prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np # see function mfcc.m from Slaneys Auditory Toolbox def ToolMfccFb (iFftLength, f_s): # initialization f_start = 133.3333 iNumLinFilters = 13 iNumLogFilters = 27 iNumFilters = iNumLinFilters + iNumLogFilters linearSpacing = 66.66666666 logSpacing = 1.0711703 # compute band frequencies f = np.zeros(iNumFilters+2) f[np.arange(0,iNumLinFilters)] = f_start + np.arange(0,iNumLinFilters)*linearSpacing f[np.arange(iNumLinFilters,iNumFilters+2)] = f[iNumLinFilters-1] * logSpacing**np.arange(1,iNumLogFilters+3) # sanity check if f[iNumLinFilters-1]>=f_s/2: f = f[f<f_s/2] iNumFilters = f.shape[0] - 2 f_l = f[np.arange(0,iNumFilters)] f_c = f[np.arange(1,iNumFilters+1)] f_u = f[np.arange(2,iNumFilters+2)] # allocate memory for filters and set max amplitude H = np.zeros([iNumFilters,iFftLength]) afFilterMax = 2 / (f_u - f_l) f_k = np.arange(0,iFftLength)/(iFftLength-1)*f_s/2 # compute the transfer functions for c in range(0,iNumFilters): #lower filter slope i_l = np.argmax(f_k>f_l[c]) i_u = np.max([0, np.argmin(f_k <= f_c[c])-1]) H[c,np.arange(i_l, i_u+1)] = afFilterMax[c] * (f_k[np.arange(i_l, i_u+1)]-f_l[c])/(f_c[c]-f_l[c]) #upper filter slope i_l = i_u + 1 i_u = np.max([0, np.argmin(f_k < f_u[c])-1]) H[c,
np.arange(i_l, i_u+1)
numpy.arange
"""Dataset loaders for MNIST, fashion MNIST, and Genz time series""" import os from math import floor import numpy as np import torch @torch.no_grad() def bin_data(input, num_bins=None): """ Discretize greyscale values into a finite number of bins """ if num_bins is None: return input assert num_bins > 0 # Set each of the corresponding bin indices out_data = torch.full_like(input, -1) for i in range(num_bins): bin_inds = (i / num_bins <= input) * (input <= (i + 1) / num_bins) out_data[bin_inds] = i assert out_data.max() >= 0 return out_data.long() def load_genz(genz_num: int, slice_len=None): """ Load a dataset of time series with dynamics set by various Genz functions Separate train, validation, and test datasets are returned, containing data from 8000, 1000, and 1000 time series. The length of each time series depends on `slice_len`, and is 100 by default (`slice_len=None`). For positive integer values of `slice_len`, these time series are split into contiguous chunks of length equal to `slice_len`. Args: genz_num: Integer between 1 and 6 setting choice of Genz function Returns: train, val, test: Three arrays with respective shape (8000, 100, 1), (1000, 100, 1), and (1000, 100, 1). """ # Length between startpoints of output sliced series stride = 2 assert 1 <= genz_num <= 6 assert slice_len is None or 1 < slice_len <= 100 if slice_len is None: slice_suffix = "" slice_len = 100 else: assert isinstance(slice_len, int) slice_suffix = f"_l{slice_len}_s{stride}" # Number of slices per time series s_per_ts = (100 - slice_len) // stride + 1 # Return saved dataset if we have already generated this previously save_file = f"datasets/genz/genz{genz_num}{slice_suffix}.npz" if os.path.isfile(save_file): out = np.load(save_file) train, val, test = out["train"], out["val"], out["test"] assert val.shape == test.shape == (1000 * s_per_ts, slice_len) assert train.shape == (8000 * s_per_ts, slice_len) return train, val, test # Definitions of each of the Genz functions which drive the time series gfun = genz_funs[genz_num] # Initialize random starting values and update using Genz update function rng = np.random.default_rng(genz_num) x = rng.permutation(np.linspace(0.0, 1.0, num=10000)) long_series = np.empty((10000, 100)) for i in range(100): x = gfun(x) long_series[:, i] = x # Normalize the time series values to lie in range [0, 1] min_val, max_val = long_series.min(), long_series.max() long_series = (long_series - min_val) / (max_val - min_val) # Split into train, validation, and test sets base_series = (long_series[:8000], long_series[8000:9000], long_series[9000:]) # Cut up the full time series into shorter sliced time series all_series = [] for split in base_series: num_series = split.shape[0] s_split = np.empty((num_series * s_per_ts, slice_len)) for i in range(s_per_ts): j = i * stride s_split[i * num_series : (i + 1) * num_series] = split[ :, j : (j + slice_len) ] all_series.append(s_split) # Shuffle individual time series, save everything to disk train, val, test = [rng.permutation(ts) for ts in all_series] np.savez_compressed(save_file, train=train, val=val, test=test) return train, val, test def bars_and_stripes(width=10, max_size=12000, seed=0): """ Generate images from bars and stripes dataset Note that *all* images are generated before a subset are selected, so choosing height/width too large will lead to a long runtime Args: width (int): Width (and height) of square B&S images max_size (int): Maximum number of images in all returned splits seed (int): Random seed for reproducibility Returns: bs_data (Tensor): Flattened integer-valued bars and stripes data, with shape (num_output, width**2) """ width = int(width) num_total = 2 ** (width + 1) - 2 num_output = min(num_total, max_size) # Create bit masks which will be used to define bar/stripe patterns patterns = np.arange(2 ** width) filters = np.arange(width) bit_masks = (((patterns[:, np.newaxis] & (1 << filters))) > 0).astype(int) # Generate all 2**(width + 1) - 2 images using above bit masks bs_data = np.zeros((num_total, width, width)) bs_data[: num_total // 2] = bit_masks[:-1, :, np.newaxis] # Bars bs_data[num_total // 2 :] = bit_masks[1:, np.newaxis, :] # Stripes # Shuffle dataset and determine size to output bs_data = np.random.RandomState(seed).permutation(bs_data) # Split dataset into train, val, and test bs_data = bs_data[:num_output].reshape((num_output, -1)).astype("float32") lrg, sml = floor(num_output * 10 / 12), floor(num_output * 1 / 12) train, val, test = bs_data[:lrg], bs_data[lrg:lrg+sml], bs_data[lrg+sml:lrg+2*sml] return train, val, test w = 0.5 c = 1.0 # I'm using the fact that c=1.0 to set c**2 = c**-2 = c genz_funs = [ None, # Placeholder to give 1-based indexing lambda x: np.cos(2 * np.pi * w + c * x), lambda x: (c + (x + w)) ** -1, lambda x: (1 + c * x) ** -2, lambda x:
np.exp(-c * np.pi * (x - w) ** 2)
numpy.exp
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import math import os from typing import List, Optional, Tuple, Union import numpy as np from augly import utils from PIL import Image JPEG_EXTENSIONS = [".jpg", ".JPG", ".jpeg", ".JPEG"] def validate_and_load_image(image: Union[str, Image.Image]) -> Image.Image: """ If image is a str, loads the image as a PIL Image and returns it. Otherwise, we assert that image is a PIL Image and then return it. """ if isinstance(image, str): local_path = utils.pathmgr.get_local_path(image) utils.validate_image_path(local_path) return Image.open(local_path) assert isinstance( image, Image.Image ), "Expected type PIL.Image.Image for variable 'image'" return image def ret_and_save_image( image: Image.Image, output_path: Optional[str], src_mode: Optional[str] = None ) -> Image.Image: if src_mode is not None: image = image.convert(src_mode) if output_path is not None: if any(output_path.endswith(extension) for extension in JPEG_EXTENSIONS): image = image.convert("RGB") utils.validate_output_path(output_path) image.save(output_path) return image def get_template_and_bbox( template_filepath: str, template_bboxes_filepath: str ) -> Tuple[Image.Image, Tuple[int, int, int, int]]: template_key = os.path.basename(template_filepath) local_template_path = utils.pathmgr.get_local_path(template_filepath) template = Image.open(local_template_path) local_bbox_path = utils.pathmgr.get_local_path(template_bboxes_filepath) bbox = json.load(open(local_bbox_path, "rb"))[template_key] return template, bbox def rotated_rect_with_max_area(w: int, h: int, angle: float) -> Tuple[float, float]: """ Computes the width and height of the largest possible axis-aligned rectangle (maximal area) within the rotated rectangle source: https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders # noqa: B950 """ width_is_longer = w >= h side_long, side_short = (w, h) if width_is_longer else (h, w) sin_a = abs(math.sin(math.radians(angle))) cos_a = abs(math.cos(math.radians(angle))) if side_short <= 2.0 * sin_a * cos_a * side_long or abs(sin_a - cos_a) < 1e-10: x = 0.5 * side_short wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a) else: cos_2a = cos_a * cos_a - sin_a * sin_a wr = (w * cos_a - h * sin_a) / cos_2a hr = (h * cos_a - w * sin_a) / cos_2a return wr, hr def pad_with_black(src: Image.Image, w: int, h: int) -> Image.Image: """ Returns the image src with the x dimension padded to width w if it was smaller than w (and likewise for the y dimension with height h) """ curr_w, curr_h = src.size dx = max(0, (w - curr_w) // 2) dy = max(0, (h - curr_h) // 2) padded = Image.new("RGB", (w, h)) padded.paste(src, (dx, dy, curr_w + dx, curr_h + dy)) return padded def resize_and_pad_to_given_size( src: Image.Image, w: int, h: int, crop: bool ) -> Image.Image: """ Returns the image src resized & padded with black if needed for the screenshot transformation (i.e. if the spot for the image in the template is too small or too big for the src image). If crop is True, will crop the src image if necessary to fit into the template image; otherwise, will resize if necessary """ curr_w, curr_h = src.size if crop: dx = (curr_w - w) // 2 dy = (curr_h - h) // 2 src = src.crop((dx, dy, w + dx, h + dy)) curr_w, curr_h = src.size elif curr_w > w or curr_h > h: resize_factor = min(w / curr_w, h / curr_h) new_w = int(curr_w * resize_factor) new_h = int(curr_h * resize_factor) src = src.resize((new_w, new_h), resample=Image.BILINEAR) curr_w, curr_h = src.size if curr_w < w or curr_h < h: src = pad_with_black(src, w, h) return src def scale_template_image( src_w: int, src_h: int, template_image: Image.Image, bbox: Tuple[int, int, int, int], max_image_size_pixels: Optional[int], crop: bool, ) -> Tuple[Image.Image, Tuple[int, int, int, int]]: """ Return template_image, and bbox resized to fit the src image. Takes in the width & height of the src image plus the bounding box where the src image will be inserted into template_image. If the template bounding box is bigger than src image in both dimensions, template_image is scaled down such that the dimension that was closest to src_image matches, without changing the aspect ratio (and bbox is scaled proportionally). Similarly if src image is bigger than the bbox in both dimensions, template_image and the bbox are scaled up. """ template_w, template_h = template_image.size left, upper, right, lower = bbox bbox_w, bbox_h = right - left, lower - upper # Scale up/down template_image & bbox if crop: resize_factor = min(src_w / bbox_w, src_h / bbox_h) else: resize_factor = max(src_w / bbox_w, src_h / bbox_h) # If a max image size is provided & the resized template image would be too large, # resize the template image to the max image size. if max_image_size_pixels is not None: template_size = template_w * template_h if template_size * resize_factor ** 2 > max_image_size_pixels: resize_factor = math.sqrt(max_image_size_pixels / template_size) template_w = int(template_w * resize_factor) template_h = int(template_h * resize_factor) bbox_w, bbox_h = int(bbox_w * resize_factor), int(bbox_h * resize_factor) left, upper = int(left * resize_factor), int(upper * resize_factor) right, lower = left + bbox_w, upper + bbox_h bbox = (left, upper, right, lower) template_image = template_image.resize( (template_w, template_h), resample=Image.BILINEAR ) return template_image, bbox def square_center_crop(src: Image.Image) -> Image.Image: """Returns a square crop of the center of the image""" w, h = src.size smallest_edge = min(w, h) dx = (w - smallest_edge) // 2 dy = (h - smallest_edge) // 2 return src.crop((dx, dy, dx + smallest_edge, dy + smallest_edge)) def compute_transform_coeffs( src_coords: List[Tuple[int, int]], dst_coords: List[Tuple[float, float]] ) -> np.ndarray: """ Given the starting & desired corner coordinates, computes the coefficients required by the perspective transform. """ matrix = [] for sc, dc in zip(src_coords, dst_coords): matrix.append([dc[0], dc[1], 1, 0, 0, 0, -sc[0] * dc[0], -sc[0] * dc[1]]) matrix.append([0, 0, 0, dc[0], dc[1], 1, -sc[1] * dc[0], -sc[1] * dc[1]]) A = np.matrix(matrix, dtype=np.float) B = np.array(src_coords).reshape(8) res = np.dot(np.linalg.inv(A.T * A) * A.T, B) return np.array(res).reshape(8) def compute_stripe_mask( src_w: int, src_h: int, line_width: float, line_angle: float, line_density: float ) -> np.ndarray: """ Given stripe parameters such as stripe width, angle, and density, returns a binary mask of the same size as the source image indicating the location of stripes. This implementation is inspired by https://stackoverflow.com/questions/34043381/how-to-create-diagonal-stripe-patterns-and-checkerboard-patterns """ line_angle *= math.pi / 180 line_distance = (1 - line_density) * min(src_w, src_h) y_period = math.cos(line_angle) / line_distance x_period = math.sin(line_angle) / line_distance y_coord_range =
np.arange(0, src_h)
numpy.arange
'''This script contains all of the functions used in our study''' from __future__ import print_function import math import numpy as np import scipy as sp from scipy import special as spsp from scipy import sparse as sparse from scipy import stats as stats from scipy import optimize as opt from scipy import interpolate as interpolate import time import mpmath import random def poisson_loglh(data,lmbd): ''' Calculate log likelihood of Poisson parameter lambda given data. Parameters ---------- data : list sample dataset lmbd : float estimated Poisson parameter Returns ------- llh : float log likelihood of lmbd given data ''' llh=0 for x in data: llh+=np.log(stats.poisson.pmf(x,lmbd)) return llh def geo_loglh(data,lmbd): ''' Calculate log likelihood of geometric parameter lambda given data. Parameters ---------- data : list sample dataset lmbd : float estimated geometric parameter Returns ------- llh : float log likelihood of lmbd given data ''' llh=0 for x in data: llh+=np.log(stats.geom.pmf(x,1/(lmbd+1),-1)) return llh def neg_bin_loglh_theta(data,lmbd,theta): ''' Calculate log likelihood of negative binomial parameters given data. Parameters ---------- data : list sample dataset lmbd : float estimated mean of negative binomial distribution theta : float estimated overdispersion of negative binomial distribution Returns ------- llh : float log likelihood of lmbd and theta given data ''' llh=0 for x in data: llh+=np.log(stats.nbinom.pmf(x,lmbd/theta,1/(theta+1))) return llh def get_theta_mle(data,theta_0): ''' Calculate maximum likelihood estimate of negative binomial overdispersion parameter theta given sample data. Parameters ---------- data : list sample dataset theta_0 : float initial estimate of overdispersion parameter Returns ------- : float maximum likelihood estimate of overdispersion parameter ''' def f(theta): lmbd=np.mean(data) return -neg_bin_loglh_theta(data,lmbd,theta) mle=sp.optimize.minimize(f,[theta_0],bounds=((1e-6,50),)) return mle.x[0] def beta_poisson_pmf(x,lmbd,Phi,N): ''' Evaluate the probability mass function for beta-Poisson distribution. Parameters ---------- x : int or array point(s) at which to evaluate function lmbd : float Phi : float N : float Returns ------- P : float or array probability of each point in x ''' if type(x)==int: P=spsp.hyp1f1(x+Phi*lmbd,x+Phi*N,-N) for n in range(1,x+1): # This loop gives us the N^x/gamma(x+1 term) P=(N/n)*P for m in range(x): # This loop gives us the term with the two gamma functions in numerator and denominator P=((m+Phi*lmbd)/(m+Phi*N))*P else: P=[] for i in range(0,len(x)): p=spsp.hyp1f1(x[i]+Phi*lmbd,x[i]+Phi*N,-N) for n in range(1,x[i]+1): # This loop gives us the N^x/gamma(x+1 term) p=(N/n)*p for m in range(x[i]): # This loop gives us the term with the two gamma functions in numerator and denominator p=((m+Phi*lmbd)/(m+Phi*N))*p P=P+[p] return P hyp1f1_alt=np.frompyfunc(mpmath.hyp1f1,3,1) def beta_poisson_loglh(data,lmbd,phi,N): ''' Calculate log likelihood of beta-Poisson parameters given data. Parameters ---------- data : list sample dataset lmbd : float phi : float N : float Returns ------- llh : float log likelihood of parameters given data ''' llh=0 for x in data: llh+=x*np.log(N)-np.real(spsp.loggamma(x+1))+np.real(spsp.loggamma(phi*N))+np.real(spsp.loggamma(x+phi*lmbd))-np.real(spsp.loggamma(x+phi*N))-np.real(spsp.loggamma(phi*lmbd)) if x+phi*N<50: llh+=np.log(spsp.hyp1f1(x+phi*lmbd,x+phi*N,-N)) else: llh+=np.log(float(hyp1f1_alt(x+phi*lmbd,x+phi*N,-N))) return llh def neg_bin_loglh(data,lmbd,phi): ''' Calculate log likelihood of negative binomial parameters given data, with negative binomial parameterised with phi rather than theta. Parameters ---------- data : list sample dataset lmbd : float estimated mean of negative binomial distribution phi : float Returns ------- llh : float log likelihood of lmbd and theta given data ''' llh=0 for x in data: llh+=np.log(stats.nbinom.pmf(x,lmbd*phi,phi/(phi+1))) return llh def get_phi_and_N_mles(data,phi_0,N_0): ''' Calculate maximum likelihood estimates of beta-Poisson parameters Phi and N. Parameters ---------- data : list sample dataset phi_0 : float initial estimate of Phi N_0 : float initial estimate of N Returns ------- : float maximum likelihood estimate of Phi : float maximum likelihood estimate of N ''' def f(params): lmbd=np.mean(data) phi=params[0] if params[1]>0.1e-3: N=1/params[1] return -beta_poisson_loglh(data,lmbd,phi,N) else: return -neg_bin_loglh(data,lmbd,phi) mle=sp.optimize.minimize(f,[phi_0,N_0],bounds=((1e-6,50),(0,1/np.mean(data)))) if mle.x[1]<0: mle.x[1]=0 return mle.x[0],mle.x[1] def zip_pmf(x,lmbd,sigma): ''' Evaluate the probability mass function for zero-inflated Poisson distribution. Parameters ---------- x : int or array point(s) at which to evaluate function lmbd : float mean of Poisson component sigma : float degree of zero inflation Returns ------- P : float or array probability of each point in x ''' if type(x)==int: return sigma*(x==0)+(1-sigma)*stats.poisson.pmf(x,lmbd) else: return sigma*np.equal(x,np.zeros(len(x)))+(1-sigma)*stats.poisson.pmf(x,lmbd) def zip_loglh(data,lmbd,sigma): ''' Calculate log likelihood of zero-inflated Poisson parameters given data. Parameters ---------- data : list sample dataset lmbd : float mean of Poisson component sigma : float degree of zero inflation Returns ------- llh : float log likelihood of lmbd and sigma given data ''' llh=0 for x in data: if x==0: llh+=np.log(sigma+(1-sigma)*np.exp(-lmbd)) else: llh+=np.log(1-sigma)+np.log(stats.poisson.pmf(x,lmbd)) return llh def get_zip_mles(data,lmbd_0,sigma_0): ''' Calculate maximum likelihood estimates of ZIP parameters lambda and sigma. Parameters ---------- data : list sample dataset lmbd_0 : float initial estimate of lambda sigma_0 : float initial estimate of sigma Returns ------- : float maximum likelihood estimate of lambda : float maximum likelihood estimate of sigma ''' def f(params): lmbd=params[0] sigma=params[1] return -zip_loglh(data,lmbd,sigma) mle=sp.optimize.minimize(f,[lmbd_0,sigma_0],bounds=((np.mean(data),50),(0,1-1e-6))) return mle.x[0],mle.x[1] def beta_poisson_pgf(s,lmbd,phi,N): ''' Probability generating function of the beta-Poisson distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float Phi : float N : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=spsp.hyp1f1(lmbd*phi,N*phi,N*(s-1)); else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[spsp.hyp1f1(lmbd*phi,N*phi,N*(s[i]-1))] return G def poisson_pgf(s,lmbd): ''' Probability generating function of the Poisson distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=np.exp(lmbd*(s-1)) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[np.exp(lmbd*(s[i]-1))] return G def geom_pgf(s,lmbd): ''' Probability generating function of the geometric distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=1/(lmbd+1-lmbd*s) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[1/(lmbd+1-lmbd*s[i])] return G def neg_bin_pgf(s,lmbd,theta): ''' Probability generating function of the negative binomial distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float theta : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=(theta+1-s*theta)**(-lmbd/theta) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[(theta+1-s[i]*theta)**(-lmbd/theta)] return G def zip_pgf(s,lmbd,sigma): ''' Probability generating function of the zero-inflated Poisson distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float sigma : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=sigma+(1-sigma)*np.exp(lmbd*(s-1)) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[sigma+(1-sigma)*np.exp(lmbd*(s[i]-1))] return G def beta_poisson_extinction_prob( lmbd,phi,N ): ''' Calculate the probability that the beta-Poisson branching process becomes extinct. Parameters ---------- lmbd : float phi : float N : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return beta_poisson_pgf(s,lmbd,phi,N)-s q=opt.brentq( f, 0, 1-1e-4); return q def poisson_extinction_prob( lmbd ): ''' Calculate the probability that the Poisson branching process becomes extinct. Parameters ---------- lmbd : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return poisson_pgf(s,lmbd)-s q=opt.brentq( f, 0, 1-1e-6) return q def geom_extinction_prob( lmbd ): ''' Calculate the probability that the geometric branching process becomes extinct. Parameters ---------- lmbd : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return geom_pgf(s,lmbd)-s q=opt.brentq( f, 0, 1-1e-6) return q def neg_bin_extinction_prob( lmbd,theta ): ''' Calculate the probability that the negative binomial branching process becomes extinct. Parameters ---------- lmbd : float theta : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return neg_bin_pgf(s,lmbd,theta)-s q=opt.brentq( f, 0, 1-1e-6) return q def zip_extinction_prob( lmbd,sigma ): ''' Calculate the probability that the zero-inflated Poisson branching process becomes extinct. Parameters ---------- lmbd : float sigma : float Returns ------- q : float extinction probability ''' if (1-sigma)*lmbd<=1: return 1 else: def f(s): return zip_pgf(s,lmbd,sigma)-s q=opt.brentq( f, 0, 1-1e-6) return q def empirical_loglh(data): ''' Calculate upper bound on log likelihood by using empirical distribution based on observed frequencies in data. Parameters ---------- data : list sample data Returns ------- llh : float log likelihood ''' counts,bins=np.histogram(data,max(data)+1) dist=counts/len(data) llh=0 for x in data: llh+=np.log(dist[x]) return llh def get_lambda_and_phi_mles(data,lmbd_0,phi_0,N_emp): ''' Calculate maximum likelihood estimates of beta-Poisson parameters lambda and Phi given empirical estimate of contact parameter N. Parameters ---------- data : list sample dataset lmbd_0 : float initial estimate of lambda phi_0 : float initial estimate of Phi N_emp : float empirical estimate of N Returns ------- : float maximum likelihood estimate of lambda : float maximum likelihood estimate of Phi ''' def f(params): lmbd=params[0] phi=params[1] return -beta_poisson_loglh(data,lmbd,phi,N_emp) mle=sp.optimize.minimize(f,[lmbd_0,phi_0],bounds=((1e-6,10),(1e-6,50))) return mle.x[0],mle.x[1] def generate_mle_dict(data, theta_0, phi_0, N_0, lmbd_0, sigma_0): ''' Calculate maximum likelihood estimates of parameters for each offspring distribution and output them as a dictionary. Parameters ---------- data : list sample data to fit to theta_0 : float initial estimate of negative binomial overdispersion parameter phi_0 : float initial estimate of beta-Poisson parameter Phi N_0 : float initial estimate of beta-Poisson parameter Phi lmbd_0 : float initial estimate of ZIP baseline lambda sigma_0 : float initial estimate of ZIP inflation parameter sigma Returns ------- mle_dict : dictionary dictionary containing maximum likelihood estimates of parameters for each model. ''' theta_mle=get_theta_mle(data,1.5) phi_mle,N_inv_mle=get_phi_and_N_mles(data,0.5,1/2) lmbd_mle,sigma_mle=get_zip_mles(data,1.5,0.5) mle_dict = { 'poisson' : np.mean(data), 'geometric' : np.mean(data), 'negative binomial' : [np.mean(data), theta_mle], 'zip' : [lmbd_mle, sigma_mle], 'beta-Poisson' : [np.mean(data), phi_mle, N_inv_mle] } return mle_dict def poisson_mle_grid(data, interval, points): ''' Calculate a confidence interval for the MLE of the Poisson distribution given some data using a grid calculation. Parameters ---------- data : list sample dataset interval : list list containing the lower and upper bounds on which to perform the grid calculation points : int number of points to use in the grid calculation Returns ------- lmbd : array value of lambda over grid llh : array log likelihood of lambda values over grid mle : float maximum likelihood estimate of lambda ci : list 95% confidence interval for lambda given data ''' lmbd=np.linspace(interval[0],interval[1],points) llh=np.zeros(points) for x in data: llh=llh+np.log(stats.poisson.pmf(x,lmbd)) mle_loc=np.argmax(llh) mle=lmbd[mle_loc] lh_normed=np.exp(llh)/np.sum(np.exp(llh)) current_max=lh_normed[mle_loc] interval_weight=current_max while interval_weight<0.95: max_loc=np.argmax(lh_normed[np.where(lh_normed<current_max)]) current_max=lh_normed[np.where(lh_normed<current_max)][max_loc] interval_weight+=current_max ci=[np.min(lmbd[np.where(lh_normed>=current_max)[0]]),np.max(lmbd[np.where(lh_normed>=current_max)[0]])] return lmbd,llh,mle,ci def geometric_mle_grid(data,interval,points): ''' Calculate a confidence interval for the MLE of the geometric distribution given some data using a grid calculation. Parameters ---------- data : list sample dataset interval : list list containing the lower and upper bounds on which to perform the grid calculation points : int number of points to use in the grid calculation Returns ------- lmbd : array value of lambda over grid llh : array log likelihood of lambda values over grid mle : float maximum likelihood estimate of lambda ci : list 95% confidence interval for lambda given data ''' lmbd=np.linspace(interval[0],interval[1],points) llh=np.zeros(points) for x in data: llh=llh+np.log(stats.geom.pmf(x,1/(lmbd+1),-1)) mle_loc=np.argmax(llh) mle=lmbd[mle_loc] lh_normed=
np.exp(llh)
numpy.exp
# (c) Copyright [2018] Micro Focus or one of its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################################################ # __ __ ___ ____ ______ ____ __ ____ ___ ___ _ ____ __ __ ______ __ __ ___ ____ # # | | | / _| \| | | / ]/ | | | | | | \| | | | | |/ \| \ # # | | |/ [_| D | || | / /| o | | _ _ | | | o | | | | | | | _ | # # | | | _| /|_| |_|| |/ / | | | \_/ | |___ | _/| ~ |_| |_| _ | O | | | # # | : | [_| \ | | | / \_| _ | | | | | | | |___, | | | | | | | | | # # \ /| | . \ | | | \ | | | | | | | | | | | | | | | | | | | # # \_/ |_____|__|\_| |__| |____\____|__|__| |___|___|_____| |__| |____/ |__| |__|__|\___/|__|__| # # # ############################################################################################################ # Vertica-ML-Python allows user to create RVD (Resilient Vertica Dataset). # # RVD simplifies data exploration, data cleaning and machine learning in Vertica. # # It is an object which keeps in it all the actions that the user wants to achieve # # and execute them when they are needed. # ##################################################################################### # # # Author: <NAME> # # # ###################### # Libraries import vertica_ml_python.rvd as rvd import vertica_ml_python.rvc as rvc from vertica_ml_python.fun import isnotebook import sys,os import shutil import numpy as np import math import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.patches as mpatches from matplotlib.ticker import MaxNLocator import time # Return model accuracy def accuracy(model,threshold=0.5,input_class=1): return 1-error_rate(model=model,threshold=threshold,input_class=input_class).data_columns[1][-1] # Return model auc def auc(model,input_class=1): return roc(model=model,num_bins=30000,show=False,input_class=input_class)[0].data_columns[1][1] # Champion Challenger for Binomial Model # ALL THE COLUMNS OF THE INPUT RELATION MUST BE NUMERICAL def champion_challenger_binomial(input_relation,response_column,predictor_columns,cursor, fold_count=3,max_iterations=100,logit_optimizer='Newton',logit_regularization='None', logit_alpha=0.5,rf_ntree=20,rf_mtry=None,rf_max_depth=5,rf_sampling_size=0.632): if (not(isinstance(input_relation,str))): raise TypeError("The parameter 'input_relation' must be a varchar") if (not(isinstance(response_column,str))): raise TypeError("The parameter 'response_column' must be a varchar") if (not(isinstance(predictor_columns,list))): raise TypeError("The parameter 'predictor_columns' must be a list of varchar") else: for column in predictor_columns: if (not(isinstance(column,str))): raise TypeError("The parameter 'predictor_columns' must be a list of varchar") if (not(isinstance(fold_count,int)) or (fold_count<0)): raise TypeError("The parameter 'fold_count' must be a positive integer") if (not(isinstance(max_iterations,int)) or (max_iterations<0)): raise TypeError("The parameter 'max_iterations' must be a positive integer") if not(logit_optimizer in ["Newton","BFGS"]): raise TypeError("The parameter 'logit_optimizer' must be in Newton|BFGS") if not(logit_regularization in ["L2","None"]): raise TypeError("The parameter 'logit_regularization' must be in L2|None") if (not(isinstance(logit_alpha,float)) or (logit_alpha<0) or (logit_alpha>1)): raise TypeError("The parameter 'logit_alpha' must be in [0,1]") if (not(isinstance(rf_ntree,int)) or (rf_ntree<0)): raise TypeError("The parameter 'rf_ntree' must be a positive integer") if (not(isinstance(rf_max_depth,int)) or (rf_max_depth<0)): raise TypeError("The parameter 'rf_max_depth' must be a positive integer") if (not(isinstance(rf_sampling_size,float)) or (rf_sampling_size<0) or (rf_sampling_size>1)): raise TypeError("The parameter 'rf_sampling_size' must be in [0,1]") colors=['dodgerblue','seagreen','indianred','gold'] temp_rvd=rvd.RVD(input_relation,cursor) test_name=input_relation+"_cc_binomial_test_"+str(np.random.randint(10000000)) train_name=input_relation+"_cc_binomial_train_"+str(np.random.randint(10000000)) all_logit_info=[[],[],[],[],['logistic_reg']] all_svm_info=[[],[],[],[],['svm_classifier']] all_nb_info=[[],[],[],[],['naive_bayes']] all_rf_info=[[],[],[],[],['rf_classifier']] for i in range(fold_count): rvd.drop_table("random_vpython_table_"+input_relation,cursor,print_info=False) temp_rvd.train_test_split(test_name=test_name,train_name=train_name,print_info=False) # Logit model_name="model_"+str(np.random.randint(10000000)) start_time=time.time() logistic_reg(model_name=model_name,input_relation=train_name,response_column=response_column, predictor_columns=predictor_columns,cursor=cursor,optimizer=logit_optimizer, regularization=logit_regularization,alpha=logit_alpha,max_iterations=max_iterations) all_logit_info[3]+=[time.time()-start_time] logit=load_model(model_name,cursor,input_relation=test_name) roc=logit.roc(show=False) all_logit_info[0]+=[roc[0].data_columns[1][1]] all_logit_info[1]+=[roc[1].data_columns] error=logit.error_rate() all_logit_info[2]+=[1-error.data_columns[1][-1]] drop_model(model_name,cursor,print_info=False) # SVM model_name="model_"+str(np.random.randint(10000000)) start_time=time.time() svm_classifier(model_name=model_name,input_relation=train_name,response_column=response_column, predictor_columns=predictor_columns,cursor=cursor,max_iterations=max_iterations) all_svm_info[3]+=[time.time()-start_time] svm=load_model(model_name,cursor,input_relation=test_name) roc=svm.roc(show=False) all_svm_info[0]+=[roc[0].data_columns[1][1]] all_svm_info[1]+=[roc[1].data_columns] error=svm.error_rate() all_svm_info[2]+=[1-error.data_columns[1][-1]] drop_model(model_name,cursor,print_info=False) # Naive Bayes model_name="model_"+str(np.random.randint(10000000)) start_time=time.time() naive_bayes(model_name=model_name,input_relation=train_name,response_column=response_column, predictor_columns=predictor_columns,cursor=cursor) all_nb_info[3]+=[time.time()-start_time] svm=load_model(model_name,cursor,input_relation=test_name) roc=svm.roc(show=False) all_nb_info[0]+=[roc[0].data_columns[1][1]] all_nb_info[1]+=[roc[1].data_columns] error=svm.error_rate() all_nb_info[2]+=[1-error.data_columns[1][-1]] drop_model(model_name,cursor,print_info=False) # Random Forest model_name="model_"+str(np.random.randint(10000000)) start_time=time.time() cursor.execute("create view "+train_name+"_rf as select "+", ".join(predictor_columns)+", "+response_column+"::varchar(1) from "+train_name) rf_classifier(model_name=model_name,input_relation=train_name+"_rf",response_column=response_column, predictor_columns=predictor_columns,cursor=cursor,ntree=rf_ntree, mtry=rf_mtry,sampling_size=rf_sampling_size,max_depth=rf_max_depth) all_rf_info[3]+=[time.time()-start_time] rf=load_model(model_name,cursor,input_relation=test_name) roc=rf.roc(show=False) all_rf_info[0]+=[roc[0].data_columns[1][1]] all_rf_info[1]+=[roc[1].data_columns] error=rf.error_rate() all_rf_info[2]+=[1-error.data_columns[1][-1]] drop_model(model_name,cursor,print_info=False) # End rvd.drop_view(train_name+"_rf",cursor,print_info=False) rvd.drop_view(test_name,cursor,print_info=False) rvd.drop_view(train_name,cursor,print_info=False) # DRAW THE METRICS sample=list(range(fold_count)) # accuracy plt.figure(figsize=(10,6)) plt.plot(sample,all_logit_info[2],label=all_logit_info[4][0]+" avg_accuracy="+str(np.mean(all_logit_info[2])),color=colors[0]) plt.plot(sample,all_svm_info[2],label=all_svm_info[4][0]+" avg_accuracy="+str(np.mean(all_svm_info[2])),color=colors[1]) plt.plot(sample,all_nb_info[2],label=all_nb_info[4][0]+" avg_accuracy="+str(np.mean(all_nb_info[2])),color=colors[2]) plt.plot(sample,all_rf_info[2],label=all_rf_info[4][0]+" avg_accuracy="+str(np.mean(all_rf_info[2])),color=colors[3]) plt.ylabel('accuracy') plt.xlabel('sample') plt.legend() plt.grid() plt.xticks(sample,sample) plt.title('Binomial Champion Challenger on ["'+input_relation+'" Dataset]') plt.show() # time plt.figure(figsize=(10,6)) plt.plot(sample,all_logit_info[3],label=all_logit_info[4][0]+" avg_time="+str(np.mean(all_logit_info[3])),color=colors[0]) plt.plot(sample,all_svm_info[3],label=all_svm_info[4][0]+" avg_time="+str(np.mean(all_svm_info[3])),color=colors[1]) plt.plot(sample,all_nb_info[3],label=all_nb_info[4][0]+" avg_time="+str(np.mean(all_nb_info[3])),color=colors[2]) plt.plot(sample,all_rf_info[3],label=all_rf_info[4][0]+" avg_time="+str(np.mean(all_rf_info[3])),color=colors[3]) plt.ylabel('time') plt.xlabel('sample') plt.legend() plt.grid() plt.xticks(sample,sample) plt.title('Binomial Champion Challenger on ["'+input_relation+'" Dataset]') plt.show() # auc plt.figure(figsize=(10,6)) plt.plot(sample,all_logit_info[0],label=all_logit_info[4][0]+" avg_auc="+str(np.mean(all_logit_info[0])),color=colors[0]) plt.plot(sample,all_svm_info[0],label=all_svm_info[4][0]+" avg_auc="+str(np.mean(all_svm_info[0])),color=colors[1]) plt.plot(sample,all_nb_info[0],label=all_nb_info[4][0]+" avg_auc="+str(np.mean(all_nb_info[0])),color=colors[2]) plt.plot(sample,all_rf_info[0],label=all_rf_info[4][0]+" avg_auc="+str(np.mean(all_rf_info[0])),color=colors[3]) plt.ylabel('auc') plt.xlabel('sample') plt.legend() plt.grid() plt.xticks(sample,sample) plt.title('Binomial Champion Challenger on ["'+input_relation+'" Dataset]') plt.show() return(rvd.column_matrix([['','logistic_reg','svm_classifier','naive_bayes','rf_classifier'], ['avg_time',np.mean(all_logit_info[3]),np.mean(all_svm_info[3]),np.mean(all_nb_info[3]),np.mean(all_rf_info[3])], ['avg_auc',np.mean(all_logit_info[0]),np.mean(all_svm_info[0]),np.mean(all_nb_info[0]),np.mean(all_rf_info[0])], ['avg_accuracy',np.mean(all_logit_info[2]),np.mean(all_svm_info[2]),np.mean(all_nb_info[2]),np.mean(all_rf_info[2])], ['std_accuracy',np.std(all_logit_info[2]),np.std(all_svm_info[2]),np.std(all_nb_info[2]),np.std(all_rf_info[2])]])) # Return the Confusion Matrix of the model def confusion_matrix(model,threshold=0.5,input_class=1): if (input_class==None): use_input_class=False else: use_input_class=True if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (not(isinstance(threshold,float)) or (threshold<0) or (threshold>1)): raise TypeError("The parameter 'threshold' must be in [0,1]") if ((model.category=="binomial") or (use_input_class and ((model.category=="multinomial") and ((input_class in model.classes) or (str(input_class) in model.classes))))): query=("select confusion_matrix(obs, response using parameters num_classes=2) over() from (select (case when {}='{}' then 1 else 0 end) as obs, (case when predict_{}"+ "({} using parameters model_name='{}',type='probability',class='{}',match_by_pos='true')::float>{} then 1 else 0 end) as response from {}) x") query=query.format(model.response_column,input_class,model.model_type,",".join(model.predictor_columns),model.model_name, input_class,threshold,model.input_relation) model.cursor.execute(query) query_result=model.cursor.fetchall() matrix=[['',0,1],[0,query_result[0][1],query_result[1][1]],[1,query_result[0][2],query_result[1][2]]] if (model.model_type in ["naive_bayes","rf_classifier"]): title=("Confusion Matrix with as positive '"+str(input_class)+"'") else: title=("Confusion Matrix") return rvd.column_matrix(matrix,title=title) elif (model.category=="multinomial"): classes=model.classes num_classes=str(len(classes)) query="select confusion_matrix(obs, response using parameters num_classes="+num_classes+") over() from (select decode("+model.response_column for idx,item in enumerate(classes): query+=",'"+str(item)+"',"+str(idx) query+=") as obs, decode(predict_"+model.model_type+"("+",".join(model.predictor_columns)+" using parameters model_name='{}'".format(model.model_name) query+=",type='response',match_by_pos='true')" for idx,item in enumerate(classes): query+=",'"+str(item)+"',"+str(idx) query+=") as response from {}) x".format(model.input_relation) model.cursor.execute(query) query_result=model.cursor.fetchall() matrix=[[['']]*(len(classes)+1)] matrix[0]=['']+classes for idx in range(1,len(query_result[0])-1): matrix+=[[classes[idx-1]]+[item[idx] for item in query_result]] return rvd.column_matrix(matrix) else: raise Exception("The Confusion Matrix is only available for multinomial/binomial models.") # Return all the details of the model def details(model_name,cursor,attr_name="details",model_type=None,header=None): if (not(isinstance(model_name,str))): raise TypeError("The parameter 'model_name' must be a varchar") if (not(isinstance(attr_name,str))): raise TypeError("The parameter 'attr_name' must be a varchar") query="select get_model_attribute(using parameters model_name='{}',attr_name='{}')".format(model_name,attr_name) cursor.execute(query) query_result=cursor.fetchall() if (attr_name=="prior"): header=['class','value'] elif (model_type=="rf"): header=['column','type'] else: header=['','coefficient','std_error','t_value','p_value'] columns=[] for i in range(len(query_result[0])): columns+=[[item[i] for item in query_result]] for i in range(len(columns)): columns[i]=[header[i]]+columns[i] return rvd.column_matrix(columns,first_element=header[0]) # Drop Model if it exists def drop_model(model_name,cursor,print_info=True): cursor.execute("select 1;") try: query="drop model {};".format(model_name) cursor.execute(query) if (print_info): print("The model {} was successfully dropped.".format(model_name)) except: print("/!\\ Warning: The model {} doesn't exist !".format(model_name)) # Draw the Elbow curve: Help to find the best K for Kmeans def elbow(input_relation,input_columns,cursor,min_num_cluster=1,max_num_cluster=15,max_iterations=10, epsilon=1e-4,init_method="kmeanspp",print_each_round=False): if (not(isinstance(input_columns,list))): raise TypeError("The parameter 'input_columns' must be a list of varchar") else: for column in input_columns: if (not(isinstance(column,str))): raise TypeError("The parameter 'input_columns' must be a list of varchar") if (not(isinstance(max_num_cluster,int)) or (max_num_cluster<0)): raise TypeError("The parameter 'max_num_cluster' must be a positive integer") if (not(isinstance(max_iterations,int)) or (max_iterations<0)): raise TypeError("The parameter 'max_iterations' must be a positive integer") if (not(isinstance(epsilon,float)) or (epsilon<0)): raise TypeError("The parameter 'epsilon' must be a positive float") if (not(isinstance(input_relation,str))): raise TypeError("The parameter 'input_relation' must be a varchar") all_within_cluster_SS=[] for i in range(min_num_cluster,max_num_cluster): if (print_each_round): print("Round "+str(i)+" begins") name="_vpython_kmeans_"+str(np.random.randint(1000000)) query="drop model if exists {};".format(name) cursor.execute(query) all_within_cluster_SS+=[kmeans(name,input_relation,input_columns,i,cursor, max_iterations=max_iterations,epsilon=epsilon,init_method=init_method).within_cluster_SS()] if (print_each_round): print("Round "+str(i)+" ends") query="drop model if exists {};".format(name) cursor.execute(query) num_clusters=range(min_num_cluster,max_num_cluster) plt.rcParams['axes.facecolor']='#F4F4F4' plt.grid() plt.plot(num_clusters,all_within_cluster_SS,marker="s",color="dodgerblue") plt.title("Elbow Curve") plt.xlabel('Number of Clusters') plt.ylabel('Within-Cluster SS') plt.subplots_adjust(left=0.2) plt.show() return rvd.column_matrix([['num_clusters']+list(num_clusters),['all_within_cluster_SS']+all_within_cluster_SS],first_element='num_clusters') # Return the Error Rate def error_rate(model,threshold=0.5,input_class=1): if (input_class==None): use_input_class=False else: use_input_class=True if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (not(isinstance(threshold,float)) or (threshold<0) or (threshold>1)): raise TypeError("The parameter 'threshold' must be in [0,1]") if ((model.category=="binomial") or (use_input_class and ((model.category=="multinomial") and ((input_class in model.classes) or (str(input_class) in model.classes))))): query=("select error_rate(obs, response using parameters num_classes=2) over() from (select (case when {}='{}' then 1 else 0 end) as obs, (case when predict_{}"+ "({} using parameters model_name='{}',type='probability',class='{}',match_by_pos='true')::float>{} then 1 else 0 end) as response from {}) x") query=query.format(model.response_column,input_class,model.model_type,",".join(model.predictor_columns),model.model_name, input_class,threshold,model.input_relation) model.cursor.execute(query) query_result=model.cursor.fetchall() matrix=[['',0,1,'total'],['error_rate',query_result[0][1],query_result[1][1],query_result[2][1]]] if (model.model_type in ["naive_bayes","rf_classifier"]): title=("Error Rate Table with as positive '"+str(input_class)+"'") else: title=("Error Rate") return rvd.column_matrix(matrix,title=title) elif (model.category=="multinomial"): classes=model.classes num_classes=str(len(classes)) query="select error_rate(obs, response using parameters num_classes="+num_classes+") over() from (select decode("+model.response_column for idx,item in enumerate(classes): query+=",'"+str(item)+"',"+str(idx) query+=") as obs, decode(predict_"+model.model_type+"("+",".join(model.predictor_columns)+" using parameters model_name='{}',match_by_pos='true'".format(model.model_name) query+=",type='response')" for idx,item in enumerate(classes): query+=",'"+str(item)+"',"+str(idx) query+=") as response from {}) x".format(model.input_relation) model.cursor.execute(query) query_result=model.cursor.fetchall() matrix=[['']+classes+['total'],['error_rate']+[item[1] for item in query_result]] return rvd.column_matrix(matrix) else: raise Exception("The Error Rate is only available for multinomial/binomial models") # Return the Features Importance def features_importance(model,show=True,with_intercept=False): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes,kmeans)))): raise TypeError("This function is not available with this model") if (not(isinstance(show,bool))): raise TypeError("The parameter 'show' must be a bool") if (not(isinstance(with_intercept,bool))): raise TypeError("The parameter 'with_intercept' must be a bool") if (model.model_type in ["linear_reg","svm_regressor","svm_classifier","logistic_reg"]): columns=model.details().data_columns if (type(model.all_importances)!=list): coefficients=columns[0] all_importances=columns[1] del coefficients[0] del all_importances[0] del coefficients[0] query=[] for item in coefficients: query+=["avg({}),stddev({})".format(item,item)] query="select "+",".join(query)+" from "+model.input_relation model.cursor.execute(query) avg_std=model.cursor.fetchone() all_avg=[] all_std=[] for i in range(len(avg_std)): if ((i%2)==0): all_avg+=[avg_std[i]] else: all_std+=[avg_std[i]] coefficients=['Intercept']+coefficients all_importances[0]+=sum([all_avg[i]*columns[1][i+1] for i in range(len(all_avg))]) for i in range(1,len(all_importances)): all_importances[i]=all_importances[i]*all_std[i-1] if not(with_intercept): del all_importances[0] del coefficients[0] all_sign=[item>0 for item in all_importances] all_importances=[abs(item) for item in all_importances] all_importances=[item/sum(all_importances) for item in all_importances] model.all_importances=[coefficients,all_importances,all_sign] else: coefficients=model.all_importances[0] all_importances=model.all_importances[1] all_sign=model.all_importances[2] elif (model.model_type=="kmeans"): query=[] if (type(model.all_importances)!=list): try: for item in model.input_columns: for i in range(0,model.num_clusters): query_item="corr((case when apply_kmeans({} using parameters model_name='{}', match_by_pos='True') = {} then 1 else 0 end),{})" query_item=query_item.format(",".join(model.input_columns),model.model_name,i,item) query+=[query_item] query="select "+",".join(query)+" from "+model.input_relation model.cursor.execute(query) query_result=model.cursor.fetchone() except: query_result=[] for item in model.input_columns: for i in range(0,model.num_clusters): query_item="corr((case when apply_kmeans({} using parameters model_name='{}', match_by_pos='True') = {} then 1 else 0 end),{})" query_item=query_item.format(",".join(model.input_columns),model.model_name,i,item) query="select "+query_item+" from "+model.input_relation model.cursor.execute(query) query_result+=[model.cursor.fetchone()[0]] all_importances=[] k=0 importance=0 all_sign=[] for item in query_result: if (k==model.num_clusters): all_importances+=[importance] importance=0 k=0 k+=1 all_sign+=[item>0] importance+=abs(item) all_importances=all_importances+[importance] all_importances=[item/sum(all_importances) for item in all_importances] model.all_importances=[all_importances,all_sign] else: all_importances=model.all_importances[0] all_sign=model.all_importances[1] coefficients=model.input_columns else: raise Exception("The features_importance function is not yet implemented for '{}' model.".format(model.model_type)) all_importances,coefficients,all_sign=zip(*sorted(zip(all_importances,coefficients,all_sign))) coefficients=[item for item in coefficients] all_importances=[item for item in all_importances] all_sign=[item for item in all_sign] if (show): plt.figure(figsize=(7,5)) plt.rcParams['axes.facecolor']='#F5F5F5' color=[] for item in all_sign: if (item): color+=['dodgerblue'] else: color+=['mediumseagreen'] plt.barh(range(0,len(all_importances)),all_importances,0.9,color=color,alpha=0.86) orange=mpatches.Patch(color='mediumseagreen', label='sign -') blue=mpatches.Patch(color='dodgerblue', label='sign +') plt.legend(handles=[orange,blue],loc="lower right") plt.ylabel("Features") plt.xlabel("Importance") plt.title("Model {}: '{}'".format(model.model_type,model.model_name)) plt.gca().xaxis.grid() plt.gca().set_axisbelow(True) plt.yticks(range(0,len(all_importances)),coefficients) plt.show() return rvd.column_matrix([[""]+coefficients,['Importance']+all_importances]) # Return the Lift table def lift_table(model,num_bins=200,color=["dodgerblue","#444444"],show=True,input_class=1): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (not(isinstance(num_bins,int)) or (num_bins<0)): raise TypeError("The parameter 'num_bins' must be a positive integer") if (not(isinstance(show,bool))): raise TypeError("The parameter 'show' must be a bool") if ((model.category=="binomial") or ((model.category=="multinomial") and ((input_class in model.classes) or (str(input_class) in model.classes)))): query=("select lift_table(obs, prob using parameters num_bins={}) over() from (select (case when {}='{}' then 1 else 0 end) as obs, predict_{}"+ "({} using parameters model_name='{}',type='probability',class='{}',match_by_pos='true')::float as prob from {}) as prediction_output") query=query.format(num_bins,model.response_column,input_class,model.model_type,",".join(model.predictor_columns),model.model_name, input_class,model.input_relation) model.cursor.execute(query) query_result=model.cursor.fetchall() decision_boundary=[item[0] for item in query_result] positive_prediction_ratio=[item[1] for item in query_result] lift=[item[2] for item in query_result] decision_boundary.reverse() if (show): plt.figure(figsize=(7,5),facecolor='white') plt.rcParams['axes.facecolor']='#F5F5F5' plt.xlabel('Cumulative Data Fraction') plt.plot(decision_boundary,lift,color=color[0]) plt.plot(decision_boundary,positive_prediction_ratio,color=color[1]) if (model.category=="multinomial"): plt.title(model.model_name+" Lift Table of class '{}'".format(input_class)) else: plt.title(model.model_name+" Lift Table") plt.gca().set_axisbelow(True) plt.grid() color1=mpatches.Patch(color=color[0], label='Cumulative Lift') color2=mpatches.Patch(color=color[1], label='Cumulative Capture Rate') plt.legend(handles=[color1,color2]) plt.show() return rvd.column_matrix([['decision_boundary']+decision_boundary,['positive_prediction_ratio']+positive_prediction_ratio,['lift']+lift],repeat_first_column=False) else: raise Exception("The Lift Table is only available for multinomial/binomial models with a correct class.") # Load the Model def load_model(model_name,cursor,input_relation=None): if (not(isinstance(model_name,str))): raise TypeError("The parameter 'model_name' must be a varchar") cursor.execute("select model_type from models where model_name='"+model_name+"'") model_type=cursor.fetchone()[0].lower() if (model_type=="kmeans"): query="select attr_fields from (select get_model_attribute(using parameters model_name='{}')) x limit 1;" query=query.format(model_name) cursor.execute(query) input_columns=cursor.fetchone()[0] input_columns=input_columns.split(", ") num_clusters=len(input_columns) if (type(input_relation)!=str): summarize=summarize_model(model_name,cursor).lower() input_relation=summarize.split("kmeans(")[1].split(",")[1].split("'")[1] return kmeans(cursor,model_name,input_relation,input_columns,num_clusters,load=True) elif (model_type=="cross_validation"): return cross_validate("","","","",cursor,model_name=model_name,load=True) else: query="select predictor from (select get_model_attribute(using parameters model_name='{}',attr_name='details')) x;" query=query.format(model_name) cursor.execute(query) predictor_columns=cursor.fetchall() predictor_columns=[item for sublist in predictor_columns for item in sublist] if (model_type in ["linear_regression","svm_regressor","svm_classifier","logistic_regression","naive_bayes"]): predictor_columns=predictor_columns[1:len(predictor_columns)] query="select get_model_attribute(using parameters model_name='{}',attr_name='call_string');" query=query.format(model_name) cursor.execute(query) query_result=cursor.fetchone()[0] response_column=query_result.split(',')[2].replace("'","").replace('"',"").replace(' ',"") if (type(input_relation)!=str): input_relation=query_result.split(',')[1].replace("'","").replace('"',"").replace(' ',"") if (model_type=="linear_regression"): return linear_reg(model_name,input_relation,response_column,predictor_columns,cursor,load=True) elif (model_type=="svm_regressor"): return svm_regressor(model_name,input_relation,response_column,predictor_columns,cursor,load=True) elif (model_type=="svm_classifier"): return svm_classifier(model_name,input_relation,response_column,predictor_columns,cursor,load=True) elif (model_type=="naive_bayes"): return naive_bayes(model_name,input_relation,response_column,predictor_columns,cursor,load=True) elif (model_type=="logistic_regression"): return logistic_reg(model_name,input_relation,response_column,predictor_columns,cursor,load=True) elif (model_type=="rf_classifier"): return rf_classifier(model_name,input_relation,response_column,predictor_columns,cursor,load=True) elif (model_type=="rf_regressor"): return rf_regressor(model_name,input_relation,response_column,predictor_columns,cursor,load=True) else: raise Exception("The model '{}' is not took in charge.".format(model_type)) # return the Log loss for multinomial model def logloss(model): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if ((model.category in ["binomial","multinomial"])): if (model.model_type in ["svm_classifier","logistic_reg"]): query=("select avg(case when {}=1 then -log(predict_{}({} using parameters model_name='{}',type='probability',class='1',match_by_pos='true')::float+0.000001)"+ " else -log(1-predict_{}({} using parameters model_name='{}',type='probability',class='1',match_by_pos='true')::float+0.000001) end) from {};") query=query.format(model.response_column,model.model_type,",".join(model.predictor_columns),model.model_name,model.model_type, ",".join(model.predictor_columns),model.model_name,model.input_relation) model.cursor.execute(query) logloss_value=model.cursor.fetchone()[0] else: logloss_value=0 for current_class in model.classes: query=("select avg(case when {}='{}' then -log(predict_{}({} using parameters model_name='{}',type='probability',class='{}',match_by_pos='true')::float+0.000001)"+ " else -log(1-predict_{}({} using parameters model_name='{}',type='probability',class='{}',match_by_pos='true')::float+0.000001) end) from {};") query=query.format(model.response_column,current_class,model.model_type,",".join(model.predictor_columns),model.model_name,current_class,model.model_type, ",".join(model.predictor_columns),model.model_name,current_class,model.input_relation) model.cursor.execute(query) logloss_value+=model.cursor.fetchone()[0] logloss_value=logloss_value/len(model.classes) model.logloss_value=logloss_value return logloss_value else: raise Exception("The logloss is only available for multinomial/binomial models") # Return the ntree metric curve for a rf_classifier algorithm def metric_rf_curve_ntree(input_relation,test_relation,response_column,predictor_columns,cursor, mode='logloss',ntree_begin=1,ntree_end=20,mtry=None,sampling_size=0.632, max_depth=5,max_breadth=32,min_leaf_size=5,min_info_gain=0.0,nbins=32, test_only=True): if (not(isinstance(predictor_columns,list))): raise TypeError("The parameter 'predictor_columns' must be a list of varchar") else: for column in predictor_columns: if (not(isinstance(column,str))): raise TypeError("The parameter 'predictor_columns' must be a list of varchar") if (not(isinstance(input_relation,str))): raise TypeError("The parameter 'input_relation' must be a varchar") if (not(isinstance(test_relation,str))): raise TypeError("The parameter 'test_relation' must be a varchar") if (not(isinstance(response_column,str))): raise TypeError("The parameter 'response_column' must be a varchar") if (not(isinstance(ntree_begin,int)) or (ntree_begin<0)): raise TypeError("The parameter 'ntree_begin' must be a positive integer") if (not(isinstance(ntree_end,int)) or (ntree_end<0)): raise TypeError("The parameter 'ntree_end' must be a positive integer") if (not(isinstance(max_depth,int)) or (max_depth<0)): raise TypeError("The parameter 'max_depth' must be a positive integer") if (not(isinstance(max_breadth,int)) or (max_breadth<0)): raise TypeError("The parameter 'max_breadth' must be a positive integer") if (not(isinstance(min_leaf_size,int)) or (min_leaf_size<0)): raise TypeError("The parameter 'min_leaf_size' must be a positive integer") if (not(isinstance(nbins,int)) or (nbins<0)): raise TypeError("The parameter 'nbins' must be a positive integer") if (not(isinstance(sampling_size,float)) or (sampling_size<0) or (sampling_size>1)): raise TypeError("The parameter 'sampling_size' must be in [0,1]") if (not(isinstance(min_info_gain,float)) or (min_info_gain<0)): raise TypeError("The parameter 'min_info_gain' must be a positive float") marker='s' if (ntree_end-ntree_begin>20): marker=None all_error_test=[] all_error_train=[] if (mode not in ['logloss','accuracy','error_rate','auc']): raise TypeError("Mode must be in logloss|accuracy|error_rate|auc.") for i in range(ntree_begin,ntree_end+1): name="_vpython_error_"+str(np.random.randint(1000000)) query="drop model if exists {};".format(name) cursor.execute(query) rf_classifier(name,input_relation,response_column,predictor_columns,cursor,ntree=i, mtry=mtry,sampling_size=sampling_size,max_depth=max_depth,max_breadth=max_breadth,min_leaf_size=min_leaf_size, min_info_gain=min_info_gain,nbins=nbins) model=load_model(name,cursor,test_relation) if (mode=='logloss'): all_error_test+=[model.logloss()] elif (mode=='error_rate'): all_error_test+=[model.error_rate().data_columns[1][3]] elif (mode=='accuracy'): all_error_test+=[1-model.error_rate().data_columns[1][3]] elif (mode=='auc'): all_error_test+=[model.roc(show=False)[0].data_columns[1][1]] model=load_model(name,cursor,input_relation) if (mode=='logloss'): all_error_train+=[model.logloss()] elif (mode=='error_rate'): all_error_train+=[model.error_rate().data_columns[1][3]] elif (mode=='accuracy'): all_error_train+=[1-model.error_rate().data_columns[1][3]] elif (mode=='auc'): all_error_train+=[model.roc(show=False)[0].data_columns[1][1]] query="drop model if exists {};".format(name) cursor.execute(query) ntrees=range(ntree_begin,ntree_end+1) plt.rcParams['axes.facecolor']='#F4F4F4' plt.grid() plt.plot(ntrees,all_error_test,marker=marker,color='dodgerblue') if not(test_only): plt.plot(ntrees,all_error_train,marker=marker,color='mediumseagreen') plt.title(mode+" curve") plt.xlabel('ntree') plt.ylabel(mode) if not(test_only): orange=mpatches.Patch(color='mediumseagreen', label='train') blue=mpatches.Patch(color='dodgerblue', label='test') plt.legend(handles=[orange,blue]) plt.xlim(ntree_begin,ntree_end) plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True)) plt.subplots_adjust(left=0.2) plt.show() return (rvd.column_matrix([["ntree"]+list(ntrees),[mode+"_test"]+all_error_test],first_element="ntree"), rvd.column_matrix([["ntree"]+list(ntrees),[mode+"_train"]+all_error_train],first_element="ntree")) # Return the depth metric curve for the rf_classifier algorithm def metric_rf_curve_depth(input_relation,test_relation,response_column,predictor_columns,cursor,mode='logloss', ntree=20,mtry=None,sampling_size=0.632,max_depth_begin=1,max_depth_end=12, max_breadth=32,min_leaf_size=5,min_info_gain=0.0,nbins=32,test_only=True): if (not(isinstance(predictor_columns,list))): raise TypeError("The parameter 'predictor_columns' must be a list of varchar") else: for column in predictor_columns: if (not(isinstance(column,str))): raise TypeError("The parameter 'predictor_columns' must be a list of varchar") if (not(isinstance(input_relation,str))): raise TypeError("The parameter 'input_relation' must be a varchar") if (not(isinstance(test_relation,str))): raise TypeError("The parameter 'test_relation' must be a varchar") if (not(isinstance(response_column,str))): raise TypeError("The parameter 'response_column' must be a varchar") if (not(isinstance(ntree,int)) or (ntree<0)): raise TypeError("The parameter 'ntree' must be a positive integer") if (not(isinstance(max_depth_begin,int)) or (max_depth_begin<0)): raise TypeError("The parameter 'max_depth_begin' must be a positive integer") if (not(isinstance(max_depth_end,int)) or (max_depth_end<0)): raise TypeError("The parameter 'max_depth_end' must be a positive integer") if (not(isinstance(max_breadth,int)) or (max_breadth<0)): raise TypeError("The parameter 'max_breadth' must be a positive integer") if (not(isinstance(min_leaf_size,int)) or (min_leaf_size<0)): raise TypeError("The parameter 'min_leaf_size' must be a positive integer") if (not(isinstance(nbins,int)) or (nbins<0)): raise TypeError("The parameter 'nbins' must be a positive integer") if (not(isinstance(sampling_size,float)) or (sampling_size<0) or (sampling_size>1)): raise TypeError("The parameter 'sampling_size' must be in [0,1]") if (not(isinstance(min_info_gain,float)) or (min_info_gain<0)): raise TypeError("The parameter 'min_info_gain' must be a positive float") marker='s' if (max_depth_end-max_depth_begin>20): marker=None all_error_test=[] all_error_train=[] if (mode not in ['logloss','accuracy','error_rate','auc']): raise TypeError("Mode must be in logloss|accuracy|error_rate|auc.") for i in range(max_depth_begin,max_depth_end+1): name="_vpython_error_"+str(np.random.randint(1000000)) query="drop model if exists {};".format(name) cursor.execute(query) model=rf_classifier(name,input_relation,response_column,predictor_columns,cursor,ntree=ntree, mtry=mtry,sampling_size=sampling_size,max_depth=i,max_breadth=max_breadth,min_leaf_size=min_leaf_size, min_info_gain=min_info_gain,nbins=nbins) model=load_model(name,cursor,test_relation) if (mode=='logloss'): all_error_test+=[model.logloss()] elif (mode=='error_rate'): all_error_test+=[model.error_rate().data_columns[1][3]] elif (mode=='accuracy'): all_error_test+=[1-model.error_rate().data_columns[1][3]] elif (mode=='auc'): all_error_test+=[model.roc(show=False)[0].data_columns[1][1]] model=load_model(name,cursor,input_relation) if (mode=='logloss'): all_error_train+=[model.logloss()] elif (mode=='error_rate'): all_error_train+=[model.error_rate().data_columns[1][3]] elif (mode=='accuracy'): all_error_train+=[1-model.error_rate().data_columns[1][3]] elif (mode=='auc'): all_error_train+=[model.roc(show=False)[0].data_columns[1][1]] query="drop model if exists {};".format(name) cursor.execute(query) max_depth=range(max_depth_begin,max_depth_end+1) plt.rcParams['axes.facecolor']='#F4F4F4' plt.grid() plt.plot(max_depth,all_error_test,marker=marker,color='dodgerblue') if not(test_only): plt.plot(max_depth,all_error_train,marker=marker,color='mediumseagreen') plt.title(mode+" curve") plt.xlabel('max_depth') plt.ylabel(mode) if not(test_only): orange=mpatches.Patch(color='mediumseagreen', label='train') blue=mpatches.Patch(color='dodgerblue', label='test') plt.legend(handles=[orange,blue]) plt.xlim(max_depth_begin,max_depth_end) plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True)) plt.subplots_adjust(left=0.2) plt.show() return (rvd.column_matrix([["max_depth"]+list(max_depth),[mode+"_test"]+all_error_test],first_element="max_depth"), rvd.column_matrix([["max_depth"]+list(max_depth),[mode+"_train"]+all_error_train],first_element="max_depth")) # Return the mse of the model for a reg model def mse(model): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (model.mse_val==None): query=("select mse(obs,prediction) over () from (select "+model.response_column+ " as obs, predict_"+model.model_type+"("+",".join(model.predictor_columns)+" using parameters "+ "model_name='"+model.model_name+"',match_by_pos='true') as prediction from "+model.input_relation+") x;") model.cursor.execute(query) model.mse_val=model.cursor.fetchone()[0] return abs(model.mse_val) # Return the value of the concerned model parameter: use * to see them all def parameter_value(model,parameter_name): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (parameter_name in ["regularization","rejected_row_count","accepted_row_count","iteration_count","alpha","tree_count"]): query="select get_model_attribute(using parameters model_name='{}',attr_name='{}')".format(model.model_name,parameter_name) model.cursor.execute(query) return model.cursor.fetchone()[0] elif ((parameter_name=="l") or (parameter_name=="lambda")): query="select get_model_attribute(using parameters model_name='{}',attr_name='regularization')".format(model.model_name,parameter_name) model.cursor.execute(query) return model.cursor.fetchone()[1] else: print("/!\\ Warning: The parameter doesn't exist.") # Plot for regressions def plot_reg(model,color=None,projection=None,max_nb_points=1000,show=True): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (not(isinstance(max_nb_points,int)) or (max_nb_points<0)): raise TypeError("The parameter 'max_nb_points' must be a positive integer") if (not(isinstance(show,bool))): raise TypeError("The parameter 'show' must be a varchar") if (model.category=="regression"): coefficients=model.details().data_columns a0=float(coefficients[1][1]) if (type(projection)==list): if (len(projection)>len(model.predictor_columns)): return model.plot(max_nb_points=max_nb_points,show=show) else: idx=coefficients[0].index(projection[0]) a1=coefficients[1][idx] if (len(projection)>1): idx=coefficients[0].index(projection[1]) a2=coefficients[1][idx] else: a1=float(coefficients[1][2]) if (len(coefficients[1]))>=4: a2=float(coefficients[1][3]) projection=model.predictor_columns if (len(projection)==1): if ((type(color)!=list) or (len(color)!=2)): color=["dodgerblue","black"] query="select {},{},random() from {} where {} is not null and {} is not null order by 3 limit {}".format(projection[0], model.response_column,model.input_relation,projection[0],model.response_column,max_nb_points) model.cursor.execute(query) all_points=model.cursor.fetchall() column1=[float(item[0]) for item in all_points] column2=[float(item[1]) for item in all_points] min_r=float(min(column1)) max_r=float(max(column1)) if (show): plt.figure(figsize=(7,5),facecolor='white') plt.gca().grid() plt.gca().set_axisbelow(True) plt.scatter(column1,column2,color=color[0],s=15) plt.plot([min_r,max_r],[a0+a1*min_r,a0+a1*max_r],color=color[1]) plt.xlabel(projection[0]) plt.ylabel(model.response_column) plt.title(model.model_type+': '+model.response_column+'='+str(round(a0,3))+"+("+str(round(a1,3))+")*"+projection[0]) plt.show() return [column1,column2,[a0,a1]] elif (len(projection)==2): if ((type(color)!=list) or (len(color)!=2)): color=["dodgerblue","gray"] query="select {},{},{},random() from {} where {} is not null and {} is not null and {} is not null order by 3 limit {}".format( projection[0],projection[1],model.response_column,model.input_relation,projection[0],projection[1],model.response_column,max_nb_points) model.cursor.execute(query) all_points=model.cursor.fetchall() column1=[float(item[0]) for item in all_points] column2=[float(item[1]) for item in all_points] column3=[float(item[2]) for item in all_points] min_r1=float(min(column1)) max_r1=float(max(column1)) min_r2=float(min(column2)) max_r2=float(max(column2)) if (show): fig=plt.figure(figsize=(7,5),facecolor='white') ax=fig.add_subplot(111,projection='3d') X=np.arange(min_r1,max_r1,(max_r1-min_r1)/5.0) Y=np.arange(min_r2,max_r2,(max_r2-min_r2)/5.0) X,Y=np.meshgrid(X, Y) Z=a0+a1*X+a2*Y ax.scatter(column1,column2,column3,color[0],s=15) ax.plot_surface(X,Y,Z, rstride=1, cstride=1, alpha=0.8,color=color[1]) ax.set_xlabel(projection[0]) ax.set_ylabel(projection[1]) ax.set_zlabel(model.response_column) plt.title(model.model_type+': '+model.response_column+'='+str(round(a0,3))+"+("+str(round(a1,3))+ ")*"+projection[0]+"+("+str(round(a2,3))+")*"+projection[1]) plt.show() else: print("/!\\ Warning: The dimension is too big.") print("Please use the 'projection' parameter to see a projection of your figure") else: raise Exception("The model must be a regression to use this function") # Return model metrics for a reg model def reg_metrics(model): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") mse_val=model.mse() rsquared_val=model.rsquared() return rvd.column_matrix([['','mse','rsquared'],['value',mse_val,rsquared_val]]) # Plot the ROC curve def roc(model,num_bins=1000,color=["dodgerblue","#444444"],show=True,input_class=1): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (not(isinstance(num_bins,int)) or (num_bins<0)): raise TypeError("The parameter 'num_bins' must be a positive integer") if (not(isinstance(show,bool))): raise TypeError("The parameter 'show' must be a varchar") if ((model.category=="binomial") or ((model.category=="multinomial") and ((input_class in model.classes) or (str(input_class) in model.classes)))): query=("select roc(obs, prob using parameters num_bins={}) over() from (select (case when {}='{}' then 1 else 0 end) as obs, predict_{}"+ "({} using parameters model_name='{}',type='probability',class='{}',match_by_pos='true')::float as prob from {}) as prediction_output") query=query.format(num_bins,model.response_column,input_class,model.model_type,",".join(model.predictor_columns),model.model_name, input_class,model.input_relation) model.cursor.execute(query) query_result=model.cursor.fetchall() threshold=[item[0] for item in query_result] false_positive=[item[1] for item in query_result] true_positive=[item[2] for item in query_result] auc=0 for i in range(len(false_positive)-1): if (false_positive[i+1]-false_positive[i]!=0.0): a=(true_positive[i+1]-true_positive[i])/(false_positive[i+1]-false_positive[i]) b=true_positive[i+1]-a*false_positive[i+1] auc=auc+a*(false_positive[i+1]*false_positive[i+1]-false_positive[i]*false_positive[i])/2+b*(false_positive[i+1]-false_positive[i]); auc=-auc best_threshold_arg=np.argmax([abs(y-x) for x,y in zip(false_positive,true_positive)]) best_threshold=threshold[best_threshold_arg] if (model.model_type!="svm_classifier"): metrics=rvd.column_matrix([['','auc','best_threshold'],['value',auc,best_threshold]]) if (show): plt.figure(figsize=(7,5),facecolor='white') plt.rcParams['axes.facecolor']='#F5F5F5' plt.xlabel('False Positive Rate (1-Specificity)') plt.ylabel('True Positive Rate (Sensitivity)') plt.plot(false_positive,true_positive,color=color[0]) plt.plot([0,1],[0,1],color=color[1]) plt.ylim(0,1) plt.xlim(0,1) if (model.category=="multinomial"): plt.title(model.model_name+" ROC Curve of class '{}'\nAUC=".format(input_class)+str(auc)) else: plt.title(model.model_name+" ROC Curve\nAUC="+str(auc)) plt.gca().set_axisbelow(True) plt.grid() plt.show() if (model.model_type!="svm_classifier"): return metrics,rvd.column_matrix([['threshold']+threshold,['false_positive']+false_positive,['true_positive']+true_positive],repeat_first_column=False) else: return rvd.column_matrix([['','auc'],['value',auc]]),rvd.column_matrix([['threshold']+threshold,['false_positive']+false_positive,['true_positive']+true_positive],repeat_first_column=False) else: raise Exception("The ROC Curve is only available for multinomial/binomial models with a correct class.") # Return the rsquared of the model for a reg model def rsquared(model): if (not(isinstance(model,(rf_classifier,rf_regressor,svm_classifier,svm_regressor,linear_reg,logistic_reg,naive_bayes)))): raise TypeError("This function is not available with this model") if (model.rsquared_val==None): query=("select rsquared(obs,prediction) over () from (select "+model.response_column+ " as obs, predict_"+model.model_type+"("+",".join(model.predictor_columns)+" using parameters "+ "model_name='"+model.model_name+"',match_by_pos='true') as prediction from "+model.input_relation+") x;") model.cursor.execute(query) model.rsquared_val=model.cursor.fetchone()[0] return abs(model.rsquared_val) # Summarize the Model def summarize_model(model_name,cursor): query="select summarize_model('"+model_name+"')" cursor.execute(query) query_result=cursor.fetchone()[0] return query_result # Print Tree Id n for a RF def tree(model,n=0): if (not(isinstance(model,(rf_classifier,rf_regressor)))): raise TypeError("Tree is only available with Random Forest models") if (not(isinstance(n,int)) or (n<0)): raise TypeError("The parameter 'n' must be a positive integer") if (model.model_type=="rf_classifier"): leaf_info="probability" elif (model.model_type=="rf_regressor"): leaf_info="variance" query=("select read_tree(using parameters model_name='{}', treeid='{}')") query=query.format(model.model_name,n) model.cursor.execute(query) query_result=model.cursor.fetchone()[0] query_result=query_result.replace('TreeID: ','') query_result=query_result.replace(' #node: ','') query_result=query_result.replace(' Tree Depth: ','') query_result=query_result.replace(' Tree Breadth: ','') query_result=query_result.replace(' rootID: ','') query_result=query_result.replace('NodeID: ','') query_result=query_result.replace(' Node Depth: ','') query_result=query_result.replace(' isLeaf: ','') query_result=query_result.replace(' threshold: ','') query_result=query_result.replace(' split on: ','') query_result=query_result.replace(' isSplitCategorical: ','') query_result=query_result.replace(' leftCategory: ','') query_result=query_result.replace(' leftChild ID: ','') query_result=query_result.replace(' rightChild ID: ','') query_result=query_result.replace(' prediction: ','') query_result=query_result.replace(' probability: ','') query_result=query_result.split('\n') del query_result[-1] information=query_result[0] tree0=[item.split(',') for item in query_result] del tree0[0] for item in tree0: if (len(item)==8): item[4]=model.predictor_columns[int(item[4])] information=information.split(",") try: screen_columns=shutil.get_terminal_size().columns except: screen_rows, screen_columns = os.popen('stty size', 'r').read().split() print("-"*int(screen_columns)) print("Tree Id: "+information[0]) print("Number of Nodes: "+information[1]) print("Tree Depth: "+information[2]) print("Tree Breadth: "+information[3]) print("-"*int(screen_columns)) try: from anytree import Node, RenderTree if (tree0[0][2]=="1"): tree_node_1=Node("[1] => {} (probability={})".format(tree0[0][3],tree0[0][4])) else: tree_node_1=Node("[1]") leaf_nb=0 for idx,item in enumerate(tree0): if (idx!=0): for item1 in tree0: if ((len(item1)==8) and (item[0] in [item1[6],item1[7]])): parent=item1 if (parent[3]=="1"): if (parent[6]==item[0]): op="=" else: op="!=" elif (parent[6]==item[0]): op="<" else: op=">=" if (item[2]=="0"): exec("tree_node_{}=Node('[{}] ({}{}{}){}',parent=tree_node_{})".format(item[0],item[0],parent[4],op,parent[5],"",parent[0])) else: exec("tree_node_{}=Node('[{}] ({}{}{}){}',parent=tree_node_{})".format(item[0],item[0],parent[4],op,parent[5],"",parent[0])) exec("tree_leaf_{}=Node('{} (probability={})',parent=tree_node_{})".format(leaf_nb,item[3],item[4],item[0])) leaf_nb+=1 for pre, fill, node in RenderTree(tree_node_1): print("%s%s" % (pre,node.name)) from anytree.dotexport import RenderTreeGraph try: RenderTreeGraph(tree_node_1).to_picture("anytree/"+model.model_name+"_tree"+str(n)+".png") if rvd.isnotebook(): from IPython.core.display import HTML,display display(HTML("<img src='anytree/"+model.model_name+"_tree"+str(n)+".png'>")) except: print("/!\\ Warning: Please create a folder 'anytree' where you execute the code in order to export a png of the tree.") except: print("/!\\ Warning: Please install the anytree package to print the tree in the terminal.") all_infos=['NodeID','Node Depth','isLeaf','isSplitCategorical','split on','threshold','leftChildID','rightChildID','prediction',leaf_info] for idx,item in enumerate(tree0): if (len(item)==8): tree0[idx]+=['-','-'] else: tree0[idx]=[item[0],item[1],item[2],'-','-','-','-','-',item[3],item[4]] data_columns=[] for i in range(0,10): data_columns+=[[all_infos[i]]+[item[i] for item in tree0]] return rvd.column_matrix(data_columns=data_columns,first_element="NodeID",title="Tree"+information[0]) # ############################# # __ ____ __ _ # # \ \ / / \/ | | # # \ \ / /| \ / | | # # \ \/ / | |\/| | | # # \ / | | | | |____ # # \/ |_| |_|______| # # # ############################# # ############################# # # # Vertica Machine Learning # # # ############################# # ## ##################### # # # Cross Validation # # # ##################### class cross_validate: # # Initialization # def __init__(self,algorithm,input_relation,response_column,predictor_columns,cursor, model_name=None,fold_count=5,hyperparams=None,prediction_cutoff=0.5,load=False): drop_at_the_end=False if not(load): if (type(model_name)!=str): drop_at_the_end=True model_name="_vpython_cv_"+str(np.random.randint(10000)) query="select cross_validate('{}','{}','{}','{}' using parameters cv_model_name='{}',cv_metrics='accuracy,error_rate'" query=query.format(algorithm,input_relation,response_column,",".join(predictor_columns),model_name) query+=",cv_fold_count={}".format(fold_count) if (type(hyperparams)==str): query+=",cv_hyperparams='{}'".format(hyperparams) if (algorithm=="logistic_reg"): query+=",cv_prediction_cutoff={}".format(prediction_cutoff) query+=")" cursor.execute(query) self.cursor=cursor self.model_name=model_name self.model_type="cross_validation" print(self) if (drop_at_the_end): drop_model(model_name,cursor) # Object Representation def __repr__(self): formatted_text="model_type='{}'\nmodel_name='{}'\nCounters:\n"+rvd.print_table(self.get_model_attribute("counters")) formatted_text+="Fold Info:\n"+rvd.print_table(self.get_model_attribute("fold_info")) formatted_text+="Details:\n"+rvd.print_table(self.get_model_attribute("run_details")) formatted_text+="Averages:\n"+rvd.print_table(self.get_model_attribute("run_average"))[0:-2] formatted_text=formatted_text.format(self.model_type,self.model_name) if isnotebook(): return "<cross_validate>" else: return formatted_text # ########### # # # Methods # # # ########### # def get_model_attribute(self,attr_name="run_details"): if (attr_name in ["run_details","run_average","fold_info","counters","call_string"]): query="select get_model_attribute(using parameters model_name='{}',attr_name='{}')".format( self.model_name,attr_name) self.cursor.execute(query) columns=[column[0] for column in self.cursor.description] all_columns=[] query_result=self.cursor.fetchall() for i in range(len(query_result[0])): all_columns+=[[columns[i]]+[item[i] for item in query_result]] return all_columns else: raise TypeError("'attr_name' must be in run_details|run_average|fold_info|counters|call_string") ########### # # # Kmeans # # # ########### class kmeans: # # Initialization # def __init__(self,model_name,input_relation,input_columns,num_clusters,cursor,max_iterations=10, epsilon=1e-4,init_method="kmeanspp",initial_centers=None,load=False): if not(load): query="select kmeans('{}','{}','{}',{} using parameters max_iterations={},epsilon={}" query=query.format(model_name,input_relation,",".join(input_columns),num_clusters,max_iterations,epsilon) name="_vpython_kmeans_initial_centers_table_"+str(np.random.randint(1000000)) if (type(initial_centers)==list): query0="drop table if exists "+name cursor.execute(query0) if (len(initial_centers)!=num_clusters): print("/!\\ Warning: 'initial_centers' must be a list of 'num_clusters'={} points".format(num_clusters)) print("The 'initial_centers' will be choosed using the 'init_method'="+init_method) else: wrong_initial_centers=False for item in initial_centers: if (len(input_columns)!=len(item)): wrong_initial_centers=True break if (wrong_initial_centers): print("/!\\ Warning: Each points of 'initial_centers' must be of size len({})={}".format( input_columns,len(input_columns))) print("The 'initial_centers' will be choosed using the 'init_method' "+init_method) else: temp_initial_centers=[item for item in initial_centers] for item in initial_centers: del temp_initial_centers[0] if (item in temp_initial_centers): wrong_initial_centers=True break if (wrong_initial_centers): print("/!\\ Warning: All the points of 'initial_centers' must be different") print("The 'initial_centers' will be choosed using the 'init_method' "+init_method) else: query0=[] for i in range(len(initial_centers)): line=[] for j in range(len(initial_centers[0])): line+=[str(initial_centers[i][j])+" as "+input_columns[j]] line=",".join(line) query0+=["select "+line] query0=" union ".join(query0) query0="create table "+name+" as "+query0 cursor.execute(query0) query+=",initial_centers_table='"+name+"'" else: query+=",init_method='"+init_method+"'" query+=")" cursor.execute(query) query="drop table if exists "+name cursor.execute(query) self.cursor=cursor self.model_name=model_name self.input_relation=input_relation self.input_columns=input_columns self.num_clusters=num_clusters self.model_type="kmeans" self.category="clustering" self.all_importances=None # Object Representation def __repr__(self): query="select get_model_attribute(using parameters model_name='{}',attr_name='centers')".format(self.model_name) self.cursor.execute(query) query_result=self.cursor.fetchall() columns=[] for i in range(0,len(self.input_columns)): columns+=[[self.input_columns[i]]+[item[i] for item in query_result]] if (isnotebook()): rvd.print_table(columns)[0:-2] formatted_text="" else: formatted_text="Clusters:\n"+rvd.print_table(columns)[0:-2] formatted_text="model_type='{}'\nmodel_name='{}'\ninput_relation='{}'\ninput_columns='{}'\n"+formatted_text formatted_text=formatted_text.format(self.model_type,self.model_name,self.input_relation,",".join(self.input_columns)) return formatted_text # ########### # # # Methods # # # ########### # # Add the Kmeans prediction to the rvd def add_to_rvd(self,rvd,name="kmeans_cluster"+str(np.random.randint(10000))): imputation="apply_kmeans("+",".join(self.input_columns)+" using parameters model_name='"+self.model_name+"'"+",match_by_pos='True')" rvd.add_feature(name,imputation) return name # Return True if the model Converged def converged(self): query="select get_model_attribute(using parameters model_name='{}', attr_name='metrics')".format(self.model_name) self.cursor.execute(query) query_result=self.cursor.fetchone()[0] if (query_result.split("Converged: ")[1].split("\n")[0]=="True"): return True return False # Features Importance def features_importance(self,show=True): return features_importance(self,show=show) # Sum of Squares def between_cluster_SS(self): query="select get_model_attribute(using parameters model_name='{}', attr_name='metrics')".format(self.model_name) self.cursor.execute(query) query_result=self.cursor.fetchone()[0] return float(query_result.split("Between-Cluster Sum of Squares: ")[1].split("\n")[0]) def cluster_SS(self,show=True,display=True): query="select get_model_attribute(using parameters model_name='{}', attr_name='metrics')".format(self.model_name) self.cursor.execute(query) query_result=self.cursor.fetchone()[0] all_cluster_SS=[] for i in range(0,self.num_clusters): all_cluster_SS+=[float(query_result.split("Cluster "+str(i)+": ")[1].split("\n")[0])] if (show): all_cluster_SS_pr=['Cluster SS']+all_cluster_SS if not(isnotebook()): print(rvd.print_table([all_cluster_SS_pr])[0:-2]) else: rvd.print_table([all_cluster_SS_pr])[0:-2] if (display): plt.figure(figsize=(7,5)) plt.rcParams['axes.facecolor']='#E5E5E5' clusters=range(0,self.num_clusters) all_cluster_SS_pr=all_cluster_SS plt.barh(clusters,all_cluster_SS_pr,0.9,alpha=0.86,color="dodgerblue") plt.ylabel("Clusters") plt.xlabel("Sum of Squares") plt.title("Clusters Sum of Squares") plt.gca().xaxis.grid() plt.gca().set_axisbelow(True) plt.yticks(clusters) plt.show() return all_cluster_SS def total_SS(self): query="select get_model_attribute(using parameters model_name='{}', attr_name='metrics')".format(self.model_name) self.cursor.execute(query) query_result=self.cursor.fetchone()[0] return float(query_result.split("Total Sum of Squares: ")[1].split("\n")[0]) def within_cluster_SS(self): query="select get_model_attribute(using parameters model_name='{}', attr_name='metrics')".format(self.model_name) self.cursor.execute(query) query_result=self.cursor.fetchone()[0] return float(query_result.split("Total Within-Cluster Sum of Squares: ")[1].split("\n")[0]) ###################### # # # Linear Regression # # # ###################### class linear_reg: # # Initialization # def __init__(self,model_name,input_relation,response_column,predictor_columns,cursor,optimizer='Newton', epsilon=1e-6,max_iterations=100,regularization="None",l=0.0,alpha=0.5,load=False): if not(load): query="select linear_reg('{}','{}','{}','{}' using parameters optimizer='{}',epsilon={},max_iterations={}" query=query.format(model_name,input_relation,response_column,",".join(predictor_columns), optimizer,epsilon,max_iterations) query+=",regularization='{}',lambda={}".format(regularization,l) if (regularization=='ENet'): query+=",alpha={}".format(alpha) query+=")" cursor.execute(query) self.cursor=cursor self.model_name=model_name self.input_relation=input_relation self.response_column=response_column self.predictor_columns=predictor_columns self.model_type="linear_reg" self.category="regression" self.all_importances=None self.mse_val=None self.rsquared_val=None # Object Representation def __repr__(self): object_repr=self.details().__repr__() formatted_text=("model_type='{}'\nmodel_name='{}'\ninput_relation='{}'\nresponse_column='{}'\npredictor_columns='{}'\n"+ self.parameter_value(show=False)[4]) if not(isnotebook()): formatted_text=formatted_text+"\nParameters:\n"+object_repr formatted_text=formatted_text.format(self.model_type,self.model_name,self.input_relation,self.response_column,",".join(self.predictor_columns)) return formatted_text # ########### # # # Methods # # # ########### # # Add the linear_reg prediction to the rvd def add_to_rvd(self,rvd,name="linear_reg_pred"+str(np.random.randint(10000))): imputation="predict_linear_reg("+",".join(self.predictor_columns)+" using parameters model_name='"+self.model_name+"'"+",match_by_pos='True')" rvd.add_feature(name,imputation) return name # All the details of the model: p-value,t-value,coeffs... def details(self): return details(self.model_name,self.cursor) # Features Importance def features_importance(self,show=True,with_intercept=False): return features_importance(self,show=show,with_intercept=with_intercept) # MSE and RSQUARED def metrics(self): return reg_metrics(self) # Return the mse of the model def mse(self): return mse(self) # Return the value of the concerned parameter: use * to see them all def parameter_value(self,parameter_name="*",show=True): if (parameter_name=="*"): r=self.parameter_value("regularization") l=self.parameter_value("lambda") r_row=self.parameter_value("rejected_row_count") a_row=self.parameter_value("accepted_row_count") formatted_text="regularization: "+str(r) formatted_text+="\nlambda: "+str(l) formatted_text+="\nrejected_row_count: "+str(r_row) formatted_text+="\naccepted_row_count: "+str(a_row) if (show): print(formatted_text) return r,l,r_row,a_row,formatted_text elif (parameter_name in ["regularization","l","lambda","rejected_row_count","accepted_row_count"]): return parameter_value(self,parameter_name=parameter_name) else: print("Please use a correct parameter value: regularization|lambda|rejected_row_count|accepted_row_count|*") return False def plot(self,color=None,projection=None,max_nb_points=1000,show=True): plot_reg(self,color=color,projection=projection,max_nb_points=max_nb_points,show=show) # Return the rsquared of the model def rsquared(self): return rsquared(self) ######################## # # # Logistic Regression # # # ######################## class logistic_reg: # # Initialization # def __init__(self,model_name,input_relation,response_column,predictor_columns,cursor,optimizer='Newton',epsilon=1e-6, max_iterations=100,regularization='None',l=1,alpha=0.5,load=False): if not(load): query="select logistic_reg('{}','{}','{}','{}' using parameters optimizer='{}',epsilon={},max_iterations={}" query=query.format(model_name,input_relation,response_column,",".join(predictor_columns), optimizer,epsilon,max_iterations) query+=",regularization='{}',lambda={}".format(regularization,l) if (regularization=='ENet'): query+=",alpha={}".format(alpha) query+=")" cursor.execute(query) self.cursor=cursor self.model_name=model_name self.input_relation=input_relation self.response_column=response_column self.predictor_columns=predictor_columns self.model_type="logistic_reg" self.category="binomial" self.all_importances=None self.logloss_value=None # Object Representation def __repr__(self): object_repr=self.details().__repr__() formatted_text=("model_type='{}'\nmodel_name='{}'\ninput_relation='{}'\nresponse_column='{}'\npredictor_columns='{}'\n"+ self.parameter_value(show=False)[4]) if not(isnotebook()): formatted_text=formatted_text+"\nParameters:\n"+object_repr formatted_text=formatted_text.format(self.model_type,self.model_name,self.input_relation,self.response_column,",".join(self.predictor_columns)) return formatted_text # ########### # # # Methods # # # ########### # # model accuracy def accuracy(self,threshold=0.5): return accuracy(self,threshold,1) # Add the logistic_reg prediction to the rvd def add_to_rvd(self,rvd,name="logistic_reg_pred"+str(np.random.randint(10000)),prediction_type='response',cutoff=0.5): if (prediction_type in ['response','probability']): imputation=("predict_logistic_reg("+",".join(self.predictor_columns)+" using parameters model_name='" +self.model_name+"',"+"type='{}',cutoff={},match_by_pos='True')".format(prediction_type,cutoff)) rvd.add_feature(name,imputation) return name else: raise TypeError("Please use a correct prediction_type: response|probability") # model auc def auc(self): return auc(self,1) # Confusion Matrix def confusion_matrix(self,threshold=0.5): return confusion_matrix(self,threshold=threshold) # All the details of the model: p-value,t-value,coeffs... def details(self): return details(self.model_name,self.cursor) # Error Rate def error_rate(self,threshold=0.5): return error_rate(self,threshold=threshold) # Features Importance def features_importance(self,show=True,with_intercept=False): return features_importance(self,show=show,with_intercept=with_intercept) # Lift Table def lift_table(self,num_bins=100,color=["dodgerblue","#444444"],show=True,input_class=1): return lift_table(self,num_bins=num_bins,color=color,show=show) # Log Loss def logloss(self): if (self.logloss_value==None): return logloss(self) return self.logloss_value # Return the value of the concerned parameter: use * to see them all def parameter_value(self,parameter_name="*",show=True): if (parameter_name=="*"): r=self.parameter_value("regularization") l=self.parameter_value("lambda") r_row=self.parameter_value("rejected_row_count") a_row=self.parameter_value("accepted_row_count") formatted_text="regularization: "+str(r) formatted_text+="\nlambda: "+str(l) formatted_text+="\nrejected_row_count: "+str(r_row) formatted_text+="\naccepted_row_count: "+str(a_row) if (show): print(formatted_text) return r,l,r_row,a_row,formatted_text elif (parameter_name in ["regularization","l","lambda","rejected_row_count","accepted_row_count"]): return parameter_value(self,parameter_name=parameter_name) else: raise TypeError("Please use a correct parameter value: regularization|lambda|rejected_row_count|accepted_row_count|*") def plot(self,marker=["o","^"],color=None,projection=None,max_nb_points=None): def logit(x): return 1/(1+math.exp(-x)) coefficients=self.details().data_columns a0=float(coefficients[1][1]) alpha=[0.9,0.7] if (type(projection)==list): if (len(projection)>len(self.predictor_columns)): return self.plot(max_nb_points=max_nb_points,show=show) else: idx=coefficients[0].index(projection[0]) a1=coefficients[1][idx] if (len(projection)>1): idx=coefficients[0].index(projection[1]) a2=coefficients[1][idx] else: a1=float(coefficients[1][2]) if (len(coefficients[1]))>=4: a2=float(coefficients[1][3]) projection=self.predictor_columns if ((type(max_nb_points)!=int) or (max_nb_points<0)): if (len(projection)==1): max_nb_points=500 else: max_nb_points=1000 if (len(projection)==1): if ((type(color)!=list) or (len(color)!=3)): color=["mediumseagreen","dodgerblue","black"] columns=[] for i in range(2): query="select {},random() from {} where {} is not null and {}={} order by 2 limit {}".format(projection[0], self.input_relation,projection[0],self.response_column,i,int(max_nb_points/2)) self.cursor.execute(query) all_points=self.cursor.fetchall() columns+=[[float(item[0]) for item in all_points]] plt.figure(figsize=(7,5),facecolor='#EFEFEF') all_scatter=[] min_f=min(columns[0]+columns[1]) max_f=max(columns[0]+columns[1]) x=np.linspace(min_f,max_f,num=1000) y=[logit(a0+a1*item) for item in x] plt.plot(x,y,alpha=0.5,color=color[2]) for i in range(2): all_scatter+=[plt.scatter(columns[i],[logit(a0+a1*item) for item in columns[i]],alpha=alpha[i],marker=marker[i],color=color[i])] plt.gca().grid() plt.gca().set_axisbelow(True) plt.xlabel(projection[0]) plt.ylabel("logit") plt.legend(all_scatter,[0,1],scatterpoints=1,loc="upper right",ncol=4,title=self.response_column,fontsize=8) plt.title(self.model_type+': '+self.response_column+'=logit('+str(round(a0,3))+"+("+str(round(a1,3))+")*"+projection[0]+")") plt.show() elif (len(projection)==2): if ((type(color)!=list) or (len(color)!=3)): color=["mediumseagreen","dodgerblue","gray"] columns=[] for i in range(2): query="select {},{},random() from {} where {} is not null and {} is not null and {}={} order by 3 limit {}".format( projection[0],projection[1],self.input_relation,projection[0],projection[1],self.response_column,i,int(max_nb_points/2)) self.cursor.execute(query) all_points=self.cursor.fetchall() columns+=[[[float(item[0]) for item in all_points],[float(item[1]) for item in all_points]]] min_f1=float(min(columns[0][0]+columns[1][0])) max_f1=float(max(columns[0][0]+columns[1][0])) min_f2=float(min(columns[0][1]+columns[1][1])) max_f2=float(max(columns[0][1]+columns[1][1])) X=np.arange(min_f1,max_f1,(max_f1-min_f1)/40.0) Y=np.arange(min_f2,max_f2,(max_f2-min_f2)/40.0) X,Y=np.meshgrid(X, Y) Z=1/(1+np.exp(-(a0+a1*X+a2*Y))) fig=plt.figure(figsize=(7,5),facecolor='white') ax=fig.add_subplot(111,projection='3d') ax.plot_surface(X,Y,Z, rstride=1, cstride=1, alpha=0.5,color=color[2]) all_scatter=[] logit3D=[[],[]] for i in range(2): for j in range(len(columns[i][0])): logit3D[i]+=[a0+columns[i][0][j]*a1+columns[i][1][j]*a2] for i in range(2): logit3D[i]=[logit(item) for item in logit3D[i]] all_scatter+=[ax.scatter(columns[i][0],columns[i][1],logit3D[i],alpha=alpha[i],marker=marker[i],color=color[i])] ax.set_xlabel(projection[0]) ax.set_ylabel(projection[1]) ax.set_zlabel("logit") ax.legend(all_scatter,[0,1],scatterpoints=1,loc="lower left",ncol=4,title=self.response_column,fontsize=8,bbox_to_anchor=(0.9,1)) plt.title(self.model_type+': '+self.response_column+'=logit('+str(round(a0,3))+"+("+str(round(a1,3))+ ")*"+projection[0]+"+("+str(round(a2,3))+")*"+projection[1]+")") plt.show() else: print("/!\\ Warning: The dimension is too big.") print("Please use the 'projection' parameter to see a projection of your figure") def roc(self,num_bins=100,color=["dodgerblue","#444444"],show=True): return roc(self,num_bins=num_bins,color=color,show=show) ################ # # # Naive Bayes # # # ################ class naive_bayes: # # Initialization # def __init__(self,model_name,input_relation,response_column,predictor_columns,cursor,alpha=1.0,load=False): if not(load): query="select naive_bayes('{}','{}','{}','{}' using parameters alpha={}" query=query.format(model_name,input_relation,response_column,",".join(predictor_columns), alpha)+")" cursor.execute(query) self.cursor=cursor self.model_name=model_name self.input_relation=input_relation self.response_column=response_column self.predictor_columns=predictor_columns self.model_type="naive_bayes" self.logloss_value=None query="select {} from {} group by {}".format(response_column,input_relation,response_column) cursor.execute(query) query_result=cursor.fetchall() classes=[item for sublist in query_result for item in sublist] classes.sort() if (len(classes)>2): self.category="multinomial" else: self.category="binomial" self.classes=classes # Object Representation def __repr__(self): formatted_text=self.details().__repr__() formatted_text=("model_type='{}'\nmodel_name='{}'\ninput_relation='{}'\nresponse_column='{}'\npredictor_columns='{}'\n"+ self.parameter_value(show=False)[3]+"\nProbabilities:\n"+formatted_text) formatted_text=formatted_text.format(self.model_type,self.model_name,self.input_relation,self.response_column,",".join(self.predictor_columns)) return formatted_text # ########### # # # Methods # # # ########### # # model accuracy def accuracy(self,threshold=0.5,input_class=None): if (len(self.classes)==2) and (input_class==None): input_class=self.classes[1] return accuracy(self,threshold,input_class) # Add the naive_bayes prediction to the rvd def add_to_rvd(self,rvd,name="naive_bayes_pred"+str(np.random.randint(10000)),prediction_type='response',input_class=None): if (prediction_type in ['response','probability']): imputation=("predict_naive_bayes("+",".join(self.predictor_columns)+" using parameters model_name='" +self.model_name+"',"+"type='{}'".format(prediction_type)) if ((prediction_type=="probability") and ((input_class in self.classes) or (int(input_class) in self.classes))): imputation+=",class='{}'".format(input_class) imputation+=",match_by_pos='True')+0" rvd.add_feature(name,imputation) return name else: raise TypeError("Please use a correct prediction_type: response|probability") # model auc def auc(self,input_class=None): if not((input_class in self.classes) or (str(input_class) in self.classes)): input_class=self.classes[1] return auc(self,input_class) # Confusion Matrix def confusion_matrix(self,threshold=0.5,input_class=None): if (len(self.classes)==2) and (input_class==None): input_class=self.classes[1] return confusion_matrix(self,threshold=threshold,input_class=input_class) # All the details of the model: probabilities def details(self): return details(self.model_name,self.cursor,attr_name="prior") # Error Rate def error_rate(self,threshold=0.5,input_class=None): if (len(self.classes)==2) and (input_class==None): input_class=self.classes[1] return error_rate(self,threshold=threshold,input_class=input_class) # Lift Table def lift_table(self,num_bins=100,color=["dodgerblue","#444444"],show=True,input_class=None): if (self.category=="binomial"): input_class=self.classes[1] elif (input_class==None): input_class=self.classes[0] return lift_table(self,num_bins=num_bins,color=color,show=show,input_class=input_class) # Log Loss def logloss(self): if (self.logloss_value==None): return logloss(self) return self.logloss_value # Return the value of the concerned parameter: use * to see them all def parameter_value(self,parameter_name="*",show=True): if (parameter_name=="*"): alpha=self.parameter_value("alpha") r_row=self.parameter_value("rejected_row_count") a_row=self.parameter_value("accepted_row_count") formatted_text="alpha: "+str(alpha) formatted_text+="\nrejected_row_count: "+str(r_row) formatted_text+="\naccepted_row_count: "+str(a_row) if (show): print(formatted_text) return alpha,r_row,a_row,formatted_text elif (parameter_name in ["alpha","rejected_row_count","accepted_row_count"]): return parameter_value(self,parameter_name=parameter_name) else: print("Please use a correct parameter value: alpha|rejected_row_count|accepted_row_count|*") return False # ROC def roc(self,num_bins=100,color=["dodgerblue","#444444"],show=True,input_class=None): if (self.category=="binomial"): input_class=self.classes[1] elif (input_class==None): input_class=self.classes[0] return roc(self,num_bins=num_bins,color=color,show=show,input_class=input_class) ############################# # # # Random Forest Classifier # # # ############################# class rf_classifier: # # Initialization # def __init__(self,model_name,input_relation,response_column,predictor_columns,cursor,ntree=20, mtry=None,sampling_size=0.632,max_depth=5,max_breadth=32,min_leaf_size=1,min_info_gain=0.0, nbins=32,load=False): if not(load): if (mtry==None): mtry=max(int(len(predictor_columns)/3),1) query=("select rf_classifier('{}','{}','{}','{}' using parameters ntree={},mtry={},sampling_size={},"+ "max_depth={},max_breadth={},min_leaf_size={},min_info_gain={},nbins={}") query=query.format(model_name,input_relation,response_column,",".join(predictor_columns), ntree,mtry,sampling_size,max_depth,max_breadth,min_leaf_size,min_info_gain,nbins)+")" cursor.execute(query) self.cursor=cursor self.model_name=model_name self.input_relation=input_relation self.response_column=response_column self.predictor_columns=predictor_columns self.model_type="rf_classifier" self.logloss_value=None query="select {} from {} group by {}".format(response_column,input_relation,response_column) cursor.execute(query) query_result=cursor.fetchall() classes=[item for sublist in query_result for item in sublist] classes.sort() if (len(classes)>2): self.category="multinomial" else: self.category="binomial" self.classes=classes # Object Representation def __repr__(self): object_repr=self.details().__repr__() formatted_text=("model_type='{}'\nmodel_name='{}'\ninput_relation='{}'\nresponse_column='{}'\npredictor_columns='{}'\n"+ self.parameter_value(show=False)[3]) if not(isnotebook()): formatted_text=formatted_text+"\n"+object_repr formatted_text=formatted_text.format(self.model_type,self.model_name,self.input_relation,self.response_column,",".join(self.predictor_columns)) return formatted_text # ########### # # # Methods # # # ########### # # model accuracy def accuracy(self,threshold=0.5,input_class=None): if (len(self.classes)==2) and (input_class==None): input_class=self.classes[1] return accuracy(self,threshold,input_class) # Add the rf_classifier prediction to the rvd def add_to_rvd(self,rvd,name="rf_classifier_pred"+str(np.random.randint(10000)),prediction_type='response',input_class=None): if (prediction_type in ['response','probability']): imputation=("predict_rf_classifier("+",".join(self.predictor_columns)+" using parameters model_name='" +self.model_name+"',"+"type='{}'".format(prediction_type)) if ((prediction_type=="probability") and ((input_class in self.classes) or (int(input_class) in self.classes))): imputation+=",class='{}'".format(input_class) imputation+=",match_by_pos='True')+0" rvd.add_feature(name,imputation) return name else: raise TypeError("Please use a correct prediction_type: response|probability") # model auc def auc(self,input_class=None): if not((input_class in self.classes) or (str(input_class) in self.classes)): input_class=self.classes[1] return auc(self,input_class) # Confusion Matrix def confusion_matrix(self,threshold=0.5,input_class=None): if (len(self.classes)==2) and (input_class==None): input_class=self.classes[1] return confusion_matrix(self,threshold=threshold,input_class=input_class) # All the details of the model: probabilities def details(self): return details(self.model_name,self.cursor,model_type="rf") # Error Rate def error_rate(self,threshold=0.5,input_class=None): if (len(self.classes)==2) and (input_class==None): input_class=self.classes[1] return error_rate(self,threshold=threshold,input_class=input_class) # Lift Table def lift_table(self,num_bins=100,color=["dodgerblue","#444444"],show=True,input_class=None): if (self.category=="binomial"): input_class=self.classes[1] elif (input_class==None): input_class=self.classes[0] return lift_table(self,num_bins=num_bins,color=color,show=show,input_class=input_class) # Log Loss def logloss(self): if (self.logloss_value==None): return logloss(self) return self.logloss_value # Return the value of the concerned parameter: use * to see them all def parameter_value(self,parameter_name="*",show=True): if (parameter_name=="*"): t_count=self.parameter_value("tree_count") r_row=self.parameter_value("rejected_row_count") a_row=self.parameter_value("accepted_row_count") formatted_text="tree_count: "+str(t_count) formatted_text+="\nrejected_row_count: "+str(r_row) formatted_text+="\naccepted_row_count: "+str(a_row) if (show): print(formatted_text) return t_count,r_row,a_row,formatted_text elif (parameter_name in ["tree_count","rejected_row_count","accepted_row_count"]): return parameter_value(self,parameter_name=parameter_name) else: raise TypeError("Please use a correct parameter value: tree_count|rejected_row_count|accepted_row_count|*") # ROC def roc(self,num_bins=100,color=["dodgerblue","#444444"],show=True,input_class=None): if (self.category=="binomial"): input_class=self.classes[1] elif (input_class==None): input_class=self.classes[0] return roc(self,num_bins=num_bins,color=color,show=show,input_class=input_class) # Print Tree Id n def tree(self,n=0): return tree(self,n) ############################ # # # Random Forest Regressor # # # ############################ class rf_regressor: # # Initialization # def __init__(self,model_name,input_relation,response_column,predictor_columns,cursor,ntree=20, mtry=None,sampling_size=0.632,max_depth=5,max_breadth=32,min_leaf_size=5,min_info_gain=0.0, nbins=32,load=False): if not(load): if (mtry==None): mtry=max(int(len(predictor_columns)/3),1) query=("select rf_regressor('{}','{}','{}','{}' using parameters ntree={},mtry={},sampling_size={},"+ "max_depth={},max_breadth={},min_leaf_size={},min_info_gain={},nbins={}") query=query.format(model_name,input_relation,response_column,",".join(predictor_columns), ntree,mtry,sampling_size,max_depth,max_breadth,min_leaf_size,min_info_gain,nbins)+")" cursor.execute(query) self.cursor=cursor self.model_name=model_name self.input_relation=input_relation self.response_column=response_column self.predictor_columns=predictor_columns self.model_type="rf_regressor" self.category="regression" self.mse_val=None self.rsquared_val=None # Object Representation def __repr__(self): object_repr=self.details().__repr__() formatted_text=("model_type='{}'\nmodel_name='{}'\ninput_relation='{}'\nresponse_column='{}'\npredictor_columns='{}'\n"+ self.parameter_value(show=False)[3]) if not(isnotebook()): formatted_text=formatted_text+"\n"+object_repr formatted_text=formatted_text.format(self.model_type,self.model_name,self.input_relation,self.response_column,",".join(self.predictor_columns)) return formatted_text # ########### # # # Methods # # # ########### # # Add the rf_regressor prediction to the rvd def add_to_rvd(self,rvd,name="rf_regressor_pred"+str(np.random.randint(10000))): imputation="predict_rf_regressor("+",".join(self.predictor_columns)+" using parameters model_name='"+self.model_name+"'"+",match_by_pos='True')" rvd.add_feature(name,imputation) return name # All the details of the model: p-value,t-value,coeffs... def details(self): return details(self.model_name,self.cursor,model_type="rf") # MSE and RSQUARED def metrics(self): return reg_metrics(self) # Return the mse of the model def mse(self): return mse(self) # Return the value of the concerned parameter: use * to see them all def parameter_value(self,parameter_name="*",show=True): if (parameter_name=="*"): t_count=self.parameter_value("tree_count") r_row=self.parameter_value("rejected_row_count") a_row=self.parameter_value("accepted_row_count") formatted_text="tree_count: "+str(t_count) formatted_text+="\nrejected_row_count: "+str(r_row) formatted_text+="\naccepted_row_count: "+str(a_row) if (show): print(formatted_text) return t_count,r_row,a_row,formatted_text elif (parameter_name in ["tree_count","rejected_row_count","accepted_row_count"]): return parameter_value(self,parameter_name=parameter_name) else: raise TypeError("Please use a correct parameter value: regularization|lambda|rejected_row_count|accepted_row_count|*") # Return the rsquared of the model def rsquared(self): return rsquared(self) # Print Tree Id n def tree(self,n=0): return tree(self,n) ################### # # # SVM Classifier # # # ################### class svm_classifier: # # Initialization # def __init__(self,model_name,input_relation,response_column,predictor_columns,cursor,C=1.0,epsilon=1e-3, max_iterations=100,load=False): if not(load): query="select svm_classifier('{}','{}','{}','{}' using parameters C={},epsilon={},max_iterations={}" query=query.format(model_name,input_relation,response_column,",".join(predictor_columns), C,epsilon,max_iterations)+")" cursor.execute(query) self.cursor=cursor self.model_name=model_name self.input_relation=input_relation self.response_column=response_column self.predictor_columns=predictor_columns self.model_type="svm_classifier" self.category="binomial" self.all_importances=None # Object Representation def __repr__(self): object_repr=self.details().__repr__() formatted_text=("model_type='{}'\nmodel_name='{}'\ninput_relation='{}'\nresponse_column='{}'\npredictor_columns='{}'\n"+ self.parameter_value(show=False)[3]) if not(isnotebook()): formatted_text=formatted_text+"\nParameters:\n"+object_repr formatted_text=formatted_text.format(self.model_type,self.model_name,self.input_relation,self.response_column,",".join(self.predictor_columns)) return formatted_text # ########### # # # Methods # # # ########### # # model accuracy def accuracy(self): return accuracy(self,0.5,1) # Add the svm_classifier prediction to the rvd def add_to_rvd(self,rvd,name="svm_classifier_pred"+str(np.random.randint(10000))): imputation="predict_svm_classifier("+",".join(self.predictor_columns)+" using parameters model_name='"+self.model_name+"'"+",match_by_pos='True')" rvd.add_feature(name,imputation) return name # model auc def auc(self): return auc(self,0.5,1) # Confusion Matrix def confusion_matrix(self): return confusion_matrix(self) # All the details of the model: p-value,t-value,coeffs... def details(self): return details(self.model_name,self.cursor) # Error Rate def error_rate(self): return error_rate(self) # Features Importance def features_importance(self,show=True,with_intercept=False): return features_importance(self,show=show,with_intercept=with_intercept) # Lift Table def lift_table(self,num_bins=100,color=["dodgerblue","#444444"],show=True): return lift_table(self,num_bins=num_bins,color=color,show=show) # Log Loss def logloss(self): if (self.logloss_value==None): return logloss(self) return self.logloss_value # Return the value of the concerned parameter: use * to see them all def parameter_value(self,parameter_name="*",show=True): if (parameter_name=="*"): iteration=self.parameter_value("iteration_count") r_row=self.parameter_value("rejected_row_count") a_row=self.parameter_value("accepted_row_count") formatted_text="iteration_count: "+str(iteration) formatted_text+="\nrejected_row_count: "+str(r_row) formatted_text+="\naccepted_row_count: "+str(a_row) if (show): print(formatted_text) return iteration,r_row,a_row,formatted_text elif (parameter_name in ["iteration_count","rejected_row_count","accepted_row_count"]): return parameter_value(self,parameter_name=parameter_name) else: raise TypeError("Please use a correct parameter value: iteration_count|rejected_row_count|accepted_row_count|*") # Plot the model def plot(self,marker=["o","^"],color=None,projection=None,max_nb_points=None): coefficients=self.details().data_columns a0=float(coefficients[1][1]) alpha=[0.9,0.7] if (type(projection)==list): if (len(projection)>len(self.predictor_columns)): self.plot(max_nb_points=max_nb_points,show=show) else: idx=coefficients[0].index(projection[0]) a1=coefficients[1][idx] if (len(projection)>1): idx=coefficients[0].index(projection[1]) a2=coefficients[1][idx] if (len(projection)>2): idx=coefficients[0].index(projection[2]) a3=float(coefficients[1][4]) else: a1=float(coefficients[1][2]) if (len(coefficients[1]))>=4: a2=float(coefficients[1][3]) if (len(coefficients[1]))>=5: a3=float(coefficients[1][4]) projection=self.predictor_columns if ((type(max_nb_points)!=int) or (max_nb_points<0)): if (len(projection)==1): max_nb_points=40 elif (len(projection)==2): max_nb_points=400 else: max_nb_points=1000 if (len(projection)==1): if ((type(color)!=list) or (len(color)!=3)): color=["mediumseagreen","dodgerblue","black"] columns=[] for i in range(2): query="select {},random() from {} where {} is not null and {}={} order by 2 limit {}".format(projection[0], self.input_relation,projection[0],self.response_column,i,int(max_nb_points/2)) self.cursor.execute(query) all_points=self.cursor.fetchall() columns+=[[float(item[0]) for item in all_points]] border=-a0/a1 plt.figure(figsize=(7,5),facecolor='white') all_scatter=[] for i in range(2): all_scatter+=[plt.scatter(columns[i],[0]*len(columns[i]),alpha=alpha[i],marker=marker[i],color=color[i])] plt.plot([border,border],[-1,1],color=color[2]) plt.gca().grid() plt.gca().set_axisbelow(True) plt.xlabel(self.predictor_columns[0]) plt.gca().get_yaxis().set_ticks([]) plt.legend(all_scatter,[0,1],scatterpoints=1,loc="upper right",ncol=4,title="response",fontsize=8) plt.title(self.model_type+': '+self.response_column+'=sign('+str(round(a0,3))+"+("+str(round(a1,3))+")*"+projection[0]+")") plt.show() elif (len(projection)==2): if ((type(color)!=list) or (len(color)!=3)): color=["mediumseagreen","dodgerblue","black"] columns=[] for i in range(2): query="select {},{},random() from {} where {} is not null and {} is not null and {}={} order by 3 limit {}".format( projection[0],projection[1],self.input_relation,projection[0],projection[1],self.response_column,i,int(max_nb_points/2)) self.cursor.execute(query) all_points=self.cursor.fetchall() columns+=[[[float(item[0]) for item in all_points],[float(item[1]) for item in all_points]]] plt.figure(figsize=(7,5),facecolor='white') all_scatter=[] for i in range(2): all_scatter+=[plt.scatter(columns[i][0],columns[i][1],alpha=alpha[i],marker=marker[i],color=color[i])] min_f=min(columns[0][0]+columns[1][0]) max_f=max(columns[0][0]+columns[1][0]) plt.plot([min_f,max_f],[-(a0+a1*min_f)/a2,-(a0+a1*max_f)/a2],color=color[2]) plt.gca().grid() plt.gca().set_axisbelow(True) plt.xlabel(projection[0]) plt.ylabel(projection[1]) plt.legend(all_scatter,[0,1],scatterpoints=1,loc="upper right",ncol=4,title="response",fontsize=8) plt.title(self.model_type+': '+self.response_column+'=sign('+str(round(a0,3))+"+("+str(round(a1,3))+ ")*"+projection[0]+"+("+str(round(a2,3))+")*"+projection[1]+")") plt.show() elif (len(projection)==3): if ((type(color)!=list) or (len(color)!=3)): color=["mediumseagreen","dodgerblue","gray"] columns=[] for i in range(2): query="select {},{},{},random() from {} where {} is not null and {} is not null and {} is not null and {}={} order by 4 limit {}".format( projection[0],projection[1],projection[2],self.input_relation,projection[0],projection[1],projection[2],self.response_column,i,int(max_nb_points/2)) self.cursor.execute(query) all_points=self.cursor.fetchall() columns+=[[[float(item[0]) for item in all_points],[float(item[1]) for item in all_points],[float(item[2]) for item in all_points]]] min_f1=float(min(columns[0][0]+columns[1][0])) max_f1=float(max(columns[0][0]+columns[1][0])) min_f2=float(min(columns[0][1]+columns[1][1])) max_f2=float(max(columns[0][1]+columns[1][1])) X=np.arange(min_f1,max_f1,(max_f1-min_f1)/20.0) Y=
np.arange(min_f2,max_f2,(max_f2-min_f2)/20.0)
numpy.arange
import unittest import warnings import numpy as np from girth.synthetic import create_synthetic_irt_dichotomous, create_synthetic_irt_polytomous from girth import (rasch_jml, onepl_jml, twopl_jml, grm_jml, pcm_jml, rasch_mml, onepl_mml, twopl_mml, twopl_mml_eap, grm_mml_eap, pcm_mml, grm_mml, rasch_conditional, standard_errors_bootstrap) def _contains_keys(results, identifier): """Checks for standard keys in bootstrap result.""" for key in ['Standard Errors', '95th CI', 'Bias', 'Solution']: if key not in results.keys(): raise AssertionError(f"Key: {key} not found in return argument." f"Error in {identifier}") for key in results['95th CI']: if np.any(results['95th CI'][key][1] < results['95th CI'][key][0]): raise AssertionError(f"Confidence Interval Error. {key} " f"Error in {identifier}") warnings.filterwarnings('ignore') class TestBootstrapStandardErrors(unittest.TestCase): """Test Fixture for Bootstrap Standard Errors.""" # Smoke Tests to make sure they give an output # Tests bootstrap errors def setUp(self): rng = np.random.default_rng(48725309847520) self.discrimination = 0.25 + rng.rayleigh(.7, 5) self.difficulty = np.linspace(-1.5, 1.5, 5) self.difficulty_poly = np.sort(rng.standard_normal((5, 3)), axis=1) self.theta = rng.standard_normal(1000) self.options = {'max_iteration': 2} self.boot_iter = 10 def test_jml_methods_dichotomous(self): """Testing Bootstrap on JML Methods Dichotomous.""" rng = np.random.default_rng(39485720394875) dataset = create_synthetic_irt_dichotomous(self.difficulty, self.discrimination, self.theta, seed=rng) result = standard_errors_bootstrap(dataset, rasch_jml, n_processors=1, bootstrap_iterations=self.boot_iter, options=self.options) self.assertEqual(result['Standard Errors']['Discrimination'][0], 0) _contains_keys(result, 'Rasch JML') result = standard_errors_bootstrap(dataset, onepl_jml, n_processors=2, bootstrap_iterations=self.boot_iter, options=self.options) _contains_keys(result, '1PL JML') result = standard_errors_bootstrap(dataset, twopl_jml, n_processors=2, bootstrap_iterations=self.boot_iter, options=self.options) _contains_keys(result, '2PL JML') @unittest.skip(reason="Github") def test_jml_methods_polytomous(self): """Testing Bootstrap on JML Methods Polytomous.""" rng = np.random.default_rng(8672379287302651089) dataset = create_synthetic_irt_polytomous(self.difficulty_poly, self.discrimination, self.theta, seed=rng) result = standard_errors_bootstrap(dataset, grm_jml, n_processors=2, bootstrap_iterations=self.boot_iter, options=self.options) self.assertTupleEqual(result['95th CI']['Difficulty'][0].shape, self.difficulty_poly.shape) _contains_keys(result, 'GRM JML') dataset = create_synthetic_irt_polytomous(self.difficulty_poly, self.discrimination, self.theta, seed=rng, model='pcm') result = standard_errors_bootstrap(dataset, pcm_jml, n_processors=2, bootstrap_iterations=self.boot_iter, options=self.options) self.assertTupleEqual(result['95th CI']['Difficulty'][0].shape, self.difficulty_poly.shape) _contains_keys(result, 'PCM JML') @unittest.skip(reason="Github") def test_rasch_conditional(self): """Testing rasch conditional methods.""" rng =
np.random.default_rng(426376867989075563)
numpy.random.default_rng
""" Deep Learning on Graphs - ALTEGRAD - Dec 2019 """ import numpy as np import networkx as nx import time import torch import torch.nn.functional as F import torch.optim as optim from sklearn.metrics import accuracy_score, log_loss from utils import accuracy, normalize_adjacency from models import GNN # Hyperparameters epochs = 100 n_hidden_1 = 8 n_hidden_2 = 16 learning_rate = 0.01 dropout_rate = 0.1 # Loads the karate network G = nx.read_weighted_edgelist('karate.edgelist', delimiter=' ', nodetype=int, create_using=nx.Graph()) print(G.number_of_nodes()) print(G.number_of_edges()) n = G.number_of_nodes() # Loads the class labels class_labels = np.loadtxt('karate_labels.txt', delimiter=',', dtype=np.int32) idx_to_class_label = dict() for i in range(class_labels.shape[0]): idx_to_class_label[class_labels[i,0]] = class_labels[i,1] y = list() for node in G.nodes(): y.append(idx_to_class_label[node]) y = np.array(y) n_class = 2 adj = nx.to_numpy_matrix(G) # Obtains the adjacency matrix adj = normalize_adjacency(adj) # Normalizes the adjacency matrix ############## Task 12 # Set the feature of all nodes to the same value # Yields indices to split data into training and test sets idx =
np.random.RandomState(seed=42)
numpy.random.RandomState
# Copyright (c) Microsoft Corporation and contributors. # Licensed under the MIT License. import pytest import numpy as np import math import random from graspologic.match import GraphMatch as GMP from graspologic.simulations import er_np np.random.seed(0) class TestGMP: @classmethod def setup_class(cls): cls.barycenter = GMP(gmp=False) cls.rand = GMP(n_init=100, init="rand", gmp=False) cls.barygm = GMP(gmp=True) def test_SGM_inputs(self): with pytest.raises(TypeError): GMP(n_init=-1.5) with pytest.raises(ValueError): GMP(init="random") with pytest.raises(TypeError): GMP(max_iter=-1.5) with pytest.raises(TypeError): GMP(shuffle_input="hey") with pytest.raises(TypeError): GMP(eps=-1) with pytest.raises(TypeError): GMP(gmp="hey") with pytest.raises(TypeError): GMP(padding=2) with pytest.raises(ValueError): GMP(padding="hey") with pytest.raises(ValueError): GMP().fit( np.random.random((3, 4)), np.random.random((3, 4)), np.arange(2), np.arange(2), ) with pytest.raises(ValueError): GMP().fit( np.random.random((3, 4)), np.random.random((3, 4)), np.arange(2), np.arange(2), ) with pytest.raises(ValueError): GMP().fit(np.identity(3), np.identity(3), np.identity(3), np.arange(2)) with pytest.raises(ValueError): GMP().fit(np.identity(3), np.identity(3), np.arange(1), np.arange(2)) with pytest.raises(ValueError): GMP().fit(np.identity(3), np.identity(3),
np.arange(5)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Thu Aug 18 11:47:18 2016 @author: sebalander """ # %% IMPORTS from matplotlib.pyplot import plot, imshow, legend, show, figure, gcf, imread from matplotlib.pyplot import xlabel, ylabel from cv2 import Rodrigues # , homogr2pose from numpy import max, zeros, array, sqrt, roots, diag, sum, log from numpy import sin, cos, cross, ones, concatenate, flipud, dot, isreal from numpy import linspace, polyval, eye, linalg, mean, prod, vstack from numpy import ones_like, zeros_like, pi, float64, transpose from numpy import any as anny from numpy.linalg import svd, inv, det from scipy.linalg import norm from scipy.special import chdtri from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d # from copy import deepcopy as dc from importlib import reload from calibration import StereographicCalibration as stereographic from calibration import UnifiedCalibration as unified from calibration import RationalCalibration as rational from calibration import FisheyeCalibration as fisheye from calibration import PolyCalibration as poly reload(stereographic) reload(unified) reload(rational) reload(fisheye) reload(poly) def f64(x): return array(x, dtype=float64) # %% calss that holds all data class syntintr: def __init__(self, k=None, uv=None, s=None, camera=None, model=None): self.k = k self.uv = uv self.s = s self.camera = camera self.model = model class syntches: def __init__(self, nIm=None, nPt=None, rVecs=None, tVecs=None, objPt=None, imgPt=None, imgNse=None): self.nIm = nIm self.nPt = nPt self.rVecs = rVecs self.tVecs = tVecs self.objPt = objPt self.imgPt = imgPt self.imgNse = imgNse class syntextr: def __init__(self, ang=None, h=None, rVecs=None, tVecs=None, objPt=None, imgPt=None, index10=None, imgNse=None): self.ang = ang self.h = h self.rVecs = rVecs self.tVecs = tVecs self.objPt = objPt self.imgPt = imgPt self.index10 = index10 self.imgNse = imgNse class synt: def __init__(self, Intr=None, Ches=None, Extr=None): self.Intr = Intr self.Ches = Ches self.Extr = Extr class realches: def __init__(self, nIm=None, nPt=None, objPt=None, imgPt=None, imgFls=None): self.nIm = nIm self.nPt = nPt self.objPt = objPt self.imgPt = imgPt self.imgFls = imgFls class realbalk: def __init__(self, objPt=None, imgPt=None, priorLLA=None, imgFl=None): self.objPt = objPt self.imgPt = imgPt self.priorLLA = priorLLA self.imgFl = imgFl class realdete: def __init__(self, carGPS=None, carIm=None): self.carGPS = carGPS self.carIm = carIm class real: def __init__(self, Ches=None, Balk=None, Dete=None): self.Ches = Ches self.Balk = Balk self.Dete = Dete class datafull: ''' Nested namedtuples that hold the data for the paper Data Synt Intr # listo: SyntIntr camera 'vcaWide' string camera model model string indicating camera intrinsic model ['poly', 'rational', 'fisheye', 'stereographic'] s is the image size k sintehtic stereographic parameter uv = s / 2 is the stereographic optical center Ches # listo: SyntChes nIm number of images nPt number of point in image objPt chessboard model grid rVecs synth rotation vectors tVecs synth tVecs imgPt synth corners projected from objPt with synth params imgNse noise of 1 sigma for the image Extr # listo: SyntExtr ang angles of synth pose tables h heights of synth pose tables rVecs rotation vectors associated to angles tVecs tVecs associated to angles and h objPt distributed 3D points on the floor imgPt projected to image imgNse noise for image detection, sigma 1 index10 indexes to select 10 points well distributed Real Ches # listo: RealChes nIm number of chess images nPt number of chess points per image objPt chessboard model, 3D imgPt detected corners in chessboard images imgFls list of paths to the chessboard images Balk objPt calibration world points, lat lon imgPt image points for calibration priLLA prior lat-lon-altura imgFl camera snapshot file Dete carGps car gps coordinates carIm car image detection traces ''' def __init__(self, Synt=None, Real=None): self.Synt = Synt self.Real = Real # %% Z=0 PROJECTION def euler(al, be, ga): ''' devuelve matriz de rotacion según angulos de euler. Craigh, pag 42 las rotaciones son en este orden: ga: alrededor de X be: alrededor de Y al: alrededor de Z ''' ca, cb, cg = cos([al, be, ga]) sa, sb, sg = sin([al, be, ga]) rot = array([[ca*cb, ca*sb*sg-sa*cg, ca*sb*cg+sa*sg], [sa*cb, sa*sb*sg+ca*cg, sa*sb*cg+ca*sa], [-sb, cb*sg, cb*cg]]) return rot def unit2CovTransf(C): ''' returns the matrix that transforms points from unit normal pdf to a normal pdf of covariance C. so that T = cl.unit2CovTransf(C) # calculate transform matriz X = np.random.randn(N, M, 2) # gen random points unitary normal X = (X.reshape((N, M, 1, 2)) * # transform T.reshape((1, M, 2, 2)) ).sum(-1) ''' u, s, v = svd(C) if C.ndim is 2: return u.dot(diag(sqrt(s))).dot(v.T) elif C.ndim is 3: n = s.shape[0] d = s.shape[1] s = sqrt(s) v = v.transpose((0, 2, 1)) T = (u.reshape((-1, d, d, 1)) * s.reshape((n, 1, d, 1)) * v.reshape((n, 1, d, d))) return T.sum(2) else: print('las dimensiones no se que onda') return -1 # %% BASIC ROTOTRASLATION def rotateRodrigues(x, r): ''' rotates given vector x or list x of vectors as per rodrigues vector r https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula ''' r.shape = 3 th = norm(r) rn = r / th ct = cos(th) st = sin(th) try: # if x is just one point x.shape = 3 return x * ct + cross(rn, x) * st + rn * dot(x, rn) * (1 - ct) except: # if x has many points x.shape = (-1, 3) aux1 = x * ct + cross(rn, x) * st aux2 = rn.reshape((-1, 1)) * dot(x, rn) * (1 - ct) return aux1 + aux2.T def rotoTrasRodri(x, r, t): ''' rototraslates all x points using r and t ''' t.shape = 3 return rotateRodrigues(x, r) + t def rotoTrasRodriInverse(x, r, t): ''' rototraslates all x points using r and t inversely ''' t.shape = 3 return rotateRodrigues(x - t, -r) def rotoTrasHomog(x, r, t): ''' rototraslates points x and projects to homogenous coordinates ''' x2 = rotoTrasRodri(x, r, t) xh, yh = x2[:, :2].T / x2[:, 2] ''' import matplotlib.pyplot as plt plt.figure() plt.plot(xh, yh,'.') plt.plot() ''' return xh, yh # %% PARAMETER HANDLING def formatParameters(rVec, tVec, cameraMatrix, distCoeffs, model): switcher = { 'stereographic': stereographic.formatParameters, 'unified': unified.formatParameters, 'rational': rational.formatParameters, 'poly': poly.formatParameters, 'fisheye': fisheye.formatParameters } return switcher[model](rVec, tVec, cameraMatrix, distCoeffs) def retrieveParameters(params, model): switcher = { 'stereographic': stereographic.retrieveParameters, 'unified': unified.retrieveParameters, 'rational': rational.retrieveParameters, 'poly': poly.retrieveParameters, 'fisheye': fisheye.retrieveParameters } return switcher[model](params) # %% DIRECT PROJECTION def hom2ccd(xd, yd, cameraMatrix): xccd = cameraMatrix[0, 0] * xd + cameraMatrix[0, 2] yccd = cameraMatrix[1, 1] * yd + cameraMatrix[1, 2] return vstack((xccd, yccd)).T # switcher for radial distortion distort = { 'stereographic': stereographic.radialDistort, 'unified': unified.radialDistort, 'rational': rational.radialDistort, 'poly': poly.radialDistort, 'fisheye': fisheye.radialDistort } def direct(objectPoints, rVec, tVec, cameraMatrix, distCoeffs, model, ocv=False): ''' performs projection form 3D world into image, is the "direct" distortion optionally it uses opencv's function if available ''' xh, yh = rotoTrasHomog(objectPoints, rVec, tVec) rh = norm([xh, yh], axis=0) q = distort[model](rh, distCoeffs, quot=True) # print(xHomog.shape, q.shape) xd = q * xh yd = q * yh # project to ccd return hom2ccd(xd, yd, cameraMatrix) def residualDirect(params, objectPoints, imagePoints, model): switcher = { 'stereographic': stereographic.residualDirect, 'unified': unified.residualDirect, 'rational': rational.residualDirect, 'poly': poly.residualDirect, 'fisheye': fisheye.residualDirect } return switcher[model](params, objectPoints, imagePoints) def calibrateDirect(objectPoints, imagePoints, rVec, tVec, cameraMatrix, distCoeffs, model): switcher = { 'stereographic': stereographic.calibrateDirect, 'unified': unified.calibrateDirect, 'rational': rational.calibrateDirect, 'poly': poly.calibrateDirect, 'fisheye': fisheye.calibrateDirect } return switcher[model](objectPoints, imagePoints, rVec, tVec, cameraMatrix, distCoeffs) # %% INVERSE PROJECTION def ccd2disJacobian(xi, yi, cameraMatrix): ''' returns jacobian to propagate uncertainties in ccd2homogemous mapping Jd_i: jacobian wrt image coordiantes Jd_f: jacobian wrt linear CCD parameters ''' xi, yi, cameraMatrix = [f64(xi), f64(yi), f64(cameraMatrix)] Jd_i = diag(1 / cameraMatrix[[0, 1], [0, 1]]) # doesn't depend on position unos = ones_like(xi, dtype=float64) ceros = zeros_like(unos, dtype=float64) a = - unos / cameraMatrix[0, 0] b = (cameraMatrix[0, 2] - xi) * a**2 c = - unos / cameraMatrix[1, 1] d = (cameraMatrix[1, 2] - yi) * c**2 Jd_f = array([[b, ceros, a, ceros], [ceros, d, ceros, c]]) Jd_f = Jd_f.transpose((2, 0, 1)) # first index iterates points return Jd_i, Jd_f def ccd2dis(xi, yi, cameraMatrix, Ci=False, Cf=False): ''' maps from CCd, image to homogenous distorted coordiantes. must provide covariances for every point if cov is not None Cf: is the covariance matrix of intrinsic linear parameters fx, fy, u, v (in that order). ''' xi, yi, cameraMatrix = [f64(xi), f64(yi), f64(cameraMatrix)] # undo CCD projection, asume diagonal ccd rescale xd = (xi - cameraMatrix[0, 2]) / cameraMatrix[0, 0] yd = (yi - cameraMatrix[1, 2]) / cameraMatrix[1, 1] Cibool = anny(Ci) Cfbool = anny(Cf) if Cibool or Cfbool: Cd = zeros((xd.shape[0], 2, 2), dtype=float64) # create cov matrix Jd_i, Jd_f = ccd2disJacobian(xi, yi, cameraMatrix) if Cibool: Jd_iResh = Jd_i.reshape((-1, 2, 2, 1, 1)) Cd += (Jd_iResh * Ci.reshape((-1, 1, 2, 2, 1)) * Jd_iResh.transpose((0, 4, 3, 2, 1)) ).sum((2, 3)) if Cfbool: # propagate uncertainty via Jacobians Jd_fResh = Jd_f.reshape((-1, 2, 4, 1, 1)) Cd += (Jd_fResh * Cf.reshape((-1, 1, 4, 4, 1)) * Jd_fResh.transpose((0, 4, 3, 2, 1)) ).sum((2, 3)) else: Cd = False # return without covariance matrix Jd_f = False return xd, yd, Cd, Jd_f # switcher for radial un-distortion undistort = { 'stereographic': stereographic.radialUndistort, 'unified': unified.radialUndistort, 'rational': rational.radialUndistort, 'poly': poly.radialUndistort, 'fisheye': fisheye.radialUndistort } def dis2hom_ratioJacobians(xd, yd, distCoeffs, model): ''' returns the distortion ratio and the jacobians with respect to undistorted coords and distortion params. ''' xd, yd, distCoeffs = [f64(xd), f64(yd), f64(distCoeffs)] # calculate ratio of undistortion rd = norm([xd, yd], axis=0) q, ret, dQdH, dQdK = undistort[model](rd, distCoeffs, quot=True, der=True) xh = xd / q yh = yd / q rh = rd / q # jacobiano D (distort) respecto a coord homogeneas xyh = xh * yh Jd_h = array([[xh**2, xyh], [xyh, yh**2]]) / rh Jd_h *= dQdH.reshape(1, 1, -1) Jd_h[[0, 1], [0, 1], :] += q # jacobiano D (distort) respecto a parametros de distorsion optica Jd_k =
array([xh * dQdK, yh * dQdK])
numpy.array
"""Calculated accumulated property with respect to other property.""" from typing import Optional import numpy as np from phonopy.phonon.dos import NormalDistribution from phono3py.other.tetrahedron_method import get_integration_weights from phono3py.phonon.grid import BZGrid epsilon = 1.0e-8 class KappaDOS: """Class to calculate thermal conductivity spectram.""" def __init__( self, mode_kappa, frequencies, bz_grid: BZGrid, ir_grid_points, ir_grid_map=None, frequency_points=None, num_sampling_points=100, ): """Init method. mode_kappa : ndarray Target value. shape=(temperatures, ir_grid_points, num_band, num_elem), dtype='double' frequencies : ndarray shape=(ir_grid_points, num_band), dtype='double' bz_grid : BZGrid ir_grid_points : ndarray Ir-grid point indices in BZ-grid. shape=(ir_grid_points, ), dtype='int_' ir_grid_map : ndarray, optional, default=None Mapping table to ir-grid point indices in GR-grid. None gives `np.arange(len(frequencies), 'int_')`. frequency_points : array_like, optional, default=None This is used as the frequency points. When None, frequency points are created from `num_sampling_points`. num_sampling_points : int, optional, default=100 Number of uniform sampling points. """ min_freq = min(frequencies.ravel()) max_freq = max(frequencies.ravel()) + epsilon if frequency_points is None: self._frequency_points = np.linspace( min_freq, max_freq, num_sampling_points, dtype="double" ) else: self._frequency_points = np.array(frequency_points, dtype="double") n_temp, _, _, n_elem = mode_kappa.shape self._kdos = np.zeros( (n_temp, len(self._frequency_points), 2, n_elem), dtype="double" ) if ir_grid_map is None: bzgp2irgp_map = None else: bzgp2irgp_map = self._get_bzgp2irgp_map(bz_grid, ir_grid_map) for j, function in enumerate(("J", "I")): iweights = get_integration_weights( self._frequency_points, frequencies, bz_grid, grid_points=ir_grid_points, bzgp2irgp_map=bzgp2irgp_map, function=function, ) for i, iw in enumerate(iweights): self._kdos[:, :, j] += np.transpose( np.dot(iw, mode_kappa[:, i]), axes=(1, 0, 2) ) self._kdos /=
np.prod(bz_grid.D_diag)
numpy.prod
import os from .common import Benchmark import numpy as np class Records(Benchmark): def setup(self): self.l50 = np.arange(1000) self.fields_number = 10000 self.arrays = [self.l50 for _ in range(self.fields_number)] self.formats = [self.l50.dtype.str for _ in range(self.fields_number)] self.formats_str = ','.join(self.formats) self.dtype_ = np.dtype( [ ('field_{}'.format(i), self.l50.dtype.str) for i in range(self.fields_number) ] ) self.buffer = self.l50.tostring() * self.fields_number def time_fromarrays_w_dtype(self): np.core.records.fromarrays(self.arrays, dtype=self.dtype_) def time_fromarrays_wo_dtype(self):
np.core.records.fromarrays(self.arrays)
numpy.core.records.fromarrays
""" Name: Coordinates.py Description: Marie-Annes Python code for converting between Horizon and Sky coordinate systems. """ from __future__ import division import numpy as np from astropy.time import TimeDelta from numpy.random import random_sample as randomu jd2000 = 2451545.0 def _premat(equinox1, equinox2, FK4=True): """ Return precession matrix needed to go from equinox1 to equinox2 equinox1 - original equinox of coordinates equinox2 - equinox to precess to returns 3x3 precession matrix Shameless stolen from astrolib premat.pro """ d2r = np.pi/180. s2r = d2r/3600. # convert seconds to radians T = 1e-3*(equinox2 - equinox1) if FK4: ST = 1e-3*(equinox1 - 2000.) # Compute 3 rotation angles A = s2r * T * \ (23062.181 + ST * (139.656 + 0.0139*ST) \ + T * (30.188 - 0.344 * ST + 17.998 * T)) B = s2r * T * T * (79.280 + 0.410*ST + 0.205*T) + A C = s2r * T * (20043.109 - ST*(85.33 + 0.217*ST) \ + T*(-42.665 - 0.217*ST - 41.833*T)) else: A = 0. B = 0. C = 0. sina = np.sin(A) sinb = np.sin(B) sinc = np.sin(C) cosa = np.cos(A) cosb = np.cos(B) cosc = np.cos(C) R = np.zeros((3, 3)) R[:,0] = np.array([ cosa*cosb*cosc - sina*sinb, sina*cosb+cosa*sinb*cosc, cosa*sinc]).flatten() R[:,1] = np.array([-cosa*sinb - sina*cosb*cosc, cosa*cosb - sina*sinb*cosc, -sina*sinc]).flatten() R[:,2] = np.array([-cosb*sinc, -sinb*sinc, cosc]).flatten() return R def _precess(_ra, _dec, equinox1, equinox2): """ Precess coordinate system from equinox1 to equinox2. ra and dec are inputs in radians. Shameless stolen from astrolib routine precess.pro (Based on procedure from Computational Spherical Astronomy by Taff (1983). p. 24.) """ ra = _ra*np.pi/180. dec= _dec*np.pi/180. a = np.cos(dec) vec1 = np.array([a*np.cos(ra), a*np.sin(ra), np.sin(dec)]).T # cartesian vector on sphere R0 = _premat(equinox1, equinox2) # get rotation matrix print(vec1.shape) vec1 = np.reshape(vec1, (vec1.shape[0], 1, vec1.shape[1])) R0 = np.reshape(R0, (1, R0.shape[0], R0.shape[1])) vec2 = np.sum(R0*vec1, axis=-1) #vec2 = R0.dot(vec1) ra_out = np.arctan2(vec2[:,1], vec2[:,0]) dec_out= np.arcsin(vec2[:,2]) #if ra_out < 0: # ra_out += 2.*np.pi #w = np.where((ra_out < 0))[0] #if len(w) > 0: # ra_out[w] += 2.*np.pi return np.mod(ra_out*180./np.pi, 360), dec_out*180./np.pi def _jd2gst(jd): """ Convert julian dates into Greenwich Sidereal Time. From Practical Astronomy With Your Calculator. """ jd0 = np.floor(jd - 0.5) + 0.5 T = (jd0 - 2451545.0) / 36525 T0 = 6.697374558 + 2400.051336 * T + 0.000025862 * T**2 T0 %= 24 ut = (jd - jd0) * 24 T0 += ut * 1.002737909 T0 %= 24 return T0 def _gst2lst(gst, geolon): """ Convert Greenwich Sidereal Time into Local Sidereal Time. """ # geolon: Geographic longitude EAST in degrees. return (gst + geolon / 15.) % 24 def _jd2lst(lng, jd): c = [280.46061837, 360.98564736629, 0.000387933, 38710000.0 ] t0 = jd - jd2000 t = t0/36525. theta = c[0] + (c[1] * t0) + t**2*(c[2] - t/ c[3] ) lst = ( theta + lng)/15.0 neg = np.where(lst < 0.0) n = len(neg) if n > 0: lst[neg] = 24. + np.mod(lst[neg] , 24) lst = np.mod(lst , 24.) return lst def _pang(el, dec, geolat): """ Generate parallactic angle from elevation and declination """ d2r = np.pi/180.0 r2d = 180.0/np.pi top = np.sin(geolat*d2r) - np.sin(el*d2r)*np.sin(dec*d2r) bot = np.cos(el*d2r)*np.cos(dec*d2r) p = np.arccos(top/bot) if isinstance(p, type(np.array([]))): p[np.isnan(p)] = 0 p[p > np.pi/2.] -= np.pi else: if np.isnan(p): p = 0 else: if p > np.pi/2.: p -= np.pi return p*r2d def _equ2hor(_ra, _dec, _jd, geolat, geolon, precess=False): """ Convert from ra/dec to az/el (by <NAME>). All inputs as degrees """ # Imports from numpy import arccos, arcsin, cos, pi, sin, where ra = np.array([_ra]).flatten() dec= np.array([_dec]).flatten() jd = np.array([_jd]).flatten() lst = _gst2lst(_jd2gst(jd), geolon) if precess: J_now = np.mean( (jd - 2451545.)/365.25 + 2000.0 ) ra, dec = _precess(ra, dec, 2000., J_now) #for i in range(len(J_now)): # ra[i], dec[i] = _precess(ra[i], dec[i], 2000., J_now[i]) az, el = _equ2hor_lst(ra, dec, lst, geolat) # Later return az, el def _equ2hor_lst(_ra, _dec, _lst, geolat): from numpy import arccos, arcsin, cos, pi, sin, where ra = np.array([_ra]).flatten() dec= np.array([_dec]).flatten() lst = np.array([_lst]).flatten() d2r = pi/180.0 r2d = 180.0/pi sin_dec = sin(dec*d2r) cos_dec = cos(dec*d2r) phi_rad = geolat*d2r sin_phi = sin(phi_rad) cos_phi = cos(phi_rad) ha = 15.0*_ra2ha(ra, lst) sin_ha = sin(ha*d2r) cos_ha = cos(ha*d2r) x = - cos_ha * cos_dec * sin_phi + sin_dec * cos_phi y = - sin_ha * cos_dec z = cos_ha * cos_dec * cos_phi + sin_dec * sin_phi r = np.sqrt(x**2 + y**2) az = np.arctan2(y, x)*180./np.pi el = np.arctan2(z, r)*180./np.pi w = (az < 0) az[w] = az[w] + 360. return az, el def _hor2equ(_az, _el, _jd, geolat, geolon, precess=False): """ Convert from az/el to ra/dec (by <NAME>). All inputs in degrees """ # Imports from numpy import arccos, arcsin, cos, pi, sin, where az = np.array([_az]).flatten() el = np.array([_el]).flatten() jd = np.array([_jd]).flatten() #lst = _gst2lst(_jd2gst(jd), geolon) lst = _jd2lst(geolon, jd) ra, dec = _hor2equ_lst(az, el, lst, geolat) if precess: J_now = np.mean( (jd - 2451545.)/365.25 + 2000.0 ) ra, dec = _precess(ra, dec, 2000., J_now) # Later return ra, dec def _hor2equ_lst(_az, _el, _lst, geolat): az = np.array([_az]).flatten() el = np.array([_el]).flatten() lst = np.array([_lst]).flatten() from numpy import arccos, arcsin, cos, pi, sin, where d2r = pi/180.0 r2d = 180.0/pi az_r = az*np.pi/180. el_r = el*np.pi/180. geolat_r = geolat*np.pi/180. # Convert to equatorial coordinates cos_el = cos(el_r) sin_el = sin(el_r) cos_phi = cos(geolat_r) sin_phi = sin(geolat_r) cos_az = cos(az_r) sin_az = sin(az_r) sin_dec = sin_el*sin_phi + cos_el*cos_phi*cos_az dec = arcsin(sin_dec) ha = [-sin_az*cos_el, -cos_az*sin_phi*cos_el + sin_el*cos_phi] ha = np.arctan2(ha[0], ha[1]) w = np.where(ha < 0)[0] if len(w) != 0: ha[w] = ha[w] + np.pi*2. ha = np.mod(ha, np.pi*2.) ra = lst*15.0*np.pi/180.-ha ra = where(ra >= 2.*np.pi, ra - 2.*np.pi, ra) ra = where(ra < 0.0, ra + 2.*np.pi, ra) ra *= 180./np.pi dec *= 180./np.pi return ra, dec def _ra2ha(ra, lst): """ Converts a right ascension to an hour angle. """ return (lst - ra / 15.0) % 24 def _equ2gal(_ra, _dec): """ Converts right ascension and declination to Galactic lon and lat. Uses rotation matrix Rg from 'Spherical Astronomy by <NAME>, Chapter 14, page 355' """ ra = _ra*np.pi/180. dec= _dec*np.pi/180. equVec = np.array([[np.cos(ra)*np.cos(dec)], [np.sin(ra)*np.cos(dec)], [np.sin(dec)]]) tg = 0. ag = (17. + 45.6/60.)*15.*np.pi/180. dg = -28.94*np.pi/180. Rg = np.array([[-0.054876, -0.873437, -0.483835], [ 0.494109, -0.444830, 0.746982], [-0.867666, -0.198076, 0.455984]]) Rg = np.reshape(Rg, (3, 3, 1)) Rg = np.transpose(Rg, [1,0,2]) test = Rg*equVec galVec = np.sum(Rg*equVec, axis=0)#Rg.dot(equVec) lon = np.arctan2(galVec[1],galVec[0]) lat = np.pi/2. - np.arctan2(np.sqrt(galVec[0]**2 + galVec[1]**2), galVec[2]) lon = lon *180./np.pi lat = lat*180./np.pi return lon, lat def _gal2equ(gl, gb, year=2000): """ Shamelessly copied from the IDL glactc routine. """ rapol = (12. + 49./60.)*np.pi/180.*15. decpol= (27.4)*np.pi/180. dlon = (123.0)*np.pi/180. sdp = np.sin(decpol) cdp = np.sqrt(1.0 - sdp*sdp) sgb = np.sin(gb) cgb = np.sqrt(1. - sgb**2) sdec = sgb*sdp + cgb*cdp*np.cos(dlon - gl) dec = np.arcsin(sdec) cdec = np.sqrt(1.-sdec**2) sinf = cgb * np.sin(dlon-gl)/cdec cosf = (sgb-sdp*sdec)/(cdp*cdec) ra = rapol + np.arctan2(sinf, cosf) ra *= 180./np.pi dec *= 180./np.pi if year != 2000: ra, dec = _precess(ra, dec, 2000., year) ra[ra > 360] -= 360 return np.mod(ra, 360), dec def _nutate(jd): dtor = np.pi/180. T = (jd[:] - 2451545.0)/36525.0 # Mean elongation of the Moon coeff1 = np.array([297.85036, 445267.111480, -0.0019142, 1./189474.]) d = np.mod(np.polyval(coeff1[::-1], T)*dtor, 2*np.pi) d = np.reshape(d, (d.size, 1)) # Sun's mean anomaly coeff2 = np.array([357.5277, 35999.050340, -0.0001603, -1./3e5 ]) m = np.mod(np.polyval(coeff2[::-1], T)*dtor, 2.*np.pi) m = np.reshape(m, (m.size, 1)) # Moon's mean anomaly coeff3 = np.array([134.96298, 477198.867398, 0.0086972, 1.0/5.625e4 ]) mprime = np.mod(np.polyval(coeff3[::-1], T)*dtor, 2.*np.pi) mprime = np.reshape(mprime, (mprime.size, 1)) # Moon's argument of latitude coeff4 = np.array([93.27191, 483202.017538, -0.0036825, -1.0/3.27270e5 ]) f = np.mod(np.polyval(coeff4[::-1], T)*dtor, 2.*np.pi) f = np.reshape(f, (f.size, 1)) # Longitude of the ascending node of the Moon's mean orbit on the ecliptic, # measured from the mean equinox of the date coeff5 = np.array([125.04452, -1934.136261, 0.0020708, 1./4.5e5]) omega = np.mod(np.polyval(coeff5[::-1], T)*dtor, 2.*np.pi) omega = np.reshape(omega, (omega.size, 1)) d_lng = np.array([0,-2,0,0,0,0,-2,0,0,-2,-2,-2,0,2,0,2,0,0,-2,0,2,0,0,-2,0,-2,0,0,2, -2,0,-2,0,0,2,2,0,-2,0,2,2,-2,-2,2,2,0,-2,-2,0,-2,-2,0,-1,-2,1,0,0,-1,0,0, 2,0,2]) d_lng = np.reshape(d_lng, (d_lng.size, 1)) m_lng = np.concatenate(( np.array([0,0,0,0,1,0,1,0,0,-1]),np.zeros(17),np.array([2,0,2,1,0,-1,0,0,0,1,1,-1,0, 0,0,0,0,0,-1,-1,0,0,0,1,0,0,1,0,0,0,-1,1,-1,-1,0,-1]) )) m_lng = np.reshape(m_lng, (m_lng.size, 1)) mp_lng =
np.array([0,0,0,0,0,1,0,0,1,0,1,0,-1,0,1,-1,-1,1,2,-2,0,2,2,1,0,0,-1,0,-1, 0,0,1,0,2,-1,1,0,1,0,0,1,2,1,-2,0,1,0,0,2,2,0,1,1,0,0,1,-2,1,1,1,-1,3,0]) mp_lng = np.reshape(mp_lng, (mp_lng.size, 1))
numpy.array
from __future__ import print_function, division import matplotlib #matplotlib.use('Agg') import numpy as np import scipy as sp from operator import truediv import math, time import matplotlib.pyplot as plt import matplotlib.cm as cm from itertools import groupby import sisl as si from numbers import Integral # I don't know why, but the lines below were # fucking up my routine "makeTB_FrameOutside", on the "contruct" command #try: # from itertools import izip as zip #except: # pass def dagger(M): return np.conjugate(np.transpose(M)) def displaySparse(m, filename, dpi=300): if not isinstance(m, sp.sparse.coo_matrix): m = sp.sparse.coo_matrix(m) fig = plt.figure() ax = fig.add_subplot(111, axisbg='black') ax.plot(m.col, m.row, 's', color='white', ms=10) ax.set_xlim(0, m.shape[1]) ax.set_ylim(0, m.shape[0]) ax.set_aspect('equal') for spine in ax.spines.values(): spine.set_visible(False) ax.invert_yaxis() ax.set_aspect('equal') ax.set_xticks([]) ax.set_yticks([]) plt.savefig(filename, facecolor='black', edgecolor='black', dpi=dpi) return ax def get_potential(TSHS, iio, atoms): """ iio: index (0-based) of orbital in basis set (i.e., pz in SZP: iio = 2) """ orbs = TSHS.a2o(atoms)+iio on = TSHS.Hk(dtype=np.float64, format='array')[orbs, orbs] return on def check_Dirac(ts, mp, displacement=[0,0,0]): mp = si.MonkhorstPack(ts, mp, displacement=displacement) print('Check that Dirac is in here: ') print(mp.k) print('Check that this is in *.KP file : {}'.format(mp.tocartesian([0., 1./3, 0]) * si.unit.siesta.unit_convert('Bohr', 'Ang'))) i_dirac = (np.logical_and(mp.k[:,1] == 1./3, mp.k[:,0] == 0.)).nonzero()[0] if len(i_dirac) != 1: print('Dirac point is not in the grid') exit(1) else: print('Dirac point is at kindex: {}'.format(i_dirac[0])) def get_Dirac(hs, mp, displacement=[0,0,0]): #check_Dirac(hs.geom, mp, displacement) ens_dirac = hs.eigh(k=[0., 1./3, 0]) i_dirac = hs.na * 2 - 1 return np.average(ens_dirac[i_dirac:i_dirac+2]) def plot_PotDiff(TSHS, TSHS_0, ia, axis, iio, o_dev, o_inner): # include option for frame! on, yy, atoms = get_potential(TSHS, ia, axis, iio) on0 = get_potential(TSHS_0, ia, axis, iio)[0] on0 = np.array([np.mean(on0)]*len(on)) # Check print('y (Ang)\t\tPot (eV)\tPot0 (eV)\tPot-Pot0 (eV)') a_dev = TSHS.o2a(o_dev, unique=True) a_inner = TSHS.o2a(o_inner, unique=True) for iia, y, o, o0 in zip(atoms, yy, on, on0): if iia in a_inner: print('{:7.4f}\t\t{:7.4f}\t\t{:7.4f}\t\t{:7.4f}\t\t(inner)'.format(y,o,o0,o-o0)) else: print('{:7.4f}\t\t{:7.4f}\t\t{:7.4f}\t\t{:7.4f}'.format(y,o,o0,o-o0)) # Subtract pristine potential PotDiff = on-on0 # Write to file with open('PotDiff.dat', 'w') as pf: for yc, pd in zip(yy, PotDiff): pf.write('{}\t\t{}\n'.format(yc, pd)) # Plot figure() plot(yy, PotDiff, 'b') md, Md = np.amin(TSHS.xyz[a_dev, axis]), np.amax(TSHS.xyz[a_dev, axis]) axvline(md, color='k', linestyle='dashed', linewidth=2) axvline(Md, color='k', linestyle='dashed', linewidth=2) tmp_dev = TSHS.geom.sub(a_dev); tmp_inner = tmp_dev.sub(a_inner) mi, Mi = np.amin(tmp_inner.xyz[a_inner, axis]), np.amax(tmp_inner.xyz[a_inner, axis]) axvspan(mi, Mi, alpha=0.3, facecolor='blue', edgecolor='none') ylabel(r'$H_{p_z}-H^0_{p_z}\, (e{\rm V})$', fontsize=20) xlabel(r'$y\, (\AA)$', fontsize=20) xlim(0, TSHS.cell[axis, axis]) #xlim(TSHS.center(what='cell')[1], TSHS.cell[1,1]) legend(loc=0); savefig('PotDiff.pdf', bbox_inches='tight') def get_potential_profile(TSHS, ia, axis, iio): """ ia: atom crossed by the line axis: direction of the line iio: index (0-based) of orbital in basis set (i.e., pz in SZP: iio = 2) """ # Find atoms in line passing by center of xyz0, xyz = TSHS.xyz[ia, axis%1], TSHS.xyz[:, axis%1] atoms = np.where(np.logical_and(xyz0-1.43 < xyz, xyz < xyz0+1.43))[0] v = TSHS.geom.copy(); v.atom[atoms] = si.Atom(8, R=[1.43]); v.write('checkPot.xyz') orbs = TSHS.a2o(atoms)+iio on = TSHS.Hk(dtype=np.float64, format='array')[orbs, orbs] ylist = TSHS.xyz[atoms, axis] idxs = np.argsort(ylist) on, ylist = on[idxs], ylist[idxs] return on, ylist, atoms def xyz2polar(tbt, origin=0): na = tbt.na # radii from origin if isinstance(origin, Integral): origin = tbt.xyz[origin] _, r = tbt.geom.close_sc(origin, R=np.inf, ret_rij=True) # angles from origin transl = tbt.geom.translate(-origin) y = transl.xyz[:,1] i_ypos = np.where(y >= 0)[0] i_yneg = np.setdiff1d(np.arange(na), i_ypos) t = np.zeros(na) t[i_ypos] = transl.angle(i_ypos, dir=(1., 0, 0), rad=True) t[i_yneg] = transl.angle(i_yneg, dir=(-1., 0, 0), rad=True) +np.pi return r, t def radial_T_from_bc(tbt, elec, E=None, kavg=True, origin=0, thetamin=0., thetamax=2*np.pi, ntheta=360, Rmin=5., Rmax=999999999, dr=40., input=None, save='radial_T_from_bc.txt', saveinput='rt.txt'): if E: Eidx = tbt.Eindex(E) en = tbt.E[Eidx] else: en = tbt.E[0] print('Using E = {} eV'.format(en)) na = tbt.na if isinstance(origin, Integral): origin = tbt.xyz[origin] # (x, y) ----> (r, t) if input: r, t = np.loadtxt(input, delimiter='\t', usecols=(1, 2), unpack=True, skiprows=1) else: r, t = xyz2polar(tbt, origin=origin) f = open(saveinput, 'w') f.write('ia\tr (Angstrom)\tangle (radians; center {})\n'.format(origin)) for ia, rr, tt in zip(np.arange(na), r, t): f.write('{}\t{}\t{}\n'.format(ia, rr, tt)) f.close() print('(x,y) ---> (r,t): DONE') # theta bins thetas = np.linspace(thetamin, thetamax, ntheta, endpoint=False) dtheta = thetas[1]-thetas[0] print(len(thetas), dtheta, thetas) # Digitize t into thetas inds = np.digitize(t, thetas) -1 # First bin is associated to 0.0 rad print('Digitize theta: DONE') # radii[i] is the radius of the interface between 2 crowns centered at the position of the tip newRmax = np.amin(np.absolute(np.array([origin[0], origin[1], (origin-tbt.cell[0]-tbt.cell[1])[0], (origin-tbt.cell[0]-tbt.cell[1])[1]]))) radii = np.arange(np.amax([Rmin, dr]), np.amin([Rmax, newRmax])+2*dr, dr) nradii = len(radii) print(nradii, dr, radii) # indices of atom within the various shells # atoms in list ishell[i] belong to [radii[i], radii[i+1]] ishell = tbt.geom.close_sc(origin, R=radii, idx=tbt.a_dev) print('Close: DONE') # Read bond-current bc = tbt.bond_current(0, en, kavg=kavg, only='all', uc=True) print('bc: DONE') Tavg = np.zeros(ntheta*nradii) thetas_toplot = Tavg.copy() radii_toplot = Tavg.copy() j=0 for id in np.arange(ntheta): # Loop over unique angles print(' Doing theta #{} of {} ({} rad)'.format(id+1, ntheta, thetas[id])) idx_intheta = np.where(inds == id)[0] # find indices of atoms whose t is in sector theta for id_r in np.arange(1,nradii-1): # Loop over unique radii print(' Doing radius #{} of {} ({} Ang)'.format(id_r, nradii, radii[id_r])) idx_1_indr = ishell[id_r] # Indices of atoms within internal shell mask = np.in1d(idx_1_indr, idx_intheta) idx_1 = idx_1_indr[mask] # Indices of atoms in internal shell AND sector theta idx_2 = ishell[id_r+1] # # Indices of atoms within external shell Tavg[j] = bc[idx_1.reshape(-1, 1), idx_2.reshape(1, -1)].sum() thetas_toplot[j] = thetas[id] radii_toplot[j] = radii[id_r] #print(' ({} Ang, {} rad) --> {}'.format(radii_toplot[j], thetas_toplot[j], Tavg[j])) j+=1 # Write f = open(save, 'w') f.write('center {}\n'.format(origin)) f.write('radius (Ang), \t theta (rad), \tT from radial bond current\n') for rr, theta, ttt in zip(radii_toplot, thetas_toplot, Tavg): f.write('{}\t{}\t{}\n'.format(rr, theta, ttt)) f.close() return radii_toplot, thetas_toplot, Tavg def atom_current_radial(tbt, elec, E, kavg=True, activity=True, origin=0, thetamin=0., thetamax=2*np.pi, ntheta=360, Rmin=5., Rmax=999999999, dr=40., input=None, save='atom_current_radial.txt', saveinput='ac_input.txt'): if E: Eidx = tbt.Eindex(E) en = tbt.E[Eidx] else: en = tbt.E[0] print('Using E = {} eV'.format(en)) na = tbt.na if isinstance(origin, Integral): origin = tbt.xyz[origin] # (x, y) ----> (r, t) if input: r, t, ac = np.loadtxt(input, delimiter='\t', usecols=(1, 2, 3), unpack=True, skiprows=1) else: r, t = xyz2polar(tbt, origin=origin) print('start extraction of atom_current...') ac = tbt.atom_current(elec, E, kavg, activity) print('...end extraction of atom_current') f = open(saveinput, 'w') f.write('ia\tr (Ang)\tangle (rad; center {})\tatom current\n'.format(origin)) for ia, rr, tt, a in zip(np.arange(na), r, t, ac): f.write('{}\t{}\t{}\t{}\n'.format(ia, rr, tt, a)) f.close() print('(x,y) ---> (r,t): DONE') # theta bins thetas = np.linspace(thetamin, thetamax, ntheta, endpoint=False) dtheta = thetas[1]-thetas[0] print('Thetas entries:') print(len(thetas), dtheta, thetas) # Digitize t into thetas inds = np.digitize(t, thetas) -1 # First bin is associated to 0.0 rad print('Digitize theta: DONE') # radii[i] is the radius of the interface between 2 crowns centered at the position of the tip newRmax = np.amin(np.absolute(np.array([origin[0], origin[1], (origin-tbt.cell[0]-tbt.cell[1])[0], (origin-tbt.cell[0]-tbt.cell[1])[1]]))) radii = np.arange(np.amax([Rmin, dr]), np.amin([Rmax, newRmax])+dr, dr) nradii = len(radii) print('Radii entries:') print(nradii, dr, radii) # indices of atom within the various shells # atoms in list ishell[i] belong to [radii[i], radii[i+1]] #ishell = tbt.geom.close_sc(origin, R=radii, idx=tbt.a_dev) #print('Close: DONE') current_r = np.zeros((nradii, ntheta)) for ir, rr in enumerate(radii): # Loop over unique radii current_t = np.zeros(ntheta) counts_t = current_t.copy() inR = np.where(r < rr)[0] for id, a in zip(inds[inR], ac[inR]): current_t[id] += a counts_t[id] += 1 current_r[ir, :] = np.divide(current_t, counts_t) # Write np.savetxt(save, np.transpose(np.vstack([thetas, current_r])), delimiter='\t', newline='\n', comments='', header=', '.join(str(e) for e in radii)) return radii, thetas, current_r def plot_LDOS(geom, LDOS, figname='figure.png', vmin=None, vmax=None): import matplotlib.collections as collections from matplotlib.colors import LogNorm from mpl_toolkits.axes_grid1 import make_axes_locatable x, y = geom.xyz[:,0], geom.xyz[:,1] fig, ax = plt.subplots() ax.set_aspect('equal') vmin, vmax = vmin, vmax if vmin is None: vmin = np.min(LDOS) if vmax is None: vmax = np.max(LDOS) colors = LDOS area = 15 image = ax.scatter(x, y, c=colors, s=area, marker='o', edgecolors='None', cmap='viridis') image.set_clim(vmin, vmax) image.set_array(LDOS) ax.autoscale() ax.margins(0.1) plt.xlabel('$x (\AA)$') plt.ylabel('$y (\AA)$') plt.gcf() divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) axcb = plt.colorbar(image, cax=cax, format='%1.2f', ticks=[vmin, vmax]) plt.savefig(figname, bbox_inches='tight', transparent=True, dpi=300) print('Successfully plotted to "{}"'.format(figname)) def CAP(geometry, side, dz_CAP=30, write_xyz=True, zaxis=2): # Determine orientation if zaxis == 2: xaxis, yaxis = 0, 1 elif zaxis == 0: xaxis, yaxis = 1, 2 elif zaxis == 1: xaxis, yaxis = 0, 2 # Natural units (see "http://superstringtheory.com/unitsa.html") hbar = 1 m = 0.511e6 # eV c = 2.62 print('\nSetting up CAP regions: {}'.format(side)) print('Width of absorbing walls = {} Angstrom'.format(dz_CAP)) Wmax = 100 dH_CAP = si.Hamiltonian(geometry, dtype='complex128') CAP_list = [] ### EDGES if 'right' in side: print('Setting at right') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] z2 = np.max(geometry.xyz[:, xaxis]) + 1. z1 = z2 - dz_CAP idx = np.where(np.logical_and(z1 <= z, z < z2))[0] fz = (4/(c**2)) * ((dz_CAP/(z2-2*z1+z[idx]))**2 + (dz_CAP/(z2-z[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) if 'left' in side: print('Setting at left') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] z2 = np.min(geometry.xyz[:, xaxis]) - 1. z1 = z2 + dz_CAP idx = np.where(np.logical_and(z2 < z, z <= z1))[0] fz = (4/(c**2)) * ((dz_CAP/(z2-2*z1+z[idx]))**2 + (dz_CAP/(z2-z[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) if 'top' in side: print('Setting at top') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] y2 = np.max(geometry.xyz[:, yaxis]) + 1. y1 = y2 - dz_CAP idx = np.where(np.logical_and(y1 <= y, y < y2))[0] fz = (4/(c**2)) * ( (dz_CAP/(y2-2*y1+y[idx]))**2 + (dz_CAP/(y2-y[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) if 'bottom' in side: print('Setting at bottom') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] y2 = np.min(geometry.xyz[:, yaxis]) - 1. y1 = y2 + dz_CAP idx = np.where(np.logical_and(y2 < y, y <= y1))[0] fz = (4/(c**2)) * ( (dz_CAP/(y2-2*y1+y[idx]))**2 + (dz_CAP/(y2-y[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) CAP_list = np.concatenate(CAP_list).ravel().tolist() if write_xyz: # visualize CAP regions visualize = geometry.copy() visualize.atom[CAP_list] = si.Atom(8, R=[1.44]) visualize.write('CAP.xyz') return dH_CAP def read_fullTSHS(HSfilename, geomFDFfilename): """ Read Hamiltonian and Geometry objects and update Atoms properties of 'TSHS' from 'FDF' """ if isinstance(HSfilename, str): HSfile = si.get_sile(HSfilename).read_hamiltonian() else: HSfile = HSfilename.copy() if isinstance(geomFDFfilename, str): geomFDF = si.get_sile(geomFDFfilename).read_geometry(True) else: geomFDF = geomFDFfilename.copy() # Update species for ia, (a, afdf) in enumerate(zip(HSfile.atom, geomFDF.atom)): A = si.Atom(afdf.Z, a.orbital, afdf.mass, afdf.tag) HSfile.atom[ia] = A HSfile.reduce() return HSfile def T_from_bc(tbt, elec, idx_1, idx_2, E=None, kavg=True, write_xyz=None): if write_xyz: # visualize regions visualize = tbt.geom.copy() visualize.atom[idx_1] = si.Atom(8, R=[1.44]) visualize.atom[idx_2] = si.Atom(9, R=[1.44]) visualize.write('{}.xyz'.format(write_xyz)) if E: Eidx = tbt.Eindex(E) energies = np.array([tbt.E[Eidx]]) else: energies = tbt.E T = np.zeros(len(energies)) for ie,e in enumerate(energies): print('Doing E # {} of {} ({} eV)'.format(ie+1, len(energies), e)) bc = tbt.bond_current(elec, e, kavg=kavg, only='all', uc=True) T[ie] += bc[idx_1.reshape(-1, 1), idx_2.reshape(1, -1)].sum() return T def T_from_bc_from_orbital(tbt, elec, o_idx, idx_1, idx_2, E=None, kavg=True, write_xyz=None): if write_xyz: # visualize regions visualize = tbt.geom.copy() visualize.atom[idx_1] = si.Atom(8, R=[1.44]) visualize.atom[idx_2] = si.Atom(9, R=[1.44]) visualize.write('{}.xyz'.format(write_xyz)) if E: Eidx = tbt.Eindex(E) energies = np.array([tbt.E[Eidx]]) else: energies = tbt.E T = np.zeros(len(energies)) for ie,e in enumerate(energies): print('Doing E # {} of {} ({} eV)'.format(ie+1, len(energies), e)) Jij = tbt.orbital_current(elec, e, kavg=kavg) orbs_1 = tbt.geom.a2o(idx_1) + o_idx orbs_2 = tbt.geom.a2o(idx_2) + o_idx T[ie] = Jij[orbs_1.reshape(-1, 1), orbs_2.reshape(1, -1)].sum() #bc = tbt.bond_current(elec, e, kavg=kavg, only='all', uc=True) return T def list2range_TBTblock(lst): """ Convert a list of elements into a string of ranges Examples -------- >>> list2range([2, 4, 5, 6]) 2, 4-6 >>> list2range([2, 4, 5, 6, 8, 9]) 2, 4-6, 8-9 """ lst = [el+1 for el in lst] lst.sort() # Create positions pos = [j - i for i, j in enumerate(lst)] t = 0 rng = '' for _, els in groupby(pos): ln = len(list(els)) el = lst[t] if t > 0: rng += '\n' t += ln if ln == 1: rng += ' atom ['+str(el)+']' else: rng += ' atom [{} -- {}]'.format(el, el+ln-1) return rng def create_kpath(Nk): G2K = (0.4444444444444444 + 0.1111111111111111) ** 0.5 K2M = ((0.6666666666666666 - 0.5) ** 2 + (0.3333333333333333 - 0.5) ** 2) ** 0.5 M2G = (0.25 + 0.25) ** 0.5 Kdist = G2K + K2M + M2G NG2K = int(Nk / Kdist * G2K) NK2M = int(Nk / Kdist * K2M) NM2G = int(Nk / Kdist * M2G) def from_to(N, f, t): full = np.empty([N, 3]) ls = np.linspace(0, 1, N, endpoint=False) for i in range(3): full[:, i] = f[i] + (t[i] - f[i]) * ls return full kG2K = from_to(NG2K, [0.0, 0.0, 0.0], [0.6666666666666666, 0.3333333333333333, 0]) kK2M = from_to(NK2M, [0.6666666666666666, 0.3333333333333333, 0], [0.5, 0.5, 0.0]) kM2G = from_to(NM2G, [0.5, 0.5, 0.0], [0.0, 0.0, 0.0]) xtick = [0, NG2K - 1, NG2K + NK2M - 1, NG2K + NK2M + NM2G - 1] label = ['G', 'K', 'M', 'G'] return ([xtick, label], np.vstack((kG2K, kK2M, kM2G))) def plot_bandstructure(H, Nk, ymin=None, ymax=None, style='.', color='k', label=None): if type(H) is str: H = si.get_sile(H).read_hamiltonian() ticks, k = create_kpath(Nk) eigs = np.empty([len(k), H.no], np.float64) for ik, k in enumerate(k): print('{} / {}'.format(ik+1, Nk), end='\r') eigs[ik, :] = H.eigh(k=k, eigvals_only=True) ax = plt.gca() for n in range(H.no): print('{} / {}'.format(n+1, H.no), end='\r') ax.plot(eigs[:, n], style, color=color, label=label if n == 0 else "") ax.xaxis.set_ticks(ticks[0]) ax.set_xticklabels(ticks[1]) if ymin is None: ymin = ax.get_ylim()[0] if ymax is None: ymax = ax.get_ylim()[1] ax.set_ylim(ymin, ymax) for tick in ticks[0]: ax.plot([tick, tick], [ymin, ymax], 'k') return ax def list2colors(inp, colormap, vmin=None, vmax=None): norm = plt.Normalize(vmin, vmax) return colormap(norm(inp)) def get_dft_param(tshs, ia, iio, jjo, unique=False, onlynnz=False, idx=None): """ Read Hamiltonian and get coupling constants between 'iio'-th orbital of atom 'ia' and 'jjo'-th orbital of all other atoms """ # Read Hamiltonian if isinstance(tshs, str): tshs = si.get_sile(tshs).read_hamiltonian() HS = tshs.copy() # Index of iio-th orbital of ia-th atom io = HS.a2o(ia) + iio # Coupling elements (all orbitals) edges = HS.edges(orbital=io, exclude=-1) # Remove non-jjo connections # convert to atoms (only unique values) edges = HS.o2a(edges, unique=True) if idx is not None: mask = np.in1d(edges, idx) edges = edges[mask] # backconvert to the jjo'th orbital on the connecting atoms edges = HS.a2o(edges) + jjo r = HS.orij(io, edges) couplings = HS[io, edges] # Sort according to r idx_sorted = np.argsort(r) r = r[idx_sorted] couplings = couplings[idx_sorted, :] if unique: idx_uniq, cnt_uniq = np.unique(r.round(decimals=2), return_index=True, return_counts=True)[1:] r = r[idx_uniq] couplings = np.array([np.average(couplings[iu:(iu+cu), :], axis=0) for iu,cu in zip(idx_uniq, cnt_uniq)]) return r, couplings def get_R_hop(tshs, tbt, xyz_tip, pzidx, nn, z_gr=None, return_S=False): a_dev = tbt.a_dev tshs_dev = tshs.sub(a_dev) if z_gr == None: z_gr = tshs_dev.xyz[0, 2] C_list = (tshs_dev.xyz[:, 2] == z_gr).nonzero()[0] # Check that we have selected only carbon atoms for ia, a in zip(C_list, tshs_dev.atom[C_list]): if a.Z != 6: print('WARNING: Some atoms are not carbons in the graphene plane: {} {}'.format(ia, tshs_dev.xyz[ia])) # Get distances of all C atoms from tip (x,y) position # (notice that tshs_dev.xyz = tshs.xyz, so we need to use xyz_tip wrt full geom) #xyz_tip_dev = xyz_tip - tshs_dev.xyz[0] #xyz_tip_dev[2] = tshs_dev.xyz[0, 2] _, distance = tshs_dev.geom.close_sc(xyz_tip, R=np.inf, idx=C_list, ret_rij=True) # Get onsite and couplings for each of the atoms, up to the 3rd nn hoppings = np.empty((len(distance), nn+1)) if return_S: overlaps = np.empty((len(distance), nn+1)) for ia in C_list: # Extracting only pz-projected parameters from TSHS of graphene with tip _, tmp = get_dft_param(tshs_dev, ia, pzidx, pzidx, unique=True, onlynnz=True, idx=C_list) for i in range(nn+1): hoppings[ia, i] = tmp[i][0] if return_S: overlaps[ia, i] = tmp[i][1] # Write sorted data for future usage isort = np.argsort(distance) si.io.TableSile('couplings.txt', 'w').write_data(distance[isort], *hoppings[isort].T) if return_S: return distance[isort], hoppings[isort].T, overlaps[isort].T return distance[isort], hoppings[isort].T def plot_couplings_dft2tb(tshs_pristine, tshs, tbt, xyz_tip, pzidx=2, figname='dH.pdf'): """ Compare onsite and couplings of pristine graphene with those of a dirty graphene system. Plots both raw data and relative difference. # # param0[i][j] # i=0: on-site # i=1: 1nn coupling # i=2: 2nn coupling # i=3: 3nn coupling # j=0 : Hamiltonian matrix # j=1 : Overlap matrix Example: import sisl as si from tbtncTools import plot_couplings_dft2tb tshs_pristine = si.get_sile('../../pristine_300kpt/GR.TSHS').read_hamiltonian() tshs = si.get_sile('../../tip_atop_szp/z1.8/GR.TSHS').read_hamiltonian() tbt = si.get_sile('../../tip_atop_szp/z1.8/siesta.TBT.nc') xyz_tip = tshs.xyz[-1, :] plot_couplings_dft2tb(tshs_pristine, tshs, tbt, xyz_tip, pzidx=2, figname='dH.pdf') """ # Plot reference lines for well converged pristine graphene system fig = plt.figure() ax = fig.add_subplot(111) # Extracting only pz-projected parameters from TSHS of perfect graphene _, param0 = get_dft_param(tshs_pristine, 0, pzidx, pzidx, unique=True, onlynnz=True) # Plot ax.axhline(y=param0[0][0], label='On-site', c='k', ls='-') ax.axhline(y=param0[1][0], label='1nn coupling', c='g', ls='-') ax.axhline(y=param0[2][0], label='2nn coupling', c='r', ls='-') ax.axhline(y=param0[3][0], label='3nn coupling', c='b', ls='-') # Plot onsite and couplings for well converged "dirty" graphene system distance, param = get_R_hop(tshs, tbt, xyz_tip, pzidx) # Plot ax.scatter(distance, param[0], label='On-site (tip)', c='k')#, ls='--') ax.scatter(distance, param[1], label='1nn coupling (tip)', c='g')#, ls='--') ax.scatter(distance, param[2], label='2nn coupling (tip)', c='r')#, ls='--') ax.scatter(distance, param[3], label='3nn coupling (tip)', c='b')#, ls='--') # Mark the distance between the tip (x,y) and the closest distance from outmost frame atoms rM01 = np.absolute(np.amax(tshs.xyz[:, 0]) - xyz_tip[0]) rM02 = np.absolute(np.amin(tshs.xyz[:, 0]) - xyz_tip[0]) rM11 = np.absolute(np.amax(tshs.xyz[:, 1]) - xyz_tip[1]) rM12 = np.absolute(np.amin(tshs.xyz[:, 1]) - xyz_tip[1]) rM = np.amin([rM01, rM02, rM11, rM12]) ax.axvline(x=rM, c='k', ls='--') # General plot settings plt.xlim(0., np.amax(distance)) ax.set_xlabel('$r-r_{\mathrm{tip}}\,(\AA)$') ax.set_ylabel('E (eV)') plt.legend(loc=4, fontsize=10, ncol=2) plt.tight_layout() for o in fig.findobj(): o.set_clip_on(False) plt.savefig(figname) # Plot relative difference f, axes = plt.subplots(4, sharex=True) f.subplots_adjust(hspace=0) axes[0].scatter(distance, param[0]-np.full(len(distance), param0[0][0]), label='On-site', c='k') axes[1].scatter(distance, param[1]-np.full(len(distance), param0[1][0]), label='1nn coupling', c='g') axes[2].scatter(distance, param[2]-np.full(len(distance), param0[2][0]), label='2nn coupling', c='r') axes[3].scatter(distance, param[3]-np.full(len(distance), param0[3][0]), label='3nn coupling', c='b') # Mark the distance between the tip (x,y) and the closest distance from outmost frame atoms for a in axes: a.axhline(y=0., c='lightgrey', ls='-') a.axvline(x=rM, c='k', ls='--') #a.autoscale() a.set_xlim(0., np.amax(distance)) a.set_ylim(a.get_ylim()[0], 0.) a.yaxis.set_major_locator(plt.MaxNLocator(3)) # General plot settings axes[-1].set_xlabel('$r-r_{\mathrm{tip}}\,(\AA)$') f.text(0.025, 0.5, '$\Delta E $ (eV)', ha="center", va="center", rotation=90) #for o in f.findobj(): # o.set_clip_on(False) plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False) plt.savefig('diff_'+figname) def sc_xyz_shift(geom, axis): return (geom.cell[axis,axis] - (np.amax(geom.xyz[:,axis]) - np.amin(geom.xyz[:,axis])))/2 #def Delta(TSHS, HS_TB, shape='Cuboid', z_graphene=None, ext_offset=None, center=None, def Delta(TSHS, shape='Cuboid', z_graphene=None, ext_offset=None, center=None, thickness=None, zaxis=2, atoms=None, segment_dir=None): # z coordinate of graphene plane if z_graphene is None: print('\n\nPlease provide a value for z_graphene in Delta routine') exit(1) # Center of shape in TSHS if center is None: center = TSHS.center(atom=(TSHS.xyz[:,zaxis] == z_graphene).nonzero()[0]) center = np.asarray(center) # Thickness in Ang if thickness is None: thickness = 6. # Ang #thickness = HS_TB.maxR()+0.01 thickness = np.asarray(thickness, np.float64) # Cuboid or Ellissoid? if zaxis == 2: size = .5*np.diagonal(TSHS.cell) + [0,0,300] # default radius is half the cell size elif zaxis == 0: size = .5*np.diagonal(TSHS.cell) + [300,0,0] # default radius is half the cell size elif zaxis == 1: size = .5*np.diagonal(TSHS.cell) + [0,300,0] # default radius is half the cell size if shape == 'Ellipsoid' or shape == 'Sphere': mkshape = si.shape.Ellipsoid elif shape == 'Cuboid' or shape == 'Cube': mkshape = si.shape.Cuboid # In this case it's the full perimeter so we double size *= 2 thickness *= 2 if ext_offset is not None: ext_offset = np.asarray(ext_offset, np.float64).copy() ext_offset *= 2 elif shape == 'Segment': mkshape = si.shape.Cuboid # In this case it's the full perimeter so we double size *= 2 area_tot = mkshape(size, center=TSHS.center(atom=(TSHS.xyz[:,zaxis] == z_graphene).nonzero()[0])) size[segment_dir] = thickness if ext_offset is not None: ext_offset = np.asarray(ext_offset, np.float64).copy() else: print('\n shape = "{}" is not implemented...'.format(shape)) exit(1) if shape == 'Segment': # ADD COMPLEMENTARY AREA... # Areas Delta = mkshape(size, center=center) # Atoms within Delta and complementary area a_Delta = Delta.within_index(TSHS.xyz) if atoms is not None: a_Delta = a_Delta[np.in1d(a_Delta, atoms)] # Check v = TSHS.geom.copy(); v.atom[a_Delta] = si.Atom(8, R=[1.43]); v.write('a_Delta.xyz') return a_Delta, Delta else: # External boundary area_ext = mkshape(size, center=center) # Adjust with ext_offset if necessary if ext_offset is not None: ext_offset = np.asarray(ext_offset, np.float64) area_ext = area_ext.expand(-ext_offset) # Force it to be Cube or Sphere (side = ext_offset) if necessary if shape == 'Sphere' or shape == 'Cube': if len(ext_offset.nonzero()[0]) > 1: print('Offset is in both axes. Please set "shape" to Cuboid or Ellipsoid') exit(1) axis = ext_offset.nonzero()[0][0] print('Offset is non-zero along axis: {}...complementary is {}'.format(axis, int(axis<1))) new_ext_offset = np.zeros(3); new_ext_offset[int(axis<1)] = ext_offset[axis] area_ext = area_ext.expand(-new_ext_offset) #a_ext = area_ext.within_index(TSHS.xyz) # Internal boundary area_int = area_ext.expand(-thickness) # Disjuction composite shape Delta = area_ext - area_int # Atoms within Delta and internal boundary a_Delta = Delta.within_index(TSHS.xyz) a_int = area_int.within_index(TSHS.xyz) if atoms is not None: a_Delta = a_Delta[np.in1d(a_Delta, atoms)] # Check v = TSHS.geom.copy(); v.atom[a_Delta] = si.Atom(8, R=[1.43]); v.write('a_Delta.xyz') return a_Delta, a_int, Delta, area_ext, area_int def makeTB(TSHS_0, pzidx, nn, WW, LL, elec=None, save=True, return_bands=False): """ TSHS_0: tbtncSile object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model W: width of TB geometry (Angstrom) - transverse direction: 0 - L: length of TB geometry (Angstrom) - transport direction: 1 - elec: tbtncSile object from electrode calculation """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry \ is not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('\nEffective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('\nr ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) def get_graphene_H(radii, param, dR=dR): # In order to get the correct radii of the orbitals it is # best to define them explicitly. # This enables one to "optimize" the number of supercells # subsequently. # Define the radii of the orbital to be the maximum C = si.Atom(6, R=radii[-1] + dR) # Define graphene g = si.geom.graphene(radii[1], C, orthogonal=True) g.optimize_nsc() # Now create Hamiltonian H = si.Hamiltonian(g, orthogonal=False) # Define primitive also for check of bandstructure g_s = si.geom.graphene(radii[1], C) g_s.optimize_nsc() H_s = si.Hamiltonian(g_s, orthogonal=False) if len(param.shape) == 1: # Create a new fake parameter # with overlap elements new_param = np.zeros([len(param), 2], dtype=np.float64) new_param[:, 0] = param new_param[0, 1] = 1. # on-site, everything else, zero param = new_param H.construct((radii+dR, param)) H_s.construct((radii+dR, param)) return H, H_s # Setup the Hamiltonian building block if nn is 'all': print('WARNING: you are retaining ALL interactions from DFT model') H0, H0_s = get_graphene_H(r, param) else: print('WARNING: you are retaining only interactions up to {} neighbours'.format(nn)) H0, H0_s = get_graphene_H(r[:nn+1], param[:nn+1]) print('\nBuilding block for TB model:\n', H0) # Setup TB model W, L = int(round(WW/H0.cell[0,0])), int(round(LL/H0.cell[1,1])) # ELECTRODE if elec is not None: n_el = int(round(elec.cell[1,1]/H0.cell[1,1])) else: n_el = 2 HS_elec = H0.tile(W, 0).tile(n_el, 1) HS_elec.write('HS_ELEC.nc') HS_elec.geom.write('HS_ELEC.fdf') HS_elec.geom.write('HS_ELEC.xyz') # DEVICE + ELECTRODES (to be written ONLY after selection and rearranging of GF/dSE area) HS_dev = H0.tile(W, 0).tile(L, 1) if save: HS_dev.write('HS_DEV_0.nc') HS_dev.geom.write('HS_DEV_0.fdf') HS_dev.geom.write('HS_DEV_0.xyz') # Check bands with primitive cell if return_bands: # Open figure outside and bands will automatically be added to the plot plot_bandstructure(H0_s, 400, ymin=-3, ymax=3, style='-', color='k', label='Pristine $p_z$ parameters') return HS_dev def makeTB_FrameOutside(tshs, tbt, center, TSHS_0, pzidx, nn, WW, LL, elec=None, save=True, return_bands=False, z_graphene=None): """ tshs: TSHS object from "dirty graphene" calculation tbt: tbtncSile object from tbtrans calculation with HS: "tshs" TSHS_0: TSHS object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model WW: width of TB geometry (Angstrom) - transverse direction: 0 - LL: length of TB geometry (Angstrom) - transport direction: 1 - TSHS_elec: tbtncSile object from electrode calculation save: True will store device region netcdf files for usage in tbtrans """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check that TSHS_0 has only carbon atoms for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry\n\tis not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('\nEffective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) # Setup the Hamiltonian building block if nn is 'all': nn = len(r)-1 # The reference values we wish to target (pristine graphene) ref_r, ref_hop, ref_over = r[:nn+1], param[:nn+1, 0], param[:nn+1, 1] print('Targeted no. of neighbors per atom from TSHS_0: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(ref_r), len(ref_hop))) for ri, ci, oi in zip(ref_r, ref_hop, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # R and hopping from tshs, center is the coordinates of the tip apex # This works Only if the frame is the outmost atoms in tbt.a_dev # Maybe it's better to define a shape here! if z_graphene is None: print('\n\nPlease provide a value for z_graphene') exit(1) if center is None: center = tshs.center(atom=(tshs.xyz[:,2] == z_graphene).nonzero()[0]) print('makeTB: you are considering this as center: {}'.format(center)) distances, hop = get_R_hop(tshs, tbt, center, pzidx, nn, z_gr=z_graphene) hop_atframe = [np.average(hop[i, np.arange(-10, 0)]) for i in range(nn+1)] # r's to plot r2plot = np.linspace(0, np.amax(distances), 1000) f, ax = plt.subplots(nn+1, sharex=True) for i in range(nn+1): ax[i].scatter(distances, hop[i, :]) # Plot lines ax[i].plot([r2plot.min(), r2plot.max()], [ref_hop[i], ref_hop[i]], '--') ymin = np.amin([ref_hop[i], hop_atframe[i]]) - 0.1 ymax = np.amax([ref_hop[i], hop_atframe[i]]) + 0.1 ax[i].set_ylim(ymin, ymax) ax[i].set_xlim(r2plot.min(), r2plot.max()) f.savefig('shifting_data.pdf') plt.close(f) ###### Create device Hamiltonian bond = ref_r[1] # to make it fit in a smaller unit-cell C = si.Atom(6, R=ref_r[-1] + dR) g0 = si.geom.graphene(bond, C, orthogonal=True) g0.optimize_nsc() H0 = si.Hamiltonian(g0, orthogonal=False) print('\nNo. of neighbors per atom: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t Final parameters from frame ({}; eV):'.format(len(ref_r), len(hop_atframe))) for ri, ci, oi in zip(ref_r, hop_atframe, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # Construct TB. onsite is the same as tip tshs, while couplings are the same as pristine H0.construct((ref_r+dR, zip(hop_atframe, ref_over)), eta=True) # DEVICE + ELECTRODES geometry # Width and length of device W, L = int(round(WW/g0.cell[0,0])), int(round(LL/g0.cell[1,1])) print('Device is {} x {} supercell of the unit orthogonal cell'.format(W, L)) # (nc files should be written ONLY after selection and rearranging of GF/dSE area) HS_dev = H0.tile(W, 0).tile(L, 1) if save: HS_dev.write('HS_DEV.nc') HS_dev.geom.write('HS_DEV.fdf') HS_dev.geom.write('HS_DEV.xyz') # ELECTRODE if elec is not None: n_el = int(round(elec.cell[1,1]/H0.cell[1,1])) else: n_el = 2 HS_elec = H0.tile(W, 0).tile(n_el, 1) HS_elec.write('HS_ELEC.nc') HS_elec.geom.write('HS_ELEC.fdf') HS_elec.geom.write('HS_ELEC.xyz') # Check bands with primitive cell if return_bands: g0_s = si.geom.graphene(bond, C) g0_s.optimize_nsc() H0_s = si.Hamiltonian(g0_s, orthogonal=False) H0_s.construct((ref_r+dR, zip(hop_atframe, ref_over))) # Open figure outside and bands will automatically be added to the plot plot_bandstructure(H0_s, 400, ymin=-3, ymax=3, style='--', color='r', label='Pristine w/ tip $p_z$ onsite') return HS_dev def interp1d(x, y, y0, y1): """ Create an interpolation function from x, y. The resulting function has these properties: x < x.min(): f(x) = y0 x.min() < x < x.max(): f(x) = y x.max() < x: f(x) = y1 """ return sp.interpolate.interp1d(x, y, bounds_error=False, fill_value=(y0, y1)) def func_smooth_fermi(x, y, first_x, second_x, y1, delta=8): """ Return an interpolation function with the following properties: x < first_x: f(x) = y(first_x) first_x < x < second_x: f(x) = y second_x < x f(x) = y1 `delta` determines the amount of the smearing width that is between `first_x` and `second_x`. Parameters ---------- x, y : numpy.ndarray x/y-data points first_x : float the point of cut-off for the x-values. In this approximation we assume the `y` data-points has a plateau in the neighbourhood of `first_x` second_x : float above this `x` value all values will be `y1`. y1 : float second boundary value delta : float, optional amount of smearing parameter in between `first_x` and `second_x` (should not be below 6!). """ # First we will find the first flat plateau # We do this considering values -3 : +3 Ang if first_x < np.amax(x): raise ValueError("first_x has to be larger than maximum, interpolation x value") # First we will find the first flat plateau # We do this considering values -3 : r_max Ang idx = (np.amax(x) - x > -3.).nonzero()[0] y0 = np.average(y[idx]) # We already have the second plateau. # So all we have to do is calculate the smearing # to capture the smoothing range mid_x = (first_x + second_x) / 2 sigma = (second_x - first_x) / delta if y0 < y1: sigma = - sigma b = y0 else: b = y1 # Now we can create the function dd = delta / 2. + 1. ## Now calculate function parameters used for interpolation #x = np.arange(first_x - dd , second_x + dd, 0.01) # 0.01 Ang precision #y = abs(y1 - y0) / (np.exp((x - mid_x) / sigma) + 1) + b #return interp1d(x, y, y0, y1) # Now we can create the function dd = delta / 2. + 1. # Now calculate function parameters used for interpolation xff = np.arange(first_x, second_x + 2 * dd, 0.01) # 0.01 Ang precision yff = abs(y1 - y0) / (np.exp((x - mid_x) / sigma) + 1) + b return interp1d(np.append(x, xff), np.append(y, yff), y[0], y1) def func_smooth_linear(x, y): return sp.interpolate.interp1d(x, y, kind='cubic', fill_value=(y[0], y[-1]), bounds_error=False) def func_smooth(x, y, first_x=None, second_x=None, y1=None, delta=8, what='linear'): if what is None: what = 'linear' if what == 'fermi': return func_smooth_fermi(x, y, first_x, second_x, y1, delta) elif what == 'linear': return func_smooth_linear(x, y) def makeTB_InterpFrame(tshs, tbt, xyz_tip, TSHS_0, pzidx, nn, WW, LL, elec=None, save=True, return_bands=False, avg=False): """ tshs: TSHS object from "dirty graphene" calculation tbt: tbtncSile object from tbtrans calculation with HS: "tshs" TSHS_0: TSHS object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model WW: width of TB geometry (Angstrom) - transverse direction: 0 - LL: length of TB geometry (Angstrom) - transport direction: 1 - TSHS_elec: tbtncSile object from electrode calculation save: True will store device region netcdf files for usage in tbtrans """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check that TSHS_0 has only carbon atoms for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry\n\tis not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('\nEffective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) # Setup the Hamiltonian building block if nn is 'all': nn = len(r)-1 # The reference values we wish to target (pristine graphene) ref_r, ref_hop, ref_over = r[:nn+1], param[:nn+1, 0], param[:nn+1, 1] print('Targeted no. of neighbors per atom from TSHS_0: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(ref_r), len(ref_hop))) for ri, ci, oi in zip(ref_r, ref_hop, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # Get distance from tip and relative hoppings, sorted distances, hop = get_R_hop(tshs, tbt, xyz_tip, pzidx, nn) if avg: hop_atframe = [np.average(hop[i, np.arange(-10, 0)]) for i in range(nn+1)] else: fit = [func_smooth(distances, hop[i, :]) for i in range(nn+1)] # r's to plot r2plot = np.linspace(0, 1.2*distances[-1], 1000) f, ax = plt.subplots(nn+1, sharex=True) for i in range(nn+1): ax[i].scatter(distances, hop[i, :]) ax[i].plot(r2plot, fit[i](r2plot)) # Plot lines #ax[i].plot([r2plot.min(), r2plot.max()], [ref_hop[i], ref_hop[i]], '--') #ymin = np.amin([ref_hop[i], fit[i](distances[-1])]) - 0.1 #ymax = np.amax([ref_hop[i], fit[i](distances[-1])]) + 0.1 #ax[i].plot([distances[-1], distances[-1]], [ymin, ymax], '--') #ax[i].set_ylim(ymin, ymax) ax[i].set_xlim(r2plot.min(), r2plot.max()) f.savefig('fit_data.pdf') plt.close(f) ftyifti ###### Create device Hamiltonian using the correct parameters bond = ref_r[1] # to make it fit in a smaller unit-cell C = si.Atom(6, R=ref_r[-1] + dR) g0 = si.geom.graphene(bond, C, orthogonal=True) g0.optimize_nsc() # Width and length of device W, L = int(round(WW/g0.cell[0,0])), int(round(LL/g0.cell[1,1])) # DEVICE + ELECTRODES geometry (without PBC!!!) # (nc files should be written ONLY after selection and rearranging of GF/dSE area) g = g0.tile(W, 0).tile(L, 1) g.set_nsc([1] *3) HS_dev = si.Hamiltonian(g, orthogonal=False) # Create the connectivity values Hc = [np.empty(len(g)) for i in range(nn+1)] # # Get tip (x,y) position in large TB # frameOrigin_xyz = g.xyz[frameOrigin-TSHS_elec.na] # print('Frame reference (x, y, z=z_graphene) coordinates (low-left) in large TB geometry are:\n\t{}'.format(frameOrigin_xyz)) # c_xyz = frameOrigin_xyz + xyz_tip # c_xyz[2] = frameOrigin_xyz[2] # print('Tip (x, y, z=z_graphene) coordinates in large TB geometry are:\n\t{}'.format(c_xyz)) # c_xyz = c_xyz.reshape(1, 3) # Now loop and construct the Hamiltonian def func(self, ia, idxs, idxs_xyz=None): idx_a, xyz_a = self.geom.close(ia, R=ref_r+dR, idx=idxs, idx_xyz=idxs_xyz, ret_xyz=True) # Calculate distance to center # on-site does not need averaging rr = np.sqrt(np.square(xyz_a[0] - c_xyz).sum(1)) f = fit[0](rr) self[ia, idx_a[0], 0] = f self[ia, idx_a[0], 1] = ref_over[0] Hc[0][ia] = np.average(f) xyz = g.xyz[ia, :].reshape(1, 3) for i in range(1, len(idx_a)): rr = np.sqrt(np.square((xyz_a[i] + xyz)/2 - c_xyz).sum(1)) f = fit[i](rr) self[ia, idx_a[i], 0] = f self[ia, idx_a[i], 1] = ref_over[i] Hc[i][ia] = np.average(f) HS_dev.construct(func, eta=True) # Extract at Gamma for plot Hk = HS_dev.tocsr(0) # Check for Hermiticity if np.abs(Hk - Hk.T).max() != 0.: print('ERROR: Hamitonian is NOT HERMITIAN!') exit(0) # Plot onsite and coupling maps cm = plt.cm.get_cmap('RdYlBu') x = HS_dev.xyz[:, 0] y = HS_dev.xyz[:, 1] for i in range(nn+1): plt.figure() z = Hc[i] sc = plt.scatter(x, y, c=abs(z), edgecolor='none', cmap=cm) plt.colorbar(sc) plt.savefig('fermifit_{}.png'.format(i), dpi=300) if save: HS_dev.write('HS_DEV.nc') HS_dev.geom.write('HS_DEV.fdf') HS_dev.geom.write('HS_DEV.xyz') # ELECTRODE n_el = int(round(TSHS_elec.cell[1,1]/g0.cell[1,1])) H0 = si.Hamiltonian(g0, orthogonal=False) H0.construct((ref_r+dR, zip(ref_hop, ref_over))) HS_elec = H0.tile(W, 0).tile(n_el, 1) HS_elec.write('HS_ELEC.nc') HS_elec.geom.write('HS_ELEC.fdf') HS_elec.geom.write('HS_ELEC.xyz') # Check bands with primitive cell if return_bands: g0_s = si.geom.graphene(bond, C) g0_s.optimize_nsc() H0_s = si.Hamiltonian(g0_s, orthogonal=False) H0_s.construct((ref_r+dR, zip(ref_hop, ref_over))) # Open figure outside and bands will automatically be added to the plot plot_bandstructure(H0_s, 400, ymin=-3, ymax=3, style='-.', color='b', label='After Fermi fit') return HS_dev ### TO FIX def makeTB_fermi(tshs, tbt, xyz_tip, frameOrigin, TSHS_0, pzidx, nn, WW, LL, elec, save=True, cut_R=None, smooth_R=15., return_bands=False): """ tshs: TSHS object from "dirty graphene" calculation tbt: tbtncSile object from tbtrans calculation with HS: "tshs" xyz_tip: coordinates of tip apex atom in tshs, after setting z=z_graphene TSHS_0: TSHS object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model WW: width of TB geometry (Angstrom) - transverse direction: 0 - LL: length of TB geometry (Angstrom) - transport direction: 1 - elec: tbtncSile object from electrode calculation save: True will store device region netcdf files for usage in tbtrans smooth_R: The length over which we will smooth the function (Angstrom) """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check that TSHS_0 has only carbon atoms for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry\n\tis not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('Effective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) # Setup the Hamiltonian building block if nn is 'all': nn = len(r)-1 # The reference values we wish to target (pristine graphene) ref_r, ref_hop, ref_over = r[:nn+1], param[:nn+1, 0], param[:nn+1, 1] print('Targeted no. of neighbors per atom from TSHS_0: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(ref_r), len(ref_hop))) for ri, ci, oi in zip(ref_r, ref_hop, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # R and hopping from tshs, xyz_tip is the coordinates of the tip apex # This works Only if the frame is the outmost atoms in tbt.a_dev # Maybe it's better to define a shape here! distances, hop = get_R_hop(tshs, tbt, xyz_tip, pzidx, nn) # Create Fermi-like function to smooth hop towards ref_hop print(np.amax(distances)) print(cut_R) if cut_R is None: cut_R = np.amax(distances) print('\nCutoff radius in TSHS: {} Ang'.format(cut_R)) fermi_fit = [func_smooth(distances, hop[i, :], cut_R, cut_R + smooth_R, ref_hop[i]) for i in range(nn+1)] # r's to plot r2plot = np.linspace(0, cut_R+1.2*smooth_R, 1000) f, ax = plt.subplots(nn+1, sharex=True) for i in range(nn+1): ax[i].scatter(distances, hop[i, :]) ax[i].plot(r2plot, fermi_fit[i](r2plot)) # Plot lines ax[i].plot([r2plot.min(), r2plot.max()], [ref_hop[i], ref_hop[i]], '--') ymin = np.amin([ref_hop[i], fermi_fit[i](cut_R)]) - 0.1 ymax = np.amax([ref_hop[i], fermi_fit[i](cut_R)]) + 0.1 ax[i].plot([cut_R, cut_R], [ymin, ymax], '--') ax[i].plot([cut_R+smooth_R, cut_R+smooth_R], [ymin, ymax], '--') ax[i].set_ylim(ymin, ymax) ax[i].set_xlim(r2plot.min(), r2plot.max()) f.savefig('fermifit_data.pdf') plt.close(f) fuifguyi ###### Create device Hamiltonian using the correct parameters bond = ref_r[1] # to make it fit in a smaller unit-cell C = si.Atom(6, R=ref_r[-1] + dR) g0 = si.geom.graphene(bond, C, orthogonal=True) g0.optimize_nsc() # Width and length of device W, L = int(round(WW/g0.cell[0,0])), int(round(LL/g0.cell[1,1])) # DEVICE + ELECTRODES geometry # (nc files should be written ONLY after selection and rearranging of GF/dSE area) # MAYBE NEED TO STORE THIS ONLY AFTERWORDS!!!! OR MAYBE NOT... g = g0.tile(W, 0).tile(L, 1) g.set_nsc([1] *3) HS_dev = si.Hamiltonian(g, orthogonal=False) # Create the connectivity values Hc = [np.empty(len(g)) for i in range(nn+1)] # Get tip (x,y) position in large TB frameOrigin_xyz = g.xyz[frameOrigin-elec.na] print('Frame reference (x, y, z=z_graphene) coordinates (low-left) in large TB geometry are:\n\t{}'.format(frameOrigin_xyz)) c_xyz = frameOrigin_xyz + xyz_tip c_xyz[2] = frameOrigin_xyz[2] print('Tip (x, y, z=z_graphene) coordinates in large TB geometry are:\n\t{}'.format(c_xyz)) c_xyz = c_xyz.reshape(1, 3) # Now loop and construct the Hamiltonian def func(self, ia, idxs, idxs_xyz=None): xyz = g.xyz[ia, :].reshape(1, 3) idx_a, xyz_a = self.geom.close(ia, R=ref_r+dR, idx=idxs, idx_xyz=idxs_xyz, ret_xyz=True) # Calculate distance to center # on-site does not need averaging rr = np.sqrt(np.square(xyz_a[0] - c_xyz).sum(1)) f = fermi_fit[0](rr) self[ia, idx_a[0], 0] = f self[ia, idx_a[0], 1] = ref_over[0] Hc[0][ia] = np.average(f) for i in range(1, len(idx_a)): rr = np.sqrt(np.square((xyz_a[i] + xyz)/2 - c_xyz).sum(1)) f = fermi_fit[i](rr) self[ia, idx_a[i], 0] = f self[ia, idx_a[i], 1] = ref_over[i] Hc[i][ia] = np.average(f) HS_dev.construct(func, eta=True) # Extract at Gamma for plot Hk = HS_dev.tocsr(0) # Check for Hermiticity if np.abs(Hk - Hk.T).max() != 0.: print('ERROR: Hamitonian is NOT HERMITIAN!') exit(0) # Plot onsite and coupling maps cm = plt.cm.get_cmap('RdYlBu') x = HS_dev.xyz[:, 0] y = HS_dev.xyz[:, 1] for i in range(nn+1): plt.figure() z = Hc[i] sc = plt.scatter(x, y, c=abs(z), edgecolor='none', cmap=cm) plt.colorbar(sc) plt.savefig('fermifit_{}.png'.format(i), dpi=300) if save: HS_dev.write('HS_DEV.nc') HS_dev.geom.write('HS_DEV.fdf') HS_dev.geom.write('HS_DEV.xyz') # ELECTRODE n_el = int(round(elec.cell[1,1]/g0.cell[1,1])) H0 = si.Hamiltonian(g0, orthogonal=False) H0.construct((ref_r+dR, zip(ref_hop, ref_over))) HS_elec = H0.tile(W, 0).tile(n_el, 1) HS_elec.write('HS_ELEC.nc') HS_elec.geom.write('HS_ELEC.fdf') HS_elec.geom.write('HS_ELEC.xyz') # Check bands with primitive cell if return_bands: g0_s = si.geom.graphene(bond, C) g0_s.optimize_nsc() H0_s = si.Hamiltonian(g0_s, orthogonal=False) H0_s.construct((ref_r+dR, zip(ref_hop, ref_over))) # Open figure outside and bands will automatically be added to the plot plot_bandstructure(H0_s, 400, ymin=-3, ymax=3, style='-.', color='b', label='After Fermi fit') return HS_dev ### NOT REALLY USEFUL def makeTB_shifted(tshs, tbt, xyz_tip, TSHS_0, pzidx, nn, WW, LL, TSHS_elec, save=True, shifted=True, return_bands=False): """ tshs: TSHS object from "dirty graphene" calculation tbt: tbtncSile object from tbtrans calculation with HS: "tshs" TSHS_0: TSHS object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model WW: width of TB geometry (Angstrom) - transverse direction: 0 - LL: length of TB geometry (Angstrom) - transport direction: 1 - TSHS_elec: tbtncSile object from electrode calculation save: True will store device region netcdf files for usage in tbtrans """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check that TSHS_0 has only carbon atoms for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry\n\tis not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('\nEffective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) # Setup the Hamiltonian building block if nn is 'all': nn = len(r)-1 # The reference values we wish to target (pristine graphene) ref_r, ref_hop, ref_over = r[:nn+1], param[:nn+1, 0], param[:nn+1, 1] print('Targeted no. of neighbors per atom from TSHS_0: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(ref_r), len(ref_hop))) for ri, ci, oi in zip(ref_r, ref_hop, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # R and hopping from tshs, xyz_tip is the coordinates of the tip apex # This works Only if the frame is the outmost atoms in tbt.a_dev # Maybe it's better to define a shape here! distances, hop = get_R_hop(tshs, tbt, xyz_tip, pzidx, nn) hop_atframe = [np.average(hop[i, np.arange(-10, 0)]) for i in range(nn+1)] # r's to plot r2plot = np.linspace(0, np.amax(distances), 1000) f, ax = plt.subplots(nn+1, sharex=True) for i in range(nn+1): ax[i].scatter(distances, hop[i, :]) # Plot lines ax[i].plot([r2plot.min(), r2plot.max()], [ref_hop[i], ref_hop[i]], '--') ymin = np.amin([ref_hop[i], hop_atframe[i]]) - 0.1 ymax = np.amax([ref_hop[i], hop_atframe[i]]) + 0.1 ax[i].set_ylim(ymin, ymax) ax[i].set_xlim(r2plot.min(), r2plot.max()) f.savefig('shifting_data.pdf') plt.close(f) ###### Create device Hamiltonian using shifted on-site energy bond = ref_r[1] # to make it fit in a smaller unit-cell C = si.Atom(6, R=ref_r[-1] + dR) g0 = si.geom.graphene(bond, C, orthogonal=True) g0.optimize_nsc() H0 = si.Hamiltonian(g0, orthogonal=False) ref_hop_onshifted = ref_hop.copy() if shifted: ref_hop_onshifted[0] = hop_atframe[0] print('\nFinal no. of neighbors per atom retained from TSHS_0: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t Final parameters ({}; eV):'.format(len(ref_r), len(ref_hop_onshifted))) for ri, ci, oi in zip(ref_r, ref_hop_onshifted, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # Construct TB. onsite is the same as tip tshs, while couplings are the same as pristine H0.construct((ref_r+dR, zip(ref_hop_onshifted, ref_over))) # DEVICE + ELECTRODES geometry # Width and length of device W, L = int(round(WW/g0.cell[0,0])), int(round(LL/g0.cell[1,1])) # (nc files should be written ONLY after selection and rearranging of GF/dSE area) HS_dev = H0.tile(W, 0).tile(L, 1) if save: HS_dev.write('HS_DEV.nc') HS_dev.geom.write('HS_DEV.fdf') HS_dev.geom.write('HS_DEV.xyz') # ELECTRODE n_el = int(round(TSHS_elec.cell[1,1]/g0.cell[1,1])) HS_elec = H0.tile(W, 0).tile(n_el, 1) HS_elec.write('HS_ELEC.nc') HS_elec.geom.write('HS_ELEC.fdf') HS_elec.geom.write('HS_ELEC.xyz') # Check bands with primitive cell if return_bands: g0_s = si.geom.graphene(bond, C) g0_s.optimize_nsc() H0_s = si.Hamiltonian(g0_s, orthogonal=False) H0_s.construct((ref_r+dR, zip(ref_hop_onshifted, ref_over))) # Open figure outside and bands will automatically be added to the plot plot_bandstructure(H0_s, 400, ymin=-3, ymax=3, style='--', color='r', label='Pristine w/ tip $p_z$ onsite') return HS_dev def plot_transmission(H, iE1, iE2, ymin=None, ymax=None, style='-', color='k', label=None, xshift=0, yshift=0, plus=None, plot=True, lw=1): print('Plotting transmission from elec {} to elec {} in: {}'.format(iE1, iE2, H)) H = si.get_sile(H) tr = H.transmission(H.elecs[iE1], H.elecs[iE2]) ax = plt.gca() if not plot: return ax, tr if plus is not None: ax.plot(H.E+xshift, tr+plus+yshift, style, color=color, label=label, linewidth=lw) else: ax.plot(H.E+xshift, tr+yshift, style, color=color, label=label, linewidth=lw) if ymin is None: ymin = ax.get_ylim()[0] if ymax is None: ymax = ax.get_ylim()[1] ax.set_ylim(ymin, ymax) ax.set_ylabel('Transmission') ax.set_xlabel('$\mathrm{E-E_F}$ $(e\mathrm{V})$') if plus is not None: return ax, tr+plus+yshift else: return ax, tr+yshift def plot_transmission_bulk(H, iE, ymin=None, ymax=None, style='-', color='k', label=None, xshift=0, yshift=0): print('Plotting bulk transmission from elec {} in: {}'.format(iE, H)) H = si.get_sile(H) tr = H.transmission_bulk(H.elecs[iE]) ax = plt.gca() ax.plot(H.E+xshift, tr+yshift, style, color=color, label=label) if ymin is None: ymin = ax.get_ylim()[0] if ymax is None: ymax = ax.get_ylim()[1] ax.set_ylim(ymin, ymax) ax.set_ylabel('Transmission') ax.set_xlabel('$\mathrm{E-E_F}$ $(e\mathrm{V})$') return ax, tr def read_bondcurrents(f, idx_elec, only='+', E=0.0, k='avg'):#, atoms=None): """Read bond currents from tbtrans output Parameters ---------- f : string TBT.nc file idx_elec : int the electrode of originating electrons only : {'+', '-', 'all'} If "+" is supplied only the positive orbital currents are used, for "-", only the negative orbital currents are used, else return the sum of both. E : float or int, A float for energy in eV, int for explicit energy index k : bool, int or array_like whether the returned bond current is k-averaged, an explicit k-point or a selection of k-points Returns ------- bc, nc.E[idx_E], geom bc : bond currents nc.E[idx_E] : energy geom : geometry """ print('Reading: {}'.format(f)) nc = si.get_sile(f) na, na_dev = nc.na, nc.na_dev print('Total number of atoms: {}'.format(na)) print('Number of atoms in the device region: {}'.format(na_dev)) geom = nc.geom elec = nc.elecs[idx_elec] print('Bond-currents from electrode: {}'.format(elec)) # Check 'k' argument if k == 'avg': avg = True elif k == 'Gamma': kpts = nc.kpt idx_gamma = np.where(np.sum(np.abs(kpts), axis=1) == 0.)[0] if (kpts[idx_gamma] != np.zeros((1, 3))).any(axis=1): print('\nThe selected k-point is not Gamma!\n') exit(0) else: print('You have selected the Gamma point!') avg = idx_gamma # Index of Gamma point in nc.kpt else: print('\nInvalid `k` argument: please keep the default `avg` or use `Gamma`!\n') exit(0) idx_E = nc.Eindex(E) print('Extracting bond-currents at energy: {} eV'.format(nc.E[idx_E])) bc = nc.bond_current(elec, kavg=avg, isc=[0,0,0], only=only, E=idx_E, uc=True) return bc, nc.E[idx_E], geom # bc_coo = nc.bond_current(elec, kavg=avg, isc=[0,0,0], only=only, E=idx_E, uc=True).tocoo() # i_list = bc_coo.row # j_list = bc_coo.col # bc_list = bc_coo.data # #for i, j, bc in zip(i_list, j_list, bc_list): # # print('{}\t{}\t{}'.format(i, j, bc)) # print('Number of bond-current entries: {}'.format(np.shape(bc_list))) # if atoms is not None: # i_list_new, j_list_new, bc_list_new = [], [], [] # for i, j, bc in zip(i_list, j_list, bc_list): # if i in atoms and j in atoms: # i_list_new.append(i) # j_list_new.append(j) # bc_list_new.append(bc) # i_list = np.array(i_list_new) # j_list = np.array(j_list_new) # bc_list = np.array(bc_list_new) # #print('i\tj\tBond-current') # #for i, j, bc in zip(i_list, j_list, bc_list): # # print('{}\t{}\t{}'.format(i, j, bc)) # print('MIN bc (from file) = {}'.format(np.min(bc_list))) # print('MAX bc (from file) = {}'.format(np.max(bc_list))) # return (geom, i_list, j_list, bc_list, nc.E[idx_E]) def bc_sub(bc, atoms): """ bc: bondcurrents object directly from "read_bondcurrent" atoms: list of selected atoms """ # Get data i_list, j_list, bc_list = bc.tocoo().row, bc.tocoo().col, bc.tocoo().data # Filter only selected atoms print('Reading bond-currents among atoms (1-based!!!):') print(list2range_TBTblock(atoms)) # print 0-based idx as 1-based idx i_list_new, j_list_new, bc_list_new = [], [], [] for i, j, bc in zip(i_list, j_list, bc_list): if i in atoms and j in atoms: i_list_new.append(i) j_list_new.append(j) bc_list_new.append(bc) return np.array(i_list_new), np.array(j_list_new), np.array(bc_list_new) class Groupby: def __init__(self, keys): _, self.keys_as_int = np.unique(keys, return_inverse = True) self.n_keys = max(self.keys_as_int) self.set_indices() def set_indices(self): self.indices = [[] for i in range(self.n_keys+1)] for i, k in enumerate(self.keys_as_int): self.indices[k].append(i) self.indices = [np.array(elt) for elt in self.indices] def apply(self, function, vector, broadcast): if broadcast: result = np.zeros(len(vector)) for idx in self.indices: result[idx] = function(vector[idx]) else: result = np.zeros(self.n_keys) for k, idx in enumerate(self.indices): result[self.keys_as_int[k]] = function(vector[idx]) return result def plot_bondcurrents(f, idx_elec, only='+', E=0.0, k='avg', zaxis=2, avg=True, scale='raw', xyz_origin=None, vmin=None, vmax=None, lw=5, log=False, adosmap=False, ADOSmin=None, ADOSmax=None, arrows=False, lattice=False, ps=20, ados=False, atoms=None, out=None, ymin=None, ymax=None, xmin=None, xmax=None, spsite=None, dpi=180, units='angstrom'): """ Read bond currents from tbtrans output and plot them Parameters ---------- f : string TBT.nc file idx_elec : int the electrode of originating electrons only : {'+', '-', 'all'} If "+" is supplied only the positive orbital currents are used, for "-", only the negative orbital currents are used, else return the sum of both. E : float or int, A float for energy in eV, int for explicit energy index k : bool, int or array_like whether the returned bond current is k-averaged, an explicit k-point or a selection of k-points zaxis : int index of out-of plane direction avg : bool if "True", then it averages all currents coming from each atom and plots them in a homogeneous map if "False" it plots ALL bond currents as lines originating from each atom scale : {'%' or 'raw'} wheter values are percent. Change vmin and vmax accordingly between 0% and 100% vmin : float min value in colormap. All data greater than this will be blue vmax : float max value in colormap. All data greater than this will be yellow lattice : bool whether you want xy coord of atoms plotted as black dots in the figure ps : float size of these dots spsite : list of int special atoms in the lattice that you want to plot as red dots instead atoms : np.array or list list of atoms for which reading and plotting bondcurrents out : string name of final png figure ..... Returns ------- bc, nc.E[idx_E], geom bc : bond currents nc.E[idx_E] : energy geom : geometry Notes ----- - atoms must be 0-based - Be sure that atoms belong to a single plane (say, only graphene, no tip) """ t = time.time() print('\n***** BOND-CURRENTS (2D map) *****\n') nc = si.get_sile(f) elec = nc.elecs[idx_elec] # Read bond currents from TBT.nc file bc, energy, geom = read_bondcurrents(f, idx_elec, only, E, k) # If needed, select only selected atoms from bc_bg. bc_coo = bc.tocoo() i_list, j_list, bc_list = bc_coo.row, bc_coo.col, bc_coo.data if atoms is None: print('Reading bond-currents among all atoms in device region') atoms = nc.a_dev del bc_coo else: # Only choose atoms with positive indices atoms = atoms[atoms >= 0] select = np.logical_and(np.in1d(i_list, atoms), np.in1d(j_list, atoms)) i_list, j_list, bc_list = i_list[select], j_list[select], bc_list[select] del bc_coo, select print('Number of bond-current entries: {}'.format(np.shape(bc_list))) print('MIN bc among selected atoms (from file) = {}'.format(np.min(bc_list))) print('MAX bc among selected atoms (from file) = {}'.format(np.max(bc_list))) #print('i\tj\tBond-current') #for i, j, bc in zip(i_list, j_list, bc_list): # print('{}\t{}\t{}'.format(i, j, bc)) # Plot import matplotlib.collections as collections from matplotlib.colors import LogNorm from mpl_toolkits.axes_grid1 import make_axes_locatable cmap = cm.viridis if out is None: figname = 'BondCurrents_{}_E{}.png'.format(elec, energy) else: figname = '{}_{}_E{}.png'.format(out, elec, energy) fig, ax = plt.subplots() ax.set_aspect('equal') if log: bc_list = np.log(bc_list+1) norm = LogNorm() else: norm=None if zaxis == 2: xaxis, yaxis = 0, 1 elif zaxis == 0: xaxis, yaxis = 1, 2 elif zaxis == 1: xaxis, yaxis = 0, 2 if avg: # Plot bond currents as avg 2D map atoms_sort = np.sort(atoms) bc_avg = bc.sum(1).A.ravel()[atoms_sort] if scale is 'radial': _, r = geom.close_sc(xyz_origin, R=np.inf, idx=atoms_sort, ret_rij=True) bc_avg = np.multiply(bc_avg, r) if units == 'angstrom': unitstr = '$\AA$' x, y = geom.xyz[atoms_sort, xaxis], geom.xyz[atoms_sort, yaxis] a_mask = 1.54 elif units == 'nm': unitstr = 'nm' x, y = .1*geom.xyz[atoms_sort, xaxis], .1*geom.xyz[atoms_sort, yaxis] a_mask = .1*1.54 if scale is '%': if vmin is None: vmin = np.amin(bc_avg)*100/np.amax(bc_avg) if vmax is None: vmax = 100 vmin = vmin*np.amax(bc_avg)/100 vmax = vmax*np.amax(bc_avg)/100 else: if vmin is None: vmin = np.amin(bc_avg) if vmax is None: vmax = np.amax(bc_avg) coords = np.column_stack((x, y)) img, min, max = mask_interpolate(coords, bc_avg, oversampling=30, a=a_mask) # Note that we tell imshow to show the array created by mask_interpolate # faithfully and not to interpolate by itself another time. image = ax.imshow(img.T, extent=(min[0], max[0], min[1], max[1]), origin='lower', interpolation='none', cmap='viridis', vmin=vmin, vmax=vmax) else: if vmin is None: vmin = np.min(bc_list) if vmax is None: vmax = np.max(bc_list) # Plot bond currents as half-segments start_list = zip(geom.xyz[i_list, xaxis], geom.xyz[i_list, yaxis]) half_end_list = zip(.5*(geom.xyz[i_list, xaxis]+geom.xyz[j_list, xaxis]), .5*(geom.xyz[i_list, yaxis]+geom.xyz[j_list, yaxis])) line_list = list(map(list, zip(start_list, half_end_list))) # segments length = 1/2 bonds length linewidths = lw * bc_list / np.max(bc_list) lattice_bonds = collections.LineCollection(line_list, cmap=cmap, linewidths=linewidths, norm=norm) lattice_bonds.set_array(bc_list/np.amax(bc_list)) lattice_bonds.set_clim(vmin/np.amax(bc_list), vmax/np.amax(bc_list)) ax.add_collection(lattice_bonds) image = lattice_bonds if lattice: if units == 'angstrom': x, y = geom.xyz[atoms, xaxis], geom.xyz[atoms, yaxis] if units == 'nm': x, y = .1*geom.xyz[atoms, xaxis], .1*geom.xyz[atoms, yaxis] ax.scatter(x, y, s=ps*2, marker='o', facecolors='None', linewidth=0.8, edgecolors='k') if spsite is not None: if units == 'angstrom': xs, ys = geom.xyz[spsite, xaxis], geom.xyz[spsite, yaxis] if units == 'nm': xs, ys = .1*geom.xyz[spsite, xaxis], .1*geom.xyz[spsite, yaxis] ax.scatter(xs, ys, s=ps*2, marker='x', color='red') ax.autoscale() ax.margins(0.) #ax.margins(0.05) plt.ylim(ymin, ymax) plt.xlim(xmin, xmax) plt.xlabel('x ({})'.format(unitstr)) plt.ylabel('y ({})'.format(unitstr)) plt.gcf() divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) if avg: axcb = plt.colorbar(image, cax=cax, format='%f', ticks=[vmin, vmax]) if vmin == 0.: axcb.ax.set_yticklabels(['0', '$\geq$ {:.3e}'.format(vmax)]) else: axcb.ax.set_yticklabels(['$\leq$ {:.3e}'.format(vmin), '$\geq$ {:.3e}'.format(vmax)]) print('MIN bc among selected atoms (in final plot) = {}'.format(vmin)) print('MAX bc among selected atoms (in final plot) = {}'.format(vmax)) else: axcb = plt.colorbar(image, cax=cax, format='%f', ticks=[vmin/np.amax(bc_list), vmax/np.amax(bc_list)]) if scale is '%': vmin, vmax = vmin*100/max_newbc_bg, vmax*100/max_newbc_bg axcb.ax.set_yticklabels(['{:.1f} %'.format(vmin), '{:.1f} %'.format(vmax)]) print('MIN bc among selected atoms (in final plot) = {:.1f} %'.format(vmin)) print('MAX bc among selected atoms (in final plot) = {:.1f} %'.format(vmax)) else: axcb.ax.set_yticklabels(['{:.3e}'.format(vmin), '{:.3e}'.format(vmax)]) print('MIN bc among selected atoms (in final plot) = {}'.format(vmin)) print('MAX bc among selected atoms (in final plot) = {}'.format(vmax)) plt.savefig(figname, bbox_inches='tight', transparent=True, dpi=dpi) print('Successfully plotted to "{}"'.format(figname)) print('Done in {} sec'.format(time.time() - t)) return bc_list, vmin, vmax, i_list, j_list def plot_bondcurrents_old(f, idx_elec, sum='+', E=0.0, k='avg', f_bg=None, percent_bg=False, vmin=None, vmax=None, lw=5, log=False, adosmap=False, ADOSmin=None, ADOSmax=None, arrows=False, lattice=False, ps=20, ados=False, atoms=None, out=None, ymin=None, ymax=None, dpi=180): """ atoms must be 0-based """ t = time.time() print('\n***** BOND-CURRENTS (2D map) *****\n') nc = si.get_sile(f) elec = nc.elecs[idx_elec] # Read bond currents from TBT.nc file bc, energy, geom = read_bondcurrents(f, idx_elec, sum, E, k) # Read and subtract extra bc, if necessary if f_bg: #geom must be the same!!! print('\n - Subtracting bondcurrents from {}'.format(f_bg)) bc_bg = read_bondcurrents(f_bg, idx_elec, sum, E, k)[0] if percent_bg: # If needed, select only selected atoms from bc_bg. # Then get max bc value to be used later if atoms is None: newbc_bg = bc_bg.tocoo().data else: if atoms[0] < 0: # if atoms is a list of negative numbers, use all atoms except them atoms = list(set(nc.a_dev).difference(set(-np.asarray(atoms)))) newbc_bg = bc_sub(bc_bg, atoms)[2] max_newbc_bg = np.amax(newbc_bg) bc -= bc_bg bc.eliminate_zeros() # If needed, select only selected atoms from bc_bg. if atoms is None: print('Reading bond-currents among all atoms in device region') atoms = nc.a_dev i_list, j_list, bc_list = bc.tocoo().row, bc.tocoo().col, bc.tocoo().data else: if atoms[0] < 0: # if atoms is a list of negative numbers, use all atoms except them atoms = list(set(nc.a_dev).difference(set(-np.asarray(atoms)))) i_list, j_list, bc_list = bc_sub(bc, atoms) print('Number of bond-current entries: {}'.format(np.shape(bc_list))) print('MIN bc among selected atoms (from file) = {}'.format(np.min(bc_list))) print('MAX bc among selected atoms (from file) = {}'.format(np.max(bc_list))) #print('i\tj\tBond-current') #for i, j, bc in zip(i_list, j_list, bc_list): # print('{}\t{}\t{}'.format(i, j, bc)) # Plot import matplotlib.collections as collections from matplotlib.colors import LogNorm from mpl_toolkits.axes_grid1 import make_axes_locatable cmap = cm.viridis if out is None: figname = 'BondCurrents_{}_E{}.png'.format(elec, energy) else: figname = '{}_{}_E{}.png'.format(out, elec, energy) fig, ax = plt.subplots() ax.set_aspect('equal') # Plot bond currents as half segments starting from the atoms start_list = zip(geom.xyz[i_list, 0], geom.xyz[i_list, 1]) half_end_list = zip(.5*(geom.xyz[i_list, 0]+geom.xyz[j_list, 0]), .5*(geom.xyz[i_list, 1]+geom.xyz[j_list, 1])) line_list = list(map(list, zip(start_list, half_end_list))) # segments length = 1/2 bonds length #end_list = zip(geom.xyz[j_list, 0], geom.xyz[j_list, 1]) #line_list = list(map(list, zip(start_list, end_list))) # segments length = bonds length if log: bc_list = np.log(bc_list+1) norm = LogNorm() else: norm=None if ados: # Plot ADOS ADOS = read_ADOS(f, idx_elec, E, k, atoms)[2] x, y = geom.xyz[atoms, 0], geom.xyz[atoms, 1] if ADOSmin is None: ADOSmin = np.min(ADOS) if ADOSmax is None: ADOSmax = np.max(ADOS) if adosmap: coords = np.column_stack((x, y)) values = np.array(ADOS) img, min, max = mask_interpolate(coords, values, oversampling=15) # Note that we tell imshow to show the array created by mask_interpolate # faithfully and not to interpolate by itself another time. image = ax.imshow(img.T, extent=(min[0], max[0], min[1], max[1]), origin='lower', interpolation='none', cmap='viridis', vmin=ADOSmin, vmax=ADOSmax) else: colors = ADOS area = 300 # * ADOS / np.max(ADOS) image = ax.scatter(x, y, c=colors, s=area, marker='o', edgecolors='None', cmap=cmap, norm=norm) image.set_clim(ADOSmin, ADOSmax) image.set_array(ADOS) # Plot bond-currents if arrows: # NOT WORKING lattice_bonds = ax.quiver(np.array(start_list[0]), np.array(start_list[1]), np.subtract(np.array(half_end_list[0]),
np.array(start_list[0])
numpy.array
"""reproduces discrete spi inversion results from LfL paper (sect.6.2).""" from __future__ import print_function from grid import Grid from mdp_utils import sample_trajectory from mdp_utils import score_policy from mdp_utils import softmax from mdp_utils import solve_entropy_regularized_mdp import numpy as np import torch from torch.distributions import Categorical import torch.nn as nn def main(): # set hyperparameters gride_size = 5 n_states = gride_size**2 n_actions = 4 gamma = 0.96 alpha = 0.3 alpha_model = 0.7 entropy_coef = 0.01 n_epoch = 10 kmax = 3 tmax = 1000 n_run = 100 # generate a deterministic gridworld: g = Grid(gride_size, stochastic=False) # we just need the reward and dynamic of the MDP: r, p = g.make_tables() # solve entropy-regularized MDP: _, j_pi_star = solve_entropy_regularized_mdp(r, p, alpha, gamma) print('optimal score =', j_pi_star) learner_score = [] learner_regret = [] observer_score = [] observer_regret = [] for run in range(n_run): print('run', run) print('---------') np.random.seed(run) torch.manual_seed(run) # init first policy pi = np.ones((n_states, n_actions))/n_actions # sample initial trajectory: trajectory = sample_trajectory(p, pi, tmax) # transition estimation: p_ = np.ones((n_states, n_actions, n_states)) * 1e-15 count = np.ones((n_states, n_actions, n_states)) * n_states * 1e-15 for (s, a), (s_, _) in zip(trajectory[:-1], trajectory[1:]): p_[s, a, s_] += 1 count[s, a, :] += 1 p_ /= count demos = [trajectory] policies = [pi] # policy iterations for k in range(kmax): print('learner step', k) q = np.random.rand(n_states, n_actions) for _ in range(1000): v = np.zeros(n_states) for state in range(n_states): for action_ in range(n_actions): v[state] += pi[state, action_] * \ (q[state, action_] - alpha * np.log(pi[state, action_])) q *= 0 for state in range(n_states): for action in range(n_actions): q[state, action] = r[state, action] for state_ in range(n_states): q[state, action] += gamma*p[state, action, state_]*v[state_] pi = np.zeros((n_states, n_actions)) for state in range(n_states): pi[state, :] = softmax(q[state, :]/alpha) # sample trajectory with new policy: trajectory = sample_trajectory(p, pi, tmax) policies.append(pi) demos.append(trajectory) # learner score j_pi_learner = score_policy(pi, r, p, alpha, gamma) print('learner score ', j_pi_learner, j_pi_star - j_pi_learner) learner_score.append(j_pi_learner) learner_regret.append(j_pi_star -j_pi_learner) # estimate learner policies torch_p = torch.from_numpy(p_).float() logpi_ = tuple(nn.Parameter(torch.rand(n_states, n_actions, \ requires_grad=True)) \ for _ in range(kmax+1)) optimizer_pi = torch.optim.Adam(logpi_, lr=5e-1) for epoch in range(n_epoch): loss_pi = 0 for k, demo in enumerate(demos): demo_sas = [(s, a, s_) for (s, a), (s_, _) in zip(demo[:-1], demo[1:])] for s, a, s_ in demo_sas: dist = Categorical(torch.exp(logpi_[k][s, :])) log_prob_demo = torch.log(dist.probs[a]) loss_pi -= (log_prob_demo + entropy_coef * dist.entropy()) optimizer_pi.zero_grad() loss_pi.backward() optimizer_pi.step() if epoch%1 == 0: print('policy estimation epoch', epoch, 'loss_pi', loss_pi.item()) # create target reward functions: targets = [] for k, demo in enumerate(demos[:-1]): dist_2 = torch.exp(logpi_[k+1]) \ / torch.exp(logpi_[k+1]).sum(1, keepdim=True) dist_1 = torch.exp(logpi_[k]) / torch.exp(logpi_[k]).sum(1, keepdim=True) kl = torch.log(dist_2) - torch.log(dist_1) r_shape = torch.zeros(n_states, n_actions) for state in range(n_states): for action in range(n_actions): r_shape[state, action] = alpha_model \ * torch.log(dist_2[state, action]) for state_ in range(n_states): for action_ in range(n_actions): r_shape[state, action] -= alpha_model * gamma \ * (kl[state_, action_]) * torch_p[state, action, state_] \ * dist_1[state_, action_] targets.append(r_shape) # recover state-action reward and shaping r_ = nn.Parameter(torch.zeros(n_states, n_actions, requires_grad=True)) r_sh = (r_,) + tuple(nn.Parameter(torch.zeros(n_states, requires_grad=True))\ for _ in range(kmax)) optimizer = torch.optim.Adam(r_sh, lr=1) for epoch in range(200): loss = 0 for k, target in enumerate(targets): loss += \ ((r_sh[0]+ r_sh[k+1].repeat(n_actions, 1).t() - gamma * \ torch.sum(torch_p * r_sh[k+1].repeat(n_states, n_actions, 1), 2)\ - target.detach())**2).sum() optimizer.zero_grad() loss.backward() optimizer.step() r_ = r_.detach().numpy() # solve with r_: pi_observer, _ = solve_entropy_regularized_mdp(r_, p, alpha, gamma) # observer score with true reward: j_pi_observer = score_policy(pi_observer, r, p, alpha, gamma) print('observer score ', j_pi_observer, j_pi_star - j_pi_observer) observer_score.append(j_pi_observer) observer_regret.append(j_pi_star - j_pi_observer) print('learner_score', np.mean(learner_score), np.sqrt(np.var(learner_score))) print('learner_regret', np.mean(learner_regret), np.sqrt(np.var(learner_regret))) print('observer_score', np.mean(observer_score), np.sqrt(np.var(observer_score))) print('observer_regret',
np.mean(observer_regret)
numpy.mean
import numpy as np import matplotlib.pyplot as plt import hrgames as hrg import sys def classic_pd(R=None, tf=None, xini=None): """Plays a classic prisoner's dilemma between two players""" # Two connected players A = np.zeros([2, 2]) A[0, 1] = 1 A[1, 0] = 1 # Classic positive prisoner's dilemma B = np.zeros([2, 2]) B[0, 0] = 3 # R B[0, 1] = 1 # S B[1, 0] = 4 # T B[1, 1] = 2 # P # Relationship matrix if R is None or R.shape != (2, 2): R = np.zeros([2, 2], dtype='double') R[0, 0] = 2/3 + 0.05 R[0, 1] = 1/3 - 0.05 R[1, 1] = 2/3 - 0.05 R[1, 0] = 1/3 + 0.05 # Initial Condition, 0.5 in all strategies for all players if xini is None or xini.shape != (6, 2): xini = np.divide(np.ones([2, 2], dtype='double'), 2) # Time interval and number of steps t0 = 0 if tf is None: tf = 150 n = (tf-t0)*10 h = (tf-t0)/n x = hrg.hr_game(t0, tf, n, A, B, R, xini) # Plot results xaxis = np.arange(t0, tf+h, h) plt.plot(xaxis, x[0, 0, :], 'r', label='Player 1') plt.plot(xaxis, x[1, 0, :], 'b', label='Player 2', alpha=0.7) plt.ylim([-0.05, 1.05]) plt.legend(['Player 1', 'Player 2']) plt.title("Cooperation probability") plt.show() plt.close() return None def classic_pd_negative(R=None, tf=None, xini=None): """Plays a classic prisoner's dilemma between two players""" # Two connected players A = np.zeros([2, 2]) A[0, 1] = 1 A[1, 0] = 1 # Classic negative prisoner's dilemma B = np.zeros([2, 2]) B[0, 0] = -2 # R B[0, 1] = -7 # S B[1, 0] = 0 # T B[1, 1] = -5 # P # Relationship matrix if R is None or R.shape != (2, 2): R = np.zeros([2, 2], dtype='double') R[0, 0] = 5/7 - 0.05 R[0, 1] = 2/7 + 0.05 R[1, 1] = 5/7 + 0.05 R[1, 0] = 2/7 - 0.05 # Initial Condition, 0.5 in all strategies for all players if xini is None or xini.shape != (2, 2): xini = np.divide(np.ones([2, 2], dtype='double'), 2) # Time interval and number of steps t0 = 0 if tf is None: tf = 150 n = (tf-t0)*10 h = (tf-t0)/n x = hrg.hr_game(t0, tf, n, A, B, R, xini) # Plot results xaxis =
np.arange(t0, tf+h, h)
numpy.arange
#!/usr/bin/env python3 from progress.bar import Bar, ChargingBar import os, time, random import numpy as np import matplotlib.pyplot as plt from numpy.random import normal, uniform from numpy import pi from step import simulador C = 10 ** -3 def random_position(Ym, perturbations, Ysd=None, normal_=True, dist=None): ''' Genera un arreglo de normales donde cada elemento i tiene media mean_y[i] y varianza sd_y[i]. param mean_y: arreglo con medias param sd_y: arreglo de varianzas param perturbations: una lista con las posiciones que se perturbaran regresa: arreglo de normales ''' per = perturbations if normal_: g = lambda x, y: normal(x, y) Y = [g(x, y) if p == 1 else 0 for x, y, p in zip(Ym, Ysd, per)] else: a = Ym - dist b = Ym + dist g = lambda x, y:
uniform(x,y)
numpy.random.uniform
# -*- coding: utf-8 -*- """ @created on: 9/21/19, @author: <NAME>, @version: v0.0.1 @system name: badgod Description: ..todo:: """ import numpy as np import random from collections import defaultdict """ Monte-Carlo In this problem, we will implememnt an AI player for Blackjack. The main goal of this problem is to get familar with Monte-Carlo algorithm. We can test the correctness of our code by typing 'nosetests -v mc_test.py' in the terminal. """ def initial_policy(observation): """A policy that sticks if the player score is >= 20 and his otherwise Parameters: ----------- observation: Returns: -------- action: 0 or 1 0: STICK 1: HIT """ return 0 if observation[0] >= 20 else 1 def play_step(env, action_to_take): """ Given the action to be taken, plays a step in the environment and returns the new set of values :param env: function OpenAI gym environment. :param action_to_take: int Action index to be taken for the current step. :return: next_state: 3-tuple (Player's sum, Dealer's sum, Boolean indicating if the player has ACE). :return: reward: int Reward received for choosing the given action :return: done: boolean Boolean indicating if the state is a terminal or not. """ next_state, reward, done, info = env.step(action_to_take) return next_state, reward, done def get_random_episode(env, policy): """ Generates a list having episodes. Each episode in this list is generated until a terminal state is reached. :param env: function OpenAI gym environment. :param policy: function The policy to be followed while choosing an action. :return: list List of generated episodes """ new_set_of_episodes = [] current_state = env.reset() while True: action_to_take = policy(current_state) next_state, reward, done = play_step(env, action_to_take) new_set_of_episodes.append((current_state, action_to_take, reward)) if done: break current_state = next_state return new_set_of_episodes def mc_prediction(policy, env, n_episodes, gamma=1.0): """ Given policy using sampling to calculate the value function by using Monte Carlo first visit algorithm. :param policy: function A function that maps an observation to action probabilities :param env: function OpenAI gym environment :param n_episodes: int Number of episodes to sample :param gamma: float Gamma discount factor :return V: defaultdict(float) A dictionary that maps from state to value """ # initialize empty dictionaries returns_sum = defaultdict(float) returns_count = defaultdict(float) # a nested dictionary that maps state -> value V = defaultdict(float) for i in range(n_episodes): new_set_of_episodes = get_random_episode(env, policy) states_set = set([episode[0] for episode in new_set_of_episodes]) for i, state in enumerate(states_set): first_occurance = next(i for i, x in enumerate(new_set_of_episodes) if x[0] == state) total_reward = sum([(int(gamma) ** power) * episode[2] for power, episode in enumerate(new_set_of_episodes[first_occurance:])]) returns_sum[state] += total_reward returns_count[state] += 1 V[state] = returns_sum[state] / returns_count[state] return V def epsilon_greedy(Q, state, nA, epsilon=0.1): """ A epsilon-greedy method to generate random action based on Q state :param Q: dict() A dictionary that maps from state -> action-values, where Q[s][a] is the estimated action value corresponding to state s and action a. :param state: int current state :param nA: int Number of actions in the environment :param epsilon: float The probability to select a random action, range between 0 and 1 :return: int action based current state Hints: ------ With probability (1 − epsilon) choose the greedy action. With probability epsilon choose an action at random. """ # A = np.ones(nA) * epsilon / float(nA) # best_action, prob_for_best_action = np.argmax(Q[state]), max(Q[state]) # if prob_for_best_action > epsilon: # A[best_action] += (1.0 - epsilon) # return np.random.choice(np.arange(len(A)), p=A) # else: # return np.random.choice(np.arange(len(A))) actions = np.ones(nA) * epsilon / float(nA) best_current_action = np.argmax(Q[state]) actions[best_current_action] += (1.0 - epsilon) return np.random.choice(np.arange(len(actions)), p=actions) def generate_random_episode_greedy(Q, nA, epsilon, env): """ Generate episodes using epsilon greedy action chooser method. :param Q: dict() A dictionary that maps from state -> action-values, where Q[s][a] is the estimated action value corresponding to state s and action a. :param nA: int Number of actions in the environment :param epsilon: float The probability to select a random action, range between 0 and 1 :param env: function OpenAI gym environment :return: list List of generated episodes """ new_set_of_episodes = [] current_state = env.reset() while True: action_to_take = epsilon_greedy(Q, current_state, nA, epsilon) next_state, reward, done = play_step(env, action_to_take) new_set_of_episodes.append((current_state, action_to_take, reward)) if done: break current_state = next_state return new_set_of_episodes def mc_control_epsilon_greedy(env, n_episodes, gamma=1.0, epsilon=0.1): """ Monte Carlo control with exploring starts. Find an optimal epsilon-greedy policy. :param env: function OpenAI gym environment :param n_episodes: int Number of episodes to sample :param gamma: float Gamma discount factor :param epsilon: float The probability to select a random action, range between 0 and 1 :return: Q: dict() A dictionary that maps from state -> action-values, where Q[s][a] is the estimated action value corresponding to state s and action a. Hint: ----- You could consider decaying epsilon, i.e. epsilon = epsilon-(0.1/n_episodes) during each episode and episode must > 0. """ returns_sum = defaultdict(float) returns_count = defaultdict(float) # a nested dictionary that maps state -> (action -> action-value) Q = defaultdict(lambda:
np.zeros(env.action_space.n)
numpy.zeros
import pathlib import pickle import time from collections import defaultdict import torch import numpy as np from skimage import io as imgio from libs.ops import box_np_ops from libs import preprocess as prep from libs.geometry import points_in_convex_polygon_3d_jit from libs.ops.point_cloud.bev_ops import points_to_bev from data import kitti_common as kitti def merge_second_batch(batch_list, _unused=False): example_merged = defaultdict(list) for example in batch_list: for k, v in example.items(): example_merged[k].append(v) ret = {} example_merged.pop("num_voxels") for key, elems in example_merged.items(): if key in [ 'voxels', 'num_points', 'num_gt', 'gt_boxes', 'voxel_labels', 'match_indices' ]: ret[key] = np.concatenate(elems, axis=0) elif key == 'match_indices_num': ret[key] = np.concatenate(elems, axis=0) elif key == 'coordinates': coors = [] for i, coor in enumerate(elems): coor_pad = np.pad( coor, ((0, 0), (1, 0)), mode='constant', constant_values=i) coors.append(coor_pad) ret[key] = np.concatenate(coors, axis=0) else: ret[key] = np.stack(elems, axis=0) return ret def prep_pointcloud(input_dict, root_path, voxel_generator, target_assigner, db_sampler=None, max_voxels=20000, class_names=['Car'], remove_outside_points=False, training=True, create_targets=True, shuffle_points=False, reduce_valid_area=False, remove_unknown=False, gt_rotation_noise=[-np.pi / 3, np.pi / 3], gt_loc_noise_std=[1.0, 1.0, 1.0], global_rotation_noise=[-np.pi / 4, np.pi / 4], global_scaling_noise=[0.95, 1.05], global_loc_noise_std=(0.2, 0.2, 0.2), global_random_rot_range=[0.78, 2.35], generate_bev=False, without_reflectivity=False, num_point_features=4, anchor_area_threshold=1, gt_points_drop=0.0, gt_drop_max_keep=10, remove_points_after_sample=True, anchor_cache=None, remove_environment=False, random_crop=False, reference_detections=None, add_rgb_to_points=False, lidar_input=False, unlabeled_db_sampler=None, out_size_factor=2, min_gt_point_dict=None, bev_only=False, use_group_id=False, out_dtype=np.float32): """convert point cloud to voxels, create targets if ground truths exists. """ points = input_dict["points"] if training: gt_boxes = input_dict["gt_boxes"] gt_names = input_dict["gt_names"] difficulty = input_dict["difficulty"] group_ids = None if use_group_id and "group_ids" in input_dict: group_ids = input_dict["group_ids"] rect = input_dict["rect"] Trv2c = input_dict["Trv2c"] P2 = input_dict["P2"] unlabeled_training = unlabeled_db_sampler is not None image_idx = input_dict["image_idx"] if reference_detections is not None: C, R, T = box_np_ops.projection_matrix_to_CRT_kitti(P2) frustums = box_np_ops.get_frustum_v2(reference_detections, C) frustums -= T # frustums = np.linalg.inv(R) @ frustums.T frustums = np.einsum('ij, akj->aki', np.linalg.inv(R), frustums) frustums = box_np_ops.camera_to_lidar(frustums, rect, Trv2c) surfaces = box_np_ops.corner_to_surfaces_3d_jit(frustums) masks = points_in_convex_polygon_3d_jit(points, surfaces) points = points[masks.any(-1)] if remove_outside_points and not lidar_input: image_shape = input_dict["image_shape"] points = box_np_ops.remove_outside_points(points, rect, Trv2c, P2, image_shape) if remove_environment is True and training: selected = kitti.keep_arrays_by_name(gt_names, class_names) gt_boxes = gt_boxes[selected] gt_names = gt_names[selected] difficulty = difficulty[selected] if group_ids is not None: group_ids = group_ids[selected] points = prep.remove_points_outside_boxes(points, gt_boxes) if training: # print(gt_names) selected = kitti.drop_arrays_by_name(gt_names, ["DontCare"]) gt_boxes = gt_boxes[selected] gt_names = gt_names[selected] difficulty = difficulty[selected] if group_ids is not None: group_ids = group_ids[selected] gt_boxes = box_np_ops.box_camera_to_lidar(gt_boxes, rect, Trv2c) if remove_unknown: remove_mask = difficulty == -1 """ gt_boxes_remove = gt_boxes[remove_mask] gt_boxes_remove[:, 3:6] += 0.25 points = prep.remove_points_in_boxes(points, gt_boxes_remove) """ keep_mask =
np.logical_not(remove_mask)
numpy.logical_not
import numpy as np import pandas as pd from tensorflow.keras.models import load_model # For type hinting from typing import Tuple from numpy import array as np_arr from pandas import DataFrame as pandasDF # Project imports from nn import strat_configs, model, utils def main(config): ''' Perform the out-of-sample testing for the nn. In this testing the nn acts as an advisor, meanining that it predicts if the strategy buy signal is true or false. Parameters ---------- config : dict Config params for the out of sample test. Returns ------- None ''' # Adjust the config file with the saved settings from the data generation config = utils.add_gen_config(config) # Get the strategy config for what the nn was trained on strat_config = strat_configs.get_config(config['strat name']) # Get the testing data df_test, data, true_labels = get_testing_data(config, strat_config, ) # Load in the nn model for the predictions nn_model = load_model('nn/models/' + config['model save name']) # Make the predictions and find the class labels predict = nn_model.predict(data.astype('float32')) labels = np.argmax(predict, axis = 1) # Make a new df to signify the return df_test['predicted'] = labels df_test['surety'] = predict[np.arange(0, labels.shape[0]), labels] # Save the testing to a csv file so that future MC trials can be performed df_test.to_csv('nn/data/' + config['strat name'] + ' out sample test.csv', index = False) # Plot the confusion matrix utils.get_confusion_matrix(true_labels, labels, config, 'Out of sample test' ) return get_stats(df_test, config) def get_testing_data(config: dict, strat_config: dict) -> Tuple[pandasDF, np_arr, np_arr]: ''' Get the input numpy array for the dat Parameters ---------- config : dict Config params for the out of sample test. strat_config : dict Config params for the strategy the nn was trained on Returns ------- df : pandasDF The testing dataframe, filtered to only the ticker/profit/label columns data : np_arr The data to feed into the NN labels: np_arr The true labels for the confusion matrix ''' # Load in the dataframe with the tickers to test with df = pd.read_csv('nn/data/' + config['strat name'] + ' testing.csv') # Reset the index of the dataframe to remove the set with copy warning df = df.reset_index().drop(columns = ['index', 'ticker', 'Date']) # Change the df to values, and reshape if an LSTM-type network has been used data = df.values[:, :-2] if config['model type'] in ['lstm', 'bidirectional']: data = model.reshape_rnn(data, max(config['time lags']), ) return df[['Profit/Loss', 'labels']], data, df['labels'].values def get_stats(df: pandasDF, config: dict): ''' Get the statistics of how the strategy performs with and without the NN Parameters ---------- df : pandasDF A dataframe of trades made for this strategy config : dict Config params for the out of sample test Returns ------- None ''' # First, deduce how the strategy performed without the NN to assist print('\nPerformance without the NN') print_stats(df['Profit/Loss'].values) # Filter the dataframe to only consider the minimum class and surety level df = df[(df['predicted'] >= config['min class']) & (df['surety'] > config['surety'])] # Now determine how the strategy performed with the NN print('\nPerformance with the NN') print_stats(df['Profit/Loss'].values) return def print_stats(percs: np_arr): ''' Given an array of profit/loss percentages, print the statistics. Parameters ---------- percs : np_arr The profit/loss from each trade Returns ------- None ''' if percs.shape[0] > 0: print('Number of trades: ', percs.shape[0]) print('Win rate: ', percs[percs > 0].shape[0]/percs.shape[0]) print('Mean profit: ',
np.mean(percs)
numpy.mean
from __future__ import absolute_import, division import sys import argparse import numpy as np from numpy.linalg.linalg import LinAlgError import astropy.io.fits as pyfits from numpy.polynomial.legendre import legval,legfit from scipy.signal import fftconvolve import specter.psf from lvmspec.io import read_image from lvmutil.log import get_logger from lvmspec.linalg import cholesky_solve,cholesky_solve_and_invert from lvmspec.interpolation import resample_flux def read_psf_and_traces(psf_filename) : """ Reads PSF and traces in PSF fits file Args: psf_filename : Path to input fits file which has to contain XTRACE and YTRACE HDUs Returns: psf : specter PSF object xtrace : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ytrace : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) """ log=get_logger() psf=None xtrace=None ytrace=None wavemin=None wavemax=None wavemin2=None wavemax2=None fits_file = pyfits.open(psf_filename) try : psftype=fits_file[0].header["PSFTYPE"] except KeyError : psftype="" if psftype=="GAUSS-HERMITE" : psf = specter.psf.GaussHermitePSF(psf_filename) elif psftype=="SPOTGRID" : psf = specter.psf.SpotGridPSF(psf_filename) # now read trace coefficients log.info("psf is a '%s'"%psftype) if psftype == "bootcalib" : wavemin = fits_file[0].header["WAVEMIN"] wavemax = fits_file[0].header["WAVEMAX"] xcoef = fits_file[0].data ycoef = fits_file[1].data wavemin2 = wavemin wavemax2 = wavemax elif "XTRACE" in fits_file : xtrace=fits_file["XTRACE"].data ytrace=fits_file["YTRACE"].data wavemin=fits_file["XTRACE"].header["WAVEMIN"] wavemax=fits_file["XTRACE"].header["WAVEMAX"] wavemin2=fits_file["YTRACE"].header["WAVEMIN"] wavemax2=fits_file["YTRACE"].header["WAVEMAX"] elif psftype == "GAUSS-HERMITE" : table=fits_file["PSF"].data i=np.where(table["PARAM"]=="X")[0][0] wavemin=table["WAVEMIN"][i] wavemax=table["WAVEMAX"][i] xtrace=table["COEFF"][i] i=np.where(table["PARAM"]=="Y")[0][0] ytrace=table["COEFF"][i] wavemin2=table["WAVEMIN"][i] wavemax2=table["WAVEMAX"][i] if xtrace is None or ytrace is None : raise ValueError("could not find XTRACE and YTRACE in psf file %s"%psf_filename) if wavemin != wavemin2 : raise ValueError("XTRACE and YTRACE don't have same WAVEMIN %f %f"%(wavemin,wavemin2)) if wavemax != wavemax2 : raise ValueError("XTRACE and YTRACE don't have same WAVEMAX %f %f"%(wavemax,wavemax2)) if xtrace.shape[0] != ytrace.shape[0] : raise ValueError("XTRACE and YTRACE don't have same number of fibers %d %d"%(xtrace.shape[0],ytrace.shape[0])) fits_file.close() return psf,xtrace,ytrace,wavemin,wavemax def write_traces_in_psf(input_psf_filename,output_psf_filename,xcoef,ycoef,wavemin,wavemax) : """ Writes traces in a PSF. Args: input_psf_filename : Path to input fits file which has to contain XTRACE and YTRACE HDUs output_psf_filename : Path to output fits file which has to contain XTRACE and YTRACE HDUs xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) """ log = get_logger() psf_fits=pyfits.open(input_psf_filename) psftype=psf_fits[0].header["PSFTYPE"] modified_x=False modified_y=False if psftype=="GAUSS-HERMITE" : if "X" in psf_fits["PSF"].data["PARAM"] : i=np.where(psf_fits["PSF"].data["PARAM"]=="X")[0][0] ishape=psf_fits["PSF"].data["COEFF"][i].shape if ishape != xcoef.shape : log.warning("xcoef from file and from arg don't have same shape : %s != %s"%(str(ishape),str(xcoef.shape))) n0=min(ishape[0],xcoef.shape[0]) n1=min(ishape[1],xcoef.shape[1]) psf_fits["PSF"].data["COEFF"][i] *= 0. psf_fits["PSF"].data["COEFF"][i][:n0,:n1]=xcoef[:n0,:n1] psf_fits["PSF"].data["WAVEMIN"][i]=wavemin psf_fits["PSF"].data["WAVEMAX"][i]=wavemax modified_x=True if "Y" in psf_fits["PSF"].data["PARAM"] : i=np.where(psf_fits["PSF"].data["PARAM"]=="Y")[0][0] ishape=psf_fits["PSF"].data["COEFF"][i].shape if ishape != ycoef.shape : log.warning("xcoef from file and from arg don't have same shape : %s != %s"%(str(ishape),str(ycoef.shape))) n0=min(psf_fits["PSF"].data["COEFF"][i].shape[0],ycoef.shape[0]) n1=min(psf_fits["PSF"].data["COEFF"][i].shape[1],ycoef.shape[1]) psf_fits["PSF"].data["COEFF"][i] *= 0. psf_fits["PSF"].data["COEFF"][i][:n0,:n1]=ycoef[:n0,:n1] psf_fits["PSF"].data["WAVEMIN"][i]=wavemin psf_fits["PSF"].data["WAVEMAX"][i]=wavemax modified_y=True if "XTRACE" in psf_fits : psf_fits["XTRACE"].data = xcoef psf_fits["XTRACE"].header["WAVEMIN"] = wavemin psf_fits["XTRACE"].header["WAVEMAX"] = wavemax modified_x=True if "YTRACE" in psf_fits : psf_fits["YTRACE"].data = ycoef psf_fits["YTRACE"].header["WAVEMIN"] = wavemin psf_fits["YTRACE"].header["WAVEMAX"] = wavemax modified_y=True if not modified_x : log.error("didn't change the X coefs in the psf: I/O error") raise IOError("didn't change the X coefs in the psf") if not modified_y : log.error("didn't change the Y coefs in the psf: I/O error") raise IOError("didn't change the Y coefs in the psf") psf_fits.writeto(output_psf_filename,clobber=True) log.info("wrote traces and psf in %s"%output_psf_filename) def legx(wave,wavemin,wavemax) : """ Reduced coordinate (range [-1,1]) for calls to legval and legfit Args: wave : ND np.array wavemin : float, min. val wavemax : float, max. val Returns: array of same shape as wave """ return 2.*(wave-wavemin)/(wavemax-wavemin)-1. # beginning of routines for cross-correlation method for trace shifts def boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers=None, width=7) : """ Fast boxcar extraction of spectra from a preprocessed image and a trace set Args: xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object Optional: fibers : 1D np.array of int (default is all fibers, the first fiber is always = 0) width : extraction boxcar width, default is 7 Returns: flux : 2D np.array of shape (nfibers,n0=image.shape[0]), sum of pixel values per row of length=width per fiber ivar : 2D np.array of shape (nfibers,n0), ivar[f,j] = 1/( sum_[j,b:e] (1/image.ivar) ), ivar=0 if at least 1 pixel in the row has image.ivar=0 or image.mask!=0 wave : 2D np.array of shape (nfibers,n0), determined from the traces """ log=get_logger() log.info("Starting boxcar extraction...") if fibers is None : fibers = np.arange(psf.nspec) log.info("wavelength range : [%f,%f]"%(wavemin,wavemax)) if image.mask is not None : image.ivar *= (image.mask==0) # Applying a mask that keeps positive value to get the Variance by inversing the inverse variance. var=np.zeros(image.ivar.size) ok=image.ivar.ravel()>0 var[ok] = 1./image.ivar.ravel()[ok] var=var.reshape(image.ivar.shape) badimage=(image.ivar==0) n0 = image.pix.shape[0] n1 = image.pix.shape[1] frame_flux = np.zeros((fibers.size,n0)) frame_ivar = np.zeros((fibers.size,n0)) frame_wave = np.zeros((fibers.size,n0)) xx = np.tile(np.arange(n1),(n0,1)) hw = width//2 ncoef=ycoef.shape[1] twave=np.linspace(wavemin, wavemax, ncoef+2) for f,fiber in enumerate(fibers) : log.info("extracting fiber #%03d"%fiber) y_of_wave = legval(legx(twave, wavemin, wavemax), ycoef[fiber]) coef = legfit(legx(y_of_wave, 0, n0), twave, deg=ncoef) # add one deg frame_wave[f] = legval(legx(np.arange(n0).astype(float), 0, n0), coef) x_of_y = np.floor( legval(legx(frame_wave[f], wavemin, wavemax), xcoef[fiber]) + 0.5 ).astype(int) mask=((xx.T>=x_of_y-hw)&(xx.T<=x_of_y+hw)).T frame_flux[f]=image.pix[mask].reshape((n0,width)).sum(-1) tvar=var[mask].reshape((n0,width)).sum(-1) frame_ivar[f]=(tvar>0)/(tvar+(tvar==0)) bad=(badimage[mask].reshape((n0,width)).sum(-1))>0 frame_ivar[f,bad]=0. return frame_flux, frame_ivar, frame_wave def resample_boxcar_frame(frame_flux,frame_ivar,frame_wave,oversampling=2) : """ Resamples the spectra in a frame obtained with boxcar extraction to the same wavelength grid, with oversampling. Uses resample_flux routine. Args: frame_flux : 2D np.array of shape (nfibers,nwave), sum of pixel values per row of length=width per fiber frame_ivar : 2D np.array of shape (nfibers,nwave), ivar[f,j] = 1/( sum_[j,b:e] (1/image.ivar) ), ivar=0 if at least 1 pixel in the row has image.ivar=0 or image.mask!=0 frame_wave : 2D np.array of shape (nfibers,nwave), determined from the traces Optional: oversampling : int , oversampling factor , default is 2 Returns: flux : 2D np.array of shape (nfibers,nwave*oversampling) ivar : 2D np.array of shape (nfibers,nwave*oversampling) frame_wave : 1D np.array of size (nwave*oversampling) """ log=get_logger() log.info("resampling with oversampling") nfibers=frame_flux.shape[0] wave=frame_wave[nfibers//2] dwave=np.median(np.gradient(frame_wave))/oversampling wave=np.linspace(wave[0],wave[-1],int((wave[-1]-wave[0])/dwave)) nwave=wave.size flux=np.zeros((nfibers,nwave)) ivar=np.zeros((nfibers,nwave)) for i in range(nfibers) : log.info("resampling fiber #%03d"%i) flux[i],ivar[i] = resample_flux(wave, frame_wave[i],frame_flux[i],frame_ivar[i]) return flux,ivar,wave def compute_dy_from_spectral_cross_correlation(flux,wave,refflux,ivar=None,hw=3.,deg=2) : """ Measure y offsets from two spectra expected to be on the same wavelength grid. refflux is the assumed well calibrated spectrum. A relative flux calibration of the two spectra is done internally. Args: flux : 1D array of spectral flux as a function of wavelenght wave : 1D array of wavelength (in Angstrom) refflux : 1D array of reference spectral flux Optional: ivar : 1D array of inverse variance of flux hw : half width in Angstrom of the cross-correlation chi2 scan, default=3A corresponding approximatly to 5 pixels for DESI deg : degree of polynomial fit as a function of wavelength, only used to find and mask outliers Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dx : 1D array of shifts along x coordinates on CCD ex : 1D array of uncertainties on dx fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ # absorb differences of calibration (fiberflat not yet applied) x=(wave-wave[wave.size//2])/500. kernel=np.exp(-x**2/2) f1=fftconvolve(flux,kernel,mode='same') f2=fftconvolve(refflux,kernel,mode='same') scale=f1/f2 refflux *= scale error_floor=0.01 #A if ivar is None : ivar=np.ones(flux.shape) dwave=wave[1]-wave[0] ihw=int(hw/dwave)+1 chi2=np.zeros((2*ihw+1)) ndata=np.sum(ivar[ihw:-ihw]>0) for i in range(2*ihw+1) : d=i-ihw b=ihw+d e=-ihw+d if e==0 : e=wave.size chi2[i] = np.sum(ivar[ihw:-ihw]*(flux[ihw:-ihw]-refflux[b:e])**2) i=np.argmin(chi2) if i<2 or i>=chi2.size-2 : # something went wrong delta=0. sigma=100. else : # refine minimum hh=int(0.6/dwave)+1 b=i-hh e=i+hh+1 if b<0 : b=0 e=b+2*hh+1 if e>2*ihw+1 : e=2*ihw+1 b=e-(2*hh+1) x=dwave*(np.arange(b,e)-ihw) c=np.polyfit(x,chi2[b:e],deg) if c[0]>0 : delta=-c[1]/(2.*c[0]) sigma=np.sqrt(1./c[0] + error_floor**2) if ndata>1 : chi2pdf=(c[0]*delta**2+c[1]*delta+c[2])/(ndata+1) if chi2pdf>1 : sigma *= np.sqrt(chi2pdf) else : # something else went wrong delta=0. sigma=100. ''' print("dw= %f +- %f"%(delta,sigma)) if np.abs(delta)>1. : print("chi2/ndf=%f/%d=%f"%(chi2[i],(ndata-1),chi2[i]/(ndata-1))) import matplotlib.pyplot as plt x=dwave*(np.arange(chi2.size)-ihw) plt.plot(x,chi2,"o-") pol=np.poly1d(c) xx=np.linspace(x[b],x[e-1],20) plt.plot(xx,pol(xx)) plt.axvline(delta) plt.axvline(delta-sigma) plt.axvline(delta+sigma) plt.show() ''' return delta,sigma def compute_dy_from_spectral_cross_correlations_of_frame(flux, ivar, wave , xcoef, ycoef, wavemin, wavemax, reference_flux , n_wavelength_bins = 4) : """ Measures y offsets from a set of resampled spectra and a reference spectrum that are on the same wavelength grid. reference_flux is the assumed well calibrated spectrum. Calls compute_dy_from_spectral_cross_correlation per fiber Args: flux : 2D np.array of shape (nfibers,nwave) ivar : 2D np.array of shape (nfibers,nwave) , inverse variance of flux wave : 1D array of wavelength (in Angstrom) of size nwave refflux : 1D array of reference spectral flux of size nwave Optional: n_wavelength_bins : number of bins along wavelength Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dy : 1D array of shifts along y coordinates on CCD ey : 1D array of uncertainties on dy fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ log=get_logger() x_for_dy=np.array([]) y_for_dy=np.array([]) dy=np.array([]) ey=np.array([]) fiber_for_dy=np.array([]) wave_for_dy=np.array([]) nfibers = flux.shape[0] for fiber in range(nfibers) : log.info("computing dy for fiber #%03d"%fiber) for b in range(n_wavelength_bins) : wmin=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*b if b<n_wavelength_bins-1 : wmax=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*(b+1) else : wmax=wave[-1] ok=(wave>=wmin)&(wave<=wmax) sw=np.sum(ivar[fiber,ok]*flux[fiber,ok]*(flux[fiber,ok]>0)) if sw<=0 : continue dwave,err = compute_dy_from_spectral_cross_correlation(flux[fiber,ok],wave[ok],reference_flux[ok],ivar=ivar[fiber,ok],hw=3.) block_wave = np.sum(ivar[fiber,ok]*flux[fiber,ok]*(flux[fiber,ok]>0)*wave[ok])/sw if err > 1 : continue rw = legx(block_wave,wavemin,wavemax) tx = legval(rw,xcoef[fiber]) ty = legval(rw,ycoef[fiber]) eps=0.1 yp = legval(legx(block_wave+eps,wavemin,wavemax),ycoef[fiber]) dydw = (yp-ty)/eps tdy = -dwave*dydw tey = err*dydw x_for_dy=np.append(x_for_dy,tx) y_for_dy=np.append(y_for_dy,ty) dy=np.append(dy,tdy) ey=np.append(ey,tey) fiber_for_dy=np.append(fiber_for_dy,fiber) wave_for_dy=np.append(wave_for_dy,block_wave) return x_for_dy,y_for_dy,dy,ey,fiber_for_dy,wave_for_dy def compute_dy_using_boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers, width=7, degyy=2) : """ Measures y offsets (internal wavelength calibration) from a preprocessed image and a trace set using a cross-correlation of boxcar extracted spectra. Uses boxcar_extraction , resample_boxcar_frame , compute_dy_from_spectral_cross_correlations_of_frame Args: xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object Optional: fibers : 1D np.array of int (default is all fibers, the first fiber is always = 0) width : int, extraction boxcar width, default is 7 degyy : int, degree of polynomial fit of shifts as a function of y, used to reject outliers. Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dy : 1D array of shifts along y coordinates on CCD ey : 1D array of uncertainties on dy fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ log=get_logger() # boxcar extraction boxcar_flux, boxcar_ivar, boxcar_wave = boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers=fibers, width=7) # resampling on common finer wavelength grid flux, ivar, wave = resample_boxcar_frame(boxcar_flux, boxcar_ivar, boxcar_wave, oversampling=4) # median flux used as internal spectral reference mflux=np.median(flux,axis=0) # measure y shifts return compute_dy_from_spectral_cross_correlations_of_frame(flux=flux, ivar=ivar, wave=wave, xcoef=xcoef, ycoef=ycoef, wavemin=wavemin, wavemax=wavemax, reference_flux = mflux , n_wavelength_bins = degyy+4) def compute_dx_from_cross_dispersion_profiles(xcoef,ycoef,wavemin,wavemax, image, fibers=None, width=7,deg=2) : """ Measure x offsets from a preprocessed image and a trace set Args: xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object Optional: fibers : 1D np.array of int (default is all fibers, the first fiber is always = 0) width : extraction boxcar width, default is 5 deg : degree of polynomial fit as a function of y, only used to find and mask outliers Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dx : 1D array of shifts along x coordinates on CCD ex : 1D array of uncertainties on dx fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ log=get_logger() log.info("Starting compute_dx_from_cross_dispersion_profiles ...") if fibers is None : fibers = np.arange(psf.nspec) log.info("wavelength range : [%f,%f]"%(wavemin,wavemax)) if image.mask is not None : image.ivar *= (image.mask==0) error_floor = 0.04 # pixel # Variance based on inverse variance's size var = np.zeros(image.ivar.shape) # Applying a mask that keeps positive value to get the Variance by inversing the inverse variance. n0 = image.pix.shape[0] n1 = image.pix.shape[1] y = np.arange(n0) xx = np.tile(np.arange(n1),(n0,1)) hw = width//2 ncoef=ycoef.shape[1] twave=np.linspace(wavemin, wavemax, ncoef+2) ox=np.array([]) oy=np.array([]) odx=np.array([]) oex=np.array([]) of=np.array([]) ol=np.array([]) for f,fiber in enumerate(fibers) : log.info("computing dx for fiber #%03d"%fiber) y_of_wave = legval(legx(twave, wavemin, wavemax), ycoef[fiber]) coef = legfit(legx(y_of_wave, 0, n0), twave, deg=ncoef) # add one deg twave = legval(legx(np.arange(n0).astype(float), 0, n0), coef) x_of_y = legval(legx(twave, wavemin, wavemax), xcoef[fiber]) x_of_y_int = np.floor(x_of_y+0.5).astype(int) dx = (xx.T-x_of_y).T mask=((xx.T>=x_of_y_int-hw)&(xx.T<=x_of_y_int+hw)).T ok = ((image.ivar[mask]==0).reshape((n0,width)).sum(-1)==0) swdx = (dx[mask] * image.pix[mask] ).reshape((n0,width)).sum(-1) swdxvar = (dx[mask]**2/(image.ivar[mask]+0.1*(image.ivar[mask]==0) )).reshape((n0,width)).sum(-1) sw = (image.pix[mask]).reshape((n0,width)).sum(-1) swy = sw*y swx = sw*x_of_y swl = sw*twave # rebin rebin = 200 ok = ((ok[:(n0//rebin)*rebin].reshape(n0//rebin,rebin)==0).sum(-1)==0) sw = sw[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swdx = swdx[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swdxvar = swdxvar[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swx = swx[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swy = swy[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swl = swl[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) ''' import matplotlib.pyplot as plt i=np.where((sw>0.01)&(ok>0))[0] plt.errorbar(swy[i]/sw[i],swdx[i]/sw[i],np.sqrt(swdxvar[i])/sw[i],fmt="o") plt.show() ''' sw[sw<0] = 0 fex = np.sqrt(swdxvar/(sw+(sw==0))**2 + error_floor**2) # error on dx, with an error floor ok &= (fex>0)&(fex<10) # ok means no ivar=0 pixel fex = fex[ok] fdx = (swdx/(sw+(sw==0)))[ok] fx = (swx/(sw+(sw==0)))[ok] fy = (swy/(sw+(sw==0)))[ok] fl = (swl/(sw+(sw==0)))[ok] good_fiber=True for loop in range(10) : if fdx.size < deg+2 : good_fiber=False break try : c = np.polyfit(fy,fdx,deg,w=1/fex**2) pol = np.poly1d(c) chi2 = (fdx-pol(fy))**2/fex**2 mchi2 = np.median(chi2) #log.info("mchi2=%f"%mchi2) #if mchi2>1 : # fex *= np.sqrt(mchi2) ok = np.where(chi2<=25.*mchi2)[0] nbad = fdx.size-ok.size fex = fex[ok] fdx = fdx[ok] fx = fx[ok] fy = fy[ok] fl = fl[ok] except LinAlgError : good_fiber=False break if nbad==0 : break #print("removing %d bad measurements"%nbad) # we return the original sample of offset values if good_fiber : ox = np.append(ox,fx) oy = np.append(oy,fy) odx = np.append(odx,fdx) oex = np.append(oex,fex) of = np.append(of,fiber*np.ones(fy.size)) ol = np.append(ol,fl) return ox,oy,odx,oex,of,ol def shift_ycoef_using_external_spectrum(psf,xcoef,ycoef,wavemin,wavemax,image,fibers,spectrum_filename,degyy=2,width=7) : """ Measure y offsets (external wavelength calibration) from a preprocessed image , a PSF + trace set using a cross-correlation of boxcar extracted spectra and an external well-calibrated spectrum. The PSF shape is used to convolve the input spectrum. It could also be used to correct for the PSF asymetry (disabled for now). A relative flux calibration of the spectra is performed internally. Args: psf : specter PSF xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object fibers : 1D np.array of fiber indices spectrum_filename : path to input spectral file ( read with np.loadtxt , first column is wavelength (in vacuum and Angstrom) , second column in flux (arb. units) Optional: width : int, extraction boxcar width, default is 7 degyy : int, degree of polynomial fit of shifts as a function of y, used to reject outliers. Returns: ycoef : 2D np.array of same shape as input, with modified Legendre coefficents for each fiber to convert wavelenght to YCCD """ log = get_logger() tmp=np.loadtxt(spectrum_filename).T ref_wave=tmp[0] ref_spectrum=tmp[1] log.info("read reference spectrum in %s with %d entries"%(spectrum_filename,ref_wave.size)) log.info("rextract spectra with boxcar") # boxcar extraction boxcar_flux, boxcar_ivar, boxcar_wave = boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers=fibers, width=width) # resampling on common finer wavelength grid flux, ivar, wave = resample_boxcar_frame(boxcar_flux, boxcar_ivar, boxcar_wave, oversampling=2) # median flux used as internal spectral reference mflux=np.median(flux,axis=0) mivar=np.median(ivar,axis=0)*flux.shape[0]*(2./np.pi) # very appoximate ! # trim ref_spectrum i=(ref_wave>=wave[0])&(ref_wave<=wave[-1]) ref_wave=ref_wave[i] ref_spectrum=ref_spectrum[i] # check wave is linear or make it linear if np.abs((ref_wave[1]-ref_wave[0])-(ref_wave[-1]-ref_wave[-2]))>0.0001*(ref_wave[1]-ref_wave[0]) : log.info("reference spectrum wavelength is not on a linear grid, resample it") dwave = np.min(np.gradient(ref_wave)) tmp_wave = np.linspace(ref_wave[0],ref_wave[-1],int((ref_wave[-1]-ref_wave[0])/dwave)) ref_spectrum = resample_flux(tmp_wave, ref_wave , ref_spectrum) ref_wave = tmp_wave try : # compute psf at most significant line of ref_spectrum i=np.argmax(ref_spectrum) central_wave_for_psf_evaluation = ref_wave[i] fiber_for_psf_evaluation = (boxcar_flux.shape[0]//2) dwave=ref_wave[i+1]-ref_wave[i] hw=int(3./dwave)+1 # 3A half width wave_range = ref_wave[i-hw:i+hw+1] x,y=psf.xy(fiber_for_psf_evaluation,wave_range) x=np.tile(x[hw]+np.arange(-hw,hw+1)*(y[-1]-y[0])/(2*hw+1),(y.size,1)) y=np.tile(y,(2*hw+1,1)).T kernel2d=psf._value(x,y,fiber_for_psf_evaluation,central_wave_for_psf_evaluation) kernel1d=np.sum(kernel2d,axis=1) log.info("convolve reference spectrum using PSF at fiber %d and wavelength %dA"%(fiber_for_psf_evaluation,central_wave_for_psf_evaluation)) ref_spectrum=fftconvolve(ref_spectrum,kernel1d, mode='same') except : log.warning("couldn't convolve reference spectrum: %s %s"%(sys.exc_info()[0],sys.exc_info()[1])) # resample input spectrum log.info("resample convolved reference spectrum") ref_spectrum = resample_flux(wave, ref_wave , ref_spectrum) log.info("absorb difference of calibration") x=(wave-wave[wave.size//2])/50. kernel=np.exp(-x**2/2) f1=fftconvolve(mflux,kernel,mode='same') f2=fftconvolve(ref_spectrum,kernel,mode='same') scale=f1/f2 ref_spectrum *= scale log.info("fit shifts on wavelength bins") # define bins n_wavelength_bins = degyy+4 y_for_dy=np.array([]) dy=np.array([]) ey=np.array([]) wave_for_dy=np.array([]) for b in range(n_wavelength_bins) : wmin=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*b if b<n_wavelength_bins-1 : wmax=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*(b+1) else : wmax=wave[-1] ok=(wave>=wmin)&(wave<=wmax) sw= np.sum(mflux[ok]*(mflux[ok]>0)) if sw==0 : continue dwave,err = compute_dy_from_spectral_cross_correlation(mflux[ok],wave[ok],ref_spectrum[ok],ivar=mivar[ok],hw=3.) bin_wave = np.sum(mflux[ok]*(mflux[ok]>0)*wave[ok])/sw x,y=psf.xy(fiber_for_psf_evaluation,bin_wave) eps=0.1 x,yp=psf.xy(fiber_for_psf_evaluation,bin_wave+eps) dydw=(yp-y)/eps if err*dydw<1 : dy=np.append(dy,-dwave*dydw) ey=np.append(ey,err*dydw) wave_for_dy=np.append(wave_for_dy,bin_wave) y_for_dy=np.append(y_for_dy,y) log.info("wave = %fA , y=%d, measured dwave = %f +- %f A"%(bin_wave,y,dwave,err)) if False : # we don't need this for now try : log.info("correcting bias due to asymmetry of PSF") hw=5 oversampling=4 xx=np.tile(np.arange(2*hw*oversampling+1)-hw*oversampling,(2*hw*oversampling+1,1))/float(oversampling) yy=xx.T x,y=psf.xy(fiber_for_psf_evaluation,central_wave_for_psf_evaluation) prof=psf._value(xx+x,yy+y,fiber_for_psf_evaluation,central_wave_for_psf_evaluation) dy_asym_central = np.sum(yy*prof)/np.sum(prof) for i in range(dy.size) : x,y=psf.xy(fiber_for_psf_evaluation,wave_for_dy[i]) prof=psf._value(xx+x,yy+y,fiber_for_psf_evaluation,wave_for_dy[i]) dy_asym = np.sum(yy*prof)/np.sum(prof) log.info("y=%f, measured dy=%f , bias due to PSF asymetry = %f"%(y,dy[i],dy_asym-dy_asym_central)) dy[i] -= (dy_asym-dy_asym_central) except : log.warning("couldn't correct for asymmetry of PSF: %s %s"%(sys.exc_info()[0],sys.exc_info()[1])) log.info("polynomial fit of shifts and modification of PSF ycoef") # pol fit coef = np.polyfit(wave_for_dy,dy,degyy,w=1./ey**2) pol = np.poly1d(coef) for i in range(dy.size) : log.info("wave=%fA y=%f, measured dy=%f+-%f , pol(wave) = %f"%(wave_for_dy[i],y_for_dy[i],dy[i],ey[i],pol(wave_for_dy[i]))) log.info("apply this to the PSF ycoef") wave = np.linspace(wavemin,wavemax,100) dy = pol(wave) dycoef = legfit(legx(wave,wavemin,wavemax),dy,deg=ycoef.shape[1]-1) for fiber in range(ycoef.shape[0]) : ycoef[fiber] += dycoef return ycoef # end of routines for cross-correlation method for trace shifts # beginning of routines for forward model method for trace shifts def compute_fiber_bundle_trace_shifts_using_psf(fibers,line,psf,image,maxshift=2.) : """ Computes trace shifts along x and y from a preprocessed image, a PSF (with trace coords), and a given emission line, by doing a forward model of the image. Args: fibers : 1D array with list of fibers line : float, wavelength of an emission line (in Angstrom) psf : specter psf object image : DESI preprocessed image object Optional: maxshift : float maximum shift in pixels for 2D chi2 scan Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dx : 1D array of shifts along x coordinates on CCD dy : 1D array of shifts along y coordinates on CCD sx : 1D array of uncertainties on dx sy : 1D array of uncertainties on dy """ log=get_logger() #log.info("compute_fiber_bundle_offsets fibers={} line={}".format(fibers,line)) # get central coordinates of bundle for interpolation of offsets on CCD x,y = psf.xy([int(np.median(fibers)),],line) try : nfibers=len(fibers) # compute stamp coordinates xstart=None xstop=None ystart=None ystop=None xs=[] ys=[] pix=[] xx=[] yy=[] for fiber in fibers : txs,tys,tpix = psf.xypix(fiber,line) xs.append(txs) ys.append(tys) pix.append(tpix) if xstart is None : xstart =txs.start xstop =txs.stop ystart =tys.start ystop =tys.stop else : xstart =min(xstart,txs.start) xstop =max(xstop,txs.stop) ystart =min(ystart,tys.start) ystop =max(ystop,tys.stop) # load stamp data, with margins to avoid problems with shifted psf margin=int(maxshift)+1 stamp=np.zeros((ystop-ystart+2*margin,xstop-xstart+2*margin)) stampivar=np.zeros(stamp.shape) stamp[margin:-margin,margin:-margin]=image.pix[ystart:ystop,xstart:xstop] stampivar[margin:-margin,margin:-margin]=image.ivar[ystart:ystop,xstart:xstop] # will use a fixed footprint despite changes of psf stamps # so that chi2 always based on same data set footprint=np.zeros(stamp.shape) for i in range(nfibers) : footprint[margin-ystart+ys[i].start:margin-ystart+ys[i].stop,margin-xstart+xs[i].start:margin-xstart+xs[i].stop]=1 #plt.imshow(footprint) ; plt.show() ; sys.exit(12) # define grid of shifts to test res=0.5 nshift=int(maxshift/res) dx=res*np.tile(np.arange(2*nshift+1)-nshift,(2*nshift+1,1)) dy=dx.T original_shape=dx.shape dx=dx.ravel() dy=dy.ravel() chi2=np.zeros(dx.shape) A=np.zeros((nfibers,nfibers)) B=np.zeros((nfibers)) mods=np.zeros(np.zeros(nfibers).shape+stamp.shape) debugging=False if debugging : # FOR DEBUGGING KEEP MODELS models=[] # loop on possible shifts # refit fluxes and compute chi2 for d in range(len(dx)) : # print(d,dx[d],dy[d]) A *= 0 B *= 0 mods *= 0 for i,fiber in enumerate(fibers) : # apply the PSF shift psf._cache={} # reset cache !! psf.coeff['X']._coeff[fiber][0] += dx[d] psf.coeff['Y']._coeff[fiber][0] += dy[d] # compute pix and paste on stamp frame xx, yy, pix = psf.xypix(fiber,line) mods[i][margin-ystart+yy.start:margin-ystart+yy.stop,margin-xstart+xx.start:margin-xstart+xx.stop]=pix # undo the PSF shift psf.coeff['X']._coeff[fiber][0] -= dx[d] psf.coeff['Y']._coeff[fiber][0] -= dy[d] B[i] = np.sum(stampivar*stamp*mods[i]) for j in range(i+1) : A[i,j] = np.sum(stampivar*mods[i]*mods[j]) if j!=i : A[j,i] = A[i,j] Ai=np.linalg.inv(A) flux=Ai.dot(B) model=np.zeros(stamp.shape) for i in range(nfibers) : model += flux[i]*mods[i] chi2[d]=np.sum(stampivar*(stamp-model)**2) if debugging : models.append(model) if debugging : schi2=chi2.reshape(original_shape).copy() # FOR DEBUGGING sdx=dx.copy() sdy=dy.copy() # find minimum chi2 grid point k = chi2.argmin() j,i = np.unravel_index(k, ((2*nshift+1),(2*nshift+1))) #print("node dx,dy=",dx.reshape(original_shape)[j,i],dy.reshape(original_shape)[j,i]) # cut a region around minimum delta=1 istart=max(0,i-delta) istop=min(2*nshift+1,i+delta+1) jstart=max(0,j-delta) jstop=min(2*nshift+1,j+delta+1) chi2=chi2.reshape(original_shape)[jstart:jstop,istart:istop].ravel() dx=dx.reshape(original_shape)[jstart:jstop,istart:istop].ravel() dy=dy.reshape(original_shape)[jstart:jstop,istart:istop].ravel() # fit 2D polynomial of deg2 m = np.array([dx*0+1, dx, dy, dx**2, dy**2, dx*dy ]).T c, r, rank, s = np.linalg.lstsq(m, chi2) if c[3]>0 and c[4]>0 : # get minimum # dchi2/dx=0 : c[1]+2*c[3]*dx+c[5]*dy = 0 # dchi2/dy=0 : c[2]+2*c[4]*dy+c[5]*dx = 0 a=np.array([[2*c[3],c[5]],[c[5],2*c[4]]]) b=np.array([c[1],c[2]]) t=-np.linalg.inv(a).dot(b) dx=t[0] dy=t[1] sx=1./np.sqrt(c[3]) sy=1./np.sqrt(c[4]) #print("interp dx,dy=",dx,dy) if debugging : # FOR DEBUGGING import matplotlib.pyplot as plt plt.figure() plt.subplot(2,2,1,title="chi2") plt.imshow(schi2,extent=(-nshift*res,nshift*res,-nshift*res,nshift*res),origin=0,interpolation="nearest") plt.plot(dx,dy,"+",color="white",ms=20) plt.xlabel("x") plt.ylabel("y") plt.subplot(2,2,2,title="data") plt.imshow(stamp*footprint,origin=0,interpolation="nearest") plt.grid() k0=np.argmin(sdx**2+sdy**2) plt.subplot(2,2,3,title="original psf") plt.imshow(models[k0],origin=0,interpolation="nearest") plt.grid() plt.subplot(2,2,4,title="shifted psf") plt.imshow(models[k],origin=0,interpolation="nearest") plt.grid() plt.show() else : log.warning("fit failed (bad chi2 surf.) for fibers [%d:%d] line=%dA"%(fibers[0],fibers[-1]+1,int(line))) dx=0. dy=0. sx=10. sy=10. except LinAlgError : log.warning("fit failed (masked or missing data) for fibers [%d:%d] line=%dA"%(fibers[0],fibers[-1]+1,int(line))) dx=0. dy=0. sx=10. sy=10. return x,y,dx,dy,sx,sy def compute_dx_dy_using_psf(psf,image,fibers,lines) : """ Computes trace shifts along x and y from a preprocessed image, a PSF (with trace coords), and a set of emission lines, by doing a forward model of the image. Calls compute_fiber_bundle_trace_shifts_using_psf. Args: psf : specter psf object image : DESI preprocessed image object fibers : 1D array with list of fibers lines : 1D array of wavelength of emission lines (in Angstrom) Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dx : 1D array of shifts along x coordinates on CCD dy : 1D array of shifts along y coordinates on CCD sx : 1D array of uncertainties on dx sy : 1D array of uncertainties on dy fiber : 1D array of fiber ID wave : 1D array of wavelength """ log = get_logger() nlines=len(lines) nfibers=len(fibers) log.info("computing spots coordinates and define bundles") x=np.zeros((nfibers,nlines)) y=np.zeros((nfibers,nlines)) # load expected spots coordinates for fiber in range(nfibers) : for l,line in enumerate(lines) : x[fiber,l],y[fiber,l] = psf.xy(fiber,line) bundle_fibers=[] bundle_xmin=[] bundle_xmax=[] xwidth=9. bundle_xmin.append(x[0,nlines//2]-xwidth/2) bundle_xmax.append(x[0,nlines//2]+xwidth/2) bundle_fibers.append([0,]) for fiber in range(1,nfibers) : tx=x[fiber,nlines//2] found=False for b in range(len(bundle_fibers)) : if tx+xwidth/2 >= bundle_xmin[b] and tx-xwidth/2 <= bundle_xmax[b] : found=True bundle_fibers[b].append(fiber) bundle_xmin[b]=min(bundle_xmin[b],tx-xwidth/2) bundle_xmax[b]=max(bundle_xmax[b],tx+xwidth/2) break if not found : bundle_fibers.append([fiber,]) bundle_xmin.append(tx-xwidth/2) bundle_xmax.append(tx+xwidth/2) log.info("measure offsets dx dy per bundle ({}) and spectral line ({})".format(len(bundle_fibers),len(lines))) wave_xy=np.array([]) # line fiber_xy=np.array([]) # central fiber in bundle x=np.array([]) # central x in bundle at line wavelength y=np.array([]) # central x in bundle at line wavelength dx=np.array([]) # measured offset along x dy=np.array([]) # measured offset along y ex=np.array([]) # measured offset uncertainty along x ey=np.array([]) # measured offset uncertainty along y for b in range(len(bundle_fibers)) : for l,line in enumerate(lines) : tx,ty,tdx,tdy,tex,tey = compute_fiber_bundle_trace_shifts_using_psf(fibers=bundle_fibers[b],psf=psf,image=image,line=line) log.info("fibers [%d:%d] %dA dx=%4.3f+-%4.3f dy=%4.3f+-%4.3f"%(bundle_fibers[b][0],bundle_fibers[b][-1]+1,int(line),tdx,tex,tdy,tey)) if tex<1. and tey<1. : wave_xy=np.append(wave_xy,line) fiber_xy=np.append(fiber_xy,int(np.median(bundle_fibers[b]))) x=np.append(x,tx) y=np.append(y,ty) dx=np.append(dx,tdx) dy=np.append(dy,tdy) ex=np.append(ex,tex) ey=np.append(ey,tey) return x,y,dx,ex,dy,ey,fiber_xy,wave_xy # end of routines for forward model method def monomials(x,y,degx,degy) : """ Computes monomials as a function of x and y of a 2D polynomial of degrees degx and degy Args: x : ND array y : ND array of same shape as x degx : int (>=0), polynomial degree along x degy : int (>=0), polynomial degree along y Returns : monomials : ND array of shape ( (degx+1)*(degy+1) , x shape ) """ M=[] for i in range(degx+1) : for j in range(degy+1) : M.append(x**i*y**j) return
np.array(M)
numpy.array
import cv2 import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import re # STEP0. CALIBRATION BOARD BEFORE CAMERA CALIBRATION images = glob.glob("camera_cal/calibration*.jpg") # Chess board (9,6) objpoints = [] imgpoints = [] objp = np.zeros((6*9, 3), np.float32) objp[:,:2] = np.mgrid[0:9, 0:6].T.reshape(-1,2) for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9,6), None) if ret == True: imgpoints.append(corners) objpoints.append(objp) img = cv2.drawChessboardCorners(img, (9,6), corners, ret) def cal_undistort(img, objpoints, imgpoints): img_size = (img.shape[1], img.shape[0]) # x, y ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None) undist = cv2.undistort(img, mtx, dist, None, mtx) return undist def color_thresholding(img, threshold=(0,255), opt=("rgb")): # read using mpimg as R.G.B img_in = np.copy(img) if (opt == "rgb"): rgb = img_in r_channel = rgb[:,:,0] g_channel = rgb[:,:,1] b_channel = rgb[:,:,2] r_binary = np.zeros_like(r_channel) r_channel = cv2.equalizeHist(r_channel) r_binary[(r_channel >= threshold[0]) & (r_channel <= threshold[1])]=1 return r_binary elif (opt == "hls"): hls = cv2.cvtColor(img_in, cv2.COLOR_RGB2HLS) h_channel = hls[:,:,0] l_channel = hls[:,:,1] s_channel = hls[:,:,2] s_binary = np.zeros_like(s_channel) s_channel = cv2.equalizeHist(s_channel) s_binary[(s_channel >= threshold[0]) & (s_channel <= threshold[1])]=1 return s_binary else: return img_in def gradient_thresholding(img, threshold=(0,255), opt=("comb")): # read using mpimg as R.G.B img_in = np.copy(img) gray= cv2.cvtColor(img_in, cv2.COLOR_RGB2GRAY) gray = cv2.equalizeHist(gray) img_sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1,0, ksize=3) img_sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0,1, ksize=3) abs_sobelx = np.absolute(img_sobel_x) abs_sobely = np.absolute(img_sobel_y) scaled_sobelx = np.uint8( 255*abs_sobelx / np.max(abs_sobelx) ) scaled_sobely = np.uint8( 255*abs_sobely / np.max(abs_sobely) ) img_sobel_xy = np.sqrt(img_sobel_x**2 + img_sobel_y**2) scaled_sobelxy = np.uint8( 255*img_sobel_xy / np.max(img_sobel_xy) ) direction = np.arctan2(abs_sobelx, abs_sobely) if (opt == "comb"): binary_comb = np.zeros_like(scaled_sobelxy) binary_comb[ (scaled_sobelxy >= threshold[0]) & (scaled_sobelxy <= threshold[1]) ]=1 return binary_comb elif (opt == "x"): binary_x = np.zeros_like(scaled_sobelx) binary_x[ (scaled_sobelx >= threshold[0]) & (scaled_sobelx <= threshold[1]) ]=1 return binary_x elif (opt == "y"): binary_y = np.zeros_like(scaled_sobely) binary_y[ (scaled_sobely >= threshold[0]) & (scaled_sobely <= threshold[1]) ]=1 return binary_y elif (opt =="dir"): binary_dir = np.zeros_like(direction) binary_dir[ (direction >= threshold[0]) & (direction <= threshold[1]) ]=1 return binary_dir else: return img_in def perspective_img(image, region_rect, mode=("normal")): img_in = np.copy(image) x_len = img_in.shape[1] y_len = img_in.shape[0] if (mode == "normal"): src_pts = np.array(region_rect) margin=50 warp_rect = np.array([[margin, margin] ,[x_len-margin, margin], [x_len-margin, y_len-margin], [margin, y_len-margin]], np.float32) out_pts = np.array(warp_rect) else: #inverse margin=50 warp_rect = np.array([[margin, margin] ,[x_len-margin, margin], [x_len-margin, y_len-margin], [margin, y_len-margin]], np.float32) src_pts = np.array(warp_rect) out_pts = np.array(region_rect) M = cv2.getPerspectiveTransform(src_pts, out_pts) warp = cv2.warpPerspective(img_in, M, (x_len, y_len)) return warp def fit_polynomial(img_shape, leftx, lefty, rightx, righty): ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) try: #2nd order linear model was fitted using np.polyfit left_fit_coef = np.polyfit(lefty,leftx,2) right_fit_coef = np.polyfit(righty, rightx, 2) left_fitx= left_fit_coef[0]*ploty**2 + left_fit_coef[1]*ploty + left_fit_coef[2] right_fitx = right_fit_coef[0]*ploty**2 + right_fit_coef[1]*ploty + right_fit_coef[2] except TypeError: left_fitx = ploty right_fitx = ploty left_fit_coef = None right_fit_coef = None return left_fitx, right_fitx, ploty, left_fit_coef, right_fit_coef def search_around_poly(binary_warp, init_tune): binary_warped = np.copy(binary_warp) margin = 100 nonzero = binary_warped.nonzero() # nonzero index return! nonzerox = np.array(nonzero[1]) nonzeroy = np.array(nonzero[0]) left_lane_inds = ( nonzerox > ( init_tune[0][0] * (nonzeroy) ** 2 + init_tune[0][1] * nonzeroy + init_tune[0][2] - margin ) ) & ( nonzerox < ( init_tune[0][0] * (nonzeroy) ** 2 + init_tune[0][1] * nonzeroy + init_tune[0][2] + margin ) ) right_lane_inds = ( nonzerox > ( init_tune[1][0] * (nonzeroy) ** 2 + init_tune[1][1] * nonzeroy + init_tune[1][2] - margin ) ) & ( nonzerox < ( init_tune[1][0] * (nonzeroy) ** 2 + init_tune[1][1] * nonzeroy + init_tune[1][2] + margin ) ) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] left_fitx, right_fitx, ploty, left_fit_coef, right_fit_coef = fit_polynomial(binary_warped.shape, leftx, lefty, rightx, righty) left_right_coeff = np.array([left_fit_coef, right_fit_coef]) ## VISUALIZATION FOR TESTING #plt.plot(left_fitx, ploty, color='yellow') #plt.plot(right_fitx, ploty, color='blue') return binary_warped, left_fitx, right_fitx, ploty, left_right_coeff def measure_curvature(image, left_fitx, right_fitx, ploty, ratio=(1,1)): # Image x size img_x_size = image.shape[1] left_fit_cr = np.polyfit(ploty * ratio[1], left_fitx * ratio[0], 2) right_fit_cr = np.polyfit(ploty * ratio[1], right_fitx * ratio[0], 2) y_eval = np.max(ploty) # Calculation of R_curve (radius of curvature) left_curverad = ( 1 + (2 * left_fit_cr[0] * y_eval * ratio[1] + left_fit_cr[1]) ** 2 ) ** 1.5 / np.absolute(2 * left_fit_cr[0]) right_curverad = ( 1 + (2 * right_fit_cr[0] * y_eval * ratio[1] + right_fit_cr[1]) ** 2 ) ** 1.5 /
np.absolute(2 * right_fit_cr[0])
numpy.absolute
from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import TruncatedSVD import pandas as pd import nltk import re import numpy as np from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from trafilatura import bare_extraction import trafilatura import discord nltk.download('punkt') nltk.download('stopwords') def scoreSent(sent, scoreMatrix, scoreCol): score = 0 for word in sent.split(" "): if word in scoreMatrix.index: filt = scoreMatrix.filter(items=[word], axis='index') score += filt[scoreCol].values[0] return score/len(sent) def filterStopwords(sent): stop_words = set(stopwords.words('english')) word_tokens = word_tokenize(sent) return " ".join([w for w in word_tokens if w not in stop_words]) def getSummarySpread(filePath, numSent): f = open(filePath, "r") text = f.read() text = " ".join(text.split()) for i in range(100): text = text.replace("[" + str(i) + "]", "") doc = nltk.tokenize.sent_tokenize(text) docFilt = [filterStopwords(s) for s in doc] vectorizer = CountVectorizer() bag_of_words = vectorizer.fit_transform(docFilt) svd = TruncatedSVD(n_components = numSent) lsa = svd.fit_transform(bag_of_words) col = ["topic" + str(i) for i in range(numSent)] absCol = ["abs_topic" + str(i) for i in range(numSent)] topic_encoded_df = pd.DataFrame(lsa, columns=col) topic_encoded_df["docFilt"] = docFilt topic_encoded_df["doc"] = doc dictionary = vectorizer.get_feature_names_out() encoding_matrix=pd.DataFrame(svd.components_,index=col,columns=dictionary).T for i in range(numSent): encoding_matrix[absCol[i]] =
np.abs(encoding_matrix[col[i]])
numpy.abs
import numpy from matplotlib import pyplot def euler(f, x_end, y0, N): x, dx = numpy.linspace(0, x_end, N+1, retstep=True) y = numpy.zeros((len(y0),N+1)) y[:,0] = y0 for n in range(N): y[:,n+1] = y[:,n] + dx * f(x[n], y[:,n]) return x, dx, y def euler_pc(f, x_end, y0, N): x, dx = numpy.linspace(0, x_end, N+1, retstep=True) y = numpy.zeros((len(y0),N+1)) y[:,0] = y0 for n in range(N): fn = f(x[n], y[:,n]) yp = y[:,n] + dx * fn y[:,n+1] = y[:,n] + dx / 2 * (fn + f(x[n+1], yp)) return x, dx, y def rk4(f, x_end, y0, N): x, dx = numpy.linspace(0, x_end, N+1, retstep=True) y = numpy.zeros((len(y0),N+1)) y[:,0] = y0 for n in range(N): k1 = dx * f(x[n] , y[:,n] ) k2 = dx * f(x[n] + dx / 2, y[:,n] + k1 / 2) k3 = dx * f(x[n] + dx / 2, y[:,n] + k2 / 2) k4 = dx * f(x[n] + dx , y[:,n] + k3 ) y[:,n+1] = y[:,n] + (k1 + 2 * (k2 + k3) + k4) / 6 return x, dx, y if __name__=="__main__": def f_sin(x, y): return -numpy.sin(x) print("Euler Predictor-Corrector") x, dx, y = euler_pc(f_sin, 0.5, [1], 5) print("dx=", dx, "y(0.5)=", y[0,-1]) x, dx, y = euler_pc(f_sin, 0.5, [1], 50) print("dx=", dx, "y(0.5)=", y[0,-1]) Npoints = 5*2**numpy.arange(1,10) dx_all = 0.5/Npoints errors = numpy.zeros_like(dx_all) for i, N in enumerate(Npoints): x, dx, y = euler_pc(f_sin, 0.5, [1], N) errors[i] = abs(y[0,-1] - numpy.cos(0.5)) dx_all[i] = dx pyplot.figure(figsize=(12,6)) pyplot.loglog(dx_all, errors, 'kx') pyplot.loglog(dx_all, errors[0]*(dx_all/dx_all[0])**2, 'b-', label=r"$\propto \Delta x^2$") pyplot.legend(loc='upper left') pyplot.xlabel(r"$\Delta x$") pyplot.ylabel("Error") pyplot.show() def f_circle(x, y): dydx = numpy.zeros_like(y) dydx[0] = -y[1] dydx[1] = y[0] return dydx y0 = numpy.array([1, 0]) x, dx, y = euler_pc(f_circle, 50, y0, 500) pyplot.figure(figsize=(8,8)) pyplot.plot(y[0,:], y[1,:]) pyplot.show() print("RK4") x, dx, y = rk4(f_sin, 0.5, [1], 5) print("dx=", dx, "y(0.5)=", y[0,-1]) x, dx, y = rk4(f_sin, 0.5, [1], 50) print("dx=", dx, "y(0.5)=", y[0,-1]) Npoints = 5*2**numpy.arange(1,10) dx_all = 0.5/Npoints errors = numpy.zeros_like(dx_all) for i, N in enumerate(Npoints): x, dx, y = rk4(f_sin, 0.5, [1], N) errors[i] = abs(y[0,-1] - numpy.cos(0.5)) dx_all[i] = dx pyplot.figure(figsize=(12,6)) pyplot.loglog(dx_all, errors, 'kx') pyplot.loglog(dx_all, errors[0]*(dx_all/dx_all[0])**4, 'b-', label=r"$\propto \Delta x^4$") pyplot.legend(loc='upper left') pyplot.xlabel(r"$\Delta x$") pyplot.ylabel("Error") pyplot.show() y0 =
numpy.array([1, 0])
numpy.array
""" Utility module with various helper functions and subplot generaters""" import pandas as pd import numpy as np import os import sys import re from matplotlib.backends.backend_pdf import PdfPages from matplotlib import pyplot as plt from matplotlib.patches import Patch from matplotlib.colors import is_color_like from scipy.cluster.hierarchy import distance from scipy.cluster.hierarchy import linkage from scipy.cluster.hierarchy import dendrogram from scipy.cluster.hierarchy import optimal_leaf_ordering from scipy.spatial.distance import pdist import DPre.main.config as config from DPre.main._logger import logger, spacer def _add_mg_types(data, down): """Add markergene type index (up and down) to columns at level 0""" orig_order = data.columns.unique(0) updown_idx = ['up']*data.shape[1] if down: updown_idx.extend(['down']*data.shape[1]) data = pd.concat((data, data), axis=1) data.columns = _add_level(data.columns, updown_idx) return data.reindex(orig_order, axis=1, level=1) def _bool_to_int_genes(_diff, trans_updown=True, return_merged=False): """Take _diff input and convert up-genes to +1, down-genes to -1, optionally transfer up- and down values to each other makeing up- and down subframes equal""" int_diff = _diff.astype(int) if 'down' in _diff.columns.unique(0): int_diff['down'] *= -1 if trans_updown and 'down' in _diff.columns.unique(0): int_diff['up'] = int_diff['up'].mask(_diff['down'], -1) int_diff['down'] = int_diff['down'].mask(_diff['up'], 1) if not return_merged: return int_diff else: return int_diff.xs('up', 1, 0) def _add_mgtmean(agg): """Prodcue the mean between aggregated up- and down mg similarity values""" agg_mean = agg.groupby(axis=1, level=1, sort=False).mean() agg_mean.columns = _add_level(agg_mean.columns, 'mean') return pd.concat([agg, agg_mean], axis=1) def _add_log2_z(expr, rowwise_sd=False): """Compute log2 and z-transformed expression data. Substitute read count in expression. Optionally, compute the standad deviation row(gene)-wise. Is used for large datasets like reference transcriptome libraries. """ expr = np.log2(expr +1) expr.columns = _add_level(expr.columns, 'log2', at=1) m = expr.values.mean() s = expr.values.std() if not rowwise_sd else expr.std(1) z_expr = expr.apply(lambda c: (c-m) /s) z_expr.columns = _add_level(z_expr.columns, 'z', 1) return pd.concat((expr, z_expr), axis=1).reindex(expr.columns.unique(0), axis=1, level=0) def _add_level(index, label, at=0, replace=False, name=''): """Add a level with labels 'label' to a pd.MultiIndex""" index = pd.DataFrame(index=index) if replace: index.reset_index(level=at, drop=True, inplace=True) index[name] = label order = list(range(index.index.nlevels)) order.insert(at, -1) return index.set_index(name, append=True).reorder_levels(order).index def _get_gene_ann(species): """Open the gene annotation reference file (mouse/ human) and return it""" path = os.path.dirname(__file__) if species == 'mouse': return pd.read_pickle(path + '/../gene_ann/mg_ensembl96_GRCm38.p6.gzip') elif species == 'human': return pd.read_pickle(path + '/../gene_ann/hg_GRCh38.p12.gzip') else: logger.info('') logger.error('Invalid input for species: `{}`. Valid are `mouse` and ' '`human`'.format(species)) sys.exit(1) def annotate(ensgs, species): """ Annotate mouse or human ensg keys. Return the gene names. DPre references the ensembl gene annotation v.96 located at DPre/gene_ann. Args: ensgs (list, pandas.Index): The collection of ensg keys to annotate species (str): The origin species of the genes, 'mouse' or 'human'. Returns: annotated pandas.Index """ ref = _get_gene_ann(species) try: return pd.Index(ref.reindex(ensgs).name.values) except Exception as e: logger.error('{}\nDPre references the ensembl gene annotaiton v.96. ' 'Differently annotated datasets may cause problems.' .format(e)) sys.exit(1) def get_ensgs(names, species): """ Return the ensg keys for a list of gene names. DPre references the ensembl gene annotation v.96 located at DPre/gene_ann. If a gene name has multiple ensg keys, this gene will appear last in the DataFrame regardless of the input order. Args: names (list pandas.Index): The collection of names to return ensg keys for species (str): The origin species of the genes, 'mouse' or 'human'. Returns: pandas.Index of ensg keys """ ref = _get_gene_ann(species) try: ann = ref.reindex(ref.index[ref.name.isin(names)]).reset_index() if ann.name.duplicated().any(): dupl = pd.Index(ann.name).duplicated() ann_dr = ann[~dupl] ann_du = ann[dupl] ann_dr = ann_dr.set_index('name').reindex(names).reset_index() ann_dr.rename({'index': 'name'}, axis=1, inplace=1) ann = ann_dr.append(ann_du, sort=False) ann.index = np.arange(ann.shape[0]) else: ann = ann.set_index('name').reindex(names).reset_index() ann.rename({'index': 'name'}, axis=1, inplace=1) return ann except Exception as e: logger.error('{}\nDPre references the ensembl gene annotaiton v.96. ' 'Differently annotated datasets may cause problems.' .format(e)) sys.exit(1) def _align_indices(data, order, axis=1): """Align the indices/ columns in a collection of pandas objects to order""" for i in range(len(data)): if data[i] is not None: data[i] = data[i].reindex(order, axis=axis) return data def _init_figure(fig_widths, fig_heights, nplts, spacers): """Calculate the size proportion of each plot element, create figure""" width, height = sum(fig_widths), sum(fig_heights) ratio = {'width_ratios': list(map(lambda w: w/width, fig_widths[1:-2])), 'height_ratios': list(map(lambda h: h/height, fig_heights[1:-2]))} # init figure fig, axes = plt.subplots(*nplts, figsize=(width, height), gridspec_kw=ratio) if not isinstance(axes, np.ndarray): axes = np.array([axes]) axes = _clean_axes(axes) wspace_prop = spacers[0] /np.array(fig_widths[1:-2]).mean() hspace_prop = spacers[1] /np.array(fig_heights[1:-2]).mean() adj_args = {'left': fig_widths[0] /width, 'wspace': wspace_prop, 'right': 1 - fig_widths[-1] /width, 'top': 1 - fig_heights[0] /height, 'hspace': hspace_prop, 'bottom': fig_heights[-1] /height} fig.subplots_adjust(**adj_args) return fig, axes def _open_file(filename): """Open a file based on the filename ending or if not present on config.SAVE_FORMAT. Must be supporte by matplotlib.""" valid = plt.figure().canvas.get_supported_filetypes() if not any([filename.endswith(val_format) for val_format in valid]): if config.SAVE_FORMAT in valid: filename += '.' + config.SAVE_FORMAT else: logger.error('The value for config.SAVE_FORMAT `{}` is not ' 'supported by matplotlib. Valid formats are:\n{}' .format(config.SAVE_FORMAT, ', '.join(list(valid.keys())))) sys.exit(1) if filename.endswith('.pdf'): return filename, PdfPages(filename) else: return filename, None def _save_file(fig, filename=None, pp=None, close_pp=False): """Save pdf if pp is passed, otherwise use filename to save as config.SAVE_FORMAT""" if pp: fig.savefig(pp, format='pdf') if close_pp: pp.close() plt.close(fig) elif filename: replace = ['$\\mathit{', '}$'] for repl in replace: filename = filename.replace(repl, '') fig.savefig(filename) plt.close(fig) def _clean_axes(axes): """Remove all spines, ticks and tickalabels""" np.array([axes]) for ax in axes.flatten(): [s.set_visible(False) for s in ax.spines.values()] ax.tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) return axes def _make_title(differential, metric, el1, el2, pref='', postf=''): """Produce the plot title based on plot parmaters, pref and posf are used for plot specific adjustments; return the title string""" metric_title = 'metric: ' if metric == 'euclid': metric_title += 'L1 Euclidean distance' elif metric == 'pearson': metric_title += 'Pearson correlation' elif metric == 'cosine': metric_title += 'cosine similarity' elif metric == 'intersect': metric_title += 'marker gene intersect' if differential: dtype = 'Change in ' else: dtype = 'Absolute ' if pref: dtype = dtype.lower() title = ('{}{}{}transcriptional similarity \nof {} & {}\n{}' .format(pref, dtype, postf, el1, el2, metric_title)) return title[0].upper() + title[1:] def _heatmap_cluster(dat, where, ax, metric): """Cluster the columns or index with scipy; return the new order""" ax.set_visible(True) d = dat.T if metric == 'columns' else dat Y = pdist(d, metric='euclidean') Z = linkage(Y, method='complete', metric='euclidean') order = dendrogram(Z, count_sort = True, no_labels = True, orientation = where, labels = d.index, above_threshold_color = config.dendrogram_colors[0], ax = ax)['ivl'] if metric == 'rows': # for some reason reversed? order = order[::-1] return order def _plot_distance_bar(axes, data, ctrl_lbl, bar_args, draw_colorbar=False, cb_lbl=None, fig=None, pivot=None, w=None, h=None): """Draw the distance bar on top of the heatmap""" # set ylabel on the left axes[0].tick_params(labelleft=True) axes[0].set_ylim(0, 1) axes[0].set_yticks((.5,)) axes[0].set_yticklabels((ctrl_lbl,), x=.5) # draw the heatmap ax = axes[1] [s.set_visible(True) for s in ax.spines.values()] im = ax.imshow(data.values, aspect='auto', **bar_args) # setup the colorbar legend if draw_colorbar: at = (config.CB_LEFT_SEC/w, 1- config.CB_TOP/h, config.CB_WIDTH/w, config.CB_HEIGHT/h) cb = ax.figure.colorbar(im, cax=fig.add_axes(at), alpha =.3, orientation='horizontal') bar_ticks = (bar_args['vmin'], bar_args['vmax']) cb.set_ticks(bar_ticks) cb.ax.set_xticklabels(bar_ticks) if pivot: cb.ax.tick_params(labelrotation=90) cb.ax.set_xlabel(cb_lbl) cb.ax.get_xaxis().set_label_position('top') def _setup_heatmap_xy(x_y, ax, lbls, pivot, hide_lbls, lbl_size, colors): """Setting all paramters for the x- and y axis of the two heatmap plots""" dim = len(lbls) if x_y == 'x': # X-axis setup, colorbar bottom ax.set_xlim(0, dim) ticks =
np.arange(.5, dim)
numpy.arange
import pylab # type: ignore from numpy.random import RandomState # type: ignore from sklearn.cluster import KMeans # type: ignore import numpy # type: ignore import confusion_matrix # ## Debug values, replace with actuals a = numpy.zeros(shape=(10, 100)) a2 = numpy.zeros(shape=(10, 100)) lines = None lines2 = None # ################################################################################ # # ## dist of label counts # def get_cluster_counts(emb_matrix, lines, n_clusters, rng): kmeans = KMeans(n_clusters=n_clusters, random_state=rng).fit(emb_matrix) res = kmeans.predict(emb_matrix) label_count_sen = [0 for i in range(len(kmeans.cluster_centers_))] label_count_both = [0 for i in range(len(kmeans.cluster_centers_))] for i in range(len(res)): l = res[i] line = lines[i] if line.ground_truth == 4: label_count_sen[l] += 1 label_count_both[l] += 1 return sorted(label_count_both) n_clusters = 35 y1 = get_cluster_counts(a, lines, n_clusters, RandomState(2)) y2 = get_cluster_counts(a, lines, n_clusters, RandomState(387)) y3 = get_cluster_counts(a, lines, n_clusters, RandomState(910)) y4 = get_cluster_counts(a, lines, n_clusters,
RandomState(2094)
numpy.random.RandomState
import os import numpy as np import scipy from pyglm.utils import fftconv def create_basis(prms): """ Create a basis for impulse response functions """ type = prms['type'].lower() if type == 'exp': basis = create_exp_basis(prms) elif type == 'cosine': basis = create_cosine_basis(prms) elif type == 'gaussian': basis = create_gaussian_basis(prms) elif type == 'identity' or type == 'eye': basis = create_identity_basis(prms) elif type == 'file': if os.path.exists(prms["fname"]): basis = load_basis_from_file(prms['fname']) else: raise Exception("Unrecognized basis type: %s", type) return basis def load_basis_from_file(prms): """ Load a basis from a file """ fname = prms["fname"] if not os.path.exists(prms["fname"]): raise Exception("Invalid basis file: %s", fname) bas_dict = scipy.io.loadmat(fname) if "basis" not in bas_dict.keys(): raise Exception("Invalid basis file: %s", fname) basis = bas_dict["basis"] #if T_max is not None: # # Interpolate the basis at T_max evenly spaced points # (t_bas,n_bas) = basis.shape # cur_tt = np.linspace(0,1,t_bas) # new_tt = np.linspace(0,1,T_max) # # new_basis = np.zeros((T_max,n_bas)) # for b in np.arange(n_bas): # new_basis[:,b] = np.interp(new_tt, # cur_tt, # basis[:,b]) # # basis = new_basis return basis def create_cosine_basis(prms): """ Create a basis of raised cosine tuning curves """ # Set default parameters. These can be overriden by kwargs #prms = {'n_eye' : 0, # 'n_cos' : 3, # 'a': 1.0/120, # 'b': 0.5, # 'orth' : False, # 'norm' : True} #prms.update(kwargs) n_pts = 100 # Number of points at which to evaluate the basis n_cos = prms['n_cos'] # Number of cosine basis functions n_eye = prms['n_eye'] # Number of identity basis functions n_bas = n_eye + n_cos basis = np.zeros((n_pts,n_bas)) # The first n_eye basis elements are identity vectors in the first time bins basis[:n_eye,:n_eye] = np.eye(n_eye) # The remaining basis elements are raised cosine functions with peaks # logarithmically warped between [n_eye*dt:dt_max]. a = prms['a'] # Scaling in log time b = prms['b'] # Offset in log time nlin = lambda t: np.log(a*t+b) # Nonlinearity u_ir = nlin(np.arange(n_pts)) # Time in log time ctrs = u_ir[np.floor(np.linspace(n_eye,(n_pts/2.0),n_cos)).astype(np.int)] if len(ctrs) == 1: w = ctrs/2 else: w = (ctrs[-1]-ctrs[0])/(n_cos-1) # Width of the cosine tuning curves # Basis function is a raised cosine centered at c with width w basis_fn = lambda u,c,w: (np.cos(np.maximum(-np.pi,np.minimum(np.pi,(u-c)*np.pi/w/2.0)))+1)/2.0 for i in np.arange(n_cos): basis[:,n_eye+i] = basis_fn(u_ir,ctrs[i],w) # Orthonormalize basis (this may decrease the number of effective basis vectors) if prms['orth']: basis = scipy.linalg.orth(basis) if prms['norm']: # We can only normalize nonnegative bases if np.any(basis<0): raise Exception("We can only normalize nonnegative impulse responses!") # Normalize such that \int_0^1 b(t) dt = 1 basis = basis / np.tile(np.sum(basis,axis=0), [n_pts,1]) / (1.0/n_pts) return basis def create_exp_basis(prms): """ Create a basis of exponentially decaying functions """ # Set default parameters. These can be overriden by kwargs # Default to a raised cosine basis n_pts = 100 # Number of points at which to evaluate the basis n_exp = prms['n_exp'] # Number of exponential basis functions n_eye = prms['n_eye'] # Number of identity basis functions n_bas = n_eye + n_exp basis = np.zeros((n_pts,n_bas)) # The first n_eye basis elements are identity vectors in the first time bins basis[:n_eye,:n_eye] = np.eye(n_eye) # The remaining basis elements are exponential functions with logarithmically # spaced time constants taus = np.logspace(np.log10(1), np.log10(n_pts/3), n_exp) # Basis function is a raised cosine centered at c with width w basis_fn = lambda t,tau: np.exp(-t/tau) for i in np.arange(n_exp): basis[:,n_eye+i] = basis_fn(np.arange(n_pts),taus[i]) # Orthonormalize basis (this may decrease the number of effective basis vectors) if prms['orth']: basis = scipy.linalg.orth(basis) if prms['norm']: # We can only normalize nonnegative bases if np.any(basis<0): raise Exception("We can only normalize nonnegative impulse responses!") # Normalize such that \int_0^1 b(t) dt = 1 basis = basis / np.tile(np.sum(basis,axis=0), [n_pts,1]) / (1.0/n_pts) return basis def create_gaussian_basis(prms): """ Create a basis of Gaussian bumps. This is primarily for spatial filters. """ # Set default parameters. These can be overriden by kwargs # Default to a raised cosine basis n_gauss = prms['n_gauss'] # Tuple indicating number of Gaussian bumps along each dimension n_dim = len(n_gauss) n_eye = prms['n_eye'] # Number of identity basis functions n_bas = n_eye + np.prod(n_gauss) basis = np.zeros((n_bas,n_bas)) # The first n_eye basis elements are identity vectors in the first time bins basis[:n_eye,:n_eye] = np.eye(n_eye) # The remaining basis functions are Gaussian bumps at intervals of 1 in each dimension sigma = 1 for g1 in np.arange(np.prod(n_gauss)): mu = np.array(np.unravel_index(g1,n_gauss)) for g2 in np.arange(np.prod(n_gauss)): x = np.array(np.unravel_index(g2,n_gauss)) basis[n_eye+g2,n_eye+g1] = np.exp(-0.5/(sigma**2)*np.sum((x-mu)**2)) # Basis function is a raised cosine centered at c with width w #basis_fn = lambda t,mu,sig: np.exp(-0.5/(sig**2)*(t-mu)**2) #for i in np.arange(n_gauss): # basis[:,i] = basis_fn(np.arange(n_pts),mus[i],sigma) # Orthonormalize basis (this may decrease the number of effective basis vectors) if prms['orth']: basis = scipy.linalg.orth(basis) if prms['norm']: # We can only normalize nonnegative bases if np.any(basis<0): raise Exception("We can only normalize nonnegative impulse responses!") # Normalize such that \int_0^1 b(t) dt = 1 basis = basis / np.tile(np.sum(basis,axis=0), [basis.shape[0],1]) return basis def create_identity_basis(prms): """ Create a basis of Gaussian bumps. This is primarily for spatial filters. """ # Set default parameters. These can be overriden by kwargs # Default to a raised cosine basis n_eye = prms['n_eye'] # Number of identity basis functions basis = np.eye(n_eye) return basis def convolve_with_basis(stim, basis): """ Project stimulus onto a basis. :param stim TxD matrix of inputs. T is the number of time bins D is the number of stimulus dimensions. :param basis RxB basis matrix R is the length of the impulse response B is the number of bases :rtype TxDxB tensor of stimuli convolved with bases """ (T,D) = stim.shape (R,B) = basis.shape import scipy.signal as sig # First, by convention, the impulse responses are apply to times # (t-R:t-1). That means we need to prepend a row of zeros to make # sure the basis remains causal basis = np.vstack((np.zeros((1,B)),basis)) # Initialize array for filtered stimulus fstim = np.empty((T,D,B)) # Compute convolutions for b in np.arange(B): assert np.all(np.isreal(stim)) assert np.all(np.isreal(basis[:,b])) # fstim[:,:,b] = sig.convolve2d(stim, # np.reshape(basis[:,b],[R+1,1]), # 'full')[:T,:] fstim[:,:,b] = sig.fftconvolve(stim, np.reshape(basis[:,b],[R+1,1]), 'full')[:T,:] return fstim def convolve_with_low_rank_2d_basis(stim, basis_x, basis_t): """ Convolution with a low-rank 2D basis can be performed by first convolving with the spatial basis (basis_x) and then convolving with the temporal basis (basis_t) """ (T,D) = stim.shape (Rx,Bx) = basis_x.shape (Rt,Bt) = basis_t.shape # Rx is the spatial "width" of the tuning curve. This should # be equal to the "width" of the stimulus. assert Rx==D, "ERROR: Spatial basis must be the same size as the stimulus" import scipy.signal as sig # First convolve with each stimulus filter # Since the spatial stimulus filters are the same width as the spatial # stimulus, we can just take the dot product to get the valid portion fstimx = np.dot(stim, basis_x) # Now convolve with the temporal basis. # By convention, the impulse responses are apply to times # (t-R:t-1). That means we need to prepend a row of zeros to make # sure the basis remains causal basis_t = np.vstack((np.zeros((1,Bt)),basis_t)) # Initialize array for the completely filtered stimulus fstim = np.empty((T,Bx,Bt)) # Compute convolutions of the TxBx fstimx with each of the temporal bases for b in np.arange(Bt): fstim[:,:,b] = sig.fftconvolve(fstimx, np.reshape(basis_t[:,b],[Rt+1,1]), 'full')[:T,:] return fstim _fft_cache = [] def convolve_with_2d_basis(stim, basis, shape=['first', 'valid']): """ Project stimulus onto a basis. :param stim TxD matrix of inputs. T is the number of time bins D is the number of stimulus dimensions. :param basis TbxDb basis matrix Tb is the length of the impulse response Db is the number of basis dimensions. :rtype Tx1 vector of stimuli convolved with the 2D basis """ (T,D) = stim.shape (Tb,Db) = basis.shape # assert D==Db, "Spatial dimension of basis must match spatial dimension of stimulus." # import scipy.signal as sig # First, by convention, the impulse responses are apply to times # (t-R:t-1). That means we need to prepend a row of zeros to make # sure the basis remains causal basis = np.vstack((np.zeros((1,Db)),basis)) # Flip the spatial dimension for convolution # We are convolving the stimulus with the filter, so the temporal part does # NOT need to be flipped basis = basis[:,::-1] # Compute convolution using FFT if D==Db and shape[1] == 'valid': raise Warning("Use low rank convolution when D==Db!") # Look for fft_stim in _fft_cache fft_stim = None for (cache_stim, cache_fft_stim) in _fft_cache: if np.allclose(stim[-128:],cache_stim[-128:]) and \ np.allclose(stim[:128],cache_stim[:128]): fft_stim = cache_fft_stim break if not fft_stim is None: fstim,_ = fftconv.fftconvolve(stim, basis, 'full', fft_in1=fft_stim) else: fstim,fft_stim,_ = fftconv.fftconvolve(stim, basis, 'full') _fft_cache.append((stim,fft_stim)) # Slice the result assert len(shape) == 2 if shape[0] == 'first': fstim = fstim[:T,:] else: raise Exception('Only supporting \'first\' slicing for dimension 0 (time)') if shape[1] == 'valid': assert Db == D, 'Dimension of basis must match that of stimuli for valid' elif shape[1] == 'central': sz = D + Db - 1 start = (sz - D)/2 stop = start + D fstim = fstim[:,start:stop] return fstim def convolve_with_3d_basis(stim, basis, shape=['first', 'central', 'central']): """ Project stimulus onto a basis. :param stim T x Dx x Dy array of inputs. T is the number of time bins Dx is the stimulus x dimension. Dy is the stimulus y dimension. :param basis Tb x Dbx x Dby basis matrix Tb is the length of the impulse response Dbx is the basis x dimension Dby is the basis y dimension :rtype Tx1 vector of stimuli convolved with the 2D basis """ assert stim.ndim == basis.ndim == 3 (T,Dx,Dy) = stim.shape (Tb,Dbx,Dby) = basis.shape # First, by convention, the impulse responses are apply to times # (t-R:t-1). That means we need to prepend a row of zeros to make # sure the basis remains causal basis = np.concatenate((np.zeros((1,Dbx,Dby)),basis), axis=0) # Flip the spatial dimension for convolution # We are convolving the stimulus with the filter, so the temporal part does # NOT need to be flipped basis = basis[:,::-1, ::-1] # Compute convolution using FFT if Dx==Dbx and Dy==Dby and shape[1] == 'valid': raise Warning("Use low rank convolution when D==Db!") # Look for fft_stim in _fft_cache fft_stim = None for (cache_stim, cache_fft_stim) in _fft_cache: if
np.allclose(stim[-128:],cache_stim[-128:])
numpy.allclose
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import def get_default_axes3d(xlim=[-1, 1], ylim=[-1, 1], zlim=[-1, 1]): """ Create a default `mpl_toolkits.mplot3d.Axes3D` object with default axis limits on all axis from -1 to 1, and labels on the axes. """ fig = plt.figure() ax = fig.gca(projection="3d") ax.set_xlim3d(xlim) ax.set_ylim3d(ylim) ax.set_zlim3d(zlim) ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") return fig, ax def plot_reference_frame(ax, tf=None, arrow_length=0.2): """ Plot xyz-axes on axes3d object Parameters ---------- ax : mpl_toolkits.mplot3d.Axes3D Axes object for 3D plotting. tf : np.array of float Transform to specify location of axes. Plots in origin if None. l : float The length of the axes plotted. """ l = arrow_length x_axis = np.array([[0, l], [0, 0], [0, 0]]) y_axis = np.array([[0, 0], [0, l], [0, 0]]) z_axis =
np.array([[0, 0], [0, 0], [0, l]])
numpy.array
from functools import partial import re import json import random import torch import numpy as np from scipy.optimize import minimize from torch.nn import functional as F from numpy import * # to override the math functions from matplotlib import pyplot as plt from tqdm import tqdm import math import warnings def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def top_k_logits(logits, k): v, ix = torch.topk(logits, k) out = logits.clone() out[out < v[:, [-1]]] = -float('Inf') return out # @torch.no_grad() # def sample_from_model(model, x, steps, points=None, variables=None, temperature=1.0, sample=False, top_k=None): # """ # take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in # the sequence, feeding the predictions back into the model each time. Clearly the sampling # has quadratic complexity unlike an RNN that is only linear, and has a finite context window # of block_size, unlike an RNN that has an infinite context window. # """ # block_size = model.get_block_size() # model.eval() # for k in range(steps): # x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed # logits, _ = model(x_cond, points=points, variables=variables) # # pluck the logits at the final step and scale by temperature # logits = logits[:, -1, :] / temperature # # optionally crop probabilities to only the top k options # if top_k is not None: # logits = top_k_logits(logits, top_k) # # apply softmax to convert to probabilities # probs = F.softmax(logits, dim=-1) # # sample from the distribution or take the most likely # if sample: # ix = torch.multinomial(probs, num_samples=1) # else: # _, ix = torch.topk(probs, k=1, dim=-1) # # append to the sequence and continue # x = torch.cat((x, ix), dim=1) # return x #use nucleus sampling from https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 def top_k_top_p_filtering(logits, top_k=0.0, top_p=0.0, filter_value=-float('Inf')): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (vocabulary size) top_k >0: keep only top k tokens with highest probability (top-k filtering). top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) """ #TODO: support for batch size more than 1 assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value return logits @torch.no_grad() def sample_from_model(model, x, steps, points=None, index=None, variables=None, temperature=1.0, sample=False, top_k=0.0, top_p=0.0, is_finished=None): """ take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in the sequence, feeding the predictions back into the model each time. Clearly the sampling has quadratic complexity unlike an RNN that is only linear, and has a finite context window of block_size, unlike an RNN that has an infinite context window. """ block_size = model.get_block_size() model.eval() for k in range(steps): if is_finished is not None and is_finished(x): break x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed logits, _ = model(x_cond, points=points, index=index, variables=variables) # pluck the logits at the final step and scale by temperature logits = logits[0, -1, :] / temperature # optionally crop probabilities to only the top k options # if top_k is not None: # logits = top_k_logits(logits, top_k) logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) # apply softmax to convert to probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution or take the most likely if sample: ix = torch.multinomial(probs, num_samples=1) else: _, ix = torch.topk(probs, k=1, dim=-1) # append to the sequence and continue x = torch.cat((x, ix.unsqueeze(0)), dim=1) return x def plot_and_save_results(resultDict, fName, pconf, titleTemplate, textTest, modelKey='SymbolicGPT'): if isinstance(resultDict, dict): # plot the error frequency for model comparison num_eqns = len(resultDict[fName][modelKey]['err']) num_vars = pconf.numberofVars title = titleTemplate.format(num_eqns, num_vars) models = list(key for key in resultDict[fName].keys() if len(resultDict[fName][key]['err'])==num_eqns) lists_of_error_scores = [resultDict[fName][key]['err'] for key in models if len(resultDict[fName][key]['err'])==num_eqns] linestyles = ["-","dashdot","dotted","--"] eps = 0.00001 y, x, _ = plt.hist([np.log([max(min(x+eps, 1e5),1e-5) for x in e]) for e in lists_of_error_scores], label=models, cumulative=True, histtype="step", bins=2000, density=True, log=False) y = np.expand_dims(y,0) plt.figure(figsize=(15, 10)) for idx, m in enumerate(models): plt.plot(x[:-1], y[idx] * 100, linestyle=linestyles[idx], label=m) plt.legend(loc="upper left") plt.title(title) plt.xlabel("Log of Relative Mean Square Error") plt.ylabel("Normalized Cumulative Frequency") name = '{}.png'.format(fName.split('.txt')[0]) plt.savefig(name) with open(fName, 'w', encoding="utf-8") as o: for i in range(num_eqns): err = resultDict[fName][modelKey]['err'][i] eq = resultDict[fName][modelKey]['trg'][i] predicted = resultDict[fName][modelKey]['prd'][i] print('Test Case {}.'.format(i)) print('Target:{}\nSkeleton:{}'.format(eq, predicted)) print('Err:{}'.format(err)) print('') # just an empty line o.write('Test Case {}/{}.\n'.format(i,len(textTest)-1)) o.write('{}\n'.format(eq)) o.write('{}:\n'.format(modelKey)) o.write('{}\n'.format(predicted)) o.write('{}\n{}\n\n'.format( predicted, err )) print('Avg Err:{}'.format(np.mean(resultDict[fName][modelKey]['err']))) def tokenize_predict_and_evaluate(i, inputs, points, outputs, variables, train_dataset, textTest, trainer, model, resultDict, numTests, variableEmbedding, blockSize, fName, modelKey='SymbolicGPT', device='cpu'): eq = ''.join([train_dataset.itos[int(i)] for i in outputs[0]]) eq = eq.strip(train_dataset.paddingToken).split('>') eq = eq[0] #if len(eq[0])>=1 else eq[1] eq = eq.strip('<').strip(">") print(eq) if variableEmbedding == 'STR_VAR': eq = eq.split(':')[-1] t = json.loads(textTest[i]) inputs = inputs[:,0:1].to(device) points = points.to(device) # points = points[:,:numPoints] # filter anything more than maximum number of points variables = variables.to(device) bestErr = 10000000 bestPredicted = 'C' for i in range(numTests): predicted, err = generate_sample_and_evaluate( model, t, eq, inputs, blockSize, points, variables, train_dataset, variableEmbedding) if err < bestErr: bestErr = err bestPredicted = predicted resultDict[fName][modelKey]['err'].append(bestErr) resultDict[fName][modelKey]['trg'].append(eq) resultDict[fName][modelKey]['prd'].append(bestPredicted) return eq, bestPredicted, bestErr def generate_sample_and_evaluate(model, t, eq, inputs, blockSize, points, variables, train_dataset, variableEmbedding): outputsHat = sample_from_model(model, inputs, blockSize, points=points, variables=variables, temperature=0.9, sample=True, top_k=40, top_p=0.7, )[0] # filter out predicted predicted = ''.join([train_dataset.itos[int(i)] for i in outputsHat]) if variableEmbedding == 'STR_VAR': predicted = predicted.split(':')[-1] predicted = predicted.strip(train_dataset.paddingToken).split('>') predicted = predicted[0] #if len(predicted[0])>=1 else predicted[1] predicted = predicted.strip('<').strip(">") predicted = predicted.replace('Ce','C*e') # train a regressor to find the constants (too slow) c = [1.0 for i,x in enumerate(predicted) if x=='C'] # initialize coefficients as 1 # c[-1] = 0 # initialize the constant as zero b = [(-2,2) for i,x in enumerate(predicted) if x=='C'] # bounds on variables try: if len(c) != 0: # This is the bottleneck in our algorithm # for easier comparison, we are using minimize package cHat = minimize(lossFunc, c, #bounds=b, args=(predicted, t['X'], t['Y'])) predicted = predicted.replace('C','{}').format(*cHat.x) except ValueError: raise 'Err: Wrong Equation {}'.format(predicted) except Exception as e: raise 'Err: Wrong Equation {}, Err: {}'.format(predicted, e) Ys = [] #t['YT'] Yhats = [] for xs in t['XT']: try: eqTmp = eq + '' # copy eq eqTmp = eqTmp.replace(' ','') eqTmp = eqTmp.replace('\n','') for i,x in enumerate(xs): # replace xi with the value in the eq eqTmp = eqTmp.replace('x{}'.format(i+1), str(x)) if ',' in eqTmp: assert 'There is a , in the equation!' YEval = eval(eqTmp) # YEval = 0 if np.isnan(YEval) else YEval # YEval = 100 if np.isinf(YEval) else YEval except: print('TA: For some reason, we used the default value. Eq:{}'.format(eqTmp)) print(i) raise continue # if there is any point in the target equation that has any problem, ignore it YEval = 100 #TODO: Maybe I have to punish the model for each wrong template not for each point Ys.append(YEval) try: eqTmp = predicted + '' # copy eq eqTmp = eqTmp.replace(' ','') eqTmp = eqTmp.replace('\n','') for i,x in enumerate(xs): # replace xi with the value in the eq eqTmp = eqTmp.replace('x{}'.format(i+1), str(x)) if ',' in eqTmp: assert 'There is a , in the equation!' Yhat = eval(eqTmp) # Yhat = 0 if np.isnan(Yhat) else Yhat # Yhat = 100 if np.isinf(Yhat) else Yhat except: print('PR: For some reason, we used the default value. Eq:{}'.format(eqTmp)) Yhat = 100 Yhats.append(Yhat) err = relativeErr(Ys,Yhats, info=True) print('\nTarget:{}'.format(eq)) print('Skeleton+LS:{}'.format(predicted)) print('Err:{}'.format(err)) print('-'*10) if type(err) is np.complex128 or np.complex: err = abs(err.real) return predicted, err # helper class and functions # add a safe wrapper for numpy math functions def divide(x, y): x =
np.nan_to_num(x)
numpy.nan_to_num
""" Find dives """ import numpy as np import pandas as pd import scipy as sp import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots def plotDives(calc_file_path, new_file_path, is_export, min_length = 60, required_depth = None, max_depth = None, interest_variables = [], shading = 'deep'): """ This function pulls individual dives from the data that meet defined criteria. It then plots these dives next to each other starting from a shared zeroed start time. The dives can be colorscaled based on "interest variables" Inputs: min_length : type int or float, sets the minimum length of a dive in seconds before a dive is recorded (Default is 60 seconds) required_depth : type int or float, a dive must reach this depth (same units as file) in order to be recorded (Defualt is None) max_depth : type int or float, dives over that reach a depth greater than this will not be recorded (Default is None) interest_variables : tpye list of string, each string is the name of a variable to coloscale dives, creates a subplot for each shading : type string, choose any PlotLy colorscale to set the color (Default is 'deep') Tips: For cyclical data like Pitch, Roll, or Heading try setting 'shading' to 'icefire' one of PlotLy's cyclical colorscales Though not technically cyclical, 'balance' provides a similar effect """ # Pull in Data data = pd.read_csv(calc_file_path) # Pull Specific Variables : fs = data['fs'].tolist()[0] depth = np.array(data["Depth"]) # Calculate time in terms of hours numData = len(depth) t = np.array([x/fs/3600 for x in range(numData)]) # Deifne the surface sigma =
np.std(depth[0:fs*2])
numpy.std
import h5py import numpy as np """File that calculates certain correlation functions from a given dataset and saves to a new dataset.""" # Import data: filename = input('Enter filename: ') data_path = '../../scratch/data/spin-1/kibble-zurek/{}.hdf5'.format(filename) data_file = h5py.File(data_path, 'r') # Loading grid array data: x, y = data_file['grid/x'], data_file['grid/y'] X, Y = np.meshgrid(x[:], y[:], indexing='ij') Nx, Ny = x[:].size, y[:].size dx, dy = x[1] - x[0], y[1] - y[0] dkx, dky = np.pi / (Nx / 2 * dx), np.pi / (Ny / 2 * dy) kxx =
np.arange(-Nx // 2, Nx // 2)
numpy.arange
import pickle import os, re, sys import shutil import nibabel as nib from scipy.fftpack import fftn, ifftn import numpy as np try: import matplotlib # matplotlib.use("TkAgg") import matplotlib.pyplot as plt from matplotlib import animation except: print ('matplotlib not imported') def progress_bar(curr_idx, max_idx, time_step, repeat_elem = "_"): max_equals = 55 step_ms = int(time_step*1000) num_equals = int(curr_idx*max_equals/float(max_idx)) len_reverse =len('Step:%d ms| %d/%d ['%(step_ms, curr_idx, max_idx)) + num_equals sys.stdout.write("Step:%d ms|%d/%d [%s]" %(step_ms, curr_idx, max_idx, " " * max_equals,)) sys.stdout.flush() sys.stdout.write("\b" * (max_equals+1)) sys.stdout.write(repeat_elem * num_equals) sys.stdout.write("\b"*len_reverse) sys.stdout.flush() if curr_idx == max_idx: print('\n') def read_fft_volume(data4D, harmonic=1): zslices = data4D.shape[2] tframes = data4D.shape[3] data3d_fft = np.empty((data4D.shape[:2]+(0,))) for slice in range(zslices): ff1 = fftn([data4D[:,:,slice, t] for t in range(tframes)]) fh = np.absolute(ifftn(ff1[harmonic, :, :])) fh[fh < 0.1 * np.max(fh)] = 0.0 image = 1. * fh / np.max(fh) # plt.imshow(image, cmap = 'gray') # plt.show() image = np.expand_dims(image, axis=2) data3d_fft = np.append(data3d_fft, image, axis=2) return data3d_fft def save_data(data, filename, out_path): out_filename = os.path.join(out_path, filename) with open(out_filename, 'wb') as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) print ('saved to %s' % out_filename) def load_pkl(path): with open(path) as f: obj = pickle.load(f) return obj def imshow(*args,**kwargs): """ Handy function to show multiple plots in on row, possibly with different cmaps and titles Usage: imshow(img1, title="myPlot") imshow(img1,img2, title=['title1','title2']) imshow(img1,img2, cmap='hot') imshow(img1,img2,cmap=['gray','Blues']) """ cmap = kwargs.get('cmap', 'gray') title= kwargs.get('title','') axis_off = kwargs.get('axis_off','') if len(args)==0: raise ValueError("No images given to imshow") elif len(args)==1: plt.title(title) plt.imshow(args[0], interpolation='none') else: n=len(args) if type(cmap)==str: cmap = [cmap]*n if type(title)==str: title= [title]*n plt.figure(figsize=(n*5,10)) for i in range(n): plt.subplot(1,n,i+1) plt.title(title[i]) plt.imshow(args[i], cmap[i]) if axis_off: plt.axis('off') plt.show() def plot_roi(data4D, roi_center, roi_radii): """ Do the animation of full heart volume """ x_roi_center, y_roi_center = roi_center[0], roi_center[1] x_roi_radius, y_roi_radius = roi_radii[0], roi_radii[1] print ('nslices', data4D.shape[2]) zslices = data4D.shape[2] tframes = data4D.shape[3] slice_cnt = 0 for slice in [data4D[:,:,z,:] for z in range(zslices)]: outdata = np.swapaxes(np.swapaxes(slice[:,:,:], 0,2), 1,2) roi_mask = np.zeros_like(outdata[0]) roi_mask[x_roi_center - x_roi_radius:x_roi_center + x_roi_radius, y_roi_center - y_roi_radius:y_roi_center + y_roi_radius] = 1 outdata[:, roi_mask > 0.5] = 0.8 * outdata[:, roi_mask > 0.5] outdata[:, roi_mask > 0.5] = 0.8 * outdata[:, roi_mask > 0.5] fig = plt.figure(1) fig.canvas.set_window_title('slice_No' + str(slice_cnt)) slice_cnt+=1 def init_out(): im.set_data(outdata[0]) def animate_out(i): im.set_data(outdata[i]) return im im = fig.gca().imshow(outdata[0], cmap='gray') anim = animation.FuncAnimation(fig, animate_out, init_func=init_out, frames=tframes, interval=50) plt.show() def plot_4D(data4D): """ Do the animation of full heart volume """ print ('nslices', data4D.shape[2]) zslices = data4D.shape[2] tframes = data4D.shape[3] slice_cnt = 0 for slice in [data4D[:,:,z,:] for z in range(zslices)]: outdata = np.swapaxes(np.swapaxes(slice[:,:,:], 0,2), 1,2) fig = plt.figure(1) fig.canvas.set_window_title('slice_No' + str(slice_cnt)) slice_cnt+=1 def init_out(): im.set_data(outdata[0]) def animate_out(i): im.set_data(outdata[i]) return im im = fig.gca().imshow(outdata[0], cmap='gray') anim = animation.FuncAnimation(fig, animate_out, init_func=init_out, frames=tframes, interval=50) plt.show() def multilabel_split(image_tensor): """ image_tensor : Batch * H * W Split multilabel images and return stack of images Returns: Tensor of shape: Batch * H * W * n_class (4D tensor) # TODO: Be careful: when using this code: labels need to be defined, explictly before hand as this code does not handle missing labels So far, this function is okay as it considers full volume for finding out unique labels """ labels = np.unique(image_tensor) batch_size = image_tensor.shape[0] out_shape = image_tensor.shape + (len(labels),) image_tensor_4D = np.zeros(out_shape, dtype='uint8') for i in xrange(batch_size): cnt = 0 shape =image_tensor.shape[1:3] + (len(labels),) temp = np.ones(shape, dtype='uint8') for label in labels: temp[...,cnt] = np.where(image_tensor[i] == label, temp[...,cnt], 0) cnt += 1 image_tensor_4D[i] = temp return image_tensor_4D def swapaxes_slv(vol): return np.swapaxes(
np.swapaxes(vol,0,2)
numpy.swapaxes
# Copyright 2021 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from datetime import timedelta as td from itertools import product import numpy as np import pandas as pd from floris.utilities import wrap_360 from . import utilities as fsut def df_movingaverage( df_in, cols_angular, window_width=td(seconds=60), min_periods=1, center=True, calc_median_min_max_std=False, return_index_mapping=False, ): # Copy and ensure dataframe is indexed by time df = df_in.copy() if "time" in df.columns: df = df.set_index("time") # Find non-angular columns if isinstance(cols_angular, bool): if cols_angular: cols_angular = [c for c in df.columns] else: cols_angular = [] cols_regular = [c for c in df.columns if c not in cols_angular] # Now calculate cos and sin components for angular columns sin_cols = ["{:s}_sin".format(c) for c in cols_angular] cos_cols = ["{:s}_cos".format(c) for c in cols_angular] df[sin_cols] = np.sin(df[cols_angular] * np.pi / 180.0) df[cos_cols] = np.cos(df[cols_angular] * np.pi / 180.0) # Drop angular columns df = df.drop(columns=cols_angular) # Now calculate rolling (moving) average df_roll = df.rolling( window_width, center=center, axis=0, min_periods=min_periods ) # First calculate mean values of non-angular columns df_ma = df_roll[cols_regular].mean().copy() # Now add mean values of angular columns df_ma[cols_angular] = wrap_360( np.arctan2( df_roll[sin_cols].mean().values, df_roll[cos_cols].mean().values ) * 180.0 / np.pi ) # Figure out which indices/data points belong to each window if (return_index_mapping or calc_median_min_max_std): df_tmp = df_ma[[]].copy().reset_index(drop=False) df_tmp["tmp"] = 1 df_tmp = df_tmp.rolling(window_width, center=center, axis=0, on="time")["tmp"] # Grab index of first and last time entry for each window windows_min = list(df_tmp.apply(lambda x: x.index[0]).astype(int)) windows_max = list(df_tmp.apply(lambda x: x.index[-1]).astype(int)) # Now create a large array that contains the array of indices, with # the values in each row corresponding to the indices upon which that # row's moving/rolling average is based. Note that we purposely create # a larger matrix than necessary, since some rows/windows rely on more # data (indices) than others. This is the case e.g., at the start of # the dataset, at the end, and when there are gaps in the data. We fill # the remaining matrix entries with "-1". dn = int(np.ceil(window_width/fsut.estimate_dt(df_in["time"]))) + 5 data_indices = -1 * np.ones((df_ma.shape[0], dn), dtype=int) for ii in range(len(windows_min)): lb = windows_min[ii] ub = windows_max[ii] ind = np.arange(lb, ub + 1, dtype=int) data_indices[ii, ind - lb] = ind # Calculate median, min, max, std if necessary if calc_median_min_max_std: # Append all current columns with "_mean" df_ma.columns = ["{:s}_mean".format(c) for c in df_ma.columns] # Add statistics for regular columns funs = ["median", "min", "max", "std"] cols_reg_stats = ["_".join(i) for i in product(cols_regular, funs)] df_ma[cols_reg_stats] = df_roll[cols_regular].agg(funs).copy() # Add statistics for angular columns # Firstly, create matrix with indices for the mean values data_indices_mean = np.tile(np.arange(0, df_ma.shape[0]), (dn, 1)).T # Grab raw and mean data and format as numpy arrays D = df_in[cols_angular].values M = df_ma[["{:s}_mean".format(c) for c in cols_angular]].values # Add NaN row as last row. This corresponds to the -1 indices # that we use as placeholders. This way, those indices do not # count towards the final statistics (median, min, max, std). D = np.vstack([D, np.nan * np.ones(D.shape[1])]) M = np.vstack([M, np.nan * np.ones(M.shape[1])]) # Now create a 3D matrix containing all values. The three dimensions # come from: # > [0] one dimension containing the rolling windows, # > [1] one with the raw data underlying each rolling window, # > [2] one for each angular column within the dataset values = D[data_indices, :] values_mean = M[data_indices_mean, :] # Center values around values_mean values[values > (values_mean + 180.0)] += -360.0 values[values < (values_mean - 180.0)] += 360.0 # Calculate statistical properties and wrap to [0, 360) values_median = wrap_360(np.nanmedian(values, axis=1)) values_min = wrap_360(np.nanmin(values, axis=1)) values_max = wrap_360(
np.nanmax(values, axis=1)
numpy.nanmax
""" Utilities functions """ import numpy as np import pandas as pd import logging import scipy import scipy.linalg.lapack from copy import deepcopy logger = logging.getLogger(name=__name__) # Random Categorical def random_categorical(pvals, size=None): out = np.random.multinomial(n=1, pvals=pvals, size=size).dot( np.arange(len(pvals))) if size is None: return int(out) else: return np.array(out, dtype=int) # Fixed Wishart def array_wishart_rvs(df, scale, **kwargs): """ Wrapper around scipy.stats.wishart to always return a np.array """ if np.size(scale) == 1: return np.array([[ scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs() ]]) else: return scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs() def array_invwishart_rvs(df, scale, **kwargs): """ Wrapper around scipy.stats.invwishart to always return a np.array """ if np.size(scale) == 1: return np.array([[ scipy.stats.invwishart(df=df, scale=scale, **kwargs).rvs() ]]) else: return scipy.stats.invwishart(df=df, scale=scale, **kwargs).rvs() def array_invgamma_rvs(shape, scale, **kwargs): """ Wrapper around scipy.stats.wishart to always return a np.array """ if np.size(scale) == 1: return np.array([ scipy.stats.invgamma(a=shape, scale=scale, **kwargs).rvs() ]) else: return scipy.stats.invgamma(a=shape, scale=scale, **kwargs).rvs() # Matrix Normal LogPDF def matrix_normal_logpdf(X, mean, Lrowprec, Lcolprec): """ Numerical stable matrix normal logpdf (when cholesky of precision matrices are known) Args: X (n by m ndarray): random variable instance mean (n by m ndarray): mean Lrowprec (n by n ndarray): chol of pos def row covariance (i.e. U^{-1}) Lcolprec (m by m ndarray): chol of pos def col covariance (i.e. V^{-1}) Returns: logpdf = (-1/2*tr(V^{-1}(X-M)U^{-1}(X-M)) - nm/2*log(2pi) + m/2*log|U^{-1}| + n/2*log|V^{-1}|) """ n, m =
np.shape(X)
numpy.shape
# This source code is part of the Gecos package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. __author__ = "<NAME>, <NAME>" __all__ = ["ColorOptimizer", "ScoreFunction", "DefaultScoreFunction"] from collections import namedtuple import abc import copy import skimage import numpy as np import numpy.random as random import biotite.sequence as seq import biotite.sequence.align as align from .colors import lab_to_rgb MIN_L = 0 MAX_L = 99 MIN_AB = -128 MAX_AB = 127 class ColorOptimizer(object): """ Create an optimizer that tries to find an optimal color conformation within a given color space based on a score function. The optimizer tries to minimize the return value of the score function by adjusting the *Lab* values (coordinates) for each symbol in a given alphabet. The optimizer uses the random number generator from *NumPy*. Therefore, call :func:`numpy.random.seed()` to set the seed for the optimizer Parameters ---------- alphabet : biotite.sequence.Alphabet The alphabet to calculate the color conformation for. score_function : ScoreFunction or callable The score function which should be minimized. When calling the object, its only parameter must be an array of coordinates with shape *(n, 3)*, where *n* is the length of the alphabet. Its return value must be a single float - the score. space : ColorSpace The color space that defines the allowed space for the coordinates. constraints : ndarray, shape=(n,3), dtype=float, optional An array whose non-NaN values are interpreted as constraints. Constrained values will be fixed during the optimization. """ class Result(namedtuple("Result", ["alphabet", "trajectory", "scores"])): """ The result of an optimization. Contains the final color scheme information as well as the course of the coordinates and the score during the optimization. Parameters ---------- alphabet : biotite.sequence.Alphabet The alphabet the optimizer used. trajectory : ndarray, shape=(m,n,3), dtype=float The course of the coordinates during the simulation. scores : ndarray, shape=(m,), dtype=float The course of the score during the simulation. Attributes ---------- alphabet : biotite.sequence.Alphabet The alphabet the optimizer used. trajectory : ndarray, shape=(m,n,3), dtype=float The course of coordinates during the simulation. lab_colors : ndarray, shape=(n,3), dtype=float The final *Lab* color conformation, i.e. the last element of `trajectory`. rgb_colors : ndarray, shape=(n,3), dtype=float The final color conformation converted into *RGB* colors. scores : ndarray, shape=(m,), dtype=float The course of the score during the simulation. score : float The final score, i.e. the last element of `scores`. """ @property def score(self): return self.scores[-1] @property def lab_colors(self): return copy.deepcopy(self.trajectory[-1]) @property def rgb_colors(self): return lab_to_rgb(self.lab_colors.astype(int)) def __init__(self, alphabet, score_function, space, constraints=None): self._alphabet = alphabet self._n_symbols = len(alphabet) self._score_func = score_function self._space = space.space.copy() self._coord = None self._trajectory = [] self._scores = [] if constraints is None: self._constraints = np.full((self._n_symbols, 3), np.nan) else: for constraint in constraints: if not np.isnan(constraint).any() and \ not self._is_allowed(constraint): raise ValueError( f"Constraint {constraint} is outside the allowed space" ) self._constraints = constraints.copy() ### Set initial conformation ### # Every symbol has the 'l', 'a' and 'b' coordinates # The coordinates are initially filled with values # that are guaranteed to be invalid (l cannot be -1) start_coord = np.full((self._n_symbols, 3), -1, dtype=float) # Chose start position from allowed positions at random for i in range(start_coord.shape[0]): while not self._is_allowed(start_coord[i]): drawn_coord = random.rand(3) drawn_coord[..., 0] *= (MAX_L -MIN_L ) + MIN_L drawn_coord[..., 1:] *= (MAX_AB-MIN_AB) + MIN_AB start_coord[i] = drawn_coord self._apply_constraints(start_coord) self._set_coordinates(start_coord) def set_coordinates(self, coord): """ Set the the coordinates of the current color conformation. Potential color constraints are applied on these. This coordinate changes will be tracked in the trajectory. Parameters ---------- coord : ndarray, shape=(n,3), dtype=float The new coordinates. """ if coord.shape != (self._n_symbols, 3): raise ValueError( f"Given shape is {coord.shape}, " f"but expected shape is {(len(self._alphabet), 3)}" ) for c in coord: if not self._is_allowed(c): raise ValueError( f"Coordinates {c} are outside the allowed space" ) coord = coord.copy() self._apply_constraints(coord) self._set_coordinates(coord) def _set_coordinates(self, coord, score=None): self._coord = coord self._trajectory.append(coord) if score is None: score = self._score_func(coord) self._scores.append(score) def optimize(self, n_steps, beta_start, rate_beta, stepsize_start, stepsize_end): r""" Perform a Simulated Annealing optimization on the current coordinate to minimize the score returned by the score function. This is basically a Monte-Carlo optimization where the temperature is varied according to a so called annealing schedule over the course of the optimization. The algorithm is a heuristic thats motivated by the physical process of annealing. If we, e.g., cool steel than a slow cooling can yield a superior quality, whereas for a fast cooling the steel can become brittle. The same happens here within the search space for the given minimization task. Parameters ---------- n_steps : int The number of Simulated-Annealing steps. beta_start : float The inverse start temperature, where the start temperature would be :math:`T_{start} = 1/(k_b \cdot \beta_{start})` with :math:`k_b` being the boltzmann constant. rate_beta: float The rate controlls how fast the inverse temperature is increased within the annealing schedule. Here the exponential schedule is chosen so we have :math:`\beta (t) = \beta_0 \cdot \exp(rate \cdot t)`. stepsize_start : float The radius in which the coordinates are randomly altered at the beginning of the simulated anneling algorithm. Like the inverse temperature the step size follows an exponential schedule, enabling the algorithm to do large perturbartions at the beginning of the algorithm run and increasingly smaller ones afterwards. stepsize_end : float The radius in which the coordinates are randomly altered at the end of the simulated annealing algorithm run. """ # Calculate the max value 'i' can reach so that # 'np.exp(rate_beta*i)' does not overflow max_i = np.log(np.finfo(np.float64).max) / rate_beta beta = lambda i: beta_start*np.exp(rate_beta*i) \ if i < max_i else np.inf # Choose rate so that stepsize_end reached after n_steps # derived from step_size(N_steps) = steps_end if stepsize_start == stepsize_end: rate_stepsize = 0 else: rate_stepsize =
np.log(stepsize_end / stepsize_start)
numpy.log
from __future__ import absolute_import from __future__ import print_function import os import glob import numpy as np from scipy.interpolate import UnivariateSpline from .core import file_finder, load_probe, load_fs, load_clusters, load_spikes from .core import find_info, find_kwd, find_kwik, find_kwx import h5py as h5 import json from six.moves import range @file_finder def find_mean_waveforms(block_path, cluster, cluster_store=0, clustering='main'): ''' Returns the mean waveform file for a given cluster found in the block path Parameters ------ block_path : str path to the block cluster : int the cluster identifier cluster_store : int the cluster store identifier clustering : str, optional ID of clustering Returns ------ mean_waveforms_file : full path name to mean_waveforms file ''' return os.path.join(block_path, '*.phy', 'cluster_store', str(cluster_store), clustering, '{}.mean_waveforms'.format(cluster) ) @file_finder def find_mean_masks(block_path, cluster, cluster_store=0, clustering='main'): ''' Returns the mean masks file for a given cluster found in the block path Parameters ------ block_path : str path to the block cluster : int the cluster identifier cluster_store : int the cluster store identifier clustering : str, optional ID of clustering Returns ------ mean_masks_file : full path name to mean_waveforms file ''' return os.path.join(block_path, '*.phy', 'cluster_store', str(cluster_store), clustering, '{}.mean_masks'.format(cluster) ) def mean_masks_w(block_path, cluster): ''' Weights are equivalent to the mean_mask values for the channel. Parameters ------ block_path : str the path to the block cluster : int the cluster identifier Returns ------ w : weight vector ''' mean_masks = find_mean_masks(block_path, cluster) mean_masks_arr = np.fromfile(mean_masks, dtype=np.float32) return mean_masks_arr def max_masks_w(block_path, cluster): ''' Places all weight on the channel(s) which have the largest mean mask values. If more than one channel have a mean_mask value equal to the max, these channels will be weighted equally. Parameters ------ block_path : str the path to the block cluster : int the cluster identifier Returns ------ w : weight vector ''' w = mean_masks_w(block_path, cluster) return w == w.max() def get_cluster_coords(block_path, cluster, weight_func=None): ''' Returns the location of a given cluster on the probe in x,y coordinates in whatever units and reference the probe file uses. Parameters ------ block_path : str the path to the block cluster : int the cluster identifier weight_func : function function which takes `block_path` and `cluster` as args and returns a weight vector for the coordinates. default: max_masks_w Returns ------ xy : numpy array of coordinates ''' if weight_func is None: weight_func = max_masks_w w = weight_func(block_path, cluster) prb_info = load_probe(block_path) channels = prb_info.channel_groups[0]['channels'] geometry = prb_info.channel_groups[0]['geometry'] coords = np.array([geometry[ch] for ch in channels]) return np.dot(w, coords) / w.sum() # spike shapes def upsample_spike(spike_shape, fs, new_fs=1000000.0): ''' upsamples a spike shape to prepare it for computing the spike width Parameters ------ spike_shape : numpy array the spike shape fs : float the sampling rate of the spike shape new_fs : float sampling rate to upsample to (default=200Hz) Returns ------ time : numpy array array of sample times in seconds new_spike_shape : upsampled spike shape ''' t_max = spike_shape.shape[0] / fs t = np.arange(0, t_max, 1 / fs)[:spike_shape.shape[0]] spl = UnivariateSpline(t, spike_shape) ts = np.arange(0, t_max, 1 / new_fs) return ts, spl(ts) def get_troughpeak(time, spike_shape): ''' Grabs the time of the trough and peak Parameters ------ time : numpy array time series of spike data spike_shape : numpy array the spike shape Returns ------ trough_time : float time of trough in seconds peak_time : float time of peak in seconds ''' trough_i = spike_shape.argmin() peak_i = spike_shape[trough_i:].argmax() + trough_i return time[trough_i], time[peak_i] def get_width_half_height(time,spike_shape): ''' grabs the time between the zero crossings around trough after normalize to min height and offset by 0.5 Parameters ------ time : numpy array spike_shape : numpy array %should be up-sampled to at least 100000 before calculating Returns ------ width_half_height : float time between crossings in seconds ''' width = np.nan; trough,peak = get_troughpeak(time,spike_shape) ind = np.where(time == trough) troughind = ind[0][0] spike_shape /= -spike_shape.min() spike_shape = spike_shape + 0.5 zero_crossings = np.where(np.diff(np.sign(spike_shape)))[0] i = zero_crossings < troughind j = zero_crossings > troughind if (True in i) & (True in j): # zero crossings before trough i = (np.where(i)) pre_ind = zero_crossings[max(i[0])] # zero crossings after trough j = (np.where(j)) post_ind = zero_crossings[min(j[0])] width = time[post_ind] - time[pre_ind] return width def get_width(block_path, cluster, new_fs=1000000.0): ''' grabs the time of the trough and peak Parameters ------ block_path : str the path to the block cluster : int the cluster identifier new_fs : float sampling rate to upsample to (default=200Hz) Returns ------ width : float the width of the spike in seconds ''' fs = load_fs(block_path) exemplar = get_spike_exemplar(block_path, cluster) trough, peak = get_troughpeak(*upsample_spike(exemplar, fs, new_fs=new_fs)) return peak - trough def get_mean_waveform_array(block_path, cluster): ''' returns the mean spike shape on all channels Parameters ------ block_path : str the path to the block cluster : int the cluster identifier Returns ------ mean_waveform_array : numpy array mean waveform on principal channel. shape: (time_samples,channels) ''' prb_info = load_probe(block_path) mean_waveform = find_mean_waveforms(block_path, cluster) shape = (-1, len(prb_info.channel_groups[0]['channels'])) return np.fromfile(mean_waveform, dtype=np.float32).reshape(shape) def get_spike_exemplar(block_path, cluster): ''' Returns an exemplar of the spike shape on the principal channel Parameters ------ block_path : str the path to the block cluster : int the cluster identifier Returns ------ exemplar : numpy array mean waveform on principal channel ''' mean_waveform = find_mean_waveforms(block_path, cluster) arr = get_mean_waveform_array(block_path, cluster) mean_masks = find_mean_masks(block_path, cluster) mean_masks_arr = np.fromfile(mean_masks, dtype=np.float32) return arr[:, mean_masks_arr.argmax()] def get_wide_narrow(block_path, cluster_list, thresh): ''' Return lists of clusters Parameters ------ block_path : str the path to the block cluster_list : array a list of cluster identifiers thresh : float minimum duration of spike to be considered wide Returns ------ wide : list of clusters with width greater than the threshold narrow : list of clusters with width less than the threshold ''' wide = [] narrow = [] for cluster in cluster_list: sw = get_width(block_path, cluster) if sw >= thresh: wide.append(cluster) else: narrow.append(cluster) return (wide, narrow) def make_phy_folder(block_path): ''' Create a directory for phy clusters Parameters ------ block_path : str the path to the block Returns ------ phy folder: string path to phy directory ''' kwikf = find_kwik(block_path) kwikfname = os.path.split(kwikf)[1] kwikname = os.path.splitext(kwikfname)[0] phy_fold = os.path.join(block_path, kwikname + '.phy') phy_fold = os.path.abspath(os.path.join(phy_fold, 'cluster_store/0/main/')) if not os.path.exists(phy_fold): os.makedirs(phy_fold) return phy_fold def spikeindices(block_path, cluster, channel_group=0, clustering='main'): ''' Return a list of indices of spikes for a cluster Parameters ------ block_path : str the path to the block cluster : int the cluster identifier channel_group : the channel group identifier clustering : str, optional ID of clustering Returns ------ indices : numpy array indices of spikes in a specified cluster ''' with h5.File(find_kwik(block_path), 'r') as kwikf: sptimes = kwikf[ '/channel_groups/{}/spikes/clusters/{}'.format(channel_group, clustering)][:] return (sptimes == cluster) def compute_cluster_waveforms(block_path): ''' legacy method for computing cluster waveforms Parameters ------ block_path : str the path to the block ''' with open(find_info(block_path), 'rb') as infofile: info = json.load(infofile) prespike = info['params']['prespike'] postspike = info['params']['postspike'] nchans = info['params']['nchan'] spikes = load_spikes(block_path) clusters = spikes['cluster'].unique() phy_fold = make_phy_folder(block_path) for cluster in clusters: print("Cluster: {}".format(cluster)) cluspikes = spikes[spikes['cluster'] == cluster] cluspiketimes = cluspikes['time_samples'].values mean_waveform = np.zeros((prespike + postspike, nchans)) waveforms = np.zeros((len(cluspiketimes), prespike + postspike, nchans)) with h5.File(find_kwd(block_path), 'r') as kwdf: for ind, sptime in enumerate(cluspiketimes): test = np.zeros((prespike + postspike, nchans)) start_ind = max((int(sptime - prespike)), 0) start_ind2 = abs(min(int(sptime - prespike), 0)) test[start_ind2:] = kwdf['/recordings/0/data'][start_ind:int(sptime + postspike), :] waveforms[ind, :, :] = test mean_waveform += test waveforms = waveforms.flatten() mean_waveform /= len(cluspiketimes) mean_waveform = mean_waveform.flatten() with h5.File(find_kwx(block_path), 'r') as kwxf: cluster_spike_inds = spikeindices(block_path, cluster) nspike =
np.count_nonzero(cluster_spike_inds)
numpy.count_nonzero
import logging import numpy as np from keras.layers.advanced_activations import ReLU from keras.regularizers import l2 from keras.layers.normalization import BatchNormalization from keras import backend as K from keras.initializers import RandomNormal from keras.layers import Add from keras.layers import Concatenate from keras.layers import Conv2D from keras.layers import Dense from keras.layers import DepthwiseConv2D from keras.layers import GlobalAveragePooling2D from keras.layers import Input from keras.layers import ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.advanced_activations import PReLU def invResidual(config, container): if not config.module_name: raise ValueError('Missing module name in section') config.layer_name = ( config.layer_name if config.layer_name else str(len(container.all_layers) - 1) ) logging.info("frames: ", container.frames) s = 0 if config.shift: logging.info("3D conv block") tsize = 3 else: logging.info("2D conv block") tsize = 1 config.size = int(config.size) prev_layer = container.all_layers[-1] prev_layer_shape = K.int_shape(prev_layer) input_channels = prev_layer_shape[-1] x_channels = input_channels * config.xratio image_size = prev_layer_shape[-3], prev_layer_shape[-2] logging.info("input image size: ", image_size) num_convs = int(container.frames / config.tstride) inputs_needed = (config.tstride * (num_convs - 1)) + tsize # inputs_needed = frames + tsize - 1 if inputs_needed > 1: logging.info("inputs_needed: ", inputs_needed) old_frames_to_read = inputs_needed - container.frames new_frames_to_save = min(container.frames, old_frames_to_read) logging.info( "num_convs: ", num_convs, "inputs_needed: ", inputs_needed, "history frames needed: ", old_frames_to_read, "frames to save: ", new_frames_to_save, "tstride: ", config.tstride, ) # create (optional) expansion pointwise convolution layer input_indexes = [] for i in range(num_convs): input_indexes.append( len(container.all_layers) - container.frames + (i * config.tstride) ) if config.xratio != 1: logging.info("---------- Insert channel multiplier pointwise conv -------------") # attach output ports to inputs we will need next pass if tsize>1 for f in range(new_frames_to_save): container.out_index.append(len(container.all_layers) - container.frames + f) container.out_names.append(config.module_name + "_save_" + str(f)) # create input ports for required old frames if tsize>1 for f in range(old_frames_to_read): h_name = config.module_name + "_history_" + str(f) container.all_layers.append( Input(shape=(image_size[0], image_size[1], input_channels), name=h_name) ) container.in_names.append(h_name) container.in_index.append(len(container.all_layers) - 1) # get weights n = config.module_name + ".conv." + str(s) + ".0." if n + "weight" in container.weights: weights_pt = container.weights[n + "weight"] logging.info( "checkpoint: ", weights_pt.shape, ) weights_k = np.transpose(weights_pt, [2, 3, 1, 0]) bias = container.weights[n + "bias"] else: logging.info("missing weight ", n + "weight") weights_k = np.random.rand(1, 1, tsize * input_channels, x_channels) bias = np.zeros(x_channels) container.fake_weights = True expected_weights_shape = (1, 1, tsize * input_channels, x_channels) logging.info( "weight shape, expected : ", expected_weights_shape, "transposed: ", weights_k.shape, ) if weights_k.shape != expected_weights_shape: logging.info("weight matrix shape is wrong, making a fake one") weights_k = np.random.rand(1, 1, tsize * input_channels, x_channels) bias = np.zeros(x_channels) container.fake_weights = True weights = [weights_k, bias] inputs = [] outputs = [] for f in range(inputs_needed): inputs.append( container.all_layers[len(container.all_layers) - inputs_needed + f] ) if config.merge_in > 0: inputs.append( container.all_layers[ len(container.all_layers) - (2 * inputs_needed) + f ] ) for f in range(int(container.frames / config.tstride)): layers = [] if tsize > 1: for t in range(tsize): # offset is constant with f, except if tstride, # then steps by extra step every time through layers.append(inputs[(tsize - t - 1) + (f * (config.tstride))]) cat_layer = Concatenate()(layers) else: cat_layer = inputs[f * (config.tstride)] outputs.append( ( Conv2D( x_channels, (1, 1), use_bias=not config.batch_normalize, weights=weights, activation=None, padding="same", ) )(cat_layer) ) logging.info( "parallel convs: ", int(container.frames / config.tstride), " : ", K.int_shape(cat_layer), ) if config.activation == "leaky": for f in range(int(container.frames / config.tstride)): if not container.conversion_parameters["use_prelu"]: outputs[f] = LeakyReLU(alpha=0.1)(outputs[f]) else: outputs[f] = PReLU( alpha_initializer=RandomNormal(mean=0.1, stddev=0.0, seed=None), shared_axes=[1, 2], )(outputs[f]) elif config.activation == "relu6": for f in range(int(container.frames / config.tstride)): outputs[f] = ReLU(max_value=6)(outputs[f]) for f in range(int(container.frames / config.tstride)): container.all_layers.append(outputs[f]) s += 1 container.frames = int(container.frames / config.tstride) else: logging.info("Skipping channel multiplier pointwise conv, no expansion") # create groupwise convolution # get weights logging.info("---------- Depthwise conv -------------") n = config.module_name + ".conv." + str(s) + ".0." logging.info("module name base: ", n) if n + "weight" in container.weights: weights_pt = container.weights[n + "weight"] logging.info( "checkpoint: ", weights_pt.shape, ) weights_k = np.transpose(weights_pt, [2, 3, 0, 1]) bias = container.weights[n + "bias"] else: logging.info("missing weight ", n + "weight") weights_k = np.random.rand(config.size, config.size, x_channels, 1) bias = np.zeros(x_channels) container.fake_weights = True expected_weights_shape = (config.size, config.size, x_channels, 1) logging.info( "weight shape, expected : ", expected_weights_shape, "transposed: ", weights_k.shape, ) if weights_k.shape != expected_weights_shape: logging.info("weight matrix shape is wrong, making a fake one") container.fake_weights = True weights_k = np.random.rand(config.size, config.size, x_channels, 1) bias = np.zeros(x_channels) weights = [weights_k, bias] inputs = [] outputs = [] padding = "same" if config.pad == 1 and config.stride == 1 else "valid" for f in range(container.frames): inputs.append( container.all_layers[len(container.all_layers) - container.frames + f] ) if config.stride > 1: for f in range(len(inputs)): if config.size == 3: # originally for all sizes inputs[f] = ZeroPadding2D( ((config.size - config.stride, 0), (config.size - config.stride, 0)) )(inputs[f]) elif config.size == 5: # I found this works... inputs[f] = ZeroPadding2D(((2, 2), (2, 2)))(inputs[f]) else: logging.info("I have no idea what to do for size ", config.size) exit() logging.info("parallel convs: ", f, " : ", K.int_shape(inputs[0]), "padding: ", padding) for f in range(container.frames): outputs.append( ( DepthwiseConv2D( (config.size, config.size), strides=(config.stride, config.stride), use_bias=not config.batch_normalize, weights=weights, activation=None, padding=padding, ) )(inputs[f]) ) if config.activation == "leaky": for f in range(int(container.frames)): if not container.conversion_parameters["use_prelu"]: outputs[f] = LeakyReLU(alpha=0.1)(outputs[f]) else: outputs[f] = PReLU( alpha_initializer=RandomNormal(mean=0.1, stddev=0.0, seed=None), shared_axes=[1, 2], )(outputs[f]) elif config.activation == "relu6": for f in range(int(container.frames)): outputs[f] = ReLU(max_value=6)(outputs[f]) for f in range(int(container.frames)): container.all_layers.append(outputs[f]) s += 1 # create pointwise convolution # get weights logging.info("---------- Pointwise conv -------------") n = config.module_name + ".conv." + str(s) + "." logging.info("module name base: ", n) if n + "weight" in container.weights: weights_pt = container.weights[n + "weight"] logging.info( "checkpoint: ", weights_pt.shape, ) weights_k = np.transpose(weights_pt, [2, 3, 1, 0]) bias = container.weights[n + "bias"] else: logging.info("missing weight ", n + "weight") container.fake_weights = True weights_k = np.random.rand(1, 1, x_channels, config.out_channels) bias = np.zeros(config.out_channels) expected_weights_shape = (1, 1, x_channels, config.out_channels) logging.info( "weight shape, expected : ", expected_weights_shape, "transposed: ", weights_k.shape, ) if weights_k.shape != expected_weights_shape: logging.info("weight matrix shape is wrong, making a fake one") container.fake_weights = True weights_k = np.random.rand(1, 1, x_channels, config.out_channels) bias = np.zeros(config.out_channels) weights = [weights_k, bias] logging.info("combined shape: ", weights[0].shape, weights[1].shape) inputs = [] outputs = [] for f in range(container.frames): inputs.append( container.all_layers[len(container.all_layers) - container.frames + f] ) logging.info( "parallel convs: ", f, " : ", K.int_shape(container.all_layers[len(container.all_layers) - container.frames]), ) for f in range(container.frames): conv_input = container.all_layers[ len(container.all_layers) - container.frames + f ] outputs.append( ( Conv2D( config.out_channels, (1, 1), use_bias=not config.batch_normalize, weights=weights, activation=None, padding="same", ) )(conv_input) ) if config.stride == 1 and input_channels == config.out_channels: for f in range(int(container.frames)): container.all_layers.append( Add()([container.all_layers[input_indexes[f]], outputs[f]]) ) else: for f in range(int(container.frames)): container.all_layers.append(outputs[f]) s += 1 def convolutional(config, container): if not config.module_name: raise ValueError('Missing module name in section') config.layer_name = ( config.layer_name if config.layer_name else str(len(container.all_layers) - 1) ) config.size = int(config.size) if container.frames > 1: logging.info("frames: ", container.frames) prev_layer_shape = K.int_shape(container.all_layers[-1]) input_channels = prev_layer_shape[-1] image_size = prev_layer_shape[-3], prev_layer_shape[-2] num_convs = int(container.frames / config.tstride) if num_convs > 1: logging.info("num_convs: ", num_convs) inputs_needed = (config.tstride * (num_convs - 1)) + config.tsize # inputs_needed = frames + tsize - 1 if inputs_needed > 1: logging.info("inputs_needed: ", inputs_needed) old_frames_to_read = inputs_needed - container.frames if old_frames_to_read < 0: logging.info("negative number of old frames!!!!!!!!!") if old_frames_to_read: logging.info("history frames needed: ", old_frames_to_read) new_frames_to_save = min(container.frames, old_frames_to_read) if new_frames_to_save: logging.info("new frames to save: ", new_frames_to_save) # attach output ports to inputs we will need next pass if config.no_output is False: for f in range(new_frames_to_save): container.out_index.append(len(container.all_layers) - container.frames + f) container.out_names.append(config.module_name + "_save_" + str(f)) # attach output ports to unsaved inputs if we need to share inputs to a slave network if config.share is True: for f in range(new_frames_to_save, container.frames): container.out_index.append(len(container.all_layers) - container.frames + f) container.out_names.append(config.module_name + "_share_" + str(f)) # create input ports for required old frames for f in range(old_frames_to_read): xx = config.module_name + "_history_" + str(f) container.in_names.append(xx) if config.image_input: container.image_inputs.append(xx) container.all_layers.append( Input(shape=(image_size[0], image_size[1], input_channels), name=xx) ) container.in_index.append(len(container.all_layers) - 1) # create input ports for merged-in frames if config.merge_in > 0: input_channels = input_channels + config.merge_in for f in range(inputs_needed): xx = config.module_name + "_merge_in_" + str(f) container.in_names.append(xx) container.all_layers.append( Input(shape=(image_size[0], image_size[1], config.merge_in), name=xx) ) logging.info("merge_in input at: ", len(container.all_layers) - 1) container.in_index.append(len(container.all_layers) - 1) padding = "same" if config.pad == 1 and config.stride == 1 else "valid" # extract parameter for this module from Pytorch checkpoint file conv_weights_pt = np.random.rand( input_channels, config.filters, config.tsize, config.size, config.size ) conv_bias = [0] if config.module_name + ".weight" in container.weights: conv_weights_pt = container.weights[config.module_name + ".weight"] logging.info( "weight: ", config.module_name + ".weight", container.weights[config.module_name + ".weight"].shape, ) # convert to tsize list of 2d conv weight matrices, transposed for Keras w_list = [] if len(conv_weights_pt.shape) == 5: # check if this is a 3D conv being unfolded for t in range(config.tsize): w_list.append( np.transpose( conv_weights_pt[:, :, config.tsize - 1 - t, :, :], [2, 3, 1, 0] ) ) else: # this is simply a single 2D conv w_list.append(np.transpose(conv_weights_pt[:, :, :, :], [2, 3, 1, 0])) # concatenate along the in_dim axis the tsize matrices conv_weights =
np.concatenate(w_list, axis=2)
numpy.concatenate
""" creation.py -------------- Create meshes from primitives, or with operations. """ from .base import Trimesh from .constants import log, tol from .geometry import faces_to_edges, align_vectors, plane_transform from . import util from . import grouping from . import triangles from . import transformations as tf import numpy as np import collections try: # shapely is a soft dependency from shapely.geometry import Polygon from shapely.wkb import loads as load_wkb except BaseException as E: # shapely will sometimes raise OSErrors # on import rather than just ImportError from . import exceptions # re-raise the exception when someone tries # to use the module that they don't have Polygon = exceptions.closure(E) load_wkb = exceptions.closure(E) def revolve(linestring, angle=None, sections=None, transform=None, **kwargs): """ Revolve a 2D line string around the 2D Y axis, with a result with the 2D Y axis pointing along the 3D Z axis. This function is intended to handle the complexity of indexing and is intended to be used to create all radially symmetric primitives, eventually including cylinders, annular cylinders, capsules, cones, and UV spheres. Note that if your linestring is closed, it needs to be counterclockwise if you would like face winding and normals facing outwards. Parameters ------------- linestring : (n, 2) float Lines in 2D which will be revolved angle : None or float Angle in radians to revolve curve by sections : None or int Number of sections result should have If not specified default is 32 per revolution transform : None or (4, 4) float Transform to apply to mesh after construction **kwargs : dict Passed to Trimesh constructor Returns -------------- revolved : Trimesh Mesh representing revolved result """ linestring = np.asanyarray(linestring, dtype=np.float64) # linestring must be ordered 2D points if len(linestring.shape) != 2 or linestring.shape[1] != 2: raise ValueError('linestring must be 2D!') if angle is None: # default to closing the revolution angle = np.pi * 2 closed = True else: # check passed angle value closed = angle >= ((np.pi * 2) - 1e-8) if sections is None: # default to 32 sections for a full revolution sections = int(angle / (np.pi * 2) * 32) # change to face count sections += 1 # create equally spaced angles theta = np.linspace(0, angle, sections) # 2D points around the revolution points = np.column_stack((np.cos(theta), np.sin(theta))) # how many points per slice per = len(linestring) # use the 2D X component as radius radius = linestring[:, 0] # use the 2D Y component as the height along revolution height = linestring[:, 1] # a lot of tiling to get our 3D vertices vertices = np.column_stack(( np.tile(points, (1, per)).reshape((-1, 2)) * np.tile(radius, len(points)).reshape((-1, 1)), np.tile(height, len(points)))) if closed: # should be a duplicate set of vertices assert np.allclose(vertices[:per], vertices[-per:]) # chop off duplicate vertices vertices = vertices[:-per] if transform is not None: # apply transform to vertices vertices = tf.transform_points(vertices, transform) # how many slices of the pie slices = len(theta) - 1 # start with a quad for every segment # this is a superset which will then be reduced quad = np.array([0, per, 1, 1, per, per + 1]) # stack the faces for a single slice of the revolution single = np.tile(quad, per).reshape((-1, 3)) # `per` is basically the stride of the vertices single += np.tile(np.arange(per), (2, 1)).T.reshape((-1, 1)) # remove any zero-area triangle # this covers many cases without having to think too much single = single[triangles.area(vertices[single]) > tol.merge] # how much to offset each slice # note arange multiplied by vertex stride # but tiled by the number of faces we actually have offset = np.tile(np.arange(slices) * per, (len(single), 1)).T.reshape((-1, 1)) # stack a single slice into N slices stacked = np.tile(single.ravel(), slices).reshape((-1, 3)) if tol.strict: # make sure we didn't screw up stacking operation assert np.allclose(stacked.reshape((-1, single.shape[0], 3)) - single, 0) # offset stacked and wrap vertices faces = (stacked + offset) % len(vertices) # create the mesh from our vertices and faces mesh = Trimesh(vertices=vertices, faces=faces, **kwargs) # strict checks run only in unit tests if (tol.strict and np.allclose(radius[[0, -1]], 0.0) or np.allclose(linestring[0], linestring[-1])): # if revolved curve starts and ends with zero radius # it should really be a valid volume, unless the sign # reversed on the input linestring assert mesh.is_volume return mesh def extrude_polygon(polygon, height, transform=None, triangle_args=None, **kwargs): """ Extrude a 2D shapely polygon into a 3D mesh Parameters ---------- polygon : shapely.geometry.Polygon 2D geometry to extrude height : float Distance to extrude polygon along Z triangle_args : str or None Passed to triangle **kwargs: passed to Trimesh Returns ---------- mesh : trimesh.Trimesh Resulting extrusion as watertight body """ # create a triangulation from the polygon vertices, faces = triangulate_polygon( polygon, triangle_args=triangle_args, **kwargs) # extrude that triangulation along Z mesh = extrude_triangulation(vertices=vertices, faces=faces, height=height, transform=transform, **kwargs) return mesh def sweep_polygon(polygon, path, angles=None, **kwargs): """ Extrude a 2D shapely polygon into a 3D mesh along an arbitrary 3D path. Doesn't handle sharp curvature well. Parameters ---------- polygon : shapely.geometry.Polygon Profile to sweep along path path : (n, 3) float A path in 3D angles : (n,) float Optional rotation angle relative to prior vertex at each vertex Returns ------- mesh : trimesh.Trimesh Geometry of result """ path = np.asanyarray(path, dtype=np.float64) if not util.is_shape(path, (-1, 3)): raise ValueError('Path must be (n, 3)!') # Extract 2D vertices and triangulation verts_2d = np.array(polygon.exterior)[:-1] base_verts_2d, faces_2d = triangulate_polygon(polygon, **kwargs) n = len(verts_2d) # Create basis for first planar polygon cap x, y, z = util.generate_basis(path[0] - path[1]) tf_mat = np.ones((4, 4)) tf_mat[:3, :3] = np.c_[x, y, z] tf_mat[:3, 3] = path[0] # Compute 3D locations of those vertices verts_3d = np.c_[verts_2d, np.zeros(n)] verts_3d = tf.transform_points(verts_3d, tf_mat) base_verts_3d = np.c_[base_verts_2d, np.zeros(len(base_verts_2d))] base_verts_3d = tf.transform_points(base_verts_3d, tf_mat) # keep matching sequence of vertices and 0- indexed faces vertices = [base_verts_3d] faces = [faces_2d] # Compute plane normals for each turn -- # each turn induces a plane halfway between the two vectors v1s = util.unitize(path[1:-1] - path[:-2]) v2s = util.unitize(path[1:-1] - path[2:]) norms = np.cross(
np.cross(v1s, v2s)
numpy.cross
import time import cv2 import numpy as np from numba import njit from scipy.ndimage import correlate from sklearn.linear_model import Ridge def compute_image_grads(image): kernel_hor = np.array([-1, 0, 1], dtype=np.float32).reshape(1, 3) kernel_ver = kernel_hor.T grad_hor = correlate(image.astype(np.float32), kernel_hor) grad_ver = correlate(image.astype(np.float32), kernel_ver) grads = np.maximum(grad_hor, grad_ver) return grads def compute_gradient_sensivity(image): height, width = image.shape lapl_diff = np.array([ [ 1, -2, 1], [-2, 4, -2], [ 1, -2, 1] ], dtype=np.float32) convolved = correlate(image.astype(np.float32), lapl_diff) factor =
np.sqrt(np.pi / 2)
numpy.sqrt
import numpy as np import pandas as pd from scipy.interpolate import interp1d from scipy.spatial import distance from scipy.optimize import differential_evolution class IntracellAnalysisV2: # IA constants FC_UPPER_VOLTAGE = 4.20 FC_LOWER_VOLTAGE = 2.70 NE_UPPER_VOLTAGE = 0.01 NE_LOWER_VOLTAGE = 1.50 PE_UPPER_VOLTAGE = 4.30 PE_LOWER_VOLTAGE = 2.86 THRESHOLD = 4.84 * 0.0 def __init__(self, pe_pristine_file, ne_pristine_file, cycle_type='rpt_0.2C', step_type=0, error_type='V-Q', ne_2pos_file=None, ne_2neg_file=None ): """ Invokes the cell electrode analysis class. This is a class designed to fit the cell and electrode parameters in order to determine changes of electrodes within the full cell from only full cell cycling data. Args: pe_pristine_file (str): file name for the half cell data of the pristine (uncycled) positive electrode ne_pristine_file (str): file name for the half cell data of the pristine (uncycled) negative electrode cycle_type (str): type of diagnostic cycle for the fitting step_type (int): charge or discharge (0 for charge, 1 for discharge) error_type (str): defines which error metric is to be used ne_2neg_file (str): file name of the data for the negative component of the anode ne_2pos_file (str): file name of the data for the positive component of the anode """ self.pe_pristine = pd.read_csv(pe_pristine_file, usecols=['SOC_aligned', 'Voltage_aligned']) self.ne_1_pristine = pd.read_csv(ne_pristine_file, usecols=['SOC_aligned', 'Voltage_aligned']) if ne_2neg_file and ne_2pos_file: self.ne_2_pristine_pos = pd.read_csv(ne_2pos_file) self.ne_2_pristine_neg = pd.read_csv(ne_2neg_file) else: self.ne_2_pristine_pos = pd.DataFrame() self.ne_2_pristine_neg = pd.DataFrame() if step_type == 0: self.capacity_col = 'charge_capacity' else: self.capacity_col = 'discharge_capacity' self.cycle_type = cycle_type self.step_type = step_type self.error_type = error_type def process_beep_cycle_data_for_candidate_halfcell_analysis_ah(self, cell_struct, cycle_index): """ Ingests BEEP structured cycling data and cycle_index and returns a Dataframe of evenly spaced capacity with corresponding voltage. Inputs: cell_struct (MaccorDatapath): BEEP structured cycling data cycle_index (int): cycle number at which to evaluate Outputs: real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned """ # filter the data down to the diagnostic type of interest diag_type_cycles = cell_struct.diagnostic_data.loc[cell_struct.diagnostic_data['cycle_type'] == self.cycle_type] real_cell_candidate_charge_profile = diag_type_cycles.loc[ (diag_type_cycles.cycle_index == cycle_index) & (diag_type_cycles.step_type == 0) # step_type = 0 is charge, 1 is discharge & (diag_type_cycles.voltage < self.FC_UPPER_VOLTAGE) & (diag_type_cycles[self.capacity_col] > 0)][['voltage', 'charge_capacity']] # renaming capacity,voltage column real_cell_candidate_charge_profile['Q'] = real_cell_candidate_charge_profile['charge_capacity'] real_cell_candidate_charge_profile['Voltage'] = real_cell_candidate_charge_profile['voltage'] real_cell_candidate_charge_profile.drop('voltage', axis=1, inplace=True) # interpolate voltage along evenly spaced capacity axis q_vec = np.linspace(0, np.max(real_cell_candidate_charge_profile['Q']), 1001) real_cell_candidate_charge_profile_aligned = pd.DataFrame() real_cell_candidate_charge_profile_interper = interp1d(real_cell_candidate_charge_profile['Q'], real_cell_candidate_charge_profile['Voltage'], bounds_error=False, fill_value=( self.FC_LOWER_VOLTAGE, self.FC_UPPER_VOLTAGE)) real_cell_candidate_charge_profile_aligned['Voltage_aligned'] = real_cell_candidate_charge_profile_interper( q_vec) real_cell_candidate_charge_profile_aligned['Q_aligned'] = q_vec return real_cell_candidate_charge_profile_aligned def _impose_electrode_scale(self, pe_pristine=pd.DataFrame(), ne_1_pristine=pd.DataFrame(), ne_2_pristine_pos=pd.DataFrame(), ne_2_pristine_neg=pd.DataFrame(), lli=0.0, q_pe=0.0, q_ne=0.0, x_ne_2=0.0): """ Scales the reference electrodes according to specified capacities and offsets their capacities according to lli. Blends negative electrode materials. Inputs: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode lli (float): Loss of Lithium Inventory - capacity of the misalignment between cathode and anode zero-capacity q_pe (float): capacity of the positive electrode (cathode) q_ne (float): capacity of the negative electrode (anode) x_ne_2 (float): fraction of ne_2_pristine_pos or ne_2_pristine_neg (positive or negative value, respectively) to ne_1_pristine Outputs: pe_degraded (Dataframe): positive electrode with imposed capacity scale to emulate degradation ne_degraded (Dataframe): negative electrode with imposed capacity scale and capacity offset to emulate degradation """ # Blend negative electrodes ne_pristine = blend_electrodes(ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, x_ne_2) # rescaling pristine electrodes to q_pe and q_ne pe_q_scaled = pe_pristine.copy() pe_q_scaled['Q_aligned'] = (pe_q_scaled['SOC_aligned'] / 100) * q_pe ne_q_scaled = ne_pristine.copy() ne_q_scaled['Q_aligned'] = (ne_q_scaled['SOC_aligned'] / 100) * q_ne # translate pristine ne electrode with lli ne_q_scaled['Q_aligned'] = ne_q_scaled['Q_aligned'] + lli # Re-interpolate to align dataframes for differencing lower_q = np.min((np.min(pe_q_scaled['Q_aligned']), np.min(ne_q_scaled['Q_aligned']))) upper_q = np.max((np.max(pe_q_scaled['Q_aligned']), np.max(ne_q_scaled['Q_aligned']))) q_vec = np.linspace(lower_q, upper_q, 1001) # Actually aligning the electrode Q's pe_pristine_interper = interp1d(pe_q_scaled['Q_aligned'], pe_q_scaled['Voltage_aligned'], bounds_error=False) pe_degraded = pe_q_scaled.copy() pe_degraded['Q_aligned'] = q_vec pe_degraded['Voltage_aligned'] = pe_pristine_interper(q_vec) ne_pristine_interper = interp1d(ne_q_scaled['Q_aligned'], ne_q_scaled['Voltage_aligned'], bounds_error=False) ne_degraded = ne_q_scaled.copy() ne_degraded['Q_aligned'] = q_vec ne_degraded['Voltage_aligned'] = ne_pristine_interper(q_vec) # Returning pe and ne degraded on an Ah basis return pe_degraded, ne_degraded def halfcell_degradation_matching_ah(self, x, *params): """ Calls underlying functions to impose degradation through electrode capacity scale and alignment through LLI. Modifies emulated full cell data to be within full cell voltage range and calibrates (zeros) capacity at the lowest permissible voltage. Interpolates real and emulated data onto a common capacity axis. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity df_real_aligned (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_aligned (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ lli = x[0] q_pe = x[1] q_ne = x[2] x_ne_2 = x[3] (pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned) = params # output degraded ne and pe (on a AH basis, with electrode alignment # (NaNs for voltage, when no capacity actually at the corresponding capacity index)) pe_out, ne_out = self._impose_electrode_scale(pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, lli, q_pe, q_ne, x_ne_2) # PE - NE = full cell voltage emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['Q_aligned'] = pe_out['Q_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] # Replace emulated full cell values outside of voltage range with NaN emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] < self.FC_LOWER_VOLTAGE] = np.nan emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] > self.FC_UPPER_VOLTAGE] = np.nan # Center the emulated full cell and half cell curves onto the same Q at which the real (degraded) # capacity measurement started (self.FC_LOWER_VOLTAGE) emulated_full_cell_with_degradation_zeroed = pd.DataFrame() emulated_full_cell_with_degradation_zeroed['Voltage_aligned'] = emulated_full_cell_with_degradation[ 'Voltage_aligned'].copy() zeroing_value = emulated_full_cell_with_degradation['Q_aligned'].loc[ np.nanargmin(emulated_full_cell_with_degradation['Voltage_aligned']) ] emulated_full_cell_with_degradation_zeroed['Q_aligned'] = \ (emulated_full_cell_with_degradation['Q_aligned'].copy() - zeroing_value) pe_out_zeroed = pe_out.copy() pe_out_zeroed['Q_aligned'] = pe_out['Q_aligned'] - zeroing_value ne_out_zeroed = ne_out.copy() ne_out_zeroed['Q_aligned'] = ne_out['Q_aligned'] - zeroing_value # Interpolate full cell profiles across same Q range min_q = np.min( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()]) max_q = np.max( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()]) emulated_interper = interp1d(emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], bounds_error=False) real_interper = interp1d( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()], real_cell_candidate_charge_profile_aligned['Voltage_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()], bounds_error=False) q_vec = np.linspace(min_q, max_q, 1001) emulated_aligned = pd.DataFrame() emulated_aligned['Q_aligned'] = q_vec emulated_aligned['Voltage_aligned'] = emulated_interper(q_vec) real_aligned = pd.DataFrame() real_aligned['Q_aligned'] = q_vec real_aligned['Voltage_aligned'] = real_interper(q_vec) return pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned def get_dqdv_over_v_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the dqdv representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity dq_dv_over_v_real (Dataframe): dqdv across voltage for the real cell data dq_dv_over_v_emulated (Dataframe): dqdv across voltage for the emulated cell data df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_ah(x, *params) # Calculate dqdv from full cell profiles dq_dv_real = pd.DataFrame(np.gradient(df_real_interped['Q_aligned'], df_real_interped['Voltage_aligned']), columns=['dQdV']).ewm(0.1).mean() dq_dv_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Q_aligned'], emulated_full_cell_interped['Voltage_aligned']), columns=['dQdV']).ewm(0.1).mean() # Include original data dq_dv_real['Q_aligned'] = df_real_interped['Q_aligned'] dq_dv_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dq_dv_emulated['Q_aligned'] = emulated_full_cell_interped['Q_aligned'] dq_dv_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate dQdV and Q over V, aligns real and emulated over V voltage_vec = np.linspace(self.FC_LOWER_VOLTAGE, self.FC_UPPER_VOLTAGE, 1001) v_dq_dv_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['dQdV'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_q_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['Q_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, np.max(df_real_interped['Q_aligned']))) v_dq_dv_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['dQdV'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_q_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['Q_aligned'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, np.max(df_real_interped['Q_aligned']))) dq_dv_over_v_real = pd.DataFrame(v_dq_dv_interper_real(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_real['Q_aligned'] = v_q_interper_real(voltage_vec) dq_dv_over_v_real['Voltage_aligned'] = voltage_vec dq_dv_over_v_emulated = pd.DataFrame(v_dq_dv_interper_emulated(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_emulated['Q_aligned'] = v_q_interper_emulated(voltage_vec) dq_dv_over_v_emulated['Voltage_aligned'] = voltage_vec return (pe_out_zeroed, ne_out_zeroed, dq_dv_over_v_real, dq_dv_over_v_emulated, df_real_interped, emulated_full_cell_interped) def get_dvdq_over_q_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the dVdQ representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity dv_dq_real (Dataframe): dVdQ across capacity for the real cell data dv_dq_emulated (Dataframe): dVdQ across capacity for the emulated cell data df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_ah(x, *params) # Calculate dQdV from full cell profiles dv_dq_real = pd.DataFrame(np.gradient(df_real_interped['Voltage_aligned'], df_real_interped['Q_aligned']), columns=['dVdQ']).ewm(0.1).mean() dv_dq_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Voltage_aligned'], emulated_full_cell_interped['Q_aligned']), columns=['dVdQ']).ewm(0.1).mean() # Include original data dv_dq_real['Q_aligned'] = df_real_interped['Q_aligned'] dv_dq_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dv_dq_emulated['Q_aligned'] = emulated_full_cell_interped['Q_aligned'] dv_dq_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Q interpolation not needed, as interpolated over Q by default return (pe_out_zeroed, ne_out_zeroed, dv_dq_real, dv_dq_emulated, df_real_interped, emulated_full_cell_interped) def get_v_over_q_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the V-Q representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ (pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned) = \ self.halfcell_degradation_matching_ah(x, *params) min_soc_full_cell = np.min(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].Q_aligned) max_soc_full_cell = np.max(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].Q_aligned) soc_vec_full_cell = np.linspace(min_soc_full_cell, max_soc_full_cell, 1001) emulated_full_cell_interper = interp1d( emulated_aligned.Q_aligned.loc[~real_aligned.Voltage_aligned.isna()], emulated_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) real_full_cell_interper = interp1d(real_aligned.Q_aligned.loc[~real_aligned.Voltage_aligned.isna()], real_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['Q_aligned'] = soc_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(soc_vec_full_cell) # Interpolate the true full-cell profile df_real_interped = emulated_full_cell_interped.copy() df_real_interped['Q_aligned'] = soc_vec_full_cell df_real_interped['Voltage_aligned'] = real_full_cell_interper(soc_vec_full_cell) return pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped def get_v_over_q_from_degradation_matching_ah_no_real(self, x, *params): """ This function imposes degradation scaling ,then outputs the V-Q representation of the emulated cell data, in the absence of real cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ (pe_out_zeroed, ne_out_zeroed, emulated_aligned) = \ self.halfcell_degradation_matching_ah_no_real(x, *params) min_q_full_cell = np.min(emulated_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].Q_aligned) max_q_full_cell = np.max(emulated_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].Q_aligned) q_vec_full_cell = np.linspace(min_q_full_cell, max_q_full_cell, 1001) emulated_full_cell_interper = interp1d( emulated_aligned.Q_aligned.loc[~emulated_aligned.Voltage_aligned.isna()], emulated_aligned.Voltage_aligned.loc[~emulated_aligned.Voltage_aligned.isna()], bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['Q_aligned'] = q_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(q_vec_full_cell) return pe_out_zeroed, ne_out_zeroed, emulated_full_cell_interped def halfcell_degradation_matching_ah_no_real(self, x, *params): """ Calls underlying functions to impose degradation through electrode capacity scale and alignment through LLI. Modifies emulated full cell data to be within full cell voltage range and calibrates (zeros) capacity at the lowest permissible voltage. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity emulated_aligned (Dataframe): full cell data corresponding to the imposed degradation """ lli = x[0] q_pe = x[1] q_ne = x[2] x_ne_2 = x[3] pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg = params pe_out, ne_out = self._impose_electrode_scale(pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, lli, q_pe, q_ne, x_ne_2) # outputs degraded ne and pe (on a AH basis, with electrode alignment (NaNs for voltage, when no overlap)) emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['Q_aligned'] = pe_out['Q_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] # Replace emulated full cell values outside of voltage range with NaN emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] < self.FC_LOWER_VOLTAGE] = np.nan emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] > self.FC_UPPER_VOLTAGE] = np.nan # Center the emulated full cell and half cell curves onto the same Q at which the real (degraded) # capacity measurement started (self.FC_LOWER_VOLTAGE) emulated_full_cell_with_degradation_zeroed = pd.DataFrame() emulated_full_cell_with_degradation_zeroed['Voltage_aligned'] = emulated_full_cell_with_degradation[ 'Voltage_aligned'] zeroing_value = emulated_full_cell_with_degradation['Q_aligned'].loc[ np.nanargmin(emulated_full_cell_with_degradation['Voltage_aligned']) ] emulated_full_cell_with_degradation_zeroed['Q_aligned'] = \ (emulated_full_cell_with_degradation['Q_aligned'] - zeroing_value) pe_out_zeroed = pe_out.copy() pe_out_zeroed['Q_aligned'] = pe_out['Q_aligned'] - zeroing_value ne_out_zeroed = ne_out.copy() ne_out_zeroed['Q_aligned'] = ne_out['Q_aligned'] - zeroing_value # Interpolate full profiles across same Q range min_q = np.min( emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()]) max_q = np.max( emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()]) emulated_interper = interp1d(emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], bounds_error=False) q_vec = np.linspace(min_q, max_q, 1001) emulated_aligned = pd.DataFrame() emulated_aligned['Q_aligned'] = q_vec emulated_aligned['Voltage_aligned'] = emulated_interper(q_vec) return pe_out_zeroed, ne_out_zeroed, emulated_aligned def _get_error_from_degradation_matching_ah(self, x, *params): """ Wrapper function which selects the correct error sub routine and returns its error value. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error value (float) - output of the specified error sub function """ error_type = self.error_type if error_type == 'V-Q': return self._get_error_from_degradation_matching_v_q(x, *params)[0] elif error_type == 'dVdQ': return self._get_error_from_degradation_matching_dvdq(x, *params)[0] elif error_type == 'dQdV': return self._get_error_from_degradation_matching_dqdv(x, *params)[0] else: return self._get_error_from_degradation_matching_v_q(x, *params)[0] def _get_error_from_degradation_matching_v_q(self, x, *params): """ Error function returning the mean standardized Euclidean distance of each point of the real curve to the closest value on the emulated curve in the V-Q representation. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error (float): output of the specified error sub function error_vector (array): vector containingEuclidean distance of each point of the real curve to the closest value on the emulated curve in the V-Q representation xa (Dataframe): real full cell data used for error analysis xb (Dataframe): emulated full cell data used for error analysis """ try: (pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned ) = self.get_v_over_q_from_degradation_matching_ah(x, *params) xa = real_aligned.dropna() xb = emulated_aligned.dropna() error_matrix = distance.cdist(xa, xb, 'seuclidean') error_vector = error_matrix.min(axis=1) error = error_vector.mean() except ValueError: error = 100 return error, None, None, None return error, error_vector, xa, xb # Pairwise euclidean from premade dQdV def _get_error_from_degradation_matching_dqdv(self, x, *params): """ Error function returning the mean standardized Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dQdV representation. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error (float): output of the specified error sub function error_vector (array): vector containing Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dQdV representation xa (Dataframe): real full cell data used for error analysis xb (Dataframe): emulated full cell data used for error analysis """ try: # Call dQdV generating function (pe_out_zeroed, ne_out_zeroed, dqdv_over_v_real, dqdv_over_v_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dqdv_over_v_from_degradation_matching_ah(x, *params) xa = dqdv_over_v_real[['Voltage_aligned', 'dQdV']].dropna() xb = dqdv_over_v_emulated[['Voltage_aligned', 'dQdV']].dropna() error_matrix = distance.cdist(xa, xb, 'seuclidean') error_vector = error_matrix.min(axis=1) error = error_vector.mean() except ValueError: error = 100 return error, None, None, None return error, error_vector, xa, xb def _get_error_from_degradation_matching_dvdq(self, x, *params): """ Error function returning the mean standardized Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dVdQ representation. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error (float): output of the specified error sub function error_vector (array): vector containing Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dVdQ representation xa (Dataframe): real full cell data used for error analysis xb (Dataframe): emulated full cell data used for error analysis """ try: (pe_out_zeroed, ne_out_zeroed, dvdq_over_q_real, dvdq_over_q_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dvdq_over_q_from_degradation_matching_ah(x, *params) xa = dvdq_over_q_real[['Q_aligned', 'dVdQ']].dropna() xb = dvdq_over_q_emulated[['Q_aligned', 'dVdQ']].dropna() # down-select to values with capacity more than 0.5 Ahr to eliminate high-slope region of dVdQ xa = xa.loc[(xa.Q_aligned > 0.5)] xb = xb.loc[(xb.Q_aligned > 0.5)] error_matrix = distance.cdist(xa, xb, 'seuclidean') error_vector = error_matrix.min(axis=1) error = error_vector.mean() except ValueError: error = 100 return error, None, None, None return error, error_vector, xa, xb def _get_error_from_synthetic_fitting_ah(self, x, *params): """ Wrapper function which selects the correct error sub routine and returns its error value. This function is specific to fitting synthetic data rather than real cycling data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error value (float) - output of the specified error sub function """ error_type = self.error_type try: if error_type == 'V-Q': return self._get_error_from_degradation_matching_v_q(x, *params)[0] elif error_type == 'dVdQ': return self._get_error_from_degradation_matching_dvdq(x, *params)[0] elif error_type == 'dQdV': return self._get_error_from_degradation_matching_dvdq(x, *params)[0] else: return self._get_error_from_degradation_matching_v_q(x, *params)[0] except RuntimeError: print("Can't return error") return 100 def intracell_values_wrapper_ah(self, cycle_index, cell_struct, degradation_bounds=None ): """ Wrapper function to solve capacity sizing and offset of reference electrodes to real full cell cycle data. Inputs: cycle_index (int): the index of the cycle of interest of the structured real cycling data cell_struct (MaccorDatapath): BEEP structured cycling data Outputs: loss_dict (dict): dictionary with key of cycle index and entry of a list of error, lli_opt, q_pe_opt, q_ne_opt, x_ne_2, Q_li profiles_dict (dict): dictionary with key of cycle index and entry of a dictionary containing various key/entry pairs of resulting from the fitting """ if degradation_bounds is None: degradation_bounds = ((0, 3), # LLI (2.5, 6.5), # q_pe (2.5, 6.5), # q_ne (1, 1), # (-1,1) x_ne_2 ) real_cell_candidate_charge_profile_aligned = self.process_beep_cycle_data_for_candidate_halfcell_analysis_ah( cell_struct, cycle_index) degradation_optimization_result = differential_evolution(self._get_error_from_degradation_matching_ah, degradation_bounds, args=(self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned ), strategy='best1bin', maxiter=100000, popsize=15, tol=0.001, mutation=0.5, recombination=0.7, seed=1, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='deferred', workers=-1, constraints=() ) # print(degradation_optimization_result.x) #BVV (pe_out_zeroed, ne_out_zeroed, dqdv_over_v_real, dqdv_over_v_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dqdv_over_v_from_degradation_matching_ah( degradation_optimization_result.x, self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned) # electrode_info_df = get_electrode_info_ah(pe_out_zeroed, ne_out_zeroed) # error = degradation_optimization_result.fun lli_opt = degradation_optimization_result.x[0] q_pe_opt = degradation_optimization_result.x[1] q_ne_opt = degradation_optimization_result.x[2] x_ne_2 = degradation_optimization_result.x[3] loss_dict = {cycle_index: np.append([error, lli_opt, q_pe_opt, q_ne_opt, x_ne_2], electrode_info_df.iloc[-1].values) } profiles_per_cycle_dict = { 'NE_zeroed': ne_out_zeroed, 'PE_zeroed': pe_out_zeroed, 'dQdV_over_v_real': dqdv_over_v_real, 'dQdV_over_v_emulated': dqdv_over_v_emulated, 'df_real_interped': df_real_interped, 'emulated_full_cell_interped': emulated_full_cell_interped, 'real_cell_candidate_charge_profile_aligned': real_cell_candidate_charge_profile_aligned } profiles_dict = {cycle_index: profiles_per_cycle_dict} return loss_dict, profiles_dict def solve_emulated_degradation(self, forward_simulated_profile, degradation_bounds=None ): """ """ if degradation_bounds is None: degradation_bounds = ((0, 3), # LLI (2.5, 6.5), # q_pe (2.5, 6.5), # q_ne (1, 1), # (-1,1) x_ne_2 ) degradation_optimization_result = differential_evolution(self._get_error_from_synthetic_fitting_ah, degradation_bounds, args=(self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg, forward_simulated_profile, ), strategy='best1bin', maxiter=100000, popsize=15, tol=0.001, mutation=0.5, recombination=0.7, seed=1, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='deferred', workers=-1, constraints=() ) return degradation_optimization_result # TODO revisit this function def blend_electrodes(electrode_1, electrode_2_pos, electrode_2_neg, x_2): """ Blends two electrode materials from their SOC-V profiles to form a blended electrode. Inputs: electrode_1: Primary material in electrode, typically Gr. DataFrame supplied with SOC evenly spaced and voltage. electrode_2: Secondary material in electrode, typically Si. DataFrame supplied with SOC evenly spaced and voltage as an additional column. x_2: Fraction of electrode_2 material's capacity (not mass). Supplied as scalar value. Outputs: df_blended_soc_mod (Dataframe): blended electrode with SOC_aligned and Voltage_aligned columns """ if electrode_2_pos.empty: df_blended = electrode_1 return df_blended if electrode_2_neg.empty: electrode_2 = electrode_2_pos x_2 = np.abs(x_2) elif x_2 > 0: electrode_2 = electrode_2_pos else: electrode_2 = electrode_2_neg x_2 = np.abs(x_2) electrode_1_interper = interp1d(electrode_1['Voltage_aligned'], electrode_1['SOC_aligned'], bounds_error=False, fill_value='extrapolate') electrode_2_interper = interp1d(electrode_2['Voltage_aligned'], electrode_2['SOC_aligned'], bounds_error=False, fill_value='extrapolate') voltage_vec = np.linspace(np.min((np.min(electrode_1['Voltage_aligned']), np.min(electrode_2['Voltage_aligned']))), np.max((np.max(electrode_1['Voltage_aligned']), np.max(electrode_2['Voltage_aligned']))), 1001) electrode_1_voltage_aligned = pd.DataFrame(electrode_1_interper(voltage_vec), columns=['SOC']) electrode_2_voltage_aligned = pd.DataFrame(electrode_2_interper(voltage_vec), columns=['SOC']) electrode_1_voltage_aligned['Voltage'] = voltage_vec electrode_2_voltage_aligned['Voltage'] = voltage_vec df_blend_voltage_aligned = pd.DataFrame( (1 - x_2) * electrode_1_voltage_aligned['SOC'] + x_2 * electrode_2_voltage_aligned['SOC'], columns=['SOC']) df_blend_voltage_aligned['Voltage'] = electrode_1_voltage_aligned.merge(electrode_2_voltage_aligned, on='Voltage')['Voltage'] df_blended_interper = interp1d(df_blend_voltage_aligned['SOC'], df_blend_voltage_aligned['Voltage'], bounds_error=False) soc_vec = np.linspace(0, 100, 1001) df_blended = pd.DataFrame(df_blended_interper(soc_vec), columns=['Voltage_aligned']) df_blended['SOC_aligned'] = soc_vec # Modify NE to fully span 100% SOC within its valid voltage window df_blended_soc_mod_interper = interp1d(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()], df_blended['Voltage_aligned'].loc[~df_blended['Voltage_aligned'].isna()], bounds_error=False) soc_vec = np.linspace(np.min(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()]), np.max(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()]), 1001) df_blended_soc_mod = pd.DataFrame(df_blended_soc_mod_interper(soc_vec), columns=['Voltage_aligned']) df_blended_soc_mod['SOC_aligned'] = soc_vec / np.max(soc_vec) * 100 return df_blended_soc_mod def get_electrode_info_ah(pe_out_zeroed, ne_out_zeroed): """ Calculates a variety of half-cell metrics at various positions in the full-cell profile. Inputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity Outputs: electrode_info_df (Dataframe): dataframe containing a variety of half-cell metrics at various positions in the emulated full-cell profile. pe_voltage_FC4p2V: voltage of the positive electrode (catahode) corresponding to the full cell at 4.2V ... pe_voltage_FC2p7V: voltage of the positive electrode (catahode) corresponding to the full cell at 2.7V pe_soc_FC4p2V: state of charge of the positive electrode corresponding to the full cell at 4.2V ... pe_soc_FC2p7V: state of charge of the positive electrode corresponding to the full cell at 2.7V ne_voltage_FC4p2V: voltage of the negative electrode (anode) corresponding to the full cell at 4.2V ... ne_voltage_FC2p7V: voltage of the negative electrode (anode) corresponding to the full cell at 2.7V ne_soc_FC4p2V: state of charge of the anode electrode corresponding to the full cell at 4.2V ... ne_soc_FC2p7V: state of charge of the anode electrode corresponding to the full cell at 2.7V Q_fc: capacity of the full cecll within the full cell voltage limits q_pe: capacity of the cathode q_ne: capacity of the anode [Ahr] Q_li """ pe_minus_ne_zeroed = pd.DataFrame(pe_out_zeroed['Voltage_aligned'] - ne_out_zeroed['Voltage_aligned'], columns=['Voltage_aligned']) pe_minus_ne_zeroed['Q_aligned'] = pe_out_zeroed['Q_aligned'] electrode_info_df = pd.DataFrame(index=[0]) electrode_info_df['pe_voltage_FC4p2V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.2))].Voltage_aligned electrode_info_df['pe_voltage_FC4p1V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.1))].Voltage_aligned electrode_info_df['pe_voltage_FC4p0V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.0))].Voltage_aligned electrode_info_df['pe_voltage_FC3p9V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.9))].Voltage_aligned electrode_info_df['pe_voltage_FC3p8V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.8))].Voltage_aligned electrode_info_df['pe_voltage_FC3p7V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.7))].Voltage_aligned electrode_info_df['pe_voltage_FC3p6V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.6))].Voltage_aligned electrode_info_df['pe_voltage_FC3p5V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.5))].Voltage_aligned electrode_info_df['pe_voltage_FC3p4V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.4))].Voltage_aligned electrode_info_df['pe_voltage_FC3p3V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.3))].Voltage_aligned electrode_info_df['pe_voltage_FC3p2V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.2))].Voltage_aligned electrode_info_df['pe_voltage_FC3p1V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.1))].Voltage_aligned electrode_info_df['pe_voltage_FC3p0V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.0))].Voltage_aligned electrode_info_df['pe_voltage_FC2p9V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 2.9))].Voltage_aligned electrode_info_df['pe_voltage_FC2p8V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 2.8))].Voltage_aligned electrode_info_df['pe_voltage_FC2p7V'] = pe_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 2.7))].Voltage_aligned electrode_info_df['pe_soc_FC4p2V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.2))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 4.2V electrode_info_df['pe_soc_FC4p1V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.1))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 4.1V electrode_info_df['pe_soc_FC4p0V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.0))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 4.0V electrode_info_df['pe_soc_FC3p9V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.9))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.9V electrode_info_df['pe_soc_FC3p8V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.8))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.8V electrode_info_df['pe_soc_FC3p7V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.7))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.7V electrode_info_df['pe_soc_FC3p6V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.6))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.6V electrode_info_df['pe_soc_FC3p5V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.5))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.5V electrode_info_df['pe_soc_FC3p4V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.4))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.4V electrode_info_df['pe_soc_FC3p3V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.3))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.3V electrode_info_df['pe_soc_FC3p2V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.2))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.2V electrode_info_df['pe_soc_FC3p1V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.1))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.1V electrode_info_df['pe_soc_FC3p0V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.0))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 3.0V electrode_info_df['pe_soc_FC2p9V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 2.9))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 2.9V electrode_info_df['pe_soc_FC2p8V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 2.8))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 2.8V electrode_info_df['pe_soc_FC2p7V'] = ( (pe_out_zeroed.loc[np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 2.7))].Q_aligned - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) / ( np.max(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()]) - np.min(pe_out_zeroed['Q_aligned'].loc[~pe_out_zeroed['Voltage_aligned'].isna()])) ) # 2.7V electrode_info_df['ne_voltage_FC4p2V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.2))].Voltage_aligned electrode_info_df['ne_voltage_FC4p1V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.1))].Voltage_aligned electrode_info_df['ne_voltage_FC4p0V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 4.0))].Voltage_aligned electrode_info_df['ne_voltage_FC3p9V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.9))].Voltage_aligned electrode_info_df['ne_voltage_FC3p8V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.8))].Voltage_aligned electrode_info_df['ne_voltage_FC3p7V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.7))].Voltage_aligned electrode_info_df['ne_voltage_FC3p6V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.6))].Voltage_aligned electrode_info_df['ne_voltage_FC3p5V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.5))].Voltage_aligned electrode_info_df['ne_voltage_FC3p4V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.4))].Voltage_aligned electrode_info_df['ne_voltage_FC3p3V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.3))].Voltage_aligned electrode_info_df['ne_voltage_FC3p2V'] = ne_out_zeroed.loc[ np.argmin(np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.2))].Voltage_aligned electrode_info_df['ne_voltage_FC3p1V'] = ne_out_zeroed.loc[ np.argmin(
np.abs(pe_minus_ne_zeroed.Voltage_aligned - 3.1)
numpy.abs
import os, sys import inspect currentdir = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) import numpy as np import pytest import librosa import soundpy as sp test_dir = 'test_audio/' test_audiofile = '{}audio2channels.wav'.format(test_dir) test_traffic = '{}traffic.wav'.format(test_dir) test_python = '{}python.wav'.format(test_dir) test_horn = '{}car_horn.wav'.format(test_dir) samples_48000, sr_48000 = librosa.load(test_audiofile, sr=48000) samples_44100, sr_44100 = librosa.load(test_audiofile, sr=44100) samples_22050, sr_22050 = librosa.load(test_audiofile, sr=22050) samples_16000, sr_16000 = librosa.load(test_audiofile, sr=16000) samples_8000, sr_8000 = librosa.load(test_audiofile, sr=8000) def test_shape_samps_channels_mono(): input_data = np.array([1,2,3,4,5]) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data, output_data) def test_shape_samps_channels_stereo_correct(): input_data = np.array([1,2,3,4,5,6,7,8,9,10]).reshape(5,2) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data, output_data) def test_shape_samps_channels_stereo_incorrect(): input_data = np.array([1,2,3,4,5,6,7,8,9,10]).reshape(2,5) output_data = sp.dsp.shape_samps_channels(input_data) assert
np.array_equal(input_data.T, output_data)
numpy.array_equal
############################################################################## # This file is a part of PFFDTD. # # PFFTD is released under the MIT License. # For details see the LICENSE file. # # Copyright 2021 <NAME>. # # File name: vox_grid_base.py # # Description: Class for a voxel-grid for ray-tri / tri-box intersections # Uses multiprocessing # ############################################################################## import numpy as np from numpy import array as npa from common.timerdict import TimerDict from common.tri_box_intersection import tri_box_intersection_vec from common.room_geo import RoomGeo from common.tris_precompute import tris_precompute import multiprocessing as mp from common.myfuncs import clear_dat_folder,clear_console from common.myfuncs import get_default_nprocs from tqdm import tqdm import common.check_version as cv import time assert cv.ATLEASTVERSION38 #for shared memory (but project needs 3.9 anyway) from multiprocessing import shared_memory #base class for a voxel class VoxBase: def __init__(self,bmin,bmax): self.bmin = bmin self.bmax = bmax self.tri_idxs = [] #triangle indices as list self.tris_pre = None self.tris_mat = None #base class for a voxel grid class VoxGridBase: def __init__(self,room_geo): tris = room_geo.tris pts = room_geo.pts tris_pre = room_geo.tris_pre mats = room_geo.mat_ind assert tris.ndim == 2 assert pts.ndim == 2 assert tris.shape[0] > tris.shape[1] assert pts.shape[0] > pts.shape[1] Npts = pts.shape[0] Ntris = tris.shape[0] self.tris = tris self.tris_pre = tris_pre self.mats = mats self.pts = pts self.Npts = Npts self.Ntris = Ntris self.voxels = [] self.nonempty_idx = [] self.timer = TimerDict() self.nprocs = get_default_nprocs() #fill the grid (primarily using tri-box intersections) def fill(self,Nprocs=None): if Nprocs is None: Nprocs = self.nprocs self.print(f'using {Nprocs} processes') tris = self.tris tris_pre = self.tris_pre Ntris = self.Ntris pts = self.pts Nvox = self.Nvox self.timer.tic('voxgrid fill') tri_pts = tris_pre['v'] tri_bmin = tris_pre['bmin'] tri_bmax = tris_pre['bmax'] if Nvox==1: vox = self.voxels[0] vox.tri_idxs = np.arange(Ntris) vox.tris_pre = self.tris_pre vox.tris_mat = self.mats self.nonempty_idx = [0] else: if Nprocs>1: clear_dat_folder('mmap_dat') #create shared memory Ntris_vox_shm = shared_memory.SharedMemory(create=True,size=Nvox*np.dtype(np.int64).itemsize) Ntris_vox = np.frombuffer(Ntris_vox_shm.buf, dtype=np.int64) #alternative syntax #Ntris_vox = np.ndarray((Nvox,), dtype=np.int64, buffer=Ntris_vox_shm.buf) #use as buffer view to np array N_tribox_tests_shm = shared_memory.SharedMemory(create=True,size=Nvox*np.dtype(np.int64).itemsize) N_tribox_tests =
np.frombuffer(N_tribox_tests_shm.buf, dtype=np.int64)
numpy.frombuffer
### # regular_turbo.py # This file contains the defintions for processing the cars # on the regular and the turbo roundabout. ### import numpy as np from utils import (DEBUG, random_row, NORTH, EAST, SOUTH, WEST) from numpy.random import RandomState import sys def exception_handling(self, car): """Handles special cases for turning cars, depending on the type of roundabout. Arguments: car {Car} -- The car that should drive. Returns: int -- The state of the position of the car, depending on the exception. """ if self.model.name == "Regular": for i in range(0, 2): if np.array_equal(car.cur_pos, self.exceptions[i]): if car.orientation == SOUTH: return 7 else: return 5 for i in range(2, 4): if np.array_equal(car.cur_pos, self.exceptions[i]): if car.orientation == EAST: return 7 else: return 5 for i in range(4, 6): if np.array_equal(car.cur_pos, self.exceptions[i]): if car.orientation == NORTH: return 7 else: return 5 for i in range(6, 8): if np.array_equal(car.cur_pos, self.exceptions[i]): if car.orientation == WEST: return 7 else: return 5 elif self.model.name == "Turbo": for i in range(2): if np.array_equal(car.cur_pos, self.exceptions[i]): if car.orientation == EAST: return 7 else: return 5 if np.array_equal(car.cur_pos, self.exceptions[2]): if car.orientation == SOUTH: return 7 else: return 5 for i in range(3, 5): if np.array_equal(car.cur_pos, self.exceptions[i]): if car.orientation == WEST: return 7 else: return 5 if np.array_equal(car.cur_pos, self.exceptions[5]): if car.orientation == NORTH: return 7 else: return 5 def process_cars_reg(self): """Process the cars. The next step of a car depends on the state of the current cell it is on. """ self.cars_on_round = [] self.cars_not_round = [] # Define which cars are on the roundabout. if not self.collision(): for car in self.cars: if list(car.cur_pos) in self.model.area: self.cars_on_round.append(car) else: self.cars_not_round.append(car) # If there is a collision, print out the position of it and exit. else: cur_pos = [car.cur_pos for car in self.cars] pos, count = np.unique(cur_pos, axis=0, return_counts=True) print(pos[count > 1]) sys.exit('Cars overlap') # Let the cars on the roundabout drive first. for car in self.cars_on_round: drive_roundabout(self, car) for car in self.cars_not_round: drive_outside(self, car) def drive_roundabout(self, car, wait_ctr=2): """Let a car drive on the roundabout. Arguments: car {Car} -- The car that should drive. """ row, col = car.cur_pos state = self.model.grid[row][col] # Depending on the asshole factor, stand still for 3 time steps. stand = RandomState().binomial(1, p=car.asshole_factor) if stand or (car.asshole_ctr > 0 and car.asshole_ctr < 4): car.asshole_ctr += 1 else: # State 8 defines the exceptions if state == 8: state = exception_handling(self, car) if state == 3: if self.priority(car, car.look_left()): car.turn_left() car.drive() elif state == 5: if self.priority(car, car.orientation): car.drive() elif state == 6: car.turn_ctr += 1 prob = car.turn_ctr * (1/4) if prob > 1: prob = 1 # Checks if car stands still for more than 3 turns if car.prev_pos[1] == wait_ctr: prob = 1-prob car.prev_pos[1] = 0 self.waiting_cars += 1 turn = RandomState().binomial(1, p=prob) if turn == 1: if self.priority(car, car.look_right()): car.turn_right() car.drive() else: car.turn_ctr = 3 else: if self.priority(car, car.orientation): car.drive() elif state == 7: if self.priority(car, car.look_right()): car.turn_right() car.drive() elif state == 9: if car.switch_ctr == 0 and self.priority(car, car.look_right()): if
RandomState()
numpy.random.RandomState
import pytest import sys sys.path.insert(0,"..") import autogenes as ag import numpy as np import pandas as pd import anndata from sklearn.svm import NuSVR from sklearn import linear_model from scipy.optimize import nnls def test_unpack_bulk(): unpack_bulk = ag.main._Interface__unpack_bulk arr =
np.ones((3,))
numpy.ones
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import print_function, division, absolute_import import logging import numpy import sys from collections import OrderedDict from six.moves import zip import numpy as np import Ska.Numpy from Chandra.Time import DateTime import Ska.tdb from . import units MODULE = sys.modules[__name__] logger = logging.getLogger('engarchive') class NoValidDataError(Exception): pass class DataShapeError(Exception): pass def quality_index(dat, colname): """Return the index for `colname` in `dat`""" colname = colname.split(':')[0] return list(dat.dtype.names).index(colname) def numpy_converter(dat): return Ska.Numpy.structured_array(dat, colnames=dat.dtype.names) def convert(dat, content): # Zero-length file results in `dat is None` if dat is None: raise NoValidDataError try: converter = getattr(MODULE, content.lower()) except AttributeError: converter = numpy_converter return converter(dat) def generic_converter(prefix=None, add_quality=False, aliases=None): """Convert an input FITS recarray assuming that it has a TIME column. If ``add_prefix`` is set then add ``content_`` as a prefix to the data column names. If ``add_quality`` is set then add a QUALITY column with all values False. """ def _convert(dat): colnames = dat.dtype.names colnames_out = [x.upper() for x in colnames] if aliases: colnames_out = [aliases.get(x, x).upper() for x in colnames_out] if prefix: # Note to self: never change an enclosed reference, i.e. don't do # prefix = prefix.upper() + '_' # You will lose an hour again figuring this out if so. PREFIX = prefix.upper() + '_' colnames_out = [(x if x in ('TIME', 'QUALITY') else PREFIX + x) for x in colnames_out] arrays = [dat.field(x) for x in colnames] if add_quality: descrs = [(x,) + y[1:] for x, y in zip(colnames_out, dat.dtype.descr)] quals = numpy.zeros((len(dat), len(colnames) + 1), dtype=numpy.bool) descrs += [('QUALITY', numpy.bool, (len(colnames) + 1,))] arrays += [quals] else: descrs = [(name, array.dtype.str, array.shape[1:]) for name, array in zip(colnames_out, arrays)] return numpy.rec.fromarrays(arrays, dtype=descrs) return _convert def get_bit_array(dat, in_name, out_name, bit_index): bit_indexes = [int(bi) for bi in bit_index.split(',')] bit_index = max(bit_indexes) if dat[in_name].shape[1] < bit_index: raise DataShapeError('column {} has shape {} but need at least {}' .format(in_name, dat[in_name].shape[1], bit_index + 1)) if len(bit_indexes) > 1: mult = 1 out_array = np.zeros(len(dat), dtype=np.uint32) # no more than 32 bit indexes for bit_index in reversed(bit_indexes): # Note: require casting mult and 0 to uint32 because recent versions of numpy # disallow in-place adding of int64 to uint32. out_array += np.where(dat[in_name][:, bit_index], np.uint32(mult), np.uint32(0)) mult *= 2 else: try: tscs = Ska.tdb.msids[out_name].Tsc scs = {tsc['LOW_RAW_COUNT']: tsc['STATE_CODE'] for tsc in tscs} except (KeyError, AttributeError): scs = ['OFF', 'ON '] # CXC telemetry stores state code vals with trailing spaces so all match # in length. Annoying, but reproduce this here for consistency so # fetch Msid.raw_vals does the right thing. max_len = max(len(sc) for sc in scs.values()) fmtstr = '{:' + str(max_len) + 's}' scs = [fmtstr.format(val) for key, val in scs.items()] out_array = np.where(dat[in_name][:, bit_index], scs[1], scs[0]) return out_array def generic_converter2(msid_cxc_map, default_dtypes=None): """Convert an input FITS recarray assuming that it has a TIME column. Use the ``msid_cxc_map`` to define the list of output eng archive MSIDs (keys) and the corresponding colnames in the CXC archive FITS file (values). The CXC values can contain an optional bit specifier in the form <colname>:<N> where N is the bit selector referenced from 0 as the leftmost bit. :param msid_cxc_map: dict of out_name => in_name mapping """ def _convert(dat): # Make quality bool array with entries for TIME, QUALITY, then all other cols out_names = ['TIME', 'QUALITY'] + list(msid_cxc_map.keys()) out_quality = np.zeros(shape=(len(dat), len(out_names)), dtype=np.bool) out_arrays = {'TIME': dat['TIME'], 'QUALITY': out_quality} for out_name, in_name in msid_cxc_map.items(): if ':' in in_name: in_name, bit_index = in_name.split(':') out_array = get_bit_array(dat, in_name, out_name, bit_index) quality = dat['QUALITY'][:, quality_index(dat, in_name)] else: if in_name in dat.dtype.names: out_array = dat[in_name] quality = dat['QUALITY'][:, quality_index(dat, in_name)] else: # Handle column that is intermittently available in `dat` by using the # supplied default dtype. Quality is True (missing) everywhere. out_array = np.zeros(shape=len(dat), dtype=default_dtypes[out_name]) quality = True assert out_array.ndim == 1 out_arrays[out_name] = out_array out_quality[:, out_names.index(out_name)] = quality out = Ska.Numpy.structured_array(out_arrays, out_names) return out return _convert orbitephem0 = generic_converter('orbitephem0', add_quality=True) lunarephem0 = generic_converter('lunarephem0', add_quality=True) solarephem0 = generic_converter('solarephem0', add_quality=True) orbitephem1 = generic_converter('orbitephem1', add_quality=True) lunarephem1 = generic_converter('lunarephem1', add_quality=True) solarephem1 = generic_converter('solarephem1', add_quality=True) angleephem = generic_converter(add_quality=True) def parse_alias_str(alias_str, invert=False): aliases = OrderedDict() for line in alias_str.strip().splitlines(): cxcmsid, msid = line.split()[:2] if invert: aliases[msid] = cxcmsid else: aliases[cxcmsid] = msid return aliases ALIASES = {'simdiag': """ RAMEXEC 3SDSWELF SEA CSC Exectuting from RAM DSTACKPTR 3SDPSTKP SEA Data Stack Ptr TSCEDGE 3SDTSEDG TSC Tab Edge Detection Flags FAEDGE 3SDFAEDG FA Tab Edge Detection Flags MJFTIME 3SDMAJFP Major Frame Period Time Measured by SEA MRMDEST 3SDRMOVD Most Recent Motor Move Destination TSCTABADC 3SDTSTSV TSC Tab Position Sensor A/D converter FATABADC 3SDFATSV FA Tab Position Sensor A/D Converter AGRNDADC 3SDAGV Analog Ground A/D Converter Reading P15VADC 3SDP15V +15V Power Supply A/D Converter Reading P5VADC 3SDP5V +5V Power Supply A/D Converter Reading N15VADC 3SDM15V -15V Power Supply A/D Converter Reading FLEXATEMPADC 3SDFLXAT Flexture A Thermistor A/D Converter FLEXBTEMPADC 3SDFLXBT Flexture B Thermistor A/D Converter FLEXCTEMPADC 3SDFLXCT Flexture C Thermistor A/D Converter TSCMTRTEMPADC 3SDTSMT TSC Motor Thermistor A/D Converter FAMTRTEMPADC 3SDFAMT FA Motor Thermistor A/D Converter PSUTEMPADC 3SDPST SEA Power Supply Thermistor A/D Converter BOXTEMPADC 3SDBOXT SEA Box Thermistor A/D Converter RAMFAILADDR 3SDRMFAD RAM Most Recent detected Fail Address TSCTABWID 3SDTSTBW TSC Most Recent detected Tab Width FATABWID 3SDFATBW FA Most Recent detected Tab Width SYNCLOSS 3SDSYRS Process Reset Due Synchronization Loss WARMRESET 3SDWMRS Processor Warm Reset TSCHISTO 3SDTSP TSC Most Recent PWM Histogram FAHISTO 3SDFAP FA Most Recent PWM Histogram INVCMDCODE 3SDINCOD SEA Invalid CommandCode """, 'sim_mrg': """ TLMUPDATE 3SEATMUP "Telemtry Update Flag" SEAIDENT 3SEAID "SEA Identification Flag" SEARESET 3SEARSET "SEA Reset Flag" PROMFAIL 3SEAROMF "SEA PROM Checksum Flag" INVCMDGROUP 3SEAINCM "SEA Invalid Command Group Flag" TSCMOVING 3TSCMOVE "TSC In Motion Flag" FAMOVING 3FAMOVE "FA In Motion Flag" FAPOS 3FAPOS "FA Position" TSCPOS 3TSCPOS "TSC Postion" PWMLEVEL 3MRMMXMV "Max Power Motor Volt recent move" LDRTMECH 3LDRTMEK "Last Detected Reference Mechanism Tab" LDRTNUM 3LDRTNO "Last Detected Reference Tab Number" LDRTRELPOS 3LDRTPOS "Last Detected Reference Relative Postion" FLEXATEMP 3FAFLAAT "Flexture A Temperature" FLEXBTEMP 3FAFLBAT "Flexture B Temperature" FLEXCTEMP 3FAFLCAT "Flexture C Temperature" TSCMTRTEMP 3TRMTRAT "TSC Motor Temperature" FAMTRTEMP 3FAMTRAT "FA Motor Temperature" PSUTEMP 3FAPSAT "SEA Power Supply Temperature" BOXTEMP 3FASEAAT "SEA Box Temperature" STALLCNT 3SMOTSTL "SEA Motor Stall Counter" TAB2AUTOPOS 3STAB2EN "SEA Tab 2 Auto Position Update Status" MTRDRVRLY 3SMOTPEN "SEA Motor Driver Power Relay status" MTRSELRLY 3SMOTSEL "SEA Motor Selection Relay Status" HTRPWRRLY 3SHTREN "SEA Heater Power Relay Status" RAMFAIL 3SEARAMF "SEA RAM Failure Detected Flag" MTROVRCCNT 3SMOTOC "Motor Drive Overcurrent Counter" PENDCMDCNT 3SPENDC "SEA Pending Command Count" FLEXATSET 3SFLXAST "Flexture A Temperature Setpoint" FLEXBTSET 3SFLXBST "Flexture B Temperature Setpoint" FLEXCTSET 3SFLXCST "Flexture C Temperature Setpoint" """, 'hrc0ss': """ TLEVART 2TLEV1RT VLEVART 2VLEV1RT SHEVART 2SHEV1RT TLEVART 2TLEV2RT VLEVART 2VLEV2RT SHEVART 2SHEV2RT """, 'hrc0hk': """ SCIDPREN:0,1,2,3,8,9,10 HRC_SS_HK_BAD P24CAST:7 224PCAST P15CAST:7 215PCAST N15CAST:7 215NCAST SPTPAST 2SPTPAST SPBPAST 2SPBPAST IMTPAST 2IMTPAST IMBPAST 2IMBPAST MTRSELCT:3 2NYMTAST MTRSELCT:4 2PYMTAST MTRSELCT:5 2CLMTAST MTRSELCT:6 2DRMTAST MTRSELCT:7 2ALMTAST MTRSTATR:0 2MSMDARS MTRSTATR:1 2MDIRAST MTRSTATR:2 2MSNBAMD MTRSTATR:3 2MSNAAMD MTRSTATR:4 2MSLBAMD MTRSTATR:5 2MSLAAMD MTRSTATR:6 2MSPRAMD MTRSTATR:7 2MSDRAMD MTRCMNDR:0 2MCMDARS MTRCMNDR:2 2MCNBAMD MTRCMNDR:3 2MCNAAMD MTRCMNDR:4 2MCLBAMD MTRCMNDR:5 2MCLAAMD MTRCMNDR:6 2MCPRAMD MTRCMNDR:7 2MDRVAST SCTHAST 2SCTHAST MTRITMP:1 2SMOIAST MTRITMP:2 2SMOTAST MTRITMP:5 2DROTAST MTRITMP:6 2DROIAST MLSWENBL:3 2SFLGAST MLSWENBL:4 2OSLSAST MLSWENBL:5 2OPLSAST MLSWENBL:6 2CSLSAST MLSWENBL:7 2CPLSAST MLSWSTAT:2 2OSLSADT MLSWSTAT:3 2OSLSAAC MLSWSTAT:4 2OPLSAAC MLSWSTAT:5 2CSLSADT MLSWSTAT:6 2CSLSAAC MLSWSTAT:7 2CPLSAAC FCPUAST 2FCPUAST FCPVAST 2FCPVAST CBHUAST 2CBHUAST CBLUAST 2CBLUAST CBHVAST 2CBHVAST CBLVAST 2CBLVAST WDTHAST 2WDTHAST SCIDPREN:4 2CLMDAST SCIDPREN:5 2FIFOAVR SCIDPREN:6 2OBNLASL SCIDPREN:7 2SPMDASL SCIDPREN:11 2EBLKAVR SCIDPREN:12 2CBLKAVR SCIDPREN:13 2ULDIAVR SCIDPREN:14 2WDTHAVR SCIDPREN:15 2SHLDAVR HVPSSTAT:0 2SPONST HVPSSTAT:1 2SPCLST HVPSSTAT:2 2S1ONST HVPSSTAT:3 2IMONST HVPSSTAT:4 2IMCLST HVPSSTAT:5 2S2ONST S1HVST 2S1HVST S2HVST 2S2HVST C05PALV 2C05PALV C15PALV 2C15PALV C15NALV 2C15NALV C24PALV 2C24PALV IMHVLV 2IMHVLV IMHBLV 2IMHBLV SPHVLV 2SPHVLV SPHBLV 2SPHBLV S1HVLV 2S1HVLV S2HVLV 2S2HVLV PRBSCR 2PRBSCR PRBSVL 2PRBSVL ULDIALV 2ULDIALV LLDIALV 2LLDIALV FEPRATM 2FEPRATM CALPALV 2CALPALV GRDVALV 2GRDVALV RSRFALV 2RSRFALV SPINATM 2SPINATM IMINATM 2IMINATM LVPLATM 2LVPLATM SPHVATM 2SPHVATM IMHVATM 2IMHVATM SMTRATM 2SMTRATM FE00ATM 2FE00ATM CE00ATM 2CE00ATM CE01ATM 2CE01ATM """, } CXC_TO_MSID = {key: parse_alias_str(val) for key, val in ALIASES.items()} MSID_TO_CXC = {key: parse_alias_str(val, invert=True) for key, val in ALIASES.items()} def sim_mrg(dat): """ Custom converter for SIM_MRG. There is a bug in CXCDS L0 SIM decom wherein the 3LDRTMEK MSID is incorrectly assigned (TSC and FA are reversed). The calibration of 3LDRTPOS from steps to mm is then also wrong because it uses the FA conversion instead of TSC. This function fixes 3LDRTMEK, then backs out the (incorrect) 3LDRTPOS steps to mm conversion and re-does it correctly using the TSC conversion. Note that 3LDRTMEK is (by virtue of the way mission operations run) always "TSC". """ # Start with the generic converter out = generic_converter(aliases=CXC_TO_MSID['sim_mrg'])(dat) # Now do the fixes. FOT mech has stated that 3LDRTMEK is always 'FA' # in practice. bad = out['3LDRTMEK'] == b'FA ' if np.count_nonzero(bad): out['3LDRTMEK'][bad] = b'TSC' pos_tsc_steps = units.converters['mm', 'FASTEP'](out['3LDRTPOS'][bad]) out['3LDRTPOS'][bad] = units.converters['TSCSTEP', 'mm'](pos_tsc_steps) return out simdiag = generic_converter(aliases=CXC_TO_MSID['simdiag']) hrc0ss = generic_converter2(MSID_TO_CXC['hrc0ss']) def hrc0hk(dat): # Read the data and allow for missing columns in input L0 HK file. default_dtypes = {'2CE00ATM': 'f4', '2CE01ATM': 'f4'} out = generic_converter2(MSID_TO_CXC['hrc0hk'], default_dtypes)(dat) # Set all HRC HK data columns to bad quality where HRC_SS_HK_BAD is not zero # First three columns are TIME, QUALITY, and HRC_SS_HK_BAD -- do not filter these. bad = out['HRC_SS_HK_BAD'] > 0 if np.any(bad): out['QUALITY'][bad, 3:] = True logger.info('Setting {} readouts of all HRC HK telem to bad quality (bad SCIDPREN)' .format(np.count_nonzero(bad))) # Detect the secondary-science byte-shift anomaly by finding out-of-range 2SMTRATM values. # For those bad frames: # - Set bit 10 (from LSB) of HRC_SS_HK_BAD # - Set all analog MSIDs (2C05PALV and later in the list) to bad quality bad = (out['2SMTRATM'] < -20) | (out['2SMTRATM'] > 50) if np.any(bad): out['HRC_SS_HK_BAD'][bad] |= 2 ** 10 # 1024 analogs_index0 = list(out.dtype.names).index('2C05PALV') out['QUALITY'][bad, analogs_index0:] = True logger.info('Setting {} readouts of analog HRC HK telem to bad quality (bad 2SMTRATM)' .format(np.count_nonzero(bad))) return out def obc4eng(dat): """ At 2014:342:XX:XX:XX, patch PR-361 was applied which transitioned 41 OBA thermistors to read out in wide-mode. After this time the data in the listed OOBTHRxx MSIDs became invalid while the OOBTHRxx_WIDE MSIDs became valid. This converter simply copies the *_WIDE values to the original MSIDs after the time of patch activation. The *_WIDE MSIDs are not available in the eng archive (by the _WIDE names). """ # MSIDs OOBTHR<msid_num> that went to _WIDE after the patch, which was done in parts A # and B. msid_nums = {'a': '08 09 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29'.split(), 'b': '30 31 33 34 35 36 37 38 39 40 41 44 45 46 49 50 51 52 53 54'.split(), 'c': '02 03 04 05 06 07'.split() } # Convert using the baseline converter out = numpy_converter(dat) # The patch times below correspond to roughly the middle of the major frame where # patches A and B were applied, respectively. patch_times = {'a': DateTime('2014:342:16:29:30').secs, 'b': DateTime('2014:342:16:32:45').secs, 'c': DateTime('2017:312:16:11:16').secs} for patch in ('a', 'b', 'c'): # Set a mask defining times after the activation of wide-range telemetry in PR-361 mask = out['TIME'] > patch_times[patch] if
np.any(mask)
numpy.any
import numpy as np import openmdao.api as om import wisdem.commonse.utilities as util import wisdem.pyframe3dd.pyframe3dd as pyframe3dd import wisdem.commonse.utilization_dnvgl as util_dnvgl import wisdem.commonse.utilization_constraints as util_con from wisdem.commonse import NFREQ, gravity from wisdem.floatingse.member import NULL, MEMMAX, Member NNODES_MAX = 1000 NELEM_MAX = 1000 RIGID = 1e30 EPS = 1e-6 class PlatformFrame(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] for k in range(n_member): self.add_input(f"member{k}:nodes_xyz", NULL * np.ones((MEMMAX, 3)), units="m") self.add_input(f"member{k}:nodes_r", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_D", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_t", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_rho", NULL * np.ones(MEMMAX), units="kg/m**3") self.add_input(f"member{k}:section_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:section_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:section_sigma_y", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:idx_cb", 0) self.add_input(f"member{k}:buoyancy_force", 0.0, units="N") self.add_input(f"member{k}:displacement", 0.0, units="m**3") self.add_input(f"member{k}:center_of_buoyancy", np.zeros(3), units="m") self.add_input(f"member{k}:center_of_mass", np.zeros(3), units="m") self.add_input(f"member{k}:ballast_mass", 0.0, units="kg") self.add_input(f"member{k}:total_mass", 0.0, units="kg") self.add_input(f"member{k}:total_cost", 0.0, units="USD") self.add_input(f"member{k}:I_total", np.zeros(6), units="kg*m**2") self.add_input(f"member{k}:Awater", 0.0, units="m**2") self.add_input(f"member{k}:Iwater", 0.0, units="m**4") self.add_input(f"member{k}:added_mass", np.zeros(6), units="kg") self.add_input(f"member{k}:waterline_centroid", np.zeros(2), units="m") self.add_input(f"member{k}:variable_ballast_capacity", val=0.0, units="m**3") self.add_input(f"member{k}:Px", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:Py", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:Pz", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:qdyn", np.zeros(MEMMAX), units="Pa") self.add_input("transition_node", np.zeros(3), units="m") self.add_input("transition_piece_mass", 0.0, units="kg") self.add_input("transition_piece_cost", 0.0, units="USD") self.add_output("transition_piece_I", np.zeros(6), units="kg*m**2") self.add_output("platform_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_output("platform_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_output("platform_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_output("platform_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("platform_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("platform_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_output("platform_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_output("platform_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_output("platform_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_discrete_output("platform_elem_memid", [-1] * NELEM_MAX) self.add_output("platform_displacement", 0.0, units="m**3") self.add_output("platform_center_of_buoyancy", np.zeros(3), units="m") self.add_output("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_output("platform_centroid", np.zeros(3), units="m") self.add_output("platform_ballast_mass", 0.0, units="kg") self.add_output("platform_hull_mass", 0.0, units="kg") self.add_output("platform_mass", 0.0, units="kg") self.add_output("platform_I_hull", np.zeros(6), units="kg*m**2") self.add_output("platform_cost", 0.0, units="USD") self.add_output("platform_Awater", 0.0, units="m**2") self.add_output("platform_Iwater", 0.0, units="m**4") self.add_output("platform_added_mass", np.zeros(6), units="kg") self.add_output("platform_variable_capacity", np.zeros(n_member), units="m**3") self.node_mem2glob = {} def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Seems like we have to run this each time as numbering can change during optimization self.node_mem2glob = {} self.set_connectivity(inputs, outputs) self.set_node_props(inputs, outputs) self.set_element_props(inputs, outputs, discrete_inputs, discrete_outputs) def set_connectivity(self, inputs, outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Initialize running lists across all members nodes_temp = np.empty((0, 3)) elem_n1 = np.array([], dtype=np.int_) elem_n2 = np.array([], dtype=np.int_) # Look over members and grab all nodes and internal connections for k in range(n_member): inode_xyz = inputs[f"member{k}:nodes_xyz"] inodes = np.where(inode_xyz[:, 0] == NULL)[0][0] inode_xyz = inode_xyz[:inodes, :] inode_range = np.arange(inodes - 1) n = nodes_temp.shape[0] for ii in range(inodes): self.node_mem2glob[(k, ii)] = n + ii elem_n1 = np.append(elem_n1, n + inode_range) elem_n2 = np.append(elem_n2, n + inode_range + 1) nodes_temp = np.append(nodes_temp, inode_xyz, axis=0) # Reveal connectivity by using mapping to unique node positions nodes, idx, inv = np.unique(nodes_temp.round(8), axis=0, return_index=True, return_inverse=True) nnode = nodes.shape[0] outputs["platform_nodes"] = NULL * np.ones((NNODES_MAX, 3)) outputs["platform_nodes"][:nnode, :] = nodes outputs["platform_centroid"] = nodes.mean(axis=0) # Use mapping to set references to node joints nelem = elem_n1.size outputs["platform_elem_n1"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["platform_elem_n2"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["platform_elem_n1"][:nelem] = inv[elem_n1] outputs["platform_elem_n2"][:nelem] = inv[elem_n2] # Update global 2 member mappings for k in self.node_mem2glob.keys(): self.node_mem2glob[k] = inv[self.node_mem2glob[k]] def set_node_props(self, inputs, outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Number of valid nodes node_platform = outputs["platform_nodes"] nnode = np.where(node_platform[:, 0] == NULL)[0][0] node_platform = node_platform[:nnode, :] # Find greatest radius of all members at node intersections Rnode = np.zeros(nnode) for k in range(n_member): irnode = inputs[f"member{k}:nodes_r"] n = np.where(irnode == NULL)[0][0] for ii in range(n): iglob = self.node_mem2glob[(k, ii)] Rnode[iglob] = np.array([Rnode[iglob], irnode[ii]]).max() # Find forces on nodes Fnode = np.zeros((nnode, 3)) for k in range(n_member): icb = int(inputs[f"member{k}:idx_cb"]) iglob = self.node_mem2glob[(k, icb)] Fnode[iglob, 2] += inputs[f"member{k}:buoyancy_force"] # Get transition piece inertial properties itrans_platform = util.closest_node(node_platform, inputs["transition_node"]) m_trans = float(inputs["transition_piece_mass"]) r_trans = Rnode[itrans_platform] I_trans = m_trans * r_trans ** 2.0 * np.r_[0.5, 0.5, 1.0, np.zeros(3)] outputs["transition_piece_I"] = I_trans # Store outputs outputs["platform_Rnode"] = NULL * np.ones(NNODES_MAX) outputs["platform_Rnode"][:nnode] = Rnode outputs["platform_Fnode"] = NULL * np.ones((NNODES_MAX, 3)) outputs["platform_Fnode"][:nnode, :] = Fnode def set_element_props(self, inputs, outputs, discrete_inputs, discrete_outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Initialize running lists across all members elem_D = np.array([]) elem_t = np.array([]) elem_A = np.array([]) elem_Asx = np.array([]) elem_Asy = np.array([]) elem_Ixx = np.array([]) elem_Iyy = np.array([]) elem_Izz = np.array([]) elem_rho = np.array([]) elem_E = np.array([]) elem_G = np.array([]) elem_sigy = np.array([]) elem_Px1 = np.array([]) elem_Px2 = np.array([]) elem_Py1 = np.array([]) elem_Py2 = np.array([]) elem_Pz1 = np.array([]) elem_Pz2 = np.array([]) elem_qdyn = np.array([]) elem_memid = np.array([], dtype=np.int_) mass = 0.0 m_ball = 0.0 cost = 0.0 volume = 0.0 Awater = 0.0 Iwater = 0.0 m_added = np.zeros(6) cg_plat = np.zeros(3) cb_plat = np.zeros(3) centroid = outputs["platform_centroid"][:2] variable_capacity = np.zeros(n_member) # Append all member data for k in range(n_member): n = np.where(inputs[f"member{k}:section_A"] == NULL)[0][0] elem_D = np.append(elem_D, inputs[f"member{k}:section_D"][:n]) elem_t = np.append(elem_t, inputs[f"member{k}:section_t"][:n]) elem_A = np.append(elem_A, inputs[f"member{k}:section_A"][:n]) elem_Asx = np.append(elem_Asx, inputs[f"member{k}:section_Asx"][:n]) elem_Asy = np.append(elem_Asy, inputs[f"member{k}:section_Asy"][:n]) elem_Ixx = np.append(elem_Ixx, inputs[f"member{k}:section_Ixx"][:n]) elem_Iyy = np.append(elem_Iyy, inputs[f"member{k}:section_Iyy"][:n]) elem_Izz = np.append(elem_Izz, inputs[f"member{k}:section_Izz"][:n]) elem_rho = np.append(elem_rho, inputs[f"member{k}:section_rho"][:n]) elem_E = np.append(elem_E, inputs[f"member{k}:section_E"][:n]) elem_G = np.append(elem_G, inputs[f"member{k}:section_G"][:n]) elem_sigy = np.append(elem_sigy, inputs[f"member{k}:section_sigma_y"][:n]) elem_qdyn = np.append(elem_qdyn, inputs[f"member{k}:qdyn"][:n]) elem_memid = np.append(elem_memid, k * np.ones(n, dtype=np.int_)) # The loads should come in with length n+1 elem_Px1 = np.append(elem_Px1, inputs[f"member{k}:Px"][:n]) elem_Px2 = np.append(elem_Px2, inputs[f"member{k}:Px"][1 : (n + 1)]) elem_Py1 = np.append(elem_Py1, inputs[f"member{k}:Py"][:n]) elem_Py2 = np.append(elem_Py2, inputs[f"member{k}:Py"][1 : (n + 1)]) elem_Pz1 = np.append(elem_Pz1, inputs[f"member{k}:Pz"][:n]) elem_Pz2 = np.append(elem_Pz2, inputs[f"member{k}:Pz"][1 : (n + 1)]) # Mass, volume, cost tallies imass = inputs[f"member{k}:total_mass"] ivol = inputs[f"member{k}:displacement"] mass += imass volume += ivol cost += inputs[f"member{k}:total_cost"] m_ball += inputs[f"member{k}:ballast_mass"] Awater_k = inputs[f"member{k}:Awater"] Awater += Awater_k Rwater2 = np.sum((inputs[f"member{k}:waterline_centroid"] - centroid) ** 2) Iwater += inputs[f"member{k}:Iwater"] + Awater_k * Rwater2 m_added += inputs[f"member{k}:added_mass"] variable_capacity[k] = inputs[f"member{k}:variable_ballast_capacity"] # Center of mass / buoyancy tallies cg_plat += imass * inputs[f"member{k}:center_of_mass"] cb_plat += ivol * inputs[f"member{k}:center_of_buoyancy"] # Add transition piece m_trans = inputs["transition_piece_mass"] cg_trans = inputs["transition_node"] I_trans = util.assembleI(outputs["transition_piece_I"]) mass += m_trans cost += inputs["transition_piece_cost"] cg_plat += m_trans * cg_trans # Finalize outputs cg_plat /= mass cb_plat /= volume # With CG known, loop back through to compute platform I unit_z = np.array([0.0, 0.0, 1.0]) I_hull = np.zeros((3, 3)) for k in range(n_member): xyz_k = inputs[f"member{k}:nodes_xyz"] inodes = np.where(xyz_k[:, 0] == NULL)[0][0] xyz_k = xyz_k[:inodes, :] imass = inputs[f"member{k}:total_mass"] cg_k = inputs[f"member{k}:center_of_mass"] R = cg_plat - cg_k # Figure out angle to make member parallel to global c.s. vec_k = xyz_k[-1, :] - xyz_k[0, :] T = util.rotate_align_vectors(vec_k, unit_z) # Rotate member inertia tensor I_k = util.assembleI(inputs[f"member{k}:I_total"]) I_k_rot = T @ I_k @ T.T # Now do parallel axis theorem I_hull += np.array(I_k_rot) + imass * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Add in transition piece R = cg_plat - cg_trans I_hull += I_trans + m_trans * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Store outputs nelem = elem_A.size outputs["platform_elem_D"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_t"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_A"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Asx"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Asy"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Ixx"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Iyy"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Izz"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_rho"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_E"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_G"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_sigma_y"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Px1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Px2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Py1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Py2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Pz1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Pz2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_qdyn"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_D"][:nelem] = elem_D outputs["platform_elem_t"][:nelem] = elem_t outputs["platform_elem_A"][:nelem] = elem_A outputs["platform_elem_Asx"][:nelem] = elem_Asx outputs["platform_elem_Asy"][:nelem] = elem_Asy outputs["platform_elem_Ixx"][:nelem] = elem_Ixx outputs["platform_elem_Iyy"][:nelem] = elem_Iyy outputs["platform_elem_Izz"][:nelem] = elem_Izz outputs["platform_elem_rho"][:nelem] = elem_rho outputs["platform_elem_E"][:nelem] = elem_E outputs["platform_elem_G"][:nelem] = elem_G outputs["platform_elem_sigma_y"][:nelem] = elem_sigy outputs["platform_elem_Px1"][:nelem] = elem_Px1 outputs["platform_elem_Px2"][:nelem] = elem_Px2 outputs["platform_elem_Py1"][:nelem] = elem_Py1 outputs["platform_elem_Py2"][:nelem] = elem_Py2 outputs["platform_elem_Pz1"][:nelem] = elem_Pz1 outputs["platform_elem_Pz2"][:nelem] = elem_Pz2 outputs["platform_elem_qdyn"][:nelem] = elem_qdyn discrete_outputs["platform_elem_memid"] = elem_memid outputs["platform_mass"] = mass outputs["platform_ballast_mass"] = m_ball outputs["platform_hull_mass"] = mass - m_ball outputs["platform_cost"] = cost outputs["platform_displacement"] = volume outputs["platform_hull_center_of_mass"] = cg_plat outputs["platform_center_of_buoyancy"] = cb_plat outputs["platform_I_hull"] = util.unassembleI(I_hull) outputs["platform_Awater"] = Awater outputs["platform_Iwater"] = Iwater outputs["platform_added_mass"] = m_added outputs["platform_variable_capacity"] = variable_capacity class TowerPreMember(om.ExplicitComponent): def setup(self): self.add_input("transition_node", np.zeros(3), units="m") self.add_input("tower_height", 0.0, units="m") self.add_output("tower_top_node", np.zeros(3), units="m") def compute(self, inputs, outputs): transition_node = inputs["transition_node"] tower_top_node = 0 # previous code altered the original definition of transition_node tower_top_node += transition_node tower_top_node[2] += float(inputs["tower_height"]) outputs["tower_top_node"] = tower_top_node class PlatformTowerFrame(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] n_attach = opt["mooring"]["n_attach"] self.add_input("platform_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_input("platform_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_input("platform_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_input("platform_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("platform_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("platform_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_input("platform_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_input("platform_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_input("platform_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_input("platform_mass", 0.0, units="kg") self.add_input("platform_I_hull", np.zeros(6), units="kg*m**2") self.add_input("platform_displacement", 0.0, units="m**3") self.add_input("tower_nodes", NULL * np.ones((MEMMAX, 3)), units="m") self.add_output("tower_Fnode", copy_shape="tower_nodes", units="N") self.add_input("tower_Rnode", NULL * np.ones(MEMMAX), units="m") self.add_output("tower_elem_n1", copy_shape="tower_elem_A") self.add_output("tower_elem_n2", copy_shape="tower_elem_A") self.add_output("tower_elem_L", copy_shape="tower_elem_A", units="m") self.add_input("tower_elem_D", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_t", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_rho", NULL * np.ones(MEMMAX), units="kg/m**3") self.add_input("tower_elem_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_sigma_y", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_Px", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Px1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Px2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Py", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Py1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Py2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Pz", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Pz1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Pz2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_qdyn", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_center_of_mass", np.zeros(3), units="m") self.add_input("tower_mass", 0.0, units="kg") self.add_input("rho_water", 0.0, units="kg/m**3") self.add_input("tower_top_node", np.zeros(3), units="m") self.add_input("transition_node", np.zeros(3), units="m") self.add_input("rna_mass", 0.0, units="kg") self.add_input("rna_cg", np.zeros(3), units="m") self.add_input("mooring_neutral_load", np.zeros((n_attach, 3)), units="N") self.add_input("platform_variable_capacity", np.zeros(n_member), units="m**3") for k in range(n_member): self.add_input(f"member{k}:nodes_xyz", NULL * np.ones((MEMMAX, 3)), units="m") self.add_input(f"member{k}:variable_ballast_Vpts", val=np.zeros(10), units="m**3") self.add_input(f"member{k}:variable_ballast_spts", val=np.zeros(10)) self.add_output("system_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_output("system_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_output("system_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_output("system_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("system_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("system_elem_L", NULL * np.ones(NELEM_MAX), units="m") self.add_output("system_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_output("system_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_output("system_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("system_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("system_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("system_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("system_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("system_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("system_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_output("system_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_structural_center_of_mass", np.zeros(3), units="m") self.add_output("system_structural_mass", 0.0, units="kg") self.add_output("system_center_of_mass", np.zeros(3), units="m") self.add_output("system_mass", 0.0, units="kg") self.add_output("variable_ballast_mass", 0.0, units="kg") self.add_output("variable_center_of_mass", val=np.zeros(3), units="m") self.add_output("constr_variable_margin", val=0.0) self.add_output("member_variable_volume", val=np.zeros(n_member), units="m**3") self.add_output("member_variable_height", val=np.zeros(n_member)) self.add_output("platform_total_center_of_mass", np.zeros(3), units="m") self.add_output("platform_I_total", np.zeros(6), units="kg*m**2") def compute(self, inputs, outputs): # Combine nodes node_platform = inputs["platform_nodes"] node_tower = inputs["tower_nodes"] nnode_platform = np.where(node_platform[:, 0] == NULL)[0][0] nnode_tower = np.where(node_tower[:, 0] == NULL)[0][0] nnode_system = nnode_platform + np.maximum(1, nnode_tower) - 1 nelem_platform = np.where(inputs["platform_elem_A"] == NULL)[0][0] nelem_tower = np.where(inputs["tower_elem_A"] == NULL)[0][0] nelem_system = nelem_platform + nelem_tower # Combine elements indices and have tower base node point to platform transition node outputs["tower_Fnode"] = np.zeros(node_tower.shape) outputs["tower_elem_n1"] = NULL * np.ones(MEMMAX, dtype=np.int_) outputs["tower_elem_n2"] = NULL * np.ones(MEMMAX, dtype=np.int_) outputs["tower_elem_L"] = NULL * np.ones(MEMMAX) tower_n1 = np.arange(nelem_tower, dtype=np.int_) tower_n2 = np.arange(nelem_tower, dtype=np.int_) + 1 outputs["tower_elem_n1"][:nelem_tower] = idx1 = tower_n1.copy() outputs["tower_elem_n2"][:nelem_tower] = idx2 = tower_n2.copy() itrans_platform = util.closest_node(node_platform[:nnode_platform, :], inputs["transition_node"]) tower_n1 += nnode_platform - 1 tower_n2 += nnode_platform - 1 tower_n1[0] = itrans_platform outputs["tower_elem_L"][:nelem_tower] = np.sqrt( np.sum((node_tower[idx2, :] - node_tower[idx1, :]) ** 2, axis=1) ) # Store all outputs outputs["system_nodes"] = NULL * np.ones((NNODES_MAX, 3)) outputs["system_Fnode"] = NULL * np.ones((NNODES_MAX, 3)) outputs["system_Rnode"] = NULL * np.ones(NNODES_MAX) outputs["system_elem_n1"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["system_elem_n2"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["system_elem_L"] = NULL * np.ones(NELEM_MAX) outputs["system_nodes"][:nnode_system, :] = sysnode = np.vstack( (node_platform[:nnode_platform, :], node_tower[1:nnode_tower, :]) ) outputs["system_Fnode"][:nnode_system, :] = np.vstack( (inputs["platform_Fnode"][:nnode_platform, :], outputs["tower_Fnode"][1:nnode_tower, :]) ) outputs["system_Rnode"][:nnode_system] = np.r_[ inputs["platform_Rnode"][:nnode_platform], inputs["tower_Rnode"][1:nnode_tower] ] outputs["system_elem_n1"][:nelem_system] = idx1 = np.r_[ inputs["platform_elem_n1"][:nelem_platform], tower_n1, ] outputs["system_elem_n2"][:nelem_system] = idx2 = np.r_[ inputs["platform_elem_n2"][:nelem_platform], tower_n2, ] outputs["system_elem_L"][:nelem_system] = np.sqrt( np.sum((sysnode[np.int_(idx2), :] - sysnode[np.int_(idx1), :]) ** 2, axis=1) ) for var in [ "elem_D", "elem_t", "elem_A", "elem_Asx", "elem_Asy", "elem_Ixx", "elem_Iyy", "elem_Izz", "elem_rho", "elem_E", "elem_G", "elem_sigma_y", "elem_qdyn", ]: outputs["system_" + var] = NULL * np.ones(NELEM_MAX) outputs["system_" + var][:nelem_system] = np.r_[ inputs["platform_" + var][:nelem_platform], inputs["tower_" + var][:nelem_tower] ] # Have to divide up tower member loads to beginning and end points for var in ["elem_Px1", "elem_Py1", "elem_Pz1", "elem_Px2", "elem_Py2", "elem_Pz2"]: outputs["system_" + var] = NULL * np.ones(NELEM_MAX) outputs["tower_" + var] = NULL * np.ones(MEMMAX) tower_P = inputs["tower_" + var[:-1]] outputs["tower_" + var][:nelem_tower] = ( tower_P[:nelem_tower] if var[-1] == "1" else tower_P[1 : (nelem_tower + 1)] ) outputs["system_" + var][:nelem_system] = np.r_[ inputs["platform_" + var][:nelem_platform], outputs["tower_" + var][:nelem_tower] ] # Mass summaries m_platform = inputs["platform_mass"] cg_platform = inputs["platform_hull_center_of_mass"] I_platform = util.assembleI(inputs["platform_I_hull"]) m_tower = inputs["tower_mass"] m_rna = inputs["rna_mass"] m_sys = m_platform + m_tower + m_rna outputs["system_structural_mass"] = m_sys outputs["system_structural_center_of_mass"] = ( m_platform * cg_platform + m_tower * inputs["tower_center_of_mass"] + m_rna * (inputs["rna_cg"] + inputs["tower_top_node"]) ) / m_sys # Balance out variable ballast mooringFz = inputs["mooring_neutral_load"][:, 2].sum() capacity = inputs["platform_variable_capacity"] capacity_sum = capacity.sum() + EPS # Avoid divide by zeros rho_water = inputs["rho_water"] m_variable = inputs["platform_displacement"] * rho_water - m_sys + mooringFz / gravity V_variable = m_variable / rho_water outputs["variable_ballast_mass"] = m_variable outputs["constr_variable_margin"] = V_variable / capacity_sum V_variable_member = V_variable * capacity / capacity_sum outputs["member_variable_volume"] = V_variable_member m_variable_member = V_variable_member * rho_water # Now find the CG of the variable mass assigned to each member n_member = capacity.size outputs["member_variable_height"] = np.zeros(n_member) cg_variable_member = np.zeros((n_member, 3)) for k in range(n_member): if V_variable_member[k] == 0.0: continue xyz = inputs[f"member{k}:nodes_xyz"] inodes = np.where(xyz[:, 0] == NULL)[0][0] xyz = xyz[:inodes, :] dxyz = xyz[-1, :] - xyz[0, :] spts = inputs[f"member{k}:variable_ballast_spts"] Vpts = inputs[f"member{k}:variable_ballast_Vpts"] s_cg = np.interp(0.5 * V_variable_member[k], Vpts, spts) cg_variable_member[k, :] = xyz[0, :] + s_cg * dxyz s_end = np.interp(V_variable_member[k], Vpts, spts) outputs["member_variable_height"][k] = s_end - spts[0] cg_variable = np.dot(V_variable_member, cg_variable_member) / V_variable outputs["variable_center_of_mass"] = cg_variable # Now find total system mass outputs["system_mass"] = m_sys + m_variable outputs["system_center_of_mass"] = ( m_sys * outputs["system_structural_center_of_mass"] + m_variable * cg_variable ) / (m_sys + m_variable) # Compute the total cg for the platform and the variable ballast together using a weighted sum approach cg_plat_total = (m_variable * cg_variable + m_platform * cg_platform) / (m_variable + m_platform) outputs["platform_total_center_of_mass"] = cg_plat_total # Now loop again to compute variable I unit_z = np.array([0.0, 0.0, 1.0]) I_variable = np.zeros((3, 3)) for k in range(n_member): if V_variable_member[k] == 0.0: continue xyz = inputs[f"member{k}:nodes_xyz"] inodes = np.where(xyz[:, 0] == NULL)[0][0] xyz = xyz[:inodes, :] vec_k = xyz[-1, :] - xyz[0, :] ds = outputs["member_variable_height"][k] # Compute I aligned with member h_k = ds * np.sqrt(np.sum(vec_k ** 2)) if h_k == 0.0: continue r_k = np.sqrt(V_variable_member[k] / h_k / np.pi) I_k = ( m_variable_member[k] * np.r_[(3 * r_k ** 2 + h_k ** 2) / 12.0 * np.ones(2), 0.5 * r_k ** 2, np.ones(3)] ) # Rotate I to global c.s. T = util.rotate_align_vectors(vec_k, unit_z) I_k_rot = T @ util.assembleI(I_k) @ T.T # Now do parallel axis theorem R = cg_variable - cg_variable_member[k, :] I_variable += np.array(I_k_rot) + m_variable_member[k] * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Find platform I with variable contribution I_total = np.zeros((3, 3)) # Compute the full moment of inertia for the platform and variable ballast R = cg_plat_total - cg_platform I_total += I_platform + m_platform * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) R = cg_plat_total - cg_variable I_total += I_variable + m_variable * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) outputs["platform_I_total"] = util.unassembleI(I_total) class FrameAnalysis(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_attach = opt["mooring"]["n_attach"] self.add_input("platform_mass", 0.0, units="kg") self.add_input("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_input("platform_added_mass", np.zeros(6), units="kg") self.add_input("platform_center_of_buoyancy", np.zeros(3), units="m") self.add_input("platform_displacement", 0.0, units="m**3") self.add_input("tower_nodes", NULL * np.ones((MEMMAX, 3)), units="m") self.add_input("tower_Fnode", NULL * np.ones((MEMMAX, 3)), units="N") self.add_input("tower_Rnode", NULL *
np.ones(MEMMAX)
numpy.ones
""" Testing code. Updated BSM February 2017 """ import sys import os import numpy as np import pytest from pytest import approx from numpy.testing import assert_allclose from scipy.spatial.distance import cdist from pykrige import kriging_tools as kt from pykrige import core from pykrige import variogram_models from pykrige.ok import OrdinaryKriging from pykrige.uk import UniversalKriging from pykrige.ok3d import OrdinaryKriging3D from pykrige.uk3d import UniversalKriging3D BASE_DIR = os.path.abspath(os.path.dirname(__file__)) allclose_pars = {"rtol": 1e-05, "atol": 1e-08} @pytest.fixture def validation_ref(): data = np.genfromtxt(os.path.join(BASE_DIR, "test_data/test_data.txt")) ok_test_answer, ok_test_gridx, ok_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test1_answer.asc"), footer=2 ) uk_test_answer, uk_test_gridx, uk_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test2_answer.asc"), footer=2 ) return ( data, (ok_test_answer, ok_test_gridx, ok_test_gridy), (uk_test_answer, uk_test_gridx, uk_test_gridy), ) @pytest.fixture def sample_data_2d(): data = np.array( [ [0.3, 1.2, 0.47], [1.9, 0.6, 0.56], [1.1, 3.2, 0.74], [3.3, 4.4, 1.47], [4.7, 3.8, 1.74], ] ) gridx = np.arange(0.0, 6.0, 1.0) gridx_2 = np.arange(0.0, 5.5, 0.5) gridy = np.arange(0.0, 5.5, 0.5) xi, yi = np.meshgrid(gridx, gridy) mask = np.array(xi == yi) return data, (gridx, gridy, gridx_2), mask @pytest.fixture def sample_data_3d(): data = np.array( [ [0.1, 0.1, 0.3, 0.9], [0.2, 0.1, 0.4, 0.8], [0.1, 0.3, 0.1, 0.9], [0.5, 0.4, 0.4, 0.5], [0.3, 0.3, 0.2, 0.7], ] ) gridx = np.arange(0.0, 0.6, 0.05) gridy = np.arange(0.0, 0.6, 0.01) gridz = np.arange(0.0, 0.6, 0.1) zi, yi, xi = np.meshgrid(gridz, gridy, gridx, indexing="ij") mask = np.array((xi == yi) & (yi == zi)) return data, (gridx, gridy, gridz), mask def test_core_adjust_for_anisotropy(): X = np.array([[1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]]).T X_adj = core._adjust_for_anisotropy(X, [0.0, 0.0], [2.0], [90.0]) assert_allclose(X_adj[:, 0], np.array([0.0, 1.0, 0.0, -1.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([-2.0, 0.0, 2.0, 0.0]), **allclose_pars) def test_core_adjust_for_anisotropy_3d(): # this is a bad examples, as the X matrix is symmetric # and insensitive to transpositions X = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]).T X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [90.0, 0.0, 0.0] ) assert_allclose(X_adj[:, 0], np.array([1.0, 0.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([0.0, 0.0, 2.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([0.0, -2.0, 0.0]), **allclose_pars) X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [0.0, 90.0, 0.0] ) assert_allclose(X_adj[:, 0], np.array([0.0, 0.0, -1.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([0.0, 2.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([2.0, 0.0, 0.0]), **allclose_pars) X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [0.0, 0.0, 90.0] ) assert_allclose(X_adj[:, 0], np.array([0.0, 1.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([-2.0, 0.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([0.0, 0.0, 2.0]), **allclose_pars) def test_core_make_variogram_parameter_list(): # test of first case - variogram_model_parameters is None # function should return None unaffected result = core._make_variogram_parameter_list("linear", None) assert result is None # tests for second case - variogram_model_parameters is dict with pytest.raises(KeyError): core._make_variogram_parameter_list("linear", {"tacos": 1.0, "burritos": 2.0}) result = core._make_variogram_parameter_list( "linear", {"slope": 1.0, "nugget": 0.0} ) assert result == [1.0, 0.0] with pytest.raises(KeyError): core._make_variogram_parameter_list("power", {"frijoles": 1.0}) result = core._make_variogram_parameter_list( "power", {"scale": 2.0, "exponent": 1.0, "nugget": 0.0} ) assert result == [2.0, 1.0, 0.0] with pytest.raises(KeyError): core._make_variogram_parameter_list("exponential", {"tacos": 1.0}) with pytest.raises(KeyError): core._make_variogram_parameter_list( "exponential", {"range": 1.0, "nugget": 1.0} ) result = core._make_variogram_parameter_list( "exponential", {"sill": 5.0, "range": 2.0, "nugget": 1.0} ) assert result == [4.0, 2.0, 1.0] result = core._make_variogram_parameter_list( "exponential", {"psill": 4.0, "range": 2.0, "nugget": 1.0} ) assert result == [4.0, 2.0, 1.0] with pytest.raises(TypeError): core._make_variogram_parameter_list("custom", {"junk": 1.0}) with pytest.raises(ValueError): core._make_variogram_parameter_list("blarg", {"junk": 1.0}) # tests for third case - variogram_model_parameters is list with pytest.raises(ValueError): core._make_variogram_parameter_list("linear", [1.0, 2.0, 3.0]) result = core._make_variogram_parameter_list("linear", [1.0, 2.0]) assert result == [1.0, 2.0] with pytest.raises(ValueError): core._make_variogram_parameter_list("power", [1.0, 2.0]) result = core._make_variogram_parameter_list("power", [1.0, 2.0, 3.0]) assert result == [1.0, 2.0, 3.0] with pytest.raises(ValueError): core._make_variogram_parameter_list("exponential", [1.0, 2.0, 3.0, 4.0]) result = core._make_variogram_parameter_list("exponential", [5.0, 2.0, 1.0]) assert result == [4.0, 2.0, 1.0] result = core._make_variogram_parameter_list("custom", [1.0, 2.0, 3.0]) assert result == [1.0, 2.0, 3] with pytest.raises(ValueError): core._make_variogram_parameter_list("junk", [1.0, 1.0, 1.0]) # test for last case - make sure function handles incorrect # variogram_model_parameters type appropriately with pytest.raises(TypeError): core._make_variogram_parameter_list("linear", "tacos") def test_core_initialize_variogram_model(validation_ref): data, _, _ = validation_ref # Note the variogram_function argument is not a string in real life... # core._initialize_variogram_model also checks the length of input # lists, which is redundant now because the same tests are done in # core._make_variogram_parameter_list with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "linear", [0.0], "linear", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "spherical", [0.0], "spherical", 6, False, "euclidean", ) # core._initialize_variogram_model does also check coordinate type, # this is NOT redundant with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "spherical", [0.0, 0.0, 0.0], "spherical", 6, False, "tacos", ) x = np.array([1.0 + n / np.sqrt(2) for n in range(4)]) y = np.array([1.0 + n / np.sqrt(2) for n in range(4)]) z = np.arange(1.0, 5.0, 1.0) lags, semivariance, variogram_model_parameters = core._initialize_variogram_model( np.vstack((x, y)).T, z, "linear", [0.0, 0.0], "linear", 6, False, "euclidean" ) assert_allclose(lags, np.array([1.0, 2.0, 3.0])) assert_allclose(semivariance, np.array([0.5, 2.0, 4.5])) def test_core_initialize_variogram_model_3d(sample_data_3d): data, _, _ = sample_data_3d # Note the variogram_function argument is not a string in real life... # again, these checks in core._initialize_variogram_model are redundant # now because the same tests are done in # core._make_variogram_parameter_list with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "linear", [0.0], "linear", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "spherical", [0.0], "spherical", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "linear", [0.0, 0.0], "linear", 6, False, "geographic", ) lags, semivariance, variogram_model_parameters = core._initialize_variogram_model( np.vstack( ( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.0, 3.0, 4.0]), ) ).T, np.array([1.0, 2.0, 3.0, 4.0]), "linear", [0.0, 0.0], "linear", 3, False, "euclidean", ) assert_allclose( lags, np.array([np.sqrt(3.0), 2.0 * np.sqrt(3.0), 3.0 * np.sqrt(3.0)]) ) assert_allclose(semivariance, np.array([0.5, 2.0, 4.5])) def test_core_calculate_variogram_model(): res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), "linear", variogram_models.linear_variogram_model, False, ) assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), "linear", variogram_models.linear_variogram_model, True, ) assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.8284271, 5.1961524, 8.0]), "power", variogram_models.power_variogram_model, False, ) assert_allclose(res, np.array([1.0, 1.5, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 1.4142, 1.7321, 2.0]), "power", variogram_models.power_variogram_model, False, ) assert_allclose(res, np.array([1.0, 0.5, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.2642, 1.7293, 1.9004, 1.9634]), "exponential", variogram_models.exponential_variogram_model, False, ) assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([0.5769, 1.4872, 1.9065, 1.9914]), "gaussian", variogram_models.gaussian_variogram_model, False, ) assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([3.33060952, 3.85063879, 3.96667301, 3.99256374]), "exponential", variogram_models.exponential_variogram_model, False, ) assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.60487044, 3.85968813, 3.99694817, 3.99998564]), "gaussian", variogram_models.gaussian_variogram_model, False, ) assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001) def test_core_krige(): # Example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.22], [43.8, 24.6, 2.822]]) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([18.8, 67.9]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(1.6364, rel=1e-4) assert ss == approx(0.4201, rel=1e-4) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([43.8, 24.6]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(2.822, rel=1e-3) assert ss == approx(0.0, rel=1e-3) def test_core_krige_3d(): # Adapted from example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.0, 1.22], [43.8, 24.6, 1.0, 2.822]]) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], np.array([18.8, 67.9, 1.0]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(1.6364, rel=1e-4) assert ss == approx(0.4201, rel=1e-4) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], np.array([43.8, 24.6, 1.0]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(2.822, rel=1e-3) assert ss == approx(0.0, rel=1e-3) def test_non_exact(): # custom data for this test data = np.array( [ [0.0, 0.0, 0.47], [1.5, 1.5, 0.56], [3, 3, 0.74], [4.5, 4.5, 1.47], ] ) # construct grid points so diagonal # is identical to input points gridx = np.arange(0.0, 4.51, 1.5) gridy = np.arange(0.0, 4.51, 1.5) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 5.0], ) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 5.0], exact_values=False, ) z_non_exact, ss_non_exact = ok_non_exact.execute( "grid", gridx, gridy, backend="vectorized" ) in_values = np.diag(z) # test that krig field # at input location are identical # to the inputs themselves with # exact_values == True assert_allclose(in_values, data[:, 2]) # test that krig field # at input location are different # than the inputs themselves # with exact_values == False assert ~np.allclose(in_values, data[:, 2]) # test that off diagonal values are the same # by filling with dummy value and comparing # each entry in array np.fill_diagonal(z, 0.0) np.fill_diagonal(z_non_exact, 0.0) assert_allclose(z, z_non_exact) def test_ok(validation_ref): # Test to compare OK results to those obtained using KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) data, (ok_test_answer, gridx, gridy), _ = validation_ref ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], ) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z, ok_test_answer) z, ss = ok.execute("grid", gridx, gridy, backend="loop") assert_allclose(z, ok_test_answer) def test_ok_update_variogram_model(validation_ref): data, (ok_test_answer, gridx, gridy), _ = validation_ref with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="blurg") ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) variogram_model = ok.variogram_model variogram_parameters = ok.variogram_model_parameters anisotropy_scaling = ok.anisotropy_scaling anisotropy_angle = ok.anisotropy_angle with pytest.raises(ValueError): ok.update_variogram_model("blurg") ok.update_variogram_model("power", anisotropy_scaling=3.0, anisotropy_angle=45.0) # TODO: check that new parameters equal to the set parameters assert variogram_model != ok.variogram_model assert not np.array_equal(variogram_parameters, ok.variogram_model_parameters) assert anisotropy_scaling != ok.anisotropy_scaling assert anisotropy_angle != ok.anisotropy_angle def test_ok_get_variogram_points(validation_ref): # Test to compare the variogram of OK results to those obtained using # KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) # Variogram parameters _variogram_parameters = [500.0, 3000.0, 0.0] data, _, (ok_test_answer, gridx, gridy) = validation_ref ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=_variogram_parameters, ) # Get the variogram points from the UniversalKriging instance lags, calculated_variogram = ok.get_variogram_points() # Generate the expected variogram points according to the # exponential variogram model expected_variogram = variogram_models.exponential_variogram_model( _variogram_parameters, lags ) assert_allclose(calculated_variogram, expected_variogram) def test_ok_execute(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], exact_values="blurg") ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], exact_values=False ) with pytest.raises(ValueError): ok.execute("blurg", gridx, gridy) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z, ss = ok.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z1, ss1 = ok_non_exact.execute("grid", gridx, gridy, backend="loop") assert_allclose(z1, z) assert_allclose(ss1, ss) z, ss = ok_non_exact.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) with pytest.raises(IOError): ok.execute("masked", gridx, gridy, backend="vectorized") mask = np.array([True, False]) with pytest.raises(ValueError): ok.execute("masked", gridx, gridy, mask=mask, backend="vectorized") z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref.T, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(IOError): ok.execute("masked", gridx, gridy, backend="loop") mask = np.array([True, False]) with pytest.raises(ValueError): ok.execute("masked", gridx, gridy, mask=mask, backend="loop") z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref.T, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = ok_non_exact.execute( "masked", gridx, gridy, mask=mask_ref.T, backend="loop" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(ValueError): ok.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="vectorized", ) z, ss = ok.execute("points", gridx[0], gridy[0], backend="vectorized") assert z.shape == (1,) assert ss.shape == (1,) with pytest.raises(ValueError): ok.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="loop" ) z, ss = ok.execute("points", gridx[0], gridy[0], backend="loop") assert z.shape == (1,) assert ss.shape == (1,) def test_cython_ok(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], exact_values=False ) z1, ss1 = ok.execute("grid", gridx, gridy, backend="loop") z2, ss2 = ok.execute("grid", gridx, gridy, backend="C") assert_allclose(z1, z2) assert_allclose(ss1, ss2) z1, ss1 = ok_non_exact.execute("grid", gridx, gridy, backend="loop") z2, ss2 = ok_non_exact.execute("grid", gridx, gridy, backend="C") assert_allclose(z1, z2) assert_allclose(ss1, ss2) closest_points = 4 z1, ss1 = ok.execute( "grid", gridx, gridy, backend="loop", n_closest_points=closest_points ) z2, ss2 = ok.execute( "grid", gridx, gridy, backend="C", n_closest_points=closest_points ) assert_allclose(z1, z2) assert_allclose(ss1, ss2) z1, ss1 = ok_non_exact.execute( "grid", gridx, gridy, backend="loop", n_closest_points=closest_points ) z2, ss2 = ok_non_exact.execute( "grid", gridx, gridy, backend="C", n_closest_points=closest_points ) assert_allclose(z1, z2) assert_allclose(ss1, ss2) def test_uk(validation_ref): # Test to compare UK with linear drift to results from KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) data, _, (uk_test_answer, gridx, gridy) = validation_ref uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], drift_terms=["regional_linear"], ) z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z, uk_test_answer) z, ss = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z, uk_test_answer) def test_uk_update_variogram_model(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="blurg") with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], drift_terms=["external_Z"]) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], drift_terms=["external_Z"], external_drift=np.array([0]), ) with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], drift_terms=["point_log"]) uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2]) variogram_model = uk.variogram_model variogram_parameters = uk.variogram_model_parameters anisotropy_scaling = uk.anisotropy_scaling anisotropy_angle = uk.anisotropy_angle with pytest.raises(ValueError): uk.update_variogram_model("blurg") uk.update_variogram_model("power", anisotropy_scaling=3.0, anisotropy_angle=45.0) # TODO: check that the new parameters are equal to the expected ones assert variogram_model != uk.variogram_model assert not np.array_equal(variogram_parameters, uk.variogram_model_parameters) assert anisotropy_scaling != uk.anisotropy_scaling assert anisotropy_angle != uk.anisotropy_angle def test_uk_get_variogram_points(validation_ref): # Test to compare the variogram of UK with linear drift to results from # KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) # Variogram parameters _variogram_parameters = [500.0, 3000.0, 0.0] data, _, (uk_test_answer, gridx, gridy) = validation_ref uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=_variogram_parameters, drift_terms=["regional_linear"], ) # Get the variogram points from the UniversalKriging instance lags, calculated_variogram = uk.get_variogram_points() # Generate the expected variogram points according to the # exponential variogram model expected_variogram = variogram_models.exponential_variogram_model( _variogram_parameters, lags ) assert_allclose(calculated_variogram, expected_variogram) def test_uk_calculate_data_point_zscalars(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d dem = np.arange(0.0, 5.1, 0.1) dem = np.repeat(dem[np.newaxis, :], 6, axis=0) dem_x = np.arange(0.0, 5.1, 0.1) dem_y = np.arange(0.0, 6.0, 1.0) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], external_drift=dem, ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], external_drift=dem, external_drift_x=dem_x, external_drift_y=np.arange(0.0, 5.0, 1.0), ) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], external_drift=dem, external_drift_x=dem_x, external_drift_y=dem_y, ) assert_allclose(uk.z_scalars, data[:, 0]) xi, yi = np.meshgrid(np.arange(0.0, 5.3, 0.1), gridy) with pytest.raises(ValueError): uk._calculate_data_point_zscalars(xi, yi) xi, yi = np.meshgrid(np.arange(0.0, 5.0, 0.1), gridy) z_scalars = uk._calculate_data_point_zscalars(xi, yi) assert_allclose(z_scalars[0, :], np.arange(0.0, 5.0, 0.1)) def test_uk_execute_single_point(): # Test data and answer from lecture notes by <NAME>, UCLA Stats data = np.array( [ [61.0, 139.0, 477.0], [63.0, 140.0, 696.0], [64.0, 129.0, 227.0], [68.0, 128.0, 646.0], [71.0, 140.0, 606.0], [73.0, 141.0, 791.0], [75.0, 128.0, 783.0], ] ) point = (65.0, 137.0) z_answer = 567.54 ss_answer = 9.044 uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[10.0, 9.99, 0.0], drift_terms=["regional_linear"], ) z, ss = uk.execute( "points", np.array([point[0]]), np.array([point[1]]), backend="vectorized" ) assert z_answer == approx(z[0], rel=0.1) assert ss_answer == approx(ss[0], rel=0.1) z, ss = uk.execute( "points", np.array([61.0]), np.array([139.0]), backend="vectorized" ) assert z[0] == approx(477.0, rel=1e-3) assert ss[0] == approx(0.0, rel=1e-3) z, ss = uk.execute("points", np.array([61.0]), np.array([139.0]), backend="loop") assert z[0] == approx(477.0, rel=1e-3) assert ss[0] == approx(0.0, rel=1e-3) def test_uk_execute(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], exact_values="blurg", ) uk_non_exact = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) with pytest.raises(ValueError): uk.execute("blurg", gridx, gridy) with pytest.raises(ValueError): uk.execute("grid", gridx, gridy, backend="mrow") z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z1, ss1 = uk_non_exact.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z1, z) assert_allclose(ss1, ss) z, ss = uk_non_exact.execute("grid", gridx, gridy, backend="vectorized") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z, ss = uk.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) with pytest.raises(IOError): uk.execute("masked", gridx, gridy, backend="vectorized") mask = np.array([True, False]) with pytest.raises(ValueError): uk.execute("masked", gridx, gridy, mask=mask, backend="vectorized") z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref.T, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(IOError): uk.execute("masked", gridx, gridy, backend="loop") mask = np.array([True, False]) with pytest.raises(ValueError): uk.execute("masked", gridx, gridy, mask=mask, backend="loop") z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref.T, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = uk_non_exact.execute( "masked", gridx, gridy, mask=mask_ref.T, backend="loop" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(ValueError): uk.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="vectorized", ) z, ss = uk.execute("points", gridx[0], gridy[0], backend="vectorized") assert z.shape == (1,) assert ss.shape == (1,) with pytest.raises(ValueError): uk.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="loop" ) z, ss = uk.execute("points", gridx[0], gridy[0], backend="loop") assert z.shape == (1,) assert ss.shape == (1,) def test_ok_uk_produce_same_result(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) z_ok, ss_ok = ok.execute("grid", gridx, gridy, backend="vectorized") uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) uk_non_exact = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, exact_values=False, ) z_uk, ss_uk = uk.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) z_uk, ss_uk = uk_non_exact.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) z_ok, ss_ok = ok.execute("grid", gridx, gridy, backend="loop") z_uk, ss_uk = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) z_uk, ss_uk = uk_non_exact.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) def test_ok_backends_produce_same_result(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) z_ok_v, ss_ok_v = ok.execute("grid", gridx, gridy, backend="vectorized") z_ok_l, ss_ok_l = ok.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_ok_v, z_ok_l) assert_allclose(ss_ok_v, ss_ok_l) def test_uk_backends_produce_same_result(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) z_uk_v, ss_uk_v = uk.execute("grid", gridx, gridy, backend="vectorized") z_uk_l, ss_uk_l = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_uk_v, z_uk_l) assert_allclose(ss_uk_v, ss_uk_l) def test_kriging_tools(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) z_write, ss_write = ok.execute("grid", gridx, gridy) kt.write_asc_grid( gridx, gridy, z_write, filename=os.path.join(BASE_DIR, "test_data/temp.asc"), style=1, ) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/temp.asc") ) assert_allclose(z_write, z_read, 0.01, 0.01) assert_allclose(gridx, x_read) assert_allclose(gridy, y_read) z_write, ss_write = ok.execute("masked", gridx, gridy, mask=mask_ref) kt.write_asc_grid( gridx, gridy, z_write, filename=os.path.join(BASE_DIR, "test_data/temp.asc"), style=1, ) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/temp.asc") ) assert np.ma.allclose( z_write, np.ma.masked_where(z_read == no_data, z_read), masked_equal=True, rtol=0.01, atol=0.01, ) assert_allclose(gridx, x_read) assert_allclose(gridy, y_read) ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) z_write, ss_write = ok.execute("grid", gridx_2, gridy) kt.write_asc_grid( gridx_2, gridy, z_write, filename=os.path.join(BASE_DIR, "test_data/temp.asc"), style=2, ) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/temp.asc") ) assert_allclose(z_write, z_read, 0.01, 0.01) assert_allclose(gridx_2, x_read) assert_allclose(gridy, y_read) os.remove(os.path.join(BASE_DIR, "test_data/temp.asc")) # http://doc.pytest.org/en/latest/skipping.html#id1 @pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows") def test_uk_three_primary_drifts(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d well = np.array([[1.1, 1.1, -1.0]]) dem = np.arange(0.0, 5.1, 0.1) dem = np.repeat(dem[np.newaxis, :], 6, axis=0) dem_x = np.arange(0.0, 5.1, 0.1) dem_y = np.arange(0.0, 6.0, 1.0) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear", "external_Z", "point_log"], point_drift=well, external_drift=dem, external_drift_x=dem_x, external_drift_y=dem_y, ) z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") assert z.shape == (gridy.shape[0], gridx.shape[0]) assert ss.shape == (gridy.shape[0], gridx.shape[0]) assert np.all(np.isfinite(z)) assert not np.all(np.isnan(z)) assert np.all(np.isfinite(ss)) assert not np.all(np.isnan(ss)) z, ss = uk.execute("grid", gridx, gridy, backend="loop") assert z.shape == (gridy.shape[0], gridx.shape[0]) assert ss.shape == (gridy.shape[0], gridx.shape[0]) assert np.all(np.isfinite(z)) assert not np.all(np.isnan(z)) assert np.all(np.isfinite(ss)) assert not np.all(np.isnan(ss)) def test_uk_specified_drift(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d xg, yg = np.meshgrid(gridx, gridy) well = np.array([[1.1, 1.1, -1.0]]) point_log = ( well[0, 2] * np.log(np.sqrt((xg - well[0, 0]) ** 2.0 + (yg - well[0, 1]) ** 2.0)) * -1.0 ) if np.any(np.isinf(point_log)): point_log[np.isinf(point_log)] = -100.0 * well[0, 2] * -1.0 point_log_data = ( well[0, 2] * np.log( np.sqrt((data[:, 0] - well[0, 0]) ** 2.0 + (data[:, 1] - well[0, 1]) ** 2.0) ) * -1.0 ) if np.any(np.isinf(point_log_data)): point_log_data[np.isinf(point_log_data)] = -100.0 * well[0, 2] * -1.0 with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], ) with pytest.raises(TypeError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=data[:, 0], ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:2, 0]], ) uk_spec = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:, 0], data[:, 1]], ) with pytest.raises(ValueError): uk_spec.execute("grid", gridx, gridy, specified_drift_arrays=[gridx, gridy]) with pytest.raises(TypeError): uk_spec.execute("grid", gridx, gridy, specified_drift_arrays=gridx) with pytest.raises(ValueError): uk_spec.execute("grid", gridx, gridy, specified_drift_arrays=[xg]) z_spec, ss_spec = uk_spec.execute( "grid", gridx, gridy, specified_drift_arrays=[xg, yg] ) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_spec, z_lin) assert_allclose(ss_spec, ss_lin) uk_spec = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[point_log_data], ) z_spec, ss_spec = uk_spec.execute( "grid", gridx, gridy, specified_drift_arrays=[point_log] ) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_spec, z_lin) assert_allclose(ss_spec, ss_lin) uk_spec = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:, 0], data[:, 1], point_log_data], ) z_spec, ss_spec = uk_spec.execute( "grid", gridx, gridy, specified_drift_arrays=[xg, yg, point_log] ) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear", "point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_spec, z_lin) assert_allclose(ss_spec, ss_lin) def test_uk_functional_drift(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d well = np.array([[1.1, 1.1, -1.0]]) func_x = lambda x, y: x # noqa func_y = lambda x, y: y # noqa def func_well(x, y): return -well[0, 2] * np.log( np.sqrt((x - well[0, 0]) ** 2.0 + (y - well[0, 1]) ** 2.0) ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], ) with pytest.raises(TypeError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=func_x, ) uk_func = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=[func_x, func_y], ) z_func, ss_func = uk_func.execute("grid", gridx, gridy) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_func, z_lin) assert_allclose(ss_func, ss_lin) uk_func = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=[func_well], ) z_func, ss_func = uk_func.execute("grid", gridx, gridy) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_func, z_lin) assert_allclose(ss_func, ss_lin) uk_func = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=[func_x, func_y, func_well], ) z_func, ss_func = uk_func.execute("grid", gridx, gridy) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear", "point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_func, z_lin) assert_allclose(ss_func, ss_lin) def test_uk_with_external_drift(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref dem, demx, demy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test3_dem.asc") ) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="spherical", variogram_parameters=[500.0, 3000.0, 0.0], anisotropy_scaling=1.0, anisotropy_angle=0.0, drift_terms=["external_Z"], external_drift=dem, external_drift_x=demx, external_drift_y=demy, verbose=False, ) answer, gridx, gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test3_answer.asc") ) z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z, answer, **allclose_pars) z, ss = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z, answer, **allclose_pars) def test_force_exact(): data = np.array([[1.0, 1.0, 2.0], [2.0, 2.0, 1.5], [3.0, 3.0, 1.0]]) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 1.0], ) z, ss = ok.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="vectorized") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = ok.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="vectorized" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="vectorized" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = ok.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert not np.any(np.isclose(ss, 0)) z, ss = ok.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="vectorized", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) z, ss = ok.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="loop") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = ok.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="loop" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="loop" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = ok.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert not np.any(np.isclose(ss, 0)) z, ss = ok.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="loop", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2]) z, ss = uk.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="vectorized") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = uk.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="vectorized" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="vectorized" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = uk.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert not (np.any(np.isclose(ss, 0))) z, ss = uk.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="vectorized", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) z, ss = uk.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="loop") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = uk.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="loop" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="loop" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = uk.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert not np.any(np.isclose(ss, 0)) z, ss = uk.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="loop", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([1.0, 1.0]), variogram_models.linear_variogram_model, [1.0, 1.0], "euclidean", ) assert z == approx(2.0) assert ss == approx(0.0) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([1.0, 2.0]), variogram_models.linear_variogram_model, [1.0, 1.0], "euclidean", ) assert ss != approx(0.0) data = np.zeros((50, 3)) x, y = np.meshgrid(np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0)) data[:, 0] = np.ravel(x) data[:, 1] = np.ravel(y) data[:, 2] = np.ravel(x) * np.ravel(y) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[100.0, 1.0], ) z, ss = ok.execute( "grid", np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0), backend="vectorized", ) assert_allclose(np.ravel(z), data[:, 2], **allclose_pars) assert_allclose(ss, 0.0, **allclose_pars) z, ss = ok.execute( "grid", np.arange(0.5, 10.0, 1.0), np.arange(0.5, 10.0, 2.0), backend="vectorized", ) assert not np.allclose(np.ravel(z), data[:, 2]) assert not np.allclose(ss, 0.0) z, ss = ok.execute( "grid", np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0), backend="loop" ) assert_allclose(np.ravel(z), data[:, 2], **allclose_pars) assert_allclose(ss, 0.0, **allclose_pars) z, ss = ok.execute( "grid", np.arange(0.5, 10.0, 1.0), np.arange(0.5, 10.0, 2.0), backend="loop" ) assert not np.allclose(np.ravel(z), data[:, 2]) assert not np.allclose(ss, 0.0) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[100.0, 1.0], ) z, ss = uk.execute( "grid", np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0), backend="vectorized", ) assert_allclose(np.ravel(z), data[:, 2], **allclose_pars) assert_allclose(ss, 0.0, **allclose_pars) z, ss = uk.execute( "grid", np.arange(0.5, 10.0, 1.0), np.arange(0.5, 10.0, 2.0), backend="vectorized", ) assert not np.allclose(np.ravel(z), data[:, 2]) assert not np.allclose(ss, 0.0) z, ss = uk.execute( "grid", np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0), backend="loop" ) assert_allclose(np.ravel(z), data[:, 2], **allclose_pars) assert_allclose(ss, 0.0, **allclose_pars) z, ss = uk.execute( "grid", np.arange(0.5, 10.0, 1.0), np.arange(0.5, 10.0, 2.0), backend="loop" ) assert not np.allclose(np.ravel(z), data[:, 2]) assert not np.allclose(ss, 0.0) def test_custom_variogram(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d def func(params, dist): return params[0] * np.log10(dist + params[1]) + params[2] with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="mrow") with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="custom") with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="custom", variogram_function=0, ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="custom", variogram_function=func, ) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="custom", variogram_parameters=[1.0, 1.0, 1.0], variogram_function=func, ) assert uk.variogram_function([1.0, 1.0, 1.0], 1.0) == approx(1.3010, rel=1e-4) uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="linear") uk.update_variogram_model( "custom", variogram_parameters=[1.0, 1.0, 1.0], variogram_function=func ) assert uk.variogram_function([1.0, 1.0, 1.0], 1.0) == approx(1.3010, rel=1e-4) with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="mrow") with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="custom") with pytest.raises(ValueError): OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="custom", variogram_function=0, ) with pytest.raises(ValueError): OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="custom", variogram_function=func, ) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="custom", variogram_parameters=[1.0, 1.0, 1.0], variogram_function=func, ) assert ok.variogram_function([1.0, 1.0, 1.0], 1.0) == approx(1.3010, rel=1e-4) ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="linear") ok.update_variogram_model( "custom", variogram_parameters=[1.0, 1.0, 1.0], variogram_function=func ) assert ok.variogram_function([1.0, 1.0, 1.0], 1.0) == approx(1.3010, rel=1e-4) def test_ok3d(validation_ref): data, (ok_test_answer, gridx_ref, gridy_ref), _ = validation_ref # Test to compare K3D results to those obtained using KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, vol. 47, # no. 4, 580-586.) k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], np.zeros(data[:, 1].shape), data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], ) with pytest.raises(ValueError): OrdinaryKriging3D( data[:, 0], data[:, 1], np.zeros(data[:, 1].shape), data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], exact_values="blurg", ) ok3d_non_exact = OrdinaryKriging3D( data[:, 0], data[:, 1], np.zeros(data[:, 1].shape), data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], exact_values=False, ) k, ss = k3d.execute( "grid", gridx_ref, gridy_ref, np.array([0.0]), backend="vectorized" ) assert_allclose(np.squeeze(k), ok_test_answer) k, ss = k3d.execute("grid", gridx_ref, gridy_ref, np.array([0.0]), backend="loop") assert_allclose(np.squeeze(k), ok_test_answer) # Test to compare K3D results to those obtained using KT3D. data = np.genfromtxt( os.path.join(BASE_DIR, "test_data", "test3d_data.txt"), skip_header=1 ) ans = np.genfromtxt(os.path.join(BASE_DIR, "test_data", "test3d_answer.txt")) ans_z = ans[:, 0].reshape((10, 10, 10)) ans_ss = ans[:, 1].reshape((10, 10, 10)) k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", variogram_parameters=[1.0, 0.1], ) k, ss = k3d.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="vectorized" ) assert_allclose(k, ans_z, rtol=1e-3, atol=1e-8) assert_allclose(ss, ans_ss, rtol=1e-3, atol=1e-8) k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", variogram_parameters=[1.0, 0.1], ) k, ss = k3d.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="loop" ) assert_allclose(k, ans_z, rtol=1e-3, atol=1e-8) assert_allclose(ss, ans_ss, rtol=1e-3, atol=1e-8) def test_ok3d_moving_window(): # Test to compare K3D results to those obtained using KT3D. data = np.genfromtxt( os.path.join(BASE_DIR, "test_data", "test3d_data.txt"), skip_header=1 ) ans = np.genfromtxt(os.path.join(BASE_DIR, "./test_data/test3d_answer.txt")) ans_z = ans[:, 0].reshape((10, 10, 10)) ans_ss = ans[:, 1].reshape((10, 10, 10)) k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", variogram_parameters=[1.0, 0.1], ) k, ss = k3d.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="loop", n_closest_points=10, ) assert_allclose(k, ans_z, rtol=1e-3) assert_allclose(ss, ans_ss, rtol=1e-3) def test_ok3d_uk3d_and_backends_produce_same_results(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref ok3d = OrdinaryKriging3D( data[:, 0], data[:, 1], np.zeros(data[:, 1].shape), data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], ) ok_v, oss_v = ok3d.execute( "grid", gridx_ref, gridy_ref, np.array([0.0]), backend="vectorized" ) ok_l, oss_l = ok3d.execute( "grid", gridx_ref, gridy_ref, np.array([0.0]), backend="loop" ) uk3d = UniversalKriging3D( data[:, 0], data[:, 1], np.zeros(data[:, 1].shape), data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], ) uk_v, uss_v = uk3d.execute( "grid", gridx_ref, gridy_ref, np.array([0.0]), backend="vectorized" ) assert_allclose(uk_v, ok_v) uk_l, uss_l = uk3d.execute( "grid", gridx_ref, gridy_ref, np.array([0.0]), backend="loop" ) assert_allclose(uk_l, ok_l) assert_allclose(uk_l, uk_v) assert_allclose(uss_l, uss_v) data = np.genfromtxt( os.path.join(BASE_DIR, "test_data", "test3d_data.txt"), skip_header=1 ) ok3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", variogram_parameters=[1.0, 0.1], ) ok_v, oss_v = ok3d.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="vectorized" ) ok_l, oss_l = ok3d.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="loop" ) uk3d = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", variogram_parameters=[1.0, 0.1], ) uk_v, uss_v = uk3d.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="vectorized" ) assert_allclose(uk_v, ok_v) assert_allclose(uss_v, oss_v) uk_l, uss_l = uk3d.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="loop" ) assert_allclose(uk_l, ok_l) assert_allclose(uss_l, oss_l) assert_allclose(uk_l, uk_v) assert_allclose(uss_l, uss_v) def test_ok3d_update_variogram_model(sample_data_3d): data, (gridx_ref, gridy_ref, gridz_ref), mask_ref = sample_data_3d with pytest.raises(ValueError): OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="blurg" ) k3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3]) variogram_model = k3d.variogram_model variogram_parameters = k3d.variogram_model_parameters anisotropy_scaling_y = k3d.anisotropy_scaling_y anisotropy_scaling_z = k3d.anisotropy_scaling_z anisotropy_angle_x = k3d.anisotropy_angle_x anisotropy_angle_y = k3d.anisotropy_angle_y anisotropy_angle_z = k3d.anisotropy_angle_z with pytest.raises(ValueError): k3d.update_variogram_model("blurg") k3d.update_variogram_model( "power", anisotropy_scaling_y=3.0, anisotropy_scaling_z=3.0, anisotropy_angle_x=45.0, anisotropy_angle_y=45.0, anisotropy_angle_z=45.0, ) assert variogram_model != k3d.variogram_model assert not np.array_equal(variogram_parameters, k3d.variogram_model_parameters) assert anisotropy_scaling_y != k3d.anisotropy_scaling_y assert anisotropy_scaling_z != k3d.anisotropy_scaling_z assert anisotropy_angle_x != k3d.anisotropy_angle_x assert anisotropy_angle_y != k3d.anisotropy_angle_y assert anisotropy_angle_z != k3d.anisotropy_angle_z def test_uk3d_update_variogram_model(sample_data_3d): data, (gridx_ref, gridy_ref, gridz_ref), mask_ref = sample_data_3d with pytest.raises(ValueError): UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="blurg" ) uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3]) variogram_model = uk3d.variogram_model variogram_parameters = uk3d.variogram_model_parameters anisotropy_scaling_y = uk3d.anisotropy_scaling_y anisotropy_scaling_z = uk3d.anisotropy_scaling_z anisotropy_angle_x = uk3d.anisotropy_angle_x anisotropy_angle_y = uk3d.anisotropy_angle_y anisotropy_angle_z = uk3d.anisotropy_angle_z with pytest.raises(ValueError): uk3d.update_variogram_model("blurg") uk3d.update_variogram_model( "power", anisotropy_scaling_y=3.0, anisotropy_scaling_z=3.0, anisotropy_angle_x=45.0, anisotropy_angle_y=45.0, anisotropy_angle_z=45.0, ) assert not variogram_model == uk3d.variogram_model assert not np.array_equal(variogram_parameters, uk3d.variogram_model_parameters) assert not anisotropy_scaling_y == uk3d.anisotropy_scaling_y assert not anisotropy_scaling_z == uk3d.anisotropy_scaling_z assert not anisotropy_angle_x == uk3d.anisotropy_angle_x assert not anisotropy_angle_y == uk3d.anisotropy_angle_y assert not anisotropy_angle_z == uk3d.anisotropy_angle_z def test_ok3d_backends_produce_same_result(sample_data_3d): data, (gridx_ref, gridy_ref, gridz_ref), mask_ref = sample_data_3d k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear" ) ok3d_non_exact = OrdinaryKriging3D( data[:, 0], data[:, 1], np.zeros(data[:, 1].shape), data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], exact_values=False, ) k_k3d_v, ss_k3d_v = k3d.execute( "grid", gridx_ref, gridy_ref, gridz_ref, backend="vectorized" ) k_k3d_l, ss_k3d_l = k3d.execute( "grid", gridx_ref, gridy_ref, gridz_ref, backend="loop" ) assert_allclose(k_k3d_v, k_k3d_l, rtol=1e-05, atol=1e-8) assert_allclose(ss_k3d_v, ss_k3d_l, rtol=1e-05, atol=1e-8) k, ss = ok3d_non_exact.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="loop" ) k1, ss1 = ok3d_non_exact.execute( "grid", np.arange(10.0), np.arange(10.0), np.arange(10.0), backend="vectorized" ) assert_allclose(k1, k) assert_allclose(ss1, ss) def test_ok3d_execute(sample_data_3d): data, (gridx_ref, gridy_ref, gridz_ref), mask_ref = sample_data_3d k3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3]) with pytest.raises(ValueError): k3d.execute("blurg", gridx_ref, gridy_ref, gridz_ref) k, ss = k3d.execute("grid", gridx_ref, gridy_ref, gridz_ref, backend="vectorized") shape = (gridz_ref.size, gridy_ref.size, gridx_ref.size) assert k.shape == shape assert ss.shape == shape assert np.amax(k) != np.amin(k) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(k) k, ss = k3d.execute("grid", gridx_ref, gridy_ref, gridz_ref, backend="loop") shape = (gridz_ref.size, gridy_ref.size, gridx_ref.size) assert k.shape == shape assert ss.shape == shape assert np.amax(k) != np.amin(k) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(k) with pytest.raises(IOError): k3d.execute("masked", gridx_ref, gridy_ref, gridz_ref, backend="vectorized") mask = np.array([True, False]) with pytest.raises(ValueError): k3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask, backend="vectorized" ) k, ss = k3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref, backend="vectorized" ) assert np.ma.is_masked(k) assert np.ma.is_masked(ss) assert k[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked z, ss = k3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref.T, backend="vectorized" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked with pytest.raises(IOError): k3d.execute("masked", gridx_ref, gridy_ref, gridz_ref, backend="loop") mask = np.array([True, False]) with pytest.raises(ValueError): k3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask, backend="loop" ) k, ss = k3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref, backend="loop" ) assert np.ma.is_masked(k) assert np.ma.is_masked(ss) assert k[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked z, ss = k3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref.T, backend="loop" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked with pytest.raises(ValueError): k3d.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend="vectorized", ) k, ss = k3d.execute( "points", gridx_ref[0], gridy_ref[0], gridz_ref[0], backend="vectorized" ) assert k.shape == (1,) assert ss.shape == (1,) with pytest.raises(ValueError): k3d.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend="loop", ) k, ss = k3d.execute( "points", gridx_ref[0], gridy_ref[0], gridz_ref[0], backend="loop" ) assert k.shape == (1,) assert ss.shape == (1,) data = np.zeros((125, 4)) z, y, x = np.meshgrid( np.arange(0.0, 5.0, 1.0), np.arange(0.0, 5.0, 1.0), np.arange(0.0, 5.0, 1.0) ) data[:, 0] = np.ravel(x) data[:, 1] = np.ravel(y) data[:, 2] = np.ravel(z) data[:, 3] = np.ravel(z) k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear" ) k, ss = k3d.execute( "grid", np.arange(2.0, 3.0, 0.1), np.arange(2.0, 3.0, 0.1), np.arange(0.0, 4.0, 1.0), backend="vectorized", ) assert_allclose(k[0, :, :], 0.0, atol=0.01) assert_allclose(k[1, :, :], 1.0, rtol=1.0e-2) assert_allclose(k[2, :, :], 2.0, rtol=1.0e-2) assert_allclose(k[3, :, :], 3.0, rtol=1.0e-2) k, ss = k3d.execute( "grid", np.arange(2.0, 3.0, 0.1), np.arange(2.0, 3.0, 0.1), np.arange(0.0, 4.0, 1.0), backend="loop", ) assert_allclose(k[0, :, :], 0.0, atol=0.01) assert_allclose(k[1, :, :], 1.0, rtol=1.0e-2) assert_allclose(k[2, :, :], 2.0, rtol=1.0e-2) assert_allclose(k[3, :, :], 3.0, rtol=1.0e-2) k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear" ) k, ss = k3d.execute( "points", [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1.0, 2.0, 3.0], backend="vectorized", ) assert_allclose(k[0], 1.0, atol=0.01) assert_allclose(k[1], 2.0, rtol=1.0e-2) assert_allclose(k[2], 3.0, rtol=1.0e-2) k, ss = k3d.execute( "points", [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1.0, 2.0, 3.0], backend="loop" ) assert_allclose(k[0], 1.0, atol=0.01) assert_allclose(k[1], 2.0, rtol=1.0e-2) assert_allclose(k[2], 3.0, rtol=1.0e-2) def test_uk3d_execute(sample_data_3d): data, (gridx_ref, gridy_ref, gridz_ref), mask_ref = sample_data_3d uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3]) with pytest.raises(ValueError): uk3d.execute("blurg", gridx_ref, gridy_ref, gridz_ref) k, ss = uk3d.execute("grid", gridx_ref, gridy_ref, gridz_ref, backend="vectorized") shape = (gridz_ref.size, gridy_ref.size, gridx_ref.size) assert k.shape == shape assert ss.shape == shape assert np.amax(k) != np.amin(k) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(k) k, ss = uk3d.execute("grid", gridx_ref, gridy_ref, gridz_ref, backend="loop") shape = (gridz_ref.size, gridy_ref.size, gridx_ref.size) assert k.shape == shape assert ss.shape == shape assert np.amax(k) != np.amin(k) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(k) with pytest.raises(IOError): uk3d.execute("masked", gridx_ref, gridy_ref, gridz_ref, backend="vectorized") mask = np.array([True, False]) with pytest.raises(ValueError): uk3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask, backend="vectorized" ) k, ss = uk3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref, backend="vectorized" ) assert np.ma.is_masked(k) assert np.ma.is_masked(ss) assert k[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked z, ss = uk3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref.T, backend="vectorized" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked with pytest.raises(IOError): uk3d.execute("masked", gridx_ref, gridy_ref, gridz_ref, backend="loop") mask = np.array([True, False]) with pytest.raises(ValueError): uk3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask, backend="loop" ) k, ss = uk3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref, backend="loop" ) assert np.ma.is_masked(k) assert np.ma.is_masked(ss) assert k[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked z, ss = uk3d.execute( "masked", gridx_ref, gridy_ref, gridz_ref, mask=mask_ref.T, backend="loop" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0, 0] is np.ma.masked assert ss[0, 0, 0] is np.ma.masked with pytest.raises(ValueError): uk3d.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend="vectorized", ) k, ss = uk3d.execute( "points", gridx_ref[0], gridy_ref[0], gridz_ref[0], backend="vectorized" ) assert k.shape == (1,) assert ss.shape == (1,) with pytest.raises(ValueError): uk3d.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend="loop", ) k, ss = uk3d.execute( "points", gridx_ref[0], gridy_ref[0], gridz_ref[0], backend="loop" ) assert k.shape == (1,) assert ss.shape == (1,) data = np.zeros((125, 4)) z, y, x = np.meshgrid( np.arange(0.0, 5.0, 1.0), np.arange(0.0, 5.0, 1.0), np.arange(0.0, 5.0, 1.0) ) data[:, 0] = np.ravel(x) data[:, 1] = np.ravel(y) data[:, 2] = np.ravel(z) data[:, 3] = np.ravel(z) k3d = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear" ) k, ss = k3d.execute( "grid", np.arange(2.0, 3.0, 0.1), np.arange(2.0, 3.0, 0.1), np.arange(0.0, 4.0, 1.0), backend="vectorized", ) assert_allclose(k[0, :, :], 0.0, atol=0.01) assert_allclose(k[1, :, :], 1.0, rtol=1.0e-2) assert_allclose(k[2, :, :], 2.0, rtol=1.0e-2) assert_allclose(k[3, :, :], 3.0, rtol=1.0e-2) k, ss = k3d.execute( "grid", np.arange(2.0, 3.0, 0.1), np.arange(2.0, 3.0, 0.1), np.arange(0.0, 4.0, 1.0), backend="loop", ) assert_allclose(k[0, :, :], 0.0, atol=0.01) assert_allclose(k[1, :, :], 1.0, rtol=1.0e-2) assert_allclose(k[2, :, :], 2.0, rtol=1.0e-2) assert_allclose(k[3, :, :], 3.0, rtol=1.0e-2) k3d = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear" ) k, ss = k3d.execute( "points", [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1.0, 2.0, 3.0], backend="vectorized", ) assert_allclose(k[0], 1.0, atol=0.01) assert_allclose(k[1], 2.0, rtol=1.0e-2) assert_allclose(k[2], 3.0, rtol=1.0e-2) k, ss = k3d.execute( "points", [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1.0, 2.0, 3.0], backend="loop" ) assert_allclose(k[0], 1.0, atol=0.01) assert_allclose(k[1], 2.0, rtol=1.0e-2) assert_allclose(k[2], 3.0, rtol=1.0e-2) def test_force_exact_3d(sample_data_3d): data, (gridx_ref, gridy_ref, gridz_ref), mask_ref = sample_data_3d k3d = OrdinaryKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear" ) k, ss = k3d.execute( "grid", [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend="vectorized" ) assert k[2, 0, 0] == approx(0.9) assert ss[2, 0, 0] == approx(0.0) assert k[0, 2, 0] == approx(0.9) assert ss[0, 2, 0] == approx(0.0) assert k[1, 2, 2] == approx(0.7) assert ss[1, 2, 2] == approx(0.0) assert ss[2, 2, 2] != approx(0.0) assert ss[0, 0, 0] != approx(0.0) k, ss = k3d.execute( "grid", [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend="loop" ) assert k[2, 0, 0] == approx(0.9) assert ss[2, 0, 0] == approx(0.0) assert k[0, 2, 0] == approx(0.9) assert ss[0, 2, 0] == approx(0.0) assert k[1, 2, 2] == approx(0.7) assert ss[1, 2, 2] == approx(0.0) assert ss[2, 2, 2] != approx(0.0) assert ss[0, 0, 0] != approx(0.0) k3d = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear" ) k, ss = k3d.execute( "grid", [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend="vectorized" ) assert k[2, 0, 0] == approx(0.9) assert ss[2, 0, 0] == approx(0.0) assert k[0, 2, 0] == approx(0.9) assert ss[0, 2, 0] == approx(0.0) assert k[1, 2, 2] == approx(0.7) assert ss[1, 2, 2] == approx(0.0) assert ss[2, 2, 2] != approx(0.0) assert ss[0, 0, 0] != approx(0.0) k, ss = k3d.execute( "grid", [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend="loop" ) assert k[2, 0, 0] == approx(0.9) assert ss[2, 0, 0] == approx(0.0) assert k[0, 2, 0] == approx(0.9) assert ss[0, 2, 0] == approx(0.0) assert k[1, 2, 2] == approx(0.7) assert ss[1, 2, 2] == approx(0.0) assert ss[2, 2, 2] != approx(0.0) assert ss[0, 0, 0] != approx(0.0) def test_uk3d_specified_drift(sample_data_3d): data, (gridx_ref, gridy_ref, gridz_ref), mask_ref = sample_data_3d zg, yg, xg = np.meshgrid(gridz_ref, gridy_ref, gridx_ref, indexing="ij") with pytest.raises(ValueError): UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["specified"], ) with pytest.raises(TypeError): UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["specified"], specified_drift=data[:, 0], ) with pytest.raises(ValueError): UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:2, 0]], ) uk_spec = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:, 0], data[:, 1], data[:, 2]], ) with pytest.raises(ValueError): uk_spec.execute( "grid", gridx_ref, gridy_ref, gridz_ref, specified_drift_arrays=[gridx_ref, gridy_ref, gridz_ref], ) with pytest.raises(TypeError): uk_spec.execute( "grid", gridx_ref, gridy_ref, gridz_ref, specified_drift_arrays=gridx_ref ) with pytest.raises(ValueError): uk_spec.execute( "grid", gridx_ref, gridy_ref, gridz_ref, specified_drift_arrays=[zg] ) z_spec, ss_spec = uk_spec.execute( "grid", gridx_ref, gridy_ref, gridz_ref, specified_drift_arrays=[xg, yg, zg] ) uk_lin = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["regional_linear"], ) z_lin, ss_lin = uk_lin.execute("grid", gridx_ref, gridy_ref, gridz_ref) assert_allclose(z_spec, z_lin) assert_allclose(ss_spec, ss_lin) def test_uk3d_functional_drift(sample_data_3d): data, (gridx, gridy, gridz), mask_ref = sample_data_3d func_x = lambda x, y, z: x # noqa func_y = lambda x, y, z: y # noqa func_z = lambda x, y, z: z # noqa with pytest.raises(ValueError): UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["functional"], ) with pytest.raises(TypeError): UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["functional"], functional_drift=func_x, ) uk_func = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["functional"], functional_drift=[func_x, func_y, func_z], ) z_func, ss_func = uk_func.execute("grid", gridx, gridy, gridz) uk_lin = UniversalKriging3D( data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model="linear", drift_terms=["regional_linear"], ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy, gridz) assert_allclose(z_func, z_lin) assert_allclose(ss_func, ss_lin) def test_geometric_code(): # Create selected points distributed across the sphere: N = 4 lon = np.array([7.0, 7.0, 187.0, 73.231]) lat = np.array([13.23, 13.2301, -13.23, -79.3]) # For the points generated with this reference seed, the distance matrix # has been calculated using geopy (v. 1.11.0) as follows: # >>> from geopy.distance import great_circle # >>> g = great_circle(radius=1.0) # >>> d = np.zeros((N,N), dtype=float) # >>> for i in range(N): # >>> for j in range(N): # >>> d[i,j] = g.measure((lat[i],lon[i]),(lat[j],lon[j])) # >>> d *= 180.0/np.pi # From that distance matrix, the reference values have been obtained. d_ref = np.array( [ [0.0, 1e-4, 180.0, 98.744848317171801], [1e-4, 0.0, 179.9999, 98.744946828324345], [180.0, 179.9999, 0.0, 81.255151682828213], [98.744848317171801, 98.744946828324345, 81.255151682828213, 0.0], ] ) # Calculate distance matrix using the PyKrige code: d = np.zeros((N, N)) for i in range(N): for j in range(N): d[i, j] = core.great_circle_distance(lon[i], lat[i], lon[j], lat[j]) # Test agains reference values: assert_allclose(d, d_ref) # Test general features: assert_allclose(d[np.eye(N, dtype=bool)], 0.0) np.testing.assert_equal(d >= 0.0, np.ones((N, N), dtype=bool)) assert_allclose(d, d.T) np.testing.assert_equal(d <= 180.0, np.ones((N, N), dtype=bool)) # Test great_circle_distance and euclid3_to_great_circle against each other lon_ref = lon lat_ref = lat for i in range(len(lon_ref)): lon, lat = np.meshgrid(
np.linspace(0, 360.0, 20)
numpy.linspace
import numpy as np from automon.cb.cb_common_node import CbCommonNode # Implementation according to https://dl.acm.org/doi/pdf/10.1145/3226113 class CbInnerProductNode(CbCommonNode): def __init__(self, idx, func_to_monitor=None, d=2, domain=None): # func_to_monitor must be func_inner_product; however we keep function implementations outside of automon core. CbCommonNode.__init__(self, idx, d=d, domain=domain, func_to_monitor=func_to_monitor) def _func_h(self, X, threshold): if len(X.shape) < 2: x = X[:X.shape[0]//2] y = X[X.shape[0]//2:] res = np.linalg.norm(x + y)**2 else: x = X[:, :X.shape[1]//2] y = X[:, X.shape[1]//2:] res =
np.linalg.norm(x + y, axis=1)
numpy.linalg.norm
import os import numpy as np import hyperspy.api as hs from pyiron_base._tests import TestWithCleanProject import pyiron_experimental class TestHSLineProfiles(TestWithCleanProject): @classmethod def setUpClass(cls): super().setUpClass() data = hs.load(os.path.join(cls.project.path, '../../notebooks/experiment.emd')) cls.signal = data[0] def setUp(self): self.job = self.project.create.job.HSLineProfiles('tem') def test_set_signal(self): signal = self.signal with self.subTest('No hs signal'): with self.assertRaises(ValueError): self.job.signal = None with self.subTest('intended use case'): self.job.signal = signal self.assertEqual(self.job.input.signal.hs_class_name, 'Signal2D') self.assertEqual(self.job.input.signal.axes, list(signal.axes_manager.as_dictionary().values())) self.assertTrue(np.array_equal(self.job.input.signal.data, signal.data)) self.assertDictEqual(self.job.input.signal.metadata, signal.metadata.as_dictionary()) self.assertDictEqual(self.job.input.signal.original_metadata, signal.original_metadata.as_dictionary()) with self.subTest('already running'): self.job.status.running = True with self.assertRaises(RuntimeError): self.job.signal = signal def test_hs(self): data = self.job.hs.load(os.path.join(self.project.path, '../../notebooks/experiment.emd')) self.assertEqual(data[0], self.signal) def test_static_workflow(self): self.job.signal = self.signal self.job.input.x = [[0, 50], [50, 50]] self.job.input.y = [[10, 10], [0, 50]] self.job.run() self.assertEqual(len(self.job.output), 2) with self.subTest('Output line 0'): output = self.job.output[0] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1577323.2) with self.subTest('Output line 1'): output = self.job.output[1] self.assertEqual(output['line'], 1) self.assertTrue(np.array_equal(output['x'], [50, 50]), msg=f"Expected {[50, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1509104.4) def test_interactive_workflow(self): self.job.signal = self.signal self.job._useblit = False fig = self.job.plot_signal() fig.show() self.job.add_line(x=[0, 50], y=[10, 10]) self.job.plot_line_profiles() with self.subTest('Output line 0'): output = self.job.output[0] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1577323.2) self.job.add_line(x=[50, 50], y=[0, 50]) self.job.plot_line_profiles() with self.subTest('Output line 1'): output = self.job.output[1] self.assertEqual(output['line'], 0) self.assertTrue(
np.array_equal(output['x'], [0, 50])
numpy.array_equal
import os import zipfile import numpy as np from PIL import Image from deprecated import deprecated from imgaug import augmenters as iaa from torch.utils.data import Dataset # from datasets.Loader import register_dataset from datasets.utils.Util import generate_clip_from_image from util import get_one_hot_vectors from utils.Constants import COCO_ROOT from utils.Resize import ResizeMode, resize COCO_DEFAULT_PATH = "/globalwork/mahadevan/mywork/data/coco/" NAME = "COCO" COCO_SUPERCATEGORIES = ["outdoor", "food", "indoor", "appliance", "sports", "person", "animal", "vehicle", "furniture", "accessory", "electronic", "kitchen"] # @register_dataset(NAME) @deprecated(reason="Use COCOv2 instead..") class COCODataset(Dataset): def __init__(self, root, is_train=False, crop_size=None,temporal_window=8, resize_mode=ResizeMode.FIXED_SIZE): self.crop_size = crop_size self.resize_mode = ResizeMode(resize_mode) self.data_dir = root self.is_archive = zipfile.is_zipfile(self.data_dir) self.temporal_window = temporal_window subset = "train" if is_train else "valid" if subset == "train": self.data_type = "train2014" self.filter_crowd_images = True self.min_box_size = 30 else: self.data_type = "val2014" self.filter_crowd_images = False self.min_box_size = -1.0 self.restricted_image_category_list = ['person','bicycle','car','motorcycle','airplane','bus','train','truck', 'boat','bird','cat','dog','horse','sheep','cow','elephant','bear','zebra', 'giraffe','backpack', 'handbag', 'suitcase','frisbee','skis','snowboard', 'sports ball','kite','baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'remote', 'cell phone'] if len(self.restricted_image_category_list) == 0: self.restricted_image_category_list = None self.restricted_annotations_category_list = ['person','bicycle','car','motorcycle','airplane','bus','train','truck', 'boat','bird','cat','dog','horse','sheep','cow','elephant','bear','zebra', 'giraffe','backpack', 'handbag', 'suitcase','frisbee','skis','snowboard', 'sports ball','kite','baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'remote', 'cell phone'] if len(self.restricted_annotations_category_list) == 0: self.restricted_annotations_category_list = None self.exclude_image_category_list = [] if len(self.exclude_image_category_list) == 0: self.exclude_image_category_list = None self.exclude_annotations_category_list = [] if len(self.exclude_annotations_category_list) == 0: self.exclude_annotations_category_list = None # Use the minival split as done in https://github.com/rbgirshick/py-faster-rcnn/blob/master/data/README.md self.annotation_file = '%s/annotations/instances_%s.json' % (self.data_dir, subset) self.init_coco() self.inputfile_lists = self.read_inputfile_lists() def init_coco(self): # only import this dependency on demand import pycocotools.coco as coco self.coco = coco.COCO(self.annotation_file) ann_ids = self.coco.getAnnIds([]) self.anns = self.coco.loadAnns(ann_ids) self.label_map = {k - 1: v for k, v in self.coco.cats.items()} self.filename_to_anns = dict() self.build_filename_to_anns_dict() def build_filename_to_anns_dict(self): for ann in self.anns: img_id = ann['image_id'] img = self.coco.loadImgs(img_id) file_name = img[0]['file_name'] if file_name in self.filename_to_anns: self.filename_to_anns[file_name].append(ann) else: self.filename_to_anns[file_name] = [ann] # self.filename_to_anns[file_name] = ann self.filter_anns() def filter_anns(self): # exclude all images which contain a crowd if self.filter_crowd_images: self.filename_to_anns = {f: anns for f, anns in self.filename_to_anns.items() if not any([an["iscrowd"] for an in anns])} # filter annotations with too small boxes if self.min_box_size != -1.0: self.filename_to_anns = {f: [ann for ann in anns if ann["bbox"][2] >= self.min_box_size and ann["bbox"][3] >= self.min_box_size] for f, anns in self.filename_to_anns.items()} # remove annotations with crowd regions self.filename_to_anns = {f: [ann for ann in anns if not ann["iscrowd"]] for f, anns in self.filename_to_anns.items()} # restrict images to contain considered categories if self.restricted_image_category_list is not None: print("filtering images to contain categories", self.restricted_image_category_list) self.filename_to_anns = {f: anns for f, anns in self.filename_to_anns.items() if any([self.label_map[ann["category_id"] - 1]["name"] in self.restricted_image_category_list for ann in anns])} for cat in self.restricted_image_category_list: n_imgs_for_cat = sum([1 for anns in self.filename_to_anns.values() if any([self.label_map[ann["category_id"] - 1]["name"] == cat for ann in anns])]) print("number of images containing", cat, ":", n_imgs_for_cat) # exclude images that only contain objects in the given list elif self.exclude_image_category_list is not None: print("Excluding images categories", self.exclude_image_category_list) self.filename_to_anns = {f: anns for f, anns in self.filename_to_anns.items() if any([self.label_map[ann["category_id"] - 1]["name"] not in self.exclude_image_category_list for ann in anns])} # restrict annotations to considered categories if self.restricted_annotations_category_list is not None: print("filtering annotations to categories", self.restricted_annotations_category_list) self.filename_to_anns = {f: [ann for ann in anns if self.label_map[ann["category_id"] - 1]["name"] in self.restricted_annotations_category_list] for f, anns in self.filename_to_anns.items()} elif self.exclude_annotations_category_list is not None: print("Excluding annotations for object categories", self.exclude_annotations_category_list) self.filename_to_anns = {f: [ann for ann in anns if self.label_map[ann["category_id"] - 1]["name"] not in self.exclude_annotations_category_list] for f, anns in self.filename_to_anns.items()} # filter out images without annotations self.filename_to_anns = {f: anns for f, anns in self.filename_to_anns.items() if len(anns) > 0} n_before = len(self.anns) self.anns = [] for anns in self.filename_to_anns.values(): self.anns += anns n_after = len(self.anns) print("filtered annotations:", n_before, "->", n_after) def load_image(self, img_filename): path = img_filename.split('/')[-1] img_dir = os.path.join(self.data_dir, "train2014") if path.split('_')[1] == "train2014" else \ os.path.join(self.data_dir, "val2014") path = os.path.join(img_dir, path) img = np.array(Image.open(path).convert('RGB')) return img def load_annotation(self, img_filename): anns = self.filename_to_anns[img_filename.split("/")[-1]] img = self.coco.loadImgs(anns[0]['image_id'])[0] height = img['height'] width = img['width'] label = np.zeros((height, width, 1)) for ann in anns: label[:, :, 0] += self.coco.annToMask(ann)[:, :] if len(np.unique(label)) == 1: print("GT contains only background.") return (label != 0).astype(np.uint8) def read_frame(self, index, instance_id=None): # use a blend of both full random instance as well as the full object raw_frames = self.load_image(self.inputfile_lists[index]) raw_masks = self.load_annotation(self.inputfile_lists[index]) tensors_resized = resize({"image":raw_frames, "mask":raw_masks[:, :, 0]}, self.resize_mode, self.crop_size) return tensors_resized["image"], tensors_resized["mask"] def read_inputfile_lists(self): img_dir = '%s/%s/' % (self.data_dir, self.data_type) # Filtering the image file names since some of them do not have annotations. imgs = [os.path.join(img_dir,fn) for fn in self.filename_to_anns.keys()] return imgs def generate_clip(self, raw_frame, raw_mask): clip_frames, clip_masks = generate_clip_from_image(raw_frame, raw_mask[...,None], self.temporal_window) return clip_frames / 255.0, clip_masks[..., 0] def set_video_id(self, video): pass def get_video_ids(self): return [0] def __len__(self): return len(self.inputfile_lists) def __getitem__(self, index): info = {} info['name'] = "coco" info['num_frames'] = len(self.inputfile_lists) #info['shape'] = self.shape[sequence] raw_frames, raw_masks = self.read_frame(index) raw_frames, raw_masks = self.generate_clip(raw_frames, raw_masks) raw_frames = np.transpose(raw_frames, (3, 0, 1, 2)) raw_masks = raw_masks[np.newaxis] info['num_objects'] = len(np.unique(raw_masks)) # padding size to be divide by 32 _,_, h, w = raw_masks.shape new_h = h + 32 - h % 32 if h % 32 > 0 else h new_w = w + 32 - w % 32 if w % 32 > 0 else w # print(new_h, new_w) lh, uh = (new_h - h) / 2, (new_h - h) / 2 + (new_h - h) % 2 lw, uw = (new_w - w) / 2, (new_w - w) / 2 + (new_w - w) % 2 lh, uh, lw, uw = int(lh), int(uh), int(lw), int(uw) pad_masks = np.pad(raw_masks, ((0,0),(0,0),(lh, uh), (lw, uw)), mode='constant') pad_frames = np.pad(raw_frames, ((0, 0),(0, 0),(lh, uh), (lw, uw)), mode='constant') info['pad'] = ((lh, uh), (lw, uw)) return {'images': pad_frames.astype(np.float32), 'info': info, 'target': pad_masks, "proposals": pad_masks, "raw_proposals": pad_masks, 'raw_masks': pad_masks} class COCOInstanceDataset(COCODataset): def __init__(self, root, is_train=False, crop_size=None,temporal_window=8, resize_mode=ResizeMode.FIXED_SIZE): super(COCOInstanceDataset, self).__init__(root, is_train=is_train, crop_size=crop_size, temporal_window=temporal_window, resize_mode=resize_mode) def build_filename_to_anns_dict(self): for ann in self.anns: ann_id = ann['id'] img_id = ann['image_id'] img = self.coco.loadImgs(img_id) file_name = img[0]['file_name'] file_name = file_name + ":" + repr(img_id) + ":" + repr(ann_id) if file_name in self.filename_to_anns: print("Ignoring instance as an instance with the same id exists in filename_to_anns.") else: self.filename_to_anns[file_name] = [ann] self.filter_anns() def load_image(self, img_filename): path = img_filename.split(':')[0] path = path.split('/')[-1] img_dir = os.path.join(self.data_dir, "train2014") if path.split('_')[1] == "train2014" else \ os.path.join(self.data_dir, "val2014") path = os.path.join(img_dir, path) img = np.array(Image.open(path).convert('RGB')) return img def load_annotation(self, img_filename): ann = self.filename_to_anns[img_filename.split("/")[-1]] img = self.coco.loadImgs(ann[0]['image_id'])[0] height = img['height'] width = img['width'] label = np.zeros((height, width, 1)) label[:, :, 0] = self.coco.annToMask(ann[0])[:, :] if len(np.unique(label)) == 1: print("GT contains only background.") return label.astype(np.uint8) def __getitem__(self, item): input_dict = super(COCOInstanceDataset, self).__getitem__(item) input_dict['masks_guidance'] = input_dict['raw_masks'][:, 0] return input_dict class COCOEmbeddingDataset(COCODataset): def __init__(self, root, is_train=False, crop_size=None,temporal_window=8, resize_mode=ResizeMode.FIXED_SIZE, num_classes=2): super(COCOEmbeddingDataset, self).__init__(root=root, is_train=is_train, crop_size=crop_size, temporal_window=temporal_window, resize_mode=resize_mode) self.num_classes = num_classes def load_annotation(self, img_filename): anns = self.filename_to_anns[img_filename.split("/")[-1]] img = self.coco.loadImgs(anns[0]['image_id'])[0] height = img['height'] width = img['width'] label = np.zeros((height, width, 1)) for ann in anns: label[:, :, 0][self.coco.annToMask(ann) == 1] = (anns.index(ann) + 1) if len(np.unique(label)) == 1: print("GT contains only background.") return label.astype(np.uint8) def create_sem_seg_from_instances(self, img_filename, instances_masks): anns = self.filename_to_anns[img_filename.split("/")[-1]] label =
np.zeros_like(instances_masks)
numpy.zeros_like
from atm import reference import numpy as np from utils import geo def calc_atm_loss(freq_hz, gas_path_len_m=0, rain_path_len_m=0, cloud_path_len_m=0, atmosphere=None, pol_angle=0, el_angle=0): """ Ref: ITU-R P.676-11(09/2016) Attenuation by atmospheric gases ITU-R P.840-6 (09/2013) Attenuation due to clouds and fog ITU-R P.838-3 (03/2005) Specific attenuation model for rain for use in prediction methods Ported from MATLAB Code <NAME> 16 March 2021 :param freq_hz: Frequency [Hz] :param gas_path_len_m: Path length for gas loss [m] [default = 0] :param rain_path_len_m: Path length for rain loss [m] [default = 0] :param cloud_path_len_m: Path length for cloud loss [m] [default = 0] :param atmosphere: atm.reference.Atmosphere object (if not provided, standard atmosphere will be generated) :param pol_angle: Polarization angle [radians], 0 for Horizontal, pi/2 for Vertical, between 0 and pi for slant. [default = 0] :param el_angle: Elevation angle of the path under test [default = 0] :return: loss along the path due to atmospheric absorption [dB, one-way] """ if atmosphere is None: # Default atmosphere is the standard atmosphere at sea level, with no # fog/clouds or rain. atmosphere = reference.get_standard_atmosphere(0) # Compute loss coefficients if np.any(gas_path_len_m > 0): coeff_ox, coeff_water = get_gas_loss_coeff(freq_hz, atmosphere.press, atmosphere.water_vapor_press, atmosphere.temp) coeff_gas = coeff_ox + coeff_water else: coeff_gas = 0 if np.any(rain_path_len_m > 0) and np.any(atmosphere.rainfall) > 0: coeff_rain = get_rain_loss_coeff(freq_hz, pol_angle, el_angle, atmosphere.rainfall) else: coeff_rain = 0 if np.any(cloud_path_len_m > 0) and np.any(atmosphere.cloud_dens) > 0: coeff_cloud = get_fog_loss_coeff(freq_hz, atmosphere.cloud_dens, atmosphere.temp) else: coeff_cloud = 0 # Compute loss components loss_gass_db = coeff_gas * gas_path_len_m / 1.0e3 loss_rain_db = coeff_rain * rain_path_len_m / 1.0e3 loss_cloud_db = coeff_cloud * cloud_path_len_m / 1.0e3 return loss_gass_db + loss_rain_db + loss_cloud_db def calc_zenith_loss(freq_hz, alt_start_m=0, zenith_angle_deg=0): """ # Computes the cumulative loss from alt_start [m] to zenith (100 km # altitude), for the given frequencies (freq) in Hz and angle from zenith # zenith_angle, in degrees. # # Does not account for refraction of the signal as it travels through the # atmosphere; assumes a straight line propagation at the given zenith # angle. Ported from MATLAB Code <NAME> 17 March 2021 :param freq_hz: Carrier frequency [Hz] :param alt_start_m: Starting altitude [m] :param zenith_angle_deg: Angle between line of sight and zenith (straight up) [deg] :return zenith_loss: Cumulative loss to the edge of the atmosphere [dB] :return zenith_loss_o: Cumulative loss due to dry air [dB] :return zenith_loss_w: Cumulative loss due to water vapor [dB] """ # Add a new first dimension to all the inputs (if they're not scalar) if np.size(freq_hz) > 1: freq_hz = np.expand_dims(freq_hz, axis=0) if np.size(alt_start_m) > 1: alt_start_m = np.expand_dims(alt_start_m, axis=0) if np.size(zenith_angle_deg) > 1: zenith_angle_deg = np.expand_dims(zenith_angle_deg, axis=0) # Make Altitude Layers # From ITU-R P.676-11(12/2017), layers should be set at exponential intervals num_layers = 922 # Used for ceiling of 100 km layer_delta = .0001*np.exp(np.arange(num_layers)/100) # Layer thicknesses [km], eq 21 layer_delta = np.reshape(layer_delta, (num_layers, 1)) layer_top = np.cumsum(layer_delta) # [km] layer_bottom = layer_top - layer_delta # [km] layer_mid = (layer_top+layer_bottom)/2 # Drop layers below alt_start alt_start_km = alt_start_m / 1e3 layer_mask = layer_top >= min(alt_start_km) layer_bottom = layer_bottom[layer_mask] layer_mid = layer_mid[layer_mask] layer_top = layer_top[layer_mask] # Lookup standard atmosphere for each band atmosphere = reference.get_standard_atmosphere(layer_mid*1e3) # Compute loss coefficient for each band ao, aw = get_gas_loss_coeff(freq_hz, atmosphere.P, atmosphere.e, atmosphere.T) # Account for off-nadir paths and partial layers el_angle_deg = 90 - zenith_angle_deg layer_delta_eff = geo.compute_slant_range(max(layer_bottom, alt_start_km), layer_top, el_angle_deg, True) np.place(layer_delta_eff, layer_top <= alt_start_km, 0) # Set all layers below alt_start_km to zero # Zenith Loss by Layer (loss to pass through each layer) zenith_loss_by_layer_oxygen = ao*layer_delta_eff zenith_loss_by_layer_water = aw*layer_delta_eff # Cumulative Zenith Loss # Loss from ground to the bottom of each layer zenith_loss_o = np.squeeze(np.sum(zenith_loss_by_layer_oxygen, axis=0)) zenith_loss_w = np.squeeze(np.sum(zenith_loss_by_layer_water, axis=0)) zenith_loss = zenith_loss_o + zenith_loss_w return zenith_loss, zenith_loss_o, zenith_loss_w def get_rain_loss_coeff(freq_hz, pol_angle_rad, el_angle_rad, rainfall_rate): """ Computes the rain loss coefficient given a frequency, polarization, elevation angle, and rainfall rate, according to ITU-R P.838-3, 2005. Ported from MATLAB Code <NAME> 16 March 2021 :param freq_hz: Propagation Frequency [Hz] :param pol_angle_rad: Polarization angle [radians], 0 = Horizontal and pi/2 is Vertical. Slanted polarizations will have a value 0 and pi. :param el_angle_rad: Propagation path elevation angle [radians] :param rainfall_rate: Rainfall rate [mm/hr] :return: Loss coefficient [dB/km] caused by rain. """ # Add a new first dimension to all the inputs (if they're not scalar) if np.size(freq_hz) > 1: freq_hz = np.expand_dims(freq_hz, axis=0) if np.size(pol_angle_rad) > 1: pol_angle_rad = np.expand_dims(pol_angle_rad, axis=0) if np.size(el_angle_rad) > 1: el_angle_rad = np.expand_dims(el_angle_rad, axis=0) if np.size(rainfall_rate) > 1: rainfall_rate = np.expand_dims(rainfall_rate, axis=0) # Coeffs for kh a =
np.array([-5.3398, -0.35351, -0.23789, -0.94158])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 10 11:36:21 2020 @author: <NAME>, https://github.com/zhaofenqiang Contact: <EMAIL> """ import numpy as np import itertools from sklearn.neighbors import KDTree from utils import get_neighs_order import math, multiprocessing, os abspath = os.path.abspath(os.path.dirname(__file__)) def get_latlon_img(bi_inter, feat): inter_indices, inter_weights = bi_inter width = int(np.sqrt(len(inter_indices))) if len(feat.shape) == 1: feat = feat[:,np.newaxis] img = np.sum(np.multiply((feat[inter_indices.flatten()]).reshape((inter_indices.shape[0], inter_indices.shape[1], feat.shape[1])), np.repeat(inter_weights[:,:, np.newaxis], feat.shape[1], axis=-1)), axis=1) img = img.reshape((width, width, feat.shape[1])) return img def isATriangle(neigh_orders, face): """ neigh_orders_163842: int, (N*7) x 1 face: int, 3 x 1 """ neighs = neigh_orders[face[0],:] if face[1] not in neighs or face[2] not in neighs: return False neighs = neigh_orders[face[1],:] if face[2] not in neighs: return False return True def projectVertex(vertex, v0, v1, v2): normal = np.cross(v0 - v2, v1 - v2) if np.linalg.norm(normal) == 0: normal = v0 ratio = v0.dot(normal)/vertex.dot(normal) vertex_proj = ratio * vertex return vertex_proj def isOnSameSide(P, v0 , v1, v2): """ Check if P and v0 is on the same side """ edge_12 = v2 - v1 tmp0 = P - v1 tmp1 = v0 - v1 edge_12 = edge_12 / np.linalg.norm(edge_12) tmp0 = tmp0 / np.linalg.norm(tmp0) tmp1 = tmp1 / np.linalg.norm(tmp1) vec1 = np.cross(edge_12, tmp0) vec2 = np.cross(edge_12, tmp1) return vec1.dot(vec2) >= 0 def isInTriangle(vertex, v0, v1, v2): """ Check if the vertices is in the triangle composed by v0 v1 v2 vertex: N*3, check N vertices at the same time v0: (3,) v1: (3,) v2: (3,) """ # Project point onto the triangle plane P = projectVertex(vertex, v0, v1, v2) return isOnSameSide(P, v0, v1, v2) and isOnSameSide(P, v1, v2, v0) and isOnSameSide(P, v2, v0, v1) def singleVertexInterpo_7(vertex, vertices, tree, neigh_orders, k=7): if k > 15: # print("use neaerest neighbor, k=", k) _, top1_near_vertex_index = tree.query(vertex[np.newaxis,:], k=1) inter_weight = np.array([1,0,0]) inter_indices = np.array([top1_near_vertex_index[0][0], top1_near_vertex_index[0][0], top1_near_vertex_index[0][0]]) return inter_indices, inter_weight _, top7_near_vertex_index = tree.query(vertex[np.newaxis,:], k=k) candi_faces = [] for t in itertools.combinations(np.squeeze(top7_near_vertex_index), 3): tmp = np.asarray(t) # get the indices of the potential candidate triangles if isATriangle(neigh_orders, tmp): candi_faces.append(tmp) if candi_faces: candi_faces = np.asarray(candi_faces) else: if k > 20: print("cannot find candidate faces, top k shoulb be larger, function recursion, current k =", k) return singleVertexInterpo_7(vertex, vertices, tree, neigh_orders, k=k+5) orig_vertex_1 = vertices[candi_faces[:,0]] orig_vertex_2 = vertices[candi_faces[:,1]] orig_vertex_3 = vertices[candi_faces[:,2]] edge_12 = orig_vertex_2 - orig_vertex_1 # edge vectors from vertex 1 to 2 edge_13 = orig_vertex_3 - orig_vertex_1 # edge vectors from vertex 1 to 3 faces_normal = np.cross(edge_12, edge_13) # normals of all the faces tmp = (np.linalg.norm(faces_normal, axis=1) == 0).nonzero()[0] faces_normal[tmp] = orig_vertex_1[tmp] faces_normal_norm = faces_normal / np.linalg.norm(faces_normal, axis=1)[:,np.newaxis] # use formula p(x) = <p1,n>/<x,n> * x in spherical demons paper to calculate the intersection with each faces tmp = np.sum(orig_vertex_1 * faces_normal_norm, axis=1) / np.sum(vertex * faces_normal_norm, axis=1) ratio = tmp[:, np.newaxis] P = ratio * vertex # intersection points # find the triangle face that the inersection is in, if the intersection # is in, the area of 3 small triangles is equal to the whole one area_BCP = np.linalg.norm(np.cross(orig_vertex_3-P, orig_vertex_2-P), axis=1)/2.0 area_ACP = np.linalg.norm(np.cross(orig_vertex_3-P, orig_vertex_1-P), axis=1)/2.0 area_ABP = np.linalg.norm(np.cross(orig_vertex_2-P, orig_vertex_1-P), axis=1)/2.0 area_ABC = np.linalg.norm(faces_normal, axis=1)/2.0 tmp = area_BCP + area_ACP + area_ABP - area_ABC index = np.argmin(tmp) if tmp[index] > 1e-06: if k > 30: print("candidate faces don't contain the correct one, top k shoulb be larger, function recursion, current k =", k) return singleVertexInterpo_7(vertex, vertices, tree, neigh_orders, k=k+5) w = np.array([area_BCP[index], area_ACP[index], area_ABP[index]]) if w.sum() == 0: _, top1_near_vertex_index = tree.query(vertex[np.newaxis,:], k=1) inter_weight = np.array([1,0,0]) inter_indices = np.array([top1_near_vertex_index[0][0], top1_near_vertex_index[0][0], top1_near_vertex_index[0][0]]) else: inter_weight = w / w.sum() inter_indices = candi_faces[index] # print("tmp[index] = ", tmp[index]) # if isInTriangle(vertex, vertices[candi_faces[index][0]], vertices[candi_faces[index][1]], vertices[candi_faces[index][2]]): # assert False, "threshold should be smaller" # else: return inter_indices, inter_weight def singleVertexInterpo(vertex, vertices, tree, neigh_orders, feat): """ Compute the three indices and weights for sphere interpolation at given position. """ _, top3_near_vertex_index = tree.query(vertex[np.newaxis,:], k=3) top3_near_vertex_index = np.squeeze(top3_near_vertex_index) if isATriangle(neigh_orders, top3_near_vertex_index): v0 = vertices[top3_near_vertex_index[0]] v1 = vertices[top3_near_vertex_index[1]] v2 = vertices[top3_near_vertex_index[2]] normal = np.cross(v1-v2, v0-v2) vertex_proj = v0.dot(normal)/vertex.dot(normal) * vertex area_BCP = np.linalg.norm(np.cross(v2-vertex_proj, v1-vertex_proj))/2.0 area_ACP = np.linalg.norm(np.cross(v2-vertex_proj, v0-vertex_proj))/2.0 area_ABP = np.linalg.norm(np.cross(v1-vertex_proj, v0-vertex_proj))/2.0 area_ABC = np.linalg.norm(normal)/2.0 if area_BCP + area_ACP + area_ABP - area_ABC > 1e-5: inter_indices, inter_weight = singleVertexInterpo_7(vertex, vertices, tree, neigh_orders) else: inter_weight = np.array([area_BCP, area_ACP, area_ABP]) inter_weight = inter_weight / inter_weight.sum() inter_indices = top3_near_vertex_index else: inter_indices, inter_weight = singleVertexInterpo_7(vertex, vertices, tree, neigh_orders) # print(inter_weight.shape) return np.sum(np.multiply(feat[inter_indices], np.repeat(inter_weight[:,np.newaxis], feat.shape[1], axis=1)), axis=0) def multiVertexInterpo(vertexs, vertices, tree, neigh_orders, feat): feat_inter = np.zeros((vertexs.shape[0], feat.shape[1])) for i in range(vertexs.shape[0]): feat_inter[i,:] = singleVertexInterpo(vertexs[i,:], vertices, tree, neigh_orders, feat) return feat_inter def resampleStdSphereSurf(n_curr, n_next, feat, upsample_neighbors): assert len(feat) == n_curr, "feat length not cosistent!" assert n_next == n_curr*4-6, "n_next == n_curr*4-6, error" feat_inter = np.zeros((n_next, feat.shape[1])) feat_inter[0:n_curr, :] = feat feat_inter[n_curr:, :] = feat[upsample_neighbors].reshape(n_next-n_curr, 2, feat.shape[1]).mean(1) return feat_inter def resampleSphereSurf(vertices_fix, vertices_inter, feat, faces=None, std=False, upsample_neighbors=None, neigh_orders=None): """ resample sphere surface Parameters ---------- vertices_fix : N*3, numpy array DESCRIPTION. vertices_inter : unknown*3, numpy array, points to be interpolated DESCRIPTION. feat : N*D, features to be interpolated DESCRIPTION. faces : N*4, numpy array, the first column shoud be all 3 is the original faces directly read using read_vtk,. The default is None. std : bool standard sphere interpolation, e.g., interpolate 10242 from 2562.. The default is False. upsample_neighbors : TYPE, optional DESCRIPTION. The default is None. neigh_orders : TYPE, optional DESCRIPTION. The default is None. Returns ------- None. """ # template = read_vtk('/media/fenqiang/DATA/unc/Data/registration/presentation/regis_sulc_2562_3d_smooth0p33_phiconsis1_3model/training_10242/MNBCP107842_593.lh.SphereSurf.Orig.sphere.resampled.642.DL.origin_3.phi_resampled.2562.moved.sucu_resampled.2562.DL.origin_3.phi_resampled.10242.moved.vtk') # vertices_fix = template['vertices'] # feat = template['sulc'] # vertices_inter = read_vtk('/media/fenqiang/DATA/unc/Data/Template/Atlas-20200107-newsulc/18/18.lh.SphereSurf.10242.rotated_2.vtk') # vertices_inter = vertices_inter['vertices'] assert vertices_fix.shape[0] == feat.shape[0], "vertices.shape[0] == feat.shape[0], error" assert vertices_fix.shape[1] == 3, "vertices size not right" vertices_fix = vertices_fix.astype(np.float64) vertices_inter = vertices_inter.astype(np.float64) feat = feat.astype(np.float64) vertices_fix = vertices_fix / np.linalg.norm(vertices_fix, axis=1)[:,np.newaxis] # normalize to 1 vertices_inter = vertices_inter / np.linalg.norm(vertices_inter, axis=1)[:,np.newaxis] # normalize to 1 if len(feat.shape) == 1: feat = feat[:,np.newaxis] if std: assert upsample_neighbors is not None, " upsample_neighbors is None" return resampleStdSphereSurf(len(vertices_fix), len(vertices_inter), feat, upsample_neighbors) if neigh_orders is None: if faces is not None: assert faces.shape[1] == 4, "faces shape is wrong, should be N*4" assert (faces[:,0] == 3).sum() == faces.shape[0], "the first column of faces should be all 3" faces = faces[:,[1,2, 3]] neigh_orders = np.zeros((vertices_fix.shape[0],30), dtype=np.int64)-1 for i in range(faces.shape[0]): if faces[i,1] not in neigh_orders[faces[i,0]]: neigh_orders[faces[i,0], np.where(neigh_orders[faces[i,0]] == -1)[0][0]] = faces[i,1] if faces[i,2] not in neigh_orders[faces[i,0]]: neigh_orders[faces[i,0], np.where(neigh_orders[faces[i,0]] == -1)[0][0]] = faces[i,2] if faces[i,0] not in neigh_orders[faces[i,1]]: neigh_orders[faces[i,1], np.where(neigh_orders[faces[i,1]] == -1)[0][0]] = faces[i,0] if faces[i,2] not in neigh_orders[faces[i,1]]: neigh_orders[faces[i,1], np.where(neigh_orders[faces[i,1]] == -1)[0][0]] = faces[i,2] if faces[i,1] not in neigh_orders[faces[i,2]]: neigh_orders[faces[i,2], np.where(neigh_orders[faces[i,2]] == -1)[0][0]] = faces[i,1] if faces[i,0] not in neigh_orders[faces[i,2]]: neigh_orders[faces[i,2], np.where(neigh_orders[faces[i,2]] == -1)[0][0]] = faces[i,0] else: neigh_orders = get_neighs_order(abspath+'/neigh_indices/adj_mat_order_'+ str(vertices_fix.shape[0]) +'.mat') neigh_orders = neigh_orders.reshape(vertices_fix.shape[0], 7) else: neigh_orders = neigh_orders.reshape(vertices_fix.shape[0], 7) feat_inter = np.zeros((vertices_inter.shape[0], feat.shape[1])) tree = KDTree(vertices_fix, leaf_size=10) # build kdtree """ Single process, single thread: 163842: 54.5s, 40962: 12.7s, 10242: 3.2s, 2562: 0.8s """ # for i in range(vertices_inter.shape[0]): # print(i) # feat_inter[i,:] = singleVertexInterpo(vertices_inter[i,:], vertices_fix, tree, neigh_orders, feat) """ multiple processes method: 163842: 9.6s, 40962: 2.8s, 10242: 1.0s, 2562: 0.28s """ pool = multiprocessing.Pool() cpus = multiprocessing.cpu_count() vertexs_num_per_cpu = math.ceil(vertices_inter.shape[0]/cpus) results = [] for i in range(cpus): results.append(pool.apply_async(multiVertexInterpo, args=(vertices_inter[i*vertexs_num_per_cpu:(i+1)*vertexs_num_per_cpu,:], vertices_fix, tree, neigh_orders, feat,))) pool.close() pool.join() for i in range(cpus): feat_inter[i*vertexs_num_per_cpu:(i+1)*vertexs_num_per_cpu,:] = results[i].get() return
np.squeeze(feat_inter)
numpy.squeeze
# -*- coding: utf-8 -*- """ Created on Fri Feb 19 14:27:01 2021 @author: Hatlab_3 """ # import easygui from plottr.apps.autoplot import autoplotDDH5, script, main from plottr.data.datadict_storage import all_datadicts_from_hdf5 import matplotlib.pyplot as plt import numpy as np from data_processing.Helper_Functions import get_name_from_path, shift_array_relative_to_middle, log_normalize_to_row, select_closest_to_target, log_normalize_up_to_row import matplotlib.colors as color from scipy.ndimage import gaussian_filter #Get Taco (irregular imshow) def make_tacos(bias_current, gen_frequency, gen_power, calculated_gain, replace_nan = False, vmin = 15, vmax = 25, fancy = False, target = 20): fig, ax = plt.subplots(1,1) if replace_nan: calculated_gain[np.isnan(calculated_gain)] = 0 img = ax.scatter(gen_frequency/1e6, gen_power, c = calculated_gain, cmap = 'seismic', vmin = vmin, vmax = vmax, zorder = 1) cb = fig.colorbar(img, ax = ax) unique_freqs = np.unique(gen_frequency) best_powers = [select_closest_to_target(gen_power[gen_frequency == f], calculated_gain[gen_frequency == f], target) for f in unique_freqs] ax.plot(unique_freqs/1e6, best_powers, 'k-', lw = 2) return fig, ax, cb def make_gain_profiles(filepath, replace_nan = False, vmin = 15, vmax = 25, angles = [45, 45]): gainDict = all_datadicts_from_hdf5(filepath)['data'] calc_gain = gainDict.extract('calculated_gain').data_vals('calculated_gain') gen_frequency_calc = gainDict.extract('calculated_gain').data_vals('gen_frequency') gen_power_calc = gainDict.extract('calculated_gain').data_vals('gen_power') unique_freqs = np.unique(gen_frequency_calc) best_powers = [select_closest_to_target(gen_power_calc[gen_frequency_calc == f], calc_gain[gen_frequency_calc == f], 20) for f in unique_freqs] gain_traces = gainDict.extract('gain_trace').data_vals('gain_trace') gen_power = gainDict.extract('gain_trace').data_vals('gen_power') vna_freqs = gainDict.extract('gain_trace').data_vals('vna_frequency') gen_frequency_raw = gainDict.extract('gain_trace').data_vals('gen_frequency') fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) ax.azim = angles[0] ax.elev = angles[1] for best_power in best_powers: gp_filt = np.isclose(gen_power, best_power, atol = 0.05) f_val= np.round(np.average(gen_frequency_raw[gp_filt])/1e6, 0) ax.plot(f_val*np.ones(np.size(vna_freqs[gp_filt][0])), vna_freqs[gp_filt][0]/1e6, gain_traces[gp_filt][0]) return fig, ax def make_gain_surface(filepath, replace_nan = False, vmin = 15, vmax = 25, angles = [45, 45]): gainDict = all_datadicts_from_hdf5(filepath)['data'] calc_gain = gainDict.extract('calculated_gain').data_vals('calculated_gain') gen_frequency_calc = gainDict.extract('calculated_gain').data_vals('gen_frequency') gen_power_calc = gainDict.extract('calculated_gain').data_vals('gen_power') unique_freqs = np.unique(gen_frequency_calc) best_powers = [select_closest_to_target(gen_power_calc[gen_frequency_calc == f], calc_gain[gen_frequency_calc == f], 20) for f in unique_freqs] gain_traces = gainDict.extract('gain_trace').data_vals('gain_trace') gen_power = gainDict.extract('gain_trace').data_vals('gen_power') vna_freqs = gainDict.extract('gain_trace').data_vals('vna_frequency') gen_frequency_raw = gainDict.extract('gain_trace').data_vals('gen_frequency') fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) ax.azim = angles[0] ax.elev = angles[1] gen_f_array = [] sig_f_array = [] gain_array = [] for best_power in best_powers: gp_filt = gen_power == best_power f_val= np.round(np.average(gen_frequency_raw[gp_filt])/1e6, 0) gen_f_array.append(f_val*np.ones(np.size(vna_freqs[gp_filt][0]))) sig_f_array.append(vna_freqs[gp_filt][0]/1e6) gain_array.append(gain_traces[gp_filt][0]) gen_f_array = np.array(gen_f_array) sig_f_array = np.array(sig_f_array) gain_array = np.array(gain_array) ax.plot_surface(gen_f_array, sig_f_array, gain_array, rstride=1, cstride=1, cmap='viridis', edgecolor='none') return fig, ax def make_sat_img_plot(sat_bias_current, sat_gen_freq, sat_vna_powers, sat_gain, levels = [-2,-1.5,-1, -0.25, 0.25,1, 1.5,2], norm_power = -40, x_val = None, filter_window = 0, vmin = -1, vmax = 1): y_norm_val = norm_power #Signal power at which to normalize the rest of the plot to # print(f"Normalized to VNA_Power = {y_norm_val}dB") fig, ax = plt.subplots() colors = [color.hex2color('#4444FF'), color.hex2color('#FFFFFF'), color.hex2color('#888888'), color.hex2color('#888888'),color.hex2color('#FFFFFF'), color.hex2color('#FF4444')] _cmap = color.LinearSegmentedColormap.from_list('my_cmap', colors) smoothed_normed_data = log_normalize_to_row(sat_gen_freq, sat_vna_powers[0], gaussian_filter(sat_gain.T, (filter_window,0)), y_norm_val= y_norm_val) img = ax.pcolormesh(sat_gen_freq/1e6, sat_vna_powers[0], smoothed_normed_data, # gaussian_filter(sat_gain.T, 5), cmap = _cmap, vmin = vmin, vmax = vmax) #getting saturation points sat_powers = [] for col in smoothed_normed_data.T: buffer = np.size(col[sat_vna_powers[0]<= y_norm_val]) #append locations of +1dB and -1dB points try: pos_loc = buffer+np.min(np.where(np.isclose(col[sat_vna_powers[0]>y_norm_val], 1, atol = 1e-2))[0]) except ValueError: pos_loc = np.size(col)-1 try: neg_loc = buffer+np.min(np.where(np.isclose(col[sat_vna_powers[0]>y_norm_val], -1, atol = 1e-2))[0]) except ValueError: neg_loc = np.size(col)-1 # print(f"Pos: {pos_loc} \nNeg: {neg_loc}") loc_arr = np.array([pos_loc, neg_loc]) loc_arr = np.floor(loc_arr[np.logical_not(np.isnan(loc_arr))]).astype(int) # print(loc_arr) loc = np.min(loc_arr) sat_powers.append(sat_vna_powers[0][loc]) ax.plot((np.array(sat_gen_freq+(sat_gen_freq[1]-sat_gen_freq[0])/2)/1e6)[0:-1], sat_powers[0:-1], 'k o') #plot the best one as a star max_loc = np.where(sat_powers[0:-1] == np.max(sat_powers[0:-1]))[0][0] # print(max_loc) plt.plot((np.array(sat_gen_freq+(sat_gen_freq[1]-sat_gen_freq[0])/2)/1e6)[max_loc], sat_powers[max_loc], 'r*', markersize = 5) ax.hlines(y = y_norm_val, xmin = np.min(sat_gen_freq/1e6), xmax = np.max(sat_gen_freq/1e6), color = 'b', lw = 2) return fig, ax, img def superTACO_Lines(filepaths, angles = [45,45], quanta_size = None, quant_offset = None): #step 1: assemble best powers into bias_currents vs. (gen_freq vs. best_powers) array #ie for each n bias current there is a gen_freq array #and for each m(n) gen_freq there is one gen_power that is best (could be NaN if garbage) #feed this into n mplot3d commands each with their own oclor and legend label fig = plt.figure() ax = fig.add_subplot(111, projection = '3d') ax.azim = angles[0] ax.elev = angles[1] bias_currents = [] best_gen_frequencies = [] best_gen_powers = [] for gain_filepath in filepaths: #extract the best gen powers gain_dicts = all_datadicts_from_hdf5(gain_filepath) gainDict = gain_dicts['data'] gain_data = gainDict.extract('calculated_gain') [bias_current, gen_frequency, gen_power, calc_gain] = [gain_data.data_vals('bias_current'), gain_data.data_vals('gen_frequency'), gain_data.data_vals('gen_power'), gain_data.data_vals('calculated_gain') ] for current in np.unique(bias_current): #could be multiple bias currents in one single TACO datafile bias_currents.append(current) print(f"{gain_filepath}\nCURRENT: {current*1000}mA") filt = bias_current == current cfreqs = gen_frequency[filt] cpowers = gen_power[filt] unique_freqs = np.unique(cfreqs) cgain = calc_gain[filt] best_powers = [select_closest_to_target(cpowers[cfreqs == f], cgain[cfreqs == f], 20) for f in unique_freqs] #convert freqs to detuning from best power best_power = np.min(best_powers) best_gen_powers.append(best_power) best_freq = np.average(unique_freqs[np.where(best_powers == best_power)]) best_gen_frequencies.append(best_freq) adjusted_freqs = unique_freqs - best_freq if quanta_size != None: quant_frac =
np.round((current-quant_offset)/quanta_size, 3)
numpy.round
import os import numpy as np import wx import wx.lib.buttons as buttons import dateutil # required by matplotlib #from matplotlib import pyplot as plt import matplotlib matplotlib.use('Agg') # Important for Windows version of installer from matplotlib import rc as matplotlib_rc try: from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas except Exception as e: print('') print('Error: problem importing `matplotlib.backends.backend_wx`.') import platform if platform.system()=='Darwin': print('') print('pyDatView help:') print(' This is a typical issue on MacOS, most likely you are') print(' using the native MacOS python with the native matplolib') print(' library, which is incompatible with `wxPython`.') print('') print(' You can solve this by either:') print(' - using python3, and pip3 e.g. installing it with brew') print(' - using a virtual environment with python 2 or 3') print(' - using anaconda with python 2 or 3'); print('') import sys sys.exit(1) else: raise e from matplotlib.figure import Figure from matplotlib.pyplot import rcParams as pyplot_rc from matplotlib import font_manager from pandas.plotting import register_matplotlib_converters import gc from .common import * # unique, CHAR from .plotdata import PlotData, compareMultiplePD from .GUICommon import * from .GUIToolBox import MyMultiCursor, MyNavigationToolbar2Wx, TBAddTool, TBAddCheckTool from .GUIMeasure import GUIMeasure from . import icons font = {'size' : 8} matplotlib_rc('font', **font) pyplot_rc['agg.path.chunksize'] = 20000 class PDFCtrlPanel(wx.Panel): def __init__(self, parent): super(PDFCtrlPanel,self).__init__(parent) self.parent = parent lb = wx.StaticText( self, -1, 'Number of bins:') self.scBins = wx.SpinCtrl(self, value='50',size=wx.Size(70,-1)) self.scBins.SetRange(3, 10000) self.cbSmooth = wx.CheckBox(self, -1, 'Smooth',(10,10)) self.cbSmooth.SetValue(False) dummy_sizer = wx.BoxSizer(wx.HORIZONTAL) dummy_sizer.Add(lb ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.scBins ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.cbSmooth ,0, flag = wx.CENTER|wx.LEFT,border = 6) self.SetSizer(dummy_sizer) self.Bind(wx.EVT_TEXT , self.onPDFOptionChange, self.scBins) self.Bind(wx.EVT_CHECKBOX, self.onPDFOptionChange) self.Hide() def onPDFOptionChange(self,event=None): self.parent.load_and_draw(); # DATA HAS CHANGED class MinMaxPanel(wx.Panel): def __init__(self, parent): super(MinMaxPanel,self).__init__(parent) self.parent = parent self.cbxMinMax = wx.CheckBox(self, -1, 'xMinMax',(10,10)) self.cbyMinMax = wx.CheckBox(self, -1, 'yMinMax',(10,10)) self.cbxMinMax.SetValue(False) self.cbyMinMax.SetValue(True) dummy_sizer = wx.BoxSizer(wx.HORIZONTAL) dummy_sizer.Add(self.cbxMinMax ,0, flag=wx.CENTER|wx.LEFT, border = 1) dummy_sizer.Add(self.cbyMinMax ,0, flag=wx.CENTER|wx.LEFT, border = 1) self.SetSizer(dummy_sizer) self.Bind(wx.EVT_CHECKBOX, self.onMinMaxChange) self.Hide() def onMinMaxChange(self,event=None): self.parent.load_and_draw(); # DATA HAS CHANGED class CompCtrlPanel(wx.Panel): def __init__(self, parent): super(CompCtrlPanel,self).__init__(parent) self.parent = parent lblList = ['Relative', '|Relative|','Ratio','Absolute','Y-Y'] self.rbType = wx.RadioBox(self, label = 'Type', choices = lblList, majorDimension = 1, style = wx.RA_SPECIFY_ROWS) dummy_sizer = wx.BoxSizer(wx.HORIZONTAL) dummy_sizer.Add(self.rbType ,0, flag = wx.CENTER|wx.LEFT,border = 1) self.SetSizer(dummy_sizer) self.rbType.Bind(wx.EVT_RADIOBOX,self.onTypeChange) self.Hide() def onTypeChange(self,e): self.parent.load_and_draw(); # DATA HAS CHANGED class SpectralCtrlPanel(wx.Panel): def __init__(self, parent): super(SpectralCtrlPanel,self).__init__(parent) self.parent = parent # --- GUI widgets lb = wx.StaticText( self, -1, 'Type:') self.cbType = wx.ComboBox(self, choices=['PSD','f x PSD','Amplitude'] , style=wx.CB_READONLY) self.cbType.SetSelection(0) lbAveraging = wx.StaticText( self, -1, 'Avg.:') self.cbAveraging = wx.ComboBox(self, choices=['None','Welch'] , style=wx.CB_READONLY) self.cbAveraging.SetSelection(1) self.lbAveragingMethod = wx.StaticText( self, -1, 'Window:') self.cbAveragingMethod = wx.ComboBox(self, choices=['Hamming','Hann','Rectangular'] , style=wx.CB_READONLY) self.cbAveragingMethod.SetSelection(0) self.lbP2 = wx.StaticText( self, -1, '2^n:') self.scP2 = wx.SpinCtrl(self, value='11',size=wx.Size(40,-1)) self.lbWinLength = wx.StaticText( self, -1, '(2048) ') self.scP2.SetRange(3, 19) lbMaxFreq = wx.StaticText( self, -1, 'Xlim:') self.tMaxFreq = wx.TextCtrl(self,size = (30,-1),style=wx.TE_PROCESS_ENTER) self.tMaxFreq.SetValue("-1") self.cbDetrend = wx.CheckBox(self, -1, 'Detrend',(10,10)) lbX = wx.StaticText( self, -1, 'x:') self.cbTypeX = wx.ComboBox(self, choices=['1/x','2pi/x','x'] , style=wx.CB_READONLY) self.cbTypeX.SetSelection(0) # Layout dummy_sizer = wx.BoxSizer(wx.HORIZONTAL) dummy_sizer.Add(lb ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.cbType ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(lbAveraging ,0, flag = wx.CENTER|wx.LEFT,border = 6) dummy_sizer.Add(self.cbAveraging ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.lbAveragingMethod,0, flag = wx.CENTER|wx.LEFT,border = 6) dummy_sizer.Add(self.cbAveragingMethod,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.lbP2 ,0, flag = wx.CENTER|wx.LEFT,border = 6) dummy_sizer.Add(self.scP2 ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.lbWinLength ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(lbMaxFreq ,0, flag = wx.CENTER|wx.LEFT,border = 6) dummy_sizer.Add(self.tMaxFreq ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(lbX ,0, flag = wx.CENTER|wx.LEFT,border = 6) dummy_sizer.Add(self.cbTypeX ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.cbDetrend ,0, flag = wx.CENTER|wx.LEFT,border = 7) self.SetSizer(dummy_sizer) self.Bind(wx.EVT_COMBOBOX ,self.onSpecCtrlChange) self.Bind(wx.EVT_TEXT ,self.onP2ChangeText ,self.scP2 ) self.Bind(wx.EVT_TEXT_ENTER,self.onXlimChange ,self.tMaxFreq ) self.Bind(wx.EVT_CHECKBOX ,self.onDetrendChange ,self.cbDetrend) self.Hide() def onXlimChange(self,event=None): self.parent.redraw_same_data(); def onSpecCtrlChange(self,event=None): self.parent.load_and_draw() # Data changes def onDetrendChange(self,event=None): self.parent.load_and_draw() # Data changes def onP2ChangeText(self,event=None): nExp=self.scP2.GetValue() self.updateP2(nExp) self.parent.load_and_draw() # Data changes def updateP2(self,P2): self.lbWinLength.SetLabel("({})".format(2**P2)) class PlotTypePanel(wx.Panel): def __init__(self, parent): # Superclass constructor super(PlotTypePanel,self).__init__(parent) #self.SetBackgroundColour('yellow') # data self.parent = parent # --- Ctrl Panel self.cbRegular = wx.RadioButton(self, -1, 'Regular',style=wx.RB_GROUP) self.cbPDF = wx.RadioButton(self, -1, 'PDF' , ) self.cbFFT = wx.RadioButton(self, -1, 'FFT' , ) self.cbMinMax = wx.RadioButton(self, -1, 'MinMax' , ) self.cbCompare = wx.RadioButton(self, -1, 'Compare', ) self.cbRegular.SetValue(True) self.Bind(wx.EVT_RADIOBUTTON, self.pdf_select , self.cbPDF ) self.Bind(wx.EVT_RADIOBUTTON, self.fft_select , self.cbFFT ) self.Bind(wx.EVT_RADIOBUTTON, self.minmax_select , self.cbMinMax ) self.Bind(wx.EVT_RADIOBUTTON, self.compare_select, self.cbCompare) self.Bind(wx.EVT_RADIOBUTTON, self.regular_select, self.cbRegular) # LAYOUT cb_sizer = wx.FlexGridSizer(rows=5, cols=1, hgap=0, vgap=0) cb_sizer.Add(self.cbRegular , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbPDF , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbFFT , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbMinMax , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbCompare , 0, flag=wx.ALL, border=1) self.SetSizer(cb_sizer) def plotType(self): plotType='Regular' if self.cbMinMax.GetValue(): plotType='MinMax' elif self.cbPDF.GetValue(): plotType='PDF' elif self.cbFFT.GetValue(): plotType='FFT' elif self.cbCompare.GetValue(): plotType='Compare' return plotType def regular_select(self, event=None): self.clear_measures() self.parent.cbLogY.SetValue(False) # self.parent.spcPanel.Hide(); self.parent.pdfPanel.Hide(); self.parent.cmpPanel.Hide(); self.parent.mmxPanel.Hide(); self.parent.slEsth.Hide(); self.parent.plotsizer.Layout() # self.parent.load_and_draw() # Data changes def compare_select(self, event=None): self.clear_measures() self.parent.cbLogY.SetValue(False) self.parent.show_hide(self.parent.cmpPanel, self.cbCompare.GetValue()) self.parent.spcPanel.Hide(); self.parent.pdfPanel.Hide(); self.parent.mmxPanel.Hide(); self.parent.plotsizer.Layout() self.parent.load_and_draw() # Data changes def fft_select(self, event=None): self.clear_measures() self.parent.show_hide(self.parent.spcPanel, self.cbFFT.GetValue()) self.parent.cbLogY.SetValue(self.cbFFT.GetValue()) self.parent.pdfPanel.Hide(); self.parent.mmxPanel.Hide(); self.parent.plotsizer.Layout() self.parent.load_and_draw() # Data changes def pdf_select(self, event=None): self.clear_measures() self.parent.cbLogX.SetValue(False) self.parent.cbLogY.SetValue(False) self.parent.show_hide(self.parent.pdfPanel, self.cbPDF.GetValue()) self.parent.spcPanel.Hide(); self.parent.cmpPanel.Hide(); self.parent.mmxPanel.Hide(); self.parent.plotsizer.Layout() self.parent.load_and_draw() # Data changes def minmax_select(self, event): self.clear_measures() self.parent.cbLogY.SetValue(False) self.parent.show_hide(self.parent.mmxPanel, self.cbMinMax.GetValue()) self.parent.spcPanel.Hide(); self.parent.pdfPanel.Hide(); self.parent.cmpPanel.Hide(); self.parent.plotsizer.Layout() self.parent.load_and_draw() # Data changes def clear_measures(self): self.parent.rightMeasure.clear() self.parent.leftMeasure.clear() self.parent.lbDeltaX.SetLabel('') self.parent.lbDeltaY.SetLabel('') class EstheticsPanel(wx.Panel): def __init__(self, parent): wx.Panel.__init__(self, parent) self.parent=parent #self.SetBackgroundColour('red') lbFont = wx.StaticText( self, -1, 'Font:') self.cbFont = wx.ComboBox(self, choices=['6','7','8','9','10','11','12','13','14','15','16','17','18'] , style=wx.CB_READONLY) self.cbFont.SetSelection(2) # NOTE: we don't offer "best" since best is slow lbLegend = wx.StaticText( self, -1, 'Legend:') self.cbLegend = wx.ComboBox(self, choices=['None','Upper right','Upper left','Lower left','Lower right','Right','Center left','Center right','Lower center','Upper center','Center'] , style=wx.CB_READONLY) self.cbLegend.SetSelection(1) lbLgdFont = wx.StaticText( self, -1, 'Legend font:') self.cbLgdFont = wx.ComboBox(self, choices=['6','7','8','9','10','11','12','13','14','15','16','17','18'] , style=wx.CB_READONLY) self.cbLgdFont.SetSelection(2) lbLW = wx.StaticText( self, -1, 'Line width:') self.cbLW = wx.ComboBox(self, choices=['0.5','1.0','1.5','2.0','2.5','3.0'] , style=wx.CB_READONLY) self.cbLW.SetSelection(2) lbMS = wx.StaticText( self, -1, 'Marker size:') self.cbMS= wx.ComboBox(self, choices=['0.5','1','2','3','4','5','6','7','8'] , style=wx.CB_READONLY) self.cbMS.SetSelection(2) # Layout #dummy_sizer = wx.BoxSizer(wx.HORIZONTAL) dummy_sizer = wx.WrapSizer(orient=wx.HORIZONTAL) dummy_sizer.Add(lbFont ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(self.cbFont ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(lbLW ,0, flag = wx.CENTER|wx.LEFT,border = 5) dummy_sizer.Add(self.cbLW ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(lbMS ,0, flag = wx.CENTER|wx.LEFT,border = 5) dummy_sizer.Add(self.cbMS ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(lbLegend ,0, flag = wx.CENTER|wx.LEFT,border = 5) dummy_sizer.Add(self.cbLegend ,0, flag = wx.CENTER|wx.LEFT,border = 1) dummy_sizer.Add(lbLgdFont ,0, flag = wx.CENTER|wx.LEFT,border = 5) dummy_sizer.Add(self.cbLgdFont ,0, flag = wx.CENTER|wx.LEFT,border = 1) self.SetSizer(dummy_sizer) self.Hide() # Callbacks self.Bind(wx.EVT_COMBOBOX ,self.onAnyEsthOptionChange) self.cbFont.Bind(wx.EVT_COMBOBOX ,self.onFontOptionChange) def onAnyEsthOptionChange(self,event=None): self.parent.redraw_same_data() def onFontOptionChange(self,event=None): matplotlib_rc('font', **{'size':int(self.cbFont.Value) }) # affect all (including ticks) self.onAnyEsthOptionChange() class PlotPanel(wx.Panel): def __init__(self, parent, selPanel,infoPanel=None, mainframe=None): # Superclass constructor super(PlotPanel,self).__init__(parent) # Font handling font = parent.GetFont() font.SetPointSize(font.GetPointSize()-1) self.SetFont(font) # Preparing a special font manager for chinese characters self.specialFont=None CH_F_PATHS = [ os.path.join(matplotlib.get_data_path(), 'fonts/ttf/SimHei.ttf'), os.path.join(os.path.dirname(__file__),'../SimHei.ttf')] for fpath in CH_F_PATHS: if os.path.exists(fpath): fontP = font_manager.FontProperties(fname=fpath) fontP.set_size(font.GetPointSize()) self.specialFont=fontP break # data self.selPanel = selPanel # <<< dependency with selPanel should be minimum self.selMode = '' self.infoPanel=infoPanel self.infoPanel.setPlotMatrixCallbacks(self._onPlotMatrixLeftClick, self._onPlotMatrixRightClick) self.parent = parent self.mainframe= mainframe self.plotData = [] self.plotDataOptions=dict() if self.selPanel is not None: bg=self.selPanel.BackgroundColour self.SetBackgroundColour(bg) # sowhow, our parent has a wrong color #self.SetBackgroundColour('red') self.leftMeasure = GUIMeasure(1, 'firebrick') self.rightMeasure = GUIMeasure(2, 'darkgreen') self.xlim_prev = [[0, 1]] self.ylim_prev = [[0, 1]] # GUI self.fig = Figure(facecolor="white", figsize=(1, 1)) register_matplotlib_converters() self.canvas = FigureCanvas(self, -1, self.fig) self.canvas.mpl_connect('motion_notify_event', self.onMouseMove) self.canvas.mpl_connect('button_press_event', self.onMouseClick) self.canvas.mpl_connect('button_release_event', self.onMouseRelease) self.canvas.mpl_connect('draw_event', self.onDraw) self.clickLocation = (None, 0, 0) self.navTBTop = MyNavigationToolbar2Wx(self.canvas, ['Home', 'Pan']) self.navTBBottom = MyNavigationToolbar2Wx(self.canvas, ['Subplots', 'Save']) TBAddCheckTool(self.navTBBottom,'', icons.chart.GetBitmap(), self.onEsthToggle) self.esthToggle=False self.navTBBottom.Realize() #self.navTB = wx.ToolBar(self, style=wx.TB_HORIZONTAL|wx.TB_HORZ_LAYOUT|wx.TB_NODIVIDER|wx.TB_FLAT) #self.navTB.SetMargins(0,0) #self.navTB.SetToolPacking(0) #self.navTB.AddCheckTool(-1, label='', bitmap1=icons.chart.GetBitmap()) #self.navTB.Realize() self.toolbar_sizer = wx.BoxSizer(wx.VERTICAL) self.toolbar_sizer.Add(self.navTBTop) self.toolbar_sizer.Add(self.navTBBottom) # --- Tool Panel self.toolSizer= wx.BoxSizer(wx.VERTICAL) # --- PlotType Panel self.pltTypePanel= PlotTypePanel(self); # --- Plot type specific options self.spcPanel = SpectralCtrlPanel(self) self.pdfPanel = PDFCtrlPanel(self) self.cmpPanel = CompCtrlPanel(self) self.mmxPanel = MinMaxPanel(self) # --- Esthetics panel self.esthPanel = EstheticsPanel(self) # --- Ctrl Panel self.ctrlPanel= wx.Panel(self) #self.ctrlPanel.SetBackgroundColour('blue') # Check Boxes self.cbCurveType = wx.ComboBox(self.ctrlPanel, choices=['Plain','LS','Markers','Mix'] , style=wx.CB_READONLY) self.cbCurveType.SetSelection(1) self.cbSub = wx.CheckBox(self.ctrlPanel, -1, 'Subplot',(10,10)) self.cbLogX = wx.CheckBox(self.ctrlPanel, -1, 'Log-x',(10,10)) self.cbLogY = wx.CheckBox(self.ctrlPanel, -1, 'Log-y',(10,10)) self.cbSync = wx.CheckBox(self.ctrlPanel, -1, 'Sync-x',(10,10)) self.cbXHair = wx.CheckBox(self.ctrlPanel, -1, 'CrossHair',(10,10)) self.cbPlotMatrix = wx.CheckBox(self.ctrlPanel, -1, 'Matrix',(10,10)) self.cbAutoScale = wx.CheckBox(self.ctrlPanel, -1, 'AutoScale',(10,10)) self.cbGrid = wx.CheckBox(self.ctrlPanel, -1, 'Grid',(10,10)) self.cbStepPlot = wx.CheckBox(self.ctrlPanel, -1, 'StepPlot',(10,10)) self.cbMeasure = wx.CheckBox(self.ctrlPanel, -1, 'Measure',(10,10)) #self.cbSub.SetValue(True) # DEFAULT TO SUB? self.cbSync.SetValue(True) self.cbXHair.SetValue(True) # Have cross hair by default self.cbAutoScale.SetValue(True) # Callbacks self.Bind(wx.EVT_CHECKBOX, self.redraw_event , self.cbSub ) self.Bind(wx.EVT_COMBOBOX, self.redraw_event , self.cbCurveType) self.Bind(wx.EVT_CHECKBOX, self.log_select , self.cbLogX ) self.Bind(wx.EVT_CHECKBOX, self.log_select , self.cbLogY ) self.Bind(wx.EVT_CHECKBOX, self.redraw_event , self.cbSync ) self.Bind(wx.EVT_CHECKBOX, self.crosshair_event , self.cbXHair ) self.Bind(wx.EVT_CHECKBOX, self.plot_matrix_select, self.cbPlotMatrix ) self.Bind(wx.EVT_CHECKBOX, self.redraw_event , self.cbAutoScale ) self.Bind(wx.EVT_CHECKBOX, self.redraw_event , self.cbGrid ) self.Bind(wx.EVT_CHECKBOX, self.redraw_event , self.cbStepPlot ) self.Bind(wx.EVT_CHECKBOX, self.measure_select , self.cbMeasure ) self.Bind(wx.EVT_CHECKBOX, self.measure_select , self.cbMeasure ) # LAYOUT cb_sizer = wx.FlexGridSizer(rows=4, cols=3, hgap=0, vgap=0) cb_sizer.Add(self.cbCurveType , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbSub , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbAutoScale , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbLogX , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbLogY , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbStepPlot , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbXHair , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbGrid , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbSync , 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbPlotMatrix, 0, flag=wx.ALL, border=1) cb_sizer.Add(self.cbMeasure , 0, flag=wx.ALL, border=1) self.ctrlPanel.SetSizer(cb_sizer) # --- Crosshair Panel crossHairPanel= wx.Panel(self) self.lbCrossHairX = wx.StaticText(crossHairPanel, -1, 'x = ... ') self.lbCrossHairY = wx.StaticText(crossHairPanel, -1, 'y = ... ') self.lbDeltaX = wx.StaticText(crossHairPanel, -1, ' ') self.lbDeltaY = wx.StaticText(crossHairPanel, -1, ' ') self.lbCrossHairX.SetFont(getMonoFont(self)) self.lbCrossHairY.SetFont(getMonoFont(self)) self.lbDeltaX.SetFont(getMonoFont(self)) self.lbDeltaY.SetFont(getMonoFont(self)) cbCH = wx.FlexGridSizer(rows=4, cols=1, hgap=0, vgap=0) cbCH.Add(self.lbCrossHairX , 0, flag=wx.ALL, border=1) cbCH.Add(self.lbCrossHairY , 0, flag=wx.ALL, border=1) cbCH.Add(self.lbDeltaX , 0, flag=wx.ALL, border=1) cbCH.Add(self.lbDeltaY , 0, flag=wx.ALL, border=1) crossHairPanel.SetSizer(cbCH) # --- layout of panels row_sizer = wx.BoxSizer(wx.HORIZONTAL) sl2 = wx.StaticLine(self, -1, size=wx.Size(1,-1), style=wx.LI_VERTICAL) sl3 = wx.StaticLine(self, -1, size=wx.Size(1,-1), style=wx.LI_VERTICAL) sl4 = wx.StaticLine(self, -1, size=wx.Size(1,-1), style=wx.LI_VERTICAL) row_sizer.Add(self.pltTypePanel , 0 , flag=wx.LEFT|wx.RIGHT|wx.CENTER , border=1) row_sizer.Add(sl2 , 0 , flag=wx.LEFT|wx.RIGHT|wx.EXPAND|wx.CENTER, border=0) row_sizer.Add(self.toolbar_sizer, 0 , flag=wx.LEFT|wx.RIGHT|wx.CENTER , border=1) row_sizer.Add(sl3 , 0 , flag=wx.LEFT|wx.RIGHT|wx.EXPAND|wx.CENTER, border=0) row_sizer.Add(self.ctrlPanel , 1 , flag=wx.LEFT|wx.RIGHT|wx.EXPAND|wx.CENTER, border=0) row_sizer.Add(sl4 , 0 , flag=wx.LEFT|wx.RIGHT|wx.EXPAND|wx.CENTER, border=0) row_sizer.Add(crossHairPanel , 0 , flag=wx.LEFT|wx.RIGHT|wx.EXPAND|wx.CENTER, border=1) plotsizer = wx.BoxSizer(wx.VERTICAL) self.slCtrl = wx.StaticLine(self, -1, size=wx.Size(-1,1), style=wx.LI_HORIZONTAL) self.slCtrl.Hide() self.slEsth = wx.StaticLine(self, -1, size=wx.Size(-1,1), style=wx.LI_HORIZONTAL) self.slEsth.Hide() sl1 = wx.StaticLine(self, -1, size=wx.Size(-1,1), style=wx.LI_HORIZONTAL) plotsizer.Add(self.toolSizer,0,flag = wx.EXPAND|wx.CENTER|wx.TOP|wx.BOTTOM,border = 10) plotsizer.Add(self.canvas ,1,flag = wx.EXPAND,border = 5 ) plotsizer.Add(sl1 ,0,flag = wx.EXPAND,border = 0) plotsizer.Add(self.spcPanel ,0,flag = wx.EXPAND|wx.CENTER|wx.TOP|wx.BOTTOM,border = 10) plotsizer.Add(self.pdfPanel ,0,flag = wx.EXPAND|wx.CENTER|wx.TOP|wx.BOTTOM,border = 10) plotsizer.Add(self.cmpPanel ,0,flag = wx.EXPAND|wx.CENTER|wx.TOP|wx.BOTTOM,border = 10) plotsizer.Add(self.mmxPanel ,0,flag = wx.EXPAND|wx.CENTER|wx.TOP|wx.BOTTOM,border = 10) plotsizer.Add(self.slEsth ,0,flag = wx.EXPAND,border = 0) plotsizer.Add(self.esthPanel,0,flag = wx.EXPAND|wx.CENTER|wx.TOP|wx.BOTTOM,border = 10) plotsizer.Add(self.slCtrl ,0,flag = wx.EXPAND,border = 0) plotsizer.Add(row_sizer ,0,flag = wx.EXPAND|wx.NORTH ,border = 2) self.show_hide(self.spcPanel, self.pltTypePanel.cbFFT.GetValue()) self.show_hide(self.cmpPanel, self.pltTypePanel.cbCompare.GetValue()) self.show_hide(self.pdfPanel, self.pltTypePanel.cbPDF.GetValue()) self.show_hide(self.mmxPanel, self.pltTypePanel.cbMinMax.GetValue()) self.SetSizer(plotsizer) self.plotsizer=plotsizer; self.set_subplot_spacing(init=True) def onEsthToggle(self,event): self.esthToggle=not self.esthToggle if self.esthToggle: self.slCtrl.Show() self.esthPanel.Show() else: self.slCtrl.Hide() self.esthPanel.Hide() self.plotsizer.Layout() event.Skip() def set_subplot_spacing(self, init=False): """ Handle default subplot spacing NOTE: - Tight fails when the ylabel is too long, especially for fft with multiplt signals - might need to change depending on window size/resizing - need to change if right axis needed - this will override the user settings """ #self.fig.set_tight_layout(True) # NOTE: works almost fine, but problem with FFT multiple # TODO this is definitely not generic, but tight fails.. if init: # NOTE: at init size is (20,20) because sizer is not initialized yet bottom = 0.12 left = 0.12 else: if self.Size[1]<300: bottom=0.20 elif self.Size[1]<350: bottom=0.18 elif self.Size[1]<430: bottom=0.16 elif self.Size[1]<600: bottom=0.13 elif self.Size[1]<800: bottom=0.09 else: bottom=0.07 if self.Size[0]<300: left=0.22 elif self.Size[0]<450: left=0.20 elif self.Size[0]<950: left=0.12 else: left=0.06 #print(self.Size,'bottom', bottom, 'left',left) if self.cbPlotMatrix.GetValue(): # TODO detect it self.fig.subplots_adjust(top=0.97,bottom=bottom,left=left,right=0.98-left) else: self.fig.subplots_adjust(top=0.97,bottom=bottom,left=left,right=0.98) def plot_matrix_select(self, event): self.infoPanel.togglePlotMatrix(self.cbPlotMatrix.GetValue()) self.redraw_same_data() def measure_select(self, event): if self.cbMeasure.IsChecked(): self.cbAutoScale.SetValue(False) self.redraw_same_data() def redraw_event(self, event): self.redraw_same_data() def log_select(self, event): if self.pltTypePanel.cbPDF.GetValue(): self.cbLogX.SetValue(False) self.cbLogY.SetValue(False) else: self.redraw_same_data() def crosshair_event(self, event): try: self.multiCursors.vertOn =self.cbXHair.GetValue() self.multiCursors.horizOn=self.cbXHair.GetValue() self.multiCursors._update() except: pass def show_hide(self,panel,bShow): if bShow: panel.Show() self.slEsth.Show() else: self.slEsth.Hide() panel.Hide() @property def sharex(self): return self.cbSync.IsChecked() and (not self.pltTypePanel.cbPDF.GetValue()) def set_subplots(self,nPlots): self.set_subplot_spacing() # Creating subplots for ax in self.fig.axes: self.fig.delaxes(ax) sharex=None for i in range(nPlots): # Vertical stack if i==0: ax=self.fig.add_subplot(nPlots,1,i+1) if self.sharex: sharex=ax else: ax=self.fig.add_subplot(nPlots,1,i+1,sharex=sharex) # Horizontal stack #self.fig.add_subplot(1,nPlots,i+1) def onMouseMove(self, event): if event.inaxes: x, y = event.xdata, event.ydata self.lbCrossHairX.SetLabel('x =' + self.formatLabelValue(x)) self.lbCrossHairY.SetLabel('y =' + self.formatLabelValue(y)) def onMouseClick(self, event): self.clickLocation = (event.inaxes, event.xdata, event.ydata) def onMouseRelease(self, event): if self.cbMeasure.GetValue(): for ax, ax_idx in zip(self.fig.axes, range(len(self.fig.axes))): if event.inaxes == ax: x, y = event.xdata, event.ydata if self.clickLocation != (ax, x, y): # Ignore measurements for zoom-actions. Possibly add small tolerance. # Zoom-actions disable autoscale self.cbAutoScale.SetValue(False) return if event.button == 1: self.infoPanel.setMeasurements((x, y), None) self.leftMeasure.set(ax_idx, x, y) self.leftMeasure.plot(ax, ax_idx) elif event.button == 3: self.infoPanel.setMeasurements(None, (x, y)) self.rightMeasure.set(ax_idx, x, y) self.rightMeasure.plot(ax, ax_idx) else: return if self.cbAutoScale.IsChecked() is False: self._restore_limits() if self.leftMeasure.axis_idx == self.rightMeasure.axis_idx and self.leftMeasure.axis_idx != -1: self.lbDeltaX.SetLabel('dx=' + self.formatLabelValue(self.rightMeasure.x - self.leftMeasure.x)) self.lbDeltaY.SetLabel('dy=' + self.formatLabelValue(self.rightMeasure.y - self.leftMeasure.y)) else: self.lbDeltaX.SetLabel('') self.lbDeltaY.SetLabel('') return def onDraw(self, event): self._store_limits() def formatLabelValue(self, value): try: if abs(value)<1000 and abs(value)>1e-4: s = '{:10.5f}'.format(value) else: s = '{:10.3e}'.format(value) except TypeError: s = ' ' return s def removeTools(self,event=None,Layout=True): try: self.toolPanel.destroy() # call the "destroy" function which might clean up data except: pass try: # Python3 self.toolSizer.Clear(delete_windows=True) # Delete Windows except: # Python2 if hasattr(self,'toolPanel'): self.toolSizer.Remove(self.toolPanel) self.toolPanel.Destroy() del self.toolPanel self.toolSizer.Clear() # Delete Windows if Layout: self.plotsizer.Layout() def showTool(self,toolName=''): from .GUITools import TOOLS self.Freeze() self.removeTools(Layout=False) if toolName in TOOLS.keys(): self.toolPanel=TOOLS[toolName](self) # calling the panel constructor else: raise Exception('Unknown tool {}'.format(toolName)) self.toolSizer.Add(self.toolPanel, 0, wx.EXPAND|wx.ALL, 5) self.plotsizer.Layout() self.Thaw() def setPD_PDF(self,PD,c): """ Convert plot data to PDF data based on GUI options""" # ---PDF nBins = self.pdfPanel.scBins.GetValue() bSmooth = self.pdfPanel.cbSmooth.GetValue() nBins_out= PD.toPDF(nBins,bSmooth) if nBins_out!=nBins: self.pdfPanel.scBins.SetValue(nBins) def setPD_MinMax(self,PD): """ Convert plot data to MinMax data based on GUI options""" yScale=self.mmxPanel.cbyMinMax.IsChecked() xScale=self.mmxPanel.cbxMinMax.IsChecked() try: PD.toMinMax(xScale,yScale) except Exception as e: self.mmxPanel.cbxMinMax.SetValue(False) raise e # Used to be Warn def setPD_FFT(self,pd): """ Convert plot data to FFT data based on GUI options""" yType = self.spcPanel.cbType.GetStringSelection() xType = self.spcPanel.cbTypeX.GetStringSelection() avgMethod = self.spcPanel.cbAveraging.GetStringSelection() avgWindow = self.spcPanel.cbAveragingMethod.GetStringSelection() bDetrend = self.spcPanel.cbDetrend.IsChecked() nExp = self.spcPanel.scP2.GetValue() # Convert plotdata to FFT data try: Info = pd.toFFT(yType=yType, xType=xType, avgMethod=avgMethod, avgWindow=avgWindow, bDetrend=bDetrend, nExp=nExp) # Trigger if hasattr(Info,'nExp') and Info.nExp!=nExp: self.spcPanel.scP2.SetValue(Info.nExp) self.spcPanel.updateP2(Info.nExp) except Exception as e: self.spcPanel.Hide(); self.plotsizer.Layout() raise e def transformPlotData(self,PD): """" Apply MinMax, PDF or FFT transform to plot based on GUI data """ plotType=self.pltTypePanel.plotType() if plotType=='MinMax': self.setPD_MinMax(PD) elif plotType=='PDF': self.setPD_PDF(PD,PD.c) elif plotType=='FFT': self.setPD_FFT(PD) def getPlotData(self,plotType): ID,SameCol,selMode=self.selPanel.getPlotDataSelection() self.selMode=selMode # we store the selection mode del self.plotData self.plotData=[] tabs=self.selPanel.tabList.getTabs() # TODO, selPanel should just return the PlotData... try: for i,idx in enumerate(ID): # Initialize each plotdata based on selected table and selected id channels pd=PlotData(); pd.fromIDs(tabs,i,idx,SameCol, self.plotDataOptions) # Possible change of data if plotType=='MinMax': self.setPD_MinMax(pd) elif plotType=='PDF': self.setPD_PDF(pd,pd.c) elif plotType=='FFT': self.setPD_FFT(pd) self.plotData.append(pd) except Exception as e: self.plotData=[] raise e def PD_Compare(self,mode): """ Perform comparison of the selected PlotData, returns new plotData with the comparison. """ sComp = self.cmpPanel.rbType.GetStringSelection() try: self.plotData = compareMultiplePD(self.plotData,mode, sComp) except Exception as e: self.pltTypePanel.cbRegular.SetValue(True) raise e def _onPlotMatrixLeftClick(self, event): """Toggle plot-states from None, to left-axis, to right-axis. Left-click goes forwards, right-click goes backwards. IndexError to avoid "holes" in matrix with outer adjacent populated entries """ btn = event.GetEventObject() label = btn.GetLabelText() if label == '-': btn.SetLabel('1') try: self.infoPanel.getPlotMatrix(self.plotData, self.cbSub.IsChecked()) except IndexError: btn.SetLabel('-') elif label == '1': btn.SetLabel('2') else: btn.SetLabel('-') try: self.infoPanel.getPlotMatrix(self.plotData, self.cbSub.IsChecked()) except IndexError: btn.SetLabel('1') self.redraw_same_data() def _onPlotMatrixRightClick(self, event): btn = event.GetEventObject() label = btn.GetLabelText() if label == '-': btn.SetLabel('2') try: self.infoPanel.getPlotMatrix(self.plotData, self.cbSub.IsChecked()) except IndexError: btn.SetLabel('-') elif label == '1': btn.SetLabel('-') try: self.infoPanel.getPlotMatrix(self.plotData, self.cbSub.IsChecked()) except IndexError: btn.SetLabel('2') else: btn.SetLabel('1') self.redraw_same_data() def set_axes_lim(self, PDs, axis): """ It's usually faster to set the axis limits first (before plotting) and disable autoscaling. This way the limits are not recomputed when plot data are added. Also, we already have computed the min and max, so we leverage that. NOTE: doesnt not work with strings doesnt not work for FFT and compare INPUTS: PDs: list of plot data """ # TODO option for tight axes tight=False plotType=self.pltTypePanel.plotType() if plotType in ['FFT','Compare']: axis.autoscale(True, axis='both', tight=tight) return vXString=[PDs[i].xIsString for i in axis.iPD] vYString=[PDs[i].yIsString for i in axis.iPD] if not any(vXString) and not self.cbLogX.IsChecked(): try: xMin=np.min([PDs[i]._xMin[0] for i in axis.iPD]) xMax=np.max([PDs[i]._xMax[0] for i in axis.iPD]) if np.isclose(xMin,xMax): delta=1 if np.isclose(xMax,0) else 0.1*xMax else: if tight: delta=0 else: delta = (xMax-xMin)*pyplot_rc['axes.xmargin'] axis.set_xlim(xMin-delta,xMax+delta) axis.autoscale(False, axis='x', tight=False) except: pass if not any(vYString) and not self.cbLogY.IsChecked(): try: yMin=np.min([PDs[i]._yMin[0] for i in axis.iPD]) yMax=np.max([PDs[i]._yMax[0] for i in axis.iPD]) delta = (yMax-yMin)*pyplot_rc['axes.ymargin'] if np.isclose(yMin,yMax): delta=1 if np.isclose(yMax,0) else 0.1*yMax else: if tight: delta=0 else: delta = (yMax-yMin)*pyplot_rc['axes.xmargin'] axis.set_ylim(yMin-delta,yMax+delta) axis.autoscale(False, axis='y', tight=False) except: pass def plot_all(self, keep_limits=True): self.multiCursors=[] if self.cbMeasure.GetValue() is False: for measure in [self.leftMeasure, self.rightMeasure]: measure.clear() self.infoPanel.setMeasurements(None, None) self.lbDeltaX.SetLabel('') self.lbDeltaY.SetLabel('') axes=self.fig.axes PD=self.plotData # --- Plot options bStep = self.cbStepPlot.IsChecked() plot_options = dict() plot_options['lw']=float(self.esthPanel.cbLW.Value) plot_options['ms']=float(self.esthPanel.cbMS.Value) if self.cbCurveType.Value=='Plain': plot_options['LineStyles'] = ['-'] plot_options['Markers'] = [''] elif self.cbCurveType.Value=='LS': plot_options['LineStyles'] = ['-','--','-.',':'] plot_options['Markers'] = [''] elif self.cbCurveType.Value=='Markers': plot_options['LineStyles'] = [''] plot_options['Markers'] = ['o','d','v','^','s'] elif self.cbCurveType.Value=='Mix': # NOTE, can be improved plot_options['LineStyles'] = ['-','--', '-','-','-'] plot_options['Markers'] = ['' ,'' ,'o','^','s'] else: # Combination of linestyles markers, colors, etc. # But at that stage, if the user really want this, then we can implement an option to set styles per plot. Not high priority. raise Exception('Not implemented') # --- Font options font_options = dict() font_options_legd = dict() font_options['size'] = int(self.esthPanel.cbFont.Value) # affect labels font_options_legd['fontsize'] = int(self.esthPanel.cbLgdFont.Value) needChineseFont = any([pd.needChineseFont for pd in PD]) if needChineseFont and self.specialFont is not None: font_options['fontproperties']= self.specialFont font_options_legd['prop'] = self.specialFont # --- Loop on axes. Either use ax.iPD to chose the plot data, or rely on plotmatrix for axis_idx, ax_left in enumerate(axes): ax_right = None # Checks vDate=[PD[i].yIsDate for i in ax_left.iPD] if any(vDate) and len(vDate)>1: Error(self,'Cannot plot date and other value on the same axis') return # Set limit before plot when possible, for optimization self.set_axes_lim(PD, ax_left) # Actually plot pm = self.infoPanel.getPlotMatrix(PD, self.cbSub.IsChecked()) __, bAllNegLeft = self.plotSignals(ax_left, axis_idx, PD, pm, 1, bStep, plot_options) ax_right, bAllNegRight = self.plotSignals(ax_left, axis_idx, PD, pm, 2, bStep, plot_options) self.infoPanel.setMeasurements(self.leftMeasure.get_xydata(), self.rightMeasure.get_xydata()) for measure in [self.leftMeasure, self.rightMeasure]: measure.plot(ax_left, axis_idx) # Log Axes if self.cbLogX.IsChecked(): ax_left.set_xscale("log", nonposx='clip') if self.cbLogY.IsChecked(): if bAllNegLeft is False: ax_left.set_yscale("log", nonposy='clip') if bAllNegRight is False and ax_right is not None: ax_right.set_yscale("log", nonposy='clip') # XLIM - TODO FFT ONLY NASTY if self.pltTypePanel.cbFFT.GetValue(): try: xlim=float(self.spcPanel.tMaxFreq.GetLineText(0)) if xlim>0: ax_left.set_xlim([0,xlim]) pd=PD[ax_left.iPD[0]] I=pd.x<xlim ymin = np.min([np.min(PD[ipd].y[I]) for ipd in ax_left.iPD]) ax_left.set_ylim(bottom=ymin/2) if self.spcPanel.cbTypeX.GetStringSelection()=='x': ax_left.invert_xaxis() except: pass elif self.cbAutoScale.IsChecked() is False and keep_limits: self._restore_limits() ax_left.grid(self.cbGrid.IsChecked()) if ax_right is not None: l = ax_left.get_ylim() l2 = ax_right.get_ylim() f = lambda x : l2[0]+(x-l[0])/(l[1]-l[0])*(l2[1]-l2[0]) ticks = f(ax_left.get_yticks()) ax_right.yaxis.set_major_locator(matplotlib.ticker.FixedLocator(ticks)) if len(ax_left.lines) == 0: ax_left.set_yticks(ax_right.get_yticks()) ax_left.yaxis.set_visible(False) ax_right.grid(self.cbGrid.IsChecked()) # Special Grids if self.pltTypePanel.cbCompare.GetValue(): if self.cmpPanel.rbType.GetStringSelection()=='Y-Y': xmin,xmax=ax_left.get_xlim() ax_left.plot([xmin,xmax],[xmin,xmax],'k--',linewidth=0.5) # Labels yleft_labels = [] yright_labels = [] yleft_legends = [] yright_legends = [] if pm is None: yleft_labels = unique([PD[i].sy for i in ax_left.iPD]) if axis_idx == 0: yleft_legends = unique([PD[i].syl for i in ax_left.iPD]) else: for signal_idx in range(len(PD)): if pm[signal_idx][axis_idx] == 1: yleft_labels.append(PD[signal_idx].sy) yleft_legends.append(PD[signal_idx].syl) elif pm[signal_idx][axis_idx] == 2: yright_labels.append(PD[signal_idx].sy) yright_legends.append(PD[signal_idx].syl) yleft_labels = unique(yleft_labels) yright_labels = unique(yright_labels) yleft_legends = unique(yleft_legends) yright_legends = unique(yright_legends) if len(yleft_labels) > 0 and len(yleft_labels) <= 3: ax_left.set_ylabel(' and '.join(yleft_labels), **font_options) elif ax_left is not None: ax_left.set_ylabel('') if len(yright_labels) > 0 and len(yright_labels) <= 3: ax_right.set_ylabel(' and '.join(yright_labels), **font_options) elif ax_right is not None: ax_right.set_ylabel('') # Legends lgdLoc = self.esthPanel.cbLegend.Value.lower() if (self.pltTypePanel.cbCompare.GetValue() or ((len(yleft_legends) + len(yright_legends)) > 1)): if lgdLoc !='none': if len(yleft_legends) > 0: ax_left.legend(fancybox=False, loc=lgdLoc, **font_options_legd) if ax_right is not None and len(yright_legends) > 0: ax_right.legend(fancybox=False, loc=4, **font_options_legd) elif len(axes)>1 and len(axes)==len(PD): # TODO: can this be removed? If there is only one unique signal # per subplot, normally only ylabel is displayed and no legend. # Special case when we have subplots and all plots have the same label if lgdLoc !='none': usy = unique([pd.sy for pd in PD]) if len(usy)==1: for ax in axes: ax.legend(fancybox=False, loc=lgdLoc, **font_options_legd) axes[-1].set_xlabel(PD[axes[-1].iPD[0]].sx, **font_options) #print('sy :',[pd.sy for pd in PD]) #print('syl:',[pd.syl for pd in PD]) # --- Cursors for each individual plot # NOTE: cursors needs to be stored in the object! #for ax_left in self.fig.axes: # self.cursors.append(MyCursor(ax_left,horizOn=True, vertOn=False, useblit=True, color='gray', linewidth=0.5, linestyle=':')) # Vertical cusor for all, commonly bXHair = self.cbXHair.GetValue() self.multiCursors = MyMultiCursor(self.canvas, tuple(self.fig.axes), useblit=True, horizOn=bXHair, vertOn=bXHair, color='gray', linewidth=0.5, linestyle=':') def plotSignals(self, ax, axis_idx, PD, pm, left_right, is_step, opts): axis = None bAllNeg = True if pm is None: loop_range = ax.iPD else: loop_range = range(len(PD)) iPlot=-1 for signal_idx in loop_range: do_plot = False if left_right == 1 and (pm is None or pm[signal_idx][axis_idx] == left_right): do_plot = True axis = ax elif left_right == 2 and pm is not None and pm[signal_idx][axis_idx] == left_right: do_plot = True if axis is None: axis = ax.twinx() ax.set_zorder(axis.get_zorder()+1) ax.patch.set_visible(False) axis._get_lines.prop_cycler = ax._get_lines.prop_cycler pd=PD[signal_idx] if do_plot: iPlot+=1 # --- styling per plot if len(pd.x)==1: marker='o'; ls='' else: # TODO allow PlotData to override for "per plot" options in the future marker = opts['Markers'][np.mod(iPlot,len(opts['Markers']))] ls = opts['LineStyles'][np.mod(iPlot,len(opts['LineStyles']))] if is_step: plot = axis.step else: plot = axis.plot plot(pd.x,pd.y,label=pd.syl,ms=opts['ms'], lw=opts['lw'], marker=marker, ls=ls) try: bAllNeg = bAllNeg and all(pd.y<=0) except: pass # Dates or strings return axis, bAllNeg def findPlotMode(self,PD): uTabs = unique([pd.it for pd in PD]) usy = unique([pd.sy for pd in PD]) uiy = unique([pd.iy for pd in PD]) if len(uTabs)<=0: raise Exception('No Table. Contact developer') if len(uTabs)==1: mode='1Tab_nCols' else: if PD[0].SameCol: mode='nTabs_SameCols' else: # Now that we allow multiple selections detecting "simColumns" is more difficult if len(uTabs) == len(PD): mode='nTabs_1Col' elif self.selMode=='simColumnsMode': mode='nTabs_SimCols' else: mode='nTabs_mCols' return mode def findSubPlots(self,PD,mode): uTabs = unique([pd.it for pd in PD]) usy = unique([pd.sy for pd in PD]) bSubPlots = self.cbSub.IsChecked() bCompare = self.pltTypePanel.cbCompare.GetValue() # NOTE bCompare somehow always 1Tab_nCols nSubPlots=1 spreadBy='none' self.infoPanel.setTabMode(mode) if mode=='1Tab_nCols': if bSubPlots: if bCompare or len(uTabs)==1: nSubPlots = self.infoPanel.getNumberOfSubplots(PD, bSubPlots) else: nSubPlots=len(usy) spreadBy='iy' elif mode=='nTabs_SameCols': if bSubPlots: if bCompare: print('>>>TODO ',mode,len(usy),len(uTabs)) else: if len(usy)==1: # Temporary hack until we have an option for spread by tabs or col nSubPlots=len(uTabs) spreadBy='it' else: nSubPlots=len(usy) spreadBy='iy' elif mode=='nTabs_SimCols': if bSubPlots: if bCompare: print('>>>TODO ',mode,len(usy),len(uTabs)) else: nSubPlots=int(len(PD)/len(uTabs)) spreadBy='mod-ip' elif mode=='nTabs_mCols': if bSubPlots: if bCompare: print('>>>TODO ',mode,len(usy),len(uTabs)) else: if bCompare or len(uTabs)==1: nSubPlots = self.infoPanel.getNumberOfSubplots(PD, bSubPlots) else: nSubPlots=len(PD) spreadBy='mod-ip' elif mode=='nTabs_1Col': if bSubPlots: if bCompare: print('>>> TODO',mode,len(uTabs)) else: nSubPlots=len(uTabs) spreadBy='it' else: raise Exception('Unknown mode, contact developer.') return nSubPlots,spreadBy def distributePlots(self,mode,nSubPlots,spreadBy): """ Assigns plot data to axes and axes to plot data """ axes=self.fig.axes # Link plot data to axes if nSubPlots==1 or spreadBy=='none': axes[0].iPD=[i for i in range(len(self.plotData))] else: for ax in axes: ax.iPD=[] PD=self.plotData uTabs=unique([pd.it for pd in PD]) uiy=unique([pd.iy for pd in PD]) if spreadBy=='iy': for ipd,pd in enumerate(PD): i=uiy.index(pd.iy) if i < len(axes): axes[i].iPD.append(ipd) elif spreadBy=='it': for ipd,pd in enumerate(PD): i=uTabs.index(pd.it) axes[i].iPD.append(ipd) elif spreadBy=='mod-ip': for ipd,pd in enumerate(PD): i=np.mod(ipd, nSubPlots) axes[i].iPD.append(ipd) else: raise Exception('Wrong spreadby value') def setLegendLabels(self,mode): """ Set labels for legend """ if mode=='1Tab_nCols': for pd in self.plotData: if self.pltTypePanel.cbMinMax.GetValue(): pd.syl = no_unit(pd.sy) else: pd.syl = pd.sy elif mode=='nTabs_SameCols': for pd in self.plotData: pd.syl=pd.st elif mode=='nTabs_1Col': usy=unique([pd.sy for pd in self.plotData]) if len(usy)==1: for pd in self.plotData: pd.syl=pd.st else: for pd in self.plotData: if self.pltTypePanel.cbMinMax.GetValue(): pd.syl=no_unit(pd.sy) else: pd.syl=pd.sy #pd.syl=pd.st + ' - '+pd.sy elif mode=='nTabs_SimCols': bSubPlots = self.cbSub.IsChecked() if bSubPlots: # spread by table name for pd in self.plotData: pd.syl=pd.st else: for pd in self.plotData: pd.syl=pd.st + ' - '+pd.sy elif mode=='nTabs_mCols': usy=unique([pd.sy for pd in self.plotData]) bSubPlots = self.cbSub.IsChecked() if bSubPlots and len(usy)==1: # spread by table name for pd in self.plotData: pd.syl=pd.st else: for pd in self.plotData: pd.syl=pd.st + ' - '+pd.sy else: raise Exception('Unknown mode {}'.format(mode)) def empty(self): self.cleanPlot() def clean_memory(self): if hasattr(self,'plotData'): del self.plotData self.plotData=[] for ax in self.fig.axes: ax.iPD=[] self.fig.delaxes(ax) gc.collect() def clean_memory_plot(self): pass def cleanPlot(self): for ax in self.fig.axes: if hasattr(ax,'iPD'): del ax.iPD self.fig.delaxes(ax) gc.collect() self.fig.add_subplot(111) ax = self.fig.axes[0] ax.set_axis_off() #ax.plot(1,1) self.canvas.draw() gc.collect() def load_and_draw(self): """ Full draw event: - Get plot data based on selection - Plot them - Trigger changes to infoPanel """ self.clean_memory() self.getPlotData(self.pltTypePanel.plotType()) if len(self.plotData)==0: self.cleanPlot(); return mode=self.findPlotMode(self.plotData) if self.pltTypePanel.cbCompare.GetValue(): self.PD_Compare(mode) if len(self.plotData)==0: self.cleanPlot(); return self.redraw_same_data() if self.infoPanel is not None: self.infoPanel.showStats(self.plotData,self.pltTypePanel.plotType()) def redraw_same_data(self, keep_limits=True): if len(self.plotData)==0: self.cleanPlot(); return elif len(self.plotData) == 1: if self.plotData[0].xIsString or self.plotData[0].yIsString or self.plotData[0].xIsDate or self.plotData[0].yIsDate: self.cbAutoScale.SetValue(True) else: if len(self.xlim_prev)==0: # Might occur if some date didn't plot before (e.g. strings) self.cbAutoScale.SetValue(True) elif rectangleOverlap(self.plotData[0]._xMin[0], self.plotData[0]._yMin[0], self.plotData[0]._xMax[0], self.plotData[0]._yMax[0], self.xlim_prev[0][0], self.ylim_prev[0][0], self.xlim_prev[0][1], self.ylim_prev[0][1]): pass else: self.cbAutoScale.SetValue(True) mode=self.findPlotMode(self.plotData) nPlots,spreadBy=self.findSubPlots(self.plotData,mode) self.clean_memory_plot() self.set_subplots(nPlots) self.distributePlots(mode,nPlots,spreadBy) if not self.pltTypePanel.cbCompare.GetValue(): self.setLegendLabels(mode) self.plot_all(keep_limits) self.canvas.draw() def _store_limits(self): self.xlim_prev = [] self.ylim_prev = [] for ax in self.fig.axes: self.xlim_prev.append(ax.get_xlim()) self.ylim_prev.append(ax.get_ylim()) def _restore_limits(self): for ax, xlim, ylim in zip(self.fig.axes, self.xlim_prev, self.ylim_prev): ax.set_xlim(xlim) ax.set_ylim(ylim) if __name__ == '__main__': import pandas as pd; from Tables import Table,TableList app = wx.App(False) self=wx.Frame(None,-1,"Title") self.SetSize((800, 600)) #self.SetBackgroundColour('red') class FakeSelPanel(wx.Panel): def __init__(self, parent): super(FakeSelPanel,self).__init__(parent) d ={'ColA':
np.linspace(0,1,100)
numpy.linspace
import argparse import torch import torch.nn as nn from torchsummary import summary import torch.nn.functional as F import os import utils import audio_recognize as ar import audio_process as ap import numpy as np import matplotlib.pyplot as plt from torch.utils.data import TensorDataset, DataLoader from sklearn.cluster import KMeans from sklearn.model_selection import train_test_split from scipy.spatial import distance from scipy.special import erf, erfc config_data = utils.load_config("config.json") ST_WIN = config_data['params']['ST_WIN'] ST_STEP = config_data['params']['ST_STEP'] MIN_VOC_DUR = config_data['params']['MIN_VOC_DUR'] F1 = config_data['params']['F1'] F2 = config_data['params']['F2'] thres = config_data['params']['thres'] factor = config_data['params']['factor'] gamma_1 = config_data['params']['gamma_1'] gamma_2 = config_data['params']['gamma_2'] gamma_3 = config_data['params']['gamma_3'] model_name = config_data['params']['model'] num_ann_per_batch = config_data['params']['num_ann_per_batch'] class ConvAutoencoder(nn.Module): def __init__(self, n_clusters = 5, kmeans_centers=None): super(ConvAutoencoder, self).__init__() ## encoder layers ## # conv layer (depth from 3 --> 64), 3x3 kernels self.conv1 = nn.Conv2d(1, 64, 3, padding =1) # conv layer (depth from 64 --> 32), 3x3 kernels self.conv2 = nn.Conv2d(64, 32, 3, padding=1) # conv layer (depth from 32 --> 8), 3x3 kernels self.conv3 = nn.Conv2d(32, 8, 3, padding=1) self.pool = nn.MaxPool2d((2,2), 2) self.flatten = nn.Flatten() ## decoder layers ## # a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.t_conv1 = nn.ConvTranspose2d(8, 32, 2, stride=2) self.t_conv2 = nn.ConvTranspose2d(32, 64, 2, stride=2) self.t_conv3 = nn.ConvTranspose2d(64, 1, 2, stride=2) def forward(self, x, decode = True, clustering = False, kmeans_centers=None): ## encode ## # add hidden layers with relu activation function # and maxpooling after x = F.relu(self.conv1(x)) x = self.pool(x) # add second hidden layer x = F.relu(self.conv2(x)) x = self.pool(x) # add third hidden layer x = F.relu(self.conv3(x)) x = self.pool(x) # compressed representation if self.training and decode: ## decode ## # add transpose conv layers, with relu activation function y = F.relu(self.t_conv1(x)) y = F.relu(self.t_conv2(y)) # output layer (with sigmoid for scaling from 0 to 1) y = F.sigmoid(self.t_conv3(y)) if not clustering: return x, y if self.training and clustering: x = self.flatten(x) dist =torch.cdist(x, kmeans_centers) q = ((1+dist.pow(2)).pow(-1))/torch.sum((1+dist.pow(2)).pow(-1),dim=1).view(torch.sum((1+dist.pow(2)).pow(-1),dim=1).shape[0],1) if decode: return x, y, q else: return x, q return x def parse_arguments(): """Parse arguments for real time demo. """ parser = argparse.ArgumentParser(description="Amvoc") parser.add_argument("-i", "--data_folder", required=True, nargs=None, help="Folder") parser.add_argument("-ne", "--num_of_epochs", required=True, nargs=None, help="Parameter") parser.add_argument("-s", "--save_model", required=False, nargs=None, help="Condition") return parser.parse_args() def load_spectrograms (filename): train_data = [] print(filename) spectrogram, sp_time, sp_freq, fs = ap.get_spectrogram(filename, ST_WIN, ST_STEP) # These should change depending on the signal's size spec_resize_ratio_freq = 4 spec_resize_ratio_time = 4 f_low = F1 if F1 < fs / 2.0 else fs / 2.0 f_high = F2 if F2 < fs / 2.0 else fs / 2.0 # define feature sequence for vocalization detection f1 = np.argmin(
np.abs(sp_freq - f_low)
numpy.abs
import os import sys from collections import namedtuple import numpy as np import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt from matplotlib.widgets import RectangleSelector from matplotlib.backends.backend_qt5agg import (FigureCanvasQTAgg as FigureCanvas) from matplotlib.figure import Figure from PyQt5 import QtCore, QtGui, QtWidgets import pandas as pd import numba from sklearn.cluster import DBSCAN from skimage import io, color TableParams = namedtuple('TableParams', ['image_shape', 'pixel_scale', 'invert_y']) DEFAULTPARAMS = TableParams(image_shape=(2048, 2048), pixel_scale=10, invert_y=True) def find_header_line(filename): with open(filename) as fin: for i, line in enumerate(fin): if line.rstrip() == '##': return (i - 1) return None def read_locations_table(filename): header_line = find_header_line(filename) skiprows = list(range(header_line)) + [header_line + 1] table = pd.read_csv(filename, skiprows=skiprows, delimiter='\t') return table def image_coords(location_table, params=DEFAULTPARAMS): image_shape = params.image_shape scale = params.pixel_scale xs, ys = location_table[['X_COORD', 'Y_COORD']].values.T rows, cols = ys / scale, xs / scale if params.invert_y: rows = image_shape[0] - rows return rows, cols def image_coords_indices(location_table, params=DEFAULTPARAMS): rows, cols = image_coords(location_table, params) rrows, rcols = np.round(rows).astype(int), np.round(cols).astype(int) filter_rows = (0 <= rrows) & (rrows < params.image_shape[0]) filter_cols = (0 <= rcols) & (rcols < params.image_shape[1]) filter_all = filter_cols & filter_rows return rrows[filter_all], rcols[filter_all], filter_all @numba.njit def _fill_image(image, rows, cols): for i, j in zip(rows, cols): image[i, j] += 1 def _stretchlim(image, bottom=0.001, top=None, in_place=True): """Stretch the image so new image range corresponds to given quantiles. Parameters ---------- image : array, shape (M, N, [...,] P) The input image. bottom : float, optional The lower quantile. top : float, optional The upper quantile. If not provided, it is set to 1 - `bottom`. in_place : bool, optional If True, modify the input image in-place (only possible if it is a float image). Returns ------- out : np.ndarray of float The stretched image. """ if in_place and np.issubdtype(image.dtype, np.float): out = image else: out = np.empty(image.shape, np.float32) out[:] = image if top is None: top = 1 - bottom q0, q1 = np.percentile(image, [100*bottom, 100*top]) out -= q0 if q1 > q0: out /= q1 - q0 out = np.clip(out, 0, 1, out=out) return out def image_from_table(location_table, params=DEFAULTPARAMS, stretch=0.001): rows, cols, _ = image_coords_indices(location_table) image = np.zeros(params.image_shape, dtype=float) _fill_image(image, rows, cols) image = _stretchlim(image, stretch) return image def select_roi(image, rois=None, ax=None, axim=None, qtapp=None): """Return a label image based on polygon selections made with the mouse. Parameters ---------- image : (M, N[, 3]) array Grayscale or RGB image. rois : list, optional If given, append ROIs to this existing list. Otherwise a new list object will be created. ax : matplotlib Axes, optional The Axes on which to do the plotting. axim : matplotlib AxesImage, optional An existing AxesImage on which to show the image. qtapp : QtApplication The main Qt application for ROI selection. If given, the ROIs will be inserted at the right location for the image index. Returns ------- rois : list of tuple of ints The selected regions, in the form [[(row_start, row_end), (col_start, col_end)]]. Notes ----- Use left click to select the vertices of the polygon and right click to confirm the selection once all vertices are selected. Examples -------- >>> from skimage import data, future, io >>> camera = data.camera() >>> mask = future.manual_polygon_segmentation(camera) # doctest: +SKIP >>> io.imshow(mask) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ if image.ndim not in (2, 3): raise ValueError('Only 2D grayscale or RGB images are supported.') if ax is None and axim is None: fig, ax = plt.subplots() if axim is None: ax.clear() axim = ax.imshow(image, cmap="magma") ax.set_axis_off() else: axim.set_array(image) rois = rois or [] def toggle_selector(event): if event.key in ['A', 'a'] and not toggle_selector.RS.active: toggle_selector.RS.set_active(True) def onselect(eclick, erelease): starts = round(eclick.ydata), round(eclick.xdata) ends = round(erelease.ydata), round(erelease.xdata) slices = tuple((int(s), int(e)) for s, e in zip(starts, ends)) if qtapp is None: rois.append(slices) else: index = qtapp.image_index rois[index] = slices qtapp.rectangle_selector.set_active(False) qtapp.select_next_image() qtapp.rectangle_selector.set_active(True) selector = RectangleSelector(ax, onselect, useblit=True) if qtapp is None: # Ensure that the widget remains active by creating a reference to it. # There's probably a better place to put that reference but this will do # for now. (From the matplotlib RectangleSelector gallery example.) toggle_selector.RS = selector else: qtapp.rectangle_selector = selector ax.figure.canvas.mpl_connect('key_press_event', toggle_selector) selector.set_active(True) return rois def _in_range(arr, tup): low, high = tup return (low <= arr) & (arr < high) def cluster(coordinates, radius, core_size): scan = DBSCAN(eps=radius, min_samples=core_size).fit(coordinates) return scan def _centroids(labels, sizes, coords): clustered = labels > -1 labels, coords = labels[clustered], coords[clustered] grouping = np.argsort(labels) sums = np.add.reduceat(coords[grouping], np.cumsum(sizes)[:-1]) means = sums / sizes[1:, np.newaxis] return means def analyse_clustering(scan): labels = scan.labels_ unclustered = labels == -1 num_unclustered = np.sum(unclustered) cluster_sizes = np.bincount(labels[~unclustered]) counts, bin_edges = np.histogram(cluster_sizes, bins='auto') histogram = np.convolve(bin_edges, [0.5, 0.5], 'valid'), counts print(f'There are {len(cluster_sizes)} clusters, and {num_unclustered} ' f'outlier points, out of {labels.size}. The largest cluster size is ' f'{np.max(cluster_sizes)} and the median is ' f'{np.median(cluster_sizes)}') return labels, cluster_sizes, histogram def bbox_diameter(coords): return np.hypot(*np.max(coords, axis=0) - np.min(coords, axis=0)) def summarise_clustering(scan, coords): labels, sizes, hist = analyse_clustering(scan) diameters = labeled_comprehension(coords, scan.labels_, bbox_diameter)[1:, np.newaxis] cluster_centroids = _centroids(labels, sizes, coords) cluster_sq_centroids = _centroids(labels, sizes, coords ** 2) centroid_vars = np.sqrt(cluster_sq_centroids - cluster_centroids ** 2) column_names = ['centroid row', 'centroid column', 'std dev row', 'std dev column', 'detections', 'cluster id', 'diameter'] idxs = np.arange(1, np.max(labels) + 1) columns = (cluster_centroids, centroid_vars, sizes[1:, np.newaxis], idxs[:, np.newaxis], diameters) print([c.shape for c in columns]) data = np.concatenate(columns, axis=1) df = pd.DataFrame(data=data, columns=column_names) return df def labeled_comprehension(features, labels, function, *args, extra_args=(), extra_kwargs={}, **kwargs): """Like ndi.labeled_comprehension, but features can be higher D.""" nonneg = labels >= 0 features = features[nonneg] labels = labels[nonneg] sorter =
np.argsort(labels)
numpy.argsort
from OpticalElement import Optical_element from SurfaceConic import SurfaceConic from Beam import Beam from Vector import Vector import matplotlib.pyplot as plt import numpy as np import Shadow from Shape import BoundaryRectangle from CompoundOpticalElement import CompoundOpticalElement main = "__main4__" axis = 'z' both = None plot_dim = 0 if both == True: axis = 'z' axis1 = 'x' def shadow_source(): iwrite = 0 beam = Shadow.Beam() oe0 = Shadow.Source() oe0.FDISTR = 1 oe0.FSOUR = 1 oe0.F_PHOT = 0 oe0.HDIV1 = 0.0 oe0.HDIV2 = 0.0 oe0.IDO_VX = 0 oe0.IDO_VZ = 0 oe0.IDO_X_S = 0 oe0.IDO_Y_S = 0 oe0.IDO_Z_S = 0 oe0.PH1 = 1000.0 oe0.VDIV1 = 0.0 oe0.VDIV2 = 0.0 if iwrite: oe0.write("start.00") beam.genSource(oe0) if iwrite: oe0.write("end.00") beam.write("begin.dat") return beam def time_comparision(beam1, elements, oe): origin = np.ones(beam1.N) tf = 1e35 * np.ones(beam1.N) for i in range (0, len(elements)): beam = beam1.duplicate() [beam, t] = oe[i].intersection_with_optical_element(beam) indices = np.where(beam.flag < 0) t[indices] = 1e30 print(indices) tf = np.minimum(t, tf) indices = np.where(t == tf) origin[indices] = elements[i] return origin if main == "__main__": varx = np.zeros(100) varz = np.zeros(100) qqq = np.zeros(100) #for i in range (0, 1): beam = Beam(25000) beam.set_circular_spot(1e-3) beam.set_divergences_collimated() shadow_beam = shadow_source() beam = Beam() beam.initialize_from_arrays( shadow_beam.getshonecol(1), shadow_beam.getshonecol(2), shadow_beam.getshonecol(3), shadow_beam.getshonecol(4), shadow_beam.getshonecol(5), shadow_beam.getshonecol(6), shadow_beam.getshonecol(10), 0 ) beam.flag *= 0 p = 5. q = 15. theta = 88. * np.pi / 180 beta = 90.* np.pi / 180 alpha = 87. * np.pi / 180 xmax = 0. xmin = -0.4 ymax = 0.4 ymin = -0.4 zmax = 0.4 zmin = 0. oe1 = Optical_element.initialize_as_surface_conic_paraboloid_from_focal_distances(p=p, q=q, theta=theta, alpha=0., infinity_location="p", focal=q, cylindrical=1) bound1 = BoundaryRectangle(xmax=xmax, xmin=xmin, ymax=ymax, ymin=ymin, zmax=zmax, zmin=zmin) oe1.bound = bound1 ccc1 = oe1.ccc_object.get_coefficients() c1 = ccc1[1].copy() c2 = ccc1[2].copy() c4 = ccc1[4].copy() c8 = ccc1[8].copy() ####### rotation of the oe around y ############################################################################# a = np.cos(beta) b = np.sin(beta) ccc2 = np.array([c2 * b ** 2, c1, c2 * a ** 2, -c4 * b, c4 * a, -2 * c2 * a * b, -c8 * b, 0., c8 * a, 0.]) oe2 = Optical_element.initialize_as_surface_conic_from_coefficients(ccc2) oe2.p = p oe2.q = q oe2.theta = theta oe2.alpha = 0. oe2.type = "Surface conical mirror" bound2 = BoundaryRectangle(xmax=xmax, xmin=xmin, ymax=ymax, ymin=ymin, zmax=zmax, zmin=zmin) oe2.bound = bound2 ccc = np.array([0., 0., 0., 0., 0., 0., 0., 1., 0., -q]) screen = Optical_element.initialize_as_surface_conic_from_coefficients(ccc) screen.set_parameters(p, q, 0., 0., "Surface conical mirror") ########################################################################################################################### print(beam.y) theta = np.pi/2 - theta vector = Vector(0., 1., 0.) vector.rotation(-theta, 'x') print(vector.info()) print("theta' = %f, theta'' = %f" %(np.arctan(vector.x/vector.y)*180/np.pi, np.arctan(vector.z/vector.y)*180/np.pi)) ny = -vector.z/np.sqrt(vector.y**2+vector.z**2) nz = vector.y/np.sqrt(vector.y**2+vector.z**2) n = Vector(0, ny, nz) vrot = vector.rodrigues_formula(n, -theta) vrot.normalization() print("theta' = %f, theta'' = %f" %(np.arctan(vrot.x/vrot.y)*180/np.pi, np.arctan(vrot.z/vrot.y)*180/np.pi)) print(vrot.info()) ######################################################################################################################### position = Vector(beam.x, beam.y, beam.z) mod_position = position.modulus() velocity = Vector(beam.vx, beam.vy, beam.vz) position.rotation(-theta, 'x') velocity.rotation(-theta, 'x') position = position.rodrigues_formula(n, -theta) velocity = velocity.rodrigues_formula(n, -theta) velocity.normalization() position.normalization() position.x = position.x * mod_position position.y = position.y * mod_position position.z = position.z * mod_position [beam.x, beam.y, beam.z] = [position.x, position.y, position.z] [beam.vx, beam.vy, beam.vz] = [velocity.x, velocity.y, velocity.z] ####### translation ################################################################################################### vector_point = Vector(0, p, 0) vector_point.rotation(-(np.pi / 2 - oe2.theta - 0*np.pi/4), "x") vector_point = vector_point.rodrigues_formula(n, -theta) vector_point.normalization() beam.x = beam.x - vector_point.x * p beam.y = beam.y - vector_point.y * p beam.z = beam.z - vector_point.z * p ######################################################################################################################## print(beam.y) element = [1, 2, 3] oe = [oe1, oe2, screen] origin = time_comparision(beam, element, oe) print(origin) indices = np.where(origin==1) beam1 = beam.part_of_beam(indices) indices = np.where(origin==2) beam2 = beam.part_of_beam(indices) indices = np.where(origin==3) beam3 = beam.part_of_beam(indices) print(beam1.N, beam2.N, beam3.N) [beam3, t] = screen.intersection_with_optical_element(beam3) beam1_list = [beam1.duplicate(), Beam(), Beam()] beam2_list = [beam2.duplicate(), Beam(), Beam()] beam3_list = [beam3.duplicate(), Beam(), Beam()] for i in range (0, 2): print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Iteration number %d" %i) print(beam1_list[i].N, beam2_list[i].N) [beam1_list[i], t] = oe1.intersection_with_optical_element(beam1_list[i]) oe1.output_direction_from_optical_element(beam1_list[i]) origin = time_comparision(beam1_list[i], [2, 3], [oe2, screen]) indices = np.where(origin==2) beam2_list[i+1] = beam1_list[i].part_of_beam(indices) indices = np.where(origin==3) beam03 = beam1_list[i].part_of_beam(indices) [beam2_list[i], t] = oe2.intersection_with_optical_element(beam2_list[i]) oe2.output_direction_from_optical_element(beam2_list[i]) origin = time_comparision(beam2_list[i], [1, 3], [oe1, screen]) indices = np.where(origin == 1) beam1_list[i+1] = beam2_list[i].part_of_beam(indices) indices = np.where(origin == 3) beam003 = beam2_list[i].part_of_beam(indices) beam3_list[i+1] = beam03.merge(beam003) [beam3_list[i+1], t] = screen.intersection_with_optical_element(beam3_list[i+1]) plt.figure() plt.plot(beam3_list[0].x, beam3_list[0].z, 'ro') plt.plot(beam3_list[1].x, beam3_list[1].z, 'bo') plt.plot(beam3_list[2].x, beam3_list[2].z, 'go') plt.xlabel('x axis') plt.ylabel('z axis') plt.axis('equal') plt.show() if main == "__main2__": shadow_beam = shadow_source() beam = Beam() beam.initialize_from_arrays( shadow_beam.getshonecol(1), shadow_beam.getshonecol(2), shadow_beam.getshonecol(3), shadow_beam.getshonecol(4), shadow_beam.getshonecol(5), shadow_beam.getshonecol(6), shadow_beam.getshonecol(10), 0 ) beam = Beam(25000) beam.set_flat_divergence(25*1e-6, 25*1e-6) beam.set_rectangular_spot(xmax=25*1e-6, xmin=-25*1e-6, zmax=5*1e-6, zmin=-5*1e-6) beam.set_gaussian_divergence(25*1e-6, 25*1e-6) beam.set_divergences_collimated() beam.flag *= 0 p = 5. q = 15. theta = 88. * np.pi /180. xmax = 0. xmin = -0.3 ymax = 0.3 ymin = -0.3 zmax = 0.3 zmin = 0. bound1 = BoundaryRectangle(xmax, xmin, ymax, ymin, zmax, zmin) bound2 = BoundaryRectangle(xmax, xmin, ymax, ymin, zmax, zmin) Nn = 25 qq = np.ones(Nn) dx = np.ones(Nn) for i in range (0, Nn): print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Iteration %d" %i) beam1 = beam.duplicate() qq[i] = q - 1. + 2. * i / Nn print(qq[i]) montel = CompoundOpticalElement.initialize_as_montel_parabolic(p=p, q=q, theta=theta, bound1=bound1, bound2=bound2, distance_of_the_screen=qq[i]) beam03 = montel.trace_montel(beam1) if beam03[2].N != 0: dx[i] = max(beam03[2].x) - min(beam03[2].x) else: dx[i] = 100 plt.figure() plt.plot(qq, dx) min_of_qq = min(dx) indice =
np.where(dx == min_of_qq)
numpy.where
import unittest import shutil import tempfile import os import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np import coremltools from os.path import dirname from tensorflow.python.tools.freeze_graph import freeze_graph import tfcoreml as tf_converter """IMPORTANT NOTE TO ADD NEW TESTS: For each test function you should set up your own graph and session. Otherwise TF will carry all ops and tensors from previously run tests. """ def _tf_transpose(x, is_sequence=False): if not hasattr(x, "shape"): return x if len(x.shape) == 4: # [Batch, Height, Width, Channels] --> [Batch, Channels, Height, Width] x = np.transpose(x, [0,3,1,2]) return np.expand_dims(x, axis=0) elif len(x.shape) == 3: # We only deal with non-recurrent networks for now # [Batch, (Sequence) Length, Channels] --> [1,B, Channels, 1, Seq] # [0,1,2] [0,2,1] return np.transpose(x, [0,2,1])[None,:,:,None,:] elif len(x.shape) == 2: if is_sequence: # (N,S) --> (S,N,1,) return x.reshape(x.shape[::-1] + (1,)) else: # (N,C) --> (N,C,1,1) return x.reshape((1, ) + x.shape) # Dense elif len(x.shape) == 1: if is_sequence: # (S) --> (S,N,1,1,1) return x.reshape((x.shape[0], 1, 1)) else: return x else: return x def _convert_to_coreml(tf_model_path, mlmodel_path, input_name_shape_dict, output_names): """ Convert and return the coreml model from the Tensorflow """ model = tf_converter.convert(tf_model_path=tf_model_path, mlmodel_path=mlmodel_path, output_feature_names=output_names, input_name_shape_dict=input_name_shape_dict) return model def _generate_data(input_shape, mode = 'random'): """ Generate some random data according to a shape. """ if input_shape is None or len(input_shape) == 0: return 0.5 if mode == 'zeros': X = np.zeros(input_shape) elif mode == 'ones': X = np.ones(input_shape) elif mode == 'linear': X = np.array(range(np.product(input_shape))).reshape(input_shape)*1.0 elif mode == 'random': X = np.random.rand(*input_shape) elif mode == 'random_zero_mean': X = np.random.rand(*input_shape)-0.5 return X class TFNetworkTest(unittest.TestCase): @classmethod def setUpClass(self): """ Set up the unit test by loading common utilities. """ def _simple_freeze(self, input_graph, input_checkpoint, output_graph, output_node_names): # output_node_names is a string of names separated by comma freeze_graph(input_graph=input_graph, input_saver="", input_binary=False, input_checkpoint=input_checkpoint, output_node_names=output_node_names, restore_op_name="save/restore_all", filename_tensor_name="save/Const:0", output_graph=output_graph, clear_devices=True, initializer_nodes="") def _test_coreml_conversionl(self, model_dir, frozen_model_file, coreml_model_file, output_node_names, input_tensor_shapes, one_dim_seq_flags, feed_dict, tf_result, delta, use_cpu_only): # convert the tensorflow model output_tensor_names = [name + ':0' for name in output_node_names] coreml_model = _convert_to_coreml( tf_model_path=frozen_model_file, mlmodel_path=coreml_model_file, input_name_shape_dict=input_tensor_shapes, output_names=output_tensor_names) # evaluate coreml coreml_inputs = {} for idx, in_tensor_name in enumerate(input_tensor_shapes): in_shape = input_tensor_shapes[in_tensor_name] coreml_in_name = in_tensor_name.replace(':', '__').replace('/', '__') if one_dim_seq_flags is None: coreml_inputs[coreml_in_name] = _tf_transpose( feed_dict[in_tensor_name]).copy() else: coreml_inputs[coreml_in_name] = _tf_transpose( feed_dict[in_tensor_name], one_dim_seq_flags[idx]).copy() coreml_output = coreml_model.predict(coreml_inputs, useCPUOnly=use_cpu_only) for idx, out_name in enumerate(output_node_names): tp = _tf_transpose(tf_result[idx]).flatten() out_tensor_name = out_name.replace('/','__') + '__0' cp = coreml_output[out_tensor_name].flatten() self.assertEquals(len(tp), len(cp)) for i in range(len(tp)): max_den = max(1.0, tp[i], cp[i]) self.assertAlmostEquals(tp[i]/max_den, cp[i]/max_den, delta=delta) # Cleanup files - models on disk no longer useful if os.path.exists(model_dir): shutil.rmtree(model_dir) def _test_tf_model(self, graph, input_tensor_shapes, output_node_names, data_mode = 'random', delta = 1e-2, use_cpu_only = False, one_dim_seq_flags = None): """ Common entry to testing routine. graph - defined TensorFlow graph. input_tensor_shapes - dict str:shape for each input (placeholder) output_node_names - output_node_names, a list of strings output_tensor_names - output tensor names, a list of strings, usually just output_node_names each appended with ':0' """ # Some file processing model_dir = tempfile.mkdtemp() graph_def_file = os.path.join(model_dir, 'tf_graph.pbtxt') checkpoint_file = os.path.join(model_dir, 'tf_model.ckpt') frozen_model_file = os.path.join(model_dir, 'tf_frozen.pb') coreml_model_file = os.path.join(model_dir, 'coreml_model.mlmodel') # add a saver tf.reset_default_graph() with graph.as_default() as g: saver = tf.train.Saver() with tf.Session(graph = graph) as sess: # initialize sess.run(tf.global_variables_initializer()) # prepare the tensorflow inputs feed_dict = {} for in_tensor_name in input_tensor_shapes: in_tensor_shape = input_tensor_shapes[in_tensor_name] feed_dict[in_tensor_name] = _generate_data(in_tensor_shape, data_mode) # run the result fetches = [graph.get_operation_by_name(name).outputs[0] for name in \ output_node_names] tf_result = sess.run(fetches, feed_dict=feed_dict) # save graph definition somewhere tf.train.write_graph(sess.graph, model_dir, graph_def_file) # save the weights saver.save(sess, checkpoint_file) # freeze the graph self._simple_freeze( input_graph=graph_def_file, input_checkpoint=checkpoint_file, output_graph=frozen_model_file, output_node_names=",".join(output_node_names)) #convert and test numerical accuracy with CoreML self._test_coreml_conversionl(model_dir, frozen_model_file, coreml_model_file, output_node_names, input_tensor_shapes, one_dim_seq_flags, feed_dict, tf_result, delta, use_cpu_only) def _test_tf_model_constant(self, graph, input_tensor_shapes, output_node_names, data_mode='random', delta=1e-2, use_cpu_only=False, one_dim_seq_flags=None): """ Common entry to testing routine for graphs that have no variables. graph - defined TensorFlow graph. input_tensor_shapes - dict str:shape for each input (placeholder) output_node_names - output_node_names, a list of strings output_tensor_names - output tensor names, a list of strings, usually just output_node_names each appended with ':0' """ model_dir = tempfile.mkdtemp() frozen_model_file = os.path.join(model_dir, 'tf_frozen.pb') coreml_model_file = os.path.join(model_dir, 'coreml_model.mlmodel') with tf.Session(graph = graph) as sess: # initialize sess.run(tf.global_variables_initializer()) # prepare the tensorflow inputs feed_dict = {} for in_tensor_name in input_tensor_shapes: in_tensor_shape = input_tensor_shapes[in_tensor_name] feed_dict[in_tensor_name] = _generate_data(in_tensor_shape, data_mode) # run the result fetches = [graph.get_operation_by_name(name).outputs[0] for name in \ output_node_names] tf_result = sess.run(fetches, feed_dict=feed_dict) #save the frozen .pb output_graph_def = tf.graph_util.convert_variables_to_constants( sess, # The session is used to retrieve the weights tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes output_node_names #The output node names are used to select the usefull nodes ) with tf.gfile.GFile(frozen_model_file, "wb") as f: f.write(output_graph_def.SerializeToString()) #convert and test numerical accuracy with CoreML self._test_coreml_conversionl(model_dir, frozen_model_file, coreml_model_file, output_node_names, input_tensor_shapes, one_dim_seq_flags, feed_dict, tf_result, delta, use_cpu_only) class TFSimpleNetworkTest(TFNetworkTest): def test_toy(self): # Define your TF graph here graph = tf.Graph() with graph.as_default() as g: # matrix1 is input of shape (Batch=1,Channels=2) matrix1 = tf.placeholder(tf.float32, shape=[1,2], name="test_toy/input") matrix2 = tf.Variable(tf.truncated_normal([2,1])) product = tf.matmul(matrix1, matrix2, name = "test_toy/product") saver = tf.train.Saver() self._test_tf_model(graph, {"test_toy/input:0":[1,2]}, ["test_toy/product"], delta=1e-2) def test_linear(self): graph = tf.Graph() with graph.as_default() as g: # placeholder constructor returns a tensor not an op x = tf.placeholder(tf.float32, shape=[None,20], name="test_linear/input") # Make a redundant tensor. It should get trimmed gt = tf.placeholder(tf.float32, shape=[None,10]) W = tf.Variable(tf.ones([20,10])) b = tf.Variable(tf.ones([10])) y = tf.matmul(x,W) + b output_name = [y.op.name] # not batched self._test_tf_model(graph, {"test_linear/input:0":[1,20]}, output_name, delta=1e-2) # batched self._test_tf_model(graph, {"test_linear/input:0":[8,20]}, output_name, delta=1e-2) def test_log(self): graph = tf.Graph() with graph.as_default() as g: # placeholder constructor returns a tensor not an op x = tf.placeholder(tf.float32, shape=[None,20], name="test_log/input") # Make a redundant tensor. It should get trimmed gt = tf.placeholder(tf.float32, shape=[None,10]) W = tf.Variable(tf.ones([20,10])) b = tf.Variable(tf.ones([10])) y = tf.log(tf.matmul(x,W) + b) output_name = [y.op.name] self._test_tf_model(graph, {"test_log/input:0":[1,20]}, output_name, delta=1e-2) def test_simple_convnet(self): def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') graph = tf.Graph() with graph.as_default() as g: W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.placeholder(tf.float32, shape=[None,28,28,1], name="test_simple_conv/input") h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) output_name = [h_pool2.op.name] self._test_tf_model(graph, {"test_simple_conv/input:0":[1,28,28,1]}, output_name, delta=1e-2) def test_convnet(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_convnet/input") W_conv1 = tf.Variable(tf.truncated_normal([3,3,3,2], stddev=0.3)) h_conv1 = tf.nn.conv2d(x_image,W_conv1, strides=[1,1,1,1], padding='SAME') h_conv1_flat = tf.reshape(h_conv1, [-1, 8*8*2]) W_fc1 = tf.Variable(tf.truncated_normal([8*8*2,4], stddev=0.3)) h_fc1 = tf.matmul(h_conv1_flat, W_fc1) output_name = [h_fc1.op.name] # not batched self._test_tf_model(graph, {"test_convnet/input:0":[1,8,8,3]}, output_name, delta=1e-2) # batched self._test_tf_model(graph, {"test_convnet/input:0":[10,8,8,3]}, output_name, delta=1e-2) def test_reduce_max(self): graph = tf.Graph() with graph.as_default() as g: # placeholder constructor returns a tensor not an op x = tf.placeholder(tf.float32, shape=[None,20], name="test_reduce_max/input") W = tf.Variable(tf.ones([20,10])) y = tf.matmul(x,W) output = tf.reduce_max(y, axis=-1) output_name = [output.op.name] # not batched self._test_tf_model(graph, {"test_reduce_max/input:0":[1,20]}, output_name, delta=1e-2) def test_pad_conv_fuse(self): graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None,32,18,3], name="test_pad_conv/input") W = tf.Variable(tf.truncated_normal([9,9,3,5], stddev=1)) paddings = tf.constant([[0, 0], [5,5], [1,1], [0, 0]]) x_pad = tf.pad(x, paddings, "CONSTANT") output = tf.nn.conv2d(x_pad,W,strides=[1,1,1,1], padding='VALID') output_name = [output.op.name] self._test_tf_model(graph, {"test_pad_conv/input:0":[1,32,18,3]}, output_name, delta=.05) def test_dilated_conv(self): #params: (Hin,Win,K,pad,dilation) Cin = 3 Cout = 5 params = [(32,18,3,3), (14,13,3,4), (14,19,1,3), (17,18,5,3), (14,20,3,3)] for param in params: Hin, Win, K, d = param graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None,Hin,Win,Cin], name="test_pad_conv/input") W = tf.Variable(tf.truncated_normal([K,K,Cin,Cout], stddev=1)) output = tf.nn.convolution(x,W,strides=[1,1], padding='VALID', dilation_rate=[d,d]) output_name = [output.op.name] self._test_tf_model(graph, {"test_pad_conv/input:0":[1,Hin,Win,Cin]}, output_name, delta=.05) class TFSingleLayersTest(TFNetworkTest): """ Small models from tensorflow.layers """ def test_dense(self): # dense layer with some activation graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None,10], name="test_dense/input") y = tf.layers.dense(inputs=x, units=16, activation=tf.sigmoid) output_name = [y.op.name] self._test_tf_model(graph, {"test_dense/input:0":[1,10]}, output_name, delta=1e-2) def test_dense_concat(self): graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None, 10], name="test_dense/input") y = tf.layers.dense(inputs=x, units=16, activation=tf.nn.relu) z1 = tf.layers.dense(inputs=y, units=20, activation=tf.nn.relu) z2 = tf.layers.dense(inputs=y, units=20, activation=tf.nn.relu) z3 = tf.layers.dense(inputs=y, units=20, activation=tf.nn.relu) z = tf.concat([z1,z2,z3], axis=1) output_name = [z.op.name] self._test_tf_model(graph, {"test_dense/input:0": [1, 10]}, output_name, delta=1e-2) def test_conv2d(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2d/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[5,5], padding='same', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2d_valid(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2d_valid/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d_valid/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2d_stride2(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2d_stride2/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', strides=(2,2)) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d_stride2/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2d_dilated(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,32,32,3], name="test_conv2d_dilated/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', dilation_rate=(3,4)) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d_dilated/input:0":[1,32,32,3]}, output_name, delta=1e-2) def test_conv2dt(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2dt/input") conv1 = tf.layers.conv2d_transpose(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2dt/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2dt_valid(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2dt_valid/input") conv1 = tf.layers.conv2d_transpose(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2dt_valid/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2dt_stride2(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2dt_stride2/input") conv1 = tf.layers.conv2d_transpose(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', strides=(2,2)) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2dt_stride2/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2d_avepool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_avepool/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) pool1 = tf.layers.average_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv2d_avepool/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_conv2d_maxpool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_maxpool/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[3, 3], strides=1, padding='same') output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv2d_maxpool/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_conv2d_bn(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_bn/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) bn1 = tf.layers.batch_normalization(inputs=conv1, axis=-1) output_name = [bn1.op.name] self._test_tf_model(graph, {"test_conv2d_bn/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_conv2d_spatial_bn(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_bn/input") bn1 = tf.layers.batch_normalization(inputs=x_image, axis=2) output_name = [bn1.op.name] self._test_tf_model(graph, {"test_conv2d_bn/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_separable_conv2d(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_separable_conv2d/input") conv1 = tf.layers.separable_conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', depth_multiplier=2) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_separable_conv2d/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv1d(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=3, padding='valid', use_bias=True) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv1d/input:0":[1,8,3]}, output_name, data_mode='linear', delta=.05) def test_conv1d_dense(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d_dense/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=3, padding='same') conv1_flat = tf.reshape(conv1,[-1,8*2]) y = tf.layers.dense(inputs=conv1_flat, units=6, activation=tf.nn.relu) output_name = [y.op.name] # not batched self._test_tf_model(graph, {"test_conv1d_dense/input:0":[1,8,3]}, output_name, delta=1e-2) # batched self._test_tf_model(graph, {"test_conv1d_dense/input:0":[10,8,3]}, output_name, delta=1e-2) def test_conv1d_avepool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d_avepool/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=5, padding='same') pool1 = tf.layers.average_pooling1d(inputs=conv1, pool_size=2, strides=2) output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv1d_avepool/input:0":[1,8,3]}, output_name, delta=1e-2) def test_conv1d_maxpool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d_maxpool/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=3, padding='same') pool1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=1) output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv1d_maxpool/input:0":[1,8,3]}, output_name, delta=1e-2) def test_conv2d_resize_bilinear(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_resize_bl/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=3, kernel_size=[3,3], padding='same', activation=tf.nn.relu) bl1 = tf.image.resize_bilinear(images=conv1, size=[32,32]) output_name = [bl1.op.name] self._test_tf_model(graph, {"test_conv2d_resize_bl/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_concat_constants(self): graph = tf.Graph() x, y = np.meshgrid(
np.linspace(0., 1., 256)
numpy.linspace
import matplotlib.pyplot as plt import numpy as np from numpy import ones, zeros, linspace, diag, eye, abs, mean, log, sqrt, tile, meshgrid, r_, diagflat, reshape, sign, \ where, array, repeat, newaxis import numpy as np from numpy import sum as npsum, max as npmax, min as npmin from numpy.core.umath import minimum from numpy.linalg import eig, norm, solve, pinv from scipy.signal import lfilter as filter plt.style.use('seaborn') def FitMultivariateGarch(returns, demean=1, eps=0, df=500): ## Estimation of multivariate GARCH models # INPUTS # returns : [matrix] (n_ x t_end) returns so rows must correspond to time and columns to assets # demean : [scalar] specifies whether returns should be demeaned (if demean = 1) or not to estimate the model default value is 1 # eps : [scalar] used in enforcing a_ii + b_ii <= 1 - eps the default value is zero # df : [scalar] degree of freedom for the t-distribution the default value is 500 to make it, basically, normal # OPS # mu : [vector] # ATMF : [matrix] coefficient matrix A-tilde (in the notation of the paper) # BTMF : [matrix] coefficient matrix B-tilde (in the notation of the paper) # CTMF : [matrix] coefficient matrix C-tilde (in the notation of the paper) # Hhat : [matrix] forecasted conditional covariance matrix # NOTE # Initially written by <NAME> and <NAME> if eps < 0: raise ValueError('eps must be a (small) positive number') # Initialization [n_, t_] = returns.shape if 1 == demean: mu = mean(returns, 1, keepdims=True) returns = returns - tile(mu, (1, t_)) S = returns @ returns.T / (t_ - 1) x = returns A = zeros((n_, n_)) B = zeros((n_, n_)) C = zeros((n_, n_)) # Rescale Data scale = sqrt(mean(x ** 2, 1, keepdims=True)) x = x / tile(scale, (1, t_)) # Estimation of On-Diagonal Elements h = zeros((n_, t_)) for i in range(n_): # Likelihood Maximization q0, q1, q2 = garch1f4(x[i].T, eps, df)[0] A[i, i] = q1 B[i, i] = q2 C[i, i] = q0 h[i, :] = \ filter([0, q1], [1, -q2], x[i, :] ** 2 * (df - 2) / df, zi=array([mean(x[i, :] ** 2) * (df - 2) / df]))[0] \ + filter([0, q0], [1, -q2], ones(t_)) # First-step Estimation of Off-Diagonal Elements for i in range(n_): for j in range(i + 1, n_): # Likelihood Maximization theta = garch2f8(x[i, :] * x[j, :], C[i, i], A[i, i], B[i, i], x[i, :] ** 2, h[i, :], C[j, j], A[j, j], B[j, j], x[j, :] ** 2, h[j, :], df) A[i, j] = theta[1] B[i, j] = theta[2] C[i, j] = theta[0] A[j, i] = A[i, j] B[j, i] = B[i, j] C[j, i] = C[i, j] # Transformation of Coefficient Matrices ATMF = minfro(A) BTMF = minfro(B) CTMF = minfro(C / (1 - B)) * (1 - BTMF) # Rescale # C = C * (scale*scale.T) CTMF = CTMF * (scale * scale.T) # Forecast of Conditional Covariance Matrix Hhat = zeros((n_, n_)) for i in range(n_): for j in range(n_): hSeries = filter([0, ATMF[i, j]], [1, -BTMF[i, j]], returns[i, :].T * returns[j, :].T, zi=array([S[i, j]]))[ 0] + \ filter([0, CTMF[i, j]], [1, -BTMF[i, j]], ones(t_)) Hhat[i, j] = hSeries[t_ - 1] return mu, ATMF, BTMF, CTMF, Hhat def garch1f4(x, eps, df): ## Fit a GARCH(1,1) model with student-t errors # INPUTS # x : [vector] (T x 1) data generated by a GARCH(1,1) process # OPS # q : [vector] (4 x 1) parameters of the GARCH(1,1) process # qerr : [vector] (4 x 1) standard error of parameter estimates # hf : [scalar] current conditional heteroskedasticity estimate # hferr : [scalar] standard error on hf # NOTE # o Uses a conditional t-distribution with fixed degrees of freedom # o Originally written by <NAME>, 4/28/1997 # o Difference with garch1f: errors come from the score alone # Parameters gold = (1 + sqrt(5)) / 2 # step size increment tol1 = 1e-7 # for termination criterion tol2 = 1e-7 # for closeness to boundary big = 2 # for making the hessian negative definite maxiter = 50 # maximum number of iterations n = 30 # number of points on the grid # Rescale y = (x.flatten() - mean(x.flatten())) ** 2 t = len(y) scale = sqrt(mean(y ** 2)) y = y / scale s = mean(y) # Grid search [ag, bg] = meshgrid(linspace(0, 1 - eps, n), linspace(0, 1 - eps, n)) cg = np.maximum(s * (1 - ag - bg), 0) likeg = -np.Inf * ones((n, n)) for i in range(n): for j in range(n - i): h = filter(array([0, ag[i, j]]), array([1, -bg[i, j]]), y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter(array([0, cg[i, j]]), array([1, -bg[i, j]]), ones(t)) likeg[i, j] = -npsum(log(h) + (df + 1) * log(1 + y / h / df)) maxlikeg = npmax(likeg) maxima = where(likeg == maxlikeg) ##ok<MXFND> # Initialize optimization a = r_[cg[maxima], ag[maxima], bg[maxima]] best = 0 da = 0 # term = 1 # negdef = 0 iter = 0 # Begin optimization loop while iter < maxiter: iter = iter + 1 # New parameter1 a = a + gold ** best * da # Conditional variance h = filter([0, a[1]], [1, -a[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, a[0]], [1, -a[2]], ones(t)) # Likelihood if (any(a < 0) or ((a[1] + a[2]) > 1 - eps)): like = -np.Inf else: like = -npsum(log(h) + (df + 1) * log(1 + y / h / df)) # Gradient GG = r_['-1', filter([0, 1], [1, -a[2]], ones(t))[..., newaxis], filter([0, 1], [1, -a[2]], y * (df - 2) / df)[..., newaxis], filter([0, 1], [1, -a[2]], h)[..., newaxis]] g1 = ((df + 1) * (y / (y + df * h)) - 1) / h G = GG * repeat(g1.reshape(-1, 1), 3, axis=1) gra = npsum(G, axis=0) # Hessian GG2 = GG[:, [0, 1, 2, 0, 1, 2, 0, 1, 2]] * GG[:, [0, 0, 0, 1, 1, 1, 2, 2, 2]] g2 = -((df + 1) * (y / (y + df * h)) - 1) / h ** 2 - (df * (df + 1)) * (y / (y + df * h) ** 2 / h) HH = zeros((t, 9)) HH[:, 2] = filter([0, 1], [1, -a[2]], GG[:, 0]) HH[:, 6] = HH[:, 2] HH[:, 5] = filter([0, 1], [1, -a[2]], GG[:, 1]) HH[:, 7] = HH[:, 5] HH[:, 8] = filter([0, 2], [1, -a[2]], GG[:, 2]) H = GG2 * repeat(g2.reshape(-1, 1), 9, axis=1) + HH * repeat(g1.reshape(-1, 1), 9, axis=1) hes = reshape(npsum(H, axis=0), (3, 3), 'F') # Negative definite d, u = eig(hes) # d = diagflat(d) if any(d > 0): negdef = 0 d = min(d, max(d[d < 0]) / big) hes = u @ diagflat(d) @ u.T else: negdef = 1 # Direction da = -gra.dot(pinv(hes)) # Termination criterion term = da @ gra.T if (term < tol1) and negdef: break # Step search best = 0 newa = a + gold ** (best - 1) * da if (any(newa < 0) or (newa[1] + newa[2] > 1 - eps)): left = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) left = -sum(log(h) + (df + 1) * log(1 + y / h / df)) newa = a + gold ** best * da if (any(newa < 0) or (newa[1] + newa[2] > 1 - eps)): center = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) center = -sum(log(h) + (df + 1) * log(1 + y / h / df)) newa = a + gold ** (best + 1) * da if (any(newa < 0) or (newa[1] + newa[2] > 1 - eps)): right = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) right = -sum(log(h) + (df + 1) * log(1 + y / h / df)) if all(like > array([left, center, right])) or all(left > array([center, right])): while True: best = best - 1 center = left newa = a + gold ** (best - 1) * da if (any(newa < 0) or (newa[1] + newa[2] > 1 - eps)): left = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) left = -sum(log(h) + (df + 1) * log(1 + y / h / df)) if all(center >= array([like, left])): break elif all(right > array([left, center])): while True: best = best + 1 center = right newa = a + gold ** (best + 1) * da if (any(newa < 0) or (newa[1] + newa[2]) > 1 - eps): right = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) right = -npsum(log(h) + (df + 1) * log(1 + y / h / df)) if center > right: break # If stuck at boundary then stop if (center == like) and (any(a < tol2) or (a[1] + a[2]) > 1 - tol2): break # End of optimization loop a[a < tol2] = zeros(len(a[a < tol2])) if a[1] + a[2] > 1 - tol2: if a[1] < 1 - tol2: a[1] = a[1] + (1 - a[1] - a[2]) else: a[2] = a[2] + (1 - a[1] - a[2]) # Estimation error and volatility forecast # aerr=inv(G.T@G) tmp = (G.T @ G) aerr = tmp.dot(pinv(eye(tmp.shape[0]))) hf = a[0] + a[1] * y[t - 1] * (df - 2) / df + a[2] * h[t - 1] gf = r_[1, y[t - 1], h[t - 1]] + a[2] * GG[t - 1, :] hferr = gf @ aerr @ gf.T aerr = diagflat(aerr).T # Revert to original scale a[0] = a[0] * scale aerr[0] = aerr[0] * scale ** 2 hf = hf * scale hferr = hferr * scale ** 2 aerr = sqrt(aerr) hferr = sqrt(hferr) q = a qerr = aerr return q, qerr, hf, hferr def garch2f8(y, c1, a1, b1, y1, h1, c2, a2, b2, y2, h2, df): ## Off-diagonal parameter estimation in bivariate GARCH(1,1) when diagonal parameters are given. # INPUTS # y : [vector] (T x 1) data generated by a GARCH(1,1) process # OPS # q : [vector] (4 x 1) parameters of the GARCH(1,1) process # qerr : [vector] (4 x 1) standard error of parameter estimates # hf : [scalar] current conditional heteroskedasticity estimate # hferr : [scalar] standard error on hf # NOTE # o Originally written by <NAME>, 4/28/1997 # o Uses a conditional t-distribution with fixed degrees of freedom # o Steepest Ascent on boundary, Hessian off boundary, no grid search # Parameters gold = (1 + sqrt(5)) / 2 # step size increment tol1 = 1e-7 # for termination criterion tol2 = 1e-7 # for closeness to boundary big = 2 # for making the hessian negative definite maxiter = 50 # maximum number of iterations # n=30 # number of points on the grid # Prepare t = len(y) y1 = y1.flatten() y2 = y2.flatten() y = y.flatten() s = mean(y) # s1=mean((y1)) # s2=mean((y2)) h1 = h1.flatten() h2 = h2.flatten() # Bounds low = r_[-sqrt(c1 * c2), 0, 0] + tol2 high = r_[sqrt(c1 * c2), sqrt(a1 * a2), sqrt(b1 * b2)] - tol2 # Starting Point a0 = 0.9 * sqrt(a1 * a2) b0 = 0.9 * sqrt(b1 * b2) c0 = mean(y) * (1 - a0 - b0) * (df - 2) / df c0 = sign(c0) * min(abs(c0), 0.9 * sqrt(c1 * c2)) # Initialize optimization a = r_[c0, a0, b0] best = 0 da = 0 # term=1 # negdef=0 iter = 0 # Begin optimization loop while iter < maxiter: iter = iter + 1 # New parameter # olda = a a = a + gold ** best * da # Conditional variance h = filter([0, a[1]], [1, -a[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, a[0]], [1, -a[2]], ones(t)) d = h1 * h2 - h ** 2 z = h2 * y1 + h1 * y2 - 2 * h * y # Likelihood if (any(a < low) or any(a > high)): like = -np.Inf else: # like=-sum(log(h)+y/h)) # like=-sum(log(h)+(df+1)*log(1+y/h/df)) if any(d <= 0) or any(1 + z / d / df <= 0): like = -np.Inf else: like = -sum(log(d) + (2 + df) * log(1 + z / d / df)) / 2 # Gradient GG = r_['-1', filter([0, 1], [1, -a[2]], ones(t))[..., newaxis], filter([0, 1], [1, -a[2]], y * (df - 2) / df)[..., newaxis], filter([0, 1], [1, -a[2]], h)[..., newaxis]] g1 = h / d + (2 + df) * y / (z + d * df) - (2 + df) * h * z / (z + d * df) / d G = GG * repeat(g1.reshape(-1, 1), 3, axis=1) gra = npsum(G, axis=0) # Hessian GG2 = GG[:, [0, 1, 2, 0, 1, 2, 0, 1, 2]] * GG[:, [0, 0, 0, 1, 1, 1, 2, 2, 2]] g2 = 1 / d + 2 * h ** 2 / d ** 2 - (2 + df) * y / (z + d * df) ** 2 * (-2 * y - 2 * df * h) \ - (2 + df) * z / (z + d * df) / d + 2 * (2 + df) * h * y / (z + d * df) / d \ + (2 + df) * h * z / (z + d * df) ** 2 / d * (-2 * y - 2 * df * h) \ - 2 * (2 + df) * h ** 2 * z / (z + d * df) / d ** 2 HH = zeros((t, 9)) HH[:, 2] = filter([0, 1], [1, -a[2]], GG[:, 0]) HH[:, 6] = HH[:, 2] HH[:, 5] = filter([0, 1], [1, -a[2]], GG[:, 1]) HH[:, 7] = HH[:, 5] HH[:, 8] = filter([0, 2], [1, -a[2]], GG[:, 2]) H = GG2 * repeat(g2.reshape(-1, 1), 9, axis=1) + HH * repeat(g1.reshape(-1, 1), 9, axis=1) hes = reshape(npsum(H, axis=0), (3, 3), 'F') # Negative definite val, u = eig(hes) if all(val > 0): hes = -eye(3) negdef = 0 elif any(val > 0): negdef = 0 val = minimum(val, max(val[val < 0]) / big) hes = u @ diagflat(val) @ u.T else: negdef = 1 # Steepest Ascent or Newton if any(a == low) or any(a == high): da = -((gra @ gra.T) / (gra @ hes @ gra.T)) * gra else: da = -gra.dot(pinv(hes)) # Termination criterion term = da @ gra.T if ((term < tol1) and negdef): break # If you are on the boundary and want to get out, slide along da[(a == low) & (da < 0)] = zeros(da[(a == low) & (da < 0)].shape) da[(a == high) & (da > 0)] = zeros(da[(a == high) & (da > 0)].shape) # If you are stuck in a corner, terminate too if all(da == 0): break # Go no further than next boundary hit = r_[(low[da != 0] - a[da != 0]) / da[da != 0], (high[da != 0] - a[da != 0]) / da[da != 0]] hit = hit[hit > 0] da = min(r_[hit, 1]) * da # Step search best = 0 newa = a + gold ** (best - 1) * da if (any(newa < low) or any(newa > high)): left = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) d = h1 * h2 - h ** 2 z = h2 * y1 + h1 * y2 - 2 * h * y if any(d <= 0) or any(1 + z / d / df <= 0): left = -np.Inf else: left = -sum(log(d) + (2 + df) * log(1 + z / d / df)) / 2 newa = a + gold ** best * da if (any(newa < low) or any(newa > high)): center = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) d = h1 * h2 - h ** 2 z = h2 * y1 + h1 * y2 - 2 * h * y if any(d <= 0) or any(1 + z / d / df <= 0): center = -np.Inf else: center = -sum(log(d) + (2 + df) * log(1 + z / d / df)) / 2 newa = a + gold ** (best + 1) * da if (any(newa < low) or any(newa > high)): right = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) d = h1 * h2 - h ** 2 z = h2 * y1 + h1 * y2 - 2 * h * y if any(d <= 0) or any(1 + z / d / df <= 0): right = -np.Inf else: right = -sum(log(d) + (2 + df) * log(1 + z / d / df)) / 2 if all(like > array([left, center, right])) or all(left > array([center, right])): while True: best = best - 1 center = left newa = a + gold ** (best - 1) * da if (any(newa < low) or any(newa > high)): left = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) d = h1 * h2 - h ** 2 z = h2 * y1 + h1 * y2 - 2 * h * y if any(d <= 0) or any(1 + z / d / df <= 0): left = -np.Inf else: left = -sum(log(d) + (2 + df) * log(1 + z / d / df)) / 2 if all(center >= [like, left]): break elif all(right > array([left, center])): while True: best = best + 1 center = right newa = a + gold ** (best + 1) * da if (any(newa < low) or any(newa > high)): right = -np.Inf else: h = filter([0, newa[1]], [1, -newa[2]], y * (df - 2) / df, zi=array([s * (df - 2) / df]))[0] \ + filter([0, newa[0]], [1, -newa[2]], ones(t)) d = h1 * h2 - h ** 2 z = h2 * y1 + h1 * y2 - 2 * h * y if any(d <= 0) or any(1 + z / d / df <= 0): right = -np.Inf else: right = -npsum(log(d) + (2 + df) * log(1 + z / d / df)) / 2 if center > right: break q = a return q def minfro(A): # INPUTS # A : [matrix] an indefinite symmetric matrix with non-negative diagonal elements # OPS # XXX : [matrix] positive semi-definite matrix with same diagonal elements as A that is closest # to A according to the Frobenius norm # NOTE # o Written initially by <NAME> (1997) if any(diag(A) < 0): raise ValueError('Diagonal Elements Must Be Non-Negative!') elif npsum(A != A.T) != 0: raise ValueError('Matrix Must Be Symmetric!') elif all(eig(A)[0] >= 0): XXX = A else: # if things go wrong make rho bigger and wait longer rho = 0.75 tol = 3e-6 # tolerance maxj = 10 # max number of iterations n = A.shape[0] # [n, nn] = A.shape M = diagflat(diag(A)) # initialize with diagonal # [n, nn] = A.shape oldnorm = norm(M - A, ord='fro') oldnormj = oldnorm normj[0] = oldnorm j = 1 incmax = 1e32 # just to enter the loop while ((j < maxj) and (incmax > tol)): incmax = 0 for i in range(n): a = r_[A[:i, i], A[i + 1:n, i]] m = r_[M[:i, i], M[i + 1:n, i]] aii = A(i, i) b = a - rho @ m # Newton's step x = newton(M, i, b, m, aii, n, rho) P =
eye(n)
numpy.eye
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper/utility functions that a tf-transform implementation would find handy.""" import os import re from typing import Callable, Dict, List, Mapping, Optional, Set, Tuple, Union import numpy as np import pyarrow as pa import tensorflow as tf from tensorflow_transform import analyzer_nodes from tensorflow_transform import annotators from tensorflow_transform import common_types from tensorflow_transform import graph_context from tensorflow_transform import graph_tools from tensorflow_transform import schema_inference from tensorflow_transform import tf2_utils from tensorflow_transform import tf_utils from tensorflow_transform.output_wrapper import TFTransformOutput from tensorflow_transform.saved import saved_transform_io from tensorflow_transform.saved import saved_transform_io_v2 from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import metadata_io from tensorflow_transform.tf_metadata import schema_utils from tfx_bsl.tfxio import tensor_to_arrow # pylint: disable=g-direct-tensorflow-import from tensorflow.python.eager import function from tensorflow.python.framework import ops # pylint: enable=g-direct-tensorflow-import from tensorflow_metadata.proto.v0 import schema_pb2 _CompositeInstanceComponentType = np.ndarray _CompositeComponentType = List[_CompositeInstanceComponentType] _CACHED_EMPTY_ARRAY_BY_DTYPE = {} _VALID_SCOPE_REGEX = re.compile('^[A-Za-z0-9]*$') _INVALID_SCOPE_CHAR = re.compile('[^A-Za-z0-9_.\\-/>]') METADATA_DIR_NAME = '.tft_metadata' def _get_empty_array(dtype): if dtype not in _CACHED_EMPTY_ARRAY_BY_DTYPE: empty_array = np.array([], dtype) empty_array.setflags(write=False) _CACHED_EMPTY_ARRAY_BY_DTYPE[dtype] = empty_array return _CACHED_EMPTY_ARRAY_BY_DTYPE[dtype] def batched_placeholders_from_specs(specs): """Returns placeholders for the given tf.TypeSpecs or feature specs. Args: specs: a Dict[Text, Union[tf.TypeSpec, FeatureSpec]]. Note that the values in this dict must be of the same type. Mixing is not allowed. Returns: A dictionary from strings to `Tensor`, `SparseTensor`s, or `RaggedTensor`s. Raises: ValueError: when the TypeSpec or feature spec has an unsupported dtype. """ if not (all([_is_feature_spec(s) for s in specs.values()]) or all([isinstance(s, tf.TypeSpec) for s in specs.values()])): raise TypeError('Specs must be all tf.TypeSpecs or feature specs. ' 'Mixing is not allowed. Got: {}'.format(specs)) result = {} for name, spec in specs.items(): if isinstance(spec, tf.RaggedTensorSpec): # TODO(b/159717195): clean up protected-access spec_dtype = spec._dtype # pylint: disable=protected-access else: spec_dtype = spec.dtype if spec_dtype not in (tf.int64, tf.float32, tf.string): raise ValueError('Feature {} ({}, {}) had invalid dtype'.format( name, spec, type(spec))) if isinstance(spec, tf.TypeSpec): result[name] = _batched_placeholder_from_typespec(name, spec) else: result[name] = _batched_placeholder_from_feature_spec(name, spec) return result def _is_feature_spec(spec): if isinstance( spec, (tf.io.VarLenFeature, tf.io.SparseFeature, tf.io.FixedLenFeature)): return True return common_types.is_ragged_feature(spec) def _sanitize_scope_name(name): scope_name = _INVALID_SCOPE_CHAR.sub('_', name) if not _VALID_SCOPE_REGEX.match(scope_name): scope_name = 'F_{}'.format(scope_name) return scope_name def _batched_placeholder_from_typespec(name, typespec): """Creates a batched placeholder from a tf.TypeSpec.""" if isinstance(typespec, (tf.TensorSpec, tf.SparseTensorSpec, tf.RaggedTensorSpec)): sanitized_name = _sanitize_scope_name(name) with tf.name_scope(sanitized_name): return tf.nest.map_structure( lambda tspec: tf.raw_ops.Placeholder( # pylint: disable=g-long-lambda dtype=tspec.dtype, shape=tspec.shape, name=sanitized_name), typespec, expand_composites=True) raise ValueError('Unsupported typespec: {}({}) for feature {}'.format( typespec, type(typespec), name)) def _batched_placeholder_from_feature_spec(name, feature_spec): """Creates a batched placeholder from a feature spec.""" scope_name = _sanitize_scope_name(name) if isinstance(feature_spec, tf.io.FixedLenFeature): return tf.compat.v1.placeholder( feature_spec.dtype, [None] + feature_spec.shape, name=scope_name) elif isinstance(feature_spec, tf.io.VarLenFeature): return tf.compat.v1.sparse_placeholder( feature_spec.dtype, [None, None], name=scope_name) elif isinstance(feature_spec, tf.io.SparseFeature): shape = [None] + feature_spec.size if isinstance( feature_spec.size, list) else [None, feature_spec.size] return tf.compat.v1.sparse_placeholder( feature_spec.dtype, shape, name=scope_name) raise ValueError('Unsupported feature spec: {}({}) for feature {}'.format( feature_spec, type(feature_spec), name)) def _extract_sparse_components( sparse_value: common_types.SparseTensorValueType ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: if isinstance(sparse_value, tf.SparseTensor): return (np.asarray(sparse_value.indices), np.asarray(sparse_value.values), np.asarray(sparse_value.dense_shape)) elif isinstance(sparse_value, tf.compat.v1.SparseTensorValue): return sparse_value else: raise ValueError( 'Expected SparseTensor or SparseTensorValue , but got {}'.format( sparse_value)) def _get_num_values_per_instance_in_sparse_batch(batch_indices: np.ndarray, batch_size: int) -> List[int]: """Computes the number of values per instance of the batch.""" result = [0] * batch_size for arr in batch_indices: result[arr[0]] += 1 return result def _decompose_sparse_batch( sparse_value: common_types.SparseTensorValueType ) -> Tuple[List[_CompositeComponentType], _CompositeComponentType]: """Decomposes a sparse batch into a list of sparse instances. Args: sparse_value: A `SparseTensor` or `SparseTensorValue` representing a batch of N sparse instances. The indices of the SparseTensorValue are expected to be sorted by row order. Returns: A tuple (instance_indices, instance_values) where the elements are lists of N ndarrays representing the indices and values, respectively, of the instances in the batch. The `instance_indices` include an ndarray per dimension. """ batch_indices, batch_values, batch_shape = _extract_sparse_components( sparse_value) batch_size = batch_shape[0] instance_rank = len(batch_shape) - 1 # Preallocate lists of length batch_size, initialized to empty ndarrays, # representing the indices and values of instances. We can reuse the return # value of _get_empty_array here because it is immutable. instance_values = [_get_empty_array(batch_values.dtype)] * batch_size instance_indices = [[_get_empty_array(batch_indices.dtype)] * instance_rank for idx in range(batch_size)] values_per_instance = _get_num_values_per_instance_in_sparse_batch( batch_indices, batch_size) offset = 0 for idx, num_values in enumerate(values_per_instance): if num_values < 1: continue instance_values[idx] = batch_values[offset:offset + num_values] for dim in range(instance_rank): # Skipping the first dimension since that is the batch dimension. instance_indices[idx][dim] = batch_indices[offset:offset + num_values, dim + 1] offset += num_values return instance_indices, instance_values def _decompose_varlen_batch( sparse_value: common_types.SparseTensorValueType ) -> Tuple[_CompositeComponentType, _CompositeComponentType]: """Decomposes a sparse batch into a list of sparse/varlen instances. Args: sparse_value: A `SparseTensor` or `SparseTensorValue` representing a batch of N sparse instances. The indices of the SparseTensorValue are expected to be sorted by row order. Returns: A tuple (instance_indices, instance_values) where the elements are lists of N ndarrays representing the indices and values, respectively, of the instances in the batch. Raises: ValueError: If `sparse_value` is neither `SparseTensor` nor `SparseTensorValue`. ValueError: If `sparse_value` contains out-of-order indices. """ batch_indices, batch_values, batch_shape = _extract_sparse_components( sparse_value) batch_size = batch_shape[0] instance_rank = len(batch_shape) - 1 # Preallocate lists of length batch_size, initialized to empty ndarrays, # representing the indices and values of instances. We can reuse the return # value of _get_empty_array here because it is immutable. instance_values = [_get_empty_array(batch_values.dtype)] * batch_size instance_indices = [_get_empty_array(batch_indices.dtype)] * batch_size # Iterate over the rows in the batch. At each row, consume all the elements # that belong to that row. current_offset = 0 for current_row in range(batch_size): start_offset = current_offset # Scan forward until we reach an element that does not belong to the # current row. while current_offset < len(batch_indices): row = batch_indices[current_offset][0] if row == current_row: # This element belongs to the current row. current_offset += 1 elif row > current_row: # We've reached the end of the current row. break else: raise ValueError('Encountered out-of-order sparse index: {}.'.format( batch_indices[current_offset])) if current_offset == start_offset: # If the current row is empty, leave the default value, which is an # empty array. pass else: instance_indices[current_row] = batch_indices[start_offset:current_offset, 1:] if instance_rank == 1: # In this case indices will have length 1, so for convenience we # reshape from [-1, 1] to [-1]. current_row_indices = instance_indices[current_row] # type: np.ndarray instance_indices[current_row] = current_row_indices.reshape([-1]) instance_values[current_row] = batch_values[start_offset:current_offset] return instance_indices, instance_values def _handle_varlen_batch(tensor_or_value: common_types.SparseTensorValueType, name: str) -> _CompositeComponentType: """Decomposes a varlen tensor value into sparse tensor components.""" instance_indices, instance_values = _decompose_varlen_batch(tensor_or_value) for indices in instance_indices: # type: np.ndarray if len(indices.shape) > 1 or np.any(indices != np.arange(len(indices))): raise ValueError('Encountered a SparseTensorValue that cannot be ' 'decoded by ListColumnRepresentation.\n' '"{}" : {}'.format(name, tensor_or_value)) return instance_values def _handle_sparse_batch( tensor_or_value: common_types.SparseTensorValueType, spec: common_types.FeatureSpecType, name: str ) -> Dict[str, Union[List[_CompositeComponentType], _CompositeComponentType]]: """Decomposes a sparse tensor value into sparse tensor components.""" if len(spec.index_key) == 1: index_keys = spec.index_key[0] instance_indices, instance_values = _decompose_varlen_batch(tensor_or_value) else: index_keys = spec.index_key instance_indices, instance_values = _decompose_sparse_batch(tensor_or_value) result = {} if isinstance(index_keys, list): assert isinstance(instance_indices, list) for key, indices in zip(index_keys, zip(*instance_indices)): result[key] = indices else: result[index_keys] = instance_indices result[spec.value_key] = instance_values _check_valid_sparse_tensor(instance_indices, instance_values, spec.size, name) return result def _get_ragged_instance_component( component_batch: _CompositeInstanceComponentType, batch_splits: np.ndarray, instance_idx: int) -> _CompositeInstanceComponentType: """Extracts an instance component from a flat batch with given splits.""" instance_begin = batch_splits[instance_idx] instance_end = batch_splits[instance_idx + 1] return component_batch[instance_begin:instance_end] def _handle_ragged_batch(tensor_or_value: common_types.RaggedTensorValueType, spec: common_types.FeatureSpecType, name: str) -> Dict[str, _CompositeComponentType]: """Decomposes a ragged tensor or value into ragged tensor components.""" if isinstance(tensor_or_value, tf.RaggedTensor): nested_row_splits = tuple( x.numpy() for x in tensor_or_value.nested_row_splits) flat_values = tensor_or_value.flat_values.numpy() elif isinstance(tensor_or_value, tf.compat.v1.ragged.RaggedTensorValue): nested_row_splits = tensor_or_value.nested_row_splits flat_values = tensor_or_value.flat_values else: raise ValueError('Expected RaggedTensor or RaggedTensorValue , but ' 'got {}'.format(tensor_or_value)) result = {} # The outermost row split represents batch dimension. batch_splits = nested_row_splits[0] batch_size = len(batch_splits) - 1 if len(nested_row_splits) != len(spec.partitions) + 1: raise NotImplementedError( 'Ragged tensors with non-ragged dimensions are not supported, ragged ' 'rank of feature "{}" is {}, partitions ' 'are {}'.format(name, len(nested_row_splits) - 1, spec.partitions)) # Iterate over all but batch dimension splits. for row_splits, partition in zip(nested_row_splits[1:], spec.partitions): if isinstance(partition, tf.io.RaggedFeature.RowLengths): # pytype: disable=attribute-error row_lengths = row_splits[1:] - row_splits[:-1] result[partition.key] = [ _get_ragged_instance_component(row_lengths, batch_splits, idx) for idx in range(batch_size) ] else: raise NotImplementedError( 'Only `RowLengths` partitions of ragged features are supported, got ' '{} for ragged feature "{}"'.format(type(partition), name)) # Translate batch split indices for the current dimension to the # next dimension. batch_splits = row_splits[batch_splits] # Split flat values according to the innermost dimension batch splits. result[spec.value_key] = [ _get_ragged_instance_component(flat_values, batch_splits, idx) for idx in range(batch_size) ] return result def to_instance_dicts(schema, fetches): """Converts fetches to the internal batch format. Maps the values fetched by `tf.Session.run` or returned by a tf.function to the internal batch format. Args: schema: A `Schema` proto. fetches: A dict representing a batch of data, either as returned by `Session.run` or eager tensors. Returns: A list of dicts where each dict is an in-memory representation of an instance. Raises: ValueError: If `schema` is invalid. """ batch_dict = {} batch_sizes = {} feature_spec = schema_utils.schema_as_feature_spec(schema).feature_spec for name, tensor_or_value in fetches.items(): spec = feature_spec[name] if isinstance(spec, tf.io.FixedLenFeature): value =
np.asarray(tensor_or_value)
numpy.asarray
from __future__ import print_function, division, absolute_import import numpy as np from scipy import optimize as sciopt from Bio import Phylo from treetime import config as ttconf from treetime import MissingDataError,UnknownMethodError,NotReadyError from .utils import tree_layout from .clock_tree import ClockTree rerooting_mechanisms = ["min_dev", "best", "least-squares"] deprecated_rerooting_mechanisms = {"residual":"least-squares", "res":"least-squares", "min_dev_ML": "min_dev", "ML":"least-squares"} class TreeTime(ClockTree): """ TreeTime is a wrapper class to ClockTree that adds additional functionality such as reroot, detection and exclusion of outliers, resolution of polytomies using temporal information, and relaxed molecular clock models """ def __init__(self, *args,**kwargs): """ TreeTime constructor Parameters ----------- *args Arguments to construct ClockTree **kwargs Keyword arguments to construct the GTR model """ super(TreeTime, self).__init__(*args, **kwargs) def run(self, root=None, infer_gtr=True, relaxed_clock=None, n_iqd = None, resolve_polytomies=True, max_iter=0, Tc=None, fixed_clock_rate=None, time_marginal=False, sequence_marginal=False, branch_length_mode='auto', vary_rate=False, use_covariation=False, **kwargs): """ Run TreeTime reconstruction. Based on the input parameters, it divides the analysis into semi-independent jobs and conquers them one-by-one, gradually optimizing the tree given the temporal constarints and leaf node sequences. Parameters ---------- root : str Try to find better root position on a given tree. If string is passed, the root will be searched according to the specified method. If none, use tree as-is. See :py:meth:`treetime.TreeTime.reroot` for available rooting methods. infer_gtr : bool If True, infer GTR model relaxed_clock : dic If not None, use autocorrelated molecular clock model. Specify the clock parameters as :code:`{slack:<slack>, coupling:<coupling>}` dictionary. n_iqd : int If not None, filter tree nodes which do not obey the molecular clock for the particular tree. The nodes, which deviate more than :code:`n_iqd` interquantile intervals from the molecular clock regression will be marked as 'BAD' and not used in the TreeTime analysis resolve_polytomies : bool If True, attempt to resolve multiple mergers max_iter : int Maximum number of iterations to optimize the tree Tc : float, str If not None, use coalescent model to correct the branch lengths by introducing merger costs. If Tc is float, it is interpreted as the coalescence time scale If Tc is str, it should be one of (:code:`opt`, :code:`const`, :code:`skyline`) fixed_clock_rate : float Fixed clock rate to be used. If None, infer clock rate from the molecular clock. time_marginal : bool If True, perform a final round of marginal reconstruction of the node's positions. sequence_marginal : bool, optional use marginal reconstruction for ancestral sequences branch_length_mode : str Should be one of: :code:`joint`, :code:`marginal`, :code:`input`. If 'input', rely on the branch lengths in the input tree and skip directly to the maximum-likelihood ancestral sequence reconstruction. Otherwise, perform preliminary sequence reconstruction using parsimony algorithm and do branch length optimization vary_rate : bool or float, optional redo the time tree estimation for rates +/- one standard deviation. if a float is passed, it is interpreted as standard deviation, otherwise this standard deviation is estimated from the root-to-tip regression use_covariation : bool, optional default False, if False, rate estimates will be performed using simple regression ignoring phylogenetic covaration between nodes. If vary_rate is True, use_covariation is true by default **kwargs Keyword arguments needed by the downstream functions Returns ------- TreeTime error/succces code : str return value depending on success or error """ # register the specified covaration mode self.use_covariation = use_covariation or (vary_rate and (not type(vary_rate)==float)) if (self.tree is None) or (self.aln is None and self.data.full_length is None): raise MissingDataError("TreeTime.run: ERROR, alignment or tree are missing") if (self.aln is None): branch_length_mode='input' self._set_branch_length_mode(branch_length_mode) # determine how to reconstruct and sample sequences seq_kwargs = {"marginal_sequences":sequence_marginal or (self.branch_length_mode=='marginal'), "sample_from_profile":"root", "reconstruct_tip_states":kwargs.get("reconstruct_tip_states", False)} tt_kwargs = {'clock_rate':fixed_clock_rate, 'time_marginal':False} tt_kwargs.update(kwargs) seq_LH = 0 if "fixed_pi" in kwargs: seq_kwargs["fixed_pi"] = kwargs["fixed_pi"] if "do_marginal" in kwargs: time_marginal=kwargs["do_marginal"] # initially, infer ancestral sequences and infer gtr model if desired if self.branch_length_mode=='input': if self.aln: self.infer_ancestral_sequences(infer_gtr=infer_gtr, **seq_kwargs) self.prune_short_branches() else: self.optimize_tree(infer_gtr=infer_gtr, max_iter=1, prune_short=True, **seq_kwargs) avg_root_to_tip = np.mean([x.dist2root for x in self.tree.get_terminals()]) # optionally reroot the tree either by oldest, best regression or with a specific leaf if n_iqd or root=='clock_filter': if "plot_rtt" in kwargs and kwargs["plot_rtt"]: plot_rtt=True else: plot_rtt=False reroot_mechanism = 'least-squares' if root=='clock_filter' else root self.clock_filter(reroot=reroot_mechanism, n_iqd=n_iqd, plot=plot_rtt, fixed_clock_rate=fixed_clock_rate) elif root is not None: self.reroot(root=root, clock_rate=fixed_clock_rate) if self.branch_length_mode=='input': if self.aln: self.infer_ancestral_sequences(**seq_kwargs) else: self.optimize_tree(max_iter=1, prune_short=False,**seq_kwargs) # infer time tree and optionally resolve polytomies self.logger("###TreeTime.run: INITIAL ROUND",0) self.make_time_tree(**tt_kwargs) if self.aln: seq_LH = self.tree.sequence_marginal_LH if seq_kwargs['marginal_sequences'] else self.tree.sequence_joint_LH self.LH =[[seq_LH, self.tree.positional_joint_LH, 0]] if root is not None and max_iter: new_root = self.reroot(root='least-squares' if root=='clock_filter' else root, clock_rate=fixed_clock_rate) self.logger("###TreeTime.run: rerunning timetree after rerooting",0) self.make_time_tree(**tt_kwargs) # iteratively reconstruct ancestral sequences and re-infer # time tree to ensure convergence. niter = 0 ndiff = 0 need_new_time_tree=False while niter < max_iter: self.logger("###TreeTime.run: ITERATION %d out of %d iterations"%(niter+1,max_iter),0) # add coalescent prior if Tc: if Tc=='skyline' and niter<max_iter-1: tmpTc='const' else: tmpTc=Tc self.add_coalescent_model(tmpTc, **kwargs) need_new_time_tree = True # estimate a relaxed molecular clock if relaxed_clock: print("relaxed_clock", relaxed_clock) self.relaxed_clock(**relaxed_clock) need_new_time_tree = True n_resolved=0 if resolve_polytomies: # if polytomies are found, rerun the entire procedure n_resolved = self.resolve_polytomies() if n_resolved: self.prepare_tree() if self.branch_length_mode!='input': # otherwise reoptimize branch length while preserving branches without mutations self.optimize_tree(prune_short=False, max_iter=0, **seq_kwargs) need_new_time_tree = True if need_new_time_tree: self.make_time_tree(**tt_kwargs) if self.aln: ndiff = self.infer_ancestral_sequences('ml',**seq_kwargs) else: # no refinements, just iterate if self.aln: ndiff = self.infer_ancestral_sequences('ml',**seq_kwargs) self.make_time_tree(**tt_kwargs) self.tree.coalescent_joint_LH = self.merger_model.total_LH() if Tc else 0.0 if self.aln: seq_LH = self.tree.sequence_marginal_LH if seq_kwargs['marginal_sequences'] else self.tree.sequence_joint_LH self.LH.append([seq_LH, self.tree.positional_joint_LH, self.tree.coalescent_joint_LH]) niter+=1 if ndiff==0 and n_resolved==0 and Tc!='skyline': self.logger("###TreeTime.run: CONVERGED",0) break # if the rate is too be varied and the rate estimate has a valid confidence interval # rerun the estimation for variations of the rate if vary_rate: if type(vary_rate)==float: self.calc_rate_susceptibility(rate_std=vary_rate, params=tt_kwargs) elif self.clock_model['valid_confidence']: self.calc_rate_susceptibility(params=tt_kwargs) else: raise UnknownMethodError("TreeTime.run: rate variation for confidence estimation is not available. Either specify it explicitly, or estimate from root-to-tip regression.") # if marginal reconstruction requested, make one more round with marginal=True # this will set marginal_pos_LH, which to be used as error bar estimations if time_marginal: self.logger("###TreeTime.run: FINAL ROUND - confidence estimation via marginal reconstruction", 0) tt_kwargs['time_marginal']=time_marginal self.make_time_tree(**tt_kwargs) # explicitly print out which branches are bad and whose dates don't correspond to the input dates bad_branches =[n for n in self.tree.get_terminals() if n.bad_branch and n.raw_date_constraint] if bad_branches: self.logger("TreeTime: The following tips don't fit the clock model, " "please remove them from the tree. Their dates have been reset:",0,warn=True) for n in bad_branches: self.logger("%s, input date: %s, apparent date: %1.2f"%(n.name, str(n.raw_date_constraint), n.numdate),0,warn=True) return ttconf.SUCCESS def _set_branch_length_mode(self, branch_length_mode): ''' if branch_length mode is not explicitly set, set according to empirical branch length distribution in input tree Parameters ---------- branch_length_mode : str, 'input', 'joint', 'marginal' if the maximal branch length in the tree is longer than 0.05, this will default to 'input'. Otherwise set to 'joint' ''' if branch_length_mode in ['joint', 'marginal', 'input']: self.branch_length_mode = branch_length_mode elif self.aln: bl_dis = [n.branch_length for n in self.tree.find_clades() if n.up] max_bl = np.max(bl_dis) if max_bl>0.1: bl_mode = 'input' else: bl_mode = 'joint' self.logger("TreeTime._set_branch_length_mode: maximum branch length is %1.3e, using branch length mode %s"%(max_bl, bl_mode),1) self.branch_length_mode = bl_mode else: self.branch_length_mode = 'input' def clock_filter(self, reroot='least-squares', n_iqd=None, plot=False, fixed_clock_rate=None): ''' Labels outlier branches that don't seem to follow a molecular clock and excludes them from subsequent molecular clock estimation and the timetree propagation. Parameters ---------- reroot : str Method to find the best root in the tree (see :py:meth:`treetime.TreeTime.reroot` for options) n_iqd : int Number of iqd intervals. The outlier nodes are those which do not fall into :math:`IQD\cdot n_iqd` interval (:math:`IQD` is the interval between 75\ :sup:`th` and 25\ :sup:`th` percentiles) If None, the default (3) assumed plot : bool If True, plot the results ''' if n_iqd is None: n_iqd = ttconf.NIQD if type(reroot) is list and len(reroot)==1: reroot=str(reroot[0]) terminals = self.tree.get_terminals() if reroot: self.reroot(root='least-squares' if reroot=='best' else reroot, covariation=False, clock_rate=fixed_clock_rate) else: self.get_clock_model(covariation=False, slope=fixed_clock_rate) clock_rate = self.clock_model['slope'] icpt = self.clock_model['intercept'] res = {} for node in terminals: if hasattr(node, 'raw_date_constraint') and (node.raw_date_constraint is not None): res[node] = node.dist2root - clock_rate*np.mean(node.raw_date_constraint) - icpt residuals = np.array(list(res.values())) iqd =
np.percentile(residuals,75)
numpy.percentile
#!/usr/bin/env python3 """ Python OpenGL practical application. """ # Python built-in modules import os # os function, i.e. checking file status from itertools import cycle import sys # External, non built-in modules import OpenGL.GL as GL # standard Python OpenGL wrapper import OpenGL.GLU as GLU # standard Python OpenGL wrapper import glfw # lean window system wrapper for OpenGL import numpy as np # all matrix manipulations & OpenGL args import pyassimp # 3D resource loader import pyassimp.errors # Assimp error management + exceptions from PIL import Image # load images for textures import yaml from transform import * from fisheye_utils import project_points_fisheye # import logging # logger = logging.getLogger("pyassimp") # handler = logging.StreamHandler() # logger.addHandler(handler) # logger.setLevel(logging.DEBUG) # ------------ simple color fragment shader demonstrated in Practical 1 ------ COLOR_VERT = """#version 330 core uniform mat4 modelviewprojection; uniform vec3 color; layout(location = 0) in vec3 position; out vec3 fragColor; void main() { gl_Position = modelviewprojection * vec4(position, 1); fragColor = color; }""" FISHEYE_COLOR_VERT = """#version 330 core uniform mat4 modelviewprojection; uniform mat4 modelview; uniform vec3 color; uniform float fov; layout(location = 0) in vec3 position; out vec3 fragColor; void main() { gl_Position = modelviewprojection * vec4(position, 1); vec4 tmp_point = modelview * vec4(position, 1); float f = 1/(fov/2); float r = length(tmp_point.xyz); float theta = acos(tmp_point.z/r); float R = f*theta; gl_Position.xy = R * tmp_point.xy / length(tmp_point.xy); fragColor = color; }""" COLOR_FRAG = """#version 330 core in vec3 fragColor; out vec4 outColor; void main() { outColor = vec4(fragColor, 1); }""" # -------------- Example texture plane class ---------------------------------- TEXTURE_VERT = """#version 330 core uniform mat4 modelviewprojection; layout(location = 0) in vec3 position; layout(location = 1) in vec2 texposition; out vec2 fragTexCoord; void main() { gl_Position = modelviewprojection * vec4(position, 1); fragTexCoord = texposition; }""" FISHEYE_TEXTURE_VERT = """#version 330 core uniform mat4 modelviewprojection; uniform mat4 modelview; uniform float fov; layout(location = 0) in vec3 position; layout(location = 1) in vec2 texposition; out vec2 fragTexCoord; void main() { gl_Position = modelviewprojection * vec4(position, 1); vec4 tmp_point = modelview * vec4(position, 1); float r = length(tmp_point.xyz); //if (r==0){ // gl_Position.x = 0; // gl_Position.y = 0; //} //else // gl_Position.xy = tmp_point.xy / (2*r); float f = 1/(fov/2); float theta; if (r == 0) theta = 0; else theta = acos(tmp_point.z/r); float R = f*theta; gl_Position.xy = R * tmp_point.xy / length(tmp_point.xy); gl_Position.xy = gl_Position.xy / 2.0; fragTexCoord = texposition; }""" TEXTURE_FRAG = """#version 330 core uniform sampler2D diffuseMap; uniform float alpha; in vec2 fragTexCoord; out vec4 outColor; void main() { outColor = texture(diffuseMap, fragTexCoord); outColor.a = alpha; }""" # ------------ low level OpenGL object wrappers ---------------------------- class Shader: """ Helper class to create and automatically destroy shader program """ @staticmethod def _compile_shader(src, shader_type): src = open(src, 'r').read() if os.path.exists(src) else src src = src.decode('ascii') if isinstance(src, bytes) else src shader = GL.glCreateShader(shader_type) GL.glShaderSource(shader, src) GL.glCompileShader(shader) status = GL.glGetShaderiv(shader, GL.GL_COMPILE_STATUS) src = ('%3d: %s' % (i+1, l) for i, l in enumerate(src.splitlines())) if not status: log = GL.glGetShaderInfoLog(shader).decode('ascii') GL.glDeleteShader(shader) src = '\n'.join(src) print('Compile failed for %s\n%s\n%s' % (shader_type, log, src)) return None return shader def __init__(self, vertex_source, fragment_source): """ Shader can be initialized with raw strings or source file names """ self.glid = None vert = self._compile_shader(vertex_source, GL.GL_VERTEX_SHADER) frag = self._compile_shader(fragment_source, GL.GL_FRAGMENT_SHADER) if vert and frag: self.glid = GL.glCreateProgram() # pylint: disable=E1111 GL.glAttachShader(self.glid, vert) GL.glAttachShader(self.glid, frag) GL.glLinkProgram(self.glid) GL.glDeleteShader(vert) GL.glDeleteShader(frag) status = GL.glGetProgramiv(self.glid, GL.GL_LINK_STATUS) if not status: print(GL.glGetProgramInfoLog(self.glid).decode('ascii')) GL.glDeleteProgram(self.glid) self.glid = None def __del__(self): GL.glUseProgram(0) if self.glid: # if this is a valid shader object GL.glDeleteProgram(self.glid) # object dies => destroy GL object class Texture: """ Helper class to create and automatically destroy textures """ def __init__(self, file, wrap_mode=GL.GL_REPEAT, min_filter=GL.GL_LINEAR, mag_filter=GL.GL_LINEAR_MIPMAP_LINEAR): self.glid = GL.glGenTextures(1) GL.glBindTexture(GL.GL_TEXTURE_2D, self.glid) # helper array stores texture format for every pixel size 1..4 format = [GL.GL_LUMINANCE, GL.GL_LUMINANCE_ALPHA, GL.GL_RGB, GL.GL_RGBA] try: # imports image as a numpy array in exactly right format tex = np.array(Image.open(file)) format = format[0 if len(tex.shape) == 2 else tex.shape[2] - 1] GL.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_RGBA, tex.shape[1], tex.shape[0], 0, format, GL.GL_UNSIGNED_BYTE, tex) GL.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_S, wrap_mode) GL.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_T, wrap_mode) GL.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, min_filter) GL.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, mag_filter) GL.glGenerateMipmap(GL.GL_TEXTURE_2D) # message = 'Loaded texture %s\t(%s, %s, %s, %s)' # print(message % (file, tex.shape, wrap_mode, min_filter, mag_filter)) except IOError as e: print(os.strerror(e.errno)) # except FileNotFoundError: # print("ERROR: unable to load texture file %s" % file) GL.glBindTexture(GL.GL_TEXTURE_2D, 0) def __del__(self): # delete GL texture from GPU when object dies GL.glDeleteTextures(self.glid) class Background: def __init__(self, file): self.shader = Shader(TEXTURE_VERT, TEXTURE_FRAG) # quad to fill whole window #vertices = np.array(((-1, -1, -1), (1, -1, -1), (1, 1, -1), (-1, 1, -1)), np.float32) vertices = np.array(((-1, -1, 0), (1, -1, 0), (1, 1, 0), (-1, 1, 0)), np.float32) texCoords = np.array(((0, 1), (1, 1), (1, 0), (0, 0)), np.float32) faces = np.array(((0, 1, 2), (0, 2, 3)), np.uint32) self.vertex_array = VertexArray([vertices, texCoords], faces) # background image as texture self.wrap_mode = GL.GL_CLAMP_TO_EDGE self.filter_mode = (GL.GL_NEAREST, GL.GL_NEAREST) # setup texture and upload it to GPU self.texture = Texture(file, self.wrap_mode, *self.filter_mode) def set(self, file): self.texture = Texture(file, self.wrap_mode, *self.filter_mode) def draw(self): """ Draw background image using a quad. """ GL.glUseProgram(self.shader.glid) GL.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT) # projection geometry loc = GL.glGetUniformLocation(self.shader.glid, 'modelviewprojection') GL.glUniformMatrix4fv(loc, 1, True, np.eye(4)) # texture access setups loc = GL.glGetUniformLocation(self.shader.glid, 'diffuseMap') GL.glActiveTexture(GL.GL_TEXTURE0) GL.glBindTexture(GL.GL_TEXTURE_2D, self.texture.glid) GL.glUniform1i(loc, 0) self.vertex_array.execute(GL.GL_TRIANGLES) # clear depth for background GL.glClear(GL.GL_DEPTH_BUFFER_BIT) # leave clean state for easier debugging GL.glBindTexture(GL.GL_TEXTURE_2D, 0) GL.glUseProgram(0) class VertexArray: """ helper class to create and self destroy OpenGL vertex array objects.""" def __init__(self, attributes, index=None, usage=GL.GL_STATIC_DRAW): """ Vertex array from attributes and optional index array. Vertex Attributes should be list of arrays with one row per vertex. """ # create vertex array object, bind it self.glid = GL.glGenVertexArrays(1) GL.glBindVertexArray(self.glid) self.buffers = [] # we will store buffers in a list nb_primitives, size = 0, 0 # load buffer per vertex attribute (in list with index = shader layout) for loc, data in enumerate(attributes): if data is not None: # bind a new vbo, upload its data to GPU, declare size and type self.buffers += [GL.glGenBuffers(1)] data = np.array(data, np.float32, copy=False) # ensure format nb_primitives, size = data.shape GL.glEnableVertexAttribArray(loc) GL.glBindBuffer(GL.GL_ARRAY_BUFFER, self.buffers[-1]) GL.glBufferData(GL.GL_ARRAY_BUFFER, data, usage) GL.glVertexAttribPointer(loc, size, GL.GL_FLOAT, False, 0, None) # optionally create and upload an index buffer for this object self.draw_command = GL.glDrawArrays self.arguments = (0, nb_primitives) if index is not None: self.buffers += [GL.glGenBuffers(1)] index_buffer = np.array(index, np.int32, copy=False) # good format GL.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, self.buffers[-1]) GL.glBufferData(GL.GL_ELEMENT_ARRAY_BUFFER, index_buffer, usage) self.draw_command = GL.glDrawElements self.arguments = (index_buffer.size, GL.GL_UNSIGNED_INT, None) # cleanup and unbind so no accidental subsequent state update GL.glBindVertexArray(0) GL.glBindBuffer(GL.GL_ARRAY_BUFFER, 0) GL.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, 0) def execute(self, primitive): """ draw a vertex array, either as direct array or indexed array """ GL.glBindVertexArray(self.glid) self.draw_command(primitive, *self.arguments) GL.glBindVertexArray(0) def __del__(self): # object dies => kill GL array and buffers from GPU GL.glDeleteVertexArrays(1, [self.glid]) GL.glDeleteBuffers(len(self.buffers), self.buffers) # ------------ Scene object classes ------------------------------------------ class Node(object): """ Scene graph transform and parameter broadcast node """ def __init__(self, name='', children=(), transform=identity(), **param): self.transform, self.param, self.name = transform, param, name self.children = list(iter(children)) def add(self, *drawables): """ Add drawables to this node, simply updating children list """ self.children.extend(drawables) def draw(self, projection, view, model, **param): """ Recursive draw, passing down named parameters & model matrix. """ # merge named parameters given at initialization with those given here param = dict(param, **self.param) model = np.dot(model, self.transform) # what to insert here for hierarchical update? for child in self.children: child.draw(projection, view, model, **param) class BoundingBox: def __init__(self, coords, width=0.01, color=[1,0,0]): self.shader = Shader(COLOR_VERT, COLOR_FRAG) self.color = np.array(color) minx, maxx, miny, maxy = coords # normalized coordinates as [minx, maxx, miny, maxy] vertices = np.array(((minx, maxy+width, 0), (minx-width, maxy+width, 0), (minx-width, maxy, 0), (minx-width, miny, 0), (minx-width, miny-width, 0), (minx, miny-width, 0), (maxx, miny-width, 0), (maxx+width, miny-width, 0), (maxx+width, miny, 0), (maxx+width, maxy, 0), (maxx+width, maxy+width, 0), (maxx, maxy+width, 0)), np.float32) # vertices = np.clip(vertices, -1, 1) faces = np.array(((0, 1, 4), (0, 4, 5), (8, 3, 4), (8, 4, 7), (10, 11, 6), (10, 6, 7), (10, 1, 2), (10, 2, 9)), np.uint32) self.vertex_array = VertexArray([vertices], faces) # background image as texture self.wrap_mode = GL.GL_CLAMP_TO_EDGE self.filter_mode = (GL.GL_NEAREST, GL.GL_NEAREST) def draw(self): """ Draw background image using a quad. """ GL.glUseProgram(self.shader.glid) # projection geometry loc = GL.glGetUniformLocation(self.shader.glid, 'modelviewprojection') GL.glUniformMatrix4fv(loc, 1, True, np.eye(4)) loc = GL.glGetUniformLocation(self.shader.glid, 'color') GL.glUniform3fv(loc, 1, self.color) self.vertex_array.execute(GL.GL_TRIANGLES) # leave clean state for easier debugging GL.glBindTexture(GL.GL_TEXTURE_2D, 0) GL.glUseProgram(0) class Marker: def __init__(self, coords, color=[1,0,0]): self.shader = Shader(COLOR_VERT, COLOR_FRAG) self.color = np.array(color) minx, maxx, miny, maxy = coords # normalized coordinates as [minx, maxx, miny, maxy] vertices = np.array(((minx, maxy, 0), (minx, miny, 0), (maxx, miny, 0), (maxx, maxy, 0)), np.float32) # vertices = np.clip(vertices, -1, 1) faces = np.array(((0, 1, 2), (3, 0, 2)), np.uint32) self.vertex_array = VertexArray([vertices], faces) # background image as texture self.wrap_mode = GL.GL_CLAMP_TO_EDGE self.filter_mode = (GL.GL_NEAREST, GL.GL_NEAREST) def draw(self): """ Draw background image using a quad. """ GL.glUseProgram(self.shader.glid) # projection geometry loc = GL.glGetUniformLocation(self.shader.glid, 'modelviewprojection') GL.glUniformMatrix4fv(loc, 1, True, np.eye(4)) loc = GL.glGetUniformLocation(self.shader.glid, 'color') GL.glUniform3fv(loc, 1, self.color) self.vertex_array.execute(GL.GL_TRIANGLES) # leave clean state for easier debugging GL.glBindTexture(GL.GL_TEXTURE_2D, 0) GL.glUseProgram(0) class TexturedPlane: """ Simple first textured object """ def __init__(self, file): # feel free to move this up in the viewer as per other practicals self.shader = Shader(TEXTURE_VERT, TEXTURE_FRAG) # triangle and face buffers vertices = 100 * np.array(((-1, -1, 0), (1, -1, 0), (1, 1, 0), (-1, 1, 0)), np.float32) faces = np.array(((0, 1, 2), (0, 2, 3)), np.uint32) self.vertex_array = VertexArray([vertices, vertices[:,:2]], faces) # interactive toggles self.wrap = cycle([GL.GL_REPEAT, GL.GL_MIRRORED_REPEAT, GL.GL_CLAMP_TO_BORDER, GL.GL_CLAMP_TO_EDGE]) self.filter = cycle([(GL.GL_NEAREST, GL.GL_NEAREST), (GL.GL_LINEAR, GL.GL_LINEAR), (GL.GL_LINEAR, GL.GL_LINEAR_MIPMAP_LINEAR)]) self.wrap_mode, self.filter_mode = next(self.wrap), next(self.filter) self.file = file # setup texture and upload it to GPU self.texture = Texture(file, self.wrap_mode, *self.filter_mode) def draw(self, projection, view, model, win=None, **_kwargs): # some interactive elements if glfw.get_key(win, glfw.KEY_F6) == glfw.PRESS: self.wrap_mode = next(self.wrap) self.texture = Texture(self.file, self.wrap_mode, *self.filter_mode) if glfw.get_key(win, glfw.KEY_F7) == glfw.PRESS: self.filter_mode = next(self.filter) self.texture = Texture(self.file, self.wrap_mode, *self.filter_mode) GL.glUseProgram(self.shader.glid) # projection geometry loc = GL.glGetUniformLocation(self.shader.glid, 'modelviewprojection') GL.glUniformMatrix4fv(loc, 1, True, np.dot(np.dot(projection,view), model)) # texture access setups loc = GL.glGetUniformLocation(self.shader.glid, 'diffuseMap') GL.glActiveTexture(GL.GL_TEXTURE0) GL.glBindTexture(GL.GL_TEXTURE_2D, self.texture.glid) GL.glUniform1i(loc, 0) self.vertex_array.execute(GL.GL_TRIANGLES) # leave clean state for easier debugging GL.glBindTexture(GL.GL_TEXTURE_2D, 0) GL.glUseProgram(0) class TexturedMesh: """ Textured object class """ def __init__(self, obj_name, mesh, texture, attributes, indices): self.obj_name = obj_name # name associated with meshes of object instance self.mesh = mesh # feel free to move this up in the viewer as per other practicals #self.shader = Shader(TEXTURE_VERT, TEXTURE_FRAG) self.model_matrix = np.eye(4) # self.model_matrix[2,3] = -1 # triangle and face buffers self.vertex_array = VertexArray(attributes, indices) # interactive toggles self.wrap = cycle([GL.GL_REPEAT, GL.GL_MIRRORED_REPEAT, GL.GL_CLAMP_TO_BORDER, GL.GL_CLAMP_TO_EDGE]) self.filter = cycle([(GL.GL_NEAREST, GL.GL_NEAREST), (GL.GL_LINEAR, GL.GL_LINEAR), (GL.GL_LINEAR, GL.GL_LINEAR_MIPMAP_LINEAR)]) self.wrap_mode, self.filter_mode = next(self.wrap), next(self.filter) self.file = texture # object transparancy self.alpha = 1.0 # setup texture and upload it to GPU self.texture = Texture(self.file, self.wrap_mode, *self.filter_mode) def draw(self, shader, projection, view, model=None, is_fisheye=False, fish_fov=np.pi, win=None, **_kwargs): if model is None: model = self.model_matrix else: self.model_matrix = model # some interactive elements if glfw.get_key(win, glfw.KEY_F6) == glfw.PRESS: self.wrap_mode = next(self.wrap) self.texture = Texture(self.file, self.wrap_mode, *self.filter_mode) if glfw.get_key(win, glfw.KEY_F7) == glfw.PRESS: self.filter_mode = next(self.filter) self.texture = Texture(self.file, self.wrap_mode, *self.filter_mode) GL.glUseProgram(shader.glid) # projection geometry loc = GL.glGetUniformLocation(shader.glid, 'modelviewprojection') GL.glUniformMatrix4fv(loc, 1, True, np.dot(np.dot(projection,view),model)) if is_fisheye: loc = GL.glGetUniformLocation(shader.glid, 'modelview') GL.glUniformMatrix4fv(loc, 1, True, mat_from_gl(np.dot(view,model))) loc = GL.glGetUniformLocation(shader.glid, 'fov') GL.glUniform1f(loc, fish_fov) # texture access setups #GL.glTexEnvf(GL.GL_TEXTURE_ENV, GL.GL_TEXTURE_ENV_MODE, GL.GL_MODULATE) GL.glEnable(GL.GL_BLEND) GL.glBlendFunc(GL.GL_ONE, GL.GL_ONE_MINUS_SRC_ALPHA) # object transparancy loc = GL.glGetUniformLocation(shader.glid, 'alpha') GL.glUniform1f(loc, self.alpha) #GL.glColor4f(1.0, 1.0, 1.0, 0.5) loc = GL.glGetUniformLocation(shader.glid, 'diffuseMap') GL.glActiveTexture(GL.GL_TEXTURE0) GL.glBindTexture(GL.GL_TEXTURE_2D, self.texture.glid) GL.glUniform1i(loc, 0) self.vertex_array.execute(GL.GL_TRIANGLES) # leave clean state for easier debugging GL.glBindTexture(GL.GL_TEXTURE_2D, 0) GL.glUseProgram(0) GL.glDisable(GL.GL_BLEND) # mesh to refactor all previous classes class ColorMesh(object): def __init__(self, attributes, index=None): self.vertex_array = VertexArray(attributes, index) def draw(self, projection, view, model, color_shader, **param): names = ['view', 'projection', 'model'] loc = {n: GL.glGetUniformLocation(color_shader.glid, n) for n in names} GL.glUseProgram(color_shader.glid) GL.glUniformMatrix4fv(loc['view'], 1, True, view) GL.glUniformMatrix4fv(loc['projection'], 1, True, projection) GL.glUniformMatrix4fv(loc['model'], 1, True, model) # draw triangle as GL_TRIANGLE vertex array, draw array call self.vertex_array.execute(GL.GL_TRIANGLES) class SimpleTriangle(ColorMesh): """Hello triangle object""" def __init__(self): # triangle position buffer position =
np.array(((0, .5, 0), (.5, -.5, 0), (-.5, -.5, 0)), 'f')
numpy.array
import os from os.path import join import numpy as np from numpy.testing import (assert_equal, assert_allclose, assert_array_equal, assert_raises) import pytest from numpy.random import (Generator, MT19937, ThreeFry, PCG32, PCG64, Philox, Xoshiro256, Xoshiro512, RandomState) from numpy.random.common import interface try: import cffi # noqa: F401 MISSING_CFFI = False except ImportError: MISSING_CFFI = True try: import ctypes # noqa: F401 MISSING_CTYPES = False except ImportError: MISSING_CTYPES = False pwd = os.path.dirname(os.path.abspath(__file__)) def assert_state_equal(actual, target): for key in actual: if isinstance(actual[key], dict): assert_state_equal(actual[key], target[key]) elif isinstance(actual[key], np.ndarray): assert_array_equal(actual[key], target[key]) else: assert actual[key] == target[key] def uniform32_from_uint64(x): x = np.uint64(x) upper = np.array(x >> np.uint64(32), dtype=np.uint32) lower = np.uint64(0xffffffff) lower = np.array(x & lower, dtype=np.uint32) joined = np.column_stack([lower, upper]).ravel() out = (joined >> np.uint32(9)) * (1.0 / 2 ** 23) return out.astype(np.float32) def uniform32_from_uint53(x): x = np.uint64(x) >> np.uint64(16) x = np.uint32(x & np.uint64(0xffffffff)) out = (x >> np.uint32(9)) * (1.0 / 2 ** 23) return out.astype(np.float32) def uniform32_from_uint32(x): return (x >> np.uint32(9)) * (1.0 / 2 ** 23) def uniform32_from_uint(x, bits): if bits == 64: return uniform32_from_uint64(x) elif bits == 53: return uniform32_from_uint53(x) elif bits == 32: return uniform32_from_uint32(x) else: raise NotImplementedError def uniform_from_uint(x, bits): if bits in (64, 63, 53): return uniform_from_uint64(x) elif bits == 32: return uniform_from_uint32(x) def uniform_from_uint64(x): return (x >> np.uint64(11)) * (1.0 / 9007199254740992.0) def uniform_from_uint32(x): out = np.empty(len(x) // 2) for i in range(0, len(x), 2): a = x[i] >> 5 b = x[i + 1] >> 6 out[i // 2] = (a * 67108864.0 + b) / 9007199254740992.0 return out def uniform_from_dsfmt(x): return x.view(np.double) - 1.0 def gauss_from_uint(x, n, bits): if bits in (64, 63): doubles = uniform_from_uint64(x) elif bits == 32: doubles = uniform_from_uint32(x) else: # bits == 'dsfmt' doubles = uniform_from_dsfmt(x) gauss = [] loc = 0 x1 = x2 = 0.0 while len(gauss) < n: r2 = 2 while r2 >= 1.0 or r2 == 0.0: x1 = 2.0 * doubles[loc] - 1.0 x2 = 2.0 * doubles[loc + 1] - 1.0 r2 = x1 * x1 + x2 * x2 loc += 2 f = np.sqrt(-2.0 * np.log(r2) / r2) gauss.append(f * x2) gauss.append(f * x1) return gauss[:n] class Base(object): dtype = np.uint64 data2 = data1 = {} @classmethod def setup_class(cls): cls.bit_generator = Xoshiro256 cls.bits = 64 cls.dtype = np.uint64 cls.seed_error_type = TypeError cls.invalid_seed_types = [] cls.invalid_seed_values = [] @classmethod def _read_csv(cls, filename): with open(filename) as csv: seed = csv.readline() seed = seed.split(',') seed = [int(s.strip(), 0) for s in seed[1:]] data = [] for line in csv: data.append(int(line.split(',')[-1].strip(), 0)) return {'seed': seed, 'data': np.array(data, dtype=cls.dtype)} def test_raw(self): bit_generator = self.bit_generator(*self.data1['seed']) uints = bit_generator.random_raw(1000) assert_equal(uints, self.data1['data']) bit_generator = self.bit_generator(*self.data1['seed']) uints = bit_generator.random_raw() assert_equal(uints, self.data1['data'][0]) bit_generator = self.bit_generator(*self.data2['seed']) uints = bit_generator.random_raw(1000) assert_equal(uints, self.data2['data']) def test_random_raw(self): bit_generator = self.bit_generator(*self.data1['seed']) uints = bit_generator.random_raw(output=False) assert uints is None uints = bit_generator.random_raw(1000, output=False) assert uints is None def test_gauss_inv(self): n = 25 rs = RandomState(self.bit_generator(*self.data1['seed'])) gauss = rs.standard_normal(n) assert_allclose(gauss, gauss_from_uint(self.data1['data'], n, self.bits)) rs = RandomState(self.bit_generator(*self.data2['seed'])) gauss = rs.standard_normal(25) assert_allclose(gauss, gauss_from_uint(self.data2['data'], n, self.bits)) def test_uniform_double(self): rs = Generator(self.bit_generator(*self.data1['seed'])) vals = uniform_from_uint(self.data1['data'], self.bits) uniforms = rs.random(len(vals)) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float64) rs = Generator(self.bit_generator(*self.data2['seed'])) vals = uniform_from_uint(self.data2['data'], self.bits) uniforms = rs.random(len(vals)) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float64) def test_uniform_float(self): rs = Generator(self.bit_generator(*self.data1['seed'])) vals = uniform32_from_uint(self.data1['data'], self.bits) uniforms = rs.random(len(vals), dtype=np.float32) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float32) rs = Generator(self.bit_generator(*self.data2['seed'])) vals = uniform32_from_uint(self.data2['data'], self.bits) uniforms = rs.random(len(vals), dtype=np.float32) assert_allclose(uniforms, vals) assert_equal(uniforms.dtype, np.float32) def test_seed_float(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.pi) assert_raises(self.seed_error_type, rs.bit_generator.seed, -np.pi) def test_seed_float_array(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([-np.pi])) assert_raises(ValueError, rs.bit_generator.seed, np.array([np.pi, -np.pi])) assert_raises(TypeError, rs.bit_generator.seed, np.array([0, np.pi])) assert_raises(TypeError, rs.bit_generator.seed, [np.pi]) assert_raises(TypeError, rs.bit_generator.seed, [0, np.pi]) def test_seed_out_of_range(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(ValueError, rs.bit_generator.seed, 2 ** (2 * self.bits + 1)) assert_raises(ValueError, rs.bit_generator.seed, -1) def test_seed_out_of_range_array(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(ValueError, rs.bit_generator.seed, [2 ** (2 * self.bits + 1)]) assert_raises(ValueError, rs.bit_generator.seed, [-1]) def test_repr(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert 'Generator' in repr(rs) assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') in repr(rs) def test_str(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert 'Generator' in str(rs) assert str(self.bit_generator.__name__) in str(rs) assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') not in str(rs) def test_pickle(self): import pickle bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state bitgen_pkl = pickle.dumps(bit_generator) reloaded = pickle.loads(bitgen_pkl) reloaded_state = reloaded.state assert_array_equal(Generator(bit_generator).standard_normal(1000), Generator(reloaded).standard_normal(1000)) assert bit_generator is not reloaded assert_state_equal(reloaded_state, state) def test_invalid_state_type(self): bit_generator = self.bit_generator(*self.data1['seed']) with pytest.raises(TypeError): bit_generator.state = {'1'} def test_invalid_state_value(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state state['bit_generator'] = 'otherBitGenerator' with pytest.raises(ValueError): bit_generator.state = state def test_invalid_seed_type(self): bit_generator = self.bit_generator(*self.data1['seed']) for st in self.invalid_seed_types: with pytest.raises(TypeError): bit_generator.seed(*st) def test_invalid_seed_values(self): bit_generator = self.bit_generator(*self.data1['seed']) for st in self.invalid_seed_values: with pytest.raises(ValueError): bit_generator.seed(*st) def test_benchmark(self): bit_generator = self.bit_generator(*self.data1['seed']) bit_generator._benchmark(1) bit_generator._benchmark(1, 'double') with pytest.raises(ValueError): bit_generator._benchmark(1, 'int32') @pytest.mark.skipif(MISSING_CFFI, reason='cffi not available') def test_cffi(self): bit_generator = self.bit_generator(*self.data1['seed']) cffi_interface = bit_generator.cffi assert isinstance(cffi_interface, interface) other_cffi_interface = bit_generator.cffi assert other_cffi_interface is cffi_interface @pytest.mark.skipif(MISSING_CTYPES, reason='ctypes not available') def test_ctypes(self): bit_generator = self.bit_generator(*self.data1['seed']) ctypes_interface = bit_generator.ctypes assert isinstance(ctypes_interface, interface) other_ctypes_interface = bit_generator.ctypes assert other_ctypes_interface is ctypes_interface def test_getstate(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state alt_state = bit_generator.__getstate__() assert_state_equal(state, alt_state) class TestXoshiro256(Base): @classmethod def setup_class(cls): cls.bit_generator = Xoshiro256 cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/xoshiro256-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/xoshiro256-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [('apple',), (2 + 3j,), (3.1,)] cls.invalid_seed_values = [(-2,), (np.empty((2, 2), dtype=np.int64),)] class TestXoshiro512(Base): @classmethod def setup_class(cls): cls.bit_generator = Xoshiro512 cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/xoshiro512-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/xoshiro512-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [('apple',), (2 + 3j,), (3.1,)] cls.invalid_seed_values = [(-2,), (np.empty((2, 2), dtype=np.int64),)] class TestThreeFry(Base): @classmethod def setup_class(cls): cls.bit_generator = ThreeFry cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/threefry-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/threefry-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [] cls.invalid_seed_values = [(1, None, 1), (-1,), (2 ** 257 + 1,), (None, None, 2 ** 257 + 1)] def test_set_key(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state keyed = self.bit_generator(counter=state['state']['counter'], key=state['state']['key']) assert_state_equal(bit_generator.state, keyed.state) class TestPhilox(Base): @classmethod def setup_class(cls): cls.bit_generator = Philox cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv( join(pwd, './data/philox-testset-1.csv')) cls.data2 = cls._read_csv( join(pwd, './data/philox-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [] cls.invalid_seed_values = [(1, None, 1), (-1,), (2 ** 257 + 1,), (None, None, 2 ** 257 + 1)] def test_set_key(self): bit_generator = self.bit_generator(*self.data1['seed']) state = bit_generator.state keyed = self.bit_generator(counter=state['state']['counter'], key=state['state']['key']) assert_state_equal(bit_generator.state, keyed.state) class TestPCG64(Base): @classmethod def setup_class(cls): cls.bit_generator = PCG64 cls.bits = 64 cls.dtype = np.uint64 cls.data1 = cls._read_csv(join(pwd, './data/pcg64-testset-1.csv')) cls.data2 = cls._read_csv(join(pwd, './data/pcg64-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [(np.array([1, 2]),), (3.2,), (None, np.zeros(1))] cls.invalid_seed_values = [(-1,), (2 ** 129 + 1,), (None, -1), (None, 2 ** 129 + 1)] def test_seed_float_array(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([-np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([np.pi, -np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, np.array([0, np.pi])) assert_raises(self.seed_error_type, rs.bit_generator.seed, [np.pi]) assert_raises(self.seed_error_type, rs.bit_generator.seed, [0, np.pi]) def test_seed_out_of_range_array(self): rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(self.seed_error_type, rs.bit_generator.seed, [2 ** (2 * self.bits + 1)]) assert_raises(self.seed_error_type, rs.bit_generator.seed, [-1]) def test_advance_symmetry(self): rs = Generator(self.bit_generator(*self.data1['seed'])) state = rs.bit_generator.state step = -0x9e3779b97f4a7c150000000000000000 rs.bit_generator.advance(step) val_neg = rs.integers(10) rs.bit_generator.state = state rs.bit_generator.advance(2**128 + step) val_pos = rs.integers(10) rs.bit_generator.state = state rs.bit_generator.advance(10 * 2**128 + step) val_big = rs.integers(10) assert val_neg == val_pos assert val_big == val_pos class TestPCG32(TestPCG64): @classmethod def setup_class(cls): cls.bit_generator = PCG32 cls.bits = 32 cls.dtype = np.uint32 cls.data1 = cls._read_csv(join(pwd, './data/pcg32-testset-1.csv')) cls.data2 = cls._read_csv(join(pwd, './data/pcg32-testset-2.csv')) cls.seed_error_type = TypeError cls.invalid_seed_types = [(np.array([1, 2]),), (3.2,), (None, np.zeros(1))] cls.invalid_seed_values = [(-1,), (2 ** 129 + 1,), (None, -1), (None, 2 ** 129 + 1)] class TestMT19937(Base): @classmethod def setup_class(cls): cls.bit_generator = MT19937 cls.bits = 32 cls.dtype = np.uint32 cls.data1 = cls._read_csv(join(pwd, './data/mt19937-testset-1.csv')) cls.data2 = cls._read_csv(join(pwd, './data/mt19937-testset-2.csv')) cls.seed_error_type = ValueError cls.invalid_seed_types = [] cls.invalid_seed_values = [(-1,), np.array([2 ** 33])] def test_seed_out_of_range(self): # GH #82 rs = Generator(self.bit_generator(*self.data1['seed'])) assert_raises(ValueError, rs.bit_generator.seed, 2 ** (self.bits + 1))
assert_raises(ValueError, rs.bit_generator.seed, -1)
numpy.testing.assert_raises
import configparser import os import sys import netCDF4 as nc import numpy as np from numpy import linalg as LA import nrrd from scipy.interpolate import RegularGridInterpolator from readMRIData import get_rotation_matrix from readMRIData import plot_lin_plane_fitting_with_bbox from readMRIData import read_intra_op_points from readMRIData import rotate_point_by_rotation_matrix def read_nrrd_file(filepath): data, header = nrrd.read(filepath) return data, header def save_as_netcdf(data, filename): print('Save data to {}.'.format(filename)) nc_file = nc.Dataset(filename, 'w', format='NETCDF3_CLASSIC') nc_file.createDimension('nNodes_0', data.shape[0]) nc_file.createDimension('nNodes_1', data.shape[1]) nc_file.createDimension('nNodes_2', data.shape[2]) nc_file.createDimension('time') brain = nc_file.createVariable('region', 'i2', ('time', 'nNodes_2', 'nNodes_1', 'nNodes_0')) brain[0,] = np.swapaxes(data, 0, 2) nc_file.close() print('Done.') def data_as_binary_data(data): binary_data = np.where(data > 1.0, 1, 0) return binary_data def get_ijk_to_lps(header): space_origin = return_string_list_as_float_numpy_array(header['space origin']) space_origin = np.append(space_origin, 1) row0 = return_string_list_as_float_numpy_array(header['space directions'][0]) row0 = np.append(row0, 0) row1 = return_string_list_as_float_numpy_array(header['space directions'][1]) row1 = np.append(row1, 0) row2 = return_string_list_as_float_numpy_array(header['space directions'][2]) row2 = np.append(row2, 0) ijk_to_lps = np.array([row0, row1, row2, space_origin]).T return ijk_to_lps def ijk_to_lps(ijk, header): if len(ijk) == 3: ijk = np.append(ijk, 1) ijk_to_lps = get_ijk_to_lps(header) lps = np.dot(ijk_to_lps, ijk) return lps[0:3] def ijk_to_ras(ijk, header): if len(ijk) == 3: ijk = np.append(ijk, 1) ijk_to_lps = get_ijk_to_lps(header) lps_to_ras = np.diag([-1, -1, 1, 1]) lps = np.dot(ijk_to_lps, ijk) ras = np.matmul(lps, lps_to_ras) return ras[0:3] def lps_to_ijk(lps, header): if len(lps) == 3: lps = np.append(lps, 1) ijk_to_lps = get_ijk_to_lps(header) lps_to_ijk = LA.inv(ijk_to_lps) ijk = np.dot(lps_to_ijk, lps) return ijk[0:3] def ras_to_ijk(ras, header): if len(ras) == 3: ras = np.append(ras, 1) ijk_to_lps = get_ijk_to_lps(header) lps_to_ijk = LA.inv(ijk_to_lps) ras_to_lps =
np.diag([-1, -1, 1, 1])
numpy.diag
#!/usr/bin/env python # coding: utf-8 # Let's load the package import numpy as np from numba import cuda # let's prepare the data np.random.seed(42) start = np.random.randint(1,10,(1024,1024)) symmetry = np.tril(start,k=0) +
np.tril(start,k=-1)
numpy.tril
import argparse import cv2 import mxnet as mx import numpy as np from utils import face_preprocess from utils.mtcnn_detector import MtcnnDetector parser = argparse.ArgumentParser() parser.add_argument('--image_size', default='112,112', help='models input size.') parser.add_argument('--image', default='test.jpg', help='infer image path.') parser.add_argument('--model', default='model/model,200', help='path to load model.') parser.add_argument('--mtcnn_model', default='mtcnn-model', help='path to load model.') parser.add_argument('--gpu', default=0, type=int, help='gpu id') args = parser.parse_args() class FaceAgeGenderModel: def __init__(self, args): self.args = args if args.gpu >= 0: ctx = mx.gpu(args.gpu) else: ctx = mx.cpu() _vec = args.image_size.split(',') assert len(_vec) == 2 image_size = (int(_vec[0]), int(_vec[1])) self.model = None if len(args.model) > 0: self.model = self.get_model(ctx, image_size, args.model, 'fc1') self.det_minsize = 50 self.det_threshold = [0.6, 0.7, 0.8] self.image_size = image_size detector = MtcnnDetector(model_folder=args.mtcnn_model, ctx=ctx, num_worker=1, accurate_landmark=True, threshold=self.det_threshold) print("加载模型:%s" % args.mtcnn_model) self.detector = detector # 加载模型 def get_model(self, ctx, image_size, model_str, layer): _vec = model_str.split(',') assert len(_vec) == 2 prefix = _vec[0] epoch = int(_vec[1]) print('loading', prefix, epoch) sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) all_layers = sym.get_internals() sym = all_layers[layer + '_output'] model = mx.mod.Module(symbol=sym, context=ctx, label_names=None) model.bind(data_shapes=[('data', (1, 3, image_size[0], image_size[1]))]) model.set_params(arg_params, aux_params) return model # 识别人脸 def get_faces(self, face_img): ret = self.detector.detect_face(face_img) if ret is None: return None bbox, points = ret if bbox.shape[0] == 0: return [], [], [] bboxes = [] pointses = [] faces = [] for i in range(len(bbox)): b = bbox[i, 0:4] bboxes.append(b) p = points[i, :].reshape((2, 5)).T pointses.append(p) nimg = face_preprocess.preprocess(face_img, b, p, image_size='112,112') nimg = cv2.cvtColor(nimg, cv2.COLOR_BGR2RGB) aligned = np.transpose(nimg, (2, 0, 1)) input_blob = np.expand_dims(aligned, axis=0) data = mx.nd.array(input_blob) db = mx.io.DataBatch(data=(data,)) faces.append(db) return faces, bboxes, pointses # 性别年龄识别 def get_ga(self, data): self.model.forward(data, is_train=False) ret = self.model.get_outputs()[0].asnumpy() g = ret[:, 0:2].flatten() gender =
np.argmax(g)
numpy.argmax
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Model-Test Coverage Metrics. """ from abc import abstractmethod from collections import defaultdict import math import numpy as np from mindspore import Tensor from mindspore import Model from mindspore.train.summary.summary_record import _get_summary_tensor_data from mindarmour.utils._check_param import check_model, check_numpy_param, check_int_positive, \ check_param_type, check_value_positive from mindarmour.utils.logger import LogUtil LOGGER = LogUtil.get_instance() TAG = 'CoverageMetrics' class CoverageMetrics: """ The abstract base class for Neuron coverage classes calculating coverage metrics. As we all known, each neuron output of a network will have a output range after training (we call it original range), and test dataset is used to estimate the accuracy of the trained network. However, neurons' output distribution would be different with different test datasets. Therefore, similar to function fuzz, model fuzz means testing those neurons' outputs and estimating the proportion of original range that has emerged with test datasets. Reference: `DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems <https://arxiv.org/abs/1803.07519>`_ Args: model (Model): The pre-trained model which waiting for testing. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, incremental=False, batch_size=32): self._model = check_model('model', model, Model) self.incremental = check_param_type('incremental', incremental, bool) self.batch_size = check_int_positive('batch_size', batch_size) self._activate_table = defaultdict(list) @abstractmethod def get_metrics(self, dataset): """ Calculate coverage metrics of given dataset. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Raises: NotImplementedError: It is an abstract method. """ msg = 'The function get_metrics() is an abstract method in class `CoverageMetrics`, and should be' \ ' implemented in child class.' LOGGER.error(TAG, msg) raise NotImplementedError(msg) def _init_neuron_activate_table(self, data): """ Initialise the activate table of each neuron in the model with format: {'layer1': [n1, n2, n3, ..., nn], 'layer2': [n1, n2, n3, ..., nn], ...} Args: data (numpy.ndarray): Data used for initialising the activate table. Return: dict, return a activate_table. """ self._model.predict(Tensor(data)) layer_out = _get_summary_tensor_data() if not layer_out: msg = 'User must use TensorSummary() operation to specify the middle layer of the model participating in ' \ 'the coverage calculation.' LOGGER.error(TAG, msg) raise ValueError(msg) activate_table = defaultdict() for layer, value in layer_out.items(): activate_table[layer] = np.zeros(value.shape[1], np.bool) return activate_table def _get_bounds(self, train_dataset): """ Update the lower and upper boundaries of neurons' outputs. Args: train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. Return: - numpy.ndarray, upper bounds of neuron' outputs. - numpy.ndarray, lower bounds of neuron' outputs. """ upper_bounds = defaultdict(list) lower_bounds = defaultdict(list) batches = math.ceil(train_dataset.shape[0] / self.batch_size) for i in range(batches): inputs = train_dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) min_value = np.min(value, axis=0) max_value = np.max(value, axis=0) if np.any(upper_bounds[layer]): max_flag = upper_bounds[layer] > max_value min_flag = lower_bounds[layer] < min_value upper_bounds[layer] = upper_bounds[layer] * max_flag + max_value * (1 - max_flag) lower_bounds[layer] = lower_bounds[layer] * min_flag + min_value * (1 - min_flag) else: upper_bounds[layer] = max_value lower_bounds[layer] = min_value return upper_bounds, lower_bounds def _activate_rate(self): """ Calculate the activate rate of neurons. """ total_neurons = 0 activated_neurons = 0 for _, value in self._activate_table.items(): activated_neurons += np.sum(value) total_neurons += len(value) activate_rate = activated_neurons / total_neurons return activate_rate class NeuronCoverage(CoverageMetrics): """ Calculate the neurons activated coverage. Neuron is activated when its output is greater than the threshold. Neuron coverage equals the proportion of activated neurons to total neurons in the network. Args: model (Model): The pre-trained model which waiting for testing. threshold (float): Threshold used to determined neurons is activated or not. Default: 0.1. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, threshold=0.1, incremental=False, batch_size=32): super(NeuronCoverage, self).__init__(model, incremental, batch_size) threshold = check_param_type('threshold', threshold, float) self.threshold = check_value_positive('threshold', threshold) def get_metrics(self, dataset): """ Get the metric of neuron coverage: the proportion of activated neurons to total neurons in the network. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Returns: float, the metric of 'neuron coverage'. Examples: >>> nc = NeuronCoverage(model, threshold=0.1) >>> nc_metrics = nc.get_metrics(test_data) """ dataset = check_numpy_param('dataset', dataset) batches = math.ceil(dataset.shape[0] / self.batch_size) if not self.incremental or not self._activate_table: self._activate_table = self._init_neuron_activate_table(dataset[0:1]) for i in range(batches): inputs = dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) activate = np.sum(value > self.threshold, axis=0) > 0 self._activate_table[layer] =
np.logical_or(self._activate_table[layer], activate)
numpy.logical_or
import os import numpy as np import flopy import warnings from io import StringIO from struct import pack from tempfile import TemporaryFile from textwrap import dedent from flopy.utils.util_array import Util2d, Util3d, Transient2d, Transient3d from ci_framework import base_test_dir, FlopyTestSetup base_dir = base_test_dir(__file__, rel_path="temp", verbose=True) def test_load_txt_free(): a = np.ones((10,), dtype=np.float32) * 250.0 fp = StringIO("10*250.0") fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.arange(10, dtype=np.int32).reshape((2, 5)) fp = StringIO( dedent( """\ 0 1,2,3, 4 5 6, 7, 8 9 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.ones((2, 5), dtype=np.float32) a[1, 0] = 2.2 fp = StringIO( dedent( """\ 5*1.0 2.2 2*1.0, +1E-00 1.0 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_txt_fixed(): a = np.arange(10, dtype=np.int32).reshape((2, 5)) fp = StringIO( dedent( """\ 01234X 56789 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(5I1)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype fp = StringIO( dedent( """\ 0123X 4 5678 9 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(4I1)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.array([[-1, 1, -2, 2, -3], [3, -4, 4, -5, 5]], np.int32) fp = StringIO( dedent( """\ -1 1-2 2-3 3 -44 -55 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(5I2)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_block(): a = np.ones((2, 5), dtype=np.int32) * 4 fp = StringIO( dedent( """\ 1 1 2 1 5 4 """ ) ) fa = Util2d.load_block(a.shape, fp, a.dtype) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.ones((2, 5), dtype=np.float32) * 4 a[0:2, 1:2] = 9.0 a[0, 2:4] = 6.0 fp = StringIO( dedent( """\ 3 1 2 1 5 4.0 1 2 2 2 9.0 1 1 3 4 6.0 """ ) ) fa = Util2d.load_block(a.shape, fp, a.dtype) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.zeros((2, 5), dtype=np.int32) a[0, 2:4] = 8 fp = StringIO( dedent( """\ 1 1 1 3 4 8 """ ) ) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") fa = Util2d.load_block(a.shape, fp, a.dtype) assert len(w) == 1 assert "blocks do not cover full array" in str(w[-1].message) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_bin(): model_ws = f"{base_dir}_test_load_bin" test_setup = FlopyTestSetup(test_dirs=model_ws) def temp_file(data): # writable file that is destroyed as soon as it is closed f = TemporaryFile(dir=model_ws) f.write(data) f.seek(0) return f # INTEGER a = np.arange(3 * 4, dtype=np.int32).reshape((3, 4)) - 1 fp = temp_file(a.tobytes()) fh, fa = Util2d.load_bin((3, 4), fp, np.int32) assert fh is None # no header_dtype np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype # check warning if wrong integer type is used to read 4-byte integers # e.g. on platforms where int -> int64 with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") fp.seek(0) fh, fa = Util2d.load_bin((3, 4), fp, np.int64) fp.close() assert len(w) == 1 assert a.dtype == np.int32 assert fh is None # no header_dtype np.testing.assert_equal(fa, a) # REAL real_header_fmt = "2i2f16s3i" header_data = (1, 2, 3.5, 4.5, b"Hello", 6, 7, 8) real_header = pack(real_header_fmt, *header_data) assert len(real_header) == 44 a = np.arange(10).reshape((2, 5)) fp = temp_file(real_header + pack("10f", *list(range(10)))) fh, fa = Util2d.load_bin((2, 5), fp, np.float32, "Head") fp.close() for h1, h2 in zip(fh[0], header_data): assert h1 == h2 np.testing.assert_equal(a.astype(np.float32), fa) assert fa.dtype == np.float32 # DOUBLE PRECISION dbl_header_fmt = "2i2d16s3i" dbl_header = pack(dbl_header_fmt, *header_data) assert len(dbl_header) == 52 fp = temp_file(real_header + pack("10d", *list(range(10)))) fh, fa = Util2d.load_bin((2, 5), fp, np.float64, "Head") fp.close() for h1, h2 in zip(fh[0], header_data): assert h1 == h2 np.testing.assert_equal(a.astype(np.float64), fa) assert fa.dtype == np.float64 def test_transient2d(): ml = flopy.modflow.Modflow() dis = flopy.modflow.ModflowDis(ml, nlay=10, nrow=10, ncol=10, nper=3) t2d = Transient2d(ml, (10, 10), np.float32, 10.0, "fake") a1 = t2d.array assert a1.shape == (3, 1, 10, 10), a1.shape t2d.cnstnt = 2.0 assert np.array_equal(t2d.array, np.zeros((3, 1, 10, 10)) + 20.0) t2d[0] = 1.0 t2d[2] = 999 assert np.array_equal(t2d[0].array, np.ones((ml.nrow, ml.ncol))) assert np.array_equal(t2d[2].array, np.ones((ml.nrow, ml.ncol)) * 999) m4d = t2d.array t2d2 = Transient2d.from_4d(ml, "rch", {"rech": m4d}) m4d2 = t2d2.array assert np.array_equal(m4d, m4d2) def test_transient3d(): nlay = 3 nrow = 4 ncol = 5 nper = 5 ml = flopy.modflow.Modflow() dis = flopy.modflow.ModflowDis( ml, nlay=nlay, nrow=nrow, ncol=ncol, nper=nper ) # Make a transient 3d array of a constant value t3d = Transient3d(ml, (nlay, nrow, ncol), np.float32, 10.0, "fake") a1 = t3d.array assert a1.shape == (nper, nlay, nrow, ncol), a1.shape # Make a transient 3d array with changing entries and then verify that # they can be reproduced through indexing a = np.arange((nlay * nrow * ncol), dtype=np.float32).reshape( (nlay, nrow, ncol) ) t3d = {0: a, 2: 1025, 3: a, 4: 1000.0} t3d = Transient3d(ml, (nlay, nrow, ncol), np.float32, t3d, "fake") assert np.array_equal(t3d[0].array, a) assert np.array_equal(t3d[1].array, a) assert np.array_equal(t3d[2].array, np.zeros((nlay, nrow, ncol)) + 1025.0) assert np.array_equal(t3d[3].array, a) assert np.array_equal(t3d[4].array, np.zeros((nlay, nrow, ncol)) + 1000.0) # Test changing a value t3d[0] = 1.0 assert np.array_equal(t3d[0].array, np.zeros((nlay, nrow, ncol)) + 1.0) # Check itmp and file_entry itmp, file_entry_dense = t3d.get_kper_entry(0) assert itmp == 1 itmp, file_entry_dense = t3d.get_kper_entry(1) assert itmp == -1 def test_util2d(): model_ws = f"{base_dir}_test_util2d" test_setup = FlopyTestSetup(test_dirs=model_ws) ml = flopy.modflow.Modflow(model_ws=model_ws) u2d = Util2d(ml, (10, 10), np.float32, 10.0, "test") a1 = u2d.array a2 = np.ones((10, 10), dtype=np.float32) * 10.0 assert np.array_equal(a1, a2) # test external filenames - ascii and binary fname_ascii = os.path.join(model_ws, "test_a.dat") fname_bin = os.path.join(model_ws, "test_b.dat") np.savetxt(fname_ascii, a1, fmt="%15.6E") u2d.write_bin(a1.shape, fname_bin, a1, bintype="head") dis = flopy.modflow.ModflowDis(ml, 2, 10, 10) lpf = flopy.modflow.ModflowLpf(ml, hk=[fname_ascii, fname_bin]) ml.lpf.hk[1].fmtin = "(BINARY)" assert np.array_equal(lpf.hk[0].array, a1) assert np.array_equal(lpf.hk[1].array, a1) # test external filenames - ascii and binary with model_ws and external_path ml = flopy.modflow.Modflow( model_ws=model_ws, external_path=os.path.join(model_ws, "ref") ) u2d = Util2d(ml, (10, 10), np.float32, 10.0, "test") fname_ascii = os.path.join(model_ws, "test_a.dat") fname_bin = os.path.join(model_ws, "test_b.dat") np.savetxt(fname_ascii, a1, fmt="%15.6E") u2d.write_bin(a1.shape, fname_bin, a1, bintype="head") dis = flopy.modflow.ModflowDis(ml, 2, 10, 10) lpf = flopy.modflow.ModflowLpf(ml, hk=[fname_ascii, fname_bin]) ml.lpf.hk[1].fmtin = "(BINARY)" assert np.array_equal(lpf.hk[0].array, a1) assert np.array_equal(lpf.hk[1].array, a1) # bin read write test fname = os.path.join(model_ws, "test.bin") u2d.write_bin((10, 10), fname, u2d.array) a3 = u2d.load_bin((10, 10), fname, u2d.dtype)[1] assert np.array_equal(a3, a1) # ascii read write test fname = os.path.join(model_ws, "text.dat") u2d.write_txt((10, 10), fname, u2d.array) a4 = u2d.load_txt((10, 10), fname, u2d.dtype, "(FREE)") assert np.array_equal(a1, a4) # fixed format read/write with touching numbers - yuck! data = np.arange(100).reshape(10, 10) u2d_arange = Util2d(ml, (10, 10), np.float32, data, "test") u2d_arange.write_txt( (10, 10), fname, u2d_arange.array, python_format=[7, "{0:10.4E}"] ) a4a = u2d.load_txt((10, 10), fname, np.float32, "(7E10.6)") assert np.array_equal(u2d_arange.array, a4a) # test view vs copy with .array a5 = u2d.array a5 += 1 assert not np.array_equal(a5, u2d.array) # Util2d.__mul__() overload new_2d = u2d * 2 assert np.array_equal(new_2d.array, u2d.array * 2) # test the cnstnt application u2d.cnstnt = 2.0 a6 = u2d.array assert not np.array_equal(a1, a6) u2d.write_txt((10, 10), fname, u2d.array) a7 = u2d.load_txt((10, 10), fname, u2d.dtype, "(FREE)") assert np.array_equal(u2d.array, a7) def stress_util2d(model_ws, ml, nlay, nrow, ncol): dis = flopy.modflow.ModflowDis(ml, nlay=nlay, nrow=nrow, ncol=ncol) hk = np.ones((nlay, nrow, ncol)) vk = np.ones((nlay, nrow, ncol)) + 1.0 # save hk up one dir from model_ws fnames = [] for i, h in enumerate(hk): fname = os.path.join(ml._model_ws, f"test_{i}.ref") fnames.append(fname) np.savetxt(fname, h, fmt="%15.6e", delimiter="") vk[i] = i + 1.0 lpf = flopy.modflow.ModflowLpf(ml, hk=fnames, vka=vk) # util2d binary check ml.lpf.vka[0].format.binary = True # util3d cnstnt propagation test ml.lpf.vka.cnstnt = 2.0 ml.write_input() # check that binary is being respect - it can't get no respect! vka_1 = ml.lpf.vka[0] a = vka_1.array vka_1_2 = vka_1 * 2.0 assert np.array_equal(a * 2.0, vka_1_2.array) if ml.external_path is not None: files = os.listdir(os.path.join(ml.model_ws, ml.external_path)) else: files = os.listdir(ml.model_ws) print("\n\nexternal files: " + ",".join(files) + "\n\n") ml1 = flopy.modflow.Modflow.load( ml.namefile, model_ws=ml.model_ws, verbose=True, forgive=False ) print("testing load") assert not ml1.load_fail # check that both binary and cnstnt are being respected through # out the write and load process. assert np.array_equal(ml1.lpf.vka.array, vk * 2.0) assert np.array_equal(ml1.lpf.vka.array, ml.lpf.vka.array) assert np.array_equal(ml1.lpf.hk.array, hk) assert np.array_equal(ml1.lpf.hk.array, ml.lpf.hk.array) print("change model_ws") ml.model_ws = os.path.join(model_ws, "new") ml.write_input() if ml.external_path is not None: files = os.listdir(os.path.join(ml.model_ws, ml.external_path)) else: files = os.listdir(ml.model_ws) print("\n\nexternal files: " + ",".join(files) + "\n\n") ml1 = flopy.modflow.Modflow.load( ml.namefile, model_ws=ml.model_ws, verbose=True, forgive=False ) print("testing load") assert not ml1.load_fail assert np.array_equal(ml1.lpf.vka.array, vk * 2.0) assert np.array_equal(ml1.lpf.hk.array, hk) # more binary testing ml.lpf.vka[0]._array[0, 0] *= 3.0 ml.write_input() ml1 = flopy.modflow.Modflow.load( ml.namefile, model_ws=ml.model_ws, verbose=True, forgive=False ) assert np.array_equal(ml.lpf.vka.array, ml1.lpf.vka.array) assert np.array_equal(ml.lpf.hk.array, ml1.lpf.hk.array) def stress_util2d_for_joe_the_file_king(ml, nlay, nrow, ncol): dis = flopy.modflow.ModflowDis(ml, nlay=nlay, nrow=nrow, ncol=ncol) hk = np.ones((nlay, nrow, ncol)) vk = np.ones((nlay, nrow, ncol)) + 1.0 # save hk up one dir from model_ws fnames = [] for i, h in enumerate(hk): fname = os.path.join(ml._model_ws, f"test_{i}.ref") fnames.append(fname) np.savetxt(fname, h, fmt="%15.6e", delimiter="") vk[i] = i + 1.0 lpf = flopy.modflow.ModflowLpf(ml, hk=fnames, vka=vk) ml.lpf.vka[0].format.binary = True ml.lpf.vka.cnstnt = 2.0 ml.write_input() assert np.array_equal(ml.lpf.hk.array, hk) assert
np.array_equal(ml.lpf.vka.array, vk * 2.0)
numpy.array_equal
from __future__ import division, absolute_import, print_function import sys from itertools import product import numpy as np from numpy.core import zeros, float64 from numpy.testing import dec, TestCase, assert_almost_equal, assert_, \ assert_raises, assert_array_equal, assert_allclose, assert_equal from numpy.core.multiarray import inner as inner_ DECPREC = 14 class TestInner(TestCase): def test_vecself(self): """Ticket 844.""" # Inner product of a vector with itself segfaults or give meaningless # result a = zeros(shape = (1, 80), dtype = float64) p = inner_(a, a) assert_almost_equal(p, 0, decimal = DECPREC) try: import numpy.core._dotblas as _dotblas except ImportError: _dotblas = None @dec.skipif(_dotblas is None, "Numpy is not compiled with _dotblas") def test_blasdot_used(): from numpy.core import dot, vdot, inner, alterdot, restoredot assert_(dot is _dotblas.dot) assert_(vdot is _dotblas.vdot) assert_(inner is _dotblas.inner) assert_(alterdot is _dotblas.alterdot) assert_(restoredot is _dotblas.restoredot) def test_dot_2args(): from numpy.core import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(): np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): np.dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = np.dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is np.dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = np.dot(f, v) assert_(r is np.dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(): np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, np.dot, f, v, r) assert_raises(ValueError, np.dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, np.dot, f, v, r[:, ::2]) assert_raises(ValueError, np.dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, np.dot, f, v, r) def test_dot_array_order(): """ Test numpy dot with different order C, F Comparing results with multiarray dot. Double and single precisions array are compared using relative precision of 7 and 5 decimals respectively. Use 30 decimal when comparing exact operations like: (a.b)' = b'.a' """ _dot = np.core.multiarray.dot a_dim, b_dim, c_dim = 10, 4, 7 orders = ["C", "F"] dtypes_prec = {np.float64: 7, np.float32: 5} np.random.seed(7) for arr_type, prec in dtypes_prec.items(): for a_order in orders: a = np.asarray(np.random.randn(a_dim, a_dim), dtype=arr_type, order=a_order) assert_array_equal(
np.dot(a, a)
numpy.dot
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Program Title: kinematic_model.py # Program Purpose: Define EEZYbotARM_kinematics parent class and EEZYbotARM_Mk2 child class # **Version control** # v3.1 -> adding save of np array for complex hull, adding complex hull function (this works in very basic form) # v3.2 -> getting the complex hull function to pass data to a overall ploting function (it's also working) # v3.3 -> troubleshooting why the convex hull and workspace isn't quite right! [19 Nov 19] # v3.4 -> checking demo functionality # v3.5 -> moving to github # v3.6 -> adding MK1 version of the EEZYbotARM as a new sub-class # v3.7 -> squishing bug for Mk1 inverse kinematics ----> Solved :) ! #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # ------------------------------------------# # Imports # # ------------------------------------------# from math import * # for maths import matplotlib.pyplot as plt # for plotting from mpl_toolkits.mplot3d import Axes3D # for 3D plotting # [PUNCH LIST] NEED TO DO SOMETHING ABOUT THIS -> SAME AS ABOVE ! import mpl_toolkits.mplot3d as a3 import numpy as np # for vector arithmetic import pathlib # for dealing with files # [PUNCH LIST] needed? -> it's only used to generate a random number, I should be able to delete (pending) import scipy as sp # [PUNCH LIST] needed for plotting the complex hull -> I think i can do this in another way! import pylab as pl from scipy.spatial import ConvexHull import pickle # used for saving python files # ------------------------------------------# # Helper functions # # ------------------------------------------# def plotCoOrd(T0toN, ax, lineColor): """ Plot a co-ordinate frame for a transformation matrix (in this case for a joint) using unit vectors. The plot is made using 3 'quiver objects' (arrows) --Parameters-- @T0toN -> the co-ordinate frame to plot @ax -> the matplotlib 3d axes object to make the plot on @lineColor -> the color the co-ordinate frame """ # Invert T0toN because we are rotating from the world frame to the N frame TNto0 =
np.linalg.inv(T0toN)
numpy.linalg.inv
from utils.pointnet import PointNet from utils.dualnet import DualNet from utils.datasets import MonoDataset, DuoDataset import argparse import numpy as np import datetime import os import shutil current_time = datetime.datetime.now() prefix = current_time.strftime("%m-%d:%H:%M") + "fusion/" path = "test_results/" + prefix if not os.path.exists(path): os.makedirs(path) else: shutil.rmtree(path) os.makedirs(path) # initialize final variables for return test_acc = [] test_conf = [] test_energy = [] train_paths = ["train/zero/", "train/one/", "train/two/", "train/three/", "train/four/", "train/five/", "train/thumbup/", "train/ell/", "train/frame/", "train/bird/"] test_paths = ["test/zero/", "test/one/", "test/two/", "test/three/", "test/four/", "test/five/", "test/thumbup/", "test/ell/", "test/frame/", "test/bird/"] # initialize running variables for collection trial_acc = [] trial_conf = np.zeros((len(test_paths),len(test_paths))) trial_energy = np.zeros(len(test_paths)*201) # IMPORTANT num_trials = 25 epochs = 100 bs = 67 num_points = 320 # Single test LL dataset = MonoDataset(left=True, right=False, num_points=num_points, file_paths=train_paths) test_dataset = MonoDataset(left=True, right=False, num_points=num_points, file_paths=test_paths) for j in range(num_trials): print("LL: ", j) pnt = PointNet(num_points=320, num_classes=len(test_paths), num_epoch=epochs, batchsize=bs, ptype='small', alpha=0.002, beta=0.01) res = pnt.train(dataset, test_dataset) trial_acc.append(res[0]) trial_conf += res[1] trial_energy += res[2] test_acc.append(trial_acc) test_conf.append(trial_conf) test_energy.append(trial_energy) # reinitialize running variables for collection trial_acc = [] trial_conf = np.zeros((len(test_paths),len(test_paths))) trial_energy = np.zeros(len(test_paths)*201) np.save(path + "acc", np.array(test_acc)) np.save(path + "conf", np.array(test_conf)) np.save(path + "energy", np.array(test_energy)) # Single test RR dataset = MonoDataset(left=False, right=True, num_points=num_points, file_paths=train_paths) test_dataset = MonoDataset(left=False, right=True, num_points=num_points, file_paths=test_paths) for j in range(num_trials): print("RR: ", j) pnt = PointNet(num_points=320, num_classes=len(test_paths), num_epoch=epochs, batchsize=bs, ptype='small', alpha=0.002, beta=0.01) res = pnt.train(dataset, test_dataset) trial_acc.append(res[0]) trial_conf += res[1] trial_energy += res[2] test_acc.append(trial_acc) test_conf.append(trial_conf) test_energy.append(trial_energy) # reinitialize running variables for collection trial_acc = [] trial_conf = np.zeros((len(test_paths),len(test_paths))) trial_energy = np.zeros(len(test_paths)*201) np.save(path + "acc", np.array(test_acc)) np.save(path + "conf", np.array(test_conf)) np.save(path + "energy", np.array(test_energy)) # Single test F dataset = MonoDataset(left=True, right=True, num_points=num_points, file_paths=train_paths) test_dataset = MonoDataset(left=True, right=True, num_points=num_points, file_paths=test_paths) for j in range(num_trials): print("F: ", j) pnt = PointNet(num_points=320, num_classes=len(test_paths), num_epoch=epochs, batchsize=bs, ptype='small', alpha=0.002, beta=0.01) res = pnt.train(dataset, test_dataset) trial_acc.append(res[0]) trial_conf += res[1] trial_energy += res[2] test_acc.append(trial_acc) test_conf.append(trial_conf) test_energy.append(trial_energy) # reinitialize running variables for collection trial_acc = [] trial_conf = np.zeros((len(test_paths),len(test_paths))) trial_energy = np.zeros(len(test_paths)*201) np.save(path + "acc", np.array(test_acc)) np.save(path + "conf",
np.array(test_conf)
numpy.array
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # License: BSD 3 clause """ Functions to craft features. """ import warnings import numpy as np from scipy import ndimage as ndi from skimage.morphology import binary_opening from skimage.morphology.selem import disk import bigfish.stack as stack from .input_preparation import prepare_extracted_data # ### Main functions ### def compute_features(cell_mask, nuc_mask, ndim, rna_coord, smfish=None, voxel_size_yx=None, foci_coord=None, centrosome_coord=None, compute_distance=False, compute_intranuclear=False, compute_protrusion=False, compute_dispersion=False, compute_topography=False, compute_foci=False, compute_area=False, compute_centrosome=False, return_names=False): """Compute requested features. Parameters ---------- cell_mask : np.ndarray, np.uint, np.int or bool Surface of the cell with shape (y, x). nuc_mask: np.ndarray, np.uint, np.int or bool Surface of the nucleus with shape (y, x). ndim : int Number of spatial dimensions to consider (2 or 3). rna_coord : np.ndarray, np.int64 Coordinates of the detected spots with shape (nb_spots, 4) or (nb_spots, 3). One coordinate per dimension (zyx or yx dimensions) plus the index of the cluster assigned to the spot. If no cluster was assigned, value is -1. If cluster id is not provided foci related features are not computed. smfish : np.ndarray, np.uint Image of RNAs, with shape (y, x). voxel_size_yx : int, float or None Size of a voxel on the yx plan, in nanometer. foci_coord : np.ndarray, np.int64 Array with shape (nb_foci, 5) or (nb_foci, 4). One coordinate per dimension for the foci centroid (zyx or yx coordinates), the number of spots detected in the foci and its index. centrosome_coord : np.ndarray, np.int64 Coordinates of the detected centrosome with shape (nb_elements, 3) or (nb_elements, 2). One coordinate per dimension (zyx or yx dimensions). These coordinates are mandatory to compute centrosome related features. compute_distance : bool Compute distance related features. compute_intranuclear : bool Compute nucleus related features. compute_protrusion : bool Compute protrusion related features. compute_dispersion : bool Compute dispersion indices. compute_topography : bool Compute topographic features. compute_foci : bool Compute foci related features. compute_area : bool Compute area related features. compute_centrosome : bool Compute centrosome related features. return_names : bool Return features names. Returns ------- features : np.ndarray, np.float32 Array of features. """ # check parameters stack.check_parameter(voxel_size_yx=(int, float, type(None)), compute_distance=bool, compute_intranuclear=bool, compute_protrusion=bool, compute_dispersion=bool, compute_topography=bool, compute_foci=bool, compute_area=bool, compute_centrosome=bool, return_names=bool) if smfish is not None: stack.check_array(smfish, ndim=[2, 3], dtype=[np.uint8, np.uint16]) if smfish.ndim == 3: smfish = stack.maximum_projection(smfish) if foci_coord is not None: stack.check_array(foci_coord, ndim=2, dtype=np.int64) # prepare input data (cell_mask, distance_cell, distance_cell_normalized, centroid_cell, distance_centroid_cell, nuc_mask, cell_mask_out_nuc, distance_nuc, distance_nuc_normalized, centroid_nuc, distance_centroid_nuc, rna_coord_out_nuc, centroid_rna, distance_centroid_rna, centroid_rna_out_nuc, distance_centroid_rna_out_nuc, distance_centrosome) = prepare_extracted_data( cell_mask, nuc_mask, ndim, rna_coord, centrosome_coord) # initialization features = () names_features_distance = False names_features_intranuclear = False names_features_protrusion = False names_features_dispersion = False names_features_topography = False names_features_foci = False names_features_area = False names_features_centrosome = False # distance related features if compute_distance: features += features_distance( rna_coord, distance_cell, distance_nuc, cell_mask, ndim, False) names_features_distance = True # nucleus related features if compute_intranuclear: features += features_in_out_nucleus( rna_coord, rna_coord_out_nuc, False) names_features_intranuclear = True # protrusion related features if compute_protrusion: features += features_protrusion( rna_coord, cell_mask, nuc_mask, ndim, voxel_size_yx, False) names_features_protrusion = True # dispersion indices if compute_dispersion and smfish is not None: features += features_dispersion( smfish, rna_coord, centroid_rna, cell_mask, centroid_cell, centroid_nuc, ndim, False) names_features_dispersion = True elif compute_dispersion and smfish is None: raise ValueError("Dispersion features can't be computed because " "'smfish' is not provided.") # topographic features if compute_topography and voxel_size_yx is not None: features += features_topography( rna_coord, cell_mask, nuc_mask, cell_mask_out_nuc, ndim, voxel_size_yx, False) names_features_topography = True elif compute_topography and voxel_size_yx is None: raise ValueError("Topographic features can't be computed because " "'voxel_size_yx' is not provided.") # foci related features if compute_foci and foci_coord is not None: features += features_foci( rna_coord, foci_coord, ndim, False) names_features_foci = True elif compute_foci and foci_coord is None: raise ValueError("Foci related features can't be computed because " "'foci_coord' is not provided.") # area related features if compute_area: features += features_area( cell_mask, nuc_mask, cell_mask_out_nuc, False) names_features_area = True # centrosome related features if (compute_centrosome and centrosome_coord is not None and voxel_size_yx is not None and smfish is not None): features += features_centrosome( smfish, rna_coord, distance_centrosome, cell_mask, ndim, voxel_size_yx, False) names_features_centrosome = True elif compute_centrosome and centrosome_coord is None: raise ValueError("Centrosome related features can't be computed " "because 'centrosome_coord' is not provided.") elif compute_centrosome and voxel_size_yx is None: raise ValueError("Centrosome related features can't be computed " "because 'voxel_size_yx' is not provided.") elif compute_centrosome and smfish is None: raise ValueError("Centrosome related features can't be computed " "because 'smfish' is not provided.") # format features features = np.array(features, dtype=np.float32) features =
np.round(features, decimals=2)
numpy.round
#!/usr/bin/env python # coding: utf-8 # <img src="imagenes/rn3.png" width="200"> # <img src="http://www.identidadbuho.uson.mx/assets/letragrama-rgb-150.jpg" width="200"> # # [Curso de Redes Neuronales](https://curso-redes-neuronales-unison.github.io/Temario/) # # # Redes neuronales multicapa y el algoritmo de *b-prop* # # [**<NAME>**](http://mat.uson.mx/~juliowaissman/), 22 de febrero de 2018. # # En esta libreta vamos a practicar con el algoritmo básico para realizar reconocimiento en redes neuronales hacia adelante y establecer una estructura básica para simular cn fines de comprensión. Para aplicaciones reales vamos a utilizar herramientas poderosas como [Tensorflow](https://www.tensorflow.org), pero es importante hacer una primer red neuronal simple a pie con el objetivo de entender mejor los mecanismos básicos. # # Como dijo Jack el destripador, vamos por partes, y empecemos con asumir que tenemos la especificación completa de la red neuronal y lo que queremos es poder generar una red neuronal inicial, o poder recuperar una red existente previamente guardada. # # Empecemos por inicializar los modulos que vamos a requerir. # In[ ]: import numpy as np import _pickle as cPickle # ## 1. Especificando una red neuronal # # Primero, para poder hacer una red neuronal, tenemos que determinar cierta información. La información importante que debemos de especificar cuando hacemos una redes neuronales es: # # - Cuantas capas de neuronas tiene la red neuronal, $L$. # - Cuantas neuronas va a tener cada capa $[n_0, n_1, \ldots, n_L]$, donde $n_0$ es el número de entradas y $n_L$ el número de salidas. # - Cual es la función de activación de las neuronas ocultas (logística, lineal rectificada, ...). # - Cual es el tipo de salida de mi red neuronal (lineal, logística, unidad softmax, ... ). # - Los valores con los que se normalizan los datos de entrada a la red neuronal (para el aprendizaje en una red neuronal es muy importante que los valores de entrada estén normalizados). # # Una vez que se establecen estos valores, es necesario generar una lista de matrices $[W^{(1)}, \ldots, W^{(L)}]$ donde $W^{(l)}$ es una matriz de dimensiones $(n_l, n_{l-1})$ de pesos. Igualmente es necesario generar una lista de vectores $[b^{(1)}, \ldots, b^{(L)}]$ donde $b^{(l)}$ es un vector de $n_l$ elementos llamados sesgos. # # Si se inicializan los valores de las entradas de $W^{(l)}$ y $b^{(l)}$ iguales, es equivalente a tener una sola neurona en esa capa, por lo que es necesario que estos valores sean diferentes. Para este ejemplo y con el fin de simplificar las operaciones de aprendizaje más adelante, vamos a asumir que la función de activación siempre será la función logística. # # Para efectos de un mejor aprendizaje, y asumiendo que la función de activación es la logistica, es importante que los valores iniciales de los pesos se encuentren en la zona donde casuan más variacion la función logística. Si asumimos que las entradas a cada neurona están normalizadas (esto es, entre 0 y 1), entonces los pesos deberían ser valores entre $(-\sqrt{n_{l-1}}, \sqrt{n_{l-1}})$ con el fin que la suma se encuentre en la región donde más cambios ocurren en la función logística. # # Vamos a generar y guardar esta información en un diccionario (junto con el resto de la información que requeriramos para tener una red neuronal completamente definida. Al principio los valores de normalización no cuentan ya que estos se deben inicializar al comienzo del aprendizaje. Fijate bien que naturalmente la red neuronal se debería programar como una clase, pero para evitar complejidad que no podamos mantener en TensoFlow vamos a dejarlo todo el código en forma estructurada (solo para dejar constancia). # # **Completa el código para inicializar la red neuronal** # In[ ]: def inicializa_red_neuronal(capas, tipo): """ Inicializa una red neuronal como un diccionario de datos. Se asume en este caso que la función de activación es la función logística Parámetros ---------- neuronas_por_capa: Una lista de enteros donde el primer elemento es el número de entradas y el último el número de salidas, mientras que los intermedios son el númerode neuronas en cada capa oculta. tipo: Un string entre {'lineal', 'logistica', 'softmax'} con el tipo de función de salida de la red. Devuelve -------- Un diccionario `rn` tal que - rn['capas'] = [n0, n1, ..., nL] neuronas por capa - rn['tipo'] = tipo - rn['W'] = [None, W1, ..., WL] lista de matrices de pesos - rn['b'] = [None, b1, ..., bL] lista de sesgos - rn['mu'] = lista de medias de cada atributo (se inicializan con puros 0) - rn['std'] = lista de desviaciones estandard de cada atributo (se inicializan con puros 1) """ rn = {'capas': len(capas), 'tipo': tipo} rn['mu'] = np.zeros(capas[0]) rn['std'] = np.ones(capas[0]) rn['W'], rn['b'] = inicializa_Wb(capas) return rn def inicializa_Wb(capas): """ Inicializa una matriz de valores aleatorios W Parámetros ---------- capas: [n0, n1, ..., nL] número de neuronas por capa Devuelve -------- W, b donde W = [None, W1, ..., WL] y b = [None, b1, ..., bL] """ #------------------------------------------------------------------------ # Agregua aqui tu código W = [None] + [np.random.rand(capas[l],capas[l-1]) for l in range(1,len(capas))] b = [None] + [
np.random.rand(capas[l])
numpy.random.rand
# pylint: disable=too-few-public-methods, method-hidden """ Contains Sampler-classes. """ import warnings from copy import copy import numpy as np try: import scipy.stats as ss except ImportError: pass from .utils_random import make_rng # aliases for Numpy, Scipy-Stats, TensorFlow-samplers ALIASES = { 'n': {'np': 'normal', 'ss': 'norm', 'tf': 'Normal'}, 'u': {'np': 'uniform', 'ss': 'uniform', 'tf': 'Uniform'}, 'mvn': {'np': 'multivariate_normal', 'ss': 'multivariate_normal'}, 'e': {'np': 'exponential', 'ss': 'expon', 'tf': 'Exponential'}, 'g': {'np': 'gamma', 'ss': 'gamma', 'tf': 'Gamma'}, 'be' : {'np': 'beta', 'ss': 'beta', 'tf': 'Beta'}, 'mnm': {'np': 'multinomial', 'ss': 'multinomial', 'tf': 'Multinomial'}, 'f': {'np': 'f', 'ss': 'f'}, 'p': {'np': 'poisson', 'ss': 'poisson'}, 'w': {'np': 'weibull', 'ss': 'dweibull'}, 'ln': {'np': 'lognormal', 'ss': 'lognorm'}, 'b' : {'np': 'binomial', 'ss': 'binom'}, 'chi2': {'np': 'chisquare', 'ss': 'chi2'}, 'c': {'np': 'choice'} } def _get_method_by_alias(alias, module, tf_distributions=None): """ Fetch fullname of a randomizer from ``scipy.stats``, ``tensorflow`` or ``numpy`` by its alias or fullname. """ rnd_submodules = {'np': np.random, 'tf': tf_distributions, 'ss': ss} # fetch fullname fullname = ALIASES.get(alias, {module: alias for module in ['np', 'tf', 'ss']}).get(module, None) if fullname is None: raise ValueError("Distribution %s has no implementaion in module %s" % (alias, module)) # check that the randomizer is implemented in corresponding module if not hasattr(rnd_submodules[module], fullname): raise ValueError("Distribution %s has no implementaion in module %s" % (fullname, module)) return fullname def arithmetize(cls): """ Add arithmetic operations to Sampler-class. """ for oper in ['__add__', '__mul__', '__truediv__', '__sub__', '__pow__', '__floordiv__', '__mod__', '__radd__', '__rmul__', '__rtruediv__', '__rsub__', '__rpow__', '__rfloordiv__', '__rmod__']: def transform(self, other, fake=oper): """ Arithmetic operation on couple of Samplers. Implemented via corresponding operation in ndarrays. Parameters ---------- other : Sampler second Sampler, the operation is applied to. Returns ------- Sampler resulting sampler. """ _class = classes[fake] return _class(self, other) setattr(cls, oper, transform) return cls @arithmetize class Sampler(): """ Base class Sampler that implements algebra of Samplers. Attributes ---------- weight : float weight of Sampler self in mixtures. """ def __init__(self, *args, **kwargs): self.__array_priority__ = 100 self.weight = 1.0 # if dim is supplied, redefine sampling method if 'dim' in kwargs: # assemble stacked sampler dim = kwargs.pop('dim') stacked = type(self)(*args, **kwargs) for _ in range(dim - 1): stacked = type(self)(*args, **kwargs) & stacked # redefine sample of self self.sample = stacked.sample def sample(self, size): """ Sampling method of a sampler. Parameters ---------- size : int lentgh of sample to be generated. Returns ------- np.ndarray Array of size (len, Sampler's dimension). """ raise NotImplementedError('The method should be implemented in child-classes!') def __or__(self, other): """ Implementation of '|' operation for two instances of Sampler-class. The result is the mixture of two samplers. Weights are taken from samplers' weight-attributes. Parameters ---------- other : Sampler the sampler to be added to self. Returns ------- Sampler resulting mixture of two samplers. """ return OrSampler(self, other) def __and__(self, other): """ Implementation of '&' operation for instance of Sampler-class. Two cases are possible: if ``other`` is numeric, then "&"-operation changes the weight of a sampler. Otherwise, if ``other`` is also a Sampler, the resulting Sampler is a multidimensional sampler, with starting coordinates being sampled from ``self``, and trailing - from ``other``. Parameters ---------- other : int or float or Sampler the sampler/weight for multiplication. Returns ------- Sampler result of the multiplication. """ if isinstance(other, (float, int)): self.weight *= other return self return AndSampler(self, other) def __rand__(self, other): """ Implementation of '&' operation on a weight for instance of Sampler-class. see docstring of Sampler.__and__. """ return self & other def apply(self, transform): """ Apply a transformation to the sampler. Build new sampler, which sampling function is given by `transform(self.sample(size))``. Parameters ---------- transform : callable function, that takes ndarray of shape (size, dim_sampler) and produces ndarray of shape (size, new_dim_sampler). Returns ------- Sampler instance of class Sampler with redefined method `sample`. """ return ApplySampler(self, transform) def truncate(self, high=None, low=None, expr=None, prob=0.5, max_iters=None, sample_anyways=False): """ Truncate a sampler. Resulting sampler produces points satisfying ``low <= pts <= high``. If ``expr`` is suplied, the condition is ``low <= expr(pts) <= high``. Uses while-loop to obtain a sample from the region of interest of needed size. The behaviour of the while loop is controlled by parameters ``max_iters`` and ``sample_anyways``-parameters. Parameters ---------- high : ndarray, list, float upper truncation-bound. low : ndarray, list, float lower truncation-bound. expr : callable, optional. Some vectorized function. Accepts points of sampler, returns either bool or float. In case of float, either high or low should also be supplied. prob : float, optional estimate of P(truncation-condtion is satisfied). When supplied, can improve the performance of sampling-method of truncated sampler. max_iters : float, optional if the number of iterations needed for obtaining the sample exceeds this number, either a warning or error is raised. By default is set to 1e7 (constant of TruncateSampler-class). sample_anyways : bool, optional If set to True, when exceeding `self.max_iters` number of iterations the procedure throws a warning but continues. If set to False, the error is raised. Returns ------- Sampler new Sampler-instance, truncated version of self. """ return TruncateSampler(self, high, low, expr, prob, max_iters, sample_anyways) class OrSampler(Sampler): """ Class for implementing `|` (mixture) operation on `Sampler`-instances. """ def __init__(self, left, right, *args, **kwargs): super().__init__(*args, **kwargs) self.bases = [left, right] # calculate probs of samplers in mixture weights = np.array([self.bases[0].weight, self.bases[1].weight]) self.weight = np.sum(weights) self.normed = weights / np.sum(weights) def sample(self, size): """ Sampling procedure of a mixture of two samplers. Samples points with probabilities defined by weights (`self.weight`-attr) from two samplers invoked (`self.bases`-attr) and mixes them in one sample of needed size. """ up_size = np.random.binomial(size, self.normed[0]) low_size = size - up_size up_sample = self.bases[0].sample(size=up_size) low_sample = self.bases[1].sample(size=low_size) sample_points = np.concatenate([up_sample, low_sample]) sample_points = sample_points[
np.random.permutation(size)
numpy.random.permutation
# Python modules # 3rd party modules import numpy as np from lmfit import Parameters # Our modules import vespa.analysis.chain_fit_identity as chain_fit_identity import vespa.common.util.math_ as util_math import vespa.common.util.generic_spectral as util_spectral import vespa.analysis.functors.funct_fit_voigt as funct_fit_voigt from vespa.common.constants import DEGREES_TO_RADIANS as DTOR from vespa.analysis.constants import FitLineshapeModel, VoigtDefaultFixedT2, FitMacromoleculeMethod from vespa.analysis.constants import FitOptimizeMethod as optmeth from vespa.analysis.chain_base import Chain LMFIT_METHODS = [optmeth.LMFIT_DEFAULT, optmeth.LMFIT_JACOBIAN] class ChainFitVoigt(Chain): """ Building block object used to create a processing chain for MRS data. Performs LCM (linear combination model) fit to the data. Fit model is made up of spectrally simulated basis spectra for all metabolites. """ def __init__(self, dataset, block): """ Chain objects organize Algo (algorithm) calls by setting up access to input data and parameters, and creating standard output values for View. Base class sets convenience references to: self._block and self._dataset self.data is always initialized as [] """ super().__init__(dataset, block) self.fit_function = self.lorgauss_internal self.reset_results_arrays() # book-keeping attributes self.lmfit_fvar_names = [] @property def nmet(self): """ Number of metabolites to be fitted - varies depending on model """ if self._block is not None: if self._block.set.prior_list is not None: return len(self._block.set.prior_list) return 0 def reset_results_arrays(self): """ Results array reset is in its own method because it may need to be called at other times that just in the object initialization. """ nmet = self.nmet nmmol = self._block.nmmol nparam = self._block.nparam spectral_dim0 = self._dataset.spectral_dims[0] if len(self.data) != spectral_dim0: self.data = np.zeros(spectral_dim0, complex) self.yini = np.zeros((nmet+nmmol, spectral_dim0), complex) self.yfit = np.zeros((nmet+nmmol, spectral_dim0), complex) self.base = np.zeros(spectral_dim0, complex) self.initial_values = np.zeros(nparam, float) self.fit_results = np.zeros(nparam, float) self.fit_baseline = np.zeros(spectral_dim0, complex) self.weight_array = np.zeros(spectral_dim0, complex) self.limits = np.zeros((2,nparam), float) self.fitted_lw = 0.0 def run_global_init(self): """" Moved all of the global (one time) initialization code to this method so we could package it in run() in an 'if' statement. This is in line with making the 'fit all voxels' functionality as streamlined as possible. """ block = self._block set = self._block.set prior = self._block.set.prior self.spectral_dims = self._dataset.spectral_dims self.nmmol = self._block.nmmol self.nparam = self._block.nparam self.init_b0 = 0.0 self.init_lw_hz = 3.0 self.init_ta = 0.8 self.init_tb = 0.03 self.init_ampl = None self.init_area = None self.limits = np.zeros((2,self.nparam+self.nmmol), float) self.weight_array = np.zeros(self._dataset.spectral_dims[0], complex) self.fit_baseline = 0.0 # needed for LORGAUSS call self.fit_function = self.lorgauss_internal self.fix_t2_center = VoigtDefaultFixedT2.CENTER self.minmaxlw = [0,0] # set up basis set for selected metabolites, collect all ppm locations basis_mets = [] ppms = [] for name in set.prior_list: basis_mets.append(prior.basis_set[name].fid.copy()) ppms += prior.basis_set[name].all_ppms self.basis_mets = np.array(basis_mets) self.peakpts = self._dataset.ppm2pts(np.array(ppms)) # for weight array calc # set up basis set for macromolecules if needed #self.macromol_model = set.macromol_model self.basis_mmol = None if set.macromol_model == FitMacromoleculeMethod.SINGLE_BASIS_DATASET: if set.macromol_single_basis_dataset: tmp = set.macromol_single_basis_dataset.blocks['raw'] self.basis_mmol = tmp.data.copy() # check results arrays for proper dimensionality block.check_parameter_dimensions(self) def run(self, voxels, entry='initial_only', statusbar=None, do_init=True): """ Run is typically called every time a processing setting is changed in the parent (block) object. Run processes a single voxel at a time. This object maintains previous run() results values until next run(). This allows the View to update without having to re-run the pipeline. The 'entry' keyword adds flexibility to Block-Chain-View relationship. """ block = self._block set = self._block.set prior = self._block.set.prior dataset = self._dataset #---------------------------------------------------------------------- # Return with zero values if no metabolites are selected if self.nmet < 1: self.yini = self.yini * 0 voxel = voxels[0] self.data = dataset.get_source_data('fit') self.data = self.data[voxel[2],voxel[1],voxel[0],:] plot_results = { 'fitted_lw' : 3.0, 'minmaxlw' : [1,5], 'init_b0' : 0.0, 'init_ph0' : -dataset.get_phase_0(voxel) * np.pi/180.0, 'init_ph1' : -dataset.get_phase_1(voxel), 'data' : self.data.copy(), 'weight_array' : self.data.copy() * 0, 'fit_baseline' : self.data.copy() * 0, 'yfit' : self.data.copy() * 0, 'yini' : self.data.copy() * 0, 'init_baseline': self.data.copy() * 0, 'mmol_area' : 1.0 } return plot_results #---------------------------------------------------------------------- # Do the one time global bits of code, if needed if do_init: self.run_global_init() #---------------------------------------------------------------------- # Now process the current voxel data_source = dataset.get_source_data('fit') voxel = voxels[0] # because we got rid of for-loop x,y,z = voxel # for convenience self.iteration = 0 # global index used in functors as a trigger self.voxel = voxel self.statusbar = statusbar # local copy of input data self.data = data_source[z,y,x,:].copy() # spectral chain needs update for this line to be valid self.chain = dataset.get_source_chain('fit') self.kodata = self.chain.kodata.copy() # various default values self.mmol_area = 1.0 # copy 'global' parameters, that DO change with voxel, from dataset # # NB. phase0/1 are inputs for 'manual' method, the init_ph0/1 are # outputs from initval calcs. If 'manual' is selected, then the # output value should be equal but negative to original. We use # the init_ph0/1 to update the GUI (and mrs_dataset values) so # the chain needs both input and output (I think). self.phase0 = dataset.get_phase_0(voxel) self.phase1 = dataset.get_phase_1(voxel) self.init_ph0 = -dataset.get_phase_0(voxel) * np.pi / 180.0 # match units in util_initial_values self.init_ph1 = -dataset.get_phase_1(voxel) # copy block parameters, that DO change with voxel, from block self.frequency_shift = dataset.get_frequency_shift(voxel) self.fit_baseline = block.fit_baseline[:,x,y,z].copy() self.init_baseline = self.fit_baseline.copy() * 0 # setup chain results arrays self.initial_values = voigt_checkout(self.nmet, block.initial_values[:,x,y,z], dataset) self.fit_results = voigt_checkout(self.nmet, block.fit_results[ :,x,y,z], dataset) self.fit_stats = block.fit_stats[ :,x,y,z].copy() self.cramer_rao = block.cramer_rao[:,x,y,z].copy() self.confidence = block.confidence[:,x,y,z].copy() # select the chain processing functor based on the entry point if entry == 'initial_only': funct_fit_voigt.do_processing_initial(self) elif entry == 'full_fit' or entry == 'all': funct_fit_voigt.do_processing_full_fit(self) elif entry == 'plot_refresh': funct_fit_voigt.do_processing_plot_refresh(self) elif entry == 'output_refresh': funct_fit_voigt.do_processing_output_refresh(self) elif entry == 'voxel_change': if np.sum(self.initial_values[0:self.nmet])==0.0: flag_auto_initvals = True else: flag_auto_initvals = False funct_fit_voigt.do_processing_voxel_change(self, flag_auto_initvals=flag_auto_initvals) else: print('oooops! - chain_fit_voigt "entry" point error ') if statusbar: statusbar.SetStatusText(' Fitting Done', 0) # one last lw calc to refresh HTLM window on opening VIFF file self.fitted_lw, _ = util_spectral.voigt_width(self.fit_results[self.nmet*2], self.fit_results[self.nmet*2+1], dataset) block.initial_values[:,x,y,z] = voigt_checkin(self.nmet, self.initial_values, dataset) block.fit_results[ :,x,y,z] = voigt_checkin(self.nmet, self.fit_results, dataset) block.fit_stats[ :,x,y,z] = self.fit_stats.copy() block.fit_baseline[ :,x,y,z] = self.fit_baseline.copy() block.cramer_rao[ :,x,y,z] = self.cramer_rao.copy() block.confidence[ :,x,y,z] = self.confidence.copy() # Initial value algorithms change b0, ph0/ph1. To be well behaved we ask # the dataset object to save these to the 'spectral' block for us. # # NB. In CLI mode, call this chain with 'initial_only' first, then update # the 'spectral' block and only then call this chain with 'full_fit' dataset.set_frequency_shift(dataset.get_frequency_shift(voxel) + self.init_b0, voxel) dataset.set_phase_0(-self.init_ph0 * 180.0 / np.pi, voxel) dataset.set_phase_1(-self.init_ph1, voxel) # Return values specific to calling Tab used to update its self.view (plot_panel_spectrum object). plot_results = { 'fitted_lw' : self.fitted_lw, 'minmaxlw' : self.minmaxlw, 'init_b0' : self.init_b0, 'init_ph0' : self.init_ph0 * 180.0 / np.pi, 'init_ph1' : self.init_ph1, 'data' : self.data.copy(), 'weight_array' : self.weight_array.copy(), 'fit_baseline' : self.fit_baseline.copy(), 'yfit' : self.yfit.copy(), 'yini' : self.yini.copy(), 'init_baseline' : self.init_baseline.copy(), 'mmol_area' : self.mmol_area } return plot_results def create_param_labels(self): """ Create list of unique parameter labels """ plabel = [] unique_abbr = [item.replace('-', '_') for item in self._dataset.prior_list_unique] for item in unique_abbr: plabel.append('area_' + item) for item in unique_abbr: plabel.append('freq_' + item) plabel.append('ta') plabel.append('tb') plabel.append('ph0') plabel.append('ph1') if self._block.set.macromol_model == FitMacromoleculeMethod.SINGLE_BASIS_DATASET: plabel.append('mmol_area') plabel.append('mmol_freq') return plabel def lorgauss_internal_lmfit_dfunc(self, params, *args, **kwargs): """ This is in the format that LMFIT expects to call in the Minimizer class for the 'least_squares' algorithm. This returns the weighted partial derivative functions all_pders * ww as a single numpy (n,m) float array, where where n = # of variable parameters (versus dependent params) and m = # of spectral points. In this case, the real and imaginary vectors have been concatenated into a single array, so m = 2 * npts_spectral_zerofilled. Note. The vespa model (for one example) might have 48 parameters, but only 42 are variable parameters while the other 6 are dependent expressions (e.g. freq_naag = freq_naa + 0.04). The LMFIT algorithm only passes in the 42 'free' params, and I need to expand that into the actual 48 for the self.lorgauss_internal() call to work properly. On return, I need to remove the pder entris for the dependent parameters (and return just a 42 x npts array). params - these are just the free variable values, we need to expand this into a full list/dict of free and evaluated expression variables for the call to self.lorgauss_internal(). This can be a list of current variable values, OR it can be an ordered dict of LMFIT Paramters. """ ww = np.concatenate([self.weight_array, self.weight_array]) # expand list of free variable values into full list of free and evaluated expression values all_params = self.all_params.copy() # copy of full param set for name, val in zip(self.lmfit_fvar_names, params): all_params[name].value = val # update free params to current pass values all_params.update_constraints() # evaluate expression params values yfit, all_pders = self.lorgauss_internal(all_params, pderflg=True) # Re-sort all_pders array if inequality expressions present in Parameters list # # - pder returns in 'Vespa' order (area(s), freq(s), ta, tb, ph0, ph1, mmol_area, mmol_freq) # - if inequality control vars have been added to end of Paramters list (typical in Vespa # model) then we have to re-sort # - usually things like 'freq_naag' have to be relocated to position where 'delta_freq_naa' # was located in the 'params' variable that was input to this method pders = [] indxs = [] all_names = list(all_params.keys()) for key in self.lmfit_fvar_names: if 'delta_' in key: indx = all_names.index(key.replace('delta_', '')) pders.append(-1 * all_pders[indx, :]) # -1 is empirical vs LMFIT, bjs 3/2021 else: indx = all_names.index(key) pders.append(all_pders[indx, :]) indxs.append(indx) pders = np.array(pders) # expand complex to 1D and apply weighting scheme dfunc = [] for pder in pders: dfunc.append(np.concatenate([pder.real, pder.imag]) * ww * (-1)) # -1 is empirically vs LMFIT, bjs 3/2021 dfunc = np.array(dfunc) return dfunc.T # empirical vs LMFIT requirement def lorgauss_internal_lmfit(self, a, report_stats=False): """ This is in the format that LMFIT expects to call in the Minimizer class. This returns the weighted difference (data - yfit) * ww as a single numpy float array, where the real and imaginary vectors have been concatenated into a single array. a - fully expanded list of parameters, free and evaluated expressions """ data = self.data_scale.copy() ww = self.weight_array yfit, _ = self.lorgauss_internal(a, pderflg=False) yfit =
np.concatenate([yfit.real, yfit.imag])
numpy.concatenate
import numpy as np from scipy.optimize import minimize_scalar, minimize from scipy.stats import norm, multivariate_normal def sample_data(): dt = 1/12 maturity = np.array([1,3,5,10,20]) data = np.array([ [0.01995,0.02039,0.02158,0.02415,0.02603], [0.01981,0.02024,0.02116,0.02346,0.02518], [0.01838,0.01865,0.01969,0.02276,0.02466], [0.01703,0.01739,0.01857,0.02177,0.02373], [0.01746,0.01875,0.0211,0.0249,0.0271], [0.0163,0.01773,0.0204,0.02468,0.02679], [0.01597,0.01777,0.02048,0.0245,0.02658], [0.01582,0.01735,0.01946,0.02308,0.02498], [0.01553,0.01651,0.01846,0.02216,0.02388], [0.01546,0.01627,0.01784,0.02088,0.02222], [0.01631,0.01752,0.01945,0.02254,0.02366], [0.01635,0.01719,0.01902,0.02181,0.02278], [0.01587,0.01628,0.01772,0.02025,0.02121], [0.01469,0.01474,0.01586,0.01826,0.01919], [0.01507,0.01498,0.01611,0.01854,0.01918], [0.01493,0.01468,0.01569,0.0181,0.01892], [0.0148,0.01455,0.01551,0.01787,0.01886], [0.01361,0.01334,0.01406,0.01617,0.01712], [0.0126,0.01218,0.01246,0.01401,0.01482], [0.01265,0.01238,0.01264,0.01417,0.01489], [0.01322,0.01312,0.01353,0.01512,0.01545], [0.01369,0.01361,0.01412,0.01596,0.01641], [0.01511,0.01609,0.01739,0.01965,0.0204], [0.01576,0.01692,0.01873,0.02159,0.02186], [0.01496,0.01643,0.01821,0.02111,0.02168], [0.01465,0.01665,0.01861,0.02163,0.02214], [0.01485,0.01709,0.01909,0.02221,0.02302], [0.01467,0.01678,0.01859,0.02182,0.02302], [0.01464,0.0169,0.01906,0.02257,0.02388], [0.01461,0.01673,0.01864,0.02165,0.02266], [0.01464,0.0174,0.01942,0.02252,0.02317], [0.01471,0.0178,0.01987,0.02287,0.02364], [0.01481,0.01785,0.01989,0.02286,0.02318], [0.01654,0.02026,0.02247,0.02455,0.02411], [0.01787,0.0215,0.02355,0.0254,0.02518], [0.01833,0.021,0.02298,0.02472,0.02439], [0.01839,0.0219,0.02444,0.02626,0.02571], [0.01851,0.02277,0.02537,0.0277,0.02738], [0.01875,0.02271,0.02501,0.02708,0.02704], [0.01873,0.02192,0.02436,0.02655,0.02671], [0.01887,0.0225,0.02532,0.02757,0.02754], [0.01851,0.02175,0.02442,0.02656,0.02649], [0.01842,0.02097,0.02338,0.02549,0.02547], [0.0183,0.02019,0.02242,0.02458,0.02429], [0.0179,0.01953,0.02128,0.02315,0.02265], [0.01853,0.0201,0.02164,0.02338,0.02284], [0.01844,0.0194,0.02048,0.02209,0.02159], [0.01776,0.01825,0.01893,0.01992,0.01969], [0.01733,0.01807,0.01879,0.01991,0.02023], [0.0176,0.01802,0.01869,0.01988,0.0205], [0.01769,0.01789,0.01838,0.01953,0.01995], [0.01751,0.01736,0.01771,0.01889,0.01913], [0.01711,0.01679,0.01716,0.01828,0.01865], [0.0156,0.01496,0.0153,0.01618,0.0166], [0.01478,0.01382,0.01421,0.01506,0.0152], [0.01186,0.01164,0.01201,0.01254,0.01251], [0.01228,0.01287,0.01353,0.0142,0.01386], [0.01298,0.01357,0.01442,0.01577,0.01568], [0.01386,0.01492,0.01593,0.0175,0.01709], [0.0135,0.0139,0.01481,0.01653,0.01628] ]) return dt, maturity, data class DynamicNelsonSiegel: """ Example ------- >>> dt, maturity, data = sample_data() >>> dns = DynamicNelsonSiegel(dt, maturity) >>> dns.train(data, disp=True) >>> time, num = 1, 200 >>> scenarios = dns.sample(time, num) >>> mean_reversion, level1, level2, twist1, twist2 = dns.shock(time) """ def __init__(self, dt, maturity): self.maturity = maturity self.dt = dt self.params = None self.x0 = None self.A = None self.B = None self.Q = None self.H = None self.R = None # def set_params(self, params): # lambda_, eps, kappa11, kappa22, kappa33, theta1, theta2, theta3, sigma11, sigma21, sigma22, sigma31, sigma32, sigma33, L0, S0, C0 = params # self.x0 = np.array([L0, S0, C0]) # self.params = params[:-3] # self.A, self.B, self.Q, self.H, self.R = self._system(self.params) def train(self, X, lr=5e-7, tol=1.5e1, disp=False): if type(self.params) == type(None): self.params = self._initial_value(X) while(True): params_grad = self._gradient(self.params, X) self.params += lr*params_grad self.A, self.B, self.Q, self.H, self.R = self._system(self.params) self.x0 = self._filtering(self.params, X)[0] norm = np.sqrt(sum(params_grad**2)) if disp: loglik = self._filtering(self.params, X)[2] print('Norm of Gradient: {:.6f}, Loglikelihood: {:.6f}'.format(norm, loglik)) if norm < tol: break def _system(self, params): lambda_, eps, kappa11, kappa22, kappa33, theta1, theta2, theta3, sigma11, sigma21, sigma22, sigma31, sigma32, sigma33 = params A = np.array([[1-kappa11*self.dt, 0, 0], [0, 1-kappa22*self.dt, 0], [0, 0, 1-kappa33*self.dt]]) B = np.array([kappa11*theta1, kappa22*theta2, kappa33*theta3])*self.dt L = np.array([[sigma11, 0, 0], [sigma21, sigma22, 0], [sigma31, sigma32, sigma33]]) Q = self.dt*[email protected] H = np.c_[np.ones_like(self.maturity), (1-np.exp(-lambda_*self.maturity))/(lambda_*self.maturity), (1-np.exp(-lambda_*self.maturity))/(lambda_*self.maturity)-np.exp(-lambda_*self.maturity)] R = np.identity(len(self.maturity))*eps**2 return A, B, Q, H, R def _initial_value(self, X): def obj_fun(lambda_): design_matrix = np.c_[np.ones_like(self.maturity), (1-np.exp(-lambda_*self.maturity))/(lambda_*self.maturity), (1-np.exp(-lambda_*self.maturity))/(lambda_*self.maturity)-np.exp(-lambda_*self.maturity)] beta = np.linalg.inv(design_matrix.T@design_matrix)@[email protected] rmse = np.sqrt(np.mean((X.T-design_matrix@beta)**2)) return rmse res = minimize_scalar(obj_fun, method='bounded', bounds=(1e-2,1), options={'disp':False}) lambda_ = res.x eps = obj_fun(lambda_) design_matrix = np.c_[np.ones_like(self.maturity), (1-np.exp(-lambda_*self.maturity))/(lambda_*self.maturity), (1-np.exp(-lambda_*self.maturity))/(lambda_*self.maturity)-np.exp(-lambda_*self.maturity)] beta = (
np.linalg.inv(design_matrix.T@design_matrix)
numpy.linalg.inv
# encoding: utf-8 from __future__ import division import sys import os import time import datetime import pandas as pd import numpy as np import math import ast CURRENT_DIR = os.path.abspath(os.path.dirname(__file__)) ADD_PATH = "%s/../"%(CURRENT_DIR) sys.path.append(ADD_PATH) from tools.mail import MyEmail from tools.html import html_with_style DATA_PATH = "%s/../data/basic_matrix" % (CURRENT_DIR) def reviewing_data(df,send_str): if len(df) ==0: send_str += '零单' + '<br>' return send_str send_str += '审核中单量:'+str(len(df[(df['type']=='nan')])) + ' ' + '<br>' send_str += '审核中比例:'+str(100.0*len(df[(df['type']=='nan')])/len(df)) + ' ' + '<br>' + '<br>' return send_str def pass_rate(df,send_str): if len(df) == 0: send_str += '零完成单' + '<br>' return send_str out = [] concat = [] out.append((len(df),len(df[df['suggestion']=='1']),100.0*len(df[df['suggestion']=='1'])/len(df))) if len(df[df['type']=='first']) == 0: out.append((0,0,0)) else: out.append((len(df[df['type']=='first']),len(df[(df['suggestion']=='1')&(df['type']=='first')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='first')])/len(df[df['type']=='first']))) if len(df[df['type']=='regular']) == 0: out.append((0,0,0)) else: out.append((len(df[df['type']=='regular']),len(df[(df['suggestion']=='1')&(df['type']=='regular')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='regular')])/len(df[df['type']=='regular']))) if len(df[df['type']=='again']) == 0: out.append((0,0,0)) else: out.append((len(df[df['type']=='again']),len(df[(df['suggestion']=='1')&(df['type']=='again')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='again')])/len(df[df['type']=='again']))) frame = pd.DataFrame(out, index=['总通过率','新单通过率','续贷通过率','再次通过率'], columns=['订单申请数','通过数','通过率']) concat.append(frame) concat = pd.concat(concat, keys=['机审通过率'], axis=1) send_str += html_with_style(concat) + '<br>' return send_str def baseline(df,send_str): if len(df) == 0: send_str += '无新单' + '<br>' return send_str out = [] concat = [] baseline_data = [] baseline = df['baseline'].values.tolist() for i in baseline: temp = ast.literal_eval(i) if len(temp) != 0: baseline_data.extend(temp) if baseline_data == []: send_str += '无baseline' + '<br>' return send_str for i in set(baseline_data): out.append((i,baseline_data.count(i),100.0*baseline_data.count(i)/len(df))) frame = pd.DataFrame(out, columns=['baseline','个数','拒绝率']) concat.append(frame) concat = pd.concat(concat, keys=['新单baseline拒绝率'], axis=1) send_str += html_with_style(concat) + '<br>' return send_str def score(df,send_str): if len(df) == 0: send_str += '无新单' + '<br>' return send_str out = [] concat = [] temp = df['score'].values.tolist() score = [] for i in temp: try: score.append(int(i)) except: continue score = np.array(score) out.append(('>1000',sum(np.array(score)>1000),100.0*sum(np.array(score)>1000)/len(np.array(score)))) out.append(('901-1000',(sum(np.array(score)>900)-sum(np.array(score)>1000)),100.0*(sum(np.array(score)>900)-sum(np.array(score)>1000))/len(np.array(score)))) out.append(('801-900',(sum(np.array(score)>800)-sum(np.array(score)>900)),100.0*(sum(np.array(score)>800)-sum(np.array(score)>900))/len(np.array(score)))) out.append(('701-800',(sum(np.array(score)>700)-sum(np.array(score)>800)),100.0*(sum(np.array(score)>700)-sum(np.array(score)>800))/len(np.array(score)))) out.append(('601-700',(sum(np.array(score)>600)-sum(np.array(score)>700)),100.0*(sum(np.array(score)>600)-sum(np.array(score)>700))/len(np.array(score)))) out.append(('501-600',(sum(np.array(score)>500)-sum(np.array(score)>600)),100.0*(sum(np.array(score)>500)-sum(
np.array(score)
numpy.array
#!/usr/bin/env python ############################################################################### # Copyright Kitware Inc. and Contributors # Distributed under the Apache License, 2.0 (apache.org/licenses/LICENSE-2.0) # See accompanying Copyright.txt and LICENSE files for details ############################################################################### import re import numpy as np from shapely.geometry import Polygon, LineString from shapely.ops import polygonize, unary_union def list_intersect(a, b): """ return the intersection of two lists """ return list(set(a) & set(b)) def list_union(a, b): """ return the union of two lists """ return list(set(a) | set(b)) def ply_parser(fp): ''' :param fp: PLY file path :return: Surface coordinates and surface index ''' tf = open(fp) lines = tf.readlines() flag = 0 for l in lines: if re.search("\s*element\s*vertex\s*\d*", l) is not None: vertex_num = int(re.findall("\d+\.?\d*", l)[0]) if re.search("\s*element\s*face\s*\d*", l) is not None: face_num = int(re.findall("\d+\.?\d*", l)[0]) if re.search("end_header", l) is not None: begin_num = flag + 1 flag += 1 x = [float(re.findall("-*\d+\.?\d*", l)[0]) for l in lines[begin_num:begin_num + vertex_num]] y = [float(re.findall("-*\d+\.?\d*", l)[1]) for l in lines[begin_num:begin_num + vertex_num]] z = [float(re.findall("-*\d+\.?\d*", l)[2]) for l in lines[begin_num:begin_num + vertex_num]] cor = [[x[i], y[i], z[i]] for i in range(0, len(x))] cor = np.asarray(cor) f = [re.findall("\d+\.?\d*", l) for l in lines[begin_num + vertex_num:begin_num + vertex_num + face_num]] return cor, f def check_relation(plane1, plane2): ''' Checking spatial relationship between planes. :param plane1: :param plane2: :return: spatial relationship tag ''' p1 = Polygon(plane1) p2 = Polygon(plane2) try: if p1.intersects(p2): if p1.contains(p2): flag = 1 else: if p1.area >= p2.area: flag = 2 else: flag = 3 else: flag = 4 return flag except: # noqa: E722 return 4 def get_height_from_dem(cor, dem_parameter): ''' Get Z coordinate from DEM based on given XY coordinate. r1-r4 represent the image boundaries for coordinates outside. :param cor: XY coordinate :param dem: DEM object :return: Z coordinate ''' xOrigin = dem_parameter[0] yOrigin = dem_parameter[1] pixelWidth = dem_parameter[2] pixelHeight = dem_parameter[3] data = dem_parameter[4] r = dem_parameter[5] base_height = [] for i in range(cor.shape[0]): x = cor[i, 0] y = cor[i, 1] xOffset = int((x - xOrigin) / pixelWidth) yOffset = int((y - yOrigin) / pixelHeight) try: value = data[yOffset][xOffset] base_height.append(value) except: # noqa: E722 dist_2 = np.sum((r - np.array([yOffset, xOffset])) ** 2, axis=1) index = np.argmin(dist_2) value = data[r[index, 0]][r[index, 1]] base_height.append(value) return np.array(base_height) def get_height_from_lower_surface(plane1, plane2): ''' :param plane1: Higher surface :param plane2: Lower surface :return: Z coordinate on lower surface ''' [a, b, c, d] = fit_plane(plane1) def z(x): return -(a * x[0] + b * x[1] + d) / c return z([plane2[:, 0], plane2[:, 1]]) def get_difference_plane(plane1, plane2): ''' Get difference and intersection part for two planes :param plane1: :param plane2: :return: ''' try: p1 = Polygon(plane1) p2 = Polygon(plane2) pd = p2.difference(p1) pi = p2.intersection(p1) flag = True p3 = np.array(pd.exterior.coords[:]) p4 = np.array(pi.exterior.coords[:]) return [flag, p3, p4] except: # noqa: E722 flag = False p3 = None p4 = None return [flag, p3, p4] def fit_plane(point): ''' Using normal vector and distance to origin to represent a plane. :param point: Plane coordinates :return: Plane parameters ''' xyz_mean = np.array([point[:, 0].mean(), point[:, 1].mean(), point[:, 2].mean()]) xyz_m = np.array( [point[:, 0] - xyz_mean[0], point[:, 1] - xyz_mean[1], point[:, 2] - xyz_mean[2]]) [U, S, V] = np.linalg.svd(xyz_m) v = np.array([U[0, 2], U[1, 2], U[2, 2]]) a = v[0] b = v[1] c = v[2] d = - np.dot(v, xyz_mean.transpose()) # normal vector of plane return [a, b, c, d] def rotate_plane(plane): ''' Rotate a 3D plane into 2D plane. :param plane: :return: [2D plane coordinates, rotate tag(whether or not), rotation matrix, plane center] ''' temp_cor = plane p_n = fit_plane(temp_cor) p_n = np.array(p_n[0:3]) s_n = np.array([0, 0, 1]) [rx, ry, rz] = np.cross(p_n, s_n) ra = np.arccos(np.dot(p_n, s_n) / (np.linalg.norm(p_n) * np.linalg.norm(s_n))) rotate_flag = False rm = None center = None if abs(ra) > 0.001: norm = np.linalg.norm(np.cross(p_n, s_n)) [rx, ry, rz] = [rx / norm, ry / norm, rz / norm] r1 = [np.cos(ra) + rx ** 2 * (1 - np.cos(ra)), rx * ry * (1 -
np.cos(ra)
numpy.cos
import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt import control as ctrl import seaborn as sns import cmath import warnings sns.set_style('darkgrid') warnings. filterwarnings("ignore") s = ctrl.TransferFunction.s Hnorm = (453622744.6*s**2)/(s**4 + s**3*32786.3706 + s**2*537594936.7 + s*1.318*10**12 + 1.617*10**15) Horig = (s**2*(4.564*10**8))/(s**4+s**3*(3.288*10**4) + s**2*(5.405*10**8)+s*(1.324*10**12)+1.622*10**15) # repuesta escalon #grafico respuesta al escalon sns.set_style('darkgrid') plt.figure(figsize= (8,6)) t1, h1 = ctrl.step_response(Hnorm) t2, h2 = ctrl.step_response(Horig) sns.lineplot(x=1000*t2,y=h2, color='g', linestyle = 'dashdot', label = '$H_{asignada}$', linewidth = 2) sns.lineplot(x=1000*t1,y=h1, color='r', linestyle = 'dotted', label = '$H_{normalizada}$', linewidth = 1.5) plt.xlabel('$t\quad [ms]$') plt.ylabel("$v_{out}(t)\quad [V]$") plt.title("Respuesta al escalon") plt.legend(prop={'size': 15}) #respuesta impulso #grafico respuesta al escalon sns.set_style('darkgrid') plt.figure(figsize= (8,6)) t1, h1 = ctrl.impulse_response(Hnorm) t2, h2 = ctrl.impulse_response(Horig) sns.lineplot(x=1000*t2,y=h2, color='g', linestyle = 'dashdot', label = '$H_{asignada}$', linewidth = 2) sns.lineplot(x=1000*t1,y=h1, color='r', linestyle = 'dotted', label = '$H_{normalizada}$', linewidth = 1.5) plt.xlabel('$t\quad [ms]$') plt.ylabel("$v_{out}(t)\quad [V]$") plt.title("Respuesta al impulso") plt.legend(prop={'size': 15}) #respuesta seno t = np.linspace(0, 7e-3, 1000, endpoint=False) w1 = 1885.169112 u1 =
np.sin(w1 * t)
numpy.sin
""" Created on Dec 16 2021 @author: <NAME> Poisson equation solver for the Hall effect. Includes classes for Hall bars, Hall bars in a nonlocal geometry, and Corbino disks. The Hall bar class has build in methods for longitudinal and Hall 4-probe resistance measurements. Plotting functions assume coordinates are in microns, but the Poisson equation is scale-invariant. """ import time import math import numpy as np import scipy.sparse as sp # import sparse matrix library import matplotlib.pyplot as plt from scipy.sparse.linalg import spsolve # import the file where the differentiation matrix operators are defined from diff_matrices import Diff_mat_1D, Diff_mat_2D class hallbar(): """The class for a Hall bar device Source is the left terminal, drain is the right terminal. Args: Lx : length in x direction Ly : length in y direction Nx : number of points in grid along x Ny : number of points in grid along y """ def __init__(self, Lx, Ly, Nx = 301, Ny = 201): # Initiate with no contacts self.contacts = [] # Define coordinate variables self.Nx = Nx self.Ny = Ny self.Lx = Lx self.Ly = Ly self.x = np.linspace(0,self.Lx,self.Nx) self.y = np.linspace(0,self.Ly,self.Ny) self.dx = self.x[1] - self.x[0] # grid spacing along x direction self.dy = self.y[1] - self.y[0] # grid spacing along y direction self.X,self.Y = np.meshgrid(self.x,self.y) # 2D meshgrid # 1D indexing self.Xu = self.X.ravel() # Unravel 2D meshgrid to 1D array self.Yu = self.Y.ravel() # Search for boundary indices start_time = time.time() self.ind_unravel_L = np.squeeze(np.where(self.Xu==self.x[0])) # Left boundary self.ind_unravel_R = np.squeeze(np.where(self.Xu==self.x[self.Nx-1])) # Right boundary self.ind_unravel_B = np.squeeze(np.where(self.Yu==self.y[0])) # Bottom boundary self.ind_unravel_T = np.squeeze(np.where(self.Yu==self.y[self.Ny-1])) # Top boundary self.ind_boundary_unravel = np.squeeze(np.where((self.Xu==self.x[0]) | (self.Xu==self.x[self.Nx-1]) | (self.Yu==self.y[0]) | (self.Yu==self.y[self.Ny-1]))) # outer boundaries 1D unravel indices self.ind_boundary = np.where((self.X==self.x[0]) | (self.X==self.x[self.Nx-1]) | (self.Y==self.y[0]) | (self.Y==self.y[self.Ny-1])) # outer boundary print("Boundary search time = %1.4s" % (time.time()-start_time)) # Load finite difference matrix operators self.Dx_2d, self.Dy_2d, self.D2x_2d, self.D2y_2d = Diff_mat_2D(self.Nx,self.Ny) # Initiate empty solution matrix self.u = 0 def solve(self, lmbda): # constructs matrix problem and solves Poisson equation # Args: lmbda : sigma_xy / sigma_xx. Must be finite # Returns: self.u : electric potential self.lmbda = lmbda # Construct system matrix without boundary conditions start_time = time.time() I_sp = sp.eye(self.Nx*self.Ny).tocsr() L_sys = self.D2x_2d/self.dx**2 + self.D2y_2d/self.dy**2 # Boundary operators BD = I_sp # Dirichlet boundary operator BNx = self.Dx_2d / (2 * self.dx) # Neumann boundary operator for x component BNy = self.Dy_2d / (2 * self.dy) # Neumann boundary operator for y component # DIRICHLET BOUNDARY CONDITIONS FOR CONTACTS L_sys[self.ind_unravel_L,:] = BD[self.ind_unravel_L,:] # Boundaries at the left layer L_sys[self.ind_unravel_R,:] = BD[self.ind_unravel_R,:] # Boundaries at the right edges # CURRENT THROUGH EDGES L_sys[self.ind_unravel_T,:] = BNy[self.ind_unravel_T,:] - lmbda * BNx[self.ind_unravel_T,:] # Boundaries at the top layer L_sys[self.ind_unravel_B,:] = BNy[self.ind_unravel_B,:] - lmbda * BNx[self.ind_unravel_B,:] # Boundaries at the bottom layer # Source function (right hand side vector) g = np.zeros(self.Nx*self.Ny) # Insert boundary values at the boundary points g[self.ind_unravel_L] = 1 # Dirichlet boundary condition at source g[self.ind_unravel_R] = 0 # Dirichlet boundary condition at drain g[self.ind_unravel_T] = 0 # No current through top g[self.ind_unravel_B] = 0 # No current through bottom print("System matrix and right hand vector computation time = %1.6s" % (time.time()-start_time)) start_time = time.time() self.u = spsolve(L_sys,g).reshape(self.Ny,self.Nx).T print("spsolve() time = %1.6s" % (time.time()-start_time)) def voltage_measurement(self, x1, x2, side='top'): # Args: x1 : point of V_A # x2 : point of V_B # side ('top', 'bottom', or 'hall') : which side of Hall bar to measure # Returns: V_A - V_B if np.all(self.u==0): raise Exception('System has not been solved') if x1 > self.Lx or x1 < 0 or x2 > self.Lx or x2 < 0: raise Exception('Points out of bounds') if side=='top': ya = self.Ny-1 yb = self.Ny-1 elif side=='bottom': ya = 0 yb = 0 elif side=='hall': ya = 0 yb = self.Ny-1 else: raise Exception('Side must be top or bottom') # Find nearest index value to input coordinates xa = np.searchsorted(self.x, x1, side='left') xb = np.searchsorted(self.x, x2, side='left') return self.u[xa, ya] - self.u[xb, yb] def plot_potential(self): if np.all(self.u==0): raise Exception('System has not been solved') fig = plt.figure(figsize = [8,5]) plt.contourf(self.x,self.y,self.u.T,41,cmap = 'inferno') cbar = plt.colorbar(ticks = np.arange(0, 1.01, 0.2), label = r'$\phi / \phi_s$') plt.xlabel(r'x ($\mu$m)'); plt.ylabel(r'y ($\mu$m)'); plt.show() def plot_resistance(self): if np.all(self.u==0): raise Exception('System has not been solved') r_top = (self.u[0:-1, -1] - self.u[1:, -1]) * 25812 * self.Ly / self.dx r_bottom = (self.u[0:-1, 0] - self.u[1:, 0]) * 25812 * self.Ly / self.dx rxx = 25812 / self.lmbda fig = plt.figure(figsize = [8,5]) plt.plot(self.x[0:-1] - self.dx, r_top, 'r', label='top') plt.plot(self.x[0:-1] - self.dx, r_bottom, 'b', label='bottom') plt.hlines(rxx, self.x[0], self.x[-1], linestyle='dashed', color='grey', label=r'$\rho_{xx}$') plt.xlabel(r'x ($\mu$m)'); plt.ylabel(r'$\rho_{xx}$ $(\Omega)$'); plt.legend() plt.ylim([0, 12000]); plt.show() def add_contact(self, contact): if contact.x1 > self.Lx or contact.x2 > self.Lx: raise Exception('Contact out of bounds') self.contacts.append(contact) def measure_contact_voltageonly(self, contact): # Args: contact instance # Returns: measured resistivity # Voltage is averaged across voltage tap # THIS FUNCTION DOES NOT CHECK THE CURRENT! # This method assumes 2terminal resistance is h/e2, which in general is wrong if
np.all(self.u==0)
numpy.all
import math import shutil import faiss import numpy as np import torch import torch.distributed as dist import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed from tqdm import tqdm def compute_features(eval_loader, model, args): print('Computing features...') model.eval() features = torch.zeros(len(eval_loader.dataset), args.low_dim).cuda() for i, (images, index) in enumerate(tqdm(eval_loader)): with torch.no_grad(): images = images.cuda(non_blocking=True) feat = model(images, is_eval=True) features[index] = feat dist.barrier() dist.all_reduce(features, op=dist.ReduceOp.SUM) return features.cpu() def run_kmeans(x, args): """ Args: x: data to be clustered """ print('performing kmeans clustering') results = {'im2cluster': [], 'centroids': [], 'density': []} for seed, num_cluster in enumerate(args.num_cluster): # intialize faiss clustering parameters d = x.shape[1] k = int(num_cluster) clus = faiss.Clustering(d, k) clus.verbose = True clus.niter = 20 clus.nredo = 5 clus.seed = seed clus.max_points_per_centroid = 1000 clus.min_points_per_centroid = 10 res = faiss.StandardGpuResources() cfg = faiss.GpuIndexFlatConfig() cfg.useFloat16 = False cfg.device = args.gpu index = faiss.GpuIndexFlatL2(res, d, cfg) clus.train(x, index) D, I = index.search(x, 1) # for each sample, find cluster distance and assignments im2cluster = [int(n[0]) for n in I] # get cluster centroids centroids = faiss.vector_to_array(clus.centroids).reshape(k, d) # sample-to-centroid distances for each cluster Dcluster = [[] for c in range(k)] for im, i in enumerate(im2cluster): Dcluster[i].append(D[im][0]) # concentration estimation (phi) density =
np.zeros(k)
numpy.zeros
# -*- coding: utf-8 -*- """ Nuclear Magnetic Resonance (NMR) dataset ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ """ # %% # The following example is a :math:`^{29}\mathrm{Si}` NMR time-domain # saturation recovery measurement of a highly siliceous zeolite ZSM-12. # Usually, the spin recovery measurements are acquired over a rectilinear grid # where the measurements along one of the dimensions are non-uniform and span several # orders of magnitude. In this example, we illustrate the use of `monotonic` # dimensions for describing such datasets. # # Let's load the file. import csdmpy as cp filename = "https://osu.box.com/shared/static/27yrgdaubtb4wqj5adbavp2u16c2h7k8.csdf" NMR_2D_data = cp.load(filename) print(NMR_2D_data.description) # %% # The tuples of the dimension and dependent variable instances from the # ``NMR_2D_data`` instance are x = NMR_2D_data.dimensions y = NMR_2D_data.dependent_variables # %% # respectively. There are two dimension instances in this example with respective # dimension data structures as print(x[0].data_structure) # %% # and print(x[1].data_structure) # %% # respectively. The first dimension is uniformly spaced, as indicated by the # `linear` subtype, while the second dimension is non-linear and monotonically # sampled. The coordinates along the respective dimensions are x0 = x[0].coordinates print(x0) # %% x1 = x[1].coordinates print(x1) # %% # Notice, the unit of ``x0`` is in microseconds. It might be convenient to # convert the unit to milliseconds. To do so, use the # :meth:`~csdmpy.Dimension.to` method of the respective # :ref:`dim_api` instance as follows, x[0].to("ms") x0 = x[0].coordinates print(x0) # %% # As before, the components of the dependent variable are accessed using the # :attr:`~csdmpy.DependentVariable.components` attribute. y00 = y[0].components[0] # %% # **Visualize the dataset** # # The :meth:`~csdmpy.plot` method is a very basic supplementary function for # quick visualization of 1D and 2D datasets. You may use this function to plot # the data from this example, however, we use the following script to # visualize the data with projections onto the respective dimensions. # %% import matplotlib.pyplot as plt from matplotlib.image import NonUniformImage import numpy as np # Set the extents of the image. # To set the independent variable coordinates at the center of each image # pixel, subtract and add half the sampling interval from the first # and the last coordinate, respectively, of the linearly sampled # dimension, i.e., x0. si = x[0].increment extent = ( (x0[0] - 0.5 * si).to("ms").value, (x0[-1] + 0.5 * si).to("ms").value, x1[0].value, x1[-1].value, ) # Create a 2x2 subplot grid. The subplot at the lower-left corner is for # the image intensity plot. The subplots at the top-left and bottom-right # are for the data slice at the horizontal and vertical cross-section, # respectively. The subplot at the top-right corner is empty. fig, axi = plt.subplots( 2, 2, gridspec_kw={"width_ratios": [4, 1], "height_ratios": [1, 4]} ) # The image subplot quadrant. # Add an image over a rectilinear grid. Here, only the real part of the # data values is used. ax = axi[1, 0] im = NonUniformImage(ax, interpolation="nearest", extent=extent, cmap="bone_r") im.set_data(x0, x1, y00.real / y00.real.max()) # Add the colorbar and the component label. cbar = fig.colorbar(im) cbar.ax.set_ylabel(y[0].axis_label[0]) # Set up the grid lines. ax.images.append(im) for i in range(x1.size): ax.plot(x0,
np.ones(x0.size)
numpy.ones
# Simple script to plot variables. Will grow with time. import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import argparse parser = argparse.ArgumentParser(description='reading strings for plotting') parser.add_argument('strings', metavar='ID', nargs='+', help='string to plot') args = parser.parse_args() print(args.strings) #class for all variables with initial definitions class params: # Defining static / default values xDim = 512 yDim = 512 # data_dir is assumed to be in the previous directory data_dir = "data" # Defaulting to first element after imaginary time evolution start = 0 end = 1 incr = 1 # item to work with item = "wfc" # Function to plot specific variable def plot_var(xDim, yDim, data_dir, pltval): if data_dir[0] != "/": data_dir = "../" + data_dir data = data_dir + "/" + pltval lines = np.loadtxt(data) val = np.reshape(lines, (xDim,yDim)) ''' val = -np.log(val) * 1E4 * 1.0545718E-34 data_V = "../data/K_0" lines_V = np.loadtxt(data_V) V_val = np.reshape(lines_V, (xDim, yDim)) final_val = V_val - val ''' plt.imshow(val, extent=(1,xDim,1,yDim), interpolation='nearest', cmap = cm.jet) plt.colorbar() fig = plt.gcf() #plt.clim(0,1) plt.show() # function to plot a variable with a range def plot_var_range(xDim, yDim, data_dir, pltval, start, end, incr): if data_dir[0] != "/": data_dir = "../" + data_dir for i in range(start, end, incr): print(i) output = pltval + "%s" % i data = data_dir + "/" + output lines = np.loadtxt(data) val = np.reshape(lines, (xDim,yDim)) plt.imshow(val, extent=(1,xDim,1,yDim), interpolation='nearest', cmap = cm.jet) plt.colorbar() fig = plt.gcf() #plt.show() plt.draw() num_str = "%s" % i output_str = pltval + num_str.rjust(5,'0') + ".png" fig.savefig(output_str) plt.clf() # Function to plot wfc with pltvar as a variable to modify the type of plot def plot_wfc(xDim, yDim, data_dir, pltval, start, end, incr): if data_dir[0] != "/": data_dir = "../" + data_dir for i in range(start,end,incr): print(i) data_real = data_dir + "/wfc_0_const_%s" % i data_im = data_dir + "/wfc_0_consti_%s" % i if pltval == "wfc_ev": data_real = data_dir + "/wfc_ev_%s" % i data_im = data_dir + "/wfc_evi_%s" % i #data_x = data_dir + "x_0" % i #data_y = data_dir + "y_0" % i #print(i) lines_real = np.loadtxt(data_real) lines_im = np.loadtxt(data_im) wfc_real = np.reshape(lines_real, (xDim,yDim)); wfc_im = np.reshape(lines_im, (xDim,yDim)); wfc = abs(wfc_real + 1j * wfc_im) wfc = wfc * wfc #wfc_k = np.fft.fft2(wfc) #wfc_k_plot = np.abs(np.fft.fftshift(wfc_k)) #wfc_k_plot = wfc_k_plot**2 plt.imshow(wfc, extent=(-6.9804018707623236e-04,6.9804018707623236e-04,-6.9804018707623236e-04,6.9804018707623236e-04), interpolation='nearest', cmap = cm.jet) plt.colorbar() #plt.clim(0,1) plt.show() #fig = plt.figure() #fig.savefig('wfc.png') # Function to plot complex vals with pltvar as the variable def plot_complex(xDim, yDim, data_dir, pltval, start, end, incr): if data_dir[0] != "/": data_dir = "../" + data_dir data_real = data_dir + "/" + pltval + "_0" data_im = data_dir + "/" + pltval + "i_0" lines_real = np.loadtxt(data_real) lines_im = np.loadtxt(data_im) wfc_real = np.reshape(lines_real, (xDim,yDim)); wfc_im = np.reshape(lines_im, (xDim,yDim)); wfc = abs(wfc_real + 1j * wfc_im) wfc = wfc * wfc plt.imshow(wfc, extent=(1,xDim,1,yDim), interpolation='nearest', cmap = cm.jet) plt.colorbar() plt.show() #fig = plt.figure() #fig.savefig('wfc.png') # Function to plot wfc with pltvar as a variable to modify the type of plot def plot_wfc_k(xDim, yDim, data_dir, pltval, start, end, incr): if data_dir[0] != "/": data_dir = "../" + data_dir for i in range(start,end,incr): print(i) data_real = data_dir + "/wfc_0_const_%s" % i data_im = data_dir + "/wfc_0_consti_%s" % i if pltval == "wfc_k_ev": data_real = data_dir + "/wfc_ev_%s" % i data_im = data_dir + "/wfc_0_evi_%s" % i lines_real = np.loadtxt(data_real) lines_im = np.loadtxt(data_im) wfc_real =
np.reshape(lines_real, (xDim,yDim))
numpy.reshape
import math import srwlib import numpy as np from srwlib import * def createGsnSrcSRW(sigrW,propLen,pulseE,poltype,phE=10e3,sampFact=15,mx=0,my=0): """ #sigrW: beam size at waist [m] #propLen: propagation length [m] required by SRW to create numerical Gaussian #pulseE: energy per pulse [J] #poltype: polarization type (0=linear horizontal, 1=linear vertical, 2=linear 45 deg, 3=linear 135 deg, 4=circular right, 5=circular left, 6=total) #phE: photon energy [eV] #sampFact: sampling factor to increase mesh density """ constConvRad = 1.23984186e-06/(4*3.1415926536) ##conversion from energy to 1/wavelength rmsAngDiv = constConvRad/(phE*sigrW) ##RMS angular divergence [rad] sigrL=math.sqrt(sigrW**2+(propLen*rmsAngDiv)**2) ##required RMS size to produce requested RMS beam size after propagation by propLen #***********Gaussian Beam Source GsnBm = SRWLGsnBm() #Gaussian Beam structure (just parameters) GsnBm.x = 0 #Transverse Positions of Gaussian Beam Center at Waist [m] GsnBm.y = 0 GsnBm.z = propLen #Longitudinal Position of Waist [m] GsnBm.xp = 0 #Average Angles of Gaussian Beam at Waist [rad] GsnBm.yp = 0 GsnBm.avgPhotEn = phE #Photon Energy [eV] GsnBm.pulseEn = pulseE #Energy per Pulse [J] - to be corrected GsnBm.repRate = 1 #Rep. Rate [Hz] - to be corrected GsnBm.polar = poltype #1- linear horizontal? GsnBm.sigX = sigrW #Horiz. RMS size at Waist [m] GsnBm.sigY = GsnBm.sigX #Vert. RMS size at Waist [m] GsnBm.sigT = 10e-15 #Pulse duration [s] (not used?) GsnBm.mx = mx #Transverse Gauss-Hermite Mode Orders GsnBm.my = my #***********Initial Wavefront wfr = SRWLWfr() #Initial Electric Field Wavefront wfr.allocate(1, 1000, 1000) #Numbers of points vs Photon Energy (1), Horizontal and Vertical Positions (dummy) wfr.mesh.zStart = 0.0 #Longitudinal Position [m] at which initial Electric Field has to be calculated, i.e. the position of the first optical element wfr.mesh.eStart = GsnBm.avgPhotEn #Initial Photon Energy [eV] wfr.mesh.eFin = GsnBm.avgPhotEn #Final Photon Energy [eV] wfr.unitElFld = 1 #Electric field units: 0- arbitrary, 1- sqrt(Phot/s/0.1%bw/mm^2), 2- sqrt(J/eV/mm^2) or sqrt(W/mm^2), depending on representation (freq. or time) distSrc = wfr.mesh.zStart - GsnBm.z #Horizontal and Vertical Position Range for the Initial Wavefront calculation #can be used to simulate the First Aperture (of M1) #firstHorAp = 8.*rmsAngDiv*distSrc #[m] xAp = 8.*sigrL yAp = xAp #[m] wfr.mesh.xStart = -0.5*xAp #Initial Horizontal Position [m] wfr.mesh.xFin = 0.5*xAp #Final Horizontal Position [m] wfr.mesh.yStart = -0.5*yAp #Initial Vertical Position [m] wfr.mesh.yFin = 0.5*yAp #Final Vertical Position [m] sampFactNxNyForProp = sampFact #sampling factor for adjusting nx, ny (effective if > 0) arPrecPar = [sampFactNxNyForProp] srwl.CalcElecFieldGaussian(wfr, GsnBm, arPrecPar) ##Beamline to propagate to waist optDriftW=SRWLOptD(propLen) propagParDrift = [0, 0, 1., 0, 0, 1.1, 1.2, 1.1, 1.2, 0, 0, 0] optBLW = SRWLOptC([optDriftW],[propagParDrift]) #wfrW=deepcopy(wfr) srwl.PropagElecField(wfr, optBLW) return wfr def createDriftLensBL2(Length,f): """ #Create beamline for propagation from end of crystal to end of cavity and through lens (representing a mirror) #First propagate by Length, then through lens with focal length f #Length: drift length [m] #f: focal length """ #f=Lc/4 + df optDrift=SRWLOptD(Length) optLens = SRWLOptL(f, f) propagParLens = [0, 0, 1., 0, 0, 1., 1., 1., 1., 0, 0, 0] propagParDrift = [0, 0, 1., 0, 0, 1., 1., 1., 1., 0, 0, 0] #propagParLens = [0, 0, 1., 0, 0, 1.4, 2., 1.4, 2., 0, 0, 0] #propagParDrift = [0, 0, 1., 0, 0, 1.1, 1.2, 1.1, 1.2, 0, 0, 0] DriftLensBL = SRWLOptC([optDrift,optLens],[propagParDrift,propagParLens]) return DriftLensBL def createDriftLensBL(Lc,df): """ #Create beamline for propagation from center of cell to end and through lens (representing a mirror) #First propagate Lc/2, then through lens with focal length Lc/2 + df #Lc: cavity length [m] #df: focusing error """ f=Lc/4 + df optDrift=SRWLOptD(Lc/2) optLens = SRWLOptL(f, f) propagParLens = [0, 0, 1., 0, 0, 1., 1., 1., 1., 0, 0, 0] propagParDrift = [0, 0, 1., 1, 0, 1., 1., 1., 1., 0, 0, 0] #propagParLens = [0, 0, 1., 0, 0, 1.4, 2., 1.4, 2., 0, 0, 0] #propagParDrift = [0, 0, 1., 0, 0, 1.1, 1.2, 1.1, 1.2, 0, 0, 0] DriftLensBL = SRWLOptC([optDrift,optLens],[propagParDrift,propagParLens]) return DriftLensBL def createDriftBL(Lc): """ #Create drift beamline container that propagates the wavefront through half the cavity #Lc is the length of the cavity """ optDrift=SRWLOptD(Lc/2) propagParDrift = [0, 0, 1., 0, 0, 1., 1., 1., 1., 0, 0, 0] #propagParDrift = [0, 0, 1., 0, 0, 1.1, 1.2, 1.1, 1.2, 0, 0, 0] DriftBL = SRWLOptC([optDrift],[propagParDrift]) return DriftBL def createBL1to1(L,dfof=0): """ ##Define beamline geometric variables. #L: drift length before and after lens #dfof: focal length variation factor (=0 for no variation; can be positive or negative) """ ##Drift lengths between elements beginning with source to 1st crystal and ending with last crystal to start of undulator. ##focal length in meters f=(L/2)*(1+dfof) #Lens optLens = SRWLOptL(f, f) #Drift spaces optDrift1=SRWLOptD(L) optDrift2=SRWLOptD(L) #***********Wavefront Propagation Parameters: #[0]: Auto-Resize (1) or not (0) Before propagation #[1]: Auto-Resize (1) or not (0) After propagation #[2]: Relative Precision for propagation with Auto-Resizing (1. is nominal) #[3] Type of the propagator: #0 - Standard - Fresnel (it uses two FFTs); #1 - Quadratic Term - with semi-analytical treatment of the quadratic (leading) phase terms (it uses two FFTs); #2 - Quadratic Term - Special - special case; #3 - From Waist - good for propagation from "waist" over a large distance (it uses one FFT); #4 - To Waist - good for propagation to a "waist" (e.g. some 2D focus of an optical system) over some distance (it uses one FFT). #[4]: Do any Resizing on Fourier side, using FFT, (1) or not (0) #[5]: Horizontal Range modification factor at Resizing (1. means no modification) #[6]: Horizontal Resolution modification factor at Resizing #[7]: Vertical Range modification factor at Resizing #[8]: Vertical Resolution modification factor at Resizing #[9]: Type of wavefront Shift before Resizing (not yet implemented) #[10]: New Horizontal wavefront Center position after Shift (not yet implemented) #[11]: New Vertical wavefront Center position after Shift (not yet implemented) #propagParLens = [0, 0, 1., 0, 0, 1., 1.5, 1., 1.5, 0, 0, 0] #propagParDrift = [0, 0, 1., 0, 0, 1., 1., 1., 1., 0, 0, 0] propagParLens = [0, 0, 1., 0, 0, 1.4, 2., 1.4, 2., 0, 0, 0] propagParDrift = [0, 0, 1., 0, 0, 1.1, 1.2, 1.1, 1.2, 0, 0, 0] ##Beamline consruction optBL1to1 = SRWLOptC([optDrift1,optLens,optDrift2],[propagParDrift,propagParLens,propagParDrift]) return optBL1to1 def createReflectionOffFocusingMirrorBL(L,f,strDataFolderName,strMirSurfHeightErrInFileName): """ #Create an SRW beamline container that will propagate a length L #then reflect off a flat mirror followed by a lens. Finally, propagate by L again. #L: length of propagation [m] #f: focal length of mirror [m] #strDataFolderName: Folder name where mirror data file is #strMirSurfHeightErrInFileName: File name for mirror slope error file #Assuming waist to waist propagation, we want f~L/2 (Note that this isn't a perfect identity #map in phase space due to the Rayleigh length of the mode) """ #Drift optDrift1=SRWLOptD(L) #Transmission element to simulate mirror slope error #angM1 = np.pi #Incident Angle of M1 [rad] ( 1.8e-3 in Ex. 9 ) #angM1 = 3.14 #Incident Angle of M1 [rad] angM1 = 1.e-2 heightProfData = srwl_uti_read_data_cols(os.path.join(os.getcwd(), strDataFolderName, strMirSurfHeightErrInFileName), _str_sep='\t', _i_col_start=0, _i_col_end=1) opTrErM1 = srwl_opt_setup_surf_height_1d(heightProfData, _dim='y', _ang=angM1, _amp_coef=1) #_amp_coef=1e4 #print(' Saving optical path difference data to file (for viewing/debugging) ... ', end='') #opPathDifErM1 = opTrErM1.get_data(3, 3) #srwl_uti_save_intens_ascii(opPathDifErM1, opTrErM1.mesh, os.path.join(os.getcwd(), strDataFolderName, strMirOptPathDifOutFileName01), 0, # ['', 'Horizontal Position', 'Vertical Position', 'Opt. Path Diff.'], _arUnits=['', 'm', 'm', 'm']) #Lens optLens = SRWLOptL(f, f) #Propagation parameters propagParLens = [0, 0, 1., 0, 0, 1.4, 2., 1.4, 2., 0, 0, 0] propagParDrift = [0, 0, 1., 0, 0, 1.1, 1.2, 1.1, 1.2, 0, 0, 0] #propagParDrift = [0, 0, 1., 0, 0, 1., 1., 1., 1., 0, 0, 0] #propagParLens = [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] prPar0 = [0, 0, 1., 1, 0, 1., 1., 1., 1., 0, 0, 0] #Construct beamline optBL = SRWLOptC([optDrift1,opTrErM1,optLens,optDrift1],[propagParDrift,prPar0,propagParLens,propagParDrift]) #optBL = SRWLOptC([optDrift1,optLens,optDrift1],[propagParDrift,propagParLens,propagParDrift]) return optBL def createABCDbeamline(A,B,C,D): """ #Use decomposition of ABCD matrix into kick-drift-kick Pei-Huang 2017 (https://arxiv.org/abs/1709.06222) #Construct corresponding SRW beamline container object #A,B,C,D are 2x2 matrix components. """ f1= B/(1-A) L = B f2 = B/(1-D) optLens1 = SRWLOptL(f1, f1) optDrift=SRWLOptD(L) optLens2 = SRWLOptL(f2, f2) propagParLens1 = [0, 0, 1., 0, 0, 1, 1, 1, 1, 0, 0, 0] propagParDrift = [0, 0, 1., 0, 0, 1, 1, 1, 1, 0, 0, 0] propagParLens2 = [0, 0, 1., 0, 0, 1, 1, 1, 1, 0, 0, 0] optBL = SRWLOptC([optLens1,optDrift,optLens2],[propagParLens1,propagParDrift,propagParLens2]) return optBL def createCrystal(n0,n2,L_cryst): """ #Create a set of optical elements representing a crystal. #Treat as an optical duct #ABCD matrix found here: https://www.rp-photonics.com/abcd_matrix.html #n(r) = n0 - 0.5 n2 r^2 #n0: Index of refraction along the optical axis #n2: radial variation of index of refraction """ if n2==0: optBL=createDriftBL(2*L_cryst) #Note that this drift function divides length by 2 #print("L_cryst/n0=",L_cryst/n0) else: gamma = np.sqrt(n2/n0) A = np.cos(gamma*L_cryst) B = (1/(gamma))*np.sin(gamma*L_cryst) C = -gamma*np.sin(gamma*L_cryst) D = np.cos(gamma*L_cryst) optBL=createABCDbeamline(A,B,C,D) return optBL def rmsWavefrontIntensity(wfr): """ #Compute rms values from a wavefront object """ IntensityArray2D = array('f', [0]*wfr.mesh.nx*wfr.mesh.ny) #"flat" array to take 2D intensity data srwlib.srwl.CalcIntFromElecField(IntensityArray2D, wfr, 6, 0, 3, wfr.mesh.eStart, 0, 0) #extracts intensity ##Reshaping electric field data from flat to 2D array IntensityArray2D = np.array(IntensityArray2D).reshape((wfr.mesh.nx, wfr.mesh.ny), order='C') xvals=
np.linspace(wfr.mesh.xStart,wfr.mesh.xFin,wfr.mesh.nx)
numpy.linspace
import pretty_midi as pm import numpy as np from collections import Counter class OneHotEncoder: def __init__(self, depth, axis=-1): self.depth = depth self.axis = axis def _onehot(self, data): oh = np.zeros((self.depth), dtype=np.uint8) if data >= 0 and data < self.depth: data = int(data) oh[data] = 1 return oh def transform(self, data_list): one_hot_encoded = [self._onehot(data) for data in data_list] one_hot_encoded = np.stack(one_hot_encoded, axis=0) return one_hot_encoded def build_dataset(song_path, include_velocity=True, augment=range(1)): mid = pm.PrettyMIDI(song_path) # get time signature numerators = [t.numerator for t in mid.time_signature_changes] denominators = [t.denominator for t in mid.time_signature_changes] count = Counter(numerators) numerator = sorted(numerators, key=lambda x: count[x], reverse=True)[0] count = Counter(denominators) denominator = sorted(denominators, key=lambda x: count[x], reverse=True)[0] # extract all notes from non-drum instruments midi_note = [] for ins in mid.instruments: if not ins.is_drum: for n in ins.notes: midi_note.append((n.pitch, n.start, n.end, n.velocity)) midi_note = sorted(midi_note, key=lambda x: (x[1], x[0])) # create features [pitch, velocity, dt, duration, start_time] prev_start = 0 song = [] for m in midi_note: t = mid.time_to_tick(m[1]) - prev_start pitch = m[0] song.append((np.clip(pitch, 21, 108), m[3], t/mid.resolution, mid.time_to_tick(m[2]-m[1])/mid.resolution, m[1])) prev_start = mid.time_to_tick(m[1]) # create list of non-overlapping segments of 4 bars time_per_bar = mid.tick_to_time(numerator * mid.resolution * (4/denominator)) total_bars = int((mid.get_end_time()//time_per_bar)) bars = [] tmp = [] for i in range(0, total_bars, 4): for m in song: if m[-1] >= (i*time_per_bar) and m[-1] < ((i*time_per_bar) + (time_per_bar*4)): tmp.append(m[:-1]) bars.append(tmp) tmp = [] # keep only segments that have more than 5 note events bars = [np.stack(b) for b in bars if len(b)>= 5] p_ohe = OneHotEncoder(89) t_ohe = OneHotEncoder(33) X = [] for bb in bars: b = np.split(bb, 4, -1) b = [np.squeeze(i) for i in b] for i in augment: P, V, D, R = [], [], [], [] p = p_ohe.transform(b[0]-21+i) d = np.minimum(np.round((b[2]/4) * 32), 32) d = t_ohe.transform(d) r = np.minimum(np.round((b[3]/4) * 32), 32) r = t_ohe.transform(r) v = (b[1] / 63.5) - 1 v = v.astype(np.float32) P.append(p) V.append(v) D.append(d) R.append(r) P = np.concatenate(P, axis=0) V = np.expand_dims(np.concatenate(V, axis=0), -1) D = np.concatenate(D, axis=0) R = np.concatenate(R, axis=0) if include_velocity: tmp = np.concatenate([P, D, R, V], -1) END_TOKEN = np.zeros(dtype=np.float32, shape=(1, tmp.shape[-1])) END_TOKEN[0, 88] = 1.0 tmp =
np.concatenate([tmp, END_TOKEN], 0)
numpy.concatenate
from os.path import join import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import zscore from sklearn.decomposition import PCA import pandas as pd from itertools import combinations # Load helper function(s) for interacting with CTF dataset from ctf_dataset.load import create_wrapped_dataset base_dir = '/mnt/bucket/labs/hasson/snastase/social-ctf' data_dir = join(base_dir, 'data') # Create wrapped CTF dataset wrap_f = create_wrapped_dataset(data_dir, output_dataset_name="virtual.hdf5") n_lstms = 512 n_repeats = 8 n_players = 4 map_id = 0 # Get matchups with all same agents (e.g. AA vs AA) agent_ids = wrap_f['map/matchup/repeat/player/agent_id'][0, :, :, :, 0] matchup_ids = np.all(agent_ids[:, 0, :] == agent_ids[:, 0, 0][:, np.newaxis], axis=1) n_matchups = np.sum(matchup_ids) # 0, 34, 49, 54 # Extract LSTMs for one map and matchup lstms_matched = np.tanh(wrap_f['map/matchup/repeat/player/time/lstm'][ map_id, matchup_ids, ...].astype(np.float32)) print("Loaded LSTMs for within-population matchups") # Loop through matchups, repeats, and players to compute PCA k = n_lstms lstm_pca = {} for m in np.arange(n_matchups): lstm_pca[m] = {} for r in np.arange(n_repeats): lstm_pca[m][r] = {} for p in np.arange(n_players): lstm_pca[m][r][p] = {} pca = PCA(n_components=k) transformed = pca.fit_transform( #zscore(lstms_matched[m, r, p], axis=0)) #np.tanh(lstms_matched[m, r, p])) zscore(lstms_matched[m, r, p], axis=0)) lstm_pca[m][r][p]['transformed'] = transformed lstm_pca[m][r][p]['pca'] = pca print(f"Finished running PCA for matchup {m}, " f"repeat {r}, player {p}") np.save('results/pca_lstm_tanh-z_results.npy', lstm_pca) # Convert PCA outputs to long dictionary for plotting lstm_pca_long = {'population': [], 'repeat': [], 'player': [], 'variance explained': [], 'dimension': []} pops = {0: 'A', 1: 'B', 2: 'C', 3: 'D'} for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_players): for k, v in enumerate(lstm_pca[m][r][p][ 'pca'].explained_variance_ratio_): lstm_pca_long['population'].append(pops[m]) lstm_pca_long['repeat'].append(r) lstm_pca_long['player'].append(p) lstm_pca_long['variance explained'].append(v) lstm_pca_long['dimension'].append(k + 1) lstm_pca_long = pd.DataFrame(lstm_pca_long) max_k = 30 lstm_pca_trunc = lstm_pca_long[lstm_pca_long['dimension'] <= max_k] sns.set(font_scale=1.2, style='white') sns.relplot(data=lstm_pca_trunc, x='dimension', y='variance explained', hue='repeat', col='population', col_wrap=2, kind='line') # Compute number of components required for percentage variance percents = [.5, .75, .9, .95, .99] percents_vaf = np.zeros((n_matchups, n_repeats, n_players, len(percents))) for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_players): for i, perc in enumerate(percents): k = np.sum(np.cumsum( lstm_pca[m][r][p][ 'pca'].explained_variance_ratio_) <= perc) + 1 percents_vaf[m, r, p, i] = k for m in np.arange(n_matchups): for i, perc in enumerate(percents): median = int(np.median(percents_vaf[m, ..., i])) min = int(np.amin(percents_vaf[m, ..., i])) max = int(np.amax(percents_vaf[m, ..., i])) print(f"Population {pops[m]}: {median} dimensions " f"for {perc} variance (range: {min}-{max})") print('\n') # Stack pairs of players and compute joint PCA pairs = list(combinations(np.arange(n_players), 2)) n_pairs = len(pairs) k = n_lstms * 2 coop_ids, comp_ids = [0, 5], [1, 2, 3, 4] lstm_pair_pca = {} for m in np.arange(n_matchups): lstm_pair_pca[m] = {} for r in np.arange(n_repeats): lstm_pair_pca[m][r] = {} for p, pair in enumerate(pairs): lstm_pair_pca[m][r][p] = {} stack_lstm = np.hstack((lstms_matched[m, r, pair[0]], lstms_matched[m, r, pair[1]])) pca = PCA(n_components=k) transformed = pca.fit_transform( zscore(stack_lstm, axis=0)) lstm_pair_pca[m][r][p]['transformed'] = transformed lstm_pair_pca[m][r][p]['pca'] = pca print(f"Finished running PCA for matchup {m}, " f"repeat {r}, pair {pair}") np.save('results/pair-pca_lstm_tanh-z_results.npy', lstm_pair_pca) # Convert PCA outputs to long dictionary for plotting lstm_pair_pca_long = {'population': [], 'repeat': [], 'pair': [], 'variance explained': [], 'dimension': [], 'type': []} pops = {0: 'A', 1: 'B', 2: 'C', 3: 'D'} pair_type = {c:('cooperative' if c in coop_ids else 'competitive') for c in np.arange(n_pairs)} for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_pairs): for k, v in enumerate(lstm_pair_pca[m][r][p][ 'pca'].explained_variance_ratio_): lstm_pair_pca_long['population'].append(pops[m]) lstm_pair_pca_long['repeat'].append(r) lstm_pair_pca_long['pair'].append(p) lstm_pair_pca_long['variance explained'].append(v) lstm_pair_pca_long['dimension'].append(k + 1) lstm_pair_pca_long['type'].append(pair_type[p]) lstm_pair_pca_long = pd.DataFrame(lstm_pair_pca_long) max_k = 10 lstm_pair_pca_trunc = lstm_pair_pca_long[ lstm_pair_pca_long['dimension'] <= max_k] sns.set(font_scale=1.2, style='white') sns.relplot(data=lstm_pair_pca_trunc, x='dimension', y='variance explained', hue='type', col='population', col_wrap=2, linewidth=3, kind='line') # Compute number of components required for percentage variance percents = [.5, .75, .9, .95, .99] percents_vaf = np.zeros((n_matchups, n_repeats, n_pairs, len(percents))) for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_pairs): for i, perc in enumerate(percents): k = np.sum(np.cumsum( lstm_pair_pca[m][r][p][ 'pca'].explained_variance_ratio_) <= perc) + 1 percents_vaf[m, r, p, i] = k for m in np.arange(n_matchups): for type, c in zip(['cooperative', 'competitive'], [coop_ids, comp_ids]): for i, perc in enumerate(percents): median = int(np.median(percents_vaf[m, :, c, i])) min = int(np.amin(percents_vaf[m, :, c, i])) max = int(
np.amax(percents_vaf[m, :, c, i])
numpy.amax
import collections import numpy as np import torch import torch.nn as nn import torch.optim as optim from realcomp.task import config from torch.distributions import Normal # from matplotlib import pyplot as plt class ModelActor(nn.Module): def __init__(self, size_obs=13, num_actions=9, # Our robot : 9 angles size_layers=[32, 32], log_std=0., lr=3e-4): super(ModelActor, self).__init__() self.layers = nn.ModuleList() num_hidden = len(size_layers) self.layers.append(nn.Linear(size_obs, size_layers[0])) self.layers.append(nn.ReLU()) for i in range(num_hidden - 1): self.layers.append(nn.Linear(size_layers[i], size_layers[i + 1])) self.layers.append(nn.ReLU()) self.layers.append(nn.Linear(size_layers[num_hidden - 1], num_actions)) self.log_std = nn.Parameter(torch.ones(1, num_actions) * log_std) self.num_actions = num_actions def forward(self, x): for layer in self.layers: x = layer(x) mu = x # Might need to rescale it ? tanh ? std = self.log_std.exp() if mu.dim() > 1: std = std.expand_as(mu) #mu = torch.tanh(mu) * np.pi / 2 dist = Normal(mu, std, validate_args=True) return dist class ModelCritic(nn.Module): def __init__(self, size_obs=13, size_layers=[32, 32], lr=3e-3): super(ModelCritic, self).__init__() self.layers = nn.ModuleList() num_hidden = len(size_layers) self.layers.append(nn.Linear(size_obs, size_layers[0])) self.layers.append(nn.ReLU()) for i in range(num_hidden - 1): self.layers.append(nn.Linear(size_layers[i], size_layers[i + 1])) self.layers.append(nn.ReLU()) self.layers.append(nn.Linear(size_layers[num_hidden - 1], 1)) def forward(self, x): for layer in self.layers: x = layer(x) return x class CNN(nn.Module): def __init__(self, shape_pic=(96, 144, 3), size_output=256): super(CNN, self).__init__() self.size_output = size_output self.layer1 = nn.Sequential( nn.Conv2d(shape_pic[2], 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(16, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) size_h = self.size_after_conv(shape_pic[0], 5, 1, 2) #Layer 1 Conv layer size_h = self.size_after_conv(size_h, 2, 2, 0) #MaxPool of Layer 1 size_h = self.size_after_conv(size_h, 5, 1, 2) size_h = self.size_after_conv(size_h, 2, 2, 0) size_h = self.size_after_conv(size_h, 5, 1, 2) size_h = self.size_after_conv(size_h, 2, 2, 0) size_w = self.size_after_conv(shape_pic[1], 5, 1, 2) size_w = self.size_after_conv(size_w, 2, 2, 0) size_w = self.size_after_conv(size_w, 5, 1, 2) size_w = self.size_after_conv(size_w, 2, 2, 0) size_w = self.size_after_conv(size_w, 5, 1, 2) size_w = self.size_after_conv(size_w, 2, 2, 0) self.fc = nn.Sequential( nn.Linear(size_h * size_w * 16, 256), nn.ReLU()) self.output = nn.Sequential( nn.Linear(256, size_output)) #nn.Linear(256, size_output), #nn.ReLU()) # self.optimizer = optim.Adam(self.parameters()) def size_after_conv(self, init_size, kernel_size, stride, padding, dilation=1): return int((init_size + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1) def forward(self, x): # img = x[1].numpy() # img = np.transpose(img, (1, 2, 0)) # plt.imshow(img) # plt.show() x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = torch.flatten(x, 1) x = self.fc(x) x = self.output(x) return x class PPOAgent: def __init__(self, action_space, size_obs=13 * config.observations_to_stack, shape_pic=(96, 144, 3), size_goal=0, size_layers=[32, 32], size_cnn_output=256, actor_lr=1e-4, critic_lr=1e-3, value_loss_coeff=0.1, gamma=0.99, gae_lambda=0.95, epochs=10, horizon=64, mini_batch_size=16, frames_per_action=30, init_wait=300, clip=0.2, entropy_coeff=0.1, log_std=-0.6, use_parallel=False, num_parallel=0, logs=False, logs_dir=""): """ A controller for any continuous task, using PPO algorithm. Parameters : action_space : gym.action_space. Action space of a given environment. size_obs : Int. Number of elements per observation. shape_pic : Int triplet. Shape of the (potentially downscaled) input image. The last element is the number of channels (3 if RGB, 1 if grayscale). If no picture is given as input, shape_pic should be None. size_goal : Int. Number of elements per goal. size_layers : List of int. List of the number of neurons of each hidden layer of the neural network. The first layer (input) and the last layer (output) must not be part of this list. size_cnn_output : Int. Size of the output of the CNN, which ends with a fully connected linear layer. actor_lr : Float. Learning rate for the actor network. critic_lr : Float. Learning rate for the critic network. value_loss_coeff : Float. Coefficient of the Critic loss compared to the actor loss when backpropagating through the common part of the network. The final loss function is : Loss = Policy_loss + value_loss_coeff * Value_loss gamma : Float. Discount rate when computing the discounted returns with GAE. gae_lambda : Float. 'Lambda' of the GAE algorithm, used to regulate the bias-variance trade-off. epochs : Int. Number of epochs in each update. horizon : Int. Number of actions taken before each update of the networks. mini_batch_size : Int. Size of each batch when updating the networks. frames_per_action : Int. Number of times each action must be repeated. Useful when using environments where each action has to be taken for more than one frame, or when computing an action with the policy network is really expensive. init_wait : Int. Number of frames spent without taking any action. Useful when using environments in which the first frames are irrelevant, or to wait for everything in the environment to stabilize. clip : Float. Clipping parameter for the PPO algorithm. entropy_coeff : Float. Entropy coefficient for the PPO algorithm, used to compute the actor's loss. log_std : Float. Log of the initial standard deviation used to help the exploration of the actor network. use_parallel : Bool. If you are using vectorized environments, set this to True, in order to reshape all the Tensors accordingly. Otherwise, set it to False. num_parallel : Int. Number of parallel workers. Used to reshape correctly the actions. If use_parallel is False, this argument has no effect. logs : Bool. If True, a tensorboardX writer will save relevant informations about the training. logs_dir : Str. Comment appended to the name of the directory of the tensorboardX output. """ self.num_actions = action_space.shape[0] self.size_obs = size_obs self.shape_pic = shape_pic if shape_pic is None: size_cnn_output = 0 self.size_goal = size_goal self.first_step = True self.device = config.device self.use_parallel = use_parallel self.num_parallel = num_parallel # Hyperparameters self.actor_lr = actor_lr self.critic_lr = critic_lr self.value_loss_coeff = value_loss_coeff self.gamma = gamma self.gae_lambda = gae_lambda self.epochs = epochs self.horizon = horizon self.mini_batch_size = mini_batch_size self.clip = clip self.entropy_coeff = entropy_coeff self.frames_per_action = frames_per_action # Models if shape_pic is not None: self.cnn = CNN(shape_pic=shape_pic, size_output=size_cnn_output).to(config.device) self.actor = ModelActor(self.size_obs + size_cnn_output, self.num_actions, size_layers=size_layers, lr=actor_lr, log_std=log_std).to(config.device) self.critic = ModelCritic(self.size_obs + size_cnn_output, size_layers=size_layers, lr=critic_lr).to(config.device) self.observations_history = collections.deque(maxlen=config.observations_to_stack) # Pseudo-memory to be able to update the policy self.frame = 0 # Used to know where we are compared to the horizon self.state = None self.states = [] self.actions = [] self.log_probas = [] self.rewards = [] self.values = [] self.not_done = [] self.action_to_repeat = None self.num_repeated_action = self.frames_per_action # 'trick' so everything works even at the first step self.init_wait = init_wait self.already_waited = 0 # Meta-variable to get some information about the training self.number_updates = 0 self.logs = logs if logs: # self.writer = UtilsTensorboard.writer(logs_dir) self.writer = config.tensorboard params = list(self.actor.parameters()) + list(self.critic.parameters()) if self.shape_pic: params += list(self.cnn.parameters()) self.optimizer = optim.Adam(params=params, lr=config.lr) ###################################################################### # Utility functions def convert_observation_to_input(self, observation): # retina = torch.FloatTensor(observation["retina"]) # retina = torch.reshape(retina, (-1, 3, 240, 320)) # goal = torch.FloatTensor(observation["goal"]) # goal = torch.reshape(goal, (-1, 3, 240, 320)) # x = torch.cat((retina, goal)) # x = x.reshape(240 * 320 * 2 * 3) ################### # To work with joints if self.use_parallel: list_obs = [] for obs in observation: joints = torch.FloatTensor(obs["joint_positions"]) sensors = torch.FloatTensor(obs["touch_sensors"]) curr_obs = torch.cat((joints, sensors)).unsqueeze(0) list_obs.append(curr_obs) x = torch.cat(list_obs) else: joints = torch.FloatTensor(observation["joint_positions"]) sensors = torch.FloatTensor(observation["touch_sensors"]) x = torch.cat((joints, sensors)) return x def compute_reward(self, observation): # "Observation" is supposed to contain the goal in itself retina = torch.FloatTensor(observation["retina"]) goal = torch.FloatTensor(observation["goal"]) ###TODO def save_models(self, path): torch.save({ "model_actor": self.actor.state_dict(), "model_critic": self.critic.state_dict(), "optim_actor": self.actor.optimizer.state_dict(), "optim_critic": self.critic.optimizer.state_dict() }, path) def load_models(self, path): checkpoint = torch.load(path) self.actor.load_state_dict(checkpoint["model_actor"]) self.critic.load_state_dict(checkpoint["model_critic"]) self.actor.optimizer.load_state_dict(checkpoint["optim_actor"]) self.critic.optimizer.load_state_dict(checkpoint["optim_critic"]) # self.actor.eval() # self.critic.eval() def soft_reset(self): self.frame = 0 # Used to know where we are compared to the horizon self.state = None self.states = [] self.actions = [] self.log_probas = [] self.rewards = [] self.values = [] self.not_done = [] self.action_to_repeat = None self.num_repeated_action = self.frames_per_action # 'trick' so everything works even at the first step self.already_waited = 0 self.first_step = True ###################################################################### # Functions used by the PPO algorithm in itself def compute_returns_gae(self, next_value): values = self.values + [next_value] # Can't simply append, as it would modify external values advantage = 0 returns = [] for step in reversed(range(len(self.rewards))): delta = self.rewards[step] + self.gamma * values[step + 1] * self.not_done[step] - values[step] advantage = delta + self.gamma * self.gae_lambda * self.not_done[step] * advantage returns.insert(0, advantage + values[step]) return returns def ppo_iterator(self, mini_batch_size, states, actions, log_probas, returns, advantages): n_states = states.size(0) possible_indices =
np.arange(n_states)
numpy.arange
import glob import tensorflow as tf import numpy as np import re import mnist_base as m_b import input_data import util_algebra as lalg import util_logging as ul import matplotlib.pyplot as plt import matplotlib.image as mpimg class PlotNNImages(object): def __init__(self, source_folder, target_folder): self.BATCH_SIZE = 256 self.cur_batch=0 # Read the data self.mnist_source = input_data.read_data_sets(source_folder, one_hot=True) self.mnist_target = input_data.read_data_sets(target_folder, one_hot=True) def plot_all_nn_images(self): existing_files = glob.glob('nn_list_a*.npy') for file_n in existing_files: after_name = file_n before_name = re.sub('list_a','list_b', after_name) batch_id = int(re.sub('.npy','',re.sub('nn_list_a','',after_name))) after_nns = np.load(after_name) before_nns = np.load(before_name) final_im = np.zeros((5,28*3)) diff_im = np.zeros((5,28*3)) for j in range(self.BATCH_SIZE): target_id = batch_id*self.BATCH_SIZE+j source_id_after = after_nns[j] source_id_before = before_nns[j] row_im = np.concatenate( (self.mnist_target.train.images[target_id].reshape((28, 28)), self.mnist_source.train.images[source_id_before].reshape((28, 28)), self.mnist_source.train.images[source_id_after].reshape((28, 28))) , axis=1 ) final_im = np.concatenate((final_im, row_im), axis=0) if not source_id_after == source_id_before: diff_im =
np.concatenate((diff_im, row_im), axis=0)
numpy.concatenate
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest import numpy as np from mo.front.common.partial_infer.elemental import copy_shape_infer from mo.front.common.partial_infer.eltwise import eltwise_infer from mo.middle.passes.fusing.resnet_optimization import stride_optimization from mo.ops.convolution import Convolution from mo.ops.pooling import Pooling from mo.utils.ir_engine.compare_graphs import compare_graphs from mo.utils.unittest.graph import build_graph max_elt_lambda = lambda node: eltwise_infer(node, lambda a, b: np.maximum(a, b)) nodes_attributes = { # Placeholders 'placeholder_1': {'shape': None, 'type': 'Parameter', 'kind': 'op', 'op': 'Parameter'}, 'placeholder_1_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, # Concat1 operation 'eltwise_1': {'type': 'Maximum', 'kind': 'op', 'op': 'Maximum', 'infer': max_elt_lambda}, 'eltwise_1_data': {'name': 'eltwise_1_data', 'value': None, 'shape': None, 'kind': 'data'}, # Convolutions 'conv_1': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_1_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_1_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_1_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_2': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_2_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_2_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_2_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_3': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_3_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_3_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_3_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_4': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_4_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_4_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_4_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_5': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_5_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_5_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_5_data': {'value': None, 'shape': None, 'kind': 'data'}, # ReLU 'relu_1': {'shape': None, 'type': 'ReLU', 'kind': 'op', 'op': 'ReLU', 'infer': copy_shape_infer}, 'relu_1_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, 'relu_2': {'shape': None, 'type': 'ReLU', 'kind': 'op', 'op': 'ReLU', 'infer': copy_shape_infer}, 'relu_2_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, 'relu_3': {'shape': None, 'type': 'ReLU', 'kind': 'op', 'op': 'ReLU', 'infer': copy_shape_infer}, 'relu_3_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, # Pooling 'pool_1': {'type': 'Pooling', 'kind': 'op', 'op': 'Pooling', 'spatial_dims': np.array([2, 3]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'infer': Pooling.infer}, 'pool_1_data': {'value': None, 'shape': None, 'kind': 'data'}, } # In description of unit tests below will be used next syntax: Operation(NxM,XxY), where NxM - kernel size, XxY - stride class ResnetOptimizationTests(unittest.TestCase): # Pl->Conv(1x1,1x1)->Conv(1x1,2x2) => Pl->Conv(1x1,2x2)->Conv(1x1,1x1) def test_resnet_optimization_1(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 1, 1]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 112, 112])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 1, 1]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 112, 112])}, }, nodes_with_edges_only=True) graph.graph['layout'] = 'NCHW' graph_ref.graph['layout'] = 'NCHW' stride_optimization(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'conv_2_data', check_op_attrs=True) self.assertTrue(flag, resp) # Pl->Conv(3x3,2x2)->Conv(1x1,2x2) => Pl->Conv(3x3,4x4)->Conv(1x1,1x1) def test_resnet_optimization_2(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 4, 4]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 56, 56])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 1, 1]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph.graph['layout'] = 'NCHW' graph_ref.graph['layout'] = 'NCHW' stride_optimization(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'conv_2_data', check_op_attrs=True) self.assertTrue(flag, resp) # Pl->Conv(3x3,2x2)->Conv(3x3,2x2) => Same def test_resnet_optimization_3(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph.graph['layout'] = 'NCHW' graph_ref.graph['layout'] = 'NCHW' stride_optimization(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'conv_2_data', check_op_attrs=True) self.assertTrue(flag, resp) # Pl--->Conv(3x3,2x2)->ReLU--->Eltwise-->Conv(1x1,2x2) => Pl--->Conv(3x3,4x4)->ReLU--->Eltwise-->Conv(1x1,1x1) # `-->Conv(3x3,2x2)->ReLU---` `-->Conv(3x3,4x4)->ReLU---` def test_resnet_optimization_4(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'relu_1'), ('relu_1', 'relu_1_data'), ('placeholder_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ('conv_2_data', 'relu_2'), ('relu_2', 'relu_2_data'), ('relu_1_data', 'eltwise_1'), ('relu_2_data', 'eltwise_1'), ('eltwise_1', 'eltwise_1_data'), ('eltwise_1_data', 'conv_3'), ('conv_3_w', 'conv_3'), ('conv_3_b', 'conv_3'), ('conv_3', 'conv_3_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'relu_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 112, 112])}, 'relu_2_data': {'shape': np.array([1, 3, 112, 112])}, 'eltwise_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_3_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_3': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_3_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'relu_1'), ('relu_1', 'relu_1_data'), ('placeholder_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ('conv_2_data', 'relu_2'), ('relu_2', 'relu_2_data'), ('relu_1_data', 'eltwise_1'), ('relu_2_data', 'eltwise_1'), ('eltwise_1', 'eltwise_1_data'), ('eltwise_1_data', 'conv_3'), ('conv_3_w', 'conv_3'), ('conv_3_b', 'conv_3'), ('conv_3', 'conv_3_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 4, 4]), 'output': np.array([3])}, 'conv_1_data': {'shape': np.array([1, 3, 56, 56])}, 'relu_1_data': {'shape': np.array([1, 3, 56, 56])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial':
np.array([3, 3])
numpy.array
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np BATCH_SIZE = 8 LR = 0.01 EPSILON = 0.95 GAMMA = 0.99 TARGET_REPLACE_ITER = 100 # After how much time you refresh target network # MEMORY_CAPACITY = 20 # The size of experience replay buffer # N_ACTIONS = 2 # # N_STATES = len(X_train) # N_STATES = 4 class Net(nn.Module): def __init__(self, N_STATES, N_ACTIONS): super(Net, self).__init__() self.fc1 = nn.Linear(N_STATES, 100) self.fc1.weight.data.normal_(0, 0.1) # initialization, set seed to ensure the same result self.out = nn.Linear(100, N_ACTIONS) self.out.weight.data.normal_(0, 0.1) # initialization def forward(self, x): x = self.fc1(x) x = F.relu(x) action_value = self.out(x) return action_value class DQN2(object): def __init__(self, N_STATES, N_ACTIONS,MEMORY_CAPACITY): self.eval_net, self.target_net = Net(N_STATES, N_ACTIONS), Net(N_STATES, N_ACTIONS) self.learn_step_counter = 0 self.memory_counter = 0 self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2)) self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR) self.loss_func = nn.MSELoss() self.N_ACTIONS = N_ACTIONS self.N_STATES = N_STATES self.MEMORY_CAPACITY = MEMORY_CAPACITY def choose_action(self, x): x = torch.unsqueeze(torch.FloatTensor(x), 0) if
np.random.uniform()
numpy.random.uniform
COLOR_PALETE_PAR = (10, 150, 400) MAXDISTANCE = 40 CHARSIZE_PLOT = .5 FONTSIZE = 18 MAX_LEN = 16 import matplotlib.pyplot as plt import math import numpy as np import seaborn as sns CMAP = sns.diverging_palette(COLOR_PALETE_PAR[0], COLOR_PALETE_PAR[1], n=COLOR_PALETE_PAR[2]) def choseChangeThis(c): return
np.argmax(c)
numpy.argmax
""" .. module:: optimization_problems :synopsis: Optimization test problems for multi-modal and box-constrained global optimization .. moduleauthor:: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> :Module: optimization_problems :Author: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> """ import numpy as np import abc from abc import abstractmethod class OptimizationProblem(object): """Base class for optimization problems.""" __metaclass__ = abc.ABCMeta def __init__(self): self.dim = None self.lb = None self.ub = None self.int_var = None self.cont_var = None def __check_input__(self, x): if len(x) != self.dim: raise ValueError('Dimension mismatch') @abstractmethod def eval(self, record): # pragma: no cover pass # ========================= 2-dimensional ======================= class GoldsteinPrice(OptimizationProblem): def __init__(self): self.info = "2-dimensional Goldstein-Price function" self.min = 3.0 self.minimum = np.array([0, -1]) self.dim = 2 self.lb = -2.0 * np.ones(2) self.ub = 2.0 * np.ones(2) self.int_var = np.array([]) self.cont_var = np.arange(0, 2) def eval(self, x): """Evaluate the GoldStein Price function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) x1 = x[0] x2 = x[1] fact1a = (x1 + x2 + 1) ** 2 fact1b = 19 - 14 * x1 + 3 * x1 ** 2 - \ 14 * x2 + 6 * x1 * x2 + 3 * x2 ** 2 fact1 = 1 + fact1a * fact1b fact2a = (2 * x1 - 3 * x2) ** 2 fact2b = 18 - 32 * x1 + 12 * x1 ** 2 + 48 * x2 - \ 36 * x1 * x2 + 27 * x2 ** 2 fact2 = 30 + fact2a * fact2b return fact1 * fact2 class SixHumpCamel(OptimizationProblem): """Six-hump camel function Details: https://www.sfu.ca/~ssurjano/camel6.html Global optimum: :math:`f(0.0898,-0.7126)=-1.0316` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.min = -1.0316 self.minimum = np.array([0.0898, -0.7126]) self.dim = 2 self.lb = -3.0 * np.ones(2) self.ub = 3.0 * np.ones(2) self.int_var = np.array([]) self.cont_var = np.arange(0, 2) self.info = "2-dimensional Six-hump function \nGlobal optimum: " +\ "f(0.0898, -0.7126) = -1.0316" def eval(self, x): """Evaluate the Six Hump Camel function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) return (4.0 - 2.1*x[0]**2 + (x[0]**4)/3.0)*x[0]**2 + \ x[0]*x[1] + (-4 + 4*x[1]**2) * x[1]**2 class Branin(OptimizationProblem): """Branin function Details: http://www.sfu.ca/~ssurjano/branin.html Global optimum: :math:`f(-\\pi,12.275)=0.397887` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.min = 0.397887 self.minimum = np.array([-np.pi, 12.275]) self.dim = 2 self.lb = -3.0 * np.ones(2) self.ub = 3.0 * np.ones(2) self.int_var = np.array([]) self.cont_var = np.arange(0, 2) self.info = "2-dimensional Branin function \nGlobal optimum: " +\ "f(-pi, 12.275) = 0.397887" def eval(self, x): """Evaluate the Branin function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) x1 = x[0] x2 = x[1] t = 1 / (8 * np.pi) s = 10 r = 6 c = 5 / np.pi b = 5.1 / (4 * np.pi ** 2) a = 1 term1 = a * (x2 - b * x1 ** 2 + c * x1 - r) ** 2 term2 = s * (1 - t) * np.cos(x1) return term1 + term2 + s # ========================= 3-dimensional ======================= class Hartman3(OptimizationProblem): """Hartman 3 function Details: http://www.sfu.ca/~ssurjano/hart3.html Global optimum: :math:`f(0.114614,0.555649,0.852547)=-3.86278` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.dim = 3 self.lb = np.zeros(3) self.ub = np.ones(3) self.int_var = np.array([]) self.cont_var = np.arange(0, 3) self.min = -3.86278 self.minimum = np.array([0.114614, 0.555649, 0.852547]) self.info = "3-dimensional Hartman function \nGlobal optimum: " +\ "f(0.114614,0.555649,0.852547) = -3.86278" def eval(self, x): """Evaluate the Hartman 3 function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) alpha = np.array([1, 1.2, 3, 3.2]) A = np.array([[3.0, 10.0, 30.0], [0.1, 10.0, 35.0], [3.0, 10.0, 30.0], [0.1, 10.0, 35.0]]) P = np.array([[0.3689, 0.1170, 0.2673], [0.4699, 0.4387, 0.747], [0.1091, 0.8732, 0.5547], [0.0381, 0.5743, 0.8828]]) outer = 0 for ii in range(4): inner = 0 for jj in range(3): xj = x[jj] Aij = A[ii, jj] Pij = P[ii, jj] inner += Aij * ((xj-Pij) ** 2) outer += alpha[ii] * np.exp(-inner) return -outer # =========================6-dimensional ======================= class Hartman6(OptimizationProblem): """Hartman 6 function Details: http://www.sfu.ca/~ssurjano/hart6.html Global optimum: :math:`f(0.201,0.150,0.476,0.275,0.311,0.657)=-3.322` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.min = -3.32237 self.minimum = np.array([0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573]) self.dim = 6 self.lb = np.zeros(6) self.ub = np.ones(6) self.int_var = np.array([]) self.cont_var = np.arange(0, 6) self.info = "6-dimensional Hartman function \nGlobal optimum: " + \ "f(0.2016,0.15001,0.47687,0.27533,0.31165,0.657) = -3.3223" def eval(self, x): """Evaluate the Hartman 6 function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) alpha = np.array([1.0, 1.2, 3.0, 3.2]) A = np.array([[10.0, 3.0, 17.0, 3.5, 1.7, 8.0], [0.05, 10.0, 17.0, 0.1, 8.0, 14.0], [3.0, 3.5, 1.7, 10.0, 17.0, 8.0], [17.0, 8.0, 0.05, 10.0, 0.1, 14.0]]) P = 1e-4 * np.array([[1312.0, 1696.0, 5569.0, 124.0, 8283.0, 5886.0], [2329.0, 4135.0, 8307.0, 3736.0, 1004.0, 9991.0], [2348.0, 1451.0, 3522.0, 2883.0, 3047.0, 6650.0], [4047.0, 8828.0, 8732.0, 5743.0, 1091.0, 381.0]]) outer = 0 for ii in range(4): inner = 0 for jj in range(6): xj = x[jj] Aij = A[ii, jj] Pij = P[ii, jj] inner += Aij * ((xj - Pij) ** 2) outer += alpha[ii] * np.exp(-inner) return -outer # ========================= n-dimensional ======================= class Rastrigin(OptimizationProblem): """Rastrigin function .. math:: f(x_1,\\ldots,x_n)=10n-\\sum_{i=1}^n (x_i^2 - 10 \\cos(2 \\pi x_i)) subject to .. math:: -5.12 \\leq x_i \\leq 5.12 Global optimum: :math:`f(0,0,...,0)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0 self.minimum = np.zeros(dim) self.lb = -5.12 * np.ones(dim) self.ub = 5.12 * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Rastrigin function \n" + \ "Global optimum: f(0,0,...,0) = 0" def eval(self, x): """Evaluate the Rastrigin function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) return 10 * self.dim + sum(x**2 - 10 * np.cos(2 * np.pi * x)) class Ackley(OptimizationProblem): """Ackley function .. math:: f(x_1,\\ldots,x_n) = -20\\exp\\left( -0.2 \\sqrt{\\frac{1}{n} \ \\sum_{j=1}^n x_j^2} \\right) -\\exp \\left( \\frac{1}{n} \ \\sum{j=1}^n \\cos(2 \\pi x_j) \\right) + 20 - e subject to .. math:: -15 \\leq x_i \\leq 20 Global optimum: :math:`f(0,0,...,0)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0 self.minimum = np.zeros(dim) self.lb = -15 * np.ones(dim) self.ub = 20 * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Ackley function \n" +\ "Global optimum: f(0,0,...,0) = 0" def eval(self, x): """Evaluate the Ackley function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) d = float(self.dim) return -20.0 * np.exp(-0.2*np.sqrt(np.sum(x**2) / d)) - \ np.exp(np.sum(np.cos(2.0*np.pi*x)) / d) + 20 + np.exp(1) class Michalewicz(OptimizationProblem): """Michalewicz function .. math:: f(x_1,\\ldots,x_n) = -\\sum_{i=1}^n \\sin(x_i) \\sin^{20} \\left( \\frac{ix_i^2}{\\pi} \\right) subject to .. math:: 0 \\leq x_i \\leq \\pi :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.lb = np.zeros(dim) self.ub = np.pi * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Michalewicz function \n" + \ "Global optimum: ??" def eval(self, x): """Evaluate the Michalewicz function at x. :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) return -np.sum(np.sin(x) * ( np.sin(((1 + np.arange(self.dim)) * x**2)/np.pi)) ** 20) class Levy(OptimizationProblem): """Levy function Details: https://www.sfu.ca/~ssurjano/levy.html Global optimum: :math:`f(1,1,...,1)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0.0 self.minimum = np.ones(dim) self.lb = -5 * np.ones(dim) self.ub = 5 * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Levy function \n" +\ "Global optimum: f(1,1,...,1) = 0" def eval(self, x): """Evaluate the Levy function at x. :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) w = 1 + (x - 1.0) / 4.0 d = self.dim return np.sin(np.pi*w[0]) ** 2 + \ np.sum((w[1:d-1]-1)**2 * (1 + 10*np.sin(np.pi*w[1:d-1]+1)**2)) + \ (w[d-1] - 1)**2 * (1 + np.sin(2*np.pi*w[d-1])**2) class Griewank(OptimizationProblem): """Griewank function .. math:: f(x_1,\\ldots,x_n) = 1 + \\frac{1}{4000} \\sum_{j=1}^n x_j^2 - \ \\prod_{j=1}^n \\cos \\left( \\frac{x_i}{\\sqrt{i}} \\right) subject to .. math:: -512 \\leq x_i \\leq 512 Global optimum: :math:`f(0,0,...,0)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0 self.minimum = np.zeros(dim) self.lb = -512 * np.ones(dim) self.ub = 512 * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Griewank function \n" +\ "Global optimum: f(0,0,...,0) = 0" def eval(self, x): """Evaluate the Griewank function at x. :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) total = 1 for i, y in enumerate(x): total *= np.cos(y / np.sqrt(i + 1)) return 1.0 / 4000.0 * sum([y**2 for y in x]) - total + 1 class Rosenbrock(OptimizationProblem): """Rosenbrock function .. math:: f(x_1,\\ldots,x_n) = \\sum_{j=1}^{n-1} \ \\left( 100(x_j^2-x_{j+1})^2 + (1-x_j)^2 \\right) subject to .. math:: -2.048 \\leq x_i \\leq 2.048 Global optimum: :math:`f(1,1,...,1)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0 self.minimum = np.ones(dim) self.lb = -2.048 * np.ones(dim) self.ub = 2.048 * np.ones(dim) self.int_var = np.array([]) self.cont_var =
np.arange(0, dim)
numpy.arange
# -*- coding: utf-8 -*- from __future__ import print_function import math import numpy import numpy.linalg import MDAnalysis from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt class KabschAlign(object): def __init__(self): """ Constructor """ def kabsch(self, toXYZ, fromXYZ): """ Input is a 3 x N array of coordinates. """ # This file has been edited to produce identical results as the original matlab implementation. len1 = numpy.shape(fromXYZ); len2 = numpy.shape(toXYZ); if not(len1[1] == len2[1]): print('KABSCH: unequal array sizes'); return; m1 = numpy.mean(fromXYZ, 1).reshape((len1[0],1)); # print numpy.shape(m1); m2 = numpy.mean(toXYZ, 1).reshape((len2[0],1)); tmp1 = numpy.tile(m1,len1[1]); tmp2 = numpy.tile(m1,len2[1]); assert numpy.allclose(tmp1, tmp2); assert tmp1.shape == fromXYZ.shape; assert tmp2.shape == toXYZ.shape; t1 = fromXYZ - tmp1; t2 = toXYZ - tmp2; [u, s, wh] = numpy.linalg.svd(numpy.dot(t2,t1.T)); w = wh.T; R = numpy.dot(numpy.dot(u,[[1, 0, 0],[0, 1, 0],[0, 0, numpy.linalg.det(numpy.dot(u,w.T))]]), w.T); T = m2 - numpy.dot(R,m1); tmp3 = numpy.reshape(numpy.tile(T,(len2[1])),(len1[0],len1[1])); err = toXYZ - numpy.dot(R,fromXYZ) - tmp3; #eRMSD = math.sqrt(sum(sum((numpy.dot(err,err.T))))/len2[1]); eRMSD = math.sqrt(sum(sum(err**2))/len2[1]); return (R, T, eRMSD, err.T); def wKabschDriver(self, toXYZ, fromXYZ, sMed=1.5, maxIter=20): scaleMed = sMed; weights = numpy.ones( numpy.shape(toXYZ)[1] ); #print 'weights: ', numpy.shape(weights); flagOut = 0; Rc = []; Tc = []; sigc = []; for itr in range(0, maxIter): [R, T, eRMSD, err] = self.wKabsch(toXYZ, fromXYZ, weights); Rc.append(R); Tc.append(T); tmp1 = numpy.reshape(numpy.tile(T, (numpy.shape(toXYZ[1]))), (numpy.shape(toXYZ)[0],numpy.shape(toXYZ)[1])); deltaR = numpy.array( numpy.dot(R, fromXYZ) + tmp1 - toXYZ ); #print 'deltaR shape: ', numpy.shape(deltaR); #print deltaR; #numpy.save('deltaR.npy', deltaR); nDeltaR = numpy.sqrt(numpy.sum(deltaR**2, axis = 0)); #print 'nDeltaR shape:', numpy.shape(nDeltaR); sig = scaleMed*numpy.median(nDeltaR); sigc.append(sig); weights = (sig**2)/((sig**2 + nDeltaR**2)**2); #print numpy.shape(weights); return ( R, T, eRMSD, err); def wKabsch(self, toXYZ, fromXYZ, weights): len1 = numpy.shape(fromXYZ); #print 'len1: ', len1; len2 =
numpy.shape(toXYZ)
numpy.shape
#! /usr/bin/env python from test.fail import As_fail, Y_fail from scipy.stats import ortho_group import unittest import numpy as np import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from functools import reduce from src.operations import invert from src.kronprod import KronProd class TestKronInv(unittest.TestCase): # add global stuff here def setUp(self): return # add global stuff here def setUp(self): return #Make some tests if the matrix IS invertible def testOnes_inv(self): A1 = [ np.array([[1., 1.], [1.,1.]]), np.array([[1.,1.], [1.,1.]])] x1 = np.array([1.,1.,1.,1.]) y1 = np.array([4,4,4,4]) kp = KronProd(invert(A1)) x = kp.dot(y1) np.testing.assert_almost_equal(x, x1, decimal=7, verbose=True) # this dimensionality pushes the limit of what full rank calc can do def testRandom_inv(self): n = 5 # number of factors p = 5 # dimension of factor r_As = [ortho_group.rvs(dim=p) for i in range(n)] As = [m/m.sum(axis=1)[:,None] for m in r_As] # normalize each row y = np.random.rand(p**n) big_A = reduce(np.kron, As) big_x = np.linalg.solve(big_A, y) print("full calc: ",big_x) kp = KronProd(invert(As)) x = kp.dot(y) print("efficient calc: ", x) np.testing.assert_almost_equal(x, big_x, decimal=7, verbose=True) def testBig_inv(self): n = 2 # number of factors p = 100 # dimension of factor r_As = [ortho_group.rvs(dim=p) for i in range(n)] As = [m/m.sum(axis=1)[:,None] for m in r_As] # normalize each row y = np.random.rand(p**n) kp = KronProd(invert(As)) x = kp.dot(y) print("efficient calc: ", x) #Make some tests if the matrix ISNT invertible def testInts_pInv(self): A1 = [ np.array([[1.0, 0.0], [0.0,0.0]]), np.array([[1.,1.], [0.,0.]])] y1 = np.array([1.,2.,3.,4.]) A1_inv = [] for a in A1: A1_inv.append(np.linalg.pinv(a)) big_A = reduce(np.kron, A1_inv) big_x = big_A.dot(y1) print("FOO") print("full calc: ",big_x) kp = KronProd(invert(A1)) x = kp.dot(y1) print("efficient calc: ", x) print("BAR") self.assertSequenceEqual(list(x), list(big_x)) # this dimensionality pushes the limit of what full rank calc can do def testRandom_pInv(self): n = 5 # number of factors p = 5 # dimension of factor r_As = [ortho_group.rvs(dim=p) for i in range(n)] #Make first and second row the same so that way it becomes a non-invertible matrix for A in r_As: A[1,:] = A[0,:] As = [m/m.sum(axis=1)[:,None] for m in r_As] # normalize each row y =
np.random.rand(p**n)
numpy.random.rand
from direct.showbase.ShowBase import ShowBase from panda3d.core import WindowProperties, Texture, TextureStage, DirectionalLight, VBase4, VBase2, AmbientLight, LineSegs, GeomPoints, NodePath, CompassEffect, MouseButton, SamplerState from direct.gui.OnscreenText import OnscreenText from PIL import Image import threading import numpy as np from matplotlib import cm import shapefile class EarthPlot(ShowBase): def __init__(self,show_poles = False, highres_earth = False, d_light = True, d_light_HPR = (90,0,23.5), d_light_strength = (1,1,1,1), *args,**kwargs): ShowBase.__init__(self,*args,**kwargs) self.canvas_width = 900 self.canvas_height = 900 self.sphere_size = 100 self.time_elapsed = 0 #seconds self.earth_radius = 6378.137 #km self.plot_radius = self.earth_radius+5 self.time_step = 10 #seconds self.groundstations = [] #list for current groundstation objects self.drag_id = '' self.x_mouse_position = 0 self.y_mouse_position = 0 self.props = WindowProperties() # self.props.setOrigin(100, 100) self.props.setSize(int(self.canvas_width), int(self.canvas_height)) # self.openDefaultWindow(props=self.props) self.setBackgroundColor(0,0,0) #load sphere model self.earth_nodepath= loader.loadModel('./resources/sphere.egg') self.earth_nodepath.reparentTo(self.render) self.earth_nodepath.setScale(self.earth_radius/self.sphere_size) #enable shaders (gloss, ..) self.earth_nodepath.setShaderAuto() #initiate textures self.RGB_tex = Texture() self.gloss_tex = Texture() self.emis_tex = Texture() #loading images if highres_earth: img = Image.open("./resources/8081_earthmap10k.jpg") gloss_img = Image.open("./resources/8081_earthspec10k.jpg") else: img = Image.open("./resources/8081_earthmap4k.jpg") gloss_img = Image.open("./resources/8081_earthspec4k.jpg") img = np.flipud(np.array(img)) gloss_img = np.flipud(np.array(gloss_img)) *0.7 self.resolution = img.shape #setting RGB texture self.RGB_tex.setup2dTexture(self.resolution[1],self.resolution[0], Texture.T_unsigned_byte, Texture.F_rgb8) self.RGB_tex.setMagfilter(SamplerState.FT_linear) RGB_buff = img.astype(np.uint8).tobytes() self.RGB_tex.setRamImageAs(RGB_buff, 'RGB') self.earth_nodepath.setTexture(self.RGB_tex) #setting gloss/specularity texture gloss_ts = TextureStage('glossmap') gloss_ts.setMode(TextureStage.MGloss) self.gloss_tex.setup2dTexture(self.resolution[1],self.resolution[0], Texture.T_unsigned_byte, Texture.F_alpha) gloss_buff = gloss_img.astype(np.uint8).tobytes() self.gloss_tex.setRamImage(gloss_buff) self.earth_nodepath.setTexture(gloss_ts,self.gloss_tex) #lights #directional light dlight = DirectionalLight('dlight') dlight.setColor(VBase4(d_light_strength[0], d_light_strength[1], d_light_strength[2], d_light_strength[3])) self.dlnp = render.attachNewNode(dlight) self.dlnp.setHpr(d_light_HPR[0], d_light_HPR[1], d_light_HPR[2]) if d_light: render.setLight(self.dlnp) #amblight earth amblight_earth = AmbientLight('amblight_earth') if d_light: amblight_earth.setColor(VBase4(.5, .5, .5, 1)) else: amblight_earth.setColor(VBase4(.9, .9, .9, 1)) self.alnp = self.earth_nodepath.attachNewNode(amblight_earth) self.earth_nodepath.setLight(self.alnp) #amblight lines self.amblight_lines = AmbientLight('amblight_lines') self.amblight_lines.setColor(VBase4(1, 1, 1, 1)) if show_poles: earth_poles = LineSegs() earth_poles.setThickness(4) earth_poles.setColor(1,0,0) earth_poles.moveTo(0,0,0) earth_poles.drawTo(0,0,-6600) earth_poles.moveTo(0,0,0) earth_poles.setColor(0,0,1) earth_poles.drawTo(0,0,6600) node = earth_poles.create() line_np = NodePath(node) line_np.reparentTo(self.render) alnp = line_np.attachNewNode(self.amblight_lines) line_np.setLight(alnp) #camera settings self.disableMouse() self.parentnode = render.attachNewNode('camparent') self.parentnode.reparentTo(self.earth_nodepath) # inherit transforms self.parentnode.setEffect(CompassEffect.make(render)) # NOT inherit rotation self.camera.reparentTo(self.parentnode) self.camera.setY(-self.earth_radius/15) # camera distance from model self.camera.lookAt(self.parentnode) self.heading = 0 self.pitch = 0 self.taskMgr.add(self.OrbitCameraTask, 'thirdPersonCameraTask') self.accept('wheel_up', lambda : self.set_camera_fov(self.camLens.getFov(),+0.5)) self.accept('wheel_down', lambda : self.set_camera_fov(self.camLens.getFov(),-0.5)) def set_camera_fov(self,fov, value): new_fov = fov[0] + value H = new_fov*np.pi/180 x_size = self.win.getXSize() y_size = self.win.getYSize() inv_aspect = y_size/x_size V = 2*np.arctan(np.tan(H/2)* inv_aspect)*180/np.pi fov_lr = new_fov fov_ud = V if (fov_lr > 1) and (fov_ud > 1): if (fov_lr <= 120) and (fov_ud <= 120): self.camLens.setFov(VBase2(fov_lr, fov_ud)) return def show(self): self.run() def plot_lines(self,xs,ys,zs, color = [0,0,0], linewidth = 2, shading = 'None'): ''' takes 3 coordinates in a list and plots them as continuing line ''' line = [(x,y,z) for x,y,z in zip(xs,ys,zs)] lines = LineSegs() lines.setColor(color[0], color[1], color[2]) for point in line: lines.drawTo(point[0],point[1],point[2]) lines.setThickness(linewidth) node = lines.create() line_np = NodePath(node) line_np.reparentTo(self.render) if shading == 'None': alnp = line_np.attachNewNode(self.amblight_lines) line_np.setLight(alnp) elif shading == 'ambient': line_np.setLight(self.alnp) elif shading == 'directional': line_np.setLight(self.dlnp) else: raise ValueError('shading must be either "None", "ambient" or "directional".') return line_np def plot_markers(self,xs,ys,zs, color = [0,0,0], markersize = 1): ''' takes list of coordinates and plots a spherical marker on each one ''' np_list = [] points = [(x,y,z) for x,y,z in zip(xs,ys,zs)] for point in points: np = loader.loadModel('./resources/sphere.egg') np.reparentTo(self.render) alnp = np.attachNewNode(self.amblight_lines) np.setLight(alnp) np.setColor(color[0], color[1], color[2]) np.setPos(point[0], point[1], point[2]) np.setScale(markersize) np_list.append(np) return np_list def calc_orbit(self,a,e,Omega,i,omega, resolution = 100): '''calculates orbit 3x1 radius vectors from kepler elements''' nu = np.linspace(0,2*np.pi,resolution) if e <1: p = a * (1-(e**2)) r = p/(1+e*np.cos(nu)) r = np.array([np.multiply(r,np.cos(nu)) , np.multiply(r,np.sin(nu)), np.zeros(len(nu))]) r = np.matmul(self.rot_z(omega),r) r = np.matmul(self.rot_x(i),r) r = np.matmul(self.rot_z(Omega),r) elif e >=1: raise ValueError('eccentricity must be smaller than 1, hyperbolic and parabolic orbits are not supported') return r @staticmethod def rot_x(phi): '''returns rotational matrix around x, phi in rad''' return np.array([[1,0,0],[0,np.cos(phi),-np.sin(phi)],[0,np.sin(phi),np.cos(phi)]]) @staticmethod def rot_z(rho): '''returns rotational matrix around z, rho in rad''' return np.array([[np.cos(rho),-np.sin(rho),0],[np.sin(rho),np.cos(rho),0],[0,0,1]]) def plot_orbit(self,a,e,Omega,i,omega, resolution = 100, **args): r = self.calc_orbit(a,e,Omega,i,omega, resolution) xs = r[0] ys = r[1] zs = r[2] np = self.plot_lines(xs,ys,zs, **args) return np def plot_surface_markers(self, lons, lats, **args): xs, ys, zs = [], [], [] np_list = [] for lon,lat in zip(lons,lats): x, y, z = self.calculate_cartesian(lon,lat) xs.append(x), ys.append(y), zs.append(z) np_list = self.plot_markers(xs,ys,zs, **args) return np_list def plot_surface_lines(self, lons, lats, **args): xs, ys, zs = [], [], [] np_list = [] for lon,lat in zip(lons,lats): x, y, z = self.calculate_cartesian(lon,lat) xs.append(x), ys.append(y), zs.append(z) np_list = self.plot_lines(xs,ys,zs, **args) return np_list def calculate_cartesian(self, lon, lat): lon, lat = np.pi*lon/180, np.pi*lat/180 x = self.plot_radius * np.cos(lat) * np.cos(lon) y = self.plot_radius * np.cos(lat) * np.sin(lon) z = self.plot_radius * np.sin(lat) return x,y,z def plot_greatcircle(self, lon1,lat1, lon2,lat2, resolution = 500, **args): lons,lats = self.greatcircle_fun(lon1,lat1, lon2,lat2, resolution = resolution) nodepath = self.plot_surface_lines(lons,lats, **args) return nodepath def greatcircle_fun(self, lon1,lat1, lon2,lat2, resolution = 500): lons = np.linspace(0,2*np.pi,resolution) lat1, lon1 = np.pi*lat1/180, np.pi*lon1/180 lat2, lon2 = np.pi*lat2/180, np.pi*lon2/180 lats = np.arctan( np.tan(lat1)*( np.sin(lons - lon2) / np.sin(lon1 - lon2) ) - np.tan(lat2)* ( np.sin(lons-lon1) / np.sin(lon1 - lon2)) ) lons = 180*lons/np.pi lats = 180*lats/np.pi return lons, lats def plot_geodetic(self, lon1,lat1, lon2,lat2, resolution = 50,**args): lat1, lon1 = np.pi*lat1/180, np.pi*lon1/180 lat2, lon2 = np.pi*lat2/180, np.pi*lon2/180 lamb_12 = lon2 - lat1 alpha_1 = np.arctan2 ( (np.cos(lat2)*
np.sin(lamb_12)
numpy.sin
from __future__ import division import numpy as NP import scipy.constants as FCNST from scipy import interpolate, ndimage import datetime as DT import progressbar as PGB import os, ast import copy import astropy from astropy.io import fits, ascii from astropy.coordinates import Galactic, SkyCoord, ICRS, FK5, AltAz, EarthLocation from astropy import units from astropy.time import Time import warnings import h5py from distutils.version import LooseVersion import psutil from astroutils import geometry as GEOM from astroutils import gridding_modules as GRD from astroutils import constants as CNST from astroutils import DSP_modules as DSP from astroutils import catalog as SM from astroutils import lookup_operations as LKP from astroutils import nonmathops as NMO import prisim import baseline_delay_horizon as DLY import primary_beams as PB try: import pyuvdata from pyuvdata import UVData from pyuvdata import utils as UVUtils except ImportError: uvdata_module_found = False else: uvdata_module_found = True try: from mwapy.pb import primary_beam as MWAPB except ImportError: mwa_tools_found = False else: mwa_tools_found = True prisim_path = prisim.__path__[0]+'/' ################################################################################ def _astropy_columns(cols, tabtype='BinTableHDU'): """ ---------------------------------------------------------------------------- !!! FOR INTERNAL USE ONLY !!! This internal routine checks for Astropy version and produces the FITS columns based on the version Inputs: cols [list of Astropy FITS columns] These are a list of Astropy FITS columns tabtype [string] specifies table type - 'BinTableHDU' (default) for binary tables and 'TableHDU' for ASCII tables Outputs: columns [Astropy FITS column data] ---------------------------------------------------------------------------- """ try: cols except NameError: raise NameError('Input cols not specified') if tabtype not in ['BinTableHDU', 'TableHDU']: raise ValueError('tabtype specified is invalid.') use_ascii = False if tabtype == 'TableHDU': use_ascii = True if astropy.__version__ == '0.4': columns = fits.ColDefs(cols, tbtype=tabtype) elif LooseVersion(astropy.__version__)>=LooseVersion('0.4.2'): columns = fits.ColDefs(cols, ascii=use_ascii) return columns ################################################################################ def thermalNoiseRMS(A_eff, df, dt, Tsys, nbl=1, nchan=1, ntimes=1, flux_unit='Jy', eff_Q=1.0): """ ------------------------------------------------------------------------- Generates thermal noise RMS from instrument parameters for a complex- valued visibility measurement by an interferometer. [Based on equations 9-12 through 9-15 or section 5 in chapter 9 on Sensitivity in SIRA II wherein the equations are for real and imaginary parts separately.] A_eff [scalar or numpy array] Effective area of the interferometer. Has to be in units of m^2. If only a scalar value provided, it will be assumed to be identical for all the interferometers. Otherwise, it must be of shape broadcastable to (nbl,nchan,ntimes). So accpeted shapes can be (1,1,1), (1,1,ntimes), (1,nchan,1), (nbl,1,1), (1,nchan,ntimes), (nbl,nchan,1), (nbl,1,ntimes), or (nbl,nchan,ntimes). Must be specified. No defaults. df [scalar] Frequency resolution (in Hz). Must be specified. No defaults. dt [scalar] Time resolution (in seconds). Must be specified. No defaults. Tsys [scalar or numpy array] System temperature (in K). If only a scalar value provided, it will be assumed to be identical for all the interferometers. Otherwise, it must be of shape broadcastable to (nbl,nchan,ntimes). So accpeted shapes can be (1,1,1), (1,1,ntimes), (1,nchan,1), (nbl,1,1), (1,nchan,ntimes), (nbl,nchan,1), (nbl,1,ntimes), or (nbl,nchan,ntimes). Must be specified. No defaults. nbl [integer] Number of baseline vectors. Default=1 nchan [integer] Number of frequency channels. Default=1 ntimes [integer] Number of time stamps. Default=1 flux_unit [string] Units of thermal noise RMS to be returned. Accepted values are 'K' or 'Jy' (default) eff_Q [scalar or numpy array] Efficiency of the interferometer(s). Has to be between 0 and 1. If only a scalar value provided, it will be assumed to be identical for all the interferometers. Otherwise, it must be of shape broadcastable to (nbl,nchan,ntimes). So accpeted shapes can be (1,1,1), (1,1,ntimes), (1,nchan,1), (nbl,1,1), (1,nchan,ntimes), (nbl,nchan,1), (nbl,1,ntimes), or (nbl,nchan,ntimes). Default=1.0 Output: Numpy array of thermal noise RMS (in units of K or Jy depending on flux_unit) of shape (nbl, nchan, ntimes) expected on a complex-valued visibility measurement from an interferometer. 1/sqrt(2) of this goes each into the real and imaginary parts. [Based on equations 9-12 through 9-15 or section 5 in chapter 9 on Sensitivity in SIRA II wherein the equations are for real and imaginary parts separately.] ------------------------------------------------------------------------- """ try: A_eff, df, dt, Tsys except NameError: raise NameError('Inputs A_eff, df, dt, and Tsys must be specified') if not isinstance(df, (int,float)): raise TypeError('Input channel resolution must be a scalar') else: df = float(df) if not isinstance(dt, (int,float)): raise TypeError('Input time resolution must be a scalar') else: dt = float(dt) if not isinstance(nbl, int): raise TypeError('Input nbl must be an integer') else: if nbl <= 0: raise ValueError('Input nbl must be positive') if not isinstance(nchan, int): raise TypeError('Input nchan must be an integer') else: if nchan <= 0: raise ValueError('Input nchan must be positive') if not isinstance(ntimes, int): raise TypeError('Input ntimes must be an integer') else: if ntimes <= 0: raise ValueError('Input ntimes must be positive') if not isinstance(Tsys, (int,float,list,NP.ndarray)): raise TypeError('Input Tsys must be a scalar, float, list or numpy array') if isinstance(Tsys, (int,float)): Tsys = NP.asarray(Tsys, dtype=NP.float).reshape(1,1,1) else: Tsys = NP.asarray(Tsys, dtype=NP.float) if NP.any(Tsys < 0.0): raise ValueError('Value(s) in Tsys cannot be negative') if (Tsys.shape != (1,1,1)) and (Tsys.shape != (1,nchan,1)) and (Tsys.shape != (1,1,ntimes)) and (Tsys.shape != (nbl,1,1)) and (Tsys.shape != (nbl,nchan,1)) and (Tsys.shape != (nbl,1,ntimes)) and (Tsys.shape != (1,nchan,ntimes)) and (Tsys.shape != (nbl,nchan,ntimes)): raise IndexError('System temperature specified has incompatible dimensions') if not isinstance(A_eff, (int,float,list,NP.ndarray)): raise TypeError('Input A_eff must be a scalar, float, list or numpy array') if isinstance(A_eff, (int,float)): A_eff = NP.asarray(A_eff, dtype=NP.float).reshape(1,1,1) else: A_eff = NP.asarray(A_eff, dtype=NP.float) if NP.any(A_eff < 0.0): raise ValueError('Value(s) in A_eff cannot be negative') if (A_eff.shape != (1,1,1)) and (A_eff.shape != (1,nchan,1)) and (A_eff.shape != (1,1,ntimes)) and (A_eff.shape != (nbl,1,1)) and (A_eff.shape != (nbl,nchan,1)) and (A_eff.shape != (nbl,1,ntimes)) and (A_eff.shape != (1,nchan,ntimes)) and (A_eff.shape != (nbl,nchan,ntimes)): raise IndexError('Effective area specified has incompatible dimensions') if not isinstance(eff_Q, (int,float,list,NP.ndarray)): raise TypeError('Input eff_Q must be a scalar, float, list or numpy array') if isinstance(eff_Q, (int,float)): eff_Q = NP.asarray(eff_Q, dtype=NP.float).reshape(1,1,1) else: eff_Q = NP.asarray(eff_Q, dtype=NP.float) if NP.any(eff_Q < 0.0): raise ValueError('Value(s) in eff_Q cannot be negative') if (eff_Q.shape != (1,1,1)) and (eff_Q.shape != (1,nchan,1)) and (eff_Q.shape != (1,1,ntimes)) and (eff_Q.shape != (nbl,1,1)) and (eff_Q.shape != (nbl,nchan,1)) and (eff_Q.shape != (nbl,1,ntimes)) and (eff_Q.shape != (1,nchan,ntimes)) and (eff_Q.shape != (nbl,nchan,ntimes)): raise IndexError('Effective area specified has incompatible dimensions') if not isinstance(flux_unit, str): raise TypeError('Input flux_unit must be a string') else: if flux_unit.lower() not in ['k', 'jy']: raise ValueError('Input flux_unit must be set to K or Jy') if flux_unit.lower() == 'k': rms = Tsys/eff_Q/NP.sqrt(dt*df) else: rms = 2.0 * FCNST.k / NP.sqrt(dt*df) * (Tsys/A_eff/eff_Q) / CNST.Jy return rms ################################################################################ def generateNoise(noiseRMS=None, A_eff=None, df=None, dt=None, Tsys=None, nbl=1, nchan=1, ntimes=1, flux_unit='Jy', eff_Q=None): """ ------------------------------------------------------------------------- Generates thermal noise from instrument parameters for a complex-valued visibility measurement from an interferometer. [Based on equations 9-12 through 9-15 or section 5 in chapter 9 on Sensitivity in SIRA II wherein the equations are for real and imaginary parts separately.] noiseRMS [NoneType or scalar or numpy array] If set to None (default), the rest of the parameters are used in determining the RMS of thermal noise. If specified as scalar, all other parameters will be ignored in estimating noiseRMS and this value will be used instead. If specified as a numpy array, it must be of shape broadcastable to (nbl,nchan,ntimes). So accpeted shapes can be (1,1,1), (1,1,ntimes), (1,nchan,1), (nbl,1,1), (1,nchan,ntimes), (nbl,nchan,1), (nbl,1,ntimes), or (nbl,nchan,ntimes). It is assumed to be an RMS comprising of both real and imaginary parts. Therefore, 1/sqrt(2) of this goes into each of the real and imaginary parts. A_eff [scalar or numpy array] Effective area of the interferometer. Has to be in units of m^2. If only a scalar value provided, it will be assumed to be identical for all the interferometers. Otherwise, it must be of shape broadcastable to (nbl,nchan,ntimes). So accpeted shapes can be (1,1,1), (1,1,ntimes), (1,nchan,1), (nbl,1,1), (1,nchan,ntimes), (nbl,nchan,1), (nbl,1,ntimes), or (nbl,nchan,ntimes). Will apply only if noiseRMS is set to None df [scalar] Frequency resolution (in Hz). Will apply only if noiseRMS is set to None dt [scalar] Time resolution (in seconds). Will apply only if noiseRMS is set to None Tsys [scalar or numpy array] System temperature (in K). If only a scalar value provided, it will be assumed to be identical for all the interferometers. Otherwise, it must be of shape broadcastable to (nbl,nchan,ntimes). So accpeted shapes can be (1,1,1), (1,1,ntimes), (1,nchan,1), (nbl,1,1), (1,nchan,ntimes), (nbl,nchan,1), (nbl,1,ntimes), or (nbl,nchan,ntimes). Will apply only if noiseRMS is set to None nbl [integer] Number of baseline vectors. Default=1 nchan [integer] Number of frequency channels. Default=1 ntimes [integer] Number of time stamps. Default=1 flux_unit [string] Units of thermal noise RMS to be returned. Accepted values are 'K' or 'Jy' (default). Will only apply if noiseRMS is set to None. Otherwise the flux_unit will be ignored and the returned value will be in same units as noiseRMS eff_Q [scalar or numpy array] Efficiency of the interferometer(s). Has to be between 0 and 1. If only a scalar value provided, it will be assumed to be identical for all the interferometers. Otherwise, it must be of shape broadcastable to (nbl,nchan,ntimes). So accpeted shapes can be (1,1,1), (1,1,ntimes), (1,nchan,1), (nbl,1,1), (1,nchan,ntimes), (nbl,nchan,1), (nbl,1,ntimes), or (nbl,nchan,ntimes). Default=1.0. Will apply only if noiseRMS is set to None Output: Numpy array of thermal noise (units of noiseRMS if specified or in units of K or Jy depending on flux_unit) of shape (nbl, nchan, ntimes) for a complex-valued visibility measurement from an interferometer. [Based on equations 9-12 through 9-15 or section 5 in chapter 9 on Sensitivity in SIRA II wherein the equations are for real and imaginary parts separately.] ------------------------------------------------------------------------- """ if noiseRMS is None: noiseRMS = thermalNoiseRMS(A_eff, df, dt, Tsys, nbl=nbl, nchan=nchan, ntimes=ntimes, flux_unit=flux_unit, eff_Q=eff_Q) else: if not isinstance(noiseRMS, (int,float,list,NP.ndarray)): raise TypeError('Input noiseRMS must be a scalar, float, list or numpy array') if isinstance(noiseRMS, (int,float)): noiseRMS = NP.asarray(noiseRMS, dtype=NP.float).reshape(1,1,1) else: noiseRMS = NP.asarray(noiseRMS, dtype=NP.float) if NP.any(noiseRMS < 0.0): raise ValueError('Value(s) in noiseRMS cannot be negative') if (noiseRMS.shape != (1,1,1)) and (noiseRMS.shape != (1,nchan,1)) and (noiseRMS.shape != (1,1,ntimes)) and (noiseRMS.shape != (nbl,1,1)) and (noiseRMS.shape != (nbl,nchan,1)) and (noiseRMS.shape != (nbl,1,ntimes)) and (noiseRMS.shape != (1,nchan,ntimes)) and (noiseRMS.shape != (nbl,nchan,ntimes)): raise IndexError('Noise RMS specified has incompatible dimensions') return noiseRMS / NP.sqrt(2.0) * (NP.random.randn(nbl,nchan,ntimes) + 1j * NP.random.randn(nbl,nchan,ntimes)) # sqrt(2.0) is to split equal uncertainty into real and imaginary parts ################################################################################ def read_gaintable(gainsfile, axes_order=None): """ --------------------------------------------------------------------------- Read gain table from file and return Input: gainsfile [string] Filename including the full path that contains the instrument gains. It must be in HDF5 format. It must contain the following structure: 'antenna-based' [dictionary] Contains antenna-based instrument gain information. It has the following keys and values: 'ordering' [list or numpy array] Three element list of strings indicating the ordering of axes - 'time', 'label', and 'frequency'. Must be specified (no defaults) 'gains' [scalar or numpy array] Complex antenna-based instrument gains. Must be of shape (nax1, nax2, nax3) where ax1, ax2 and ax3 are specified by the axes ordering under key 'ordering'. If there is no variations in gains along an axis, then the corresponding nax may be set to 1 and the gains will be replicated along that axis using numpy array broadcasting. For example, shapes (nax1,1,1), (1,1,1), (1,nax2,nax3) are acceptable. If specified as a scalar, it will be replicated along all three axes, namely, 'label', 'frequency' and 'time' 'label' [None or list or numpy array] List of antenna labels that correspond to the nax along the 'label' axis. If the nax=1 along the 'label' axis, this may be set to None, else it must be specified and must match the nax. 'frequency' [None or list or numpy array] Frequency channels that correspond to the nax along the 'frequency' axis. If the nax=1 along the 'frequency' axis, this may be set to None, else it must be specified and must match the nax. 'time' [None or list or numpy array] Observation times that correspond to the nax along the 'time' axis. If the nax=1 along the 'time' axis, this may be set to None, else it must be specified and must match the nax. It must be a float and can be in seconds, hours, days, etc. 'baseline-based' [dictionary] Contains baseline-based instrument gain information. It has the following keys and values: 'ordering' [list or numpy array] Three element list of strings indicating the ordering of axes - 'time', 'label', and 'frequency'. Must be specified (no defaults) 'gains' [scalar or numpy array] Complex baseline-based instrument gains. Must be of shape (nax1, nax2, nax3) where ax1, ax2 and ax3 are specified by the axes ordering under key 'ordering'. If there is no variations in gains along an axis, then the corresponding nax may be set to 1 and the gains will be replicated along that axis using numpy array broadcasting. For example, shapes (nax1,1,1), (1,1,1), (1,nax2,nax3) are acceptable. If specified as a scalar, it will be replicated along all three axes, namely, 'label', 'frequency' and 'time' 'label' [None or list or numpy array] List of baseline labels that correspond to the nax along the 'label' axis. If the nax=1 along the 'label' axis this may be set to None, else it must be specified and must match the nax. 'frequency' [None or list or numpy array] Frequency channels that correspond to the nax along the 'frequency' axis. If the nax=1 along the 'frequency' axis, this may be set to None, else it must be specified and must match the nax. 'time' [None or list or numpy array] Observation times that correspond to the nax along the 'time' axis. If the nax=1 along the 'time' axis, this may be set to None, else it must be specified and must match the nax. It must be a float and can be in seconds, hours, days, etc. axes_order [None or list or numpy array] The gaintable which is read is stored in this axes ordering. If set to None, it will store in this order ['label', 'frequency', 'time'] Output: gaintable [None or dictionary] If set to None, all antenna- and baseline- based gains must be set to unity. If returned as dictionary, it contains the loaded gains. It contains the following keys and values: 'antenna-based' [None or dictionary] Contains antenna-based instrument gain information. If set to None, all antenna-based gains are set to unity. If returned as dictionary, it has the following keys and values: 'ordering' [list or numpy array] Three element list of strings indicating the ordering of axes - 'time', 'label', and 'frequency' as specified in input axes_order 'gains' [scalar or numpy array] Complex antenna-based instrument gains. Must be of shape (nant, nchan, nts) If there is no variations in gains along an axis, then the corresponding nax may be set to 1 and the gains will be replicated along that axis using numpy array broadcasting. For example, shapes (nant,1,1), (1,1,1), (1,nchan,nts) are acceptable. If specified as a scalar, it will be replicated along all three axes, namely, 'label', 'frequency' and 'time' 'label' [None or list or numpy array] List of antenna labels that correspond to nant along the 'label' axis. If nant=1, this may be set to None, else it will be specified and will match the nant. 'frequency' [None or list or numpy array] Frequency channels that correspond to the nax along the 'frequency' axis. If the nchan=1 along the 'frequency' axis, this may be set to None, else it must be specified and must match the nchan. 'time' [None or list or numpy array] Observation times that correspond to the nax along the 'time' axis. If the ntimes=1 along the 'time' axis, this may be set to None, else it must be specified and must match the ntimes. It will be a float and in same units as given in input 'baseline-based' [None or dictionary] Contains baseline-based instrument gain information. If set to None, all baseline-based gains are set to unity. If returned as dictionary, it has the following keys and values: 'ordering' [list or numpy array] Three element list of strings indicating the ordering of axes - 'time', 'label', and 'frequency' as specified in input axes_order 'gains' [scalar or numpy array] Complex baseline-based instrument gains. Must be of shape (nbl, nchan, nts) If there is no variations in gains along an axis, then the corresponding nax may be set to 1 and the gains will be replicated along that axis using numpy array broadcasting. For example, shapes (nbl,1,1), (1,1,1), (1,nchan,nts) are acceptable. If specified as a scalar, it will be replicated along all three axes, namely, 'label', 'frequency' and 'time' 'label' [None or list or numpy array] List of baseline labels that correspond to nbl along the 'label' axis. If nbl=1 along the 'label' axis this may be set to None, else it will be specified and will match nbl. 'frequency' [None or list or numpy array] Frequency channels that correspond to the nax along the 'frequency' axis. If the nchan=1 along the 'frequency' axis, this may be set to None, else it must be specified and must match the nchan. 'time' [None or list or numpy array] Observation times that correspond to the nax along the 'time' axis. If the ntimes=1 along the 'time' axis, this may be set to None, else it must be specified and must match the ntimes. It will be a float and in same units as given in input --------------------------------------------------------------------------- """ if axes_order is None: axes_order = ['label', 'frequency', 'time'] elif not isinstance(axes_order, (list, NP.ndarray)): raise TypeError('axes_order must be a list') else: if len(axes_order) != 3: raise ValueError('axes_order must be a three element list') for orderkey in ['label', 'frequency', 'time']: if orderkey not in axes_order: raise ValueError('axes_order does not contain key "{0}"'.format(orderkey)) gaintable = {} try: with h5py.File(gainsfile, 'r') as fileobj: for gainkey in fileobj: try: gaintable[gainkey] = {} grp = fileobj[gainkey] if isinstance(grp['gains'].value, (NP.float32, NP.float64, NP.complex64, NP.complex128)): gaintable[gainkey]['gains'] = NP.asarray(grp['gains'].value).reshape(1,1,1) elif isinstance(grp['gains'].value, NP.ndarray): if 'ordering' in grp: ordering = list(grp['ordering'].value) else: raise KeyError('Axes ordering for gains not specified') if len(ordering) != 3: raise ValueError('Ordering must contain three elements') elif ('time' not in ordering) or ('label' not in ordering) or ('frequency' not in ordering): raise ValueError('Required elements not found in ordering of instrument gains') else: if grp['gains'].value.ndim == 3: transpose_order = NMO.find_list_in_list(ordering, axes_order) gaintable[gainkey]['gains'] = NP.transpose(grp['gains'].value, axes=transpose_order) for subkey in ['time', 'label', 'frequency']: gaintable[gainkey][subkey] = None if isinstance(grp[subkey].value, NP.ndarray): if gaintable[gainkey]['gains'].shape[axes_order.index(subkey)] > 1: if subkey not in grp: raise KeyError('Key "{0}" not specified'.format(subkey)) else: if not isinstance(grp[subkey].value, (list, NP.ndarray)): raise TypeError('"{0} key must be specified as a list or numpy array'.format(subkey)) gaintable[gainkey][subkey] = NP.asarray(grp[subkey].value).ravel() if gaintable[gainkey][subkey].size != gaintable[gainkey]['gains'].shape[axes_order.index(subkey)]: raise ValueError('List of labels and the gains do not match in dimensions') else: raise TypeError('Value of key "{0}" in {1} gains must be a numpy array'.format(subkey, gainkey)) else: raise ValueError('Gains array must be three-dimensional. Use fake dimension if there is no variation along any particular axis.') else: warnings.warn('Invalid data type specified for {0} instrument gains. Proceeding with defaults (unity gains)'.format(gainkey)) gaintable[gainkey]['ordering'] = axes_order except KeyError: warnings.warn('No info found on {0} instrument gains. Proceeding with defaults (unity gains)'.format(gainkey)) except IOError: warnings.warn('Invalid file specified for instrument gains. Proceeding with defaults (unity gains)') gaintable = None if not gaintable: gaintable = None return gaintable ################################################################################ def extract_gains(gaintable, bl_labels, freq_index=None, time_index=None, axes_order=None): """ --------------------------------------------------------------------------- Extract complex instrument gains for given baselines from the gain table. Inputs: gaintable [None or dictionary] If set to None, all antenna- and baseline- based gains must be set to unity. If returned as dictionary, it contains the loaded gains. It contains the following keys and values: 'antenna-based' [None or dictionary] Contains antenna-based instrument gain information. If set to None, all antenna-based gains are set to unity. If returned as dictionary, it has the following keys and values: 'ordering' [list or numpy array] Three element list of strings indicating the ordering of axes - 'time', 'label', and 'frequency'. Must be specified (no defaults) 'gains' [scalar or numpy array] Complex antenna-based instrument gains. Must be of shape (nant, nchan, nts) If there is no variations in gains along an axis, then the corresponding nax may be set to 1 and the gains will be replicated along that axis using numpy array broadcasting. For example, shapes (nant,1,1), (1,1,1), (1,nchan,nts) are acceptable. If specified as a scalar, it will be replicated along all three axes, namely, 'label', 'frequency' and 'time'. 'label' [None or list or numpy array] List or antenna labels that correspond to nant along the 'label' axis. If nant=1, this may be set to None, else it will be specified and will match the nant. 'frequency' [None or list or numpy array] Frequency channels that correspond to the nax along the 'frequency' axis. If the nchan=1 along the 'frequency' axis, this may be set to None, else it must be specified and must match the nchan 'time' [None or list or numpy array] Observation times that correspond to the nax along the 'time' axis. If the ntimes=1 along the 'time' axis, this may be set to None, else it must be specified and must match the ntimes. It must be a float and can be in seconds, hours, days, etc. 'baseline-based' [None or dictionary] Contains baseline-based instrument gain information. If set to None, all baseline-based gains are set to unity. If returned as dictionary, it has the following keys and values: 'ordering' [list or numpy array] Three element list of strings indicating the ordering of axes - 'time', 'label', and 'frequency'. Must be specified (no defaults) 'gains' [scalar or numpy array] Complex baseline-based instrument gains. Must be of shape (nbl, nchan, nts) If there is no variations in gains along an axis, then the corresponding nax may be set to 1 and the gains will be replicated along that axis using numpy array broadcasting. For example, shapes (nant,1,1), (1,1,1), (1,nchan,nts) are acceptable. If specified as a scalar, it will be replicated along all three axes, namely, 'label', 'frequency' and 'time'. 'label' [None or list or numpy array] List or baseline labels that correspond to nbl along the 'label' axis. If nbl=1 along the 'label' axis this may be set to None, else it will be specified and will match nbl. 'frequency' [None or list or numpy array] Frequency channels that correspond to the nax along the 'frequency' axis. If the nchan=1 along the 'frequency' axis, this may be set to None, else it must be specified and must match the nchan 'time' [None or list or numpy array] Observation times that correspond to the nax along the 'time' axis. If the ntimes=1 along the 'time' axis, this may be set to None, else it must be specified and must match the ntimes. It must be a float and can be in seconds, hours, days, etc. bl_labels [Numpy structured array tuples] Labels of antennas in the pair used to produce the baseline vector under fields 'A2' and 'A1' for second and first antenna respectively. The baseline vector is obtained by position of antennas under 'A2' minus position of antennas under 'A1' freq_index [None, int, list or numpy array] Index (scalar) or indices (list or numpy array) along the frequency axis at which gains are to be extracted. If set to None, gains at all frequencies in the gain table will be extracted. time_index [None, int, list or numpy array] Index (scalar) or indices (list or numpy array) along the time axis at which gains are to be extracted. If set to None, gains at all timesin the gain table will be extracted. axes_order [None or list or numpy array] Axes ordering for extracted gains. It must contain the three elements 'label', 'frequency', and 'time'. If set to None, it will be returned in the same order as in the input gaintable. Outputs: [numpy array] Complex gains of shape nbl x nchan x nts for the specified baselines, frequencies and times. --------------------------------------------------------------------------- """ try: gaintable, bl_labels except NameError: raise NameError('Inputs gaintable and bl_labels must be specified') blgains = NP.asarray(1.0).reshape(1,1,1) if gaintable is not None: a1_labels = bl_labels['A1'] a2_labels = bl_labels['A2'] for gainkey in ['antenna-based', 'baseline-based']: if gainkey in gaintable: temp_axes_order = ['label', 'frequency', 'time'] inp_order = gaintable[gainkey]['ordering'] temp_transpose_order = NMO.find_list_in_list(inp_order, temp_axes_order) if NP.all(inp_order == temp_axes_order): gains = NP.copy(gaintable[gainkey]['gains']) else: gains = NP.transpose(NP.copy(gaintable[gainkey]['gains']), axes=temp_transpose_order) if freq_index is None: freq_index = NP.arange(gains.shape[1]) elif isinstance(freq_index, (int,list,NP.ndarray)): freq_index = NP.asarray(freq_index).ravel() if NP.any(freq_index >= gains.shape[1]): raise IndexError('Input freq_index cannot exceed the frequency dimensions in the gain table') if time_index is None: time_index = NP.arange(gains.shape[2]) elif isinstance(time_index, (int,list,NP.ndarray)): time_index = NP.asarray(time_index).ravel() if NP.any(time_index >= gains.shape[2]): raise IndexError('Input time_index cannot exceed the time dimensions in the gain table') if gains.shape[0] == 1: blgains = blgains * gains[:,freq_index,time_index].reshape(1,freq_index.size,time_index.size) else: labels = gaintable[gainkey]['label'] if gainkey == 'antenna-based': ind1 = NMO.find_list_in_list(labels, a1_labels) ind2 = NMO.find_list_in_list(labels, a2_labels) if NP.sum(ind1.mask) > 0: raise IndexError('Some antenna gains could not be found') if NP.sum(ind2.mask) > 0: raise IndexError('Some antenna gains could not be found') blgains = blgains * gains[NP.ix_(ind2,freq_index,time_index)].reshape(ind2.size,freq_index.size,time_index.size) * gains[NP.ix_(ind1,freq_index,time_index)].conj().reshape(ind1.size,freq_index.size,time_index.size) else: labels_conj = [tuple(reversed(label)) for label in labels] labels_conj = NP.asarray(labels_conj, dtype=labels.dtype) labels_conj_appended = NP.concatenate((labels, labels_conj), axis=0) gains_conj_appended = NP.concatenate((gains, gains.conj()), axis=0) ind = NMO.find_list_in_list(labels_conj_appended, bl_labels) selected_gains = gains_conj_appended[NP.ix_(ind.compressed(),freq_index,time_index)] if ind.compressed().size == 1: selected_gains = selected_gains.reshape(NP.sum(~ind.mask),freq_index.size,time_index.size) blgains[~ind.mask, ...] = blgains[~ind.mask, ...] * selected_gains if axes_order is None: axes_order = inp_order elif not isinstance(axes_order, (list, NP.ndarray)): raise TypeError('axes_order must be a list') else: if len(axes_order) != 3: raise ValueError('axes_order must be a three element list') for orderkey in ['label', 'frequency', 'time']: if orderkey not in axes_order: raise ValueError('axes_order does not contain key "{0}"'.format(orderkey)) transpose_order = NMO.find_list_in_list(inp_order, axes_order) blgains = NP.transpose(blgains, axes=transpose_order) return blgains ################################################################################ def hexagon_generator(spacing, n_total=None, n_side=None, orientation=None, center=None): """ ------------------------------------------------------------------------ Generate a grid of baseline locations filling a regular hexagon. Primarily intended for HERA experiment. Inputs: spacing [scalar] positive scalar specifying the spacing between antennas. Must be specified, no default. n_total [scalar] positive integer specifying the total number of antennas to be placed in the hexagonal array. This value will be checked if it valid for a regular hexagon. If n_total is specified, n_side must not be specified. Default = None. n_side [scalar] positive integer specifying the number of antennas on the side of the hexagonal array. If n_side is specified, n_total should not be specified. Default = None orientation [scalar] counter-clockwise angle (in degrees) by which the principal axis of the hexagonal array is to be rotated. Default = None (means 0 degrees) center [2-element list or numpy array] specifies the center of the array. Must be in the same units as spacing. The hexagonal array will be centered on this position. Outputs: Two element tuple with these elements in the following order: xy [2-column array] x- and y-locations. x is in the first column, y is in the second column. Number of xy-locations is equal to the number of rows which is equal to n_total id [numpy array of string] unique antenna identifier. Numbers from 0 to n_antennas-1 in string format. Notes: If n_side is the number of antennas on the side of the hexagon, then n_total = 3*n_side**2 - 3*n_side + 1 ------------------------------------------------------------------------ """ try: spacing except NameError: raise NameError('No spacing provided.') if not isinstance(spacing, (int, float)): raise TypeError('spacing must be scalar value') if spacing <= 0: raise ValueError('spacing must be positive') if orientation is not None: if not isinstance(orientation, (int,float)): raise TypeError('orientation must be a scalar') if center is not None: if not isinstance(center, (list, NP.ndarray)): raise TypeError('center must be a list or numpy array') center = NP.asarray(center) if center.size != 2: raise ValueError('center should be a 2-element vector') center = center.reshape(1,-1) if (n_total is None) and (n_side is None): raise NameError('n_total or n_side must be provided') elif (n_total is not None) and (n_side is not None): raise ValueError('Only one of n_total or n_side must be specified.') elif n_total is not None: if not isinstance(n_total, int): raise TypeError('n_total must be an integer') if n_total <= 0: raise ValueError('n_total must be positive') else: if not isinstance(n_side, int): raise TypeError('n_side must be an integer') if n_side <= 0: raise ValueError('n_side must be positive') if n_total is not None: sqroots = NP.roots([3.0, -3.0, 1.0-n_total]) valid_ind = NP.logical_and(sqroots.real >= 1, sqroots.imag == 0.0) if NP.any(valid_ind): sqroot = sqroots[valid_ind] else: raise ValueError('No valid root found for the quadratic equation with the specified n_total') n_side = NP.round(sqroot).astype(NP.int) if (3*n_side**2 - 3*n_side + 1 != n_total): raise ValueError('n_total is not a valid number for a hexagonal array') else: n_total = 3*n_side**2 - 3*n_side + 1 xref = NP.arange(2*n_side-1, dtype=NP.float) xloc, yloc = [], [] for i in range(1,n_side): x = xref[:-i] + i * NP.cos(NP.pi/3) # Select one less antenna each time and displace y = i*NP.sin(NP.pi/3) * NP.ones(2*n_side-1-i) xloc += x.tolist() * 2 # Two lists, one for the top and the other for the bottom yloc += y.tolist() # y-locations of the top list yloc += (-y).tolist() # y-locations of the bottom list xloc += xref.tolist() # Add the x-locations of central line of antennas yloc += [0.0] * int(2*n_side-1) # Add the y-locations of central line of antennas if len(xloc) != len(yloc): raise ValueError('Sizes of x- and y-locations do not agree') xy = zip(xloc, yloc) if len(xy) != n_total: raise ValueError('Sizes of x- and y-locations do not agree with n_total') xy = NP.asarray(xy) xy = xy - NP.mean(xy, axis=0, keepdims=True) # Shift the center to origin if orientation is not None: # Perform any rotation angle = NP.radians(orientation) rot_matrix = NP.asarray([[NP.cos(angle), -NP.sin(angle)], [NP.sin(angle), NP.cos(angle)]]) xy = NP.dot(xy, rot_matrix.T) xy *= spacing # Scale by the spacing if center is not None: # Shift the center xy += center return (NP.asarray(xy), map(str, range(n_total))) ################################################################################ def rectangle_generator(spacing, n_side, orientation=None, center=None): """ ------------------------------------------------------------------------ Generate a grid of baseline locations filling a rectangular array. Primarily intended for HIRAX, CHIME and PAPER experiments Inputs: spacing [2-element list or numpy array] positive integers specifying the spacing between antennas. Must be specified, no default. n_side [2-element list or numpy array] positive integers specifying the number of antennas on each side of the rectangular array. Atleast one value should be specified, no default. orientation [scalar] counter-clockwise angle (in degrees) by which the principal axis of the rectangular array is to be rotated. Default = None (means 0 degrees) center [2-element list or numpy array] specifies the center of the array. Must be in the same units as spacing. The rectangular array will be centered on this position. Outputs: Two element tuple with these elements in the following order: xy [2-column array] x- and y-locations. x is in the first column, y is in the second column. Number of xy-locations is equal to the number of rows which is equal to n_total id [numpy array of string] unique antenna identifier. Numbers from 0 to n_antennas-1 in string format. Notes: ------------------------------------------------------------------------ """ try: spacing except NameError: raise NameError('No spacing provided.') if spacing is not None: if not isinstance(spacing, (int, float, list, NP.ndarray)): raise TypeError('spacing must be a scalar or list/numpy array') spacing = NP.asarray(spacing) if spacing.size < 2: spacing = NP.resize(spacing,(1,2)) if NP.all(NP.less_equal(spacing,NP.zeros((1,2)))): raise ValueError('spacing must be positive') if orientation is not None: if not isinstance(orientation, (int,float)): raise TypeError('orientation must be a scalar') if center is not None: if not isinstance(center, (list, NP.ndarray)): raise TypeError('center must be a list or numpy array') center = NP.asarray(center) if center.size != 2: raise ValueError('center should be a 2-element vector') center = center.reshape(1,-1) if n_side is None: raise NameError('Atleast one value of n_side must be provided') else: if not isinstance(n_side, (int, float, list, NP.ndarray)): raise TypeError('n_side must be a scalar or list/numpy array') n_side = NP.asarray(n_side) if n_side.size < 2: n_side = NP.resize(n_side,(1,2)) if NP.all(NP.less_equal(n_side,NP.zeros((1,2)))): raise ValueError('n_side must be positive') n_total = NP.prod(n_side, dtype=NP.uint8) xn,yn = NP.hsplit(n_side,2) xn = NP.asscalar(xn) yn = NP.asscalar(yn) xs,ys = NP.hsplit(spacing,2) xs = NP.asscalar(xs) ys = NP.asscalar(ys) n_total = xn*yn x = NP.linspace(0, xn-1, xn) x = x - NP.mean(x) x = x*xs y = NP.linspace(0, yn-1, yn) y = y - NP.mean(y) y = y*ys xv, yv = NP.meshgrid(x,y) xy = NP.hstack((xv.reshape(-1,1),yv.reshape(-1,1))) if len(xy) != n_total: raise ValueError('Sizes of x- and y-locations do not agree with n_total') if orientation is not None: # Perform any rotation angle = NP.radians(orientation) rot_matrix = NP.asarray([[NP.cos(angle), -NP.sin(angle)], [NP.sin(angle), NP.cos(angle)]]) xy = NP.dot(xy, rot_matrix.T) if center is not None: # Shift the center xy += center return (NP.asarray(xy), map(str, range(n_total))) ################################################################################ def circular_antenna_array(antsize, minR, maxR=None): """ --------------------------------------------------------------------------- Create antenna layout in a circular ring of minimum and maximum radius with antennas of a given size Inputs: antsize [scalar] Antenna size. Critical to determining number of antenna elements that can be placed on a circle. No default. minR [scalar] Minimum radius of the circular ring. Must be in same units as antsize. No default. Must be greater than 0.5*antsize. maxR [scalar] Maximum radius of circular ring. Must be >= minR. Default=None means maxR is set equal to minR. Outputs: xy [2-column numpy array] Antenna locations in the same units as antsize returned as a 2-column numpy array where the number of rows equals the number of antenna locations generated and x, and y locations make the two columns. --------------------------------------------------------------------------- """ try: antsize, minR except NameError: raise NameError('antsize, and minR must be specified') if (antsize is None) or (minR is None): raise ValueError('antsize and minR cannot be NoneType') if not isinstance(antsize, (int, float)): raise TypeError('antsize must be a scalar') if antsize <= 0.0: raise ValueError('antsize must be positive') if not isinstance(minR, (int, float)): raise TypeError('minR must be a scalar') if minR <= 0.0: raise ValueError('minR must be positive') if minR < 0.5*antsize: minR = 0.5*antsize if maxR is None: maxR = minR if not isinstance(maxR, (int, float)): raise TypeError('maxR must be a scalar') elif maxR < minR: maxR = minR if maxR - minR < antsize: radii = minR + NP.zeros(1) else: radii = minR + antsize * NP.arange((maxR-minR)/antsize) nants = 2 * NP.pi * radii / antsize nants = nants.astype(NP.int) x = [(radii[i] * NP.cos(2*NP.pi*NP.arange(nants[i])/nants[i])).tolist() for i in range(radii.size)] y = [(radii[i] * NP.sin(2*NP.pi*NP.arange(nants[i])/nants[i])).tolist() for i in range(radii.size)] xpos = [xi for sublist in x for xi in sublist] ypos = [yi for sublist in y for yi in sublist] x = NP.asarray(xpos) y = NP.asarray(ypos) xy = NP.hstack((x.reshape(-1,1), y.reshape(-1,1))) return (xy, map(str, range(NP.sum(nants)))) ################################################################################ def baseline_generator(antenna_locations, ant_label=None, ant_id=None, auto=False, conjugate=False): """ --------------------------------------------------------------------------- Generate baseline from antenna locations. Inputs: antenna_locations: List of tuples containing antenna coordinates, or list of instances of class Point containing antenna coordinates, or Numpy array (Nx3) array with each row specifying an antenna location. Input keywords: ant_label [list of strings] Unique string identifier for each antenna. Default = None. If None provided, antennas will be indexed by an integer starting from 0 to N(ants)-1 ant_id [list of integers] Unique integer identifier for each antenna. Default = None. If None provided, antennas will be indexed by an integer starting from 0 to N(ants)-1 auto: [Default=False] If True, compute zero spacings of antennas with themselves. conjugate: [Default=False] If True, compute conjugate baselines. Output: baseline_locations: Baseline locations in the same data type as antenna locations (list of tuples, list of instances of class Point or Numpy array of size Nb x 3 with each row specifying one baseline vector) antpair_labels [Numpy structured array tuples] Labels of antennas in the pair used to produce the baseline vector under fields 'A2' and 'A1' for second and first antenna respectively. The baseline vector is obtained by position of antennas under 'A2' minus position of antennas under 'A1' antpair_ids [Numpy structured array tuples] IDs of antennas in the pair used to produce the baseline vector under fields 'A2' and 'A1' for second and first antenna respectively. The baseline vector is obtained by position of antennas under 'A2' minus position of antennas under 'A1' ------------------------------------------------------------------- """ try: antenna_locations except NameError: warnings.warn('No antenna locations supplied. Returning from baseline_generator()') return None inp_type = 'tbd' if not isinstance(antenna_locations, NP.ndarray): if isinstance(antenna_locations, list): if isinstance(antenna_locations[0], GEOM.Point): inp_type = 'loo' # list of objects elif isinstance(antenna_locations[0], tuple): inp_type = 'lot' # list of tuples antenna_locations = [(tuple(loc) if len(loc) == 3 else (tuple([loc[0],0.0,0.0]) if len(loc) == 1 else (tuple([loc[0],loc[1],0.0]) if len(loc) == 2 else (tuple([loc[0],loc[1],loc[2]]))))) for loc in antenna_locations if len(loc) != 0] # Remove empty tuples and validate the data range and data type for antenna locations. Force it to have three components for every antenna location. elif isinstance(antenna_locations, GEOM.Point): if not auto: warnings.warn('No non-zero spacings found since auto=False.') return None else: return GEOM.Point() elif isinstance(antenna_locations, tuple): if not auto: warnings.warn('No non-zero spacings found since auto=False.') return None else: return (0.0,0.0,0.0) else: if not auto: warnings.warn('No non-zero spacings found since auto=False.') return None else: return (0.0,0.0,0.0) else: inp_type = 'npa' # A numpy array if antenna_locations.shape[0] == 1: if not auto: warnings.warn('No non-zero spacings found since auto=False.') return None else: return NP.zeros(1,3) else: if antenna_locations.shape[1] > 3: antenna_locations = antenna_locations[:,:3] elif antenna_locations.shape[1] < 3: antenna_locations = NP.hstack((antenna_locations, NP.zeros((antenna_locations.shape[0],3-antenna_locations.shape[1])))) if isinstance(antenna_locations, list): num_ants = len(antenna_locations) else: num_ants = antenna_locations.shape[0] if ant_label is not None: if isinstance(ant_label, list): if len(ant_label) != num_ants: raise ValueError('Dimensions of ant_label and antenna_locations do not match.') elif isinstance(ant_label, NP.ndarray): if ant_label.size != num_ants: raise ValueError('Dimensions of ant_label and antenna_locations do not match.') ant_label = ant_label.tolist() else: ant_label = ['{0:0d}'.format(i) for i in xrange(num_ants)] if ant_id is not None: if isinstance(ant_id, list): if len(ant_id) != num_ants: raise ValueError('Dimensions of ant_id and antenna_locations do not match.') elif isinstance(ant_id, NP.ndarray): if ant_id.size != num_ants: raise ValueError('Dimensions of ant_id and antenna_locations do not match.') ant_id = ant_id.tolist() else: ant_id = range(num_ants) if inp_type == 'loo': # List of objects if auto: baseline_locations = [antenna_locations[j]-antenna_locations[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] # antpair_labels = [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] antpair_labels = [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] antpair_ids = [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] else: baseline_locations = [antenna_locations[j]-antenna_locations[i] for i in range(0,num_ants) for j in range(0,num_ants) if j > i] # antpair_labels = [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] antpair_labels = [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] antpair_ids = [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] if conjugate: baseline_locations += [antenna_locations[j]-antenna_locations[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] # antpair_labels += [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] antpair_labels += [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] antpair_ids += [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] elif inp_type == 'lot': # List of tuples if auto: baseline_locations = [tuple((antenna_locations[j][0]-antenna_locations[i][0], antenna_locations[j][1]-antenna_locations[i][1], antenna_locations[j][2]-antenna_locations[i][2])) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] # antpair_labels = [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] antpair_labels = [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] antpair_ids = [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] else: baseline_locations = [tuple((antenna_locations[j][0]-antenna_locations[i][0], antenna_locations[j][1]-antenna_locations[i][1], antenna_locations[j][2]-antenna_locations[i][2])) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] # antpair_labels = [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] antpair_labels = [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] antpair_ids = [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] if conjugate: baseline_locations += [tuple((antenna_locations[j][0]-antenna_locations[i][0], antenna_locations[j][1]-antenna_locations[i][1], antenna_locations[j][2]-antenna_locations[i][2])) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] # antpair_labels += [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] antpair_labels += [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] antpair_ids += [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] elif inp_type == 'npa': # Numpy array if auto: baseline_locations = [antenna_locations[j,:]-antenna_locations[i,:] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] # antpair_labels = [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] antpair_labels = [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] antpair_ids = [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j >= i] else: baseline_locations = [antenna_locations[j,:]-antenna_locations[i,:] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] # antpair_labels = [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] antpair_labels = [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] antpair_ids = [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j > i] if conjugate: baseline_locations += [antenna_locations[j,:]-antenna_locations[i,:] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] # antpair_labels += [ant_label[j]+'-'+ant_label[i] for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] antpair_labels += [(ant_label[j], ant_label[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] antpair_ids += [(ant_id[j], ant_id[i]) for i in xrange(0,num_ants) for j in xrange(0,num_ants) if j < i] baseline_locations = NP.asarray(baseline_locations) maxlen = max(len(albl) for albl in ant_label) antpair_labels = NP.asarray(antpair_labels, dtype=[('A2', '|S{0:0d}'.format(maxlen)), ('A1', '|S{0:0d}'.format(maxlen))]) antpair_ids = NP.asarray(antpair_ids, dtype=[('A2', int), ('A1', int)]) return baseline_locations, antpair_labels, antpair_ids ################################################################################# def uniq_baselines(baseline_locations, redundant=None): """ --------------------------------------------------------------------------- Identify unique, redundant or non-redundant baselines from a given set of baseline locations. Inputs: baseline_locations [2- or 3-column numpy array] Each row of the array specifies a baseline vector from which the required set of baselines have to be identified redundant [None or boolean] If set to None (default), all the unique baselines including redundant and non-redundant baselines are returned. If set to True, only redundant baselines that occur more than once are returned. If set to False, only non-redundant baselines that occur exactly once are returned. Output: 4-element tuple with the selected baselines, their unique indices in the input, their count and the indices of all occurences of each unique baseline. The first element of this tuple is a 3-column numpy array which is a subset of baseline_locations containing the requested type of baselines. The second element of the tuple contains the selected indices of the input array from which the first element in the tuple is determined relative to the input array. The third element of the tuple contains the count of these selected baselines. In case of redundant and unique baselines, the order of repeated baselines does not matter and any one of those baselines could be returned without preserving the order. The fourth element in the tuple contains a list of lists where each element in the top level list corresponds to a unique baseline and consists of indices of all occurrences of input baselines redundant with this unique baseline --------------------------------------------------------------------------- """ try: baseline_locations except NameError: raise NameError('baseline_locations not provided') if not isinstance(baseline_locations, NP.ndarray): raise TypeError('baseline_locations must be a numpy array') if redundant is not None: if not isinstance(redundant, bool): raise TypeError('keyword "redundant" must be set to None or a boolean value') blshape = baseline_locations.shape if blshape[1] > 3: baseline_locations = baseline_locations[:,:3] elif blshape[1] < 3: baseline_locations = NP.hstack((baseline_locations, NP.zeros((blshape[0],3-blshape[1])))) blo = NP.angle(baseline_locations[:,0] + 1j * baseline_locations[:,1], deg=True) blo[blo >= 180.0] -= 180.0 blo[blo < 0.0] += 180.0 bll = NP.sqrt(NP.sum(baseline_locations**2, axis=1)) blza = NP.degrees(NP.arccos(baseline_locations[:,2] / bll)) blstr = ['{0[0]:.2f}_{0[1]:.3f}_{0[2]:.3f}'.format(lo) for lo in zip(bll,3.6e3*blza,3.6e3*blo)] uniq_blstr, ind, invind = NP.unique(blstr, return_index=True, return_inverse=True) ## if numpy.__version__ < 1.9.0 # uniq_blstr, ind, invind, frequency = NP.unique(blstr, return_index=True, return_inverse=True, return_counts=True) ## if numpy.__version__ >= 1.9.0 count_blstr = [(ubstr,blstr.count(ubstr)) for ubstr in uniq_blstr] ## if numpy.__version__ < 1.9.0 if redundant is None: retind = NP.copy(ind) counts = [tup[1] for tup in count_blstr] counts = NP.asarray(counts) else: if not redundant: ## if numpy.__version__ < 1.9.0 non_redn_ind = [i for i,tup in enumerate(count_blstr) if tup[1] == 1] retind = ind[NP.asarray(non_redn_ind)] counts = NP.ones(retind.size) else: ## if numpy.__version__ < 1.9.0 redn_ind_counts = [(i,tup[1]) for i,tup in enumerate(count_blstr) if tup[1] > 1] redn_ind, counts = zip(*redn_ind_counts) retind = ind[NP.asarray(redn_ind)] counts = NP.asarray(counts) allinds_where_found = NMO.find_all_occurrences_list1_in_list2(invind[retind], invind) return (baseline_locations[retind,:], retind, counts, allinds_where_found) ################################################################################# def getBaselineInfo(inpdict): """ --------------------------------------------------------------------------- Generate full baseline info from a given layout and return information about redundancy and the mapping between unique and redundant baselines Input: inpdict [dictionary] It contains the following keys and values: 'array' [dictionary] It contains the following keys and values: 'redundant' [boolean] If this key is present, it says whether the array could be redundant (true) or not (false). If key is absent, this value is assumed to be true. When it is set to true, it basically checks for redundancy otherwise not. It is not meant to say if the array is actually redundant or not but only used for redundancy check to happen or not 'layout' [string] Preset array layouts mutually exclusive to antenna file. Only one of these must be specified. Accepted values are 'MWA-128T', 'HERA-7', 'HERA-19', 'HERA-37', 'HERA-61', 'HERA-91', 'HERA-127', 'HERA-169', 'HERA-217', 'HERA-271', 'HERA-331', 'PAPER-64', 'PAPER-112', 'HIRAX-1024', 'CHIME', 'CIRC', or None (if layout file is specified). 'file' [string] File containing antenna locations parsed according to info in parser (see below). If preset layout is specified, this must be set to None. 'filepathtype' [string] Accepted values are 'default' (if layout file can be found in prisim path, namely, prisim/data/array_layouts folder) and 'custom'. If set to 'default', only filename should be specified in file and it will be searched in the default array_layouts folder prisim/data/array_layouts. If set to 'custom' then the full path to the file must be specified. 'parser' [dictionary] Will be used for parsing the file if file is specified for array layout. It contains the following keys and values: 'comment' [string] Character used to denote commented lines to be ignored. Default=None ('#') 'delimiter' [string] Delimiter string. Accepted values are whitespace (default or None), ',' and '|' 'data_strart' [integer] Line index for the start of data not counting comment or blank lines. A line with only whitespace is considered blank. It is required. No defaults. Indexing starts from 0 'data_end' [integer] Line index for the end of data not counting comment or blank lines. This value can be negative to count from the end. Default is None (all the way to end of file). Indexing starts from 0. 'header_start' [integer] Line index for the header line not counting comment or blank lines. A line with only whitespace is considered blank. Must be provided. No defaults 'label' [string] String in the header containing antenna labels. If set to None (default), antenna labels will be automatically assigned. e.g. of some accepted values are None, 'label', 'id', 'antid', etc. This must be found in the header 'east' [string] String specifying East coordinates in the header and data. Must be provided. No defaults. 'north' [string] String specifying North coordinates in the header and data. Must be provided. No defaults. 'up' [string] String specifying elevation coordinates in the header and data. Must be provided. No defaults. 'minR' [string] Minimum radius of circular ring. Applies only when layout = 'CIRC' 'maxR' [string] Maximum radius of circular ring. Applies only when layout = 'CIRC' 'rms_tgtplane' [float] Perturbation of antenna positions (in m) in tangent plane. Default=0.0 'rms_elevation' [float] Perturbation of antenna positions (in m) in perpendicular to tangent plane. Default=0.0 'seed' [integer] Random number seed for antenna position perturbations. Default=None means no fixed seed 'baseline' [dictionary] Parameters specifying baseline selection criteria. It consists of the following keys and values: 'min' [float] Minimum baseline in distance units (m). Default=None (0.0) 'max' [float] Maximum baseline in distance units (m). Default=None (max baseline) 'direction' [string] Baseline vector directions to select. Default=None (all directions). Other accepted values are 'E' (east) 'SE' (south-east), 'NE' (north-east), and 'N' (north). Multiple values from this accepted list can be specified as a list of strings. e.g., ['N', 'E'], ['NE', 'SE', 'E'], ['SE', 'E', 'NE', 'N'] which is equivalent to None, etc. 'skyparm' [dictionary] Sky model specification. It contains the following keys and values: 'model' [string] Sky model. Accepted values are 'csm' (NVSS+SUMSS point sources), 'dsm' (diffuse emission), 'asm' (both point sources and diffuse emission), 'sumss' (SUMSS catalog), nvss (NVSS catalog), 'mss' (Molonglo Sky Survey), 'gleam' (GLEAM catalog), 'custom' (user-defined catalog), 'usm' (uniform sky model), 'mwacs' (MWACS catalog), 'HI_monopole' (global EoR), HI_cube (HI cube from external simulations), and 'HI_fluctuations' (HI fluctuations with the global mean signal removed). If set 'HI_monopole' or 'monopole' the orientation of the baseline vector does not matter and only unique baseline lengths will be selected if value under 'redundant' key is set to True. Output: Dictionary containing the following keys and values. 'bl' [numpy array] Baseline vectors (unique ones or all depending on value in key 'redundant'). It is of shape nbl x 3 and will consist of unique baselines if value under key 'redundant' was set to True. Otherwise, redundancy will not be checked and all baselines will be returned. 'label' [numpy recarray] A unique label of each of the baselines. Shape is nbl where each element is a recarray under fields 'A1' (first antenna label) and 'A2' (second antenna label) 'id' [numpy recarray] A unique identifier of each of the baselines. Shape is nbl where each element is a recarray under fields 'A1' (first antenna id) and 'A2' (second antenna id) 'redundancy' [boolean] If the array was originally found to be made of unique baselines (False) or redundant baselines were found (True). Even if set to False, the baselines may still be redundant because redundancy may never have been checked if value under key 'redundant' was set to False 'groups' [dictionary] Contains the grouping of unique baselines and the redundant baselines as numpy recarray under each unique baseline category/flavor. It contains as keys the labels (tuple of A1, A2) of unique baselines and the value under each of these keys is a list of baseline labels that are redundant under that category 'reversemap' [dictionary] Contains the baseline category for each baseline. The keys are baseline labels as tuple and the value under each key is the label of the unique baseline category that it falls under. 'layout_info' [dictionary] Contains the antenna layout information with the following keys and values: 'positions' [numpy array] Antenna locations with shape nant x 3 'labels' [numpy array of strings] Antenna labels of size nant 'ids' [numpy array of strings] Antenna IDs of size nant 'coords' [string] Coordinate system in which antenna locations are specified. Currently only returns 'ENU' for East- North-Up coordinate system --------------------------------------------------------------------------- """ try: inpdict except NameError: raise NameError('Input inpdict must be specified') if not isinstance(inpdict, dict): raise TypeError('Input inpdict must be a dictionary') if 'array' in inpdict: if 'redundant' in inpdict['array']: array_is_redundant = inpdict['array']['redundant'] else: array_is_redundant = True else: raise KeyError('Key "array" not found in input inpdict') sky_str = inpdict['skyparm']['model'] use_HI_monopole = False if sky_str == 'HI_monopole': use_HI_monopole = True antenna_file = inpdict['array']['file'] array_layout = inpdict['array']['layout'] minR = inpdict['array']['minR'] maxR = inpdict['array']['maxR'] antpos_rms_tgtplane = inpdict['array']['rms_tgtplane'] antpos_rms_elevation = inpdict['array']['rms_elevation'] antpos_rms_seed = inpdict['array']['seed'] if antpos_rms_seed is None: antpos_rms_seed = NP.random.randint(1, high=100000) elif isinstance(antpos_rms_seed, (int,float)): antpos_rms_seed = int(NP.abs(antpos_rms_seed)) else: raise ValueError('Random number seed must be a positive integer') minbl = inpdict['baseline']['min'] maxbl = inpdict['baseline']['max'] bldirection = inpdict['baseline']['direction'] if (antenna_file is None) and (array_layout is None): raise ValueError('One of antenna array file or layout must be specified') if (antenna_file is not None) and (array_layout is not None): raise ValueError('Only one of antenna array file or layout must be specified') if antenna_file is not None: if not isinstance(antenna_file, str): raise TypeError('Filename containing antenna array elements must be a string') if inpdict['array']['filepathtype'] == 'default': antenna_file = prisim_path+'data/array_layouts/'+antenna_file antfile_parser = inpdict['array']['parser'] if 'comment' in antfile_parser: comment = antfile_parser['comment'] if comment is None: comment = '#' elif not isinstance(comment, str): raise TypeError('Comment expression must be a string') else: comment = '#' if 'delimiter' in antfile_parser: delimiter = antfile_parser['delimiter'] if delimiter is not None: if not isinstance(delimiter, str): raise TypeError('Delimiter expression must be a string') else: delimiter = ' ' else: delimiter = ' ' if 'data_start' in antfile_parser: data_start = antfile_parser['data_start'] if not isinstance(data_start, int): raise TypeError('data_start parameter must be an integer') else: raise KeyError('data_start parameter not provided') if 'data_end' in antfile_parser: data_end = antfile_parser['data_end'] if data_end is not None: if not isinstance(data_end, int): raise TypeError('data_end parameter must be an integer') else: data_end = None if 'header_start' in antfile_parser: header_start = antfile_parser['header_start'] if not isinstance(header_start, int): raise TypeError('header_start parameter must be an integer') else: raise KeyError('header_start parameter not provided') if 'label' not in antfile_parser: antfile_parser['label'] = None elif antfile_parser['label'] is not None: antfile_parser['label'] = str(antfile_parser['label']) if 'east' not in antfile_parser: raise KeyError('Keyword for "east" coordinates not provided') else: if not isinstance(antfile_parser['east'], str): raise TypeError('Keyword for "east" coordinates must be a string') if 'north' not in antfile_parser: raise KeyError('Keyword for "north" coordinates not provided') else: if not isinstance(antfile_parser['north'], str): raise TypeError('Keyword for "north" coordinates must be a string') if 'up' not in antfile_parser: raise KeyError('Keyword for "up" coordinates not provided') else: if not isinstance(antfile_parser['up'], str): raise TypeError('Keyword for "up" coordinates must be a string') try: ant_info = ascii.read(antenna_file, comment=comment, delimiter=delimiter, header_start=header_start, data_start=data_start, data_end=data_end, guess=False) except IOError: raise IOError('Could not open file containing antenna locations.') if (antfile_parser['east'] not in ant_info.colnames) or (antfile_parser['north'] not in ant_info.colnames) or (antfile_parser['up'] not in ant_info.colnames): raise KeyError('One of east, north, up coordinates incompatible with the table in antenna_file') if antfile_parser['label'] is not None: ant_label = ant_info[antfile_parser['label']].data.astype('str') else: ant_label = NP.arange(len(ant_info)).astype('str') east = ant_info[antfile_parser['east']].data north = ant_info[antfile_parser['north']].data elev = ant_info[antfile_parser['up']].data if (east.dtype != NP.float) or (north.dtype != NP.float) or (elev.dtype != NP.float): raise TypeError('Antenna locations must be of floating point type') ant_locs = NP.hstack((east.reshape(-1,1), north.reshape(-1,1), elev.reshape(-1,1))) else: if array_layout not in ['MWA-128T', 'HERA-7', 'HERA-19', 'HERA-37', 'HERA-61', 'HERA-91', 'HERA-127', 'HERA-169', 'HERA-217', 'HERA-271', 'HERA-331', 'PAPER-64', 'PAPER-112', 'HIRAX-1024', 'CHIME', 'CIRC']: raise ValueError('Invalid array layout specified') if array_layout == 'MWA-128T': ant_info = NP.loadtxt(prisim_path+'data/array_layouts/MWA_128T_antenna_locations_MNRAS_2012_Beardsley_et_al.txt', skiprows=6, comments='#', usecols=(0,1,2,3)) ant_label = ant_info[:,0].astype(int).astype(str) ant_locs = ant_info[:,1:] elif array_layout == 'HERA-7': ant_locs, ant_label = hexagon_generator(14.6, n_total=7) elif array_layout == 'HERA-19': ant_locs, ant_label = hexagon_generator(14.6, n_total=19) elif array_layout == 'HERA-37': ant_locs, ant_label = hexagon_generator(14.6, n_total=37) elif array_layout == 'HERA-61': ant_locs, ant_label = hexagon_generator(14.6, n_total=61) elif array_layout == 'HERA-91': ant_locs, ant_label = hexagon_generator(14.6, n_total=91) elif array_layout == 'HERA-127': ant_locs, ant_label = hexagon_generator(14.6, n_total=127) elif array_layout == 'HERA-169': ant_locs, ant_label = hexagon_generator(14.6, n_total=169) elif array_layout == 'HERA-217': ant_locs, ant_label = hexagon_generator(14.6, n_total=217) elif array_layout == 'HERA-271': ant_locs, ant_label = hexagon_generator(14.6, n_total=271) elif array_layout == 'HERA-331': ant_locs, ant_label = hexagon_generator(14.6, n_total=331) elif array_layout == 'PAPER-64': ant_locs, ant_label = rectangle_generator([30.0, 4.0], [8, 8]) elif array_layout == 'PAPER-112': ant_locs, ant_label = rectangle_generator([15.0, 4.0], [16, 7]) elif array_layout == 'HIRAX-1024': ant_locs, ant_label = rectangle_generator(7.0, n_side=32) elif array_layout == 'CHIME': ant_locs, ant_label = rectangle_generator([20.0, 0.3], [5, 256]) elif array_layout == 'CIRC': ant_locs, ant_label = circular_antenna_array(element_size, minR, maxR=maxR) ant_label = NP.asarray(ant_label) if ant_locs.shape[1] == 2: ant_locs = NP.hstack((ant_locs, NP.zeros(ant_label.size).reshape(-1,1))) antpos_rstate = NP.random.RandomState(antpos_rms_seed) deast = antpos_rms_tgtplane/NP.sqrt(2.0) * antpos_rstate.randn(ant_label.size) dnorth = antpos_rms_tgtplane/NP.sqrt(2.0) * antpos_rstate.randn(ant_label.size) dup = antpos_rms_elevation * antpos_rstate.randn(ant_label.size) denu = NP.hstack((deast.reshape(-1,1), dnorth.reshape(-1,1), dup.reshape(-1,1))) ant_locs = ant_locs + denu ant_locs_orig = NP.copy(ant_locs) ant_label_orig = NP.copy(ant_label) ant_id = NP.arange(ant_label.size, dtype=int) ant_id_orig = NP.copy(ant_id) layout_info = {'positions': ant_locs_orig, 'labels': ant_label_orig, 'ids': ant_id_orig, 'coords': 'ENU'} bl_orig, bl_label_orig, bl_id_orig = baseline_generator(ant_locs_orig, ant_label=ant_label_orig, ant_id=ant_id_orig, auto=False, conjugate=False) blo = NP.angle(bl_orig[:,0] + 1j * bl_orig[:,1], deg=True) neg_blo_ind = (blo < -67.5) | (blo > 112.5) bl_orig[neg_blo_ind,:] = -1.0 * bl_orig[neg_blo_ind,:] blo =
NP.angle(bl_orig[:,0] + 1j * bl_orig[:,1], deg=True)
numpy.angle
import numpy as np from flask import Flask,request,jsonify,render_template import pickle import pandas as pd import datetime as dt from datetime import datetime from datetime import datetime as dt app = Flask(__name__) model = pickle.load(open('model.pkl','rb')) @app.route('/') def home(): return render_template('index.html') @app.route('/predict',methods =['POST']) def predict(): option = request.form['options'] date = request.form['date'] dat = date name = request.form['name'] d = dt.strptime(date, '%d-%m-%Y').date() date = d.toordinal() date =
np.array(date)
numpy.array
import numpy as np import copy def construct_preprocessor( trainingset, list_of_processors, **kwargs ): combined_processor = lambda x: x for entry in list_of_processors: if type(entry) == tuple: processor, processor_configuration = entry assert type(processor_configuration) == dict, \ "The second argument to a preprocessor entry must be a dictionary of settings." combined_processor = processor( combined_processor( trainingset ), **processor_configuration ) else: processor = entry combined_processor = processor( combined_processor( trainingset )) return lambda dataset: combined_processor( copy.deepcopy( dataset )) #end def standarize( trainingset ): """ Morph the input signal to a mean of 0 and scale the signal strength by dividing with the standard deviation (rather that forcing a [0, 1] range) """ def encoder( dataset ): for instance in dataset: if np.any(stds == 0): nonzero_indexes = np.where(stds!=0) instance.features[nonzero_indexes] = (instance.features[nonzero_indexes] - means[nonzero_indexes]) / stds[nonzero_indexes] else: instance.features = (instance.features - means) / stds return dataset #end training_data = np.array( [instance.features for instance in trainingset ] ) means = training_data.mean(axis=0) stds = training_data.std(axis=0) return encoder #end def replace_nan( trainingset, replace_with = None ): # if replace_with = None, replaces with mean value """ Replace instanced of "not a number" with either the mean of the signal feature or a specific value assigned by `replace_nan_with` """ training_data = np.array( [instance.features for instance in trainingset ] ).astype( np.float64 ) def encoder( dataset ): for instance in dataset: instance.features = instance.features.astype( np.float64 ) if np.sum(np.isnan( instance.features )): if replace_with == None: instance.features[ np.isnan( instance.features ) ] = means[ np.isnan( instance.features ) ] else: instance.features[ np.isnan( instance.features ) ] = replace_with return dataset #end if replace_nan_with == None: means = np.mean( np.nan_to_num(training_data), axis=0 ) return encoder #end def subtract_mean( trainingset ): def encoder( dataset ): for instance in dataset: instance.features = instance.features - means return dataset #end training_data = np.array( [instance.features for instance in trainingset ] ) means = training_data.mean(axis=0) return encoder #end def normalize( trainingset ): """ Morph the input signal to a mean of 0 and scale the signal strength by dividing with the standard deviation (rather that forcing a [0, 1] range) """ def encoder( dataset ): for instance in dataset: if np.any(stds == 0): nonzero_indexes = np.where(stds!=0) instance.features[nonzero_indexes] = instance.features[nonzero_indexes] / stds[nonzero_indexes] else: instance.features = instance.features / stds return dataset #end training_data = np.array( [instance.features for instance in trainingset ] ) stds = training_data.std(axis=0) return encoder #end def whiten( trainingset, epsilon = 1e-5 ): training_data = np.array( [instance.features for instance in trainingset ] ) def encoder(dataset): for instance in dataset: instance.features = np.dot(instance.features, W) return dataset #end covariance =
np.dot(training_data.T, training_data)
numpy.dot
""" Spline fit 3D 4 channel example. Can for example be used in 4Pi-Storm microscopy. Requires pyGpufit, pyGpuSpline (https://github.com/gpufit/Gpuspline), Numpy and Matplotlib. """ import numpy as np from matplotlib import pyplot as plt import pygpuspline.gpuspline as gs import pygpufit.gpufit as gf import misc def merge_channels(x): """ Takes a NxMx4 array and returns a 2Nx2M array by stacking the 4 2D images in a 2x2 grid. :param x: Input array :return: Output array """ return np.vstack((np.hstack((x[:, :, 0], x[:, :, 1])), np.hstack((x[:, :, 2], x[:, :, 3])))) def calculate_psf(size_x, size_y, size_z, p, n_channels): """ calculate psf :param size_x: :param size_y: :param size_z: :param p: :param n_channels: :return: """ s_max = p[4] * 5 s_min = p[4] / 5 sx = np.linspace(s_max, s_min, size_z) sy = np.linspace(s_min, s_max, size_z) sz = 8 delta_s = sx[0] - sx[1] sx = [sx, s_min - 1 * delta_s, s_min - 2 * delta_s, s_min - 3 * delta_s] sy = [sy, s_max + 1 * delta_s, s_max + 2 * delta_s, s_max + 3 * delta_s] x = np.linspace(0, np.pi, size_z) a = np.zeros((x.size, 4)) a[:, 0] = np.sin(x + np.pi * 0 / 4) * 0.5 + 0.5 a[:, 1] = np.sin(x + np.pi * 1 / 4) * 0.5 + 0.5 a[:, 2] = np.sin(x + np.pi * 2 / 4) * 0.5 + 0.5 a[:, 3] = np.sin(x + np.pi * 3 / 4) * 0.5 + 0.5 f = np.zeros((size_x, size_y, size_z, n_channels), dtype=np.float32) for ch in range(n_channels): for xi in range(size_x): for yi in range(size_y): for zi in range(size_z): arg_x = np.exp(-1 / 2 * ((xi - p[1]) / sx[zi + ch])**2) arg_y = np.exp(-1 / 2 * ((yi - p[2]) / sy[zi + ch])**2) arg_z = np.exp(-1 / 2 * ((zi + ch - p[3]) / sz)**2) f[xi, yi, zi, ch] = a[zi, ch] * p[0] * arg_x * arg_y * arg_z + p[5] return f def spline_values_3d_multichannel(coefficients, n_intervals, n_channels, p): """ :param coefficients: :param n_intervals: :param n_channels: :param p: :return: """ coefficients = np.reshape(coefficients, (64, n_intervals[0], n_intervals[1], n_intervals[2], n_channels)) x = np.arange(n_intervals[0])-p[1] y = np.arange(n_intervals[1])-p[2] z = -p[3] f = p[0] * gs.spline_values(coefficients, x, y, z) + p[4] return f if __name__ == '__main__': # initialize random number generator rng = np.random.default_rng(0) # data size size_x = 19 size_y = 25 size_z = 50 n_channels = 4 # tolerances tolerance = 1e-30 max_n_iterations = 200 estimator_id = gf.EstimatorID.LSE # derived values x = np.arange(size_x, dtype=np.float32) y = np.arange(size_y, dtype=np.float32) z = np.arange(size_z, dtype=np.float32) # generate PSF psf_parameters = np.array([100, (size_x - 1) / 2 + 1, (size_y - 1) / 2 - 1, (size_z - 1) / 2, 1, 10], dtype=np.float32) psf = calculate_psf(size_x, size_y, size_z, psf_parameters, n_channels) z_slice_index = 25 # add noise snr = 5 amplitude = psf_parameters[0] noise_std_dev = amplitude / (snr *
np.log(10.0)
numpy.log
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data =
np.array([])
numpy.array
# Select and shuffle a random subset of available data, and apply data augmentation techniques. # I tried adding a separate thread to fill a queue of unzipped spectrograms, # but it didn't actually improve performance. import random import sys import numpy as np import skimage from skimage import filters from core import audio from core import constants from core import util from core import plot PROB_MERGE = 0.2 # probability of merging to train multi-label support PROB_AUG = 0.55 # probability of augmentation CACHE_LEN = 1000 # cache this many noise specs for performance MAX_SHIFT = 5 # max pixels for horizontal shift NOISE_VARIANCE = 0.0015 # larger variances lead to more noise SPECKLE_VARIANCE = .009 # relative frequencies of the augmentation types BLUR_INDEX = 0 # so FREQS[0] is relative frequency of blur FADE_INDEX = 1 LOW_INDEX = 2 NOISE_INDEX = 3 SHIFT_INDEX = 4 SPECKLE_INDEX = 5 FREQS = [0.25, 0.5, 0.2, 1.0, 0.5, 0.9] class DataGenerator(): def __init__(self, x_train, y_train, seed=None, augmentation=True, binary_classifier=False, multilabel=False): self.x_train = x_train self.y_train = y_train self.seed = seed self.augmentation = augmentation self.binary_classifier = binary_classifier self.multilabel = multilabel if binary_classifier: self.spec_height = constants.BINARY_SPEC_HEIGHT else: self.spec_height = constants.SPEC_HEIGHT self.indices = np.arange(y_train.shape[0]) if self.augmentation: # convert relative frequencies to probability ranges in [0, 1] freqs = np.array(FREQS) sum = np.sum(freqs) probs = freqs / sum self.probs =
np.zeros(SPECKLE_INDEX + 1)
numpy.zeros