Y_train, Y_test = self.get_Y()[index[i][0]], self.get_Y()[index[i][1]] cv_gp = GP(X_train, Y_train, kernel=RBF(*hyper)) RMSE += GP.RMSE(cv_gp, self.get_X(), self.get_Y(), index[i][1]) return RMSE / n_fold def augment_dataset(self, dataset, new_data): """ General function to augment an array with a shape check :param dataset: Dataset to augment :param new_data: Data to agument the dataset with :return: new array """ try: dataset.shape[1] == new_data.shape[1] return np.concatenate((dataset, new_data)) except: try: dataset.shape[1] == new_data.shape[0] return np.concatenate((dataset, np.expand_dims(new_data, axis=0))) except: raise ValueError(f'Data dimensions are wrong: {dataset.shape} != {new_data.shape}') def augment_X(self, new_data): self.X_train = self.augment_dataset(self.get_X(), new_data) def augment_Y(self, new_data): self.Y_train = self.augment_dataset(self.get_Y(), new_data) def augment_XY(self, new_data_X, new_data_Y): self.augment_X(new_data_X) self.augment_Y(new_data_Y) def get_kernel(self): return self.kernel def get_state(self): return self._stat def get_marg(self): return self.marg def get_cov(self): return self.cov def get_X(self): return self.X_train def get_Y(self): return self.Y_train def get_dim_data(self): return self.dimension def get_dim_outspace(self): return self.dim_output def set_marg(self, marg): self.marg = marg def get_boundary(self): """ Get the boundaries for the hyperparameters optimization routine. :return: np.array Array of boundaries If no boundaries were previously set it creates some dummy boundaries (1e-5,10) for all hyperparameters in the kernel. """ try: return self._boundary except AttributeError: self._boundary = np.asarray([[1e-4, 10] for i in range(len(self.get_kernel().gethyper()))]) return self._boundary def set_boundary(self, array): """ Create the boundaries for the hyperparameters optimization :param array: list [lb,ub] type of list to set the boundaries, it can be the same dimensions of the number of hyperparameters or just have one array inside If the array has the same length required for the hyperparameters space the space will be bounded. If the array only has one dimension, then it will set the space as the hypercube of the array lb and ub All others types of input are not supported _____________________________________________ Example set_boundary([[1e-5,4]]) on RBF ---> boundaries: (1e-5,4),(1e-5,4),(1e-5,4) set_boundary([[1e-5,4],[1,10],[2,3]]) on RBF ---> boundaries: (1e-5,4),(1,10),(2,3) """ n = len(self.get_kernel().gethyper()) if len(array) == 2: self._boundary = np.asarray([array for i in range(n)]) if len(array) == n: self._boundary = np.asarray(array) def set_hyper(self, *hypers): self.get_kernel().sethyper(*hypers) def get_noise(self): ker = self.get_kernel() return ker.get_noise() def save_model(self, path): with open(path, "w") as file: file.write(str(self)) def __str__(self): header = "#=========================GP===========================\n" tail = "#======================================================" X, Y = self.get_X(), self.get_Y() try: gp_info = f"Optimizer: {self.__optimizer}\n" except: gp_info = f"Optimizer: No Optimized\n" kernel_info = str(self.get_kernel()) train_info = f'Train values: {self.get_dim_data()}\nInput Dimension: {self.dim_input} Output Dimension: {self.get_dim_outspace()}\n' train_info += f'\t\t\t\tX_train\t\t\t\tY_train\n' train_info += f'{np.hstack((X, Y))}\n\n' gp_info += f'Noise: {self.get_noise()}\nLog Marginal Likelihood: {self.get_marg()}\n' surprise = "\n░░░░░░░░▄▄▄▀▀▀▄▄███▄░░░░░░░░░░░░░░\n░░░░░▄▀▀░░░░░░░▐░▀██▌░░░░░░░░░░░░░\n░░░▄▀░░░░▄▄███░▌▀▀░▀█░░░░░░░░░░░░░\n░░▄█░░▄▀▀▒▒▒▒▒▄▐░░░░█▌░░░░░░░░░░░░\n░▐█▀▄▀▄▄▄▄▀▀▀▀▌░░░░░▐█▄░░░░░░░░░░░\n░▌▄▄▀▀░░░░░░░░▌░░░░▄███████▄░░░░░░\n░░░░░░░░░░░░░▐░░░░▐███████████▄░░░\n░░░░░le░░░░░░░▐░░░░▐█████████████▄\n░░░░toucan░░░░░░▀▄░░░▐█████████████▄\n░░░░░░has░░░░░░░░▀▄▄███████████████\n░░░░░arrived░░░░░░░░░░░░█▀██████░░\n" return header + kernel_info + gp_info + train_info + tail + surprise def __repr__(self): header = "#=========================GP===========================\n" tail = "#======================================================" X, Y = self.get_X(), self.get_Y() try: gp_info = f"Optimizer: {self.__optimizer}\n" except: gp_info = f"Optimizer: No Optimized\n" kernel_info = str(self.get_kernel()) train_info = f'Train values: {self.get_dim_data()}\nInput Dimension: {self.dim_input} Output Dimension: {self.get_dim_outspace()}\n' train_info += f'\t\t\t\tX_train\t\t\t\tY_train\n' train_info += f'{
np.hstack((X, Y))
numpy.hstack
from http.cookies import CookieError import numpy as np import pandas as pd from panel import state from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from scipy.sparse import csr_matrix from scipy.spatial.distance import squareform from group_lasso import LogisticGroupLasso from tqdm import tqdm import warnings from .utils.plot import plot_regularization_path, plot_classifier_complexity_vs_accuracy from ._configs import * __all__ = ["Classifier","prepare_training_dataset"] def prepare_training_dataset(descriptors, states_labels, n_configs, regex_filter = None, states_subset=None): """Sample points from trajectory Args: n_configs (int): number of points to sample for each metastable state regex_filter (str, optional): regex to filter the features. Defaults to '.*'. states_subset (list, optional): list of integers corresponding to the metastable states to sample. Defaults to None take all states. states_names (list, optional): list of strings corresponding to the name of the states. Defaults to None. Returns: (configurations, labels), features_names, states_names """ assert len(descriptors) == len(states_labels), "Length mismatch between descriptors and states_labels." if regex_filter is not None: features = descriptors.filter(regex=regex_filter).columns.values else: features = descriptors.columns.values config_list = [] labels = [] if isinstance(states_labels, pd.DataFrame): pass elif isinstance(states_labels, np.ndarray): states_labels = np.squeeze(states_labels) columns = ['labels'] if states_labels.ndim == 2: columns.append('selection') states_labels = pd.DataFrame(data=states_labels, columns=columns) else: raise TypeError( f"{states_labels}: Accepted types are 'pandas.Dataframe' or 'numpy.ndarray' " ) if not ('selection' in states_labels): states_labels['selection'] = np.ones(len(states_labels), dtype=bool) # convert labels in string states_labels['labels'] = states_labels['labels'].astype(str) if states_subset is None: states_subset = states_labels['labels'].unique() states_subset = states_subset[states_subset != 'undefined' ] for label in states_subset: #select label df = descriptors.loc[ (states_labels['labels'] == label) & (states_labels['selection'] == True)] #select descriptors and sample replace = False if n_configs > len(df): warnings.warn("The asked number of samples is higher than the possible unique values. Sampling with replacement") replace = True if regex_filter is not None: config_i = df.filter(regex=regex_filter).sample(n=n_configs, replace=replace).values else: config_i = df.sample(n=n_configs, replace=replace).values config_list.append(config_i) labels.extend([label]*n_configs) labels = np.array(labels) configurations = np.vstack(config_list) return (configurations, labels), features class Classifier(): def __init__(self, dataset, features_names, rescale=True, test_size=0.25): self._X, self._labels = dataset _tmp_classes, self._labels = np.unique(self._labels, return_inverse=True) self.classes = dict() for _i, _class in enumerate(_tmp_classes): self.classes[_i] = f"{_class}" self._rescale = rescale self._test_size = test_size if self._rescale: scaler = StandardScaler(with_mean=True) scaler.fit(self._X) self._X = scaler.transform(self._X) self._train_in, self._val_in, self._train_out, self._val_out = train_test_split(self._X, self._labels, test_size=self._test_size) self._n_samples = self._train_in.shape[0] self.features = features_names self._computed = False def compute(self, reg, max_iter = 100, quadratic_kernel=False, groups=None, warm_start = True): if self._computed: warnings.warn("Warning: deleting old computed data") self._purge() if hasattr(reg, '__iter__') == False: reg = np.array([reg]) _num_reg = len(reg) _n_basins = len(np.unique(self._train_out)) self._reg = reg if quadratic_kernel: train_in, val_in = quadratic_kernel_featuremap(self._train_in), quadratic_kernel_featuremap(self._val_in) else: train_in = self._train_in val_in = self._val_in _n_features = train_in.shape[1] if groups is not None: groups_names, groups = np.unique(groups, return_inverse=True) if quadratic_kernel: assert len(groups) == train_in.shape[1], "Length of group array does not match quadratic features number." else: assert len(groups) == len(self.features), "Length of group array does not match features number." _is_group = True _reg_name = 'estimator__group_reg' tmp_model = LogisticGroupLasso(groups, group_reg = reg[0], l1_reg=0, n_iter=max_iter, supress_warning=True, scale_reg='none', warm_start=False) model = OneVsRestClassifier(tmp_model, n_jobs=2) else: _is_group = False _reg_name = 'C' reg = (reg*self._n_samples)**-1 model = LogisticRegression(penalty='l1', C=reg[0], solver='liblinear', multi_class='ovr', fit_intercept=False, max_iter=max_iter, warm_start=warm_start) coeffs = np.empty((_num_reg, _n_basins, _n_features)) crossval = np.empty((_num_reg,)) _classes_labels = np.empty((_num_reg, _n_basins), dtype=np.int_) for reg_idx in tqdm(range(len(reg)), desc='Optimizing Lasso Estimator'): model.set_params(**{_reg_name: reg[reg_idx]}) model.fit(train_in,self._train_out) crossval[reg_idx] = model.score(val_in,self._val_out) _classes_labels[reg_idx] = model.classes_.astype(int) if _is_group: assert _n_basins == model.classes_.shape[0] tmp_coeffs = np.empty((_n_basins, _n_features)) for est_idx, _e in enumerate(model.estimators_): tmp_coeffs[est_idx] = _e.coef_[:,0] coeffs[reg_idx] = tmp_coeffs else: coeffs[reg_idx] = model.coef_ self._quadratic_kernel=quadratic_kernel self._coeffs = coeffs self._crossval = crossval self._classes_labels = _classes_labels self._groups = groups if _is_group: self._groups_names = groups_names self._groups_mask = [ self._groups == u for u in np.unique(self._groups) ] self._computed = True # Count number of features for each regularization value. num_feat = np.empty((_num_reg,),dtype=int) for i,reg in enumerate(self._reg): selected = self._get_selected(reg, feature_mode=False) unique_idxs = set() for state in selected.values(): for data in state: unique_idxs.add(data[0]) num_feat[i] = len(unique_idxs) self._num_feat = num_feat def _purge(self): if __DEV__: print("DEV >>> Purging old data") if self._computed: del self._quadratic_kernel del self._reg del self._coeffs del self._crossval del self._classes_labels del self._num_feat if self._groups is not None: del self._groups_names del self._groups_mask del self._groups self._computed = False def _closest_reg_idx(self, reg): assert self._computed, "You have to run Classifier.compute first." return np.argmin(np.abs(self._reg - reg)) def _get_selected(self, reg, feature_mode=False): reg_idx = self._closest_reg_idx(reg) coefficients = self._coeffs[reg_idx] _classes = self._classes_labels[reg_idx] selected = dict() group_mode = (not feature_mode) and (self._groups is not None) for idx, coef in enumerate(coefficients): state_name = self.classes[_classes[idx]] if group_mode: coef = np.array([np.linalg.norm(coef[b])**2 for b in self._groups_mask]) else: coef = coef**2 nrm = np.sum(coef) if nrm < __EPS__: selected[state_name] = [] else: coef = csr_matrix(coef/nrm) sort_perm =
np.argsort(coef.data)
numpy.argsort
import jax.numpy as jnp from jax import grad, vmap, hessian, jit import jax.ops as jop from jax.config import config; config.update("jax_enable_x64", True) # numpy import numpy as onp from numpy import random import scipy.io import argparse import logging import datetime from time import time import os def get_parser(): parser = argparse.ArgumentParser(description='Allen Cahn equation GP solver') parser.add_argument("--nu", type=float, default = 1e-4) parser.add_argument("--kernel", type=str, default="gaussian", choices=["gaussian","inv_quadratics"]) parser.add_argument("--sigma", type = float, default = 0.02) parser.add_argument("--dt", type = float, default = 0.04) parser.add_argument("--T", type = float, default = 1.0) parser.add_argument("--N_domain", type = int, default = 512) parser.add_argument("--nugget", type = float, default = 1e-13) parser.add_argument("--GNsteps", type = int, default = 2) parser.add_argument("--logroot", type=str, default='./logs/') parser.add_argument("--randomseed", type=int, default=9999) args = parser.parse_args() return args def sample_points(num_pts, dt, T, option = 'grid'): Nt = int(T/dt)+1 X_domain = onp.zeros((Nt,num_pts,2)) if option == 'grid': for i in range(Nt): X_domain[i,:,0] = i*dt X_domain[i,:,1] = onp.linspace(-1.0,1.0, num_pts) return X_domain def assembly_Theta(X_domain, sigma): N_domain = onp.shape(X_domain)[0] N_boundary = 0 Theta = onp.zeros((3*N_domain+N_boundary, 3*N_domain+N_boundary)) # auxiliary vector for construncting Theta # domain-domain XdXd = onp.tile(X_domain, (N_domain,1)) XdXd_T = onp.transpose(XdXd) XdXb1 = onp.transpose(onp.tile(X_domain,(N_domain+N_boundary,1))) X_all = X_domain XdXb2 = onp.tile(X_all,(N_domain,1)) XdbXdb = onp.tile(X_all,(N_domain+N_boundary,1)) XdbXdb_T = onp.transpose(XdbXdb) val = vmap(lambda x1,y1: Delta_x1_Delta_y1_kappa(x1,y1, sigma))(XdXd_T.flatten(), XdXd.flatten()) Theta[:N_domain,:N_domain] = onp.reshape(val, (N_domain,N_domain)) val = vmap(lambda x1,y1: Delta_x1_D_y1_kappa(x1,y1, sigma))(XdXd_T.flatten(), XdXd.flatten()) Theta[:N_domain,N_domain:2*N_domain] = onp.reshape(val, (N_domain,N_domain)) Theta[N_domain:2*N_domain,:N_domain] = onp.transpose(onp.reshape(val, (N_domain,N_domain))) val = vmap(lambda x1,y1: Delta_x1_kappa(x1,y1, sigma))(XdXb1.flatten(), XdXb2.flatten()) Theta[:N_domain,2*N_domain:] = onp.reshape(val,(N_domain,N_domain+N_boundary)) Theta[2*N_domain:,:N_domain] = onp.transpose(onp.reshape(val,(N_domain,N_domain+N_boundary))) val = vmap(lambda x1,y1: D_x1_D_y1_kappa(x1,y1, sigma))(XdXd_T.flatten(), XdXd.flatten()) Theta[N_domain:2*N_domain,N_domain:2*N_domain] = onp.reshape(val, (N_domain,N_domain)) val = vmap(lambda x1,y1: D_x1_kappa(x1,y1, sigma))(XdXb1.flatten(), XdXb2.flatten()) Theta[N_domain:2*N_domain,2*N_domain:] = onp.reshape(val,(N_domain,N_domain+N_boundary)) Theta[2*N_domain:,N_domain:2*N_domain] = onp.transpose(onp.reshape(val,(N_domain,N_domain+N_boundary))) val = vmap(lambda x1,y1: kappa(x1,y1, sigma))(XdbXdb_T.flatten(), XdbXdb.flatten()) Theta[2*N_domain:,2*N_domain:] = onp.reshape(val, (N_domain+N_boundary,N_domain+N_boundary)) return Theta @jit def J_loss(v, rhs_f, L,dt): N_domain = onp.shape(rhs_f)[0] vec_u = jnp.append(v[:N_domain-1],v[0]) vec_u_x = jnp.append(v[N_domain-1:],v[N_domain-1]) vec_u_xx = (2/dt*vec_u+5*vec_u**3-5*vec_u-rhs_f)/nu vv = jnp.append(vec_u_xx,vec_u_x) vv = jnp.append(vv,vec_u) temp = jnp.linalg.solve(L,vv) return jnp.dot(temp, temp) grad_J = grad(J_loss) @jit def GN_J(v, rhs_f, L, dt, v_old): N_domain = onp.shape(rhs_f)[0] vec_u_old = jnp.append(v_old[:N_domain-1],v_old[0]) vec_u = jnp.append(v[:N_domain-1],v[0]) vec_u_x = jnp.append(v[N_domain-1:],v[N_domain-1]) vec_u_xx = (2/dt*vec_u+15*vec_u_old**2*vec_u-5*vec_u-rhs_f)/nu vv = jnp.append(vec_u_xx,vec_u_x) vv = jnp.append(vv,vec_u) temp = jnp.linalg.solve(L,vv) return jnp.dot(temp, temp) Hessian_GN=jit(hessian(GN_J)) def time_steping_solve(X_domain, dt,T,num_pts, step_size = 1, nugget = 1e-10, sigma=0.2, GN_iteration = 4): Nt = int(T/dt)+1 sol_u = onp.zeros((Nt,num_pts)) sol_u_x = onp.zeros((Nt,num_pts)) sol_u_xx = onp.zeros((Nt,num_pts)) sol_u[0,:]=vmap(u)(X_domain[0,:,0],X_domain[0,:,1]) sol_u_x[0,:]=vmap(u_x)(X_domain[0,:,0],X_domain[0,:,1]) sol_u_xx[0,:]=vmap(u_xx)(X_domain[0,:,0],X_domain[0,:,1]) Theta = assembly_Theta(X_domain[0,:,1], sigma) N_domain = num_pts # adaptive nugget term trace1 = jnp.trace(Theta[:N_domain, :N_domain]) trace2 = jnp.trace(Theta[N_domain:2*N_domain, N_domain:2*N_domain]) trace3 = jnp.trace(Theta[2*N_domain:, 2*N_domain:]) ratio = [trace1/trace3, trace2/trace3] temp=jnp.concatenate((ratio[0]*jnp.ones((1,N_domain)),ratio[1]*jnp.ones((1,N_domain)),jnp.ones((1,N_domain))), axis=1) Theta = Theta + nugget*jnp.diag(temp[0]) L = jnp.linalg.cholesky(Theta) time_begin = time() for iter_i in range(Nt-1): # solve at t = (iter_i+1)*dt # get rhs_f and bdy_g rhs_f = 2/dt*sol_u[iter_i,:]+nu*sol_u_xx[iter_i,:]-5*sol_u[iter_i,:]**3+5*sol_u[iter_i,:] sol = jnp.append(sol_u[iter_i,0:N_domain-1],sol_u_x[iter_i,0:N_domain-1]) # initialization for iter_step in range(GN_iteration): temp = jnp.linalg.solve(Hessian_GN(sol,rhs_f,L,dt,sol), grad_J(sol,rhs_f,L,dt)) sol = sol - step_size*temp total_mins = (time() - time_begin) / 60 logging.info(f'[Timer] GP iteration {iter_step+1}/{GN_step}, finished in {total_mins:.2f} minutes') sol_u[iter_i+1,:] = onp.append(sol[:num_pts-1],sol[0]) sol_u_x[iter_i+1,:] = onp.append(sol[num_pts-1:],sol[num_pts-1]) sol_u_xx[iter_i+1,:] = (2/dt*sol_u[iter_i+1,:]+5*sol_u[iter_i+1,:]**3-5*sol_u[iter_i+1,:]-rhs_f)/nu t = (iter_i+1)*dt logging.info(f'[Time marching] at iteration {iter_i+1}/{Nt-1}, solving eqn at time t = {t:.2f}') return sol_u # log the results def logger(args, level = 'INFO'): log_root = args.logroot + 'Allen_Cahn' log_name = 'kernel' + str(args.kernel) logdir = os.path.join(log_root, log_name) os.makedirs(logdir, exist_ok=True) log_para = 'nu' + f'{args.nu:.3f}' + 'sigma' + str(args.sigma) + '_Ndomain' + str(args.N_domain) + '_nugget' + str(args.nugget).replace(".","") date = str(datetime.datetime.now()) log_base = date[date.find("-"):date.rfind(".")].replace("-", "").replace(":", "").replace(" ", "_") filename = log_para + '_' + log_base + '.log' logging.basicConfig(level=logging.__dict__[level], format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler(logdir+'/'+filename), logging.StreamHandler()] ) def set_random_seeds(args): random_seed = args.randomseed random.seed(random_seed) # boundary condition def u(x1, x2): return (x2**2)*jnp.cos(jnp.pi*x2) def u_x(x1, x2): return grad(u,1)(x1,x2) def u_xx(x1, x2): return grad(u_x,1)(x1,x2) # right hand side def f(x1, x2): return 0 # plot parameters def set_plot(): fsize = 15 tsize = 15 tdir = 'in' major = 5.0 minor = 3.0 lwidth = 0.8 lhandle = 2.0 plt.style.use('default') plt.rcParams['text.usetex'] = True plt.rcParams['font.size'] = fsize plt.rcParams['legend.fontsize'] = tsize plt.rcParams['xtick.direction'] = tdir plt.rcParams['ytick.direction'] = tdir plt.rcParams['xtick.major.size'] = major plt.rcParams['xtick.minor.size'] = minor plt.rcParams['ytick.major.size'] = 5.0 plt.rcParams['ytick.minor.size'] = 3.0 plt.rcParams['axes.linewidth'] = lwidth plt.rcParams['legend.handlelength'] = lhandle fmt = ticker.ScalarFormatter(useMathText=True) fmt.set_powerlimits((0, 0)) return fmt if __name__ == '__main__': # get argument parser args = get_parser() logger(args, level = 'INFO') logging.info(f'argument is {args}') nu = args.nu logging.info(f"[Equation] nu: {nu}") set_random_seeds(args) logging.info(f"[Seeds] random seeds: {args.randomseed}") if args.kernel == "gaussian": from kernels_Gaussian import * N_domain = args.N_domain dt = args.dt T = args.T X_domain = sample_points(N_domain, dt, T, option = 'grid') sigma = args.sigma nugget = args.nugget GN_step = args.GNsteps logging.info(f'GN step: {GN_step}, sigma: {sigma}, number of points: N_domain {N_domain}, kernel: {args.kernel}, nugget: {args.nugget}') # solve the equation sol_domain = time_steping_solve(X_domain, dt, T, N_domain, step_size = 1, nugget = nugget, sigma=sigma, GN_iteration = GN_step) logging.info('[Calculating errs at collocation points ...]') # # true solution: # # obtain the ground truth solution via the Cole-Hopf transformation # # we use numerical integration to get the true solution data = scipy.io.loadmat('./Allen-Cahn/AC.mat') # T = 1/0.005+1 # N = 2/2^(-8) t = data['tt'].flatten()[:,None] # T x 1 x = data['x'].flatten()[:,None] # N x 1 Exact =
onp.real(data['uu'])
numpy.real
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 26 17:12:49 2020 @author: niccolodiana """ import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy.stats import norm from scipy.stats import mode from scipy.stats import multivariate_normal np.random.seed(1920) import time ###### METROPOLIS ALGORITHM ########## ##### Simulate data # Gaussian covariates p = 5 n = 1000 X = np.ones(n, dtype=int) X = np.reshape(X, (n, 1)) X = np.hstack((X, np.random.normal(size=(n, p)))) #True betas true_beta = np.random.uniform(0, 1, size=p+1) #print("True betas:", true_beta) #Probit link p_success = norm.cdf(
np.dot(X, true_beta)
numpy.dot
import os,sys import igraph as ig import numpy as np import matplotlib.pyplot as plt import plotly.offline as py import math import random import matplotlib.pyplot as plt import feather import pandas as pd import pygeos as pyg import logging from codetiming import Timer import geopandas as gpd from timeit import default_timer as timer from tqdm import tqdm from pathlib import Path from plotly.graph_objs import * import traceback from numpy import inf from numpy.ma import masked from population_OD import create_bbox,create_grid data_path = Path(__file__).resolve().parents[2].joinpath('data','percolation') code_timer = Timer("time_code", text="Time spent: {:.2f}") from pathos.multiprocessing import Pool,cpu_count from itertools import repeat from functools import reduce import operator #import warnings #warnings.filterwarnings("ignore") def metrics(graph): """This method prints some basic network metrics of an iGraph Args: graph (iGraph.Graph object): Returns: m: """ g = graph return pd.DataFrame([[g.ecount(),g.vcount(),g.density(),g.omega(),g.average_path_length(directed=False),g.assortativity_degree(False),g.diameter(directed=False),g.edge_connectivity(),g.maxdegree(),np.sum(g.es['distance'])]],columns=["Edge_No","Node_No","Density","Clique_No", "Ave_Path_Length", "Assortativity","Diameter","Edge_Connectivity","Max_Degree","Total_Edge_Length"]) def metrics_Print(graph): """This method prints some basic network metrics of an iGraph Args: graph (iGraph.Graph object): Returns: m: """ g = graph m = [] print("Number of edges: ", g.ecount()) print("Number of nodes: ", g.vcount()) print("Density: ", g.density()) print("Number of cliques: ", g.omega())#omega or g.clique_number() print("Average path length: ", g.average_path_length(directed=False)) print("Assortativity: ", g.assortativity_degree(False)) print("Diameter: ",g.diameter(directed=False)) print("Edge Connectivity: ", g.edge_connectivity()) print("Maximum degree: ", g.maxdegree()) print("Total Edge length ", np.sum(g.es['distance'])) #Creates a graph def graph_load(edges): """Creates Args: edges (pandas.DataFrame) : containing road network edges, with from and to ids, and distance / time columns Returns: igraph.Graph (object) : a graph with distance and time attributes """ #return ig.Graph.TupleList(gdfNet.edges[['from_id','to_id','distance']].itertuples(index=False),edge_attrs=['distance']) edges = edges.reindex(['from_id','to_id'] + [x for x in list(edges.columns) if x not in ['from_id','to_id']],axis=1) graph = ig.Graph.TupleList(edges.itertuples(index=False), edge_attrs=list(edges.columns)[2:],directed=False) graph.vs['id'] = graph.vs['name'] # graph = ig.Graph(directed=False) # max_node_id = max(max(edges.from_id),max(edges.to_id)) # graph.add_vertices(max_node_id+1) # edge_tuples = zip(edges.from_id,edges.to_id) # graph.add_edges(edge_tuples) # graph.es['distance'] = edges.distance # graph.es['time'] = edges.time return graph def graph_load_largest(edges): """Returns the largest component of a graph given an edge dataframe Args: edges (pandas.DataFrame): A dataframe containing from, to ids; time and distance attributes for each edge Returns: igraph.Graph (object) : a graph with distance and time attributes """ graph = graph_load(gdfNet) return graph.clusters().giant() def largest_component_df(edges,nodes): """Returns the largest component of a network object (network.edges pd and network.nodes pd) with reset ids. Uses igraphs built in function, while adding ids as attributes Args: edges (pandas.DataFrame): A dataframe containing from and to ids nodes (pandas.DataFrame): A dataframe containing node ids Returns: edges, nodes (pandas.DataFrame) : 2 dataframes containing only those edges and nodes belonging to the giant component """ edges = edges nodes = nodes edge_tuples = zip(edges['from_id'],edges['to_id']) graph = ig.Graph(directed=False) graph.add_vertices(len(nodes)) graph.vs['id'] = nodes['id'] graph.add_edges(edge_tuples) graph.es['id'] = edges['id'] graph = graph.clusters().giant() edges_giant = edges.loc[edges.id.isin(graph.es()['id'])] nodes_giant = nodes.loc[nodes.id.isin(graph.vs()['id'])] return reset_ids(edges_giant,nodes_giant) def create_demand(OD_nodes, OD_orig, node_pop): """This function creates a demand matrix from the equation: Demand_a,b = Population_a * Population_b * e^ [-p * Distance_a,b] -p is set to 1, populations represent the grid square of the origin, Args: OD_nodes (list): a list of nodes to use for the OD, a,b OD_orig (np.matrix): A shortest path matrix used for the distance calculation node_pop (list): population per OD node Returns: demand (np.ndarray) : A matrix with demand calculations for each OD pair """ demand = np.zeros((len(OD_nodes), len(OD_nodes))) dist_decay = 1 maxtrips = 100 for o in range(0, len(OD_nodes)): for d in range(0, len(OD_nodes)): if o == d: demand[o][d] = 0 else: normalized_dist = OD_orig[o,d] / OD_orig.max() demand[o][d] = ((node_pop[o] * node_pop[d]) * np.exp(-1 * dist_decay * normalized_dist)) demand = ((demand / demand.max()) * maxtrips) demand = np.ceil(demand).astype(int) return demand def choose_OD(pos_OD, OD_no): """Chooses nodes for OD matrix according to their population size stochastically and probabilistically Args: pos_OD (list): a list of tuples representing the nodes and their population OD_no (int): Number of OD pairs to create Returns: OD_nodes [list]: The nodes chosen for the OD mapped_pops [list]: Population for nodes chosen """ #creates 2 tuples of the node ids and their total representative population node_ids, tot_pops = zip(*pos_OD) #Assigns a probability by population size pop_probs = [x/sum(tot_pops) for x in tot_pops] #OD nodes chosen OD_nodes = list(np.random.choice(node_ids, size=OD_no, replace = False, p=pop_probs)) #Population counts in a mapped list node_positions = [node_ids.index(i) for i in OD_nodes] mapped_pops = [tot_pops[j] for j in node_positions] #returns the nodes, and their populations, should this be zipped? return OD_nodes, mapped_pops def prepare_possible_OD(gridDF, nodes, tolerance = 1): """Returns an array of tuples, with the first value the node ID to consider, and the second value the total population associated with this node. The tolerance is the size of the bounding box to search for nodes within Args: gridDF (pandas.DataFrame): A dataframe with the grid centroids and their population nodes (pandas.DataFrame): A dataframe of the road network nodes tolerance (float, optional): size of the bounding box . Defaults to 0.1. Returns: final_possible_pop (list): a list of tuples representing the nodes and their population """ nodeIDs = [] sindex = pyg.STRtree(nodes['geometry']) pos_OD_nodes = [] pos_tot_pop = [] for i in gridDF.itertuples(): ID = nearest(i.geometry, nodes, sindex, tolerance) #If a node was found if ID > -1: pos_OD_nodes.append(ID) pos_tot_pop.append(i.tot_pop) a = nodes.loc[nodes.id.isin(pos_OD_nodes)] #Create a geopackage of the possible ODs #with Geopackage('nodyBGR.gpkg', 'w') as out: # out.add_layer(a, name='finanod', crs='EPSG:4326') nodes = np.array([pos_OD_nodes]) node_unique = np.unique(nodes) count = np.array([pos_tot_pop]) #List comprehension to add total populations of recurring nodes final_possible_pop = [(i, count[nodes==i].sum()) for i in node_unique] return final_possible_pop def nearest(geom, gdf,sindex, tolerance): """Finds the nearest node Args: geom (pygeos.Geometry) : Geometry to find nearest gdf (pandas.index): Node dataframe to provide possible nodes sindex (pygeos.Sindex): Spatial index for faster lookup tolerance (float): Size of buffer to use to find nodes Returns: nearest_geom.id [int]: The node id that is closest to the geom """ matches_idx = sindex.query(geom) if not matches_idx.any(): buf = pyg.buffer(geom, tolerance) matches_idx = sindex.query(buf,'contains').tolist() try: nearest_geom = min( [gdf.iloc[match_idx] for match_idx in matches_idx], key=lambda match: pyg.measurement.distance(match.geometry,geom) ) except: #print("Couldn't find node") return -1 return nearest_geom.id def simple_OD_calc(OD, comparisonOD,pos_trip_no): """An alternative OD calculation that counts how many trips exceed threshold length Args: OD ([type]): [description] comparisonOD ([type]): [description] pos_trip_no ([type]): [description] Returns: [type]: [description] """ compare_thresh = np.greater(OD,comparisonOD) over_thresh_no = np.sum(compare_thresh) / 2 return over_thresh_no / pos_trip_no def reset_ids(edges, nodes): """Resets the ids of the nodes and edges, editing the references in edge table using dict masking Args: edges (pandas.DataFrame): edges to re-reference ids nodes (pandas.DataFrame): nodes to re-reference ids Returns: edges, nodes (pandas.DataFrame) : The re-referenced edges and nodes. """ nodes = nodes.copy() edges = edges.copy() to_ids = edges['to_id'].to_numpy() from_ids = edges['from_id'].to_numpy() new_node_ids = range(len(nodes)) #creates a dictionary of the node ids and the actual indices id_dict = dict(zip(nodes.id,new_node_ids)) nt = np.copy(to_ids) nf = np.copy(from_ids) #updates all from and to ids, because many nodes are effected, this #is quite optimal approach for large dataframes for k,v in id_dict.items(): nt[to_ids==k] = v nf[from_ids==k] = v edges.drop(labels=['to_id','from_id'],axis=1,inplace=True) edges['from_id'] = nf edges['to_id'] = nt nodes.drop(labels=['id'],axis=1,inplace=True) nodes['id'] = new_node_ids edges['id'] = range(len(edges)) edges.reset_index(drop=True,inplace=True) nodes.reset_index(drop=True,inplace=True) return edges,nodes def get_metrics_and_split(x): try: data_path = Path(r'/scistor/ivm/data_catalogue/open_street_map/') #data_path = Path(r'C:/data/') if data_path.joinpath("percolation_metrics","{}_0_metrics.csv".format(x)).is_file(): print("{} already finished!".format(x)) return None print(x+' has started!') edges = feather.read_dataframe(data_path.joinpath("road_networks","{}-edges.feather".format(x))) nodes = feather.read_dataframe(data_path.joinpath("road_networks","{}-nodes.feather".format(x))) #edges = edges.drop('geometry',axis=1) edges = edges.reindex(['from_id','to_id'] + [x for x in list(edges.columns) if x not in ['from_id','to_id']],axis=1) graph= ig.Graph.TupleList(edges.itertuples(index=False), edge_attrs=list(edges.columns)[2:],directed=False) graph.vs['id'] = graph.vs['name'] #all_df = metrics(graph) #all_df.to_csv(data_path.joinpath("percolation_metrics","{}_all_metrics.csv".format(x))) cluster_sizes = graph.clusters().sizes() cluster_sizes.sort(reverse=True) cluster_loc = [graph.clusters().sizes().index(x) for x in cluster_sizes[:5]] main_cluster = graph.clusters().giant() main_edges = edges.loc[edges.id.isin(main_cluster.es()['id'])] main_nodes = nodes.loc[nodes.id.isin(main_cluster.vs()['id'])] main_edges, main_nodes = reset_ids(main_edges,main_nodes) feather.write_dataframe(main_edges,data_path.joinpath("percolation_networks","{}_0-edges.feather".format(x))) feather.write_dataframe(main_nodes,data_path.joinpath("percolation_networks","{}_0-nodes.feather".format(x))) main_df = metrics(main_cluster) main_df.to_csv(data_path.joinpath("percolation_metrics","{}_0_metrics.csv".format(x))) skipped_giant = False counter = 1 for y in cluster_loc: if not skipped_giant: skipped_giant=True continue if len(graph.clusters().subgraph(y).vs) < 500: break g = graph.clusters().subgraph(y) g_edges = edges.loc[edges.id.isin(g.es()['id'])] g_nodes = nodes.loc[nodes.id.isin(g.vs()['id'])] if len(g_edges) == len(main_edges) & len(g_nodes) == len(main_nodes): continue g_edges, g_nodes = reset_ids(g_edges,g_nodes) feather.write_dataframe(g_edges,data_path.joinpath("percolation_networks","{}_{}-edges.feather".format(x,str(counter)))) feather.write_dataframe(g_nodes,data_path.joinpath("percolation_networks","{}_{}-nodes.feather".format(x,str(counter)))) g_df = metrics(g) g_df.to_csv("/scistor/ivm/data_catalogue/open_street_map/percolation_metrics/"+x+"_"+str(counter)+"_metrics.csv") counter += 1 print(x+' has finished!') except Exception as e: print(x+" failed because of {}".format(e)) def SummariseOD(OD, fail_value, demand, baseline, GDP_per_capita, frac_counter,distance_disruption, time_disruption): """Function returns the % of total trips between origins and destinations that exceed fail value Almost verbatim from world bank /GOSTnets world_files_criticality_v2.py Args: OD (np.matrix): Current OD matrix times (during percolation) fail_value (int): Came form GOSTNETS , seems just to be a huge int demand (np.ndarray): Demand matrix baseline (np.matrix): OD matrix before percolation GDP_per_capita (int): GDP of relevant area frac_counter (float): Keeps track of current fraction for ease of results storage Returns: frac_counter, pct_isolated, average_time_disruption, pct_thirty_plus, pct_twice_plus, pct_thrice_plus,total_surp_loss_e1, total_pct_surplus_loss_e1, total_surp_loss_e2, total_pct_surplus_loss_e2 """ #adjusted time adj_time = OD-baseline # total trips total_trips = (baseline.shape[0]*baseline.shape[1])-baseline.shape[0] #isolated_trips = np.ma.masked_array(masked_demand,~masked_OD.mask) isolated_trips_sum = OD[OD == fail_value].shape[1] # get percentage of isolated trips pct_isolated = (isolated_trips_sum / total_trips)*100 ## get travel times for remaining trips time_unaffected_trips = OD[OD == baseline] # get unaffected trips travel times if not (np.isnan(np.array(time_unaffected_trips)).all()): unaffected_percentiles = [] unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),10)) unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),25)) unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),50)) unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),75)) unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),90)) unaffected_percentiles.append(np.nanmean((time_unaffected_trips))) else: unaffected_percentiles = [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan] # save delayed trips travel times delayed_trips_time = adj_time[(OD != baseline) & (np.nan_to_num(np.array(OD),nan=fail_value) != fail_value)] unaffected_trips = np.array(time_unaffected_trips).shape[1] delayed_trips = np.array(delayed_trips_time).shape[1] # save percentage unaffected and delayed pct_unaffected = (unaffected_trips/total_trips)*100 pct_delayed = (delayed_trips/total_trips)*100 # get delayed trips travel times if not (np.isnan(np.array(delayed_trips_time)).all()): delayed_percentiles = [] delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),10)) delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),25)) delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),50)) delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),75)) delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),90)) delayed_percentiles.append(np.nanmean(np.array(delayed_trips_time))) average_time_disruption = np.nanmean(np.array(delayed_trips_time)) else: delayed_percentiles = [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan] average_time_disruption = np.nan # Flexing demand with trip cost def surplus_loss(e, C2, C1, D1): """[summary] Args: e ([type]): [description] C2 ([type]): [description] C1 ([type]): [description] D1 ([type]): [description] Returns: [type]: [description] """ Y_intercept_max_cost = C1 - (e * D1) C2 = np.minimum(C2, Y_intercept_max_cost) delta_cost = C2 - C1 delta_demand = (delta_cost / e) D2 = (D1 + delta_demand) surplus_loss_ans = ((delta_cost * D2) + ((delta_cost * -delta_demand) / 2)) triangle = (D1 * (Y_intercept_max_cost - C1) ) / 2 total_surp_loss = surplus_loss_ans.sum() total_pct_surplus_loss = total_surp_loss / triangle.sum() return total_surp_loss, total_pct_surplus_loss*100 adj_cost = (OD * GDP_per_capita) / (365 * 8 ) #* 3600) time is in hours, so not sure why we do this multiplications with 3600? and minutes would be times 60? baseline_cost = (baseline * GDP_per_capita) / (365 * 8 ) #* 3600) time is in hours, so not sure why we do this multiplications with 3600? and minutes would be times 60? adj_cost = np.nan_to_num(np.array(adj_cost),nan=np.nanmax(adj_cost)) total_surp_loss_e1, total_pct_surplus_loss_e1 = surplus_loss(-0.15, adj_cost, baseline_cost, demand) total_surp_loss_e2, total_pct_surplus_loss_e2 = surplus_loss(-0.36, adj_cost, baseline_cost, demand) return frac_counter, pct_isolated, pct_unaffected, pct_delayed, average_time_disruption, total_surp_loss_e1, total_pct_surplus_loss_e1, total_surp_loss_e2, total_pct_surplus_loss_e2, distance_disruption, time_disruption, unaffected_percentiles, delayed_percentiles def percolation_random_attack(edges, del_frac=0.01, OD_list=[], pop_list=[], GDP_per_capita=50000): """Final version of percolation, runs a simulation on the network provided, to give an indication of network resilience. Args: edges (pandas.DataFrame): A dataframe containing edge information: the nodes to and from, the time and distance of the edge del_frac (float): The fraction to increment the percolation. Defaults to 0.01. e.g.0.01 removes 1 percent of edges at each step OD_list (list, optional): OD nodes to use for matrix and calculations. Defaults to []. pop_list (list, optional): Corresponding population sizes for ODs for demand calculations. Defaults to []. GDP_per_capita (int, optional): The GDP of the country/area for surplus cost calculations. Defaults to 50000. Returns: result_df [pandas.DataFrame]: The results! 'frac_counter', 'pct_isolated', 'average_time_disruption', 'pct_thirty_plus', 'pct_twice_plus', 'pct_thrice_plus','total_surp_loss_e1', 'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2' """ edges.geometry = pyg.from_wkb(edges.geometry) result_df = [] g = graph_load(edges) #These if statements allow for an OD and population list to be randomly generated if OD_list == []: OD_nodes = random.sample(range(g.vcount()-1),100) else: OD_nodes = OD_list edge_no = g.ecount() OD_node_no = len(OD_nodes) if pop_list == []: node_pop = random.sample(range(4000), OD_node_no) else: node_pop = pop_list #Creates a matrix of shortest path times between OD nodes base_shortest_paths = g.shortest_paths_dijkstra(source=OD_nodes,target = OD_nodes,weights='time') OD_orig = np.matrix(base_shortest_paths) demand = create_demand(OD_nodes, OD_orig, node_pop) exp_g = g.copy() trips_possible = True frac_counter = 0 tot_edge_length = np.sum(g.es['distance']) tot_edge_time = np.sum(g.es['time']) # add frac 0.00 for better figures and results result_df.append((0.00, 0, 100, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0,0.0, 0.0, 0.0, 0.0, 0.0])) while trips_possible: if frac_counter > 0.3 and frac_counter <= 0.5: del_frac = 0.02 if frac_counter > 0.5: del_frac = 0.05 exp_edge_no = exp_g.ecount() #sample_probabilities = np.array(exp_g.es['distance'])/sum(exp_g.es['distance']) #The number of edges to delete no_edge_del = max(1,math.floor(del_frac * edge_no)) try: edges_del = random.sample(range(exp_edge_no),no_edge_del) #edges_del = np.random.choice(range(exp_edge_no), size=no_edge_del, replace = False, p=sample_probabilities) except: edges_del = range(exp_edge_no) exp_g.delete_edges(edges_del) frac_counter += del_frac cur_dis_length = 1 - (np.sum(exp_g.es['distance'])/tot_edge_length) cur_dis_time = 1 - (np.sum(exp_g.es['time'])/tot_edge_time) new_shortest_paths = exp_g.shortest_paths_dijkstra(source=OD_nodes,target = OD_nodes,weights='time') perc_matrix = np.matrix(new_shortest_paths) perc_matrix[perc_matrix == inf] = 99999999999 perc_matrix[perc_matrix == 0] = np.nan results = SummariseOD(perc_matrix, 99999999999, demand, OD_orig, GDP_per_capita,round(frac_counter,3),cur_dis_length,cur_dis_time) result_df.append(results) #If the frac_counter goes past 0.99 if results[0] >= 0.99: break #If there are no edges left to remove if exp_edge_no < 1: break result_df = pd.DataFrame(result_df, columns=['frac_counter', 'pct_isolated','pct_unaffected', 'pct_delayed', 'average_time_disruption','total_surp_loss_e1', 'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2', 'distance_disruption','time_disruption','unaffected_percentiles','delayed_percentiles']) result_df = result_df.replace('--',0) return result_df def percolation_random_attack_od_buffer(edges, nodes,grid_height, del_frac=0.01, OD_list=[], pop_list=[], GDP_per_capita=50000): """Final version of percolation, runs a simulation on the network provided, to give an indication of network resilience. Args: edges (pandas.DataFrame): A dataframe containing edge information: the nodes to and from, the time and distance of the edge del_frac (float): The fraction to increment the percolation. Defaults to 0.01. e.g.0.01 removes 1 percent of edges at each step OD_list (list, optional): OD nodes to use for matrix and calculations. Defaults to []. pop_list (list, optional): Corresponding population sizes for ODs for demand calculations. Defaults to []. GDP_per_capita (int, optional): The GDP of the country/area for surplus cost calculations. Defaults to 50000. Returns: result_df [pandas.DataFrame]: The results! 'frac_counter', 'pct_isolated', 'average_time_disruption', 'pct_thirty_plus', 'pct_twice_plus', 'pct_thrice_plus','total_surp_loss_e1', 'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2' """ nodes.geometry = pyg.from_wkb(nodes.geometry) edges.geometry = pyg.from_wkb(edges.geometry) result_df = [] g = graph_load(edges) #These if statements allow for an OD and population list to be randomly generated if OD_list == []: OD_nodes = random.sample(range(g.vcount()-1),100) else: OD_nodes = OD_list edge_no = g.ecount() OD_node_no = len(OD_nodes) if pop_list == []: node_pop = random.sample(range(4000), OD_node_no) else: node_pop = pop_list buffer_centroids = pyg.buffer(nodes.loc[nodes.id.isin(OD_list)].geometry,grid_height*0.05).values OD_buffers = dict(zip(OD_nodes,buffer_centroids)) edges_per_OD = {} for OD_buffer in OD_buffers: get_list_edges = list(edges.id.loc[pyg.intersects(pyg.make_valid(OD_buffers[OD_buffer]),pyg.make_valid(edges.geometry.values))].values) edges_per_OD[OD_buffer] = get_list_edges,get_list_edges #Creates a matrix of shortest path times between OD nodes base_shortest_paths = g.shortest_paths_dijkstra(source=OD_nodes,target=OD_nodes,weights='time') OD_orig = np.matrix(base_shortest_paths) OD_thresh = OD_orig * 10 demand = create_demand(OD_nodes, OD_orig, node_pop) exp_g = g.copy() trips_possible = True pos_trip_no = (((OD_node_no**2) - OD_node_no) / 2) - ((np.count_nonzero(np.isinf(OD_orig)))/2) counter = 0 frac_counter = 0 tot_edge_length = np.sum(g.es['distance']) tot_edge_time = np.sum(g.es['time']) total_edges = exp_g.ecount() # add frac 0.00 for better figures and results result_df.append((0.00, 0, 100, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0,0.0, 0.0, 0.0, 0.0, 0.0])) while trips_possible: if frac_counter > 0.3 and frac_counter <= 0.5: del_frac = 0.02 if frac_counter > 0.5: del_frac = 0.05 exp_edge_no = exp_g.ecount() sample_probabilities = np.array(exp_g.es['distance'])/sum(exp_g.es['distance']) #The number of edges to delete no_edge_del = max(1,math.floor(del_frac * edge_no)) edges_dict = dict(zip(exp_g.es['id'],exp_g.es.indices)) edges_dict_reversed = {v: k for k, v in edges_dict.items()} try: edges_del = random.sample(range(exp_edge_no),no_edge_del) #edges_del = np.random.choice(range(exp_edge_no), size=no_edge_del, replace = False, p=sample_probabilities) except: edges_del = range(exp_edge_no) #If there are no edges left to remove if exp_edge_no < 1: break collect_empty_ones = [] for OD_point in edges_per_OD: compared = list(set([edges_dict[x] for x in edges_per_OD[OD_point][1]]) - set(edges_del)) if len(compared) == 0: edges_del = list(set(edges_del).union(set([edges_dict[x] for x in edges_per_OD[OD_point][0]]))) collect_empty_ones.append(OD_point) else: edges_del = list(set(edges_del) - (set([edges_dict[x] for x in edges_per_OD[OD_point][0]]))) edges_per_OD[OD_point] = edges_per_OD[OD_point][0],[edges_dict_reversed[x] for x in compared] for e in collect_empty_ones: edges_per_OD.pop(e) # only edges around node if all edges are gone if (exp_edge_no != 0) | (no_edge_del-len(edges_del) > 0) | (exp_edge_no>len(edges_del)): while len(edges_del) < no_edge_del < exp_edge_no: edges_del += random.sample(range(exp_edge_no),no_edge_del-len(edges_del)) collect_empty_ones = [] for OD_point in edges_per_OD: compared = list(set([edges_dict[x] for x in edges_per_OD[OD_point][1]]) - set(edges_del)) if len(compared) == 0: edges_del = list(set(edges_del).union(set([edges_dict[x] for x in edges_per_OD[OD_point][0]]))) collect_empty_ones.append(OD_point) else: edges_del = list(set(edges_del) - (set([edges_dict[x] for x in edges_per_OD[OD_point][0]]))) edges_per_OD[OD_point] = edges_per_OD[OD_point][0],[edges_dict_reversed[x] for x in compared] for e in collect_empty_ones: edges_per_OD.pop(e) exp_g.delete_edges(edges_del) frac_counter += del_frac cur_dis_length = 1 - (np.sum(exp_g.es['distance'])/tot_edge_length) cur_dis_time = 1 - (np.sum(exp_g.es['time'])/tot_edge_time) new_shortest_paths = exp_g.shortest_paths_dijkstra(source=OD_nodes,target = OD_nodes,weights='time') perc_matrix = np.matrix(new_shortest_paths) perc_matrix[perc_matrix == inf] = 99999999999 perc_matrix[perc_matrix == 0] = np.nan results = SummariseOD(perc_matrix, 99999999999, demand, OD_orig, GDP_per_capita,round(frac_counter,3),cur_dis_length,cur_dis_time) result_df.append(results) #If the frac_counter goes past 0.99 if results[0] >= 0.99: break result_df = pd.DataFrame(result_df, columns=['frac_counter', 'pct_isolated','pct_unaffected', 'pct_delayed', 'average_time_disruption','total_surp_loss_e1', 'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2', 'distance_disruption','time_disruption','unaffected_percentiles','delayed_percentiles']) result_df = result_df.replace('--',0) return result_df def percolation_targeted_attack(edges,country,network,OD_list=[], pop_list=[], GDP_per_capita=50000): """Final version of percolation, runs a simulation on the network provided, to give an indication of network resilience. Args: edges (pandas.DataFrame): A dataframe containing edge information: the nodes to and from, the time and distance of the edge del_frac (float): The fraction to increment the percolation. Defaults to 0.01. e.g.0.01 removes 1 percent of edges at each step OD_list (list, optional): OD nodes to use for matrix and calculations. Defaults to []. pop_list (list, optional): Corresponding population sizes for ODs for demand calculations. Defaults to []. GDP_per_capita (int, optional): The GDP of the country/area for surplus cost calculations. Defaults to 50000. Returns: result_df [pandas.DataFrame]: The results! 'frac_counter', 'pct_isolated', 'average_time_disruption', 'pct_thirty_plus', 'pct_twice_plus', 'pct_thrice_plus','total_surp_loss_e1', 'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2' """ result_df = [] g = graph_load(edges) #These if statements allow for an OD and population list to be randomly generated if OD_list == []: OD_nodes = random.sample(range(g.vcount()-1),100) else: OD_nodes = OD_list edge_no = g.ecount() OD_node_no = len(OD_nodes) if pop_list == []: node_pop = random.sample(range(4000), OD_node_no) else: node_pop = pop_list #Creates a matrix of shortest path times between OD nodes base_shortest_paths = g.shortest_paths_dijkstra(source=OD_nodes,target = OD_nodes,weights='time') OD_orig = np.matrix(base_shortest_paths) demand = create_demand(OD_nodes, OD_orig, node_pop) exp_g = g.copy() tot_edge_length =
np.sum(g.es['distance'])
numpy.sum
import numpy as np import matplotlib.pyplot as plt import scipy.sparse as sp import scipy.sparse.linalg as la from functools import partial import time from mpl_toolkits.mplot3d import Axes3D # logging stuff iterations = [] last_iter = {} norms = [] def make_L(Nx, Ny): Dx = sp.diags((Nx-1)*[1.]) Dx += sp.diags((Nx-2)*[-1.],-1) rowx = sp.csr_matrix((1,Nx-1)) rowx[0,-1] = -1 Dx = sp.vstack((Dx, rowx)) Lx = Dx.transpose().dot(Dx) Dy = sp.diags((Ny-1)*[1]) Dy += sp.diags((Ny-2)*[-1],-1) rowy = sp.csr_matrix((1,Ny-1)) rowy[0,-1] = -1 Dy = sp.vstack((Dy, rowy)) Ly = Dy.transpose().dot(Dy) return sp.kronsum(Lx,Ly) def rect_mask(xx, yy ,x1, x2, y1, y2): maskx1 = np.zeros(xx.shape, dtype=bool) maskx1[xx>=x1] = True maskx2 = np.zeros(xx.shape, dtype=bool) maskx2[xx<=x2] = True masky1 = np.zeros(xx.shape, dtype=bool) masky1[yy>=y1] = True masky2 = np.zeros(xx.shape, dtype=bool) masky2[yy<=y2] = True return np.logical_and(np.logical_and(maskx1, masky1), np.logical_and(maskx2, masky2)) def discretize(x_d, y_d, h): nx = int(x_d/h) ny = int(y_d/h) return make_L(nx,ny)/h/h def get_grid(x_d, y_d, h): grid = np.mgrid[h:y_d:h, h:x_d:h] return (grid[1,:,:], grid[0,:,:]) def k(xx, yy): alpha = 1 masker = lambda x1, x2, y1, y2: rect_mask(xx, yy, x1, x2, y1, y2) r1 = masker(1,2,1,2) r2 = masker(1,3,3,5) r3 = masker(4,7,4,7) r4 = masker(9,12,4,6) r5 = masker(13,15,1,3) # Combinate R = np.logical_or(r1,r2) R = np.logical_or(R,r3) R = np.logical_or(R,r4) R = np.logical_or(R,r5) return np.reshape(np.where(R, alpha*np.ones(xx.shape), np.zeros(xx.shape)), xx.shape[0]*xx.shape[1]) def newton_raphson(u0, A, k, dt, epsilon): ui = u0.copy() i = 0 while True: i += 1 jacobian = A + sp.diags(k)*sp.eye(A.shape[0]) - 2*sp.diags(ui)*sp.diags(k) v = la.spsolve(sp.eye(A.shape[0])-dt*jacobian, ui - u0 - dt*(A@ui+k*ui*(1-ui))) ui = ui - v norms.append(np.linalg.norm(np.abs(v))) iterations.append(i) if np.linalg.norm(np.abs(v))<epsilon: if i in last_iter: last_iter[i] += 1 else: last_iter[i] = 1 return ui def picard(u0, A, k, dt, epsilon): f = lambda u: A@u+k*u*(1-u) ui = u0.copy() i = 0 while np.linalg.norm(ui-dt*f(ui)-u0) > epsilon: i+=1 ui = dt*f(ui)+u0 norms.append(np.linalg.norm(ui-dt*f(ui)-u0)) iterations.append(i) if i in last_iter: last_iter[i] += 1 else: last_iter[i] = 1 return ui def step_FE(u0, A, k, dt): return u0+dt*A@u0+dt*k*u0*(1-u0) def step_BE(u0, A, k, dt): if not use_picard: return newton_raphson(u0, A, k, dt, 0.001) else: return picard(u0, A, k, dt, 0.00001) def stable_dt(h): return (h**2)/4 def unsteady_solver(u0, A, dt, T, saves, k, method="FE"): step = step_FE if method == "BE": step = step_BE if not use_picard: dt = 1.1 else: dt = dt/2 t = 0 un = u0 us = [] if 0 in save_points: us.append(u0) global_start = time.time(); while t < T: start = time.time() un = step(un, A, k, dt) t += dt for s in saves: if abs(s-t) <= dt/2: us.append(un) print("\rAt time %2.5f s, Last step took %2.8f s, expected time left: %3.0f s, total time: %3.2fs"%(t, time.time()-start, (time.time()-global_start)/t*T-(time.time()-global_start), time.time()-global_start), end='') print("") return us def initial(xx, yy): f = np.exp(-2*(np.square(xx-1.5*np.ones(xx.shape))+np.square(yy-1.5*np.ones(yy.shape)))) return
np.reshape(f, xx.shape[0]*xx.shape[1])
numpy.reshape
# coding: utf-8 # # M* vs Mhalo # Again, galaxy - halo matching is required. # In[18]: class Dummy(): def __init__(self): pass def region_from_xyz(x,y,z, r=0): """ create a region to include all points. Parameters ---------- x: float array y: float array z: float array r: float array, optional If given, the region encloses all points as spheres with radius r. """ xmi = min(x-0) xma = max(x+0) ymi = min(y-0) yma = max(y+0) zmi = min(z-0) zma = max(z+0) import utils.sampling as smp return smp.set_region(ranges=[[xmi, xma],[ymi,yma], [zmi,zma]]) def get_tick_points(xmin, xmax): dx = xmax - xmin dxx = round(dx/5) mid = round((xmin + xmax)/2) xstart = mid - 2*dxx ticks = np.arange(xstart, xmax, dxx) pos = ((ticks - xmin)/dx ) return pos, ticks def ticks_from_region(ranges, ax, npix): """ modify ticks of given ax according to region. xmin, xmax, ymin, ymax must be set according to the region. """ xmin = ranges[0][0] xmax = ranges[0][1] ymin = ranges[1][0] ymax = ranges[1][1] xpos, xticks = get_tick_points(xmin, xmax) ypos, yticks = get_tick_points(ymin, ymax) xpos *= npix ypos *= npix ax.set_xticks(xpos) ax.set_yticks(ypos) ax.set_xticklabels([str(i) for i in xticks]) ax.set_yticklabels([str(i) for i in yticks]) # In[22]: def distv(halo, center): norm = np.sqrt(np.square(center['vx'] - halo.vx) + np.square(center['vy'] - halo.vy) + np.square(center['vz'] - halo.vz)) return norm def dist(halo, center): norm = np.sqrt(
np.square(center['x'] - halo.x)
numpy.square
#!/bin/python3 import rospy from sensor_msgs.msg import PointCloud2 import sensor_msgs.point_cloud2 as pc2 import numpy as np class ptcl_to_height_depth_image: def __init__(self, Z_RES=100, Z_MAX=5): self.Z_RES = Z_RES self.Z_MAX = Z_MAX def __call__(self, msg: PointCloud2): point_array = ( np.array( list(pc2.read_points(msg, field_names=("x", "y", "z"), skip_nans=True)) ) * 1 ) # Delete points with |z| > self.Z_MAX indices_to_delete = np.array( np.abs(point_array[:, 2]) >= self.Z_MAX, dtype=bool ) point_array =
np.delete(point_array, indices_to_delete, 0)
numpy.delete
from collections import deque import numpy as np import pandas as pd import time from scipy import optimize from init import * class Item: def __init__(self): self.SInc = 0 self.R = 0 self.feedback = 0 self.used_ivl = 0 self.S = start_stability self.last_review = -1 self.ivl_history = [] self.fb_history = [] self.lapse = 0 # self.difficulty = round(random.triangular(), 1) self.difficulty = 0.5 self.ivl = start_stability self.r = 0 def review(self, date): self.__calculate_r(date) self.feedback = 1 if random.random() < self.R else 0 self.fb_history.append(self.feedback) self.used_ivl = 0 if self.last_review < 0 else date - self.last_review self.ivl_history.append(self.used_ivl) if self.feedback == 0: self.lapse += 1 self.S = start_stability self.ivl = start_stability else: self.__calculate_sinc() self.__update_s() self.__update_ivl() self.last_review = date def __calculate_r(self, date): if self.last_review >= 0: self.R = np.exp(np.log(0.9) * (date - self.last_review) / self.S) self.r = np.exp(np.log(0.9) * (date - self.last_review) / self.ivl) else: self.R = 1 self.r = 1 def __calculate_sinc(self): # self.SInc = - a * np.power(self.S, -b) * (np.exp(1 - self.R) - 1) * 1.1 + 1 self.SInc = (1.5 - self.difficulty) * (a * np.power(self.S, -b) * np.log(self.R)) + 1 def __update_s(self): self.S *= self.SInc def __update_ivl(self): self.ivl *= a * np.power(self.ivl, -b) * np.log(self.r) + 1 def interval_threshold(self, threshold): esinc = threshold * (a * np.power(self.S, -b) * np.log(threshold) + 1) return int(round(max(1, np.log(threshold) / np.log(0.9) * self.S), 0)) def interval_optimize(self, flag): def max_expected_s(x): return - (x * self.S * (a * np.power(self.S, -b) * np.log(x) + 1) + (1 - x)) def min_stress_inverse(x): return x / (self.S * (a * np.power(self.S, -b) * np.log(x) + 1)) + 1 - x + np.log(0.9) / np.log(x) def min_stress_sqrt(x): return - (x * np.power(self.S * (a * np.power(self.S, -b) * np.log(x) + 1), 1 / 2) + (1 - x) * np.power(1, 1 / 2)) + np.log(0.9) / np.log(x) def min_stress_log(x): return - (x * np.log(self.S * (a * np.power(self.S, -b) * np.log(x) + 1)) + (1 - x) * np.log(1)) + np.log(0.9) / np.log(x) r = 0.9 if flag == 0: r = optimize.fminbound(min_stress_log, 0, 1) elif flag == -1: r = optimize.fminbound(min_stress_inverse, 0, 1) elif flag == -2: r = optimize.fminbound(min_stress_sqrt, 0, 1) return int(round(max(1, np.log(r) / np.log(0.9) * self.S), 0)) def interval_spread(self, threshold): return int(round(max(1, np.log(threshold) / np.log(0.9) * self.ivl), 0)) if __name__ == '__main__': forget_indexes = [0.2] period_len = 60 # 滚动平均区间 learn_days = 300 # 模拟时长 deck_size = 25000 # 新卡片总量 for fi in range(len(forget_indexes)): items_all = [Item() for _ in range(0, deck_size)] items = deque(items_all) item_per_day = [[] for _ in range(0, learn_days)] card_per_day_limit = 10000 # 每日学习总上限 new_card_per_day_limit = 100 card_per_day = [{'forget': 0, 'recall': 0, 'new': 0} for _ in range(0, learn_days)] end_day = 0 forget_index = forget_indexes[fi] # 遗忘比率 new_card_per_day = np.array([0.0] * learn_days) new_card_per_day_average_per_period = np.array([0.0] * learn_days) workload_per_day = np.array([0.0] * learn_days) workload_per_day_average_per_period = np.array([0.0] * learn_days) revlog =
np.empty(shape=[0, 7], dtype=object)
numpy.empty
import numpy as np import scipy as sp import pandas as pd from tqdm import tqdm import copy import time from sklearn.model_selection import train_test_split from jax.config import config #config.update("jax_enable_x64", True) import jax.numpy as jnp from jax import random from surv_copula.main_copula_survival import fit_copula_survival,fit_parametric_a0,\ predict_copula_survival,check_convergence_pr,predictive_resample_survival from surv_copula.parametric_survival_functions import pr_lomax_smc,pr_lomax_IS #Import data data = pd.read_csv('./data/pbc.csv') t = np.array(data['t']) delta = np.array(data['delta']) delta[delta ==1.] = 0 delta[delta==2.] = 1 trt = np.array(data['trt']) #Split into treatments (filtering NA) t1 = t[trt == 1.] delta1 = delta[trt==1.] t2 = t[trt == 2.] delta2 = delta[trt==2.] #Initialize cv rep_cv = 10 n1 = np.shape(t1)[0] n_train1 = int(n1/2) n_test1 = n1-n_train1 n2 = np.shape(t2)[0] n_train2 = int(n2/2) n_test2 = n2-n_train2 test_ll_cv1 = np.zeros(rep_cv) test_ll_cv2 = np.zeros(rep_cv) seed = 100 for i in tqdm(range(rep_cv)): #Train-test split and save for R train_ind1,test_ind1 = train_test_split(np.arange(n1),test_size = n_test1,train_size = n_train1,random_state = seed+i) train_ind2,test_ind2 = train_test_split(
np.arange(n2)
numpy.arange
#!/usr/bin/env python # # Copyright 2020 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for testing the pyxir TF executor""" import unittest import numpy as np import pyxir as px from pyxir.shapes import TensorShape from pyxir.runtime import base from pyxir.graph.layer import xlayer from pyxir.graph.io import xlayer_io try: from pyxir.runtime.tensorflow.x_2_tf_registry import X_2_TF from pyxir.runtime.tensorflow.ops.tf_l0_input_and_other import * from pyxir.runtime.tensorflow.ops.tf_l3_math_and_transform import * except ModuleNotFoundError: raise unittest.SkipTest("Skipping Tensorflow related test because Tensorflow is not available") from .ops_infra import build_exec_layers, execute_layers class TestTfL3MathAndTransform(unittest.TestCase): def test_prelu(self): def _create_prelu_layer(in_name, in_shape, alpha, axis): tf.compat.v1.reset_default_graph() inX = px.ops.input(in_name, shape=in_shape) alphaX = px.ops.constant("alpha", alpha) X = px.ops.prelu("prelu", [inX, alphaX], axis=axis) input_shapes = {in_name: TensorShape(in_shape)} layers = build_exec_layers([inX, alphaX, X], input_shapes, {}) return layers def _test_prelu(x, alpha, expected, axis=1): in_name = "x" in_shape = list(x.shape) layers = _create_prelu_layer(in_name, in_shape[:], alpha, axis=axis) inputs = {in_name: x} out = execute_layers(layers, inputs) np.testing.assert_array_equal(out, expected) _test_prelu( -1. * np.ones((1, 2, 4, 4), dtype=np.float32), np.array([.1, .1], dtype=np.float32), -0.1 * np.ones((1, 2, 4, 4), dtype=np.float32), ) _test_prelu( np.ones((1, 2, 4, 4), dtype=np.float32), np.array([.1, .1], dtype=np.float32), np.ones((1, 2, 4, 4), dtype=np.float32), ) _test_prelu( np.array([1., -1.], dtype=np.float32).reshape(1, 2, 1, 1), np.array([.1, .2], dtype=np.float32),
np.array([1., -.2], dtype=np.float32)
numpy.array
import numpy import math import os import gc import cv2 import pandas from tensorflow.keras.utils import Sequence import girder_client from sklearn.utils import shuffle import random class CNNSequence(Sequence): def __init__(self,datacsv,indexes,batchSize,labelName,gClient = None,tempFileDir = None,shuffle=True,augmentations = False): # author <NAME> if "GirderID" in datacsv.columns: self.gClient = gClient self.tempFileDir = tempFileDir self.inputs = numpy.array([self.downloadGirderData(x,datacsv) for x in indexes]) else: self.inputs = numpy.array([os.path.join(datacsv["Folder"][x],datacsv["FileName"][x]) for x in indexes]) self.batchSize = batchSize self.labelName = labelName self.labels = numpy.array(sorted(datacsv[self.labelName].unique())) self.targets = numpy.array([self.convertTextToNumericLabels(datacsv[labelName][x]) for x in indexes]) self.shuffle = shuffle self.augmentations = augmentations self.on_epoch_end() def on_epoch_end(self): if self.shuffle: shuffledInputs,shuffledTargets = shuffle(self.inputs,self.targets) self.inputs = shuffledInputs self.targets = shuffledTargets def __len__(self): # author <NAME> length = len(self.inputs) / self.batchSize length = math.ceil(length) return length def convertTextToNumericLabels(self, textLabel): label = numpy.zeros(len(self.labels)) labelIndex = numpy.where(self.labels == textLabel) label[labelIndex] = 1 return label def rotateImage(self,image,angle = -1): if angle < 0: angle = random.randint(1, 359) center = tuple(numpy.array(image.shape[1::-1])/2) rot_mat = cv2.getRotationMatrix2D(center,angle,1.0) rotImage = cv2.warpAffine(image,rot_mat,image.shape[1::-1],flags=cv2.INTER_LINEAR) return rotImage def flipImage(self,image,axis): return cv2.flip(image, axis) def readImage(self,file): image = cv2.imread(file) try: if "AN01" in file: croppedImg = image[0:320, 213:640] image = cv2.resize(croppedImg, (640, 480)) elif "AN0" in file: croppedImg = image[50:410, 160:640] image = cv2.resize(croppedImg, (640, 480)) resized_image = cv2.resize(image, (224, 224)) normImg = cv2.normalize(resized_image, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) preprocessingMethod = random.randint(0, 3) del image del resized_image if self.augmentations and preprocessingMethod == 0: # flip along y axis return cv2.flip(normImg, 1) elif self.augmentations and preprocessingMethod == 1: # flip along x axis return cv2.flip(normImg, 0) elif self.augmentations and preprocessingMethod == 2: # rotate angle = random.randint(1, 359) rotImage = self.rotateImage(normImg, angle) return rotImage else: return normImg except: print(file) def readExpertImage(self,file): image = cv2.imread(file) croppedImg = image[0:360, 160:640] image = cv2.resize(croppedImg, (640, 480)) resized_image = cv2.resize(image, (224, 224)) normImg = cv2.normalize(resized_image, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) return normImg #resized_image = cv2.resize(image, (299, 299)) def downloadGirderData(self,index,datacsv): # tempFileDir is a folder in which to temporarily store the files downloaded from Girder # by default the temporary folder is created in the current working directory, but this can # be modified as necessary if not os.path.isdir(self.tempFileDir): os.mkdir(self.tempFileDir) fileID = datacsv["GirderID"][index] fileName = datacsv["FileName"][index] numFilesWritten = 0 if not os.path.isfile(os.path.join(self.tempFileDir, fileName)): self.gClient.downloadItem(fileID, self.tempFileDir) numFilesWritten += 1 if numFilesWritten % 100 == 0: print(numFilesWritten) return(os.path.join(self.tempFileDir, fileName)) def __getitem__(self,index): # author <NAME> startIndex = index*self.batchSize indexOfNextBatch = (index + 1)*self.batchSize inputBatch = [self.readImage(x) for x in self.inputs[startIndex : indexOfNextBatch]] #inputBatch += [img for x in self.inputs[startIndex : indexOfNextBatch] for img in [self.rotateImage(self.readExpertImage(x)),self.flipImage(self.readExpertImage(x),0),self.flipImage(self.readExpertImage(x),1)] if "AN0" in x] outputBatch = [x for x in self.targets[startIndex : indexOfNextBatch]] '''if startIndex < len(self.targets) and indexOfNextBatch >= len(self.targets): outputBatch += [label for x in range(startIndex, len(self.targets)) for label in [self.targets[x], self.targets[x], self.targets[x]] if x < len(self.targets) and "AN0" in self.inputs[x]] elif indexOfNextBatch <= len(self.targets): outputBatch += [label for x in range(startIndex,indexOfNextBatch) for label in [self.targets[x], self.targets[x], self.targets[x]] if x<len(self.targets) and "AN0" in self.inputs[x]]''' inputBatch = numpy.array(inputBatch) outputBatch = numpy.array(outputBatch) return (inputBatch,outputBatch) class LSTMSequence(Sequence): def __init__(self, datacsv, indexes, sequences, model, batchSize, labelName,tempFileDir = None,shuffle=True): # author <NAME> self.cnnModel = model if tempFileDir == None: self.inputs = self.readImages([os.path.join(datacsv["Folder"][x], datacsv["FileName"][x]) for x in indexes]) else: self.inputs = self.readImages([os.path.join(tempFileDir, datacsv["FileName"][x]) for x in indexes]) self.targets = numpy.array([datacsv[labelName][x] for x in indexes]) self.sequences = sequences self.batchSize = batchSize self.labelName = labelName self.labels = numpy.array(sorted(datacsv[self.labelName].unique())) inputSequences, targetSequences = self.readImageSequences(indexes) self.inputs = inputSequences self.targets = targetSequences print('Class counts:' + str(numpy.sum(self.targets,axis=0))) self.shuffle = shuffle self.on_epoch_end() def on_epoch_end(self): if self.shuffle: shuffledInputs,shuffledTargets = shuffle(self.inputs,self.targets) self.inputs = shuffledInputs self.targets = shuffledTargets def __len__(self): # author <NAME> length = len(self.inputs) / self.batchSize length = math.ceil(length) return length def readImages(self, files): images = [] numLoaded = 0 allOutputs = numpy.array([]) for i in range(len(files)): image = cv2.imread(files[i]) resized_image = cv2.resize(image, (224, 224)) normImg = cv2.normalize(resized_image, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) images.append(normImg) numLoaded += 1 if numLoaded % 500 == 0 or i == (len(files) - 1): print("loaded " + str(numLoaded) + ' / ' + str(len(files)) + ' images') if allOutputs.size == 0: allOutputs = self.cnnModel.predict(numpy.array(images)) else: cnnOutput = self.cnnModel.predict(numpy.array(images)) allOutputs = numpy.append(allOutputs, cnnOutput, axis=0) del images gc.collect() images = [] del image del resized_image del normImg return allOutputs def getSequenceLabels(self, sequence,smallestIndex): '''if sequence[len(sequence)-1] >= len(self.targets): textLabel = self.targets[-1] else:''' try: textLabel = self.targets[sequence[-1]-smallestIndex] label = self.convertTextToNumericLabels(textLabel) return numpy.array(label) except IndexError: print(sequence) def convertTextToNumericLabels(self, textLabel): label = numpy.zeros(len(self.labels)) labelIndex = numpy.where(self.labels == textLabel) label[labelIndex] = 1 return label def readImageSequences(self,indexes): allSequences = [] allLabels = [] smallestIndex = indexes[0] for sequence in self.sequences: predictedSequence = [] label = self.getSequenceLabels(sequence,smallestIndex) for i in range(len(sequence)): if sequence[i] == -1: image = numpy.zeros(self.inputs[0].shape) labelIndex =
numpy.where(self.labels == "nothing")
numpy.where
"""Some common utils""" # pylint: disable = C0301, C0103, C0111 import os import pickle import shutil import torch import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from skimage.transform import downscale_local_mean import sys import glob from torchvision import transforms, datasets import torch from PIL import Image sys.path.append(os.path.join(os.path.dirname(__file__), '..')) try: import tensorflow as tf except ImportError: print('did not import tensorflow') import estimators font = { 'weight' : 'bold', 'size' : 30} import matplotlib matplotlib.rc('font', **font) matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 class BestKeeper(object): """Class to keep the best stuff""" def __init__(self, batch_size, n_input): self.batch_size = batch_size self.losses_val_best = [1e100 for _ in range(batch_size)] self.x_hat_batch_val_best = np.zeros((batch_size, n_input)) def report(self, x_hat_batch_val, losses_val): for i in range(self.batch_size): if losses_val[i] < self.losses_val_best[i]: self.x_hat_batch_val_best[i, :] = x_hat_batch_val[i, :] self.losses_val_best[i] = losses_val[i] def get_best(self): return self.x_hat_batch_val_best def get_l2_loss(image1, image2): """Get L2 loss between the two images""" assert image1.shape == image2.shape return np.mean((image1 - image2)**2) def get_measurement_loss(x_hat, A, y, hparams): """Get measurement loss of the estimated image""" y_hat = get_measurements(x_hat, A, 0 , hparams) # measurements are in a batch of size 1. y_hat = y_hat.reshape(y.shape) # if A is None: # y_hat = x_hat # else: # y_hat = np.matmul(x_hat, A) assert y_hat.shape == y.shape return np.sum((y - y_hat) ** 2) def save_to_pickle(data, pkl_filepath): """Save the data to a pickle file""" with open(pkl_filepath, 'wb') as pkl_file: pickle.dump(data, pkl_file) def load_if_pickled(pkl_filepath): """Load if the pickle file exists. Else return empty dict""" if os.path.isfile(pkl_filepath): with open(pkl_filepath, 'rb') as pkl_file: data = pickle.load(pkl_file) else: data = {} return data def get_estimator(hparams, model_type): if model_type == 'map' and hparams.net == 'glow': estimator = estimators.glow_annealed_map_estimator(hparams) elif model_type == 'langevin' and hparams.net == 'glow': estimator = estimators.glow_annealed_langevin_estimator(hparams) elif model_type == 'langevin' and hparams.net == 'stylegan2': estimator = estimators.stylegan_langevin_estimator(hparams) elif model_type == 'pulse': assert hparams.net.lower() == 'stylegan2' estimator = estimators.stylegan_pulse_estimator(hparams) elif model_type == 'map' and hparams.net == 'ncsnv2': estimator = estimators.ncsnv2_langevin_estimator(hparams, MAP=True) elif model_type == 'langevin' and hparams.net == 'ncsnv2': estimator = estimators.ncsnv2_langevin_estimator(hparams, MAP=False) elif hparams.net == 'dd' or hparams.model_type == 'dd': estimator = estimators.deep_decoder_estimator(hparams) else: raise NotImplementedError return estimator def setup_checkpointing(hparams): # Set up checkpoint directories checkpoint_dir = get_checkpoint_dir(hparams, hparams.model_type) set_up_dir(checkpoint_dir) def save_images(est_images, save_image, hparams): """Save a batch of images to png files""" for image_num, image in est_images.items(): save_path = get_save_path(hparams, image_num) image = image.reshape(hparams.image_shape) save_image(image, save_path) def checkpoint(est_images, measurement_losses, l2_losses, z_hats, likelihoods, hparams): """Save images, measurement losses and L2 losses for a batch""" if not hparams.debug: save_images(est_images, save_image, hparams) m_losses_filepath, l2_losses_filepath, z_hats_filepath, likelihoods_filepath = get_pkl_filepaths(hparams, hparams.model_type) save_to_pickle(measurement_losses, m_losses_filepath) save_to_pickle(l2_losses, l2_losses_filepath) save_to_pickle(z_hats, z_hats_filepath) save_to_pickle(likelihoods, likelihoods_filepath) def load_checkpoints(hparams): measurement_losses, l2_losses, z_hats, likelihoods = {}, {}, {}, {} if not hparams.debug: # Load pickled loss dictionaries m_losses_filepath, l2_losses_filepath, z_hats_filepath, likelihoods_filepath = get_pkl_filepaths(hparams, hparams.model_type) measurement_losses = load_if_pickled(m_losses_filepath) l2_losses = load_if_pickled(l2_losses_filepath) z_hats = load_if_pickled(z_hats_filepath) likelihoods = load_if_pickled(likelihoods_filepath) else: measurement_losses = {} l2_losses = {} z_hats = {} likelihoods = {} return measurement_losses, l2_losses, z_hats, likelihoods def image_matrix(images, est_images, l2_losses, hparams, alg_labels=True): """Display images""" if hparams.measurement_type in ['inpaint', 'superres']: figure_height = 2 + len(hparams.model_types) else: figure_height = 1 + len(hparams.model_types) fig = plt.figure(figsize=[4*len(images), 4.3*figure_height]) outer_counter = 0 inner_counter = 0 # Show original images outer_counter += 1 for image in images.values(): inner_counter += 1 ax = fig.add_subplot(figure_height, 1, outer_counter, frameon=False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_ticks([]) if alg_labels: ax.set_ylabel('Original')#, fontsize=14) _ = fig.add_subplot(figure_height, len(images), inner_counter) view_image(image, hparams) # Show original images with inpainting mask if hparams.measurement_type == 'inpaint': mask = get_inpaint_mask(hparams) outer_counter += 1 for image in images.values(): inner_counter += 1 ax = fig.add_subplot(figure_height, 1, outer_counter, frameon=False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_ticks([]) if alg_labels: ax.set_ylabel('Masked') #, fontsize=14) _ = fig.add_subplot(figure_height, len(images), inner_counter) view_image(image, hparams, mask) # Show original images with blurring if hparams.measurement_type == 'superres': factor = hparams.superres_factor A = get_A_superres(hparams) outer_counter += 1 for image in images.values(): image_low_res = np.matmul(image, A) / np.sqrt(hparams.n_input/(factor**2)) / (factor**2) low_res_shape = (int(hparams.image_shape[0]/factor), int(hparams.image_shape[1]/factor), hparams.image_shape[2]) image_low_res =
np.reshape(image_low_res, low_res_shape)
numpy.reshape
import numpy as np import os.path class Scouter: def __init__(self,ScouterName,MatchestoScouting=[]): self.Scouter_Name = ScouterName self.Matches_to_Scouting = np.array(MatchestoScouting) class Scouters: def __init__(self,path_to_scouters_lib,EventCode): self.__lib_path = path_to_scouters_lib self.__path_to_scouters_lib = str(path_to_scouters_lib) + EventCode + ".npy" self.EventCode = EventCode if not os.path.isfile(self.__path_to_scouters_lib ): self.Remove_All() self.__scouters_list = np.load(self.__path_to_scouters_lib,allow_pickle=True).tolist() def update_event_code(self,EventCode): self.__path_to_scouters_lib = self.__lib_path + EventCode + ".npy" self.EventCode = EventCode if not os.path.isfile(self.__path_to_scouters_lib): self.Remove_All() self.__scouters_list =
np.load(self.__path_to_scouters_lib,allow_pickle=True)
numpy.load
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Statistic and fit indices.""" from .utils import duplication_matrix from scipy.stats import norm, chi2 from collections import namedtuple from .optimizer import Optimizer from .model_generalized_effects import ModelGeneralizedEffects from .model_effects import ModelEffects from .model_means import ModelMeans from .model import Model import pandas as pd import numpy as np ParameterStatistics = namedtuple('ParametersStatistics', ['value', 'se', 'zscore', 'pvalue']) SEMStatistics = namedtuple('SEMStatistics', ['dof', 'ml', 'fun', 'chi2', 'dof_baseline', 'chi2_baseline', 'rmsea', 'cfi', 'gfi', 'agfi', 'nfi', 'tli', 'aic', 'bic', 'params']) def get_baseline_model(model, data=None): """ Retrieve a the baseline model from given model. Baseline model here is an independence model where all variables are considered to be independent with zero covariance. Only variances are estimated. Parameters ---------- model : Model Model. data : pd.DataFrame, optional Data, extracting from model will be attempted if no data provided. (It's assumed that model.load took place). The default is None. cov : pd.DataFrame, optional Covariance matrix can be provided in the lack of presense of data. The default is None. Returns ------- mod : Model Baseline model. """ if type(model) is str: mod = Model(model, baseline=True) if data: mod.load(data) return mod desc = model.description tp = type(model) tp_name = tp.__name__ if tp_name not in ('Model',): mod = tp(desc, baseline=True, intercepts=model.intercepts) else: mod = tp(desc, baseline=True) try: if not data: if hasattr(model, 'mx_data'): mx = model.mx_data vs = model.vars['observed'] if hasattr(model, 'mx_g'): mx =
np.append(mx, model.mx_g.T, axis=1)
numpy.append
# Licensed under the MIT License <http://opensource.org/MIT> # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np import toml import json from glob import glob def AddData(directory, storage): energies = [] samples = glob(directory+'/sample_*.json') norm_sq_arr = [] ene_arr = [] ene_sq_arr = [] Nsample = 0 for i, sample in enumerate(samples): data = json.load(open(sample)) if i == 0: if 'beta' not in storage: storage['beta'] = np.array(data['beta']) Nsample += len(data['Samples']) energies.append(data['LowestEnergy']) gene = min(energies) for sample in samples: data = json.load(open(sample)) for each in data['Samples']: norm = (np.exp(0.5*storage['beta']*(gene - each['Energy'][-1])) * np.array(each['Norm'])) ene = np.array(each['Energy']) ene_sq = np.array(each['SquaredEnergy']) norm_sq_arr.append(norm*norm) ene_arr.append(norm*norm*ene) ene_sq_arr.append(norm*norm*ene_sq) norm_sq_arr = np.array(norm_sq_arr).T ene_arr = np.array(ene_arr).T ene_sq_arr = np.array(ene_sq_arr).T storage['LowestEnergy'].append(gene) storage['SquaredNorm'].append(norm_sq_arr) storage['Energy'].append(ene_arr) storage['SquaredEnergy'].append(ene_sq_arr) storage['Nsamples'].append(Nsample) def Bootstrapped(storage): bootstrapped = {'SquaredNorm': [], 'Energy': [], 'SquaredEnergy': []} nset = len(storage['LowestEnergy']) for n in range(nset): nsample = storage['Nsamples'][n] select = np.random.randint(nsample, size=nsample) bootstrapped['SquaredNorm'].append( np.average(storage['SquaredNorm'][n][:, select], axis=1) ) bootstrapped['SquaredEnergy'].append( np.average(storage['SquaredEnergy'][n][:, select], axis=1) ) bootstrapped['Energy'].append( np.average(storage['Energy'][n][:, select], axis=1) ) return bootstrapped storage = {'LowestEnergy': [], 'SquaredNorm': [], 'Energy': [], 'SquaredEnergy': [], 'Nsamples': []} setting = toml.load(open('setting.toml')) L = setting['System']['Lattice'] for i in range(-L, L+1, 2): directory = './TwoSz='+str(i) AddData(directory, storage) boot_setting = toml.load(open('bootstrap.toml')) h_low = boot_setting['Bootstrap']['MagneticField']['LowH'] h_high = boot_setting['Bootstrap']['MagneticField']['HighH'] h_num = boot_setting['Bootstrap']['MagneticField']['HNumber'] h_list = np.linspace(h_low, h_high, h_num) nB = boot_setting['Bootstrap']['BootstrapNumber'] nBeta = storage['beta'].size result = { 'Beta': storage['beta'].tolist(), 'MagneticField': h_list.tolist(), 'SystemSize': L, 'BootstrapSize': nB, 'Energy': {'Average': [], 'Error': []}, 'Magnetization': {'Average': [], 'Error': []}, 'Susceptibility': {'Average': [], 'Error': []}, 'SpecificHeat': {'Average': [], 'Error': []}, 'SpecificHeatFromS': {'Average': [], 'Error': []}, 'Entropy': {'Average': [], 'Error': []}, 'NormalizedPartitionFunction': {'Average': [], 'Error': []} } bootstrap_data = [] for bootstrap in range(nB): bootstrap_data.append(Bootstrapped(storage)) for h in h_list: lamb_arr = np.empty(L+1) for i, gene in enumerate(storage['LowestEnergy']): lamb_arr[i] = gene - h*(i - L/2) lamb_min = lamb_arr.min() weight = np.empty([nBeta, L+1]) for i, beta in enumerate(storage['beta']): weight[i, :] = np.exp(-beta*(lamb_arr - lamb_min)) energy = np.empty([nBeta, nB]) entropy = np.empty([nBeta, nB]) magnetization = np.empty([nBeta, nB]) susceptibility = np.empty([nBeta, nB]) specificheat = np.empty([nBeta, nB]) specificheat_s = np.empty([nBeta, nB]) partition = np.empty([nBeta, nB]) for idx, data in enumerate(bootstrap_data): numer_M = np.sum([weight[:, i]*(i-L/2)*x for i, x in enumerate(data['SquaredNorm'])], axis=0) numer_MSq = np.sum([weight[:, i]*(i-L/2)*(i-L/2)*x for i, x in enumerate(data['SquaredNorm'])], axis=0) numer_E = np.sum([weight[:, i]*x for i, x in enumerate(data['Energy'])], axis=0) numer_EM = np.sum([weight[:, i]*(i-L/2)*x for i, x in enumerate(data['Energy'])], axis=0) numer_ESq = np.sum([weight[:, i]*x for i, x in enumerate(data['SquaredEnergy'])], axis=0) denom = np.sum([weight[:, i]*x for i, x in enumerate(data['SquaredNorm'])], axis=0) ene = numer_E / denom ene_sq = numer_ESq / denom mag = numer_M / denom mag_sq = numer_MSq / denom ene_mag = numer_EM / denom energy[:, idx] = ene entropy[:, idx] = (storage['beta']*(ene - h*mag - lamb_min) + np.log(denom)) specificheat_s[0, idx] = -storage['beta'][0] * ( (entropy[1, idx] - entropy[0, idx]) / (storage['beta'][1] - storage['beta'][0]) ) specificheat_s[1:-1, idx] = -storage['beta'][1:-1]*np.array( [(entropy[i+1, idx] - entropy[i-1, idx]) / (storage['beta'][i+1] - storage['beta'][i-1]) for i in range(1, nBeta-1) ] ) specificheat_s[-1, idx] = -storage['beta'][-1] * ( (entropy[-1, idx] - entropy[-2, idx]) / (storage['beta'][-1] - storage['beta'][-2]) ) partition[:, idx] = denom magnetization[:, idx] = mag susceptibility[:, idx] = storage['beta']*(mag_sq - np.square(mag)) specificheat[:, idx] = np.square(storage['beta'])*( ene_sq - 2*h*ene_mag + h*h*mag_sq - np.square(ene - h*mag) ) result['Energy']['Average'].append(np.average(energy, axis=1).tolist()) result['Energy']['Error'].append(np.sqrt(
np.var(energy, axis=1)
numpy.var
import random import numpy as np from sklearn.model_selection import StratifiedKFold def run_neural_network(prepare_input_data, build_neural_network, evaluate_model): """ Performs cross validation for the clean classifier, using 5 splits. :param prepare_input_data: callback to prepare input data :param build_neural_network: callback to build the neural network :param evaluate_model: callback to prepare and evaluate the model :return: """ input_data = prepare_input_data() random.shuffle(input_data) images = [elem['data'] for elem in input_data] labels = [elem['image_type'] for elem in input_data] images = np.array(images) labels = np.array(labels) kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=None) cvscores = [] cvlosses = [] i = 0 for train, test in kfold.split(images, labels): i += 1 print("cross validation: ", i) model = build_neural_network() val_loss, val_acc = evaluate_model(model, images[test], labels[test], images[train], labels[train]) print('Loss value ' + str(val_loss)) print('Accuracy ' + str(val_acc)) cvscores.append(val_acc * 100) cvlosses.append(val_loss) print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores))) print("%.2f (+/- %.2f)" % (np.mean(cvlosses), np.std(cvlosses))) return model def is_in_range(cell, lower_bound, upper_bound): return ((lower_bound <= cell).all()) and ((cell < upper_bound).all()) assert is_in_range( np.array([1, 1, 1]), np.array([0, 0, 0]), np.array([2, 2, 2]) ) assert is_in_range( np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([2, 2, 2]) ) assert not is_in_range( np.array([2, 2, 2]), np.array([0, 0, 0]),
np.array([2, 2, 2])
numpy.array